
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from
Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis in whole or in part in all
forms of media, now or hereafter now, including display on the World Wide Web. I
understand that I may select some access restrictions as part of the online submission
of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain
the right to use in future works (such as articles or books) all or part of this thesis.

Zachary Zaiman March 23, 2023

AudioStrike: Acoustic Identification of Keystrokes to Enhance
End-to-End Session Integrity

By

Zachary Zaiman

Ymir Vigfusson Ph.D.
Adviser

Computer Science

Ymir Vigfusson Ph.D.
Adviser

Emily Wall Ph.D.
Committee Member

Kristin Williams Ph.D.
Committee Member

2023

AudioStrike: Acoustic Identification of Keystrokes to Enhance
End-to-End Session Integrity

By

Zachary Zaiman

Ymir Vigfusson Ph.D.
Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Science with Honors

Computer Science
2023

Abstract

AudioStrike: Acoustic Identification of Keystrokes to Enhance
End-to-End Session Integrity

By Zachary Zaiman

The lateral movement strategy is one of the most pervasive attack techniques
in a modern hacker’s arsenal. Generally, a point of entry is established through a
phishing or social engineering attack to gain access to a target’s broader network
from where more confidential and valuable information is obtained. Time and time
again this method of exploitation has beaten the most complex systems with state-
of-the-art intrusion detection software and security infrastructure due primarily to
human error. To effectively defend against lateral movement attacks, we propose
Audiostrike, a continuous and frictionless keystroke authentication architecture that
utilizes the natural acoustic emanations of a user’s keyboard. We specifically show a
proof of concept of this system on a single typist that achieves a 0.87 ROCAUC score
of classifying keystrokes on three regions of the keyboard and can identify a potential
attack within 5 keystrokes with high probability.

AudioStrike: Acoustic Identification of Keystrokes to Enhance
End-to-End Session Integrity

By

Zachary Zaiman

Ymir Vigfusson Ph.D.
Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Computer Science

2023

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advi-

sor, Dr. Ymir Vigfusson, for his unwavering support, encouragement, and guidance

throughout my undergraduate honors thesis. I would also like to thank my committee

members, Dr. Kristin Williams and Dr. Emily Wall, for their time, feedback, and

constructive criticism, which have significantly improved the quality of my thesis. I

would also like to thank Dr. Judy Gichoya, who sparked my interest and passion for

research. Furthermore, I would like to acknowledge the invaluable contributions of

other teachers at Emory, particularly those in the computer science department, who

have enriched my academic experience through their courses, lectures, and mentor-

ing. Their passion for teaching and research has fostered my curiosity and passion for

the field of computer science. Thank you all for your support, encouragement, and

contributions to my academic journey.

i

Contents

1 Introduction 1

2 Background 7

2.1 Side Channel Attacks . 7

2.2 Security by Surveillance . 8

2.3 Threat Models . 8

2.3.1 Local Compromise . 9

2.3.2 Root Compromise . 9

2.3.3 Physical Compromise . 10

3 Materials and Methods 12

3.1 AudioStrike System . 12

3.2 Data Collection . 14

3.2.1 User Interface . 14

3.2.2 Data Collector . 15

3.2.3 Back-end . 23

3.3 IRB Study Design For Crowd Sourcing 24

3.4 Model Training . 26

3.4.1 Metrics . 27

4 Results 30

4.1 Data Exploration . 30

4.2 Model Evaluation . 32

5 Related Works 36

5.1 Security Considerations . 36

5.2 Authentication . 37

5.3 Convolutional Neural Networks . 38

5.4 Audio Signal Processing . 40

5.5 Crowd Sourcing . 41

6 Discussion 44

6.1 System Validation . 44

6.2 Ethical Considerations . 46

6.3 Limitations . 47

6.4 Future Work . 48

6.5 Conclusion . 49

Appendix A Full Keystroke Distribution 51

Bibliography 55

iii

List of Figures

3.1 AudioStrike Validation Architecture 12

3.2 Login Page . 15

3.3 Consent Page . 16

3.4 Registration Page . 17

3.5 Configuration Window . 18

3.6 Experiment Window . 19

3.7 AudioStrike Collector Architecture 28

3.8 Keyboard Split . 29

4.1 Example Spectrograms . 32

4.2 Training and Validation Convergence 33

4.3 ROC Curve . 34

5.1 CNN Architecture [26] . 39

iv

List of Tables

2.1 Comparison of Threat Models and Proposed Solutions 11

4.1 Keystroke Distribution . 30

4.2 Keystroke Distribution After Binning 32

4.3 Classification Metrics . 33

6.1 Attacker vs AudioStrike Predictive Power 45

6.2 Event Probability . 46

A.1 Keystroke Distribution . 51

v

List of Algorithms

1 Keylogger Sub-process . 18

2 Recorder Sub-process . 20

3 Collector Sub-process . 21

4 Audio Slicer Sub-process . 21

5 Spectrogram Conversion Sub-process 22

6 Submission Sub-process . 23

7 Categorize Keys as LHS or RHS . 31

1

Chapter 1

Introduction

The internet is a dangerous place. According to the Federal Bureau of Investigation’s

(FBI) annual internet crime report in 2021, over 18.7 billion dollars was lost in the

United States between 2016 and 2021, increasing every year. From 2019-2020, the

financial loss due to cyber-crime rose 16.7% and from 2020-2021, losses rose greater

than 40% [1]. In the world, cybercrime resulted in a loss of 20 billion dollars in

2021 alone. In 2023, Cybersecurity Ventures predicts the global cost of cyber-crime

damage will be upwards of 8 trillion dollars [32]. However, these statistics do not

even include the estimated 150 billion dollars spent by organizations worldwide to

protect their systems. Furthermore, they fail to capture the global environment of

cyber-attacks as well as the unreported number of successful or ongoing attacks. In

addition to the individual reports made to the FBI, several multinational companies

have reported breaches to their organizations in 2022 and 2023. For example, Uber, a

multi-million dollar ride-share company, was breached by a social engineering attack

despite using the latest defensive techniques like multi-factor authentication (MFA)

[21]. This shows that even a company as large and established as Uber can still

be compromised by an attacker employing social and technical strategies to breach

a system equipped with the most modern security defenses. Current cyber-security

2

solutions need to be improved.

Cybercrime not only affects large corporations but also impacts the average active

member of society. One kind of malicious software typically embedded in a system

through lateral movement or human error, is called ransomware. Ransomware is a

program that shuts down services or steals data unless the affected party pays the

attacker a certain sum of money or fulfills their demands. These kinds of attacks

skyrocketed 800% both in popularity and sophistication during the COVID-19 pan-

demic [16]. Ransomware plagued the healthcare, education, financial, and technology

industries. In particular, hospitals and other healthcare infrastructure terrorized by

ransomware attacks lost control of private patient data and had operations moved

back to paper, resulting in patient harm and worsening the efficiency and efficacy

of patient care at the peak of the pandemic, when the entire industry was already

strained. In addition, consistently targeted industries like healthcare do not have the

robust technological infrastructure internally to defend and recover from these at-

tacks, elongating the already difficult and expensive process of rebuilding the damage

inflicted by an attacker.

The most difficult and problematic element of cyber-security is the overwhelming

lack of resources to combat well-organized attacks. Even with existing methods in-

tended to prevent cybercrime, security teams struggle to prioritize particular areas

of security over others and develop new defense tactics at the rate nefarious actors

discover and exploit new vulnerabilities.

According to an annual security report by IBM in 2023, 9/10 cyber-attacks involve

some kind of human error [2]. Companies are targeted daily in attacks similar to the

one against Uber in a manner that appears almost uniform. Actors seeking to exploit

vulnerabilities first secure a foothold, use this foothold to penetrate their target’s

system, and subsequently access confidential data or plans until they reach their target

user. Even with the development of highly advanced infiltration detection systems,

3

code vulnerability detectors, and other preventative measures, it is impossible to

remove human error from the equation. Rather than omitting human interaction from

the calculus of a secure system, the most effective solutions will leverage frictionless

systems to ensure technical security as well as minimize the effects of human error as

much as possible. Furthermore, the most effective systems will not change existing

user interactions with a system or service but rather complement those that are

already in place.

Lateral movement is a popular exploitation technique for modern attackers,

especially against commercial targets. Attackers leverage a single breach to a user

on a network to migrate from user to user, gradually performing reconnaissance, and

monitoring user data and valuable assets while working to remain undetected for as

long as possible. Because adversaries need to fly under the radar while accessing

a system, they will often avoid techniques that will set off signature-based alarms.

As such, attackers rely heavily on system access to steal passwords, escalate privi-

leges via remote machines, and access benign tools - such as PowerShell or Windows

Management Instrumentation - already installed on host devices [20].

While there are possible defenses to these kinds of attacks such as automated

intrusion detection systems, cloud security frameworks, and machine learning-based

monitoring systems [31], each depends heavily on complex algorithms and expensive

computer infrastructure designed to detect potential attacks across an entire orga-

nization. Consequently, the ability for attackers to stay hidden inside a system and

carry out this type of attack on an end-user remains quite high. This poses a dif-

ficult challenge for security researchers and engineers attempting to prevent lateral

movement. In many cases, early detection is vital in stopping attackers from doing

severe damage to a system. One way security teams try to hinder an attacker from

compromising an endpoint or service is through authentication techniques [20].

