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Abstract

Prediction of CBC Hemoglobin Levels for Preterm Infants: Evaluation of
Anatomic Regions for Smartphone Photos

By Xinzhu Wang

Anemia is a condition in which the body’s red blood cell count is lower than
normal and become unable to provide enough oxygen to the tissues. If untreated, it
leads to a delay in brain maturation, tissue hypoxia, and growth impairment. The
routine techniques to detect anemia are blood laboratory tests such as complete blood
count (CBC). These tests require frequent blood draws, which may cause phlebotomy-
induced complications or exacerbate the existing anemia.

Non-invasive technologies are needed for preterm infants to quantitatively esti-
mate their hemoglobin levels and thereby monitoring the anemia status. Inspired by
a recent study using smartphone photos of adults’ fingernail beds for non-invasive de-
tection of anemia, we aim to explore whether a non-invasive method that is similar to
this smartphone image analysis algorithm can be developed for the preterm infants.
The goal of this study is to investigate several anatomic regions and to determine
smartphone photos of which anatomic region (fingernail, palm or toenail) can most
accurately reflect the preterm infants’ CBC Hgb levels. Linear regression models are
fitted to predict the hemoglobin outcomes for all anatomic regions as well as individ-
ually for each anatomic region. Mean squared errors and mean absolute errors for all
models across all testing data are calculated to compare the prediction performance.

The anatomic region is significantly associated with the CBC Hgb levels, indicat-
ing that different anatomic regions have different intercepts for the regression equa-
tion. The mean predicted Hgb levels at palm region is significantly different from
the mean predicted Hgb levels at fingernail region (p-value = 0.028). The regression
model for all anatomic regions has a mean absolute error of 1.26 and mean squared
error of 2.53 based on the testing data that includes all anatomic regions. The higher
MSE and absolute errors are found with palm and fingernail testing data while the
error is slightly smaller for the toenail testing data.

Depending on the anatomic regions, the predictive equations can be different.
The regression equation that includes all anatomic regions appear to have similar
prediction errors across all anatomic regions, but the toenail testing data may provide
slightly smaller prediction errors compared with the fingernail testing data and palm
testing data.

Keywords – non-invasive anemia detection, smartphone photo, anatomic region, prediction ac-
curacy
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1 Introduction

Anemia has been recognized as a significant worldwide public health problem

in infants because of its wide range of effect on neonatal health, including physical

symptoms such as immune deficiency, growth impairment and behavioral and physi-

cal deficits [1]. It is a condition in which the infant’s reticulocyte and nucleated red

blood cell (RBC) counts diminish and become unable to provide enough oxygen to the

tissues [2]. If not treated, severe anemia may impair organ function due to a lack of

oxygen, causing hypoxic tissue injury [3]. Anemia can be diagnosed by various blood

laboratory tests or imaging techniques such as complete blood count (CBC), reticulo-

cyte count, iron profile, and peripheral blood smear [4]. While blood-based laboratory

tests are important components for detecting anemia, excessive blood draws can cause

consequences such as worsening of the existing anemia, phlebotomy-induced compli-

cations, and an increased number of packed red blood cell (pRBC) transfusions [5].

Thus, there is a need for non-invasive technologies to more quantitatively and officially

diagnose and monitor anemia with greater accuracy Hgb values [6].

Mannino et al (2018) have developed a smartphone app to serve as a non-invasive

anemia screening tool for adults that may replace the blood-based testing by estimat-

ing the blood hemoglobin concentration through analyzing the color and metadata of

fingernail bed smartphone photos [6]. It is inspired by the fact that anemia may qual-

itatively correlate with subjective assessments of pallor in various anatomic regions

of the patient’s body, namely the fingernail beds and palmar creases [7]. The study

is primarily restricted to adult patients with anemia of different etiologies as well as

healthy subjects. Mannino et al developed an algorithm utilizing robust multi-linear
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regression based on a bisquare weighting algorithm to relate the image parameter

data to CBC Hgb levels for each patient. Compared with the gold standard Hgb level

test obtained via CBC, the algorithm achieved a strong predicting performance with

a mean absolute error of 0.82, which presents a promising opportunity to monitor the

patients’ hemoglobin levels non-invasively and immediately [6].

