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Abstract

Vibrational Dynamics of Hydrated Proton based on High-level Ab Initio
Potential Energy Surface and Dipole Moment Surface

By Qi Yu

The hydrated excess proton is a common species in both aqueous chemistry and
gas-phase chemistry which complexes with water in a variety of structures. Previous
theoretical tools are limited in investigating the structure, dynamics and vibrational
spectra of hydrated proton with both accuracy and computational efficiency. In
our work, an accurate ab initio potential energy surface (PES) and dipole moment
surface (DMS) is developed. This PES/DMS, based on a many-body representation,
accurately describe the electronic energy of the hydrated proton system including
one excess proton and arbitrary number of water monomers. Each term of the
many-body representation is fitted using linear least square fitting method with
thousands of high-level ab initio electronic energies. Part 1 and Part 2 of the
dissertation will review the PES/DMS fitting methods and introduce how the
PES/DMS for hydrated proton is constructed.

The accuracy of constructed PES/DMS is verified in properties of small protonated
water cluster, H3O

+(H2O)n, n=0-5. We carry out detailed comparison with high-level
benchmark electronic structure calculations for all current known low-lying isomers
of those clusters in terms of structures, energetics and harmonic spectra. Taking
advantage of the PES/DMS, we report fully quantum studies of the vibrational
spectra of different protonated water clusters. This includes the infrared spectra of
H7O

+
3 , four isomers of H9O

+
4 , Zundel and Eigen isomer of H+(H2O)6.

We also apply the PES/DMS to infrared spectra calculation of aqueous proton system.
We obtain hundreds of protonated water clusters, H+(H2O)6, from reactive molecular
dynamics trajectories. Anharmonic vibrational spectra are conducted for all selected
clusters combining extended local monomer approach and quantum vibrational self-
consistent and virtual state configuration interaction approach (VSCF/VCI).
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Chapter 1 Introduction

Hydrated excess proton is a common species in aqueous chemistry which com-

plexes with water in a variety of structures. It is well known that proton in aqueous

solution plays essential role in different aspects of chemical, biological and indus-

trial fields.1–4The molecular formula of hydrated proton is not complex, written as

H+(H2O)n, which is one excess proton plus certain number of water monomers. How-

ever, the molecular-level understanding of properties of hydrated proton is not fully

clear even though people have made a lot of experimental and theoretical efforts in

investigating the structure, proton transport process and associated vibrational sig-

natures.5–23One unusual feature of hydrated proton is its anomalously high mobility

in water as compared to other ions. Experiments have been done during the first half

of the last century.24–26 For example, the mobilities of Rb+ and Cs+ are just 22% that

of the proton.27 Another unusual feature of hydrated proton is its vibrational spectra.

The vibrational spectra of aqueous proton expands an extremely broad band starting

from 1000 cm−1 and ending at 3000 cm−1. This diffuse background absorption band

provide little structural information about the local environment of the excess proton

and is often referred as “Zundel continuum".28,29

To explain the anomalously mobility of proton transfer process in water, a struc-

tural process, called Grotthuss mechanism,30 is widely used for proton-hopping pro-

cess. In this mechanism, an “Eigen" structure is identified as resting state where a

hydronium cation, H3o
+ exists in the first solvations shell. One O-H colvent bond in

the hydronium can break and the proton starts to connect to adjacent water. This

forms a “Zundel" intermediate where the proton sits between two water monomers.

Next, a new O-H bond forms and this results to a new “Eigen" structure. As to

the vibrational spectrum of aqueous proton, two structural models has been widely
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used to help interpret the spectra and provide structural information. On one end,

the excess proton localizes on one water to form a hydronium ion with a particularly

tight first solvation shell, known as the Eigen species H9O
+

4 .31,32The gas-phase Eigen

cluster H9O
+

4 displays a signature band at 2650 cm−1.12,13,23On the other extreme,

the proton is equally shared between two flanking waters, behaving collectively as

the Zundel complex H5O+
2 .33The gas-phase Zundel molecule H5O

+
2 has the signature

band at 1000 cm−1.12,23,34Even though many success has reached in investigating the

proton dynamics and vibration spectra of hydrated proton, the ultrafast dynamics

of proton and broad featureless vibrational spectrum of the excess proton eludes

straightforward interpretation.

Theoretical investigations of the structure, infrared (IR) spectra and dynamical

properties have been mainly based on two approaches. One approach relies on on-the-

fly evaluation of electronic energies, using a fast electronic structure method, predom-

inantly density functional theory (DFT). Early work of ab initio molecular dynamics

simulation (AIMD) of excess proton in liquid water started from early 1990s.35,36These

work provides evidence of two dominant structures of the excess proton in water,

Eigen and Zundel structures. Series of AIMD simulation were conducted in the past

20 year and shows rich information of the proton dynamics in water.14,17,37Recent

examples include DFT-based molecular dynamics simulations used to model the spe-

ciation of hydronium and hydroxide in aqueous system.21 This group reported that

the difference between the diffusivities of hydronium and hydroxide originates from

their different solvation structure according to their AIMD simulations. On-the-fly

evaluation of electronic energies with direct electronic structure method is also used

to calculate both harmonic and anharmonic vibrational spectra of gas-phase proto-

nated water clusters. in a recent feature article23 focusing on the vibrational spectra

of H+(H2O)n, n=2-28, the theoretical analyses mainly relied on vibrational second

order perturbation theory (VPT2) with the electronic energies typically obtained at
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the B3LYP DFT level. The calculated spectra provided assignments of several impor-

tant vibration bands in different protonated water clusters, which are clearly valuable

to interpret the experimentally recorded IR spectra. Agmon and coworkers applied

both AIMD and VPT2 approaches in calculating the vibrational spectra of small pro-

tonated water clusters based on B3LYP DFT and second order perturbation theory

(MP2) level of method.38–40Accurate approaches of accounting for electron correlation

like MP2 are usually used for geometry optimization, such as the study of the various

isomers of the various isomers of H3O
+(H2O)20,41 while coupled-cluster (CC) meth-

ods are far more computationally intensive and have not been extensively applied to

the calculations of the structures of larger protonated water clusters.

Another approach to probe the structure and dynamics of extended aqueous sys-

tems is to develop empirical or semi-empirical potentials that can describe proton

transfer processes. For example, a Multi-State Empirical Valence Bond (MS-EVB)

force field for the hydrated proton has been developed by Voth and coworkers.42–44

This model yields the potential of a protonated water system from the ground-state

energy of an effective EVB Hamiltonian. The diagonal term in the Hamiltonian in-

cludes the H3O+ 1-body, H2O 1-body, H3O+-H2O 2-body interaction and H2O-H2O

2-body interactions, while the off-diagonal term considers the electrostatic interaction

between the “Zundel" species involved in two EVB states and the remaining water

molecules. The MS-EVB model has been used successfully to model proton transfer

processes18,45 and in the calculation of the vibrational spectra46–48 using dynamics

simulations. Recently, Voth and co-workers used MS-EVB (version 3.2) in MD sim-

ulations to obtain a large sample of protonated water clusters which were analyzed

at the harmonic level, using DFT to investigate the importance of Zundel vs Eigen

structure in 2D IR experiments.49 Jordan and co-workers developed a modified MS-

EVB force field (MSEVB4P), which incorporates the TIP4P water model and a new

set of parameters.50 When compared to the MP2 ab initio calculations, this modified
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MS-EVB model was proved to be relatively accurate in describing the structures of

different sizes of protonated water clusters. In spite of the many successes of the

MSEVB model, errors still exist in the potential curves along the proton transfer in

different protonated water clusters when compared to the results of high level ab initio

calculations. More introduction of theoretical investigations of hydrated proton can

be referred to a review paper by Agmon and coworkers.22

To obtain a balance between accuracy and computational cost for the description

of the dynamic properties of the hydrated proton, a high level ab initio potential

energy surface is the obvious choice. Previously, an accurate ab initio potential en-

ergy surface for water based on many-body representation (WHBB model) has been

reported.51–53This WHBB potential model can be used to calculate potential energy

of water with arbitrary number water monomers. The many-body representation is

written as:

E =
N∑
i

V1−body(i) +
N∑
i<j

V2−body(i, j) +
N∑

i<j<k

V3−body(i, j, k) +
n∑
n≥4

Vn−body

In this expression, V1−body is the 1-body potential for each water monomer which

uses a spectroscopically accurate model.54 The V2−body and V3−body parts are 2-body

and 3-body interactions between water monomers and they are fitted from thousands

of high-level ab initio electronic energies using permutationally invariant polynomial

method. The Vn−body represents the 4- and higher-body terms which are polarization

energies adopted from TTM3-F water model. The accuracy of constructed WHBB

water model has been verified in structures, binding energies and vibrational spectra

of water from gas-phase cluster to liquid and ice model. Another accurate ab initio

many-body potential energy model of water is the MB-pol potential energy surface

(PES). This PES uses the similar strategy of many-body representation but with

polarization terms included. The MB-pol water model also receives many success

in describing water properties from dimer to condensed phase and has already been

applied in different molecular dynamics investigation of water system.
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Inspired by the success of constructing accurate potential model of water with

many-body representation, we proceed to a more complex but important system, hy-

drated proton, with the same many-body concept. Chapter 2 and 3 of this dissertation

will introduce the main theories and methods in constructing ab initio many-body

potential energy surface and variational methods for vibrational spectrum calcula-

tions.

Chapter 4 will main focus on the details of constructing many-body potential

energy surface (PES) and dipole moment surface (DMS) of hydrated proton. This

chapter covers all contents of the many-body PES/DMS from 1-body terms to 4-body

terms. Tests of constructed PES/DMS in structure, binding energy and harmonic

frequencies of small gas-phase clusters will also be included in this chapter. In Chapter

5, we report the vibrational analysis of bare hydronium H3O
+ ion. In Chapter 6, we

report the vibrational spectra of two important protonated water clusters, H7O
+

3 and

H9O
+

4 and their fully deuterated Isotopologues. Chapter 7 will focus on the details

and results of fully-quantum anharmonic vibrational spectra of aqueous proton using

constructed PES/DMS. We will also show the vibrational spectra calculation of two

low-energy isomers of protonated water hexamer
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Thämer, M.; Hassanali, A. Chem. Rev. 2016, 116, 7642–7672.

[23] Fournier, J. A.; Wolke, C. T.; Johnson, M. A.; Odbadrakh, T. T.; Jordan, K. D.;

Kathmann, S. M.; Xantheas, S. S. J. Phys. Chem. A 2015, 119, 9425–9440.

[24] Noyes, A. A.; Kato, Y. J. Am. Chem. Soc. 1908, 30, 318–334.

[25] Johnston, J. J. Am. Chem. Soc. 1909, 31, 1010–1020.

[26] Gierer, A.; Wirtz, K. Ann. Phys. 1950, 441, 257.

[27] Robinson, R. H., R. A.; Stokes Electrolyte Solutions; 2nd ed.; Butterworths:

London, 1959.

[28] Vener, M. V.; Librovich, N. B. Int. Rev. Phys. Chem. 2009, 28, 407.

[29] Yukhnevich, G. V.; Tarakanova, E. G.; Mayorow, V. D.; Librovich, N. B. J. Mol.

Struct. 1992, 265, 237.

[30] de Grotthuss,; T., C. J. Ann. Chim. 1806, 58, 54.

[31] Wicke, E.; Eigen, M.; Ackermann, T. Z. für Phys. Chem. 1954, 1, 340.



8

[32] Eigen, M. Angew. Chem., Int. Ed. Engl. 1964, 3, 1.

[33] Zundel, G.; Metzger, H. Z. Phys. Chem. 1968, 58, 225.

[34] Asmis, K. R.; Pivonka, N. L.; Santambrogio, G.; Brummer, M.; Kaposta, C.;

Newmark, D. M.; Woste, L. Science 2003, 299, 1375–1377.