Traditionally, authentication relies on one or more of the following: something

4

you know (such as a password or answer to a question), something you have (such as

a physical key or card), and (something you are such as a retinal scan or other bio-

metric) [23]. More modern authentication techniques like multi-factor authentication

(MFA) relies on two or more of the above to authenticate, providing a system or

service an additional source of truth during the authentication process. However,

having two or more of these safeguards in place does little to prevent targeted social

engineering and other types of cyber-attacks that are more technical.

Another layer to this challenge is security fatigue. Steven Furnell defines the term

as

...the situation in which users of systems and staff in organizations can

tire of dealing with security or encountering messages and warnings in

relation to it [22].

Not only do researchers have to account for the increasing complexity of cyber-attacks,

but they also have to do so without introducing substantial friction in their solutions.

It is also important to note the threat models for which these solutions are de-

signed. Consider two-factor authentication (2FA) that uses an external authenticator

app on a user’s mobile phone. This threat model assumes that the mobile phone is

not compromised so that even if a user’s password was breached, an attacker would

not be able to accept the authentication request. However, if the mobile device is

compromised as well, 2FA has no effect. This predicament demonstrates the signifi-

cance of assessing the level of permissions a malicious actor can obtain. If an attacker

has the power to compromise a user account, administrator-level software solutions

can prevent the escalation of malicious actions. Alternatively, if an attacker somehow

manages to elevate their permissions to the administrator level, they can disable,

bypass, or trick any existing protections.

Solutions exist both in industry and academia [33] to combat lateral movement on

locally compromised or non-root compromised systems, but these solutions become

5

inadequate if a malicious attacker can elevate their permissions to the administrator

level because the attacker would have complete control over the target’s operating

system.

A possible complementary defense to this kind of attack is to leverage side chan-

nels. Side channels have traditionally been used as an exploitation strategy, leverag-

ing a physical flaw in the implementation of a system to gain information or carry

out some type of attack [15]. For example, there was a famous side channel attack

from the 1950s known as operation ENGULF [28] where a bug placed by MI5 was

used to decipher the Hagelin cipher machine based on its acoustic emanations. More

recently, side channels have been used to exploit a variety of systems including procur-

ing private keys [10], keystroke patterns [30], and even escalating to administrator

permissions [19].

One particularly notable side channel is keyboard emanations. Keyboard emana-

tions refer to the acoustic signals that are unintentionally generated by a keyboard

when a user presses a key. Asonov and Agrawal showed that it is possible to use

machine learning to detect what keys a user types based on sound using a mechanical

keyboard. Although capturing these signals can be considered eavesdropping and

is therefore ethically questionable, consider the enormous potential security appli-

cations. Assuming that the typing pattern for every user is different, the acoustic

emanation of each keystroke could be used to verify the authenticity of a keystroke

without needing user interaction on a channel completely outside of a malicious ac-

tor’s view.

With this in mind, we propose AudioStrike, a system which leverages a

convolutional neural network (CNN) audio classifier to predict the region

of the keyboard where each keystroke was pressed. Using that prediction,

AudioStrike can give a confidence score on how likely it is that the keystroke is secure.

We also show that given an arbitrarily long sequence of keystrokes, the probability

6

of fooling the system decreases exponentially relative to the number of keystrokes

pressed.

The contributions of this thesis are as follows:

1. We describe the AudioStrike architecture for verifying keystroke authenticity

on a root-compromised system (See chapter 3.1).

2. We provide under open-source a Windows and Mac (Intel/Silicon) tool for scal-

able and privacy-preserving keystroke data collection (See Chapter 3.2).

3. We detail the study design for large-scale user-centric evaluation. The results

are pending IRB approval (See Chapter 3.3).

4. We analyze the results from a proof of concept evaluation on an AudioStrike

prototype that shows the approach can achieve an average ROCAUC score of

0.87 from distinguishing left-hand side, right-hand side, and space keyboard

regions allowing for detection of an attacker within 5 keystrokes (See Chapter

4).

All implementation ideas and experimentation was conducted by the author under

the guidance of Dr. Vigfusson. No part of KeyStrike source code or intellectual

property was used in this project.

7

Chapter 2

Background

2.1 Side Channel Attacks

Traditional exploits make use of flaws or vulnerabilities in an implementation of an

application or service to breach a system. This often has to do with the logical im-

plementation of a program rather than the physical implementation or configuration

of the system. Side channel attacks on the other hand take advantage of the physical

system to extract information or manipulate the execution of a program running on

that system [7]. For example, Yuval Yarom and Naomi Benger showed that it was

possible to use a side channel to allow an attacker to discern if a piece of information

was requested previously to recover the private key from an elliptic curve algorithm

implemented by the OpenSSL library [37]. Common defenses for these attacks involve

removing the side channel or obfuscating the correlation between the side channel and

the software-defined operation. Unfortunately, these defenses are not universal and

do not always have the potential to be implemented without damaging the underlying

functionality of the system.

In 2004, Dmitri Asonov and Rakesh Agrawal published a seminal paper on side-

channel attacks. They trained a neural network to identify keystrokes on PC and

8

ATM keyboards using only the sound of key presses and releases [5]. To train the

neural network, they used state-of-the-art audio processing techniques at the time

and were able to classify keystrokes correctly in their experiments with 79% accuracy.

Even though their experiments were conducted on a small scale, Asonov and Agrawal

demonstrated the vulnerability of essential components of a computer that do not

have the processing power or any obvious logical vulnerability. This poses another

difficult challenge for security engineers and researchers: a system can be logically

secure to the highest possible degree, but still be vulnerable to attacks through side

channels.

2.2 Security by Surveillance

Side channels are most commonly used as a method of exploitation on logically sound

systems. They have been a way for attackers to completely bypass any defenses on

a system simply by moving around them. Side channels, however, have not been

typically used for securing these systems. By leveraging side channels as a defense

mechanism, security engineers and researchers have the potential to implement ex-

ternal defenses to their systems. This also removes any logical dependency from the

defense to the system itself.

2.3 Threat Models

In this work, we consider three potential threat models: a locally compromised system,

a root compromised system and a physically compromised system.

9

2.3.1 Local Compromise

We define a locally compromised system to be one that has been breached by a

malicious actor but only at the user level. This means that the attacker has access to

the user’s data and permission levels but does not have administrator privileges. In

this context, an attacker can impersonate the target user but cannot change or disable

available defenses set by the system’s administrator. Consequently, even without

administrator privileges, if a system does not have the proper defenses, an attacker

can still damage the system or organization they have breached.

To secure a locally compromised system, a new technology has been patented

called KeyStrike [33]. KeyStrike uses an external device or administrator-controlled

software to capture a user’s keystrokes as they are entered. Before releasing the

keystrokes to an application, every keystroke is signed by an external service to verify

its authenticity. Essentially, 2FA is performed on every keystroke and will alert and

suppress unverified keystrokes. This ensures continuous and frictionless authentica-

tion on a potentially locally compromised system as the software would continuously

ensure that a user is who they present to be. Furthermore, since the software is run

at the administrator level, a user would not need to interact with it. Therefore, a user

with KeyStrike protection would not be vulnerable to a lateral movement attack as

long as the attacker was not able to escalate their permissions on the target system.

2.3.2 Root Compromise

We define a root compromised machine to be one in which the attacker has user

access as well as administrator access. This would allow them to bypass any defenses

put in place against lateral movement attacks; therefore, it is almost impossible to

programmatically defend against an attack as the attacker has full control of the

operating system and could disable or alter the protection without the knowledge

of the target. While the KeyStrike solution would work in a locally compromised

10

setting, if an attacker were to somehow elevate their permissions to an administrator,

they could turn off KeyStrike and even modify its software to successfully verify all of

the user’s keystrokes. To defend against a machine that may be root compromised,

we propose AudioStrike, an acoustic-based keystroke verification system. The theory

behind this system uses the same hypothesis that Asanov and Agrawal made in

2004: each key on a keyboard produces a slightly different sound. We build on this

hypothesis, applying state-of-the-art convolutional neural networks (CNN) and audio

signal processing techniques to differentiate between different keystrokes. We also

explore the robustness of our model, propose a framework that utilizes it to perform

secure a user against a root compromised attack, and validate the model against a

single typist’s data.

2.3.3 Physical Compromise

Finally, we define a physically compromised system to be one in which an attacker has

physical access to the machine. These types of attacks are arguably the most difficult

to defend against as there is no known way to distinguish a user from an attacker if

they are both sitting at a terminal. If a machine is physically compromised, neither

KeyStrike nor AudioStrike would be a suitable defense as both rely on external devices

to identify and stop an attacker.

To defend against a physically compromised system we propose a strategy called:

defender in the middle (DiTM). A defender in the middle uses the same properties as a

man in the middle attack but leverages them to defend a system. It accomplishes this

by placing a mobile device in between the keyboard and a user’s machine such that

every keystroke would pass through the mobile device as an extra layer of security.

That way, when a user leaves their machine and inevitably takes their mobile device

with them, they are removing the opportunity for an attacker to leverage a physical

attack vector.

11

Table 2.1: Comparison of Threat Models and Proposed Solutions

Threat Model KeyStrike AudioStrike DiTM

Locally Compromise ✓ ✓ ✓
Root Compromise ✓

Physically Compromise ✓

12

Chapter 3

Materials and Methods

3.1 AudioStrike System

After data has been collected and an accurate keystroke region classification model

has been trained, the model can be deployed into the AudioStrike keystroke validation

system.