However, it is unknown that whether the Hgb levels measured by the smartphone

app in Mannino’s study can represent the CBC Hgb level of other populations such

as infants. Preterm infants are especially susceptible to the development of anemia

due to the low storage iron concentration, short red blood cell half-life and rapid

catch-up growth [1]. Research has also indicated that in preterm infants, phlebotomy

”overdraw” in excess of that requested by the hospital is one of the main causes for

the anemia [10]. As a result, preterm infants will necessarily need a non-invasive

method to remotely diagnose and monitor their anemia status with higher precision

Hgb levels. Besides, infants’ nails have many characteristics that are different from

adults’ nails. First, infants have a disorderly capillary network at birth, and the cap-

illary loops will not be evident in all anatomical sites until 14-17 weeks of age [8].

Second, another study shows that due to intrauterine distress or physiological alter-

ations during birth, 92% infants have Beau’s lines appeared on their fingernails and

disappear with growth before 14 weeks [9]. Third, infants’ fingernail sizes are much

smaller compared with adults’ fingernails. Hence, such different characteristics of in-

fants’ fingernails compared to those of adults make it more difficult to use Mannino’s

smartphone image analysis algorithm to estimate the Hgb levels of infants.

Given the facts mentioned above, it would be meaningful to explore whether a

non-invasive method that is similar to Mannino’s smartphone image analysis algo-

rithm can be developed for preterm infants to monitor their hemoglobin levels to

prevent unnecessary blood loss that can lead to anemia. In the long term, our work

will promote a successful development and implementation of a non-invasive smart-
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phone imaging-based diagnostic tool that can replace the invasive phlebotomy proce-

dures, ultimately enhancing the well-being of infants who require regular monitoring

of hemoglobin level.

A prospective study was conducted among preterm infants to determine whether

it is feasible to develop a non-invasive method that predicts the CBC Hgb levels based

on the color and metadata extracted from smartphone images of various anatomic

regions. But it remains unclear which anatomic region of the body (e.g., fingernail,

toenail or palm) should be chosen to yield more reliable predictions of CBC Hgb

levels. In this thesis, we aim to investigate several anatomic regions and to determine

smartphone photos of which anatomic region (fingernail, palm or toenail) that can

most accurately reflect the preterm infants’ CBC Hgb levels.
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2 Methods

2.1 Data Collection

Demographic Data Collection

A prospective, multi-center, observational birth-cohort study of red blood cell

transfusion and digestive tract oxygenation in preterm infants was conducted by Dr.

Cassandra Josephson from Emory University in Atlanta, Georgia. As a part of this

study, 61 preterm infants were recruited from January 2017 to present. Parents or

guardians provided written informed consent before enrollment of their infants into

this study. All enrolled infants received follow-up from birth to 90 days, hospital

discharge, transfer to a non-study affiliated hospital, or death. All preterm infants

born at 3 level III neonatal intensive care units (NICUs) in Atlanta, Georgia, were

assessed for eligibility. Two NICUs were academically affiliated (Grady Memorial

Hospital and Emory University Hospital Midtown) and part of a single regional peri-

natal center. The other NICU was private and not academically affiliated (Northside

Hospital). Inclusion criteria was birthweight less or equal to 1250 g and postnatal age

of 7 days or less. Exclusion criteria were (1) infant unlikely to survive beyond 7 days

of life based on the assessment by the treating neonatologist; (2) severe congenital

abnormality; (3) receipt of transfusion before enrollment; or (4) maternal decision

not to participate. Hemoglobin values, including the date of testing, were measured

using blood samples collected via venous blood draw and recorded every week up to

13 weeks in the hospital.
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Image Data Collection

To collect image data, a Samsung S21 with default settings was used to take

photos for infants’ different anatomic regions (e.g., left and right fingernails, palm

and toenails) on the date within 24 hours of the hemoglobin testing date. Each infant

image was paired with its corresponding laboratory assessed CBC Hgb measurement

(gold standard). Photos of limited regions were taken since nurses took pictures with

minimal disturbances. The photos were obtained with camera flash both on and off.