[35] Tuckerman, M. E.; Laasonen, K.; Sprik, M.; Parrinello, M. J. Phys.: Condens.

Matter 1994, 6, A93.

[36] Tuckerman, M. E.; Laasonen, K.; Sprik, M.; Parrinello, M. J. Chem. Phys. 1995,

103, 150.

[37] Marx, D. ChemPhysChem 2006, 7, 1848.

[38] Kulig, W.; Agmon, N. J. Phys. Chem. B 2014, 118, 278–286.

[39] Wang, H.; Agmon, N. J. Phys. Chem. A 2017, 121, 3056.

[40] Samala, N. R.; Agmon, N. Chemical Physics 2018,

[41] Xantheas, S. S. Can. J. Chem. Eng. 2012, 90, 843.

[42] Schmitt, U. W.; Voth, G. A. J. Phys. Chem. B 1998, 102, 5548.

[43] Day, T. J. F.; Soudackov, A. V.; Cuma, M.; Schmitt, U. W.; Voth, G. A. J.

Chem. Phys. 2002, 117, 5839.

[44] Wu, Y.; Chen, H.; Wang, F.; Paesani, F.; Voth, G. A. J. Phys. Chem. B 2008,

112, 467.

[45] Knight, C.; Voth, G. A. Accounts of Chemical Research 2011, 45, 101.

[46] Xu, J.; Zhang, Y.; Voth, G. A. J. Phys. Chem. Lett. 2011, 2, 81–86.

[47] Agostini, F.; Vuilleumier, R.; Ciccotti, G. J. Chem. Phys. 2011, 134 .



9

[48] Kulig, W.; Agmon, N. Nat. Chem. 2013, 5, 29.

[49] Biswas, R.; Carpenter, W.; Fournier, J. A.; Voth, G. A.; Tokmakoff, A. J. Chem.

Phys. 2017, 146, 154507.

[50] Kumar, R.; Christie, R. A.; Jordan, K. D. J. Phys. Chem. B 2009, 113, 4111–

4118.

[51] Wang, Y.; Shepler, B. C.; Braams, B. J.; Bowman, J. M. J. Chem. Phys. 2009,

131, 054511.

[52] Wang, Y.; Huang, X.; Shepler, B. C.; Braams, B. J.; Bowman, J. M. J. Chem.

Phys. 2011, 134, 094509.

[53] Wang, Y.; Bowman, J. M. J. Chem. Phys. 2011, 134, 154510.

[54] Partridge, H.; Schwenke, D. W. J. Chem. Phys. 1997, 106, 4618.



10

Part I

Theories and Methods
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Chapter 2 Potential Energy Surface

2.1 Born-Oppenheimer Approximation

In the world of quantum chemistry, Born-Oppenheimer approximation is a broadly

used assumption that separates the motions of atomic nuclei and electrons. This

assumption states that the electrons move much faster than the nuclei and the elec-

trons respond to the nuclei motion instantaneously. Thus, in the time independent

Schrödinger equation, degrees of freedom associated with electrons and nuclei are sep-

arated and solved independently for the energies and wavefunction. For a molecule,

its exact non-relativistic, time-independent Hamiltonian is:

Ĥ = Ĥe + T̂n

= −
∑
i

1

2
∇2
i −

∑
i,A

ZA
riA

+
∑
i>j

1

rij
+
∑
B>A

ZAZB
RAB

−
∑
A

1

2MA

∇2
A

(2.1)

where A, B refer to nuclei and i,j refer to the electrons. ZA and MA are the charge

and mass of nucleus A. T̂n is the kinetic energy operator of the nuclei with

T̂n = −
∑
A

1

2MA

∇2
A. (2.2)

The operator Ĥe includes all the remaining parts in Equation 2.1 and can be rewritten

as

Ĥe = T̂e(r) + V̂eN(r,R) + V̂ee(r) + V̂NN(R) (2.3)

with T̂ as kinetic energy operator and V̂ as potential operator.

Under the Born-Oppenheimer approximation, the nuclei can be treated as fixed

and the electronic function can be formulated as

ĤeΨ(r;R) = EeΨ(r;R) (2.4)

In Equation 2.4, the total electronic energy Ee equals to Eel + VNN and is termed

as potential energy of the molecule. Through changing the nuclei position R and
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solving Equation 2.4 correspondingly, we construct an one-to-one connection between

nuclei geometry and its potential energy. This is known as the poential energy surface

(PES).

2.2 Permutationally Invariant Potential Energy Sur-
face

In principle, we could solve the Schrödinger equation, Equation 2.4, of the elec-

trons for a variety of nuclear configuration. However, it is extremely computationally

expensive and may not be feasible even when a low-level abinitio method is used.

Therefore, a practical way is to find a functional representation of the potential en-

ergy in terms of the nuclei geometry. Many efforts have been made in developing

molecular potential energy surface in the last 50 years. The developed methods

include Shepard-interpolation approach, interpolated moving least-square methods,

neural network fitting, Gaussian process fitting and permutationally invariant poly-

nomials (PIP) etc.1–20The goal of all of these approaches is to provide a precise math-

ematical fit to of order 103 – 105s “scattered” electronic energies (and possibly also

gradients). The term “scattered" is vague, but is used to indicate that the distribu-

tion is not on grids, as for example it would be for a spline. Clearly, the dataset

using a direct-product grid has exponential growth with the dimensionality, whereas

from the experience with many PESs, scattered data can remain in the range given

above, almost independent of the dimensionality, at least up to 10 atoms, where the

PES dimensionality is 45. Explicitly incorporating permutational symmetry, which

is discussed in detail below, greatly reduces the size of the dataset.

The invariance of the molecular PES with respect to overall translation and rota-

tion is automatic if the PES is represented in terms of internal coordinates, which it

generally is. For many years, the community that developed analytical expression for

PESs using 3N − 6 internal coordinates instead of say all the internuclear distances.
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This becomes an issue for systems with more than four atoms where the number of

corresponding variable first differs.

Clearly, it would be desirable to directly incorporate the permutational symmetry

into the fitting basis. The methodology that does this, using a fitting basis of polyno-

mials in all the internuclear distances, was reviewed in papers in 2009,16 201017 and

2018.21 Here, two techniques we developed to incorporate the permutational invarance

will be briefly presented in the following section.

2.3 Permutational Symmetry

The first issue to be addressed in PES fitting is the choice of coordinates. The

choice of variables turns out to be related to the number of coordinates needed to

represent the PES. Historically, this was assumed to be 3N − 6, i.e., the number of

vibrational modes of a non-linear molecule of N atoms. Indeed many PESs, espe-

cially those based on models, depend on this number of variables. As a result, the

choice of coordinates are typically bond stretches, valence and dihedral angles, or

other curvilinear coordinates such as Jacobi coordinates, polyspherical coordinates.

For local representations of the PES, normal coordinates or point-group symmetry

adapted coordinates have typically been used. There are advantages of course to

each of these choices; however, clearly none is truly general and universal. In the per-

mutationally invariant polynomial approach, the N(N − 1)/2 internuclear distances

(typically transformed to so-called Morse variables) are used. Interestingly, this num-

ber of variables is equal to 3N − 6 (or 3N − 5 for diatomics) for N equal to 2, 3 and

4 and then differs for N greater than or equal to 5. Thus, N = 5 is an important

boundary that affects the choice of coordinates. Clearly, using all the internuclear

distances or Morse variables is general and universal for all PESs. An additional

benefit of this set of variables is that it is closed under all permutations of atoms.

That is, any permutation of atoms leads to the same set of variables. Of course, the
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interest is on permutations of like atoms, as the PES is invariant with respect to these

permutations.

Morse variables are given by yij = exp(−rij/a), where rij is the internuclear

distance between atom i and j, and a is a range parameter. These variables have

been used in numerous global PESs for roughly twenty years and it is worth explaining

why. To make this point clear, we show fits to a Morse and LJ(8,6) potentials using

a Morse variable y = e−r and the internuclear distance r. For the former the range

parameter a was taken as 1 Bohr and was not optimized. The results are shown in

Figs. 2.1 and 2.2. Clearly, the fits in terms of the Morse variable are superior to the

ones in r in two key ways. First, the Morse variable goes to zero as r goes to infinity

and this leads to qualitatively correct asymptotic behavior of the fits, while the two

potentials using r are qualitatively incorrect, and have diverging asymptotic behavior

in r. (A discussion of the quantitative accuracy of the long-range behavior of the PES

is deferred to the end of this section.) Second, the fitting precision of polynomials

in y is superior to polynomials in r. This may appear to be obvious since the Morse

variable is itself infinite order in r; however, it should be stressed that the number of

linear fitting coefficient is the same in the two fits for a given polynomial order.

Morse variables were used by our group to develop a PES for C2H2 that describes

the acetylene/vinylidene isomerization, using the following multinomial expression:22

V =
∑

a,b,c,d,e,f

Cabcdef

[
ya12y

b
13y

c
14y

d
23y

e
24y

f
34

]
, (2.5)

where the powers varied from zero to 4, subject to the constraint that the sum of

the powers is less than or equal to this maximum. The H atoms are labeled 1, 2,

and the C atoms are labeled 3 and 4. Internuclear distances (and also the yij) are

given using the normal order. The linear coefficients Cabcdef were determined using a

standard linear least-squares fit to ab initio (in this C2H2 example, CCSD(T)/aug-

cc-pVTZ) energies. Three-quarters of the data set was obtained by replicating 2430

energies upon interchanging the two groups of identical atoms. The resulting data
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set contained 9720 energies and the least-squares fitting effort was trivial with only

210 linear coefficients to determine. Later, we recognized that a large number of

coefficients were numerically equal and this was a direct consequence of taking account

of the permutational symmetry numerically, i.e., by replicating the data.
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Figure 2.1 Linear least-squares polynomial fits of order n and R-value in the variables r
and y to a Morse potential.
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Figure 2.2 Linear least-squares polynomial fits of indicated n and R-value in the variables
r and y to an LJ(8,6) potential.

Clearly, the approach of replicating data is limited to small molecules with low-

order permutational symmetry. It would be infeasible for the notoriously fluxional

cation, CH +
5 , which has 120 equivalent structures, all of which are feasible even for

the zero-point state. In fact this was the first PES developed by our group using

a fitting basis that was explicitly invariant with respect to the 120 permutations

of the five H atoms.23,24 Before we review the approach taken for this challenging

example, we illustrate how the above monomial representation can by symmetrized
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to incorporate permutational symmetry. For simplicity, this is shown for H2CO in

Fig. 2.3. As shown, the permutation of the two H atoms results in a mapping of the

original six internuclear distances onto six new ones, two of which are the same. The

monomial basis shown at the top is not invariant with respect to the permutation;

however, the symmetrized basis at the bottom of the figure is.

1!
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6!H’!
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1!
2!

3!

4!

5 !
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H’!

H!
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n5 + y2

n5 y3
n4 y4

n3y5
n2 )

Figure 2.3 Symmetrized monomial representation of the potential for H2CO

This straightforward symmetrization was discussed in detail in the 2009 review,16

and to illustrate it briefly here, we show the procedure for A3B2 molecules in the

Table 2.1 below. In the first row, the first column lists the numerical labels of all

atoms starting with the largest group of identical atoms, followed by the next group

of identical atoms. The next column in this row gives the monomial resulting from

the given order of atoms and the third column gives the monomial in the normal

order. The subsequent rows in the table gives the atom labels for all permutations

of like atoms followed by the permutation of the original monomial followed by the

monomial in normal order, i.e, with the yij arranged with permuted powers. Summing

these 12 monomials gives the complete symmetrized monomial that is invariant with
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Table 2.1 Symmetrized monomials for A3B2 molecules
Atom Labels Monomial Normal Order
1 2 3 4 5 ya12y

b
13y

c
14y

d
15y

e
23y

f
24y

g
25y

h
34y

i
35y

j
45 ya12y

b
13y

c
14y

d
15y

e
23y

f
24y

g
25y

h
34y

i
35y

j
45
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14y
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15y
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34y

i
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e
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14y
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15y
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23y

c
24y

d
25y

h
34y

i
35y

j
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b
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b
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respect to all 12 permutations. Note however, that the actual symmetrized monomial

basis rarely contains all of these monomials. This is because the summation must

truncate at some reasonable value of the total polynomial order. Typically, we limit

the total polynomial order to a value between 5 and 8 (higher values are used for

smaller systems, e.g., 12 or more for triatomics). Thus, for the A3B2 example with a

maximum total polynomial order of say 6 there are no monomials with seven or more

Morse variables.