Figure 3.1: AudioStrike Validation Architecture

Figure 3.1 shows the proposed keystroke validation architecture. The AudioStrike

processes would run on a trusted external device (like a smartphone) or a manufac-

tured USB drive with the capability to have a microphone channel. At a high level,

13

the model trained in the above steps would either be quantized [24] and deployed on

the external device, or deployed as an API on a trusted server unique to the user.

This approach creates a secure channel that is inaccessible to a potential malicious

actor who has access to the user’s machine. In either setting, the model deployed

could then be used for inference and cross-referenced with the keystroke that was

typed locally. If the system was disabled or if the probability that the key typed was

on the wrong region of the keyboard, the system would alert the user on the external

device that a possible attack was in progress and instruct them on actions to mitigate

the threat.

There is an implicit trade-off between privacy and efficiency in the model quan-

tization approach versus the external server approach. In the model quantization

approach, a user’s model is stored only on a trusted external device. To accomplish

deployment in the AudioStrike architecture, the model would have to be quantized or

distilled in order to function properly in an environment that may not have access to

resources typically needed for deep learning model training and inference like GPUs.

This benefits the user’s privacy as there is one less hop required between registering

a keystroke event and identifying a potential attack. However, model quantization

often comes at the cost of model performance. Quantization is also not studied as ro-

bustly as typical deep learning so the existing resources and frameworks would make

continuously training or updating an AudioStrike model challenging. In the external

server approach, the model would have to be committed and deployed to an external

server which may slightly increase prediction latency. However, the model perfor-

mance would not decay like in the quantization approach and a server could leverage

powerful computational resources to perform inference much more efficiently.

14

3.2 Data Collection

In order to train an effective model for AudioStrike, a large and diverse typing dataset

is needed. Since public typing data sets with adequate baseline labels are not publicly

available, we implemented a desktop application that could securely collect a user’s

typing data. This application has three main components: the user interface, the

underlying data collection utilities, and the cloud-hosted backend. Each component

of the application enables the secure collection of typing data from many different

participants in parallel. The full architecture can be seen in Figure 3.7.

3.2.1 User Interface

The user interface (UI) for this application was designed to be as simplistic as possi-

ble. After downloading and opening the application, the user is prompted to either

register for an account or log in to an existing account (shown in Figure 3.2). In the

registration view, the user must also sign a consent form (described in chapter 3.3)

to participate in the study. All data collected using this tool is assumed to be using

a standard QWERTY keyboard.

To register, the participant must accept the study consent form (shown in Figure

3.3). Following acceptance, the application records basic demographic and contact

information for each participant (shown in figure 3.4).

Once a user is successfully authenticated, they can access the collector configura-

tion page (shown in Figure 3.5). On this page, the user can configure the collector

with their local hardware. This includes I/O devices like a microphone and keyboard.

Once the user starts the experiment they are shown the final window (shown in

Figure 3.6) which has three buttons: play, pause, and stop. By default, the application

is in a running state but the user is able to pause a collection job and restart it or

stop the experiment entirely and exit the application.

15

Figure 3.2: Login Page

3.2.2 Data Collector

The main purpose of the data collector is to efficiently gather keystroke data in a

secure and scalable manner. For each keystroke, the collector yields a data structure

containing the key pressed and a spectrogram (an image representing the audio sig-

nal). These artifacts are then committed to the database. All of the processing and

conversion occurs on the user’s local machine before being committed to the cloud

in order to preserve anonymity and prevent any reconstruction attacks from occur-

ring on a user’s data. For the same reason, time stamps are also stripped from the

keystroke metadata before being committed to the server.

The spectrogram and keystroke objects are processed using a sequence of sub-

16

Figure 3.3: Consent Page

processes running in parallel. The processes communicate with each other as needed

using thread-safe queues that sequentially transition ownership of the keystroke event

object. Each sub-process has two components, a listener and a sender. The listener

receives data from another sub-process, while the sender transmits a processed com-

ponent from the received data to another sub-process for further analysis until even-

tually it is submitted to the back-end. The processes are submitted in the following

progression. First, each keystroke is logged and serialized into a data model. Next,

it is submitted to the audio processing queue. Lastly, before submission, it is sent to

the spectrogram conversion queue.

1. Keylogger Sub-process

17

Figure 3.4: Registration Page

The keylogger sub-process records all active keystrokes to the system and se-

rializes them into a data model that is propagated through the rest of the

sub-processes. For each keystroke, an event is recorded that captures the key

pressed along with the time it was pressed and released. On release, a callback

function is triggered to send the keystroke to the audio processing subprocess.

This process also derives a feature for each keystroke’s cleanliness. We define a

clean keystroke as one which is pressed in isolation. For example, consider two

keystrokes k1 and k2. k1 was pressed at time t1 and released at time t2 while

k2 was pressed at time t3 and released at time t4. If t1 ≤ t2 ≤ t3 ≤ t4 then the

keystroke is clean. If any of these time stamps overlap, the key is labeled as not

18

Figure 3.5: Configuration Window

clean and skipped in processing.

Algorithm 1: Keylogger Sub-process

Input: Active keystrokes from operating system

Output: Serialized keystroke data model

1 foreach keystroke do

2 Record keystroke events including time-pressed and time released; if

keystroke is clean then

3 Derive feature for keystroke cleanliness; Callback audio processing

subprocess with a keystroke;

4 end

5 end

19

Figure 3.6: Experiment Window

2. Recorder Sub-process

The recorder sub-process maintains a ring buffer of audio frames that are

streamed in real-time directly from the user’s internal or external microphone

selected during the experiment configuration process. The buffer maintains 2-3

seconds of audio that is continuously being overwritten by default but has the

functionality to dynamically resize itself depending on the specifications of the

user’s machine and latency between the audio recording and keystroke logging.

The ring buffer receives requests from the audio requester sub-process to send

data between two given time points relative to when a key was pressed and

released.

20

Algorithm 2: Recorder Sub-process

Input: Real-time audio frames from microphone

Output: Ring buffer of audio data

1 Initialize ring buffer with 2-3 seconds of audio data; while recording do

2 Stream incoming audio frames to ring buffer;

3 end

4 foreach keystroke do

5 Retrieve audio data for given frame numbers; Send audio data to the

spectrogram conversion queue;

6 end

3. Collector Sub-process

The collector sub-process manages both the recorder and key logger sub-processes.

Its purpose is to provide pause and play functionality to a participant in the

data collection process. Despite the safeguards in place to prevent data recon-

struction attacks, if a user is typing sensitive information such as a password or

credit card number, they may not want that data recorded. The collector sub-

process can stop and start the keylogger and audio threads while maintaining

a cache of objects that are actively being processed in the pipeline. As such, it

enables the application to still commit previously typed data while safeguarding

a user’s privacy.

21

Algorithm 3: Collector Sub-process

Input: Active keystrokes and real-time audio data

Output: Serialized keystroke data model with cached objects

1 while collecting do

2 if pause requested then

3 Stop keylogger and audio threads;

4 end

5 if play requested then

6 Start keylogger and audio threads;

7 end

8 Cache actively processed objects and continue processing;

9 end

4. Audio Requester Sub-process

The audio requester sub-process’s only job is to intercept incoming keystrokes

and make requests to the recorder process that query the right amount of audio

data from the active stream. After the audio data is parsed from the stream

and added to the keystroke object, the audio slicer sub-process sends it to the

spectrogram conversion queue.

Algorithm 4: Audio Slicer Sub-process

Input: Active keystrokes from keylogger sub-process

Output: Requests for audio data from recorder sub-process

1 foreach keystroke do

2 Make a request to the recorder sub-process for audio data;

3 end

5. Spectrogram Conversion Sub-process

The spectrogram sub-process receives keystroke objects with associated audio

data. Before sending these objects to the submission queue, they are converted

22

to spectrograms in order to obfuscate a user’s real audio data and further pre-

serve their privacy. This process applies a short Fourier transform to the audio

signal, which converts the amplitude to decibels. Finally, the raw imaging data

is converted in memory to PNG format and a unique random identifier is gener-

ated to use as the filename. After the spectrogram and filename are generated,

they are cast into the keystroke data model. The sub-process finally sends

the newly created keystroke object to the submission manager sub-process for

further processing.

Algorithm 5: Spectrogram Conversion Sub-process

Input: Keystroke objects with associated audio data

Output: Spectrogram data and serialized keystroke data model

1 foreach keystroke do

2 Apply short Fourier transform to audio data; Convert raw imaging data

to PNG format; Generate unique 64-bit UUID as filename; Add

spectrogram and filename to keystroke data model; Add keystroke to

active batch for submission;

3 end

6. Submission Sub-process

The submission subprocess’s job is to submit fully processed events to the server.

Every event that occurs on the client’s machine, including logging in, registering

a new user, starting a collection job, logging microphone and keyboard meta-

data, and keystrokes are all submitted to this queue. In addition to submitting

processed events, this sub-process also maintains a special data structure that

is used to cache keystrokes before submitting them to the server. This data

ensures that keystroke events are stripped of timestamps and shuffled so that

the order of keys pressed cannot be reconstructed.

23

Algorithm 6: Submission Sub-process

Input: Fully processed keystroke data model with spectrograms

Output: Submitted events to server

1 Initialize keystroke cache data structure; while collecting do

2 Add keystrokes to cache; if cache is full or session is ending then

3 Shuffle keystrokes in the cache; Strip timestamps from keystrokes;

Submit keystrokes to the server; Clear cache;

4 end

5 end

3.2.3 Back-end

The back end of the application functions as a receiver for data processed and sent

directly from the participant’s machine. There are two components used to store

participant data: a PostgreSQL database to store tabular data and a cloud storage

bucket to store the spectrograms for each job. Both cloud artifacts implement four

data models that are described in more detail below. Some of these data models

are used for experimental data collection while others are used to keep track of user

information and authentication tokens.