Prior to imaging, the smartphone’s camera’s auto-focus and brightness adjustment

were activated by tapping the screen. Each image was taken with the smartphone at

a distance of 0.5 m from the subjects’ anatomic regions to ensure consistency. Images

were taken under constant lighting conditions and room illuminations.

Each infant photo was then processed by AnemoCheck Mobile developed by Dr.

Robert Mannio [6] to extract 51x51 pixel matrices of red, green and blud (RGB)

color intensity values, as well as image metadata including photo brightness and

exposure time. Furthermore, each 51x51 pixel matrix of color intensity values was

then converted to a single number by calculating its average of all 2601 pixel-specific

numbers in that matrix. That is, each image has three corresponding numbers that

describes its red, blue and green color intensities. Given that each individual takes

multiple smartphone photos on different anatomic regions at each time point, we

simplify the data by selecting one photo with best view at each time point for each

anatomic region. Left and right directions are ignored (e.g., left and right fingernail

are both regarded as fingernail).
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2.2 Statistical Methods

Linear Regression Models

The covariates we consider for the regression model for predicting CBC Hgb lev-

els include: mean intensity values of RGB colors (averaged over the corresponding

51x51 pixel matrix), image metadata (brightness value and exposure time) and de-

mographic variables (anatomic region, mother’s gestational weeks and infant’s age in

weeks). Here, anatomic regions (e.g., fingernail, palm, toenail) are coded as dummy

variables. Exposure time variable is standardized to ensure it has similar scale with

other variables. The standardized exposure time variable is used in all regression mod-

els. Two-way interactions between anatomic regions and each image data variable

representing color and metadata are also tested.

Demographic variables (gender, race, mother’s gestational weeks, and infants’

birthweights) are described using descriptive statistics including proportions for cate-

gorical variables and mean, median, minimum, maximum and standard deviations for

continuous variables. The longitudinal CBC Hgb levels are summarized using means

and standard deviations and the number of pictures taken per anatomic region and

across all anatomic regions are calculated for all infants. All longitudinal statistics

are reported according to infants’ ages since birth.

It is worth noticing that there is no predictive equation for predicting CBC Hgb

levels based on the RGB color data and image metadata (brightness value, exposure

time, etc.) for infant population. In order to evaluate which anatomic region rep-

resents CBC Hgb levels with highest accuracy, we develop regression equations for

each anatomic region (fingernail data only, palm data only, toenail data only) and the

whole data including all anatomic regions. Doing separate regression analysis for each

anatomic region allows the error variance to differ across different anatomic regions.
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Each data set for each anatomic region and the whole data set are divided by the

ratio of approximately 70% to 30% for training and testing. Three linear regression

models are fitted separately for each of the anatomic regions using their corresponding

training data to predict the CBC Hgb outcomes based on mean intensity values of

RGB colors, image metadata (brightness value and exposure time), and demographic

variables (mother’s gestational weeks and infant’s age in weeks). The three models

are referred to as ModelFingernail, ModelPalm and ModelToenail. Hereafter, for the

model built based on the training data selected from the whole data, we include in-

dicators representing the anatomic regions, as well as mean of RGB matrices, image

meta data brightness values and exposure time, infant’s age in days and mother’s

gestational weeks. This model is referred to as overall model. The prediction errors

of the four models are reported across all four testing datasets (testing dataset from

the whole data, and those for each of the three anatomic regions).

Summary Statistics for Evaluation of Prediction Errors

In these linear regression analyses, we compute prediction errors to evaluate the

prediction accuracy. Each model’s regression coefficients estimated from the training

dataset are applied to all four testing data to obtain the predicted Hgb values. We

quantify the prediction error using three statistics: mean squared errors (MSE), mean

absolute errors (MAE), and the first quantile (Q1), median (Q2), and the third quan-

tile (Q3) of absolute errors. For yi, i = 1, . . . n of sample size of each testing data,

the mean squared error can be summarized as the mean of the squared differences

between the Hgb value each model predicts and the measured CBC Hgb level on all

instances of the testing dataset, that is

MSE =
n∑

i=1

(ŷi − yi)
2
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where ŷi is the predicted Hgb levels and yi is the observed CBC Hgb levels. The mean

absolute error can be summarized as the mean of the absolute values of the difference

between the Hgb value the model predicts and the measured CBC Hgb level on all

instances of the testing dataset, that is

MAE =
n∑

i=1

|ŷi − yi|

The first, second and third quantiles of absolute error (Q1, Q2, Q3) are the values

under which 25th, 50th and 75th percentile of absolute errors in the testing data are

found.