A compact expression that expresses this symmetrization approach is the following

one, specifically for a tetraatomic.

V =
∑

a,b,c,d,e,f

Cabcdef Ŝ
[
ya12y

b
13y

c
14y

d
23y

e
24y

f
34

]
, (2.6)

where “Ŝ” is a symmetrization operator that produces the appropriate sum of mono-

mials.

An important point, as mentioned above, is that all the internuclear distances

(Morse variables) are used in the monomials. For N atoms this number is N(N −

1)/2. This is a general and convenient (if not necessary) feature of the fitting using

permutationally invariant polynomials, since this set of variables is closed under all
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permutations of like atoms. (This use of all internuclear distances/Morse variables

has been used by other groups, who employ neural network fitting.8–10)

To summarize thus far, permutationally invariant polynomials in all Morse vari-

ables provide a general approach to mathematically represent high-dimensional PESs.

For a given range parameter, a, in the Morse variable, the PES is determined by

straightforward linear least-squares fitting tens of thousands to hundreds of thou-

sands of electronic energies.

Next, we need to mention that the above presentation of symmetrized monomials,

while correct and usable, is mainly pedagogical, because the monomial symmetriza-

tion method is not the one we employ in numerical work, except in simple cases where

the order of the permutation group is small. The two approaches we use, which are

more computationally efficient, are briefly described next. They are mathematically

equivalent to monomial symmetrization. One uses an efficient recursive method to

generate the symmetrized monomials and does makes use of factorization. This is

called the Monomial Symmetrization Approach (MSA) and is described in detail in

paper by Xie and Bowman.17

The other approach, which is the one that has been used to generate most of

the PESs, makes use of powerful theorems from invariant polynomial theory25 to

provide efficient factorization of the symmetrized monomial basis. Details of the

implementation along with the relevant theory are given in the review by Braams and

Bowman16 and also in an earlier paper reporting a PES for H5O
+

2 .26 The expression

for the PES using this approach is

V (y) =
M∑
α=1

cαpolyα(p(y))qα(y), (2.7)

where y represents all Morse variables, p(y) and qα(y) are primary and secondary

invariant polynomials. That is, they are polynomials that are invariant over the

direct-product symmetry group for the present application.

A theorem states that the number of primary polynomials is equal to the number
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of arguments of V , i.e., the number of internuclear distances, N(N − 1)/2 for an

N -atom system. The number of secondary polynomials (which are similar in struc-

ture to symmetrized monomials) is unbounded; however, for a finite maximum total

polynomial order, indicated in Eq. 2.7 to be M , the maximum order of qα(y) is M .

Finding these polynomials for direct-product groups Sn×Sm · · ·×Sp (for AnBm · · ·Xp

molecules) is non-trivial and so computational algebra software was employed. Specif-

ically, the code MAGMA27 was used to generate a library of primary and secondary

invariant polynomials for many molecule types.

Also, it should be noted that permutationally covariant expressions for the dipole

moment have also been developed16,26 and used in numerous fits to full-dimensional

dipole moment surfaces.

2.4 Many-body Expansion

The current fitting software is limited to roughly 10 atoms. Extending the global

fitting method to more than 10 atoms is certainly a worthy research direction; how-

ever, another approach, especially for non-covalent interactions, is already in use.

This is the many-body approach, which has been used, for example to develop an ab

initio PES for water.28 This many-body approach has been used to develop PESs for

hydrated HCl,29 CH4,30 H2,31 CO2,32 Na+, F– , Cl– 33 and H3O
+.34–37

For a molecular cluster, by defining monomers which is the single molecule in

the cluster, the total potential energy of the cluster can be represented as a sum of

one-body, intrinsic two-body, three-body energies, etc.

V =
∑
i

V
(1)
i +

∑
i<j

V
(2)
i,j +

∑
i<j<k

V
(3)
i,j,k + · · · (2.8)

where
V

(1)
i = Vi

V
(2)
i,j = Vi,j − V (1)

i − V (1)
j

V
(3)
i,j,k = Vi,j,k − V (2)

i,j − V (2)
i,k − V

(2)
j,k − V

(1)
i − V (1)

j − V (1)
k

(2.9)
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In Equation 2.8 and 2.9, V (1)
i ,V (2)

i,j and V
(3)
i,j,k are one-body, two-body and 3-body

energies of the clusters. In principal, for a system with n monomers, the many-body

expansion should extend to n-body to make the summation compact. However, for

weakly bonded monomers, the interactions decay quickly and most of the higher-body

(>3) terms can be neglected. For example, in water clusters, it has been investigated

that the one, two and three-body terms contribute to more than 98% of the total

energy of the whole system. Using the many-body expansion, the potential energy of

the cluster system with arbitrary number of monomers can be calculated easily.
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Chapter 3 Molecular Vibrations

Vibrational properties of molecular system provide invaluable insight of its struc-

ture and dynamics. Advanced methods mainly focus on solving the nuclear Schrödinger

equation which is a challenging problem for polyatomic system. In this chapter,

we will introduce the fully quantum mechanical approaches to solve the nuclear

Schrödinger equation, vibrational self-consistent field (VSCF) and virtual-state con-

figuration interaction (VCI) methods. These methods are implemented in the software

MULTIMODE which has been used in vibrational analysis of many molecular sys-

tems. Another approach to be introduced in this chapter is diffusion Monte Carlo

(DMC) method. This method is mainly applied to investigate the ground state vi-

brational properties of molecular system.

3.1 Vibrational Self-Consistent Field and Virtual-state
Configuration Interaction

First, we write the molecular Hamiltonian of a nonlinear molecule in normal mode

coordinates:

Ĥ =
3N−6∑
i=1

T̂i + V (Q) (3.1)

where Q = [Q1 · · ·Q3N−6] and T̂i is the kinetic energy operator of the i-th normal

mode where V (Q) is the potential energy for the molecule.

In the self-consistant field (SCF) method,1–3 the total wavefunction for the quan-

tum state (k1, k2, · · · , kN) can be expanded as a direct product of one-mode wave-

functions:

ΦK =
3N−6∏
i=1

φi(Qi) (3.2)

To find out a set of optimal one-mode wavefunctions φi(Qi), the Lagrange multipliers
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method is applied:

L = 〈ΦK |Ĥ|ΦK〉 − λ(〈ΦK |ΦK〉)− 1) (3.3)

δL = δ〈ΦK |Ĥ|ΦK〉 − λδ〈ΦK |ΦK〉) = 0 (3.4)

The variation procedure from Equation 3.3 and 3.4 results in a set of coupled SCF

equations.

[
T̂i +

〈 3N−6∏
l 6=i

φl(Ql)
∣∣∣V (Q)

∣∣∣ 3N−6∏
l 6=i

φl(Ql)
〉
− λi

]
φi(Qi) = 0 (3.5)

These coupled equations are then solved iteratively for each model wave-function

until self-consistency is reached. Each modal function φi(Qi) is expressed as a linear

summation of a finite set of basis functions multiplied by unknown coefficients

φi(Qi) =

Fi∑
ni

Cni
ψ(ni)(Qi) (3.6)

where Fi is the number of basis functions for the ith mode. The coefficients can be

determined by diagonalizing the Hamiltonian matrix.

The VSCF approach is analogous to the Hartree-Fock self-consistent Field (HF-

SCF) approach in the electronic structure theory. The VSCF method treats the

coupling between one mode and all other modes as an averaged potential over all

remaining coordinates. Similar to the configuration interaction (CI) concept in elec-

tronic structure problem, the result of VSCF calculation can be further implemented

in configuration interaction calculation, which is termed as virtual state configuration

interaction method (VCI).4

Recall that in the VSCF calculation, for each mode, we obtain the eigenfunction

φνii (Qi) with different excitations νi. Then, the ground state and other virtual state

wavefunctions from VSCF method can be expressed as:

ΦK =
3N−6∏
i=1

φνii (Qi), (νi = 0, 1, 2, · · · ) (3.7)
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where K is the index of ground and excited VSCF states. In the VCI expression, the

wavefunction is expanded in terms of the VSCF ground and virtual states.

Ψ =
∑
K

CKΦK (3.8)

where coefficients CK can be obtained through diagonalizing the Hamiltonian matrix.

3.2 MULTIMODE

The VSCF and VCI methods are implemented in the software “MULTOMODE".5This

code is based on the rigorous Watson Hamiltonian for non-linear molecule. With a

n-mode representation of the full potential energy, MULTIMODE has been widely

applied to a variety of molecular systems.

3.2.1 Watson Hamiltonian

For a nonlinear polyatomic molecule, the Watson Hamiltonian is used in MULTI-

MODE, which is represented in normal coordinates

Ĥ =
1

2

∑
αβ

(Ĵα − π̂α)µαβ(Ĵβ − π̂β)− 1

2

3N−6∑
k

∂2

∂Q2
k

− 1

8

∑
α

µαα + V (Q) (3.9)

where α, β are x,y and z component of the Cartesian coordinates, ĵα and π̂α are the

Cartesian component of the total and vibrational angular momenta. µαβ is the inverse

effective moment of the inertia tensor and V (Q) is the full potential in terms of the

N normal coordinates, denoted as Q. In most cases, we solve the J = 0 Schrödinger

equation. Equation 3.9 can be simplified as

Ĥ =
1

2

∑
αβ

π̂αµαβπ̂β −
1

2

3N−6∑
k

∂2

∂Q2
k

− 1

8

∑
α

µαα + V (Q) (3.10)

where the fist term is the vibration-rotation (Coriolis) coupling term, second term is

the kinetic opetrator and third term is the Watson correction term.
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3.2.2 n-Mode Representation of the Potential

In MULTIMODE, the full-dimensional potential is represented in a hierarchical

n-mode representation (nMR)

V (Q1, Q2, · · · , Qm) ≈
∑
i

V
(1)
i (Qi) +

∑
ij

V
(2)
ij (Qi, Qj) +

∑
ijk

V
(3)
ijk (Qi, Qj, Qk)

+
∑
ijkl

V
(4)
ijkl(Qi, Qj, Qk, Ql) + · · ·+

∑
ijkl···

V
(n)
ijkl···(Qi, Qj, Qk, Ql, · · · )

(3.11)

In this representation, the one-mode representation of the potential is V (1)
i (Qi) where

just one specific mode coordinate,Qi, varies with all remaining coordinates set as

zero. The two-mode representation contains the one-mode representation plus the

two-mode terms, V (2)
ij (Qi, Qj), which is

V
(2)
ij = V (Qi, Qj, Ql,j = 0)− V (1)

i (Qi)− V (1)
j (Qj) (3.12)

The 3-mode, 4-mode,· · · ,n-mode terms are then expressed accordingly. Due to the

computational resources, in MULTIMODE, this expansion is truncated at maximum

level of six. Thus, the multidimensional integration over the potential can be greatly

reduced to six rather than 3N-6.