1. Keyboard

The keyboard data model stores metadata about the keyboard used by a partici-

pant in the collection job. Every time a keystroke is recorded by the application,

it returns an identifier for the hardware used to trigger that event. This model

assumes that only one keyboard is used for each collection job.

2. Microphone

The microphone data model stores hardware metadata about the microphone

used to record the audio signal created when a participant triggers a keyboard

event. This model includes the microphone’s sample rate, input channels, and

24

low and high input and output latencies.

3. Keystroke

The keystroke data model stores the actual data that will be used in training.

Each sample contains the physical key logged as well as a reference to the

processed spectrogram that was committed to the server. The spectrogram is

stored in a cloud storage bucket where the key to the object is the value stored

in the relational database. The keystrokes are also tagged with a collection job

identifier to group all keys from the same job together.

4. Collection Job

The collection job data model stores information about each individual job,

including the date and time a job was started, a reference to the microphone

and keyboard objects used in the job, and a reference to the user that started

the job. A collection job, keyboard, and microphone object must be committed

before any keystrokes are able to be logged.

3.3 IRB Study Design For Crowd Sourcing

Emory IRB STUDY00005668 (undergoing review) details the study design for the

AudioStrike data collection experiment. The study design has two components: a

lab-based component and an at-home-based component. The collection of user-

identifiable information is minimal, and no demographic or personally identifiable in-

formation will be collected to expedite the IRB approval process. However, a signed

consent form is still required when registering with the data collection tool. Both

components of the study use the same binaries and methods described above; the

difference lies in the experiment setting.

The lab-based component will occur in a highly controlled environment, such

as a computer lab or a psychology building, with specifics to be clarified in the

25

manuscript. Participants would be provided a computer with a uniform keyboard,

mouse, and microphone. They would also be isolated from each other to minimize

potential background noise and interruptions. Participants would be instructed to

operate the computer as normal, following a generic prompt to ensure a consistent

stream of keystrokes. Typing data would be collected for each participant for thirty-

minute sessions using the data collection tool described in Chapter 3.2. The goal is

to have 30-50 participants in the lab setting.

The at-home component could occur anywhere. Participants are encouraged to

perform the data collection in a room without any background noise, and the data

should be collected across multiple days in 30-minute increments. The user is expected

to operate their computer as normal with the collector running in the background,

performing natural tasks such as coding and writing. Because of the variable setting,

many confounding variables are introduced, including non-uniform I/O devices like

keyboards, mice, and microphones. Since each keyboard, mouse, and microphone

combination are different, it is possible that the signals for a keystroke would not

be consistent between hardware configurations. To alleviate this, the data collection

tool also records hardware metadata. In doing so, during the proposed analysis, we

can compare the data taken from specific hardware or normalize certain values based

on hardware metadata. For example, if two microphones have different sample rates,

it would be important to adjust the spectrogram representation of the audio signals

to account for this difference. The aim is to have at least 100-200 participants in the

at-home setting.

In addition, it is likely that the at-home data collection environment would be

more prone to background noise and unexpected audio interruption depending on the

physical environment where the user enables the data collection tool. For example, if

a user decided to run the experiment in a highly crowded area, or was on a phone call

at the time a keystroke event occurred, the spectrogram associated with a captured

26

keystroke would incorporate the unintended perturbation. While this could introduce

spurious features in the data set, we hope that given a large volume of data, the model

would be able to filter out the noise and discover the true signals of keystroke sound.

Both of these components are essential to collect a large sample of data from as

many participants as possible while also ensuring the quality and integrity of the

collected data. While the volume of the lab-based component is not anticipated to

be as large as the volume of data collected in the at-home component, it serves a

unique purpose: a baseline data set. The baseline data from the highly controlled

environment can now be compared with the crowdsource data to ensure quality and

integrity. In addition, the data could now be stratified by keyboard or microphone

type, presence of background noise, and other confounding variables to see which has

the most effect on performance. The collection tool also collects metadata about the

keyboard and microphone used, allowing for further contextualization of the model

output.

3.4 Model Training

In this study, we used a basic Convolutional Neural Network (CNN) architecture with

five convolutional blocks for multi-class classification. CNNs (described in more detail

in Chapter 5.3) have been shown to perform particularly well with imaging data so

we chose this architecture since we are using the image representation of the audio

signal emanating from a keystroke. The model was trained using a categorical cross-

entropy loss function and optimized using the Adam optimizer with a batch size of

32. We also implemented a learning rate scheduler to adjust the learning rate during

training for better convergence. The model was trained on a dataset consisting of

three keyboard region bins and the performance was evaluated using various metrics

such as accuracy, precision, and recall. Furthermore, the CNN model was specifically

27

designed for keyboard region classification between the left, right, and space bar as

shown in Figure 3.8.

This task required the model to accurately classify the position of keystrokes based

on the corresponding keyboard region. After the data was collected, we split the full

cohort into three separate sets: train, validation, and test. The train and validation

sets were used during model training to assess the performance of the model after each

epoch while the test set was removed from the training process so its final performance

could be evaluated on unseen data.

3.4.1 Metrics

By utilizing the proposed methodology, we aim to maximize the following metrics

on the test set: accuracy, F1 score, precision, recall, and the area under the receiver

operating characteristic (ROCAUC). Accuracy measures the proportion of correct

predictions made by the model over the total number of predictions. Precision mea-

sures the accuracy of positive predictions, recall measures the ability of the model to

identify positive instances, and the F1 score balances both precision and recall to pro-

vide a single score that reflects the model’s overall performance. The area under the

receiver operating characteristic (ROCAUC) curve is a measure of the model’s ability

to distinguish between positive and negative instances (true positive rate versus false

positive rate), where a higher value indicates better performance.

28

Figure 3.7: AudioStrike Collector Architecture

29

Figure 3.8: Keyboard Split

30

Chapter 4

Results

4.1 Data Exploration

Using the underlying algorithms from the data collection tool defined in Chapter 3.2,

keystroke and spectrogram data were collected for a single typist over the course of one

week. The typist used the same keyboard and microphone throughout the duration

of the collection process. During the collection process, keystrokes were classified as

either pure or impure (as mentioned in Chapter 3). Over the period of data collection,

30,548 unique keystrokes were registered and converted into spectrograms using the

collection algorithms described in the previous chapter.

Table 4.1: Keystroke Distribution

Grouped by Purity
Overall Impure Pure

Frequency 30548 11673 18875
Character, Frequency (%) ! 3 (0.0) 3 (0.0)

” 7 (0.0) 7 (0.1)
’ 53 (0.2) 13 (0.1) 40 (0.2)
16 (0.1) 16 (0.1)
$ 2 (0.0) 2 (0.0)

As can be seen in Table A.1 (full table can be seen in appendix A), the fre-

31

quency of each key recorded varies greatly. This is due to the increased prevalence

of certain characters in the English language over others [18]. Due to the variabil-

ity in the frequency of each keystroke, the possible classes were binned into three

categories: left-hand side (LHS), right-hand side (RHS), and space bar (as shown in

Figure 3.8. The space bar was the only key chosen as a unique category since it is

one of the most common and acoustically distinct keys. Algorithm 7 describes how

each key was split from a QWERTY keyboard. In this case L = [qwertasdfgzxcvb]

and R = [yuiophjklnm,./;]. It’s important to note that character case was not consid-

ered during the assignment of keystrokes because pressing a capital letter or special

character often requires the use of the shift button or other modifiers. The use of a

shift key frequently marked capital and special character keystrokes as impure and

therefore discarded before region assignment. In addition, characters that were not

included in the left and right list or space categorization class were discarded from

region assignment since their location often varies between keyboards.

Algorithm 7: Categorize Keys as LHS or RHS

Input: A key k and two lists, L and R
Output: The category of the key, either ”left”, ”right”, or ”space”

1 if k == ”space” then
2 category ← ”space”;
3 end
4 else if k ∈ L then
5 category ← ”left”;
6 end
7 else if k ∈ R then
8 category ← ”right”;
9 end

10 else
11 return
12 end
13 return category;

After the keys were binned into their respective categories and filtered for only

pure keystrokes, we were left with the following distribution of keys in their respective

32

bins.

Region Frequency
LHS 7251
RHS 5091
S 3226
Total 15568

Table 4.2: Keystroke Distribution After Binning

Using this distribution of keys, majority class undersampling was performed to

account for the large class imbalance in the keyboard regions. Examples of randomly

selected spectrograms from each region are shown below. It can clearly be seen that

the space region has the most distinct differences from the other two regions. Ex-

amining these figures demonstrates a clear difference between the space spectrogram

and the left and right spectrograms.

(a) Left Region Spectrogram (b) Space Spectrogram (c) Right Region Spectrogram

Figure 4.1: Example Spectrograms

4.2 Model Evaluation

The model described in chapter 3.2 was trained on the data set described in chapter

4.1. In this section, the model’s performance on the data set is explored. First, it is

important to consider the training and validation loss and accuracy plots to ensure the

model did not over-fit or under-fit on the training data and that each metric converged

properly. Note that although accuracy is reported in the plots, the optimal threshold

which optimizes precision and recall has not been determined.