An important challenge in this study is the longitudinal nature of the data, where

photos and other variables from the same subject are collected on multiple anatomic

regions at multiple time points. Straightforward application of regression to this data

set is not appropriate since the measurements of the same subject may be correlated,

violating the error independence assumption in regression. More specifically, the

standard errors for regression coefficients and their corresponding p-values are invalid.

To overcome this situation, we consider a bootstrap approach. The bootstrapping

method is repeated 1000 times to estimate the proper standard errors and p-values

for all linear regression models.
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3 Results

3.1 Descriptive Statistics

As of March 7, 2022, the study has enrolled a total of 61 infants. Given that the

image data for three infants are missing, only 58 infants’ data is kept. Demographic

summary statistics are presented in Table 3.1. 62% of the infants are male and 43%

are white. Mothers’ gestational weeks varies from 22 weeks and 2 days to 31 weeks

and 5 days with a mean gestational week of 27 weeks and 7 days and a standard

deviation of 2 weeks and 1 day. Infants’ birthweight ranges from 406 g to 1240 g,

with a mean of 909 g and standard deviation of 215 g.

Each infant enrolled has their CBC Hgb levels measured upon enrolling and is

recorded by their infant age in days and weeks. Longitudinal measurements of CBC

Hgb levels are plotted for each subject according to their age in weeks (Figure 3.1).

On average, as an infant’s age increases the mean hemoglobin value decreases. Infants

with blood hemoglobin measured at week 0 have an average of 14.3 g/dL, where those

measured at week 1 have an average of 12.2 g/dL and 10.1 g/dL (the lowest value)

at week 7. Table 3.3 summarizes the Hgb measurements, and the number of pictures

taken per anatomic region in a longitudinal perspective by infant age in weeks. In

general, infants have the most pictures taken at the age of week 1 and gradually have

less pictures taken as they grow up across all anatomic regions.

For each infant, photos are collected across several anatomical regions including

fingernail, toenail and palm. There are a total of 1,002 photos across all infants

with an average of 17 photos per infant. After selecting only one best picture among
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all anatomical regions for each infant at each time point, the final dataset used for

analysis included 208 photos from 58 infants. The distribution of photos varies by

infant. The fingernail is the most photographed region, with 85 (41%) of infants

having photos in this region across enrollment followed by 77 (38%) palm and 46

(22%) toenail photos. Table 3.2 provides the descriptive statistics of RGB color

intensity variables and image metadata variables brightness value and exposure time

across all anatomic regions and in the whole data set. Among all the pictures selected,

red color intensity value has a mean of 170 (standard deviation is 25.3) followed by

for green 114 (standard deviation is 30.9) and for blue at 104 (standard deviation

is 32.1). The mean brightness value is 7.48 with a standard deviation of 1.04 and

the mean exposure time is 0.0018 with a standard deviation of 0.000996. Among

all anatomic regions, all red, green and blue color intensity variables have minimum

standard deviations in the palm region, and brightness value and exposure time have

the largest standard deviations in the fingernail region.

3.2 Prediction Results

The sample size of the whole data is 208, with a training size of 145 and testing

size of 63. After splitting, the sample size of the data for fingernail region is 85, with

a training size of 60 and testing size of 25. The sample size of the data for palm

region is 77, with a training size of 54 and testing size of 23. The sample size of the

data for toenail region is only 46, with a training size of 33 and testing size of 13.

We first fit the regression model including all variables for the whole training data

(n = 145). The regression coefficients as well as the bootstrapped standard errors

and p-values for the overall model that includes all anatomic regions are displayed

in Table 3.4. None of the two-way interactions between anatomic regions and image

data variables is significant (all p-values > 0.05) (see Table A0.1 to A0.5). Anatomic
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region is significantly related to the CBC Hgb levels since the predicted mean Hgb

levels for palm region is significantly different from the predicted mean Hgb levels

for fingernail region (p-value = 0.028). Red and green colors as well as infant age in

days and mother’s gestational weeks are significantly associated with Hgb outcomes.