3.2.3 Infrared Intensity

Upon VSCF/VCI calculation is finished using MULTOMODE, the VCI wave-

functions can be written to the disk and they will be used for property calculation,

especially here, infrared intensity calculation. Using the provided dipole moment

surface (DMS), the transition dipole matrix element is calculated by

Rα
νν′ = 〈Ψν(Q)|µα(Q)|Ψν′(Q)〉 (3.13)

where Ψν and Ψν′ are vibrational wavefunction for vibration state ν and ν ′. µα(Q)

is the α component (α = x, y, z) of the dipole moment which is also expressed in a

n-mode representation.
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According to the calculated transition dipole matrix, the infrared intensity for the

associated transition ν → ν ′ is calculated

Iνν′ =
8π3NA

3hc× 4πε0
Eνν′

∑
α

|Rα
νν′ |2(Nν −Nν′) (3.14)

where NA is the Avogadro’s number, Eνν′ is the transition energy between two states,

Nν is the number of molecules in state ν. Considering the transitions from vibrational

ground state to other excited states, the term Nν −Nν′ is approximately 1.

3.3 Quantum Local Monomer Model

The large dimensionality in a large molecular cluster or in condensed phase matters

makes it very difficult to conduct vibrational calculations, especially using quantum

methods like VSCF/VCI. To reduced the dimensionality in calculation, the local

monomer model is introduced for systems including weakly bounded molecules and

intramolecular vibrations are of interest. This method has been successfully applied in

anharmonic vibrational spectra calculations of different systems like water clusters,6,7

ice and liquid water,8,9 HCl clusters,10 protonated water clusters.11,12

In the Local-Monomer model, only one monomer’s vibrational contribution is cal-

culated at each time with structure of all other monomers fixed (assuming that the

interaction between this monomer with other monomers can be neglected). This

basic concept is adopted from harmonic analysis and also the anharmonic analy-

sis (VSCF/VCI for example). Thus, the Schrödinger equation for the embedded

monomer i can be written as

[T̂i + Vi(Qi)]Ψi(Qi) = EiΨi(Qi) (3.15)

where T̂i is the kinetic energy operator for monomer i, Qi is the set of local normal

mode of monomer i and Vi(Qi) is the potential energy of the whole cluster system

which is calculated from perturbed structure of monomer i and fixed structure of all

remaining monomers.
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Part II

Many-body Potential Model for
Hydrated Proton
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Chapter 4 Many-body Potential Energy Sur-
face and Dipole Moment Surface

As introduced in Chapter 1, an ab initio many-body potential energy surface

(PES) is needed to accurately describe the potential energy of the molecular system

with proton plus an arbitrary number of water monomers. The vibrational spectra

and molecular dynamics calculations of different hydrated proton systems can then

be conducted. We report the first version of this PES in the format of communication

when we calculate the VSCF/VCI spectra of two important protonated water clusters,

H7O
+

3 and H9O
+

4 .1 In this version, the PES is truncated at three body level and the

hydronium-water-water 3-body interaction is represented in a simple expression, sug-

gested by Skinner and coworkers’ work to represent the water 3-body interaction.2,3

Later, to generate a more accurate and general PES for hydrated proton system,

we conduct a mathematical fit to the hydronium-water-water 3-body term based on

Monomial Symmetrization approach using thousands of CCSD(T)-F12/aVDZ elec-

tronic energies.4 We also address the issue of defining monomers in hydrated proton

system especially the hydronium core. This is done through considering different as-

signments of hydronium core (pivot hydronium and non-pivot hydronium in the first

solvation shell). This PES has been successfully tested in different vibrational calcu-

lations on different protonated water clusters.4–6 A final version of hydroted proton

PES is reported in 2018 where we compared the PES results with benchmark calcula-

tion of series of small protonated water clusters in terms of structure, binding energies

and harmonic frequencies.7In this version, we refit the hydronium-water-water 3-body

interaction through adding more ab initio electronic energies sampled from larger pro-

tonated water clusters. We also added a simple expression of hydronium-water 4-body

terms to correct the binding energies of different protonated water clusters. In this
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chapter, all the terms in the many-body representation will be discussed in detail.

4.1 Assignment of Monomers

The many-body representation of the potential energy of hydrated proton requires

an identification of the hydronium and water monomers. This is a well-known issue

in all many-body representations of the proton-water potential. This is especially

important for “Zundel" structures or geometries during proton transfer process. For

example, in H5O
+

2 the proton sits equidistant between two water monomers at equi-

librium and thus then proton can be arbitrarily assigned to either one of the two

water monomers to form the hydronium monomer. To deal with this issue, we pro-

posed a monomer assignment approach based on the nuclear positions, stimulated by

previous work.8

O
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H H

O O

H H H H

O

H H

O

H

H H

O O

H H H H

O

H H

O

H

H H

O O

H H H H

O

H H

O

H

H H

O O

H H H H

O

H H

+

+

+ +

(a) (b)

(c) (d)

r1

r2

Figure 4.1 Possible hydronium and water assignments in H9O
+

4

We demonstrate this assignment approach with an Eigen structure as a simple
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example, shown in Figure 4.1.

In Eigen structure, since the proton is essentially localized at the center, the central

hydronium is defined as the pivot hydronium core, as shown in panel (a). However,

either one of the three hydrogen atoms in the pivot hydronium ion could act as a

proton and transfers to a surrounding water molecule, three non-pivot hydronium

core assignments should also be considered, as indicated in panels (b), (c), and (d) in

Figure 4.1. In a general case, among all the possible assignments, we pick the hydro-

nium that has the smallest sum of three OH distances as the pivot hydronium core.

Unlike the earlier assignment protocol,8 where all the possible monomer assignment

are considered, we only considered the first solvation shell of the pivot hydronium

core. The final potential is a weighted average of the four potential values of the

four assignments. The pivot assignment usually has the largest weight in the average.

For each non-pivot hydronium core assignment, the weight is calculated based on the

distances between the proton and oxygen atoms. Take assignment (b) as an example,

and let r1 be the distance between the proton and the oxygen in the pivot hydro-

nium core and r2 be the distance between the proton and the oxygen in non-pivot

hydronium core (shown in the figure). The weight of this non-pivot assignment can

be obtained based on the difference between r1 and r2, denoted r = r1 − r2. The

weighting function is basically the same as the switching function introduced above,

given by

si(r) = 0.0, r < −0.5 Å

= 10(r + 0.5)3 − 15(r + 0.5)4 + 6(r + 0.5)5, −0.5 Å ≤ r ≤ 0.5 Å

= 1.0, r > 0.5 Å

(4.1)

We determined the switching range (-0.5 to 0.5 Å) from H7O
+

3 and H9O
+

4 minimum

structures where all the values of defined r are smaller than -0.5 Å. It is clear that for

an Eigen structure where all the H nuclei are closer to the central oxygen atom, r is

smaller than -0.5 Å and the contribution of all three non-pivot hydronium assignment
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is 0. For the bare Zundel structure H5O
+

2 , the proton is equally shared by two water

molecules so r is 0, and therefore two possible hydronium assignments have the same

weight of 0.5. In the weighted average for the final potential, the contribution of a

non-pivot hydronium core assignment is si
1−siVi. Thus, the final potential energy for

a given cluster is

Vtotal =
Vpivot +

∑3
i

si
1−siVi

1 +
∑3

i
si

1−si

(4.2)

with proper normalization. Similarly, the total dipole moment of the system is also

calculated as,

µtotal =
µpivot +

∑3
i

si
1−siµi

1 +
∑3

i
si

1−si

, (4.3)

Next, we will demonstrate each component in the many-body representation of

the potential truncated at 4-body level, along with the many-body representation of

the total dipole moment truncated at 2-body level.

V =V
(1)
h +

∑
i

V (1)
wi

+
∑
i

V
(2)
h,wi

+
∑
i,j

V (2)
wi,wj

+
∑
i,j,k

V (3)
wi,wj ,wk

+
∑
i,j

V
(3)
h,wi,wj

+
∑
i,j,k

V
(4)
h,wi,wj ,wk

.
(4.4)

µ =µ
(1)
h +

∑
i

µ(1)
wi

+
∑
i

µ
(2)
h,wi

+
∑
i,j

µ(2)
wi,wj

. (4.5)

4.2 H3O
+ Potential Energy Surfaces

Hydronium is among the most important cations in chemistry. It has been exten-

sively studied in the gas phase, spectroscopically, where large tunneling splittings for

the ground and excited vibrational states have been observed, due to the low (planar)

barrier (roughly 700 cm−1) separating equivalent minima of C3v symmetry.9–16 It has

also been observed in the interstellar medium.17

Theoretically, there have been a number of full-dimensional quantum calculations

of the vibrational energies of hydronium, using ab initio potential energy surfaces.18–20

These are based on fitting many high-level, CCSD(T) energies, but restricted to



35

the region of the equivalent minima and saddle-point separating them. The PESs

do produce vibrational energies and splittings in good agreement with experiment,

especially the 2003-PES of Halonen and co-workers.20 However, these PESs are semi-

global, which means that while they are full-dimensional, they are restricted to regions

around the two equivalent minima and saddle point separating them and thus do not

describe dissociation.

In condensed phase, hydronium is even more well known as the hydrated proton,

which, in elementary descriptions, is simply the association of the proton with H2O.

However, the dissocation/association of the proton with H2O is not a simple pro-

cess.21 In fact the adiabatic dissociation of H3O+ correlates with H2O+ + H with the

dissociation products H+ + H2O being roughly 1 eV higher. However, in condensed

phase the energy ordering switches, even with a single H2O molecule. Indeed, the so-

called Zundel cation, H5O+
2 , has the proton equidistant between two water molecules,

at the equilibrium configuration, see ref.,22 which reported a full-dimensional ab initio

potential for H5O+
2 , and references therein.

Clearly, a PES for H3O+ that (diabatically) dissociates to H+ + H2O and which

could possibly be used in studies of hydration of the proton would be of interest. (It

could also be used in appropriate scattering calculations, where the charge-transfer

probability is negligible.) We present such a PES here, which is also of unprecedented

accuracy in describing the vibrational energies and splittings of H3O+.
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Figure 4.2 Potential cuts (no relaxation) of H3O+ as one H is removed along an OH
bond. Adiabatic and diabatic MRCI energies are shown in the left and right panels,
respectively and CCSD(T)-F12 ones are shown in both panels.

To motivate the computational approach, which is somewhat unusual, Figure 4.2

shows potential cuts of CCSD(T)-F12b/aug-cc-pVQZ(aVQZ),23–25 and adiabatc and

diabatic MRCI/aVTZ energies, relative to the corresponding energies at the global

minimum as one H atom is removed (no relaxation). All calculations were done with

MOLPRO 2010.26 As seen, the CCSD(T)-F12/aVQZ cut shows the familiar signature

of breakdown involving open shell fragments, in this case the doublets H2O+ and H,

but then a recovery at longer OH distances to the closed-shell H2O + H+ fragments.

This behavior is due to the single reference RHF wavefunction used in the CCSD(T)

method. In contrast, the MRCI adiabatic energies, show a classic and correct avoided

crossing where the CCSD(T)-F12b/aVQZ failure occurs. The two diabatic MRCI

potentials describe H3O+(X̃ 1A)−→ H(2S) + H2O+(X̃ 2B1) and H3O+(X̃ 1A)−→

H+(1S) + H2O(X̃ 1A1). At large OH distance, H(2S) + H2O+(X̃ 2B1) is the elec-
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tronic ground state while H+(1S) + H2O(X̃ 1A1) is the first excited state. The relaxed

asymptotic energy difference of these two states is just the difference in the ionization

energies of H and H2O, roughly 1 eV.