33

(a) Loss (b) Accuracy

Figure 4.2: Training and Validation Convergence

From Figure 4.2 it can be seen that both the accuracy and the model loss during

training and validation converge and only make marginal improvement after around

ten epochs.

While the above analysis shows that the model did not overfit or underfit, it

does not verify the performance on an unseen test set. As described in Chapter 3.4,

a portion of the preprocessed data set was held out for evaluation after the model

training process was complete. The model achieved the following performance when

it was used to run inference on the holdout set. Note that for metrics that require a

threshold like an accuracy, precision, recall, and f1-score, the optimal threshold was

chosen to maximize the F1-score.

Table 4.3: Classification Metrics
Class Precision Recall F1-score Support
L 0.71 0.65 0.68 494
R 0.65 0.72 0.68 466
S 0.76 0.74 0.75 492
Accuracy 0.70
Macro Avg 0.70 0.70 0.70 1452
Weighted Avg 0.71 0.70 0.70 1452

Thresholdless metrics were also calculated as an alternate way of evaluating model

34

performance. Specifically, the ROC curve and corresponding ROCAUC were exam-

ined. The ROC curve displays the relationship between the false positive rate (FPR)

and true positive rate (TPR) at different thresholds for the model. A model that was

trained on completely random data would have a ROCAUC score of 0.5 while a per-

fect model would have a ROCAUC score of 1.0. Another notable component of this

metric is that it can only be used to evaluate a binary classification. In a multi-class

classification model, the one vs. all approach is commonly used. The target class is

treated as correctly classified while all other classes are considered to be incorrectly

classified.

Figure 4.3: ROC Curve

Figure 4.3 shows the ROC curve for the model described above. The average

35

ROCAUC of all three classes is 0.87, demonstrating that the model can classify a

keyboard region to a significant degree.

36

Chapter 5

Related Works

5.1 Security Considerations

Confidentiality, integrity, and availability, also known as the CIA triad is a term

commonly found throughout computer security literature [27]. Confidentiality refers

to the unauthorized access of information or use of an application or service on a

computer system. Integrity refers to the unauthorized modification of data on a

computer system. Availability refers to the unauthorized denial of service for some

data, service, or application on a computer system. All three traditional definitions of

these terms center around a malicious actor performing unauthorized operations on

their target’s machine or with their target’s data. The definitions of these three terms

have grown since their inception in the 1970s but the idea of each term remains more

or less the same. Over time, Samonas and Cross have shown how these definitions

have been subsumed in the academic literature as the concept of virtual identity

[27]. The concept itself is especially relevant when considering various threat models

and authentication techniques since underlying every method of authentication is the

idea that if successful, some external services verify your identity. However, in a case

where a target’s virtual identity is compromised and an attacker authenticates as

37

their target, the principles of the CIA triad implode. Any defenses the user or service

has becomes inadequate since for all intents and purposes, the attacker is now the

target from the scope of the target’s virtual identity.

The evolution of the CIA triad is important to consider in the context of this study

the philosophical question security experts are trying to answer is what constitutes

virtual identity. In the CIA model, if a malicious actor is able to authenticate as their

target, they are considered to be one and the same. However, this is not truly the

case.

5.2 Authentication

As mentioned in Chapter 1, authentication is often colloquially defined as having

one or more of the following three things: something you know, something you have,

and something you are. Something you know can be thought of as a password or

answer to a security question. Something you have can be thought of as a physical

key, authentication token, or one-time verification code unique to the user. Some-

thing you are refers to biometrics e.g. a fingerprint or retinal scan. While these

attributes of authentication provide a first pass at securing a service or machine,

a single authentication attribute in isolation can be trivial in actually stopping an

attacker. Consequently, the trend of using multiple authentication attributes has be-

come increasingly common. Examples of multiple authentication techniques include

two-factor authentication (2FA) and multi-factor authentication (MFA). 2FA [4] is

defined as having two of the key elements of authentication while MFA [14] is de-

fined as having two or more of these attributes. Many varieties of these concepts

exist in authentication literature, varying in terms of the number of attributes used

and the modality of attributes being authenticated, as well as the frequency in which

authentication is performed.

38

One method of authentication frequency that has been explored throughout multi-

ple works is continuous authentication (CA). CA is a process that constantly evaluates

the identity of a user on a system or service and can take a variety of forms depending

on which authentication attributes a system or system administrator wants to lever-

age. [11]. For example, Deutschmann et al. propose an authentication system that

leverages user interaction, such as keystrokes, mouse movement, and activity, on a

machine in order to evaluate the ”trust” a system ought to have in a particular user

[8]. Additionally, they developed a model that can evaluate trust and differentiate

between users based on behavioral biometrics, thereby making it even more difficult

for attackers to bypass authentication checks.

Beyond the scale of more traditional systems, CA has also been applied to the

internet of things devices (IOT), specifically wearable devices like smartwatches and

fitness trackers. If a wearable is assumed to be secure in an authentication sys-

tem’s threat model and can communicate with the machine over some kind of secure

channel, it can be used as an external monitor for continuous authentication [3]. Bio-

metrics and IoT have even been combined to provide an even more secure level of

security. For instance, Zhao et al. used cardiac biometrics obtained by a wearable as

a method of enhanced security as opposed to evaluating a wearable (something you

have) and a biometric (something you are) in isolation [39].

5.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) were first proposed by Lecun et al. [17] in

a paper applying machine learning to the classification of images of ZIP codes on

postage artifacts. CNNs are a variation of the traditional artificial neural network

(ANN) that can extract sequential encodings from the input data using a variety of

linear and non-linear transformations and matrix operations. When the idea of CNNs

39

was first proposed, the hardware needed to train a model to be able to capture complex

spatial encoding was not cost-effective. However, with the increasing availability of

graphical processing units (GPUs), extracting complex spatial or sequential encoding

from images has become a relatively straightforward task.

There are three main components to a CNN: convolution, pooling, and fully con-

nected dense layers [26].

Figure 5.1: CNN Architecture [26]

The convolutional layer performs element-wise multiplication on the sequential

input data with a kernel or mask to extract its feature representation. During the

training process, the weights used to extract the features from the input are tuned in

order to extract the most representative features for a given machine-learning task.

In the process of convolution, the dimensionality of the input data is reduced as the

kernel is normally much smaller in size than the input data, which allows the kernel

to extract important spatial features. Pooling layers are often applied directly after a

convolutional layer. Pooling layers further reduce the dimensionality of the input data

by using an optimization function like the max or average to try and select spatially

invariant features from the input data. By selecting an optimized feature from each

space, the model can further extract important features. The last component of a

40

CNN is one or more fully connected layers. These layers function similarly to those

in a vanilla ANN, using the input features extracted from the previous sequence of

convolutional and pooling layers to perform a given machine-learning task.

The basic CNN architecture described above has been altered and adapted to

different modular components in order to optimize feature extraction and improve the

network’s performance on a variety of classification tasks. Examples of the current

state-of-the-art CNN architectures include residual neural networks (Resnet) [12],

which are designed to leverage skip connections to avoid weight decay, and densely

connected CNNs (Densenet) [13] which explicitly connect all layers in the model to

one another in order to maintain a more robust feature representation and avoid

losing intermediate features throughout the training process.

5.4 Audio Signal Processing

Audio signal processing has been a widely researched field with numerous studies and

applications in various domains. In particular, this section will review different ways

of preprocessing raw audio frames for use in AudioStrike’s underlying CNN. One of

the most common ways to process audio for use in state-of-the-art machine learning

models is an audio spectrogram [25]. An audio spectrogram is a visual representation

of a sequence of audio frames. In its most basic form, it depicts a signal’s frequency

vertical over a given time horizontally as well as the amplitude of the signal at the

different time points (color). There are many variations of the simple spectrogram

described above that have been shown to better extract auditory features. One such

type of spectrogram is called a mel-spectrogram. Mel-spectrograms use the Mel Scale

to transform the vanilla spectrogram described above [29]. The Mel Scale converts

the raw audio data into a spectrogram such that all pitch differences would sound

equally different to a listener. This is because humans have been shown to be able to

41

better perceive auditory differences at low frequencies than at high frequencies.

Another type of spectrogram that has been extensively studied is the Constant

Q-Transform (CQT) spectrogram [38]. The CQT is a type of time-frequency analy-

sis that uses a logarithmic frequency scale to provide a constant ratio of frequency

resolution across all frequencies. This makes it well-suited for analyzing signals with

non-stationary or time-varying spectral characteristics, such as musical notes with

varying harmonics. The CQT works by decomposing a signal into a set of overlapping

frequency bands that are centered on logarithmically spaced frequencies. The width

of each frequency band is determined by a Q factor, which controls the frequency

resolution of the transform. Higher Q factors result in higher frequency resolution

at lower frequencies, while lower Q factors result in higher frequency resolution at

higher frequencies. The CQT is similar to the vanilla Short-Time Fourier Transform

(STFT) based spectrogram in that it divides a signal into overlapping windows and

computes a Fourier transform for each window. However, unlike the STFT, which

uses a fixed frequency resolution across all frequencies, the CQT uses a variable fre-

quency resolution that is tailored to the specific spectral characteristics of the signal.

One advantage of the CQT is that it provides a more accurate representation of the

harmonic structure of a signal than the STFT, making it especially useful for ana-

lyzing musical signals with complex harmonics. Another advantage is that it allows

for efficient computation of the spectrogram using fast Fourier transforms (FFTs),

improving computational efficiency.