Figure 3.2 shows the residual error versus the predicted Hgb levels for this model.

The residual error is calculated by using predicted Hgb levels minus the measured

CBC Hgb levels. Finger 3.2 indicates that fingernail region has more variability in

terms of prediction.

The regression coefficients, the bootstrapped standard errors and p-values for the

three region-specific models are shown in appendix table A0.6, A0.7 and A0.8. RGB

and infant age in days are significant predictors of Hgb outcomes in the fingernail

region. No variable is significant in predicting Hgb outcomes in palm and toenail

regions. Table 3.5 summarizes the regression equation for all four models (ModelFin-

gernail, ModelPalm, ModelToenail and overall model). We note that the training

sample sizes are different across different anatomic regions.

Table 3.6 shows the prediction errors of ModelFingernail, ModelPalm, Model-

Toenail and overall model across all testing data. The ranges of MAE for Mod-

elFingernail, ModelPalm and ModelToenail are 1.45-1.66, 1.28-1.46, and 1.50-2.18,

respectively. The MAE of the Overall model is the smallest, ranging from 1.24 to

1.42. Similarly, the ranges of MSE for ModelFingernail, ModelPalm and ModelToe-

nail are 3.35-4.89, 2.77-3.48, 3.89-6.78, respectively. The MSE of the overall model

is the smallest, ranging from 2.53 to 2.65. The absolute errors are also visualized as

boxplots and displayed in quantiles in Figure 3.3. The overall model performs reason-

ably well across all testing data, producing similar mean squared errors and absolute

errors across all testing data. However, with toenail testing data, the prediction error

appears to be slightly smaller compared to the other regions (see Figure 3.3).
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4 Discussion

In this longitudinal, observational study, the hemoglobin outcomes are predicted

using linear regression equations. Firstly, we performed a linear regression analysis

with data from all three anatomic regions combined, with covariates including indi-

cator of indicator of anatomic regions (fingernail, palm and toenail), average color

intensity values, and other image metadata and demographic variables. The signifi-

cance of all possible two-way interactions between anatomic regions and image data

variables (color intensity values and image metadata) are tested. Secondly, separate

regression analyses were conducted for each individual anatomic region, which allows

for different error distributions for each region. MAEs, AEs, and MSEs of all models

across all testing data were then calculated and compared to evaluate the prediction

performance. It turned out that the model including all anatomic regions always

had lower prediction error and better performance than the three individual region

models. Anatomic region was significantly related to the CBC Hgb levels. Even the

prediction errors across all anatomic regions were very close, the overall model has

relatively smaller prediction errors for the toenail region.

There are also some limitations of this study. Linear regression methods are used

to make predictions. But given the longitudinal feature of the data, linear regression

models don’t allow each individual infant to have his or her own mean response curve

to explain how responses changes over time. In this case, mixed-effect models may

be used in the future to provide greater flexibility analysis in correlated longitudinal

data and model the covariance structures with random effects. Besides, our data

has a relatively small sample size, and the sample size for each anatomic region is
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also unbalanced. Increasing the cohort size and maintaining balanced sample size for

different anatomic regions can improve the accuracy of Hgb level estimation. Besides,

we summarized the color data from a 51x51 matrix for each subject to a single mean

value, which may lead to loss of structural information of the photos. Prediction

methods that can keep the full color data may improve the prediction performance.
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Tables

Total Number of Infants
(N = 58)

Gender
Female 22 (37.9%)
Male 36 (62.1%)
Race
Black 20 (34.5%)
White 25 (43.1%)
Asian 3 (5.2%)
Multiple Races 3 (5.2%)
Missing 7 (12.1%)
Mother’s Gestational Weeks
Mean (SD) 27.7 (2.1)
Median (Min, Max) 27.8 (22.2, 31.5)
Birthweight (g)
Mean (SD) 909 (215)
Median (Min, Max) 911 (406, 1240)

SD: standard deviation

Table 3.1: Descriptive statistics of demographic information. The data consists of 58 unique infant individuals as of
March 7th, 2022. Categorical variable is summarized by count (percentage) and continuous variables are summarized
by mean (standard deviation) and median (minimum, maximum).
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Fingernail
(N = 85)