Since the goal is to obtain a global fit that dissociates to H+ + H2O, we initially dis-

carded the failed CCSD(T) energies and performed least-squares fits of the remaining

data and, thereby, to "interpolate through" the problematic region. However, the

resulting fits did show a small oscillation in this region. So, we decided to add MRCI

diabatic energies to the dataset. These were obtained using the standard option in

MOLPRO. As seen in the figure, these energies are smooth and are quite close to the

CCSD(T)-F12 energies away from the point of crossing. However, these absolute en-

ergies are not equal, and so we applied a small shift to the diabatic energies. This was

done by simply interpolating between the CCSD(T)-F12 and MRCI diabatic energy

differences at 2.2 and 4 Å, which are nearly the same, and the distance-dependent

shift was applied to the MRCI diabatic energies as a function of the OH distance.
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In detail, 79 213 CCSD(T)-F12b/aVQZ energies were obtained over a large range

of configurations and also orientations of the H+ and H2O fragments in the near

asymptotic region. The distribution of these points is shown in Figure 4.7. Con-

figurations for the MRCI energies were obtained from classical trajectories, using

preliminary fits, which were initiated from the H3O+ minimum then let H+ dissoci-

ates until rOH is about 7 Å. Configurations in the range rOH between 2.2 and 4Å were

selected for the MRCI calculations. In these calculations, the 1s orbital of oxygen is

set as closed so that there are 7 active orbitals and 1 closed orbital for H3O+. This

means the 1s orbital of oxygen is kept doubly occupied and excluded from active

space but this 1s orbital is still optimized during the MCSCF calculation. Three

adiabatic states are calculated first at each configuration and then the lowest two di-

abatic states were obtained from the first two adiabatic states. Finally, we obtained

2 284 MRCI-aVTZ diabatic energies in the region rOH between 2.2 and 4 Å. These

MRCI diabatic energies are shifted to CCSD(T)-F12b energies through a switching

function.

∆E = ∆E1 × S + ∆E2 × (1− S) (4.6)

Where ∆E1=-0.038037 a.u., ∆E2=-0.042082 a.u. and S, ranging from 0 to 1, is a

function of OH distance.

S = 10(
r − 2.2

4.0− 2.2
)3 − 15(

r − 2.2

4.0− 2.2
)4 + 6(

r − 2.2

4.0− 2.2
)6 (4.7)

To improve the fit in this region, these points were replicated, effectively doubling their

weight. Also, CCSD(T)-F12/aVQZ energies were replicated in the near asymptotic

region 4.4 to 5.2 Å. Finally, the data set consists of 96 955 energies. The fit was done

using permutationally invariant polynomials, factored as products of polynomials of

primary and secondary invariant polynomials.27

V (y) =
10∑
n=0

hn[p(y)]qn(y) (4.8)
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where hn is a polynomial of p(y), a set of primary invariant polynomials, qn(y) are

secondary invariant polynomials, and y is a set of Morse-like variables yi. Each yi

is a Morse-type function of the form yij = exp(−rij/α). The α value is fixed at 2.0

bohr, and rij is the internuclear distance between two atoms i and j. With such a

large data set, the maximum polynomial order was set to 10, resulting in 1506 linear

coefficients. The RMS fitting error for the entire data set, which includes energies as

high as 200 kcal/mol (69 800 cm−1) above the global minimum, is 6.7 cm−1. We note

that owing to the permutational symmetry each H atom dissociates identically to the

products H+ + H2O.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2  4  6  8  10

E
 (

cm
−

1 )

rOH (Å)

PES
CCSD(T)−F12b,aVQZ

Figure 4.4 Potential cut from the PES including the switch to ion-dipole interaction and
direct CCSD(T)-F12/aVQZ energies.

Finally, in the long range the interaction energy of the fragments is essentially ion-

dipole. This can be accurately represented by a Coulomb interaction using the ion

charge of +1 (in a.u.) and partial charges of H2O; these are obtained from the accurate

dipole moment surface of Tennyson and co-workers.28 The details of obtaining these

partial charges have been given elsewhere.29 So, the fitted PES is switched beyond
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the range of the data set, i.e., 5.2 Å in the OH distance, using a simple switching

function to the analytical Coulomb interaction. This is shown in Figure 4.4, which is

a comparison of the CCSD(T)-F12b/aVQZ energies and the PES fit, with the switch

to Coulomb interaction. As seen the PES cut is very smooth and accurate.

4.3 Hydronium Water 2-body Interaction

The 2-body interaction between H3O
+ and H2O, V (2)

h,wi
, is calculated from previ-

ous Zundel PES30–32 for short H3O
+· · ·H2O distance. This Zundel PES uses 48189

CCSD(T) configurations and behaves well both around Zundel minimum and disso-

ciation regions. So considering this Zundel PES is able to describe internal floppy

motions and dissociate correctly to H2O+H3O+, we calculate the hydronium water

interaction directly from Zundel potential through pulling these two fragments to a

significant large distance such that

V
(2)
h,w = V

(1)
zundel − V

(1)
h − V (1)

w = V
(1)
zundel − V

(1)
dissociated zundel (4.9)

As to long-range H3O
+· · ·H2O interaction, we represent the 2-body energy with

charge-dipole interaction that partial charge on each atom in H3O
+ and H2O are

obtained from their dipole moment surfaces. The long-range H3O
+· · ·H2O 2-body

energy can then be analytically calculated from Coulomb interaction. Details of the

dipole moment surface are in later section. We plot the 2-body energy at two different

configurations with change of OO distances in Figure 4.5. It clearly shows that in

the long range, the charge-dipole interaction agrees well with ab initio calculation

and we can safely use the simple Coulomb expression for long-range interaction be-

tween H3O
+ and H2O. The final V (2)

h,wi
is smoothly switched from using Zundel PES

to charge-dipole interaction for monomer distances larger than 7 Å.
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Figure 4.5 h-w 2-body potential cuts along O-O distance at different configurations

4.4 Hydronium Water 3-body Interaction

The hydronium-water-water (h-w-w) 3-body interaction, V (3)
h,w,w, is defined as

V
(3)
h,w,w =V

(1)
hww − V

(1)
hw,1 − V

(1)
hw,2 − V (1)

ww + V
(1)
h + V

(1)
w,1 + V

(1)
w,2 (4.10)

The first trial work to represent this 3-body term is using an approximate expression

stimulated from Skinner and coworker’s work on water 3-body interaction. we express

the interaction in the following function:

V (h-w-w) =Eae
−(roh1+roh2)/ka + Ebe

−(roh1+roo3)/kb + Ebe
−(roh2+roo3)/kb+

Ece
−(roo1+roo3)/kc + Ece

−(roo2+roo3)/kc .
(4.11)

The definition of the variables are given in Figure 4.6. The parameters were ob-

tained from a standard non-linear least-squares fit to roughly 600 3-body CCSD(T)-

F12b/aug-cc-VDZ energies. The fit parameters are listed in Table 4.1 and the rms

fitting error is 150 cm−1 for the data set with a maximum energy of 2100 cm−1.
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Figure 4.6 Definition of variables for h-w-w 3-body interaction

Table 4.1 Parameters for h-w-w three-body interaction
parameter Ea ka Eb kb Ec kc
value 143.60 Kcal/mol 1.28Å -129.46 Kcal/mol 1.88Å 118.97 Kcal/mol 1.6Å

This simple expression for the hydronium-water 3-body interaction works mostly

for the “Eigen" structures and can not provide accurate predictions for other struc-

tures like “Zundel"-like molecules.

To solve this issue, we conducted a more general fit of the hydronium-water 3-

body interaction using Monomial Symmetrization method. A total of 107,785 (h-

w-w) 3-body electronic energies are generated for fitting this term. This large data

set is constructed from (1) (NVE) classical B3LYP/VDZ molecular dynamics trajec-

tories of H7O
+

3 . Sets of trajectories are run starting from the minimum structure

and saddle point of H7O
+

3 and covering the dissociation region to H3O
+ and water

monomers, (2) (NVE) classical trajectories of the H3O
+(H2O)4 isomers and (3) iso-

mers of H3O
+(H2O)11 and also normal mode sampling of H3O

+(H2O)20. After sparse

sampling of configurations from the trajectories, we subsequently evaluate the 3-body
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energies at the CCSD(T)-F12/aVDZ level using Molpro2015.33The distribution of all

91043 electronic energies is shown in Figure 4.7. As seen, the h-w-w three-body en-

ergy is an important interaction that the sampled data sits in the range of -3500-3500

cm−1 with most of the configurations sits around 2000 cm−1. Besides, most of the

three-body energies are positive which indicates that the three-body interaction tends

to increase the distance between hydronium and water fragments.
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Figure 4.7 Distribution of the h-w-w three-body energies in -3600-3600 cm−1

Considering that there exists a non-negligible Basis Set Superposition Error (BSSE)

in computing the 3-body energies with the above basis set, and guided by the present

CCSD(T)/CBS binding energies, the calculated energies are uniformly shifted by

+0.1 kcal/mol. The whole data set is then fit using the Monomial Symmetrization

Approach (MSA)34 developed by our group with permutationally invariant polynomi-

als, which are functions of Morse variables, exp(-rij/λ), where rij is the internuclear

distance and λ is a parameter set at 2.5 bohr in this case. For this 10-atom system,

the three hydronium hydrogen atoms are equivalent as are the two hydrogen atoms

in each water fragment. We use a reduced permutational symmetry that treats the
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molecule as (H3O)+(H4O2) and allows the invariant permutation between the hydro-

nium hydrogen atoms. The water hydrogen atoms are also allowed to interchange.

Using this symmetry, there are a total of 4,345 unknown coefficients generated for

the least-square fitting and the total rms fitting error over the entire data set was 57

cm−1.

4.5 Hydronium Water 4-body Interaction

To obtain accurate potential energy of hydrated proton, we noticed that a small

4-b correction was needed to improve agreement with the benchmark values. The

hydronium-water 4-body interaction, V (4)
h,wi,wj ,wk

, is clearly a major challenge to fit

using the same approach adopted for fitting the 3-b interactions. Also, given that

it is a relatively small and very short-ranged interaction, we followed Skinner and

coworkers’ work for the water 3-body interaction,2,3 and used a simple expression for

it (see Figure 4.8). As seen in Figure 4.8, five types of 4-body motifs were selected

based on the geometry of the optimized isomers of H3O
+(H2O)3 and also larger clus-

ter H3O
+(H2O)20. The corresponding form of the local fit function is also given. For

each motif, geometries were generated through randomly changing OO and OH dis-

tances and ab initio 4-body energies were calculated at the MP2/aVTZ level using

Molpro2015.33 To obtain the variables for each fit for each motif, we use the hydrogen

bond length between two monomers as ri in Fig 4.8 and non-linear least fit is then

done. The number of geometries, fitting parameters and rms error are given in Table

4.2
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Figure 4.8 Important h-w-w-w 4-body motifs and expression for the 4-body interaction
energy

Table 4.2 Fitting details of hydronium-water 4-body interaction
No. of points Parameter Fitting rms (cm−1)

343 A1 -0.03102 a.u. A2 0.44799 a.u. 14.2
315 B1 0.01374 a.u. B2 0.39063 a.u. 52.3
343 C1 0.88978 a.u. C2 0.70902 a.u. 64.4
343 D1 0.00281 a.u. D2 0.22686 a.u. 38.5
217 E1 -0.02315 a.u. E2 0.49750 a.u. 30.0

There are a total of 1561 data points for the 4-body interaction calculations with

an energy range from -600 to 600 cm−1 and the total rms error is 42 cm−1 for the

entire data set. Finally, to obtain the 4-body interaction for a hydronium core and

three water monomers, we compute the relevant 4-body energies for all five motifs

and each type is assigned a weight. The weight is determined according to the sum

of monomer distances, like r1+r2+r3 in Fig 4.8. The sum of distances for five types
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are denoted as sri, i = 1 − 5 and the minimum distance among sri is srmin. Thus,

the weighting function is

w(i) = 1− 10(
sri − srmin

2.0Å
)3 + 15(

sri − srmin
2.0Å

)4 − 6(
sri − srmin

2.0Å
)5, sri − srmin < 2.0Å

= 0.0, sri − srmin > 2.0Å
(4.12)

The final 4-body energy is represented through a normalization over all 5 types.