5.5 Crowd Sourcing

In order to build a generalizable model for keystroke detection, it is important to

gather a diverse dataset of typing data on a variety of hardware systems. Approaching

this task in an extremely controlled, live environment would be logistically challenging

42

and expensive. An alternative to strictly lab-controlled data collection is crowd-

sourcing. Findlater et al. [9] compare the differences in data collected in a crowd-

sourced versus a lab environment on different modalities of hardware. They find

statistically significant differences in the quality of the data and the performance of

participants on a performance task in a lab and in crowdsourcing settings.

It is also important to examine the literature around potential deficiencies when

using large amounts of both manually and automatedly curated data to make in-

formed decisions, especially with something as sensitive as computer security. Becker

et al. from the MITRE corporation examined the potential faults of large amounts

of data collected for different use cases across four different industries to complete a

diverse set of tasks [6]. Overall, the authors reported ten main findings, the majority

of which involved data quality. The first and arguably most important result that

they mention is that the larger the volume of data, the more the quality decreases.

This is important to note in the context of AudioStrike as the volume of data collected

in the at-home component of the proposed study would most likely be many factors

greater than the volume of data collected in the lab portion. Therefore, it is essential

to be conscious of the data quality when evaluating the experimental results of the

system.

Another interesting application of crowd-sourcing is the idea of gamification.

Gamification is the use of game elements and mechanics in non-game contexts to

increase engagement and motivation for the user. Overall, it is an effective method of

keeping users entertained while still prompting them to achieve the goal of the study.

In 2008, Luis Von Ahn proposed the concept of a Game With A Purpose (GWAP)

[34]. GWAPS are games ...in which people, as a side effect of playing, perform tasks

computers are unable to perform. He then goes on to describe a general framework

for effectively creating these types of applications and the abstract implementation

guidelines that would make these games the most effective. He also proposes several

43

metrics to evaluate a GWAPs effectiveness such as throughput, defined as the average

number of problems solved per hour, ALP, defined as the average overall amount of

time played, and finally expected contribution, defined as the throughput multiplied

by the ALP. We hope to include some of the gamification concepts described above in

the AudioStrike data collection tool. They would encourage users to maintain active

engagement while also continuing to gather typing data to train a more robust model.

Von Ahn et al. also proposed the idea of a reCAPTCHA. [36]. reCAPTCHA is

a variation on a traditional CAPTCHA (Completely Automated Public Turing test

to tell Computers and Humans Apart) [35] but gamified to gather training data for

optical character recognition (OCR) machine learning models. This study is particu-

larly interesting because it leveraged a method that was already widely implemented

in many web applications, but had been overlooked in terms of data collection. They

were able to implement a system that did not change user default user interaction but

was nonetheless able to collect data and utilize the potential of a preexisting system.

44

Chapter 6

Discussion

6.1 System Validation

After a model has been trained and achieves sufficient and robust performance in

terms of classifying the region of the keyboard per user keystroke, it can then be

used in the AudioStrike keystroke validation pipeline to monitor and alert a user if

a potential attack is occurring. While the method of attack identification is men-

tioned in the architecture discussion of the AudioStrike validation system in Chapter

3.4, it does not mention how an attack is identified. To explain the attack identi-

fication process, first consider two vantage points: that of the attacker, and that of

AudioStrike. Unless the attacker is physically monitoring the user typing, they would

have no intuition regarding the distribution of keys typed by a user using AudioStrike

aside from the natural distribution of keys of the language typed. Therefore, they

would essentially have to guess the region where each key is pressed and hope for the

best. Comparatively, the vantage point of AudioStrike is slightly different. Because a

predictive model with accuracy A is deployed, the probability that the model guesses

the correct keystroke would be the probability of the attacker random guessing among

c possible keyboard regions, adjusted for the accuracy of the model A.

45

Attacker AudioStrike
1
c

(1− A)
(
1
c

)
+ A

Table 6.1: Attacker vs AudioStrike Predictive Power

To prove that AudioStrike will always have a higher predictive power than an

attacker, we can refer to the following inequality.

EAtt =
1

c
= (1− A+ A)

1

c
≤ (1− A)

1

c
+ A = EAud if c ≥ 1 (6.1)

This shows that as long as the model can classify more than one class, no matter

what the accuracy, it will always be at least as good as random guessing. Now that

it is known that AudioStrike will always perform at least as well as random guessing,

we can look at how much better it performs than an attacker.

Example: Consider a user running the AudioStrike deployment with the same

model described in chapters 3 and 4. This model can accurately classify three regions

of the keyboard c = 3. If an attacker was randomly guessing the region, they would

have a 1
3
chance of guessing the correct keyboard region for every keystroke. Imagine

the user is typing the string ”deadbeef”. Also, consider two possible events from

the attacker’s perspective: Ekeystroke and Ephrase. Ekeystroke represents the event that

occurs when a single keystroke is pressed and Ephrase is the event that occurs when a

phrase is pressed where Ephrase = {Ekeystroke1, Ekeystroke2, ..., Ekeystroken}.

Table 6.2 shows an example of how an attacker would need to attempt to breach

AudioStrike. As exemplified in the test data, the probability that the attacker would

accurately identify all keystrokes decreases exponentially relative to the number of

keystrokes in a phrase. Assuming each keystroke is an independent event, after five

keystrokes there is a 1.2% probability that an attacker can correctly inject keystrokes

into the system and after just three more keystrokes this probability drops to 0.015%,

making it almost impossible for an attacker to breach the system. With this model,

46

Table 6.2: Event Probability
Character Keyboard Region P (Ekeystroke) P (Ephrasei)

d Left 1/3 1/3 (= 1/31)
e Right 1/3 1/9 (= 1/32)
a Left 1/3 1/27 (= 1/33)
d Left 1/3 1/81 (= 1/34)
b Right 1/3 1/243 (= 1/35)
e Right 1/3 1/729 (= 1/36)
e Right 1/3 1/2187 (= 1/37)
f Right 1/3 1/6561 (= 1/38)

an attack could be identified more than 99% of the time with only five keystrokes and

could subsequently notify a user of a breach so they could take appropriate actions

to mitigate the attack. The data above also generalizes to the equation below.

P (Ephrasen) =
n∏

i=1

θi ≤ ε, θ =
1

c
, c = num classes (6.2)

In this equation n is the number of clean keys pressed, c is the number of classes

or regions of the keyboard the model was trained to identify, and θ is the probability

of an attacker randomly guessing the correct region of the keyboard. Assuming each

keystroke is an independent event, for an attacker to bypass the system, they would

have to guess the region of the keyboard for every keystroke.

6.2 Ethical Considerations

With any large-scale data collection and AI modeling study, it is always paramount

to consider the ethical implications on the participants whose data is being collected

as well. Furthermore, it is imperative to also consider potential malicious uses of a

model trained on keystroke data. In the case of AudioStrike, both of these issues must

be addressed. In the data collection study design, we ensure data privacy and security

through a number of features in the data collection tool. The first feature is batching.

When any keystroke event occurs, the data is first added to a buffer of events. When

47

the buffer reaches capacity (default value is 1000 keystroke events), the time stamps

associated with each keystroke are stripped and the events are randomly shuffled. This

makes it virtually impossible to reconstruct what a participant types if a breach in the

backend tool occurred. The second major safeguard added to the tool is the location

of spectrogram processing. All processing occurs on the participant’s machine, which

ensures no raw audio data is being collected, only an imaging representation of the

audio data. While it has been shown that spectrograms can be decomposed back into

their corresponding raw audio signals, the shuffling feature as well as the property

that only slices of the audio data are transmitted whenever a key is struck occurs,

make it highly unlikely that someone could reconstruct complete audio signals.

Another consideration is if the model weights are reconstructed or stolen. De-

pending on the granularity (i.e. number of keyboard regions the model can predict),

it could be possible to use the model to eavesdrop rather than secure a system. While

this is a large issue, there are two attributes to the design that make such an event a

non-issue. First, the proposed architecture uses fine-tuned models for every specific

user. As such, these models would be stored locally on an external device rather than

on a server. This means that even if an attacker were able to obtain a base model,

the model would not be robust enough to accurately classify every user’s keyboard

region. Second, the performance of models trained to classify each key individually is

poor, making it difficult to reconstruct exactly what someone is typing from knowing

just three regions of the keyboard.

6.3 Limitations

This study is focused on exploring the potential viability of a system that uses a side

channel, specifically acoustic, to perform continuous and frictionless authentication of

each user. The majority of the results of this study are based on data that has been

48

collected from one study participant. Because of this, there are a variety of different

confounding variables that could explain both the performance of the model and why

the model may not generalize well to other users.

One possible confounding variable is the homogeneous typing patterns of each

individual user. Typing has been shown as a behavioral biometric, almost acting as

a fingerprint for the user. It is possible that the model is learning the pattern of the

data on which it was trained rather than the audio signal itself. This is not inherently

a bad thing, as long as the model is fine-tuned on the user and continuously retrained

to avoid data drift and account for a user’s typing patterns. Another potential con-

founder is the geometric position of the microphone in relation to the keyboard. Since

the model described in Chapters 3 and 4 was trained only on one user’s data, the

microphone and keyboard remained constant. However, for this system to be widely

adopted, it would have to be robust enough to account for audio signals from different

kinds of microphones located at varying distances from the keyboard. Furthermore,

the model would also need to be robust enough to account for different keyboard

types, such as external mechanical keyboards or embedded keyboards that are found

in laptop computers.