Palm
(N = 77)

Toenail
(N = 46)

Overall
(N = 208)

R
Mean (SD) 172 (26.4) 168 (24.3) 170 (25.1) 170 (25.3)
Median
(Min, Max)

170
(100, 231)

166
(114, 224)

167
(112, 226)

169
(100, 231)

G
Mean (SD) 123 (29.8) 103 (27.2) 117 (33.6) 114 (30.9)
Median
(Min, Max)

122
(60.8, 211)

102
(44.6, 185)

118
(59.1, 211)

113
(44.6, 211)

B
Mean (SD) 112 (30.1) 91.8 (28.5) 107 (36.1) 104 (32.1)
Median
(Min, Max)

110
(55.4, 185)

91.1
(31.6, 173)

108
(29.2, 209)

100
(29.2, 209)

Brightness Value
Mean (SD) 7.50 (1.08) 7.21 (0.964) 7.88 (0.968) 7.48 (1.04)
Median
(Min, Max)

7.70
(4.87, 9.16)

7.25
(4.98, 9.23)

7.95
(5.73, 9.82)

7.60
(4.87, 9.82)

Exposure Time
Mean (SD) 0.00120 (0.00109) 0.00135 (0.00100) 0.000865 (0.000701) 0.00118 (0.000996)
Median
(Min, Max)

0.000769
(0.000279, 0.00546)

0.00105
(0.000267, 0.00505)

0.000648
(0.000177, 0.00302)

0.000824
(0.000177, 0.00546)

Table 3.2: Descriptive statistics of color data and image metadata for anatomic regions and overall. RGB values are
calculated by taking the arithmetic means of all 2601 numbers in each color matrix. The higher the RGB value, the
stronger the color intensity. The brightness value indicates how bright an image is. The exposure time is the length
of time that the digital sensor inside the camera is exposed to light when taking a picture.

Count of Pictures in Different Regions
Infant Age
(Weeks)

CBC Hgb Mean
(g/dL)

CBC Hgb SD
(g/dL)

Fingernail Palm Toenail All Regions

0 14.34 3.42 2 2 1 5
1 12.17 2.18 14 12 8 34
2 11.80 1.74 13 8 7 28
3 11.59 1.21 7 6 5 18
4 10.61 1.12 6 11 6 33
5 10.24 1.31 8 7 4 19
6 10.58 1.17 6 7 3 16
7 10.08 0.95 6 5 4 15
8 10.51 1.02 5 9 1 15
9 10.55 1.19 7 2 4 13
10 10.58 1.81 3 2 0 5
11 11.15 1.42 7 3 3 13
12 11.03 1.04 1 3 0 4

SD: standard deviation

Table 3.3: Descriptive statistics of CBC Hgb measurements and number of pictures taken by anatomic regions and
in total by infant age in weeks.
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Estimate Bootstrapped Std. Error Bootstrapped P-Value

(Intercept) 3.060 4.023 0.444
Fingernail - - -
Palm -0.646 0.331 0.028
Toenail 0.005 0.380 0.934
R 0.022 0.009 0.020
G -0.043 0.014 0.002
B 0.021 0.011 0.064
BrightnessValue 0.485 0.404 0.228
ExposureTime 0.390 0.447 0.386
agedays -0.018 0.007 0.002
gestage 0.161 0.072 0.016

Table 3.4: Linear regression coefficients of the model using the training data from the whole data with anatomic region
as a covariate. The training data sample size is 145. Standard errors and p-values are calculated by bootstrapping
method for 1000 times. The R squared value of this model is 0.223.

ModelFingernail ModelPalm ModelToenail Overall
(Intercept) 15.359 9.511 -0.967 3.060
Fingernail - - - -
Palm - - - -0.646
Toenail - - - 0.005
R 0.033 0.025 0.011 0.022
G -0.052 -0.015 -0.016 -0.043
B 0.025 0.001 -0.003 0.021
BrightnessValue -0.814 0.140 1.022 0.485
ExposureTime -0.584 0.031 2.122 0.390
agedays -0.034 -0.013 -0.030 -0.018
gestage 0.041 0.059 0.249 0.161

Table 3.5: Predictive equations of all linear regression models.