E4btotal =

∑5
i=1w(i) ∗ E4bi∑5

i=1w(i)
(4.13)

4.6 Water Potential

In Equation 4.4, the remaining terms that do not include hydronium are pure

water terms. These include the water 1-body, 2-body and 3-body terms. These

water interactions are obtained from the WHBB water potential.35–37This is also a

many-body representation with intrinsic 2- and 3-body terms fitted using roughly

30,000 CCSD(T)/aug-cc-pVTZ and 40,000 MP2/aug-cc-pVTZ electronic energies.

The Partridge-Schwenke spectroscopically accurate water monomer potential is used

for water 1-body energy.38 Here, we will not discuss in detail of the WHBB potential

and interested reader is referred to references. 35–37

4.7 Dipole Moment Surface

As introduced in Equation 4.5, the dipole moment of hydrated proton can also be

expressed in a many-body expansion. Here, we conduct the truncation only at the

2-body level. The hydronium 1-body dipole µ(1)
h is newly fitted using 48107 config-

urations. These data points are selected from 96955 data points used in dissociable

H3O+ PES through setting OH distance shorter than 2.2Å. For each configuration,

the dipole moment is calculated at CCSD/aVTZ level using MOLPRO 2015 and fit-

ted using permutationally invariant method with polynomial order to 10. The final
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fitting root mean square for the dipole data set is 0.025 Debye. µ(1)
wi is water monomer

dipole moment from LTP2011 DMS.39 µ(2)
h,wi

is hydronium-water two-body dipole mo-

ment obtained using the dissociable Zundel DMS32 fitting from MP2/aVTZ dipole

moment data sets. This intrinsic two-body dipole moment is given by the dipole

of the Zundel minus the two monomer dipoles. µ(2)
wi,wj is the intrinsic two-body wa-

ter dipole moment obtained from Wang et al’s invariant fits to ∼30,000 MP2/aVTZ

dipole moment calculations.36,37

4.8 Benchmark electronic structure calculations for
H3O

+(H2O)n, n=0-5 clusters

We examined the geometries, harmonic frequencies and energetics of the various

isomers of clusters of water with the hydronium ion, H3O+(H2O)n, n=0-5. The intent

was to investigate the convergence of the results with the level of electron correlation

and orbital basis sets in an effort to establish benchmark values for the properties of

these systems. The dependence on the level of electron correlation was investigated at

the MP2 and CCSD(T) levels of theory, whereas the basis set dependence was probed

using Dunning‚s aug-cc-pVXZ basis sets40,41 (X = D, T, Q, 5), hereafter abbreviated

as AVXZ. We have chosen to use the regular (as opposed to F12) coupled-cluster

approach throughout the calculations for consistency since it was not possible to use

the F12 procedure with the larger basis sets for the larger clusters. All calculations

were carried out with the NWChem6.642 suite of electronic structure codes.

The optimal geometries were obtained as follows: for n=0-2 up to the CCSD(T)/

AV5Z level; for n=3 up to the MP2/AV5Z and CCSD(T)/AVTZ levels; for n=4, 5

up to the MP2/AVQZ level. All optimized geometries for H3O+ and H3O+(H2O) (1

isomer each), the 2 isomers for n=2, the 4 isomers for n=3, the 5 isomers for n=4 and

the 9 isomers for n=5 (22 structures in total, see Figure 4.9) were obtained using the
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full number of basis functions (i.e. enforcing zero linear dependencies in the basis by

systematically decreasing the number of allowed linear dependencies, one at a time,

to zero for cases in which linear dependencies were found). This ensures that the

comparison of the relative energies of the various isomers is meaningful.

The harmonic vibrational frequencies were obtained as follows: for n=0 up to the

CCSD(T)/ AV5Z level; for n=1 up to the CCSD(T)/AVQZ level; for n=2 up to the

CCSD(T)/AVTZ level; for n=3, 4 up to the MP2/AVQZ level. We performed several

tests of the step size used in the double numerical differentiation of the CCSD(T)

energy with respect to the nuclear coordinates to ensure that the frequencies were

real and converged with respect to the step size used. In particular, we performed

double numerical differentiations with step sizes of 0.010 (default value in NWChem),

0.015, 0.020, 0.025 and 0.030 a.u. following a geometry optimization step and obtained

all positive and six zero frequencies after projection. In all cases, convergence of all

positive frequencies was achieved to within ≤ 1 cm−1 with a step size of 0.030 a.u.

The binding energies are computed according to:

∆E = E[H3O
+(H2O)n]− E[H3O

+]− nE[H2O]. (4.14)

The Basis Set Superposition Error (BSSE) was taken into account using the Boys-

Bernardi function counterpoise method, including the deformation energy43

∆Edef =
i=N∑
i=A

[Ei
A···N(i)− Ei

i(i)] (4.15)

of the individual fragments in the cluster with respect to their geometries in isolation,

according to the scheme:

∆E(BSSE) = Eα∪···∪ν
A···N (ijk · · ·n)−

i=N∑
i=A

[Eα∪···∪ν
A···N (i)] + ∆Edef (4.16)

leading to

∆E(BSSE) = ∆E −
i=N∑
i=A

[Eα∪···∪ν
A···N (i)− Ei

A···N(i)], (4.17)
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where Eα∪···∪ν
A···N (i) indicates the energy of the ith monomer at its geometry in the cluster

with the cluster basis set, and Ei
A···N(i) indicates the energy of the ith monomer at

its geometry in the cluster with only the basis functions centered on the atoms of this

monomer, and Ei
i(i) is the energy of the ith monomer at its equilibrium gas-phase

geometry with only the basis functions belonging to this molecule.

The uncorrected and BSSE-corrected binding energies were used for the extrap-

olation to the Complete Basis Set (CBS) limit. We used two different extrapolation

schemes to obtain the CBS estimates as follows:

(A) The scheme suggested recently by us44 based on the 2/3(uncorrected) +

1/3(BSSE-corrected) weighted sum for the AVDZ and the 1/2(uncorrected) + 1/2(BSSE-

corrected) weighted sum for larger basis sets, viz.

∆ECBS(AVDZ) = 2/3 ·∆E + 1/3 ·∆E(BSSE)

∆ECBS(AVXZ, X = T,Q, 5) = 1/2 ·∆E + 1/2 ·∆E(BSSE)
(4.18)

(B) The uncorrected binding energies for the CCSD(T)/AVXZ//CCSD(T)/AVXZ

(X=D, T, Q) calculations were extrapolated for n=5 based on the n=1-4 CBS esti-

mated BEs. First, note that we cannot use either an exponential extrapolation or a

polynomial extrapolation because in many cases the BEs do not vary monotonically

with basis set, thus invalidating the basic assumption of these approaches. Instead,

we use the data generated from the results for the n=1-4 cluters to arrive at an

approximate trend:

∆E
CCSD(T )
CBS (n = 5) = ∆EMP2

CBS (n = 5)+〈∆ECCSD(T )
CBS (n = 1−4)−∆EMP2

CBS (n = 1−4).〉

(4.19)

We have found the term 〈∆ECCSD(T )
CBS (n = 1 − 4) −∆EMP2

CBS (n = 1 − 4)〉 to be equal

to 0.45± 0.2 kcal ·mol−1 when using the n=1-4 CBS BEs.

The optimized structures of all isomers of the H3O
+(H2O)n, n=0-5 clusters are

shown in Figure 4.9. Using Scheme (A), the CBS estimates are obtained by combining

both the uncorrected and BSSE-corrected numbers as shown in Table S6. The con-
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n = 0, 1, 2:

n = 3:

n = 4:

n = 5:

H3O
+ H5O2

+ Isomer 1 Isomer 2

Zundel Ring Eigen T-Zundel

B B2 C PR R

C1 E1 E2 P1 T1

T2 T3 T4 Z1

Figure 4.9 Geometries of all isomers of the H3O
+(H2O)n clusters, n=0-5, reported in this

study.

vergence to the CBS estimates is first tested with different basis sets for H3O
+(H2O)

and H3O
+(H2O)2. By increasing the basis set during both the geometry optimization

and energy calculation, both MP2/CBS and CCSD(T)/CBS binding energies reach

convergence. These results guide the path to arrive at the CBS estimates for the

larger clusters from the results obtained with the largest basis set; these are listed in

Table 1. All MP2/CBS binding energies are calculated directly following Scheme (A).

The CCSD(T)/CBS estimates for H3O
+(H2O)n, n=1-4, were obtained using Scheme

(A). To obtain the CCSD(T)/CBS estimates for the larger (n=5) cluster isomers we

used Scheme (B) based on the estimates for the smaller n=1-4 CBS estimates. Table

1 also contains the PES binding energies computed at the ab initio (PES//ab-initio)

and the PES (PES//PES) optimized geometries.
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Table 4.3 MP2/CBS, CCSD(T)/CBS and PES binding energies of the H3O
+(H2O)n,

n=1-5, clusters. All MP2/CBS binding energies are calculated from Scheme (A). The
CCSD(T)/CBS binding energies for H3O

+(H2O)n, n=1-4, from Scheme (A) and for n=5
from Scheme (B). PES//ab initio is the PES result at the ab initio geometries optimized
at the highest level of theory for each cluster (see text). PES//PES denotes the PES result
at the PES optimized geometry.

Cluster Isomer Binding Energy (kcal/mol)
MP2/CBS CCSD(T)/CBS PES//ab initio PES//PES

H3O
+(H2O) n/a -34.1 -33.7 -33.8 -33.8

H3O
+(H2O)2 1 -57.5 -57.1 -57.2 -57.2

2 -57.5 -57.1 -57.2 -57.2
H3O

+(H2O)3 Eigen -77.1 -76.6 -76.7 -76.7
Ring -73.0 -73.1 -73.1 -73.2

cis-Zundel -73.4 -72.7 -72.8 -72.9
trans-Zundel -73.4 -72.6 -72.7 -72.8

H3O
+(H2O)4 B -90.4 -90.0 -89.9 -90.0

B2 -90.4 -90.0 -89.9 -90.0
C -86.9 -86.3 -86.8 -86.8
R -91.3 -90.9 -91.0 -91.1

PR -87.7 -87.0 -87.5 -87.7
H3O

+(H2O)5 T1 -104.1 -103.7 -104.1 -104.4
P1 -104.1 -103.7 -103.8 -104.0
T4 -104.0 -103.6 -103.9 -104.3
T3 -103.9 -103.5 -103.8 -104.3
T2 -103.7 -103.3 -103.2 -103.7
C1 -103.3 -102.9 -102.7 -103.7
E2 -103.2 -102.8 -102.5 -103.0
E1 -103.0 -102.6 -102.5 -102.9
Z1 -102.4 -102.0 -102.1 -102.1

As Table 4.3 shows, for the H3O
+(H2O)n, n=1-4, clusters almost all MP2/CBS

binding energies are larger in magnitude than the corresponding CCSD(T)/CBS ones

(except for the case of the H3O
+(H2O)3 Ring isomer). This finding lends support for

the basis that Scheme (B) is based upon and it is used to predict the CCSD(T)/CBS

binding energies of n=5 clusters by simply adding 0.45 kcal/mol to the MP2/CBS

estimates (the latter obtained using Scheme (A)). The listed PES energies are from

two sets of optimized geometries. One set is at the ab initio optimized geometries at

the highest level of theory for each isomer (CCSD(T) for n=1-3, MP2 for n=4, 5).

The other set is the geometry optimized from the PES. The PES binding energies

using the two different geometries do not exhibit significant differences. For small

clusters (n=1, 2) the PES//ab initio and PES//PES binding energies are almost
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identical and agree quite well with the CCSD(T)/CBS values. This indicates that

the optimized geometries of H5O
+

2 and H7O
+

3 from the PES are very close to the

geometries optimized at the CCSD(T) level of theory with a large basis set. It should

also be noted that the two isomers of the H7O
+

3 cluster have almost identical binding

energies in all different calculations. Isomer 1 has a structure of Cs symmetry while

isomer 2 is of C1 symmetry. The main difference between these two structures is the

relative orientation of the two water monomers leading to similar energies. As to

the larger clusters, the PES predicts different binding energies using the two different

sets of geometries. Generally, the PES optimized geometries have lower BEs by 0.0-

0.2 kcal/mol for the n=3, 4 clusters and even a bit more for the n=5 isomers when

compared to those using the ab initio optimized geometries.