While these limitations would prevent the adoption of the specific model to a

diverse group of users, that is not the main contribution of this manuscript. The goal

of the manuscript is to propose a system for continuous and frictionless authentication

on a root compromised system and provide a framework for evaluating and training

more accurate and robust models for this system.

6.4 Future Work

Continuous and frictionless keystroke authentication under a root-compromised threat

model is still a highly complex and open question. To continue the investigation

49

of these problems, we hope to deploy the system mentioned in Chapter 3 of the

manuscript to collect data on a diverse sample of users to create a comprehensive and

representative dataset. Once the data has been collected, the next step would be to

retrain the model described in Chapters 3 and 4 on the new data and evaluate the

model performance, stratifying on different possible confounders acquired during the

data collection process. Possible confounders include but are not limited to, micro-

phone metadata, keyboard type, and proximity of the microphone to the keyboard.

Following the updated training, the system would be prospectively validated on a new

set of users to determine its efficacy. One important aspect of this system is the need

for continuous retraining to ensure that it remains effective over time. This requires

a secure way of collecting and processing new keystroke data from users and integrat-

ing this data into the training process without compromising user privacy or security.

Given the complex nature of this issue, careful consideration of various factors such

as data privacy, data security, and system performance is required. In addition to the

above steps, further research could be done to investigate the potential of integrating

other biometric modalities such as voice or facial recognition, which would generate

an even more robust and secure authentication system.

6.5 Conclusion

In this manuscript, we proposed a framework for continuous and frictionless authen-

tication of a root-compromised machine using an acoustic side channel. More specifi-

cally, we used the sound of a keystroke pressed and subsequently released. We showed

that this architecture is viable after curating a typing data set consisting of keystrokes

and corresponding spectrograms for a single typist and training a CNN to predict the

typing region per keystroke. In addition, we also proposed a study design (pending

IRB approval) and implementation of a scalable and secure data collection system to

50

improve the robustness of the models trained on a single typist’s data as well as a

method of prospectively validating the system on crowd-sourced data.

While the performance and robustness of the models described throughout this

manuscript may not be able to generalize on other users since they are only trained

on data from a single typist, the results suggest that with a more diverse and com-

prehensive dataset, a robust base model could be developed. Using transfer learning,

this model could then be applied and fine-tuned to achieve optimal performance for

a specific user.

On many occasions, widely used means of authentication such as 2FA and the

more generalized version MFA, have been shown to be easily exploitable. Without

a continuous method of authentication that can defend against root compromised

systems, users will not be able to be confident that they are not under attack. Fur-

thermore, if the system is not easy to use and requires little user interaction, users will

not experience as much ”security fatigue” and will be able to better protect them-

selves from malicious actors while maintaining their usual online routines. While one

solution will never be enough to prevent any form of cyber attack, AudioStrike could

provide a major step in enhancing security and defining a true virtual identity by

providing a cost-effective2, continuous, and complete authentication system.

51

Appendix A

Full Keystroke Distribution

Table A.1: Keystroke Distribution

Grouped by Purity

Overall Impure Pure

Frequency 30548 11673 18875

Character, Frequency (%) 76 (0.2) 13 (0.1) 63 (0.3)

! 3 (0.0) 3 (0.0)

” 7 (0.0) 7 (0.1)

”’” 53 (0.2) 13 (0.1) 40 (0.2)

16 (0.1) 16 (0.1)

$ 2 (0.0) 2 (0.0)

& 2 (0.0) 2 (0.0)

(5 (0.0) 5 (0.0)

) 4 (0.0) 4 (0.0)

, 125 (0.4) 59 (0.5) 66 (0.3)

- 58 (0.2) 5 (0.0) 53 (0.3)

Continued on next page

52

Grouped by Purity

Overall Impure Pure

0 24 (0.1) 9 (0.1) 15 (0.1)

1 28 (0.1) 11 (0.1) 17 (0.1)

2 20 (0.1) 5 (0.0) 15 (0.1)

3 21 (0.1) 11 (0.1) 10 (0.1)

4 32 (0.1) 21 (0.2) 11 (0.1)

5 21 (0.1) 6 (0.1) 15 (0.1)

6 6 (0.0) 1 (0.0) 5 (0.0)

7 12 (0.0) 1 (0.0) 11 (0.1)

8 14 (0.0) 2 (0.0) 12 (0.1)

9 11 (0.0) 2 (0.0) 9 (0.0)

: 12 (0.0) 12 (0.1)

; 26 (0.1) 3 (0.0) 23 (0.1)

= 26 (0.1) 5 (0.0) 21 (0.1)

¿ 1 (0.0) 1 (0.0)

? 13 (0.0) 13 (0.1)

@ 1 (0.0) 1 (0.0)

[4 (0.0) 2 (0.0) 2 (0.0)

\\ 5 (0.0) 1 (0.0) 4 (0.0)

a 1614 (5.3) 735 (6.3) 879 (4.7)

b 531 (1.7) 125 (1.1) 406 (2.2)

c 786 (2.6) 231 (2.0) 555 (2.9)

d 903 (3.0) 496 (4.2) 407 (2.2)

e 2131 (7.0) 1035 (8.9) 1096 (5.8)

Continued on next page

53

Grouped by Purity

Overall Impure Pure

f 649 (2.1) 144 (1.2) 505 (2.7)

g 702 (2.3) 177 (1.5) 525 (2.8)

h 1024 (3.4) 334 (2.9) 690 (3.7)

i 1458 (4.8) 871 (7.5) 587 (3.1)

j 328 (1.1) 23 (0.2) 305 (1.6)

k 420 (1.4) 131 (1.1) 289 (1.5)

key.backspace 1805 (5.9) 216 (1.9) 1589 (8.4)

key.caps 8 (0.0) 4 (0.0) 4 (0.0)

key.cmd 101 (0.3) 35 (0.3) 66 (0.3)

key.ctrl 13 (0.0) 6 (0.1) 7 (0.0)

key.enter 792 (2.6) 61 (0.5) 731 (3.9)

key.esc 10 (0.0) 4 (0.0) 6 (0.0)

key.shift 491 (1.6) 253 (2.2) 238 (1.3)

key.space 4076 (13.3) 850 (7.3) 3226 (17.1)

key.tab 127 (0.4) 12 (0.1) 115 (0.6)

l 1050 (3.4) 435 (3.7) 615 (3.3)

m 625 (2.0) 216 (1.9) 409 (2.2)

n 1394 (4.6) 583 (5.0) 811 (4.3)

o 1574 (5.2) 1126 (9.6) 448 (2.4)

p 454 (1.5) 202 (1.7) 252 (1.3)

q 87 (0.3) 16 (0.1) 71 (0.4)

r 1077 (3.5) 577 (4.9) 500 (2.6)

s 1214 (4.0) 557 (4.8) 657 (3.5)

Continued on next page

54

Grouped by Purity

Overall Impure Pure

t 1709 (5.6) 962 (8.2) 747 (4.0)

u 706 (2.3) 334 (2.9) 372 (2.0)

v 309 (1.0) 84 (0.7) 225 (1.2)

w 584 (1.9) 247 (2.1) 337 (1.8)

x 169 (0.6) 24 (0.2) 145 (0.8)

y 539 (1.8) 314 (2.7) 225 (1.2)

z 150 (0.5) 15 (0.1) 135 (0.7)

˜ 2 (0.0) 2 (0.0)

] 3 (0.0) 3 (0.0)

‘ 18 (0.1) 18 (0.1)

key.alt 6 (0.0) 6 (0.0)

key.down 20 (0.1) 20 (0.1)

key.left 118 (0.4) 118 (0.6)

key.right 34 (0.1) 34 (0.2)

key.up 109 (0.4) 109 (0.6)

55

Bibliography

[1] Internet crime complaint center(ic3): Annual reports. URL https://www.ic3.

gov/Home/AnnualReports.

[2] Ibm x-force threat intelligence index 2023. 2023. https://www.ibm.com/

downloads/cas/DB4GL8YM.

[3] Fatimah Hussain Al-Naji and Rachid Zagrouba. A survey on continuous authen-

tication methods in internet of things environment. Computer Communications,

163:109–133, 2020. ISSN 0140-3664. doi: https://doi.org/10.1016/j.comcom.

2020.09.006. URL https://www.sciencedirect.com/science/article/pii/

S0140366420319204.

[4] Fadi Aloul, Syed Zahidi, and Wassim El-Hajj. Two factor authentication us-

ing mobile phones. In 2009 IEEE/ACS International Conference on Computer

Systems and Applications, pages 641–644, 2009. doi: 10.1109/AICCSA.2009.

5069395.

[5] Dmitri Asonov and Rakesh Agrawal. Keyboard acoustic emanations. In IEEE

Symposium on Security and Privacy, 2004. Proceedings. 2004, pages 3–11. IEEE,

2004.

[6] David Becker, Trish Dunn King, and Bill McMullen. Big data, big data quality

problem. In 2015 IEEE International Conference on Big Data (Big Data), pages

2644–2653, 2015. doi: 10.1109/BigData.2015.7364064.

https://www.ic3.gov/Home/AnnualReports
https://www.ic3.gov/Home/AnnualReports
https://www.ibm.com/downloads/cas/DB4GL8YM
https://www.ibm.com/downloads/cas/DB4GL8YM
https://www.sciencedirect.com/science/article/pii/S0140366420319204
https://www.sciencedirect.com/science/article/pii/S0140366420319204

56

[7] Hossein Bidgoli. Threats, vulnerabilities, prevention, detection, and Management,

pages 249–256. Wiley, Hoboken, NJ, 2006.