Fingernail Testing Data (n = 25) Palm Testing Data (n = 23)
MSE MAE Q2 (Q1, Q3) MSE MAE Q2 (Q1, Q3)

ModelFingernail 3.35 1.48 1.35 (0.39, 2.50) 3.72 1.57 1.36 (0.63, 2.31)
ModelPalm 2.77 1.36 1.15 (0.46, 2.04) 3.10 1.46 1.09 (0.76, 1.86)
ModelToenail 3.89 1.50 1.48 (0.31, 1.92) 6.78 2.18 1.97 (1.25, 2.51)
Overall Model 2.65 1.41 1.24 (0.82, 1.88) 2.58 1.42 1.52 (0.89, 1.87)

Toenail Testing Data (n = 13) Whole Testing Data (n = 63)
MSE MAE Q2 (Q1, Q3) MSE MAE Q2 (Q1, Q3)

ModelFingernail 4.89 1.66 1.18 (0.75, 1.70) 3.39 1.45 1.34 (0.49, 2.14)
ModelPalm 3.48 1.28 0.71 (0.16, 2.53) 3.19 1.33 1.03 (0.50, 1.84)
ModelToenail 5.67 1.99 1.49 (1.01, 2.90) 5.01 1.71 1.36 (0.68, 2.37)
Overall Model 2.55 1.24 0.89 (0.38, 1.66) 2.53 1.26 1.11 (0.55, 1.71)

Table 3.6: Prediction errors of ModelFingernail, ModelPalm, ModelToenail and overall model across all testing data.



17

Figures

Figure 2.1: Infant 1302471’s left fingernail picture taken on October 10th, 2018.

Color data were extracted as RGB color data on 51 × 51 pixels.

Figure 2.2: Infant 1302471’s image meta extracted from Dr. Mannino’s smartphone

app AnemoCheck. Mean RGB of 178.41/158.45/163.27; exposure time of 0.001; flash

was used; brightness value 6.82.
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Figure 3.1: Longitudinal CBC Hgb (g/dL) measurements visualization by infant

age in weeks in individual level. The number of infants having CBC Hgb levels

measured in each week is labeled on the top of the image.
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Figure 3.2: Residual error versus predicted values from the model using the

training data from the whole dataset for different anatomic regions. Residual errors

are calculated by using predicted Hgb levels minus the measured CBC Hgb values.
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Figure 3.3: Absolute errors for all models (ModelFingernail, ModePalm,

ModelToenail and overall model) across all testing data. Absolute errors are

displayed in quantiles.
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Appendix

Estimate Bootstrapped p-values

Intercept 2.557 0.572
Fingernail - -
Palm 0.699 0.756
Toenail 4.423 0.086
R 0.028 0.016
G -0.044 0.002
B 0.025 0.024
BrightnessValue 0.381 0.370
ExposureTime 0.319 0.488
agedays -0.017 0.004
gestage 0.159 0.030
Palm * R -0.008 0.552
Toenail * R -0.026 0.074

Table A0.1: The above regression model adds the two-way interactions between anatomic regions and red color
intensity variable for the overall model. The corresponding regression coefficients and bootstrapped p-values are
displayed.

Estimate Bootstrapped p-values

Intercept 2.916 0.468
Fingernail - -
Palm 0.064 0.992
Toenail 2.681 0.080
R 0.022 0.008
G -0.039 0.002
B 0.026 0.020
BrightnessValue 0.381 0.338
ExposureTime 0.328 0.474
agedays -0.017 0.004
gestage 0.158 0.030
Palm * G -0.005 0.658
Toenail * G -0.022 0.062

Table A0.2: The above regression model adds the two-way interactions between anatomic regions and green color
intensity variable for the overall model. The corresponding regression coefficients and bootstrapped p-values are
displayed.
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Estimate Bootstrapped p-values

Intercept 2.688 0.500
Fingernail - -
Palm 0.032 0.974
Toenail 1.647 0.210
R 0.022 0.018
G -0.044 0.002
B 0.029 0.020
BrightnessValue 0.426 0.298
ExposureTime 0.353 0.426
agedays -0.018 0.012
gestage 0.163 0.018
Palm * B -0.006 0.676
Toenail * B -0.015 0.202

Table A0.3: The above regression model adds the two-way interactions between anatomic regions and blue color
intensity variable for the overall model. The corresponding regression coefficients and bootstrapped p-values are
displayed.