Figure 4.10 shows the percentage difference of the binding energies for various

calculations compared to the CCSD(T)/CBS estimates for all cluster isomers. Com-

bining these results with the detailed binding energies listed in Table 4.3, it is clear

that for the small clusters, n=1-3, the binding energies predicted from the PES are

closer to CCSD(T)/CBS than the MP2/CBS ones. For those clusters, the PES ener-

gies using both the ab initio and PES optimized geometries are within 0.1-0.25% of

CCSD(T)/CBS energies, while MP2/CBS BEs are 0.4-0.8 kcal/mol lower; this cor-

responds to a 0.7-1.2% deviation from the CCSD(T)/CBS values. Different from the

other clusters, the MP2/CBS binding energy of the Ring isomer of H3O
+(H2O)3 is

0.1 kcal/mol higher than the corresponding CCSD(T)/CBS value. The PES results

using either the optimized ab initio or PES geometry, deviate by 0.0-0.2% from the

CCSD(T)/CBS value.
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Figure 4.10 Percentage difference of the binding energies of H3O
+(H2O)n, n=1-5, for

various calculations with respect to the CCSD(T)/CBS estimates. See the caption of Table
1 for information on the CCSD(T)/CBS energies, which are used as references.

For the H3O
+(H2O)3 cluster, there are four isomers and their structures are shown

in Figure 4.9. The global minimum structure is the “Eigen” configuration, in which the

central hydronium core is equally shared by three surrounding water molecules. The

next isomer is the Ring, in which the hydronium is shared by two water molecules

and another water acts as an acceptor connected with two water hydrogen bonds.

The left two isomers display special structures that the proton sits in the middle and

is shared by two water molecules. These two isomers are classified as the typical

“Zundel” structures. From Table 4.3, we can see that the three high-energy isomers

are 4.0 kcal/mol higher than the Eigen minimum and their binding energies are

quite close to one another. We have previously discussed in detail the minor, if any,

relevance of those high-energy isomers to the cold ( 20K) experimental IR spectrum
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of H3O
+(H2O)3.4

We investigated five isomers of the H3O
+(H2O)4 cluster. The 4-member ring iso-

mer (R) has a binding energy that is 0.9 kcal/mol lower than the two branched iso-

mers (B and B2). The binding energies of the Chain (C) and the 5-member ring (PR)

isomers are 3 kcal/mol higher. The difference between the PES and CCSD(T)/CBS

energies is increasing for certain isomers. As seen in Table 4.3, the PES predicts

very accurate binding energies (within 0.2 kcal/mol) for the B, B2 and R isomers

compared to the CCSD(T)/CBS estimates. As regards the C and PR isomers, the

PES gives binding energies that are closer to the MP2/CBS values rather than the

CCSD(T)/CBS ones. This can also be seen from Figure 4.10, where the relative per-

centage deviation of the BEs for the C and PR isomers are at the same level with

the MP2/CBS values (around 0.5%), while for the three other isomers the PES pro-

duces results that are more accurate than the MP2/CBS estimates. The percentage

deviations of the B, B2 and R isomers are within ±0.2% of the CCSD(T)/CBS results.

As regards the largest cluster, H3O
+(H2O)5, we investigated nine different isomers

whose structures are shown in Figure 4.9. The binding energies of these isomers are

listed in Table 4.3. Since for that cluster we estimated the CCSD(T)/CBS bind-

ing energies using Scheme (B), the CCSD(T)/CBS values are always 0.45 kcal/mol

higher than the corresponding MP2/CBS results. Using the MP2/aVQZ optimized

geometries, the PES produces reasonable binding energies which are within 0.0-0.4

kcal/mol for most isomers compared to the estimated CCSD(T)/CBS values. The

PES optimized structures are naturally associated with larger binding energies (on

the negative energy scale) and they are at the same level of accuracy as the MP2/CBS

energies, as also seen from Figure 4.10. However, for the Cage isomer the PES//PES

binding energy is almost 1.0 kcal/mol different from PES//ab initio one. We will

discuss this finding later.
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Table 4.4 Relative electronic energies ∆Ee (in kcal/mol) of the H3O
+(H2O)5 isomers and

their ranking from various calculations with electronic structure methods and the PES.
Isomer MP2/CBS Rank CCSD(T)/aVQZ Rank PES//MP2/aVQZ Rank PES//PES Rank
T1 0.00 1 0.00 2 0.00 1 0.00 1
P1 0.07 2 -0.01 1 0.39 3 0.45 4
T4 0.12 3 0.13 3 0.28 2 0.17 3
T3 0.23 4 0.21 4 0.40 4 0.12 2
T2 0.46 5 0.47 5 1.00 5 0.76 5
C1 0.86 6 0.54 6 1.48 6 0.76 6
E2 0.99 7 1.18 7 1.68 7 1.45 7
E1 1.13 8 1.25 8 1.70 8 1.55 8
Z1 1.70 9 1.82 9 2.11 9 2.31 9

CCSD(T)/aVQZ energies are calculated at the MP2/aVQZ optimized geometries.
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Figure 4.11 Relative electronic energies of the H3O
+(H2O)5 isomers from ab initio and

PES calculations.

Table 4.4 lists the relative electronic energies of these nine isomers and their rel-

ative energy rank. The energies are computed at MP2/CBS, CCSD(T)/aVQZ and

PES. Since CCSD(T)/CBS estimated energies of these nine isomers are computed us-

ing Scheme B which is a constant shift to MP2/CBS energies, the relative electronic

energies of nine isomers from CCSD(T)/CBS are the same as MP2/CBS. Thus, we

choose the highest-level CCSD(T) energies (CCSD(T)/aVQZ) we compute using op-
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timized MP2/aVQZ geometries. The trend of the relative electronic energies is shown

in Figure 4.11. First, from Table 4.4, when using the same MP2/aVQZ optimized

geometries, the MP2/CBS, CCSD(T)/aVQZ and PES binding energies are in good

agreement as regards the isomer relative ranking predictions. Two isomers, T1 and

P1, have very similar electronic energies in the MP2 and CCSD(T) calculations,

while the PES predicts the T1 isomer to be lower by 0.39 kcal/mol. The other three

tetramer-ring isomers (T2, T3 and T4) have higher energies while their differences

are within 0.3 kcal/mol from one another in the in ab initio calculations. The Zun-

del structure (Z1 isomer) has the largest binding energy among all isomers. Using

the PES optimized geometries, the rankings change little compared to the ones with

other methods. The energy difference between the T1, T3 and T4 isomers becomes

smaller and thus they have lower electronic energies than the P1 isomer. A large

difference is found for the C1 isomer: the PES predicts a ∆Ee of 1.48 kcal/mol when

using the MP2/aVQZ optimized geometry and 0.76 kcal/mol with the PES optimized

geometry. The large deviation of C1 isomer is also evident from Figure 4.11. The

PES therefore provides an overall good agreement with the ab initio results, except

for the C1 isomer. Actually, the absolute number of these difference is not large.

The PES//MP2/aVQZ ∆Ee is 0.62 kcal/mol higher than the MP2/CBS value and

even more than the CCSD(T)/aVQZ binding energy, while the PES//PES energies

are very close to the CCSD(T)/aVQZ results (the difference is 0.22 kcal/mol). The

optimized structure of the C1 isomer from the PES has a slightly different orientation

of the water monomers and corresponding hydrogen-bond network. Due to the un-

avoided error from the fitting of the different components of the PES and our direct

truncation of the many-body series in the hydronium-water four-body level, these

two structures may result in different binding energies and corresponding relative

electronic energies.
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Table 4.5 Harmonic frequencies (cm−1) and double harmonic intensities (km/mol, in
parentheses) of the HOH bends and OH stretches in H3O

+(H2O)n, n=0-2 from different
methods.

Mode/H3O
+ MP2/aV5Z CCSD(T)/aV5Z CCSD(T)-F12/aVQZ PES//PES

Bend-1 1688 (100) 1698 1698 1698 (98)
Bend-2 1688 (100) 1698 1698 1698 (98)
OH-1 3591 (33) 3606 3605 3601 (32)
OH-2 3702 (493) 3706 3705 3708 (461)
OH-3 3702 (493) 3706 3705 3708 (461)

Mode/H3O
+(H2O) MP2/aV5Z CCSD(T)/aVQZ CCSD(T)-F12/aVTZ PES//PES

OH-1 877 (2972) 825 822 827 (2936)
Bend-1 1699 (2) 1713 1714 1718 (1)
Bend-2 1759 (988) 1767 1766 1764 (926)
OH-2 3752 (253) 3759 3759 3761 (238)
OH-3 3761 (8) 3766 3767 3766 (4)
OH-4 3858 (254) 3852 3852 3860 (264)
OH-5 3858 (342) 3852 3853 3860 (313)

Mode/H3O
+(H2O)2, 1 MP2/aV5Z CCSD(T)/aVTZ CCSD(T)-F12/aVTZ PES//PES

Bend-1 1607 (5) 1623 1625 1635 (9)
Bend-2 1638 (1) 1647 1654 1669 (7)
Bend-3 1683 (17) 1713 1699 1719 (41)
Bend-4 1695 (43) 1713 1709 1746 (17)
OH-1 2491 (4065) 2521 2551 2520 (3934)
OH-2 2640(1149) 2680 2702 2688 (1254)
OH-3 3812 (135) 3794 3818 3807 (119)
OH-4 3812 (41) 3794 3818 3819 (49)
OH-5 3830 (205) 3807 3828 3839 (209)
OH-6 3921 (3) 3888 3914 3909 (9)
OH-7 3921 (421) 3889 3914 3911 (395)

Mode/H3O
+(H2O)2, 2 MP2/aV5Z CCSD(T)/aVTZ CCSD(T)-F12/aVTZ PES//PES

Bend-1 1616 (20) 1633 1634 1651 (28)
Bend-2 1631 (15) 1646 1650 1665 (20)
Bend-3 1683 (14) 1704 1699 1715 (9)
Bend-4 1704 (25) 1731 1721 1751 (20)
OH-1 2488 (4103) 2521 2552 2528 (3918)
OH-2 2639 (1121) 2685 2705 2704 (1216)
OH-3 3808 (90) 3791 3813 3805 (93)
OH-4 3812 (96) 3793 3816 3818 (118)
OH-5 3826 (193) 3801 3822 3825 (178)
OH-6 3916 (186) 3885 3908 3904 (161)
OH-7 3921 (236) 3888 3912 3910 (238)

PES//PES is the PES frequency at the PES optimized geometry. The proton or hydronium
stretches are listed in bold.

To further test the accuracy and properties of the new PES/DMS, besides the

binding energies of the different clusters, we next investigate the harmonic frequen-

cies and double harmonic intensities of H3O
+(H2O)n,n=0-4. Tables 3-5 list the fre-

quencies and associated intensities of the HOH bending and OH stretching modes



58

from various calculations. Overall the PES demonstrates very good accuracy for all

these frequencies. The hydronium cation (C3v symmetry) has two degenerate bend-

ing modes, one symmetric OH stretch and two degenerate asymmetric OH stretches.

All methods properly capture these spectral features. The CCSD(T)/aV5Z harmonic

frequencies are ca. 10 cm−1 higher than the corresponding MP2/aV5Z ones. We also

list the CCSD(T)-F12/aVQZ frequencies, calculated with Molpro 2015,33 which are

very similar to the CCSD(T)/aV5Z ones. This confirms that the reported bench-

mark frequencies of the bare hydronium are well converged. As seen, the PES//PES

frequencies are very close to the benchmark CCSD(T) ones and substantially more

accurate than the the MP2/aV5Z frequencies.