[8] Ingo Deutschmann, Peder Nordström, and Linus Nilsson. Continuous authen-

tication using behavioral biometrics. IT Professional, 15(4):12–15, 2013. doi:

10.1109/MITP.2013.50.

[9] Leah Findlater, Joan Zhang, Jon E. Froehlich, and Karyn Moffatt. Differences

in crowdsourced vs. lab-based mobile and desktop input performance data. In

Proceedings of the 2017 CHI Conference on Human Factors in Computing Sys-

tems, CHI ’17, page 6813–6824, New York, NY, USA, 2017. Association for

Computing Machinery. ISBN 9781450346559. doi: 10.1145/3025453.3025820.

URL https://doi.org/10.1145/3025453.3025820.

[10] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via low-

bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro, ed-

itors, Advances in Cryptology – CRYPTO 2014, pages 444–461, Berlin, Heidel-

berg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-44371-2.

[11] Lorena Gonzalez-Manzano, Jose M. De Fuentes, and Arturo Ribagorda. Lever-

aging user-related internet of things for continuous authentication: A survey.

ACM Comput. Surv., 52(3), jun 2019. ISSN 0360-0300. doi: 10.1145/3314023.

URL https://doi-org.proxy.library.emory.edu/10.1145/3314023.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition, 2015. URL https://arxiv.org/abs/1512.03385.

[13] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convo-

lutional networks. CoRR, abs/1608.06993, 2016. URL http://arxiv.org/abs/

1608.06993.

https://doi.org/10.1145/3025453.3025820
https://doi-org.proxy.library.emory.edu/10.1145/3314023
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993

57

[14] Xinyi Huang, Yang Xiang, Elisa Bertino, Jianying Zhou, and Li Xu. Robust

multi-factor authentication for fragile communications. IEEE Transactions on

Dependable and Secure Computing, 11(6):568–581, 2014. doi: 10.1109/TDSC.

2013.2297110.

[15] François Koeune and François-Xavier Standaert. A tutorial on physical secu-

rity and side-channel attacks. Foundations of Security Analysis and Design III:

FOSAD 2004/2005 Tutorial Lectures, pages 78–108, 2005.

[16] Michael Lang, Lena Yuryna Connolly, Paul Taylor, and Phillip J. Corner. The

evolving menace of ransomware: A comparative analysis of pre-pandemic and

mid-pandemic attacks. Digital Threats, Aug 2022. ISSN 2692-1626. doi: 10.

1145/3558006. URL https://doi.org/10.1145/3558006.

[17] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.

Neural Comput., 1(4):541–551, dec 1989. ISSN 0899-7667. doi: 10.1162/neco.

1989.1.4.541. URL https://doi.org/10.1162/neco.1989.1.4.541.

[18] Stewart Lee. Essays about computer security. page 181, 1999. URL https:

//www.cl.cam.ac.uk/~mgk25/lee-essays.pdf. Unpublished.

[19] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 39(8):

1555–1571, 2019.

[20] Palo Alto Networks. What is lateral movement? https://www.

paloaltonetworks.com/cyberpedia/what-is-lateral-movement, accessed

2023.

[21] Lily Hay Newman. The Uber hack’s devastation is just starting to reveal itself,

Sep 2022. URL https://www.wired.com/story/uber-hack-mfa-phishing/.

https://doi.org/10.1145/3558006
https://doi.org/10.1162/neco.1989.1.4.541
https://www.cl.cam.ac.uk/~ mgk25/lee-essays.pdf
https://www.cl.cam.ac.uk/~ mgk25/lee-essays.pdf
https://www.paloaltonetworks.com/cyberpedia/what-is-lateral-movement
https://www.paloaltonetworks.com/cyberpedia/what-is-lateral-movement
https://www.wired.com/story/uber-hack-mfa-phishing/

58

[22] Hamed Okhravi. Moving target defense. In Encyclopedia of Cryptography, Se-

curity and Privacy, pages 1–4. Springer Berlin Heidelberg, Berlin, Heidelberg,

2023.

[23] Aleksandr Ometov, Sergey Bezzateev, Niko Mäkitalo, Sergey Andreev, Tommi

Mikkonen, and Yevgeni Koucheryavy. Multi-factor authentication: A survey.

Cryptography, 2(1), 2018. ISSN 2410-387X. doi: 10.3390/cryptography2010001.

URL https://www.mdpi.com/2410-387X/2/1/1.

[24] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via

distillation and quantization. arXiv preprint arXiv:1802.05668, 2018.

[25] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter, Shuo-Yiin Chang, and

Tara Sainath. Deep learning for audio signal processing. IEEE Journal of Selected

Topics in Signal Processing, 13(2):206–219, 2019. doi: 10.1109/JSTSP.2019.

2908700.

[26] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image

classification: A comprehensive review. Neural Computation, 29(9):2352–2449,

2017. doi: 10.1162/neco a 00990.

[27] Spyridon Samonas and David Coss. The CIA strikes back: Redefining confi-

dentiality, integrity and availability in security. Journal of Information System

Security, 10(3), 2014.

[28] Adi Shamir and Eran Tromer. Acoustic cryptanalysis, 2004.

[29] S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement

of the psychological magnitude pitch. The Journal of the Acoustical Society of

America, 8(3):185–190, 1937. doi: 10.1121/1.1915893. URL https://doi.org/

10.1121/1.1915893.

https://www.mdpi.com/2410-387X/2/1/1
https://doi.org/10.1121/1.1915893
https://doi.org/10.1121/1.1915893

59

[30] Zhang Tao, Fan Ming-Yu, and Fu Bo. Side-channel attack on biometric cryp-

tosystem based on keystroke dynamics. In The First International Symposium

on Data, Privacy, and E-Commerce (ISDPE 2007), pages 221–223, 2007. doi:

10.1109/ISDPE.2007.48.

[31] Zhihong Tian, Wei Shi, Yuhang Wang, Chunsheng Zhu, Xiaojiang Du, Shen

Su, Yanbin Sun, and Nadra Guizani. Real-time lateral movement detection

based on evidence reasoning network for edge computing environment. IEEE

Transactions on Industrial Informatics, 15(7):4285–4294, 2019. doi: 10.1109/

TII.2019.2907754.

[32] Cybersecurity Ventures. Cybercrime damages to cost the world $8

trillion usd in 2023. https://www.einnews.com/pr_news/606505844/

cybercrime-damages-to-cost-the-world-8-trillion-usd-in-2023, 2022.

[33] Ymir Vigfusson. Devices, systems and methods for securing communication

integrity. US Patent Application No. 63/330,875, 2023. Patent (Pending).

[34] Luis Von Ahn and Laura Dabbish. Designing games with a purpose. Communi-

cations of the ACM, 51(8):58–67, 2008.

[35] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. Captcha:

Using hard ai problems for security. In Eurocrypt, volume 2656, pages 294–311.

Springer, 2003.

[36] Luis von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel

Blum. recaptcha: Human-based character recognition via web security measures.

Science, 321(5895):1465–1468, 2008. doi: 10.1126/science.1160379. URL https:

//www.science.org/doi/abs/10.1126/science.1160379.

[37] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA Nonces Using

the FLUSH+RELOAD Cache Side-channel Attack. Cryptology ePrint Archive,

https://www.einnews.com/pr_news/606505844/cybercrime-damages-to-cost-the-world-8-trillion-usd-in-2023
https://www.einnews.com/pr_news/606505844/cybercrime-damages-to-cost-the-world-8-trillion-usd-in-2023
https://www.science.org/doi/abs/10.1126/science.1160379
https://www.science.org/doi/abs/10.1126/science.1160379

60

Paper 2014/140, 2014. URL https://eprint.iacr.org/2014/140. https:

//eprint.iacr.org/2014/140.

[38] J. Youngberg and S. Boll. Constant-q signal analysis and synthesis. In ICASSP

’78. IEEE International Conference on Acoustics, Speech, and Signal Processing,

volume 3, pages 375–378, 1978. doi: 10.1109/ICASSP.1978.1170547.

[39] Tianming Zhao, Yan Wang, Jian Liu, Yingying Chen, Jerry Cheng, and Jiadi Yu.

Trueheart: Continuous authentication on wrist-worn wearables using ppg-based

biometrics. In IEEE INFOCOM 2020 - IEEE Conference on Computer Com-

munications, pages 30–39, 2020. doi: 10.1109/INFOCOM41043.2020.9155526.

https://eprint.iacr.org/2014/140
https://eprint.iacr.org/2014/140
https://eprint.iacr.org/2014/140

	Introduction
	Background
	Side Channel Attacks
	Security by Surveillance
	Threat Models
	Local Compromise
	Root Compromise
	Physical Compromise

	Materials and Methods
	AudioStrike System
	Data Collection
	User Interface
	Data Collector
	Back-end

	IRB Study Design For Crowd Sourcing
	Model Training
	Metrics

	Results
	Data Exploration
	Model Evaluation

	Related Works
	Security Considerations
	Authentication
	Convolutional Neural Networks
	Audio Signal Processing
	Crowd Sourcing

	Discussion
	System Validation
	Ethical Considerations
	Limitations
	Future Work
	Conclusion

	Appendix Full Keystroke Distribution
	Bibliography