Estimate Bootstrapped p-values

Intercept 4.413 0.364
Fingernail - -
Palm -1.968 0.396
Toenail -2.667 0.354
R 0.022 0.012
G -0.042 0.008
B 0.021 0.072
BrightnessValue 0.311 0.530
ExposureTime 0.334 0.442
agedays -0.018 0.008
gestage 0.156 0.026
Palm * BrightnessValue 0.182 0.522
Toenail * BrightnessValue 0.348 0.358

Table A0.4: The above regression model adds the two-way interactions between anatomic regions and brightness
variable for the overall model. The corresponding regression coefficients and bootstrapped p-values are displayed.

Estimate Bootstrapped p-values

Intercept 3.565 0.382
Fingernail - -
Palm -0.650 0.024
Toenail -0.055 0.824
R 0.021 0.010
G -0.041 0.002
B 0.021 0.076
BrightnessValue 0.426 0.278
ExposureTime 0.351 0.316
agedays -0.018 0.002
gestage 0.160 0.032
Palm * ExposureTime 0.038 0.900
Toenail * ExposureTime -0.234 0.526

Table A0.5: The above regression model adds the two-way interactions between anatomic regions and exposure time
variable for the overall model. The corresponding regression coefficients and bootstrapped p-values are displayed.
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Estimate Std. Error t value Pr(>| t |) Bootstrapped Std. Error Bootstrapped P-Value

(Intercept) 15.359 5.356 2.868 0.006 5.308 0.012
R 0.033 0.014 2.277 0.027 0.014 0.018
G -0.052 0.022 -2.394 0.020 0.020 0.002
B 0.025 0.016 1.557 0.126 0.014 0.034
BrightnessValue -0.814 0.560 -1.454 0.152 0.548 0.156
ExposureTime -0.584 0.531 -1.100 0.277 0.554 0.348
agedays -0.034 0.010 -3.543 0.001 0.010 0.001
gestage 0.041 0.104 0.4397 0.693 0.091 0.640

Table A0.6: Linear regression coefficients and bootstrapping calculated standard errors and p-values of ModelFin-
gernail. The R-squared value for this model is 0.386.

Estimate Std. Error t value Pr(>| t |) Bootstrapped Std. Error Bootstrapped P-Value

(Intercept) 9.511 6.264 1.518 0.136 6.405 0.148
R 0.025 0.017 1.529 0.133 0.016 0.090
G -0.015 0.022 -0.703 0.495 0.023 0.444
B -0.001 0.015 -0.046 0.964 0.020 0.958
BrightnessValue 0.140 0.590 0.238 0.813 0.600 0.726
ExposureTime 0.031 0.594 0.052 0.959 0.668 0.908
agedays -0.013 0.010 -1.308 0.197 0.011 0.148
gestage 0.059 0.116 -0.512 0.611 0.124 0.626

Table A0.7: Linear regression coefficients and bootstrapping calculated standard errors and p-values of ModelPalm.
The R-square value of this model is 0.135.

Estimate Std. Error t value Pr(>| t |) Bootstrapped Std. Error Bootstrapped P-Value

(Intercept) -0.967 9.652 -0.100 0.921 14.78 0.720
R 0.011 0.029 0.383 0.705 0.03 0.614
G -0.016 0.046 -0.355 0.726 0.05 0.760
B -0.003 0.036 -0.090 0.930 0.04 0.966
BrightnessValue 1.022 1.052 0.971 0.341 1.76 0.242
ExposureTime 2.122 1.519 1.396 0.175 3.60 0.112
agedays -0.030 0.017 -1.745 0.094 0.02 0.138
gestage 0.249 0.182 1.369 0.183 0.24 0.220

Table A0.8: Linear regression coefficients and bootstrapping calculated standard errors and p-values of ModelToenail.
The R-squared value of this model is 0.387.
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