The bare Zundel ion, H5O
+

2 , has a minimum structure with the proton equidistant

between the two water monomers. This gives rise to a large amplitude motion-proton

stretch, which carries a large infrared intensity. The MP2/aV5Z level predicts the

harmonic frequency at 877 cm−1, while the CCSD(T)/aVQZ frequency is at 825 cm−1

and the CCSD(T)-F12/aVTZ at 822 cm−1. Other modes, including the HOH bends

and water stretches, are not associated with such a large difference between different

ab initio calculations. The PES predicts a harmonic proton stretching frequency of

827 cm−1, in excellent agreement with the CCSD(T) value. The new PES yields

harmonic frequencies that are in general more accurate than the MP2 level of theory

for the smaller clusters. This also holds for the two isomers of H3O
+(H2O)2: isomer 1

(Cs symmetry) has three hydronium stretches, which carry most of the IR intensity,

namely the asym- and sym-stretches at 2551 and 2702 cm−1, respectively, and one

free OH stretch at 3828 cm−1 at the CCSD(T)-F12/aVTZ level of theory. Based on

previous tests of the harmonic frequencies using these correlated methods,45 these

should be the most accurate results. A careful comparison between the PES//PES

and these results shows a close agreement for the highest frequency modes. Again,

the MP2/aV5Z frequencies underestimate the hydronium sym- and asym-stretches by
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about 50 cm−1, while the PES gives results that are in excellent agreement with the

CCSD(T)-F12/aVTZ ones. The same behavior is also observed for the hydronium

stretches of isomer 2 (C1 symmetry).

Table 4.6 Harmonic frequencies (cm−1) and double harmonic intensities (km/mol, in
parentheses) of the HOH bends and OH stretches in H3O

+(H2O)3 from different methods.
H3O

+(H2O)3, Eigen
Mode MP2/aV5Z CCSD(T)/aVTZ CCSD(T)-F12/aVTZ PES//PES
Bend-1 1636 (65) 1650 1644 1668 (69)
Bend-2 1636 (66) 1654 1645 1668 (69)
Bend-3 1648 (1) 1669 1654 1686 (5)
Bend-4 1716 (8) 1746 1731 1771 (5)
Bend-5 1718 (9) 1770 1733 1771 (5)
OH-1 2944 (2927) 2939 2995 2984 (3112)
OH-2 2945 (2935) 2975 2998 2984 (3112)
OH-3 3031 (164) 3073 3089 3090 (152)
OH-4 3819 (83) 3775 3856 3818 (79)
OH-5 3819 (84) 3794 3858 3818 (79)
OH-6 3820 (1) 3802 3858 3839 (4)
OH-7 3929 (49) 3891 3955 3919 (37)
OH-8 3930 (37) 3893 3955 3919 (38)
OH-9 3930 (456) 3897 3956 3920 (458)

H3O
+(H2O)3, Ring

Mode MP2/aV5Z CCSD(T)/aVTZ PES//PES
Bend-1 1609 (30) 1609 1644 (6)
Bend-2 1626 (22) 1645 1655 (50)
Bend-3 1633 (100) 1651 1692 (5)
Bend-4 1659 (31) 1664 1698 (65)
Bend-5 1815 (187) 1831 1880 (153)
OH-1 2329 (2604) 2367 2449 (2624)
OH-2 2550 (1851) 2596 2622 (1610)
OH-3 3638 (241) 3640 3600 (315)
OH-4 3662 (634) 3661 3610 (693)
OH-5 3786 (26) 3770 3759 (13)
OH-6 3816 (208) 3788 3844 (174)
OH-7 3882 (362) 3856 3854 (202)
OH-8 3886 (98) 3857 3882 (191)
OH-9 3888 (173) 3859 3882 (135)

H3O
+(H2O)3, cis-Zundel

Mode MP2/aV5Z CCSD(T)/aVTZ PES//PES
OH-1 789 (2483) 751 817 (3096)
OH-2 1026 (1283) 1036 1025 (1249)

Bend-1 1646 (25) 1656 1657 (222)
Bend-2 1646 (190) 1660 1695 (10)
Bend-3 1723 (6) 1747 1781 (7)
Bend-4 1764 (722) 1776 1785 (691)
OH-3 3110 (1036) 3150 3163 (725)
OH-4 3144 (1968) 3185 3200 (2127)
OH-5 3818 (64) 3799 3811 (55)
OH-6 3819 (45) 3799 3812 (116)
OH-7 3860 (214) 3831 3880 (157)
OH-8 3862 (146) 3835 3885 (204)
OH-9 3929 (75) 3894 3929 (28)
OH-10 3929 (269) 3895 3930 (278)

H3O
+(H2O)3, trans-Zundel

Mode MP2/aV5Z CCSD(T)/aVTZ PES//PES
OH-1 815 (1693) 794 807 (1945)
OH-2 1000 (1349) 1008 977 (1682)

Bend-1 1643 (17) 1657 1656 (180)
Continued on next page
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Bend-2 1646 (144) 1660 1683 (4)
Bend-3 1708 (1) 1738 1739 (9)
Bend-4 1757 (765) 1783 1787 (585)
OH-3 3104 (2491) 3143 3181 (2331)
OH-4 3130 (673) 3162 3191 (591)
OH-5 3825 (85) 3798 3823 (56)
OH-6 3825 (28) 3808 3825 (83)
OH-7 3867 (134) 3844 3864 (217)
OH-8 3869 (213) 3845 3884 (169)
OH-9 3937 (180) 3903 3940 (109)
OH-10 3937 (174) 3904 3940 (197)

Notations as in Table 4.5.

Table 4.7 Harmonic frequencies (cm−1) and double harmonic intensities (km/mol, in
parentheses) of the HOH bends and OH stretches in H3O

+(H2O)4 from different methods.
H3O

+(H2O)4, B
Mode MP2/aVTZ MP2/aVQZ PES//PES
Bend-1 1630 (44) 1630 (38) 1627 (74)
Bend-2 1636 (71) 1638 (72) 1662 (81)
Bend-3 1643 (8) 1645 (7) 1686 (17)
Bend-4 1658 (44) 1658 (51) 1698 (2)
Bend-5 1719 (71) 1712 (26) 1764 (10)
Bend-6 1744 (8) 1735 (8) 1779 (11)
OH-1 2402 (3403) 2419 (3367) 2444 (2842)
OH-2 3090 (2462) 3102 (2447) 3140 (1486)
OH-3 3130 (850) 3139 (858) 3162 (2238)
OH-4 3412 (952) 3424 (951) 3441 (824)
OH-5 3801 (67) 3818 (70) 3822 (78)
OH-6 3801 (25) 3819 (26) 3826 (28)
OH-7 3810 (34) 3827 (35) 3834 (34)
OH-8 3876 (136) 3894 (140) 3889 (119)
OH-9 3911 (52) 3929 (45) 3931 (131)
OH-10 3911 (274) 3929 (290) 3933 (210)
OH-11 3923 (146) 3940 (150) 3955 (110)

H3O
+(H2O)4, B2

Mode MP2/aVTZ MP2/aVQZ PES//PES
Bend-1 1625 (41) 1626 (36) 1633 (87)
Bend-2 1635 (80) 1637 (80) 1660 (76)
Bend-3 1643 (10) 1645 (10) 1689 (20)
Bend-4 1659 (45) 1659 (51) 1710 (13)
Bend-5 1717 (30) 1711 (25) 1759 (2)
Bend-6 1742 (7) 1733 (8) 1786 (8)
OH-1 2402 (3367) 2424 (3336) 2483 (2795)
OH-2 3090 (2482) 3093 (2496) 3118 (2155)
OH-3 3128 (732) 3130 (726) 3161 (1515)
OH-4 3418 (976) 3430 (971) 3457 (774)
OH-5 3801 (66) 3818 (68) 3813 (23)
OH-6 3801 (27) 3819 (29) 3828 (81)
OH-7 3805 (32) 3822 (33) 3841 (45)
OH-8 3871 (143) 3888 (146) 3907 (115)
OH-9 3911 (73) 3929 (85) 3936 (122)
OH-10 3912 (249) 3929 (245) 3937 (90)
OH-11 3918 (147) 3935 (151) 3939 (230)

H3O
+(H2O)4, C

Mode MP2/aVTZ MP2/aVQZ PES//PES
Bend-1 1594 (194) 1592 (179) 1643 (24)
Bend-2 1619 (26) 1617 (24) 1669 (42)
Bend-3 1646 (195) 1647 (129) 1671 (62)
Bend-4 1648 (67) 1649 (114) 1684 (220)

Continued on next page
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Bend-5 1688 (145) 1685 (115) 1728 (29)
Bend-6 1735 (29) 1728 (29) 1768 (11)
OH-1 2065 (4715) 2079 (4777) 2070 (4469)
OH-2 2312 (1500) 2322 (1466) 2283 (1408)
OH-3 3372 (874) 3386 (843) 3397 (601)
OH-4 3382 (1227) 3395 (1247) 3405 (1275)
OH-5 3804 (36) 3823 (35) 3807 (59)
OH-6 3805 (37) 3823 (42) 3811 (33)
OH-7 3832 (172) 3847 (177) 3882 (166)
OH-8 3865 (135) 3883 (139) 3893 (140)
OH-9 3870 (160) 3889 (164) 3911 (220)
OH-10 3916 (133) 3935 (145) 3933 (102)
OH-11 3917 (159) 3936 (155) 3934 (105)

H3O
+(H2O)4, R

Mode MP2/aVTZ MP2/aVQZ PES//PES
Bend-1 1631 (30) 1632 (24) 1651 (149)
Bend-2 1633 (139) 1636 (149) 1659 (22)
Bend-3 1636 (17) 1640 (15) 1669 (4)
Bend-4 1659 (13) 1662 (14) 1687 (42)
Bend-5 1686 (8) 1676 (6) 1762 (4)
Bend-6 1816 (101) 1814 (106) 1858 (92)
OH-1 2797 (1910) 2816 (1878) 2908 (2023)
OH-2 2906 (2695) 2921 (2646) 2994 (1867)
OH-3 3065 (1013) 3078 (1030) 3153 (1767)
OH-4 3647 (246) 3662 (239) 3632 (334)
OH-5 3669 (526) 3684 (536) 3647 (494)
OH-6 3775 (19) 3791 (19) 3771 (10)
OH-7 3804 (49) 3823 (52) 3841 (53)
OH-8 3875 (316) 3893 (327) 3858 (123)
OH-9 3879 (63) 3894 (146) 3893 (56)
OH-10 3879 (179) 3897 (97) 3894 (229)
OH-11 3916 (172) 3935 (177) 3935 (182)

H3O
+(H2O)4, PR

Mode MP2/aVTZ MP2/aVQZ PES//PES
OH-1 867 (2791) 839 (2749) 965 (53)
OH-2 1099 (708) 1085 (681) 1219 (2635)

Bend-1 1636 (128) 1641 (132) 1669 (82)
Bend-2 1649 (21) 1650 (22) 1679 (87)
Bend-3 1665 (3) 1667 (2) 1691 (10)
Bend-4 1752 (635) 1748 (644) 1750 (701)
Bend-5 1775 (19) 1770 (20) 1816 (34)
OH-3 3009 (479) 3021 (461) 2847 (1572)
OH-4 3063 (2651) 3074 (2650) 3182 (1385)
OH-5 3637 (453) 3652 (445) 3584 (628)
OH-6 3662 (500) 3676 (503) 3693 (433)
OH-7 3774 (16) 3788 (16) 3760 (35)
OH-8 3832 (190) 3848 (192) 3870 (128)
OH-9 3834 (147) 3851 (155) 3873 (144)
OH-10 3877 (341) 3891 (152) 3882 (320)
OH-11 3877 (169) 3894 (370) 3893 (221)
OH-12 3881 (32) 3898 (27) 3896 (71)

Notations as in Table 4.5.

As shown in Table 4.8, the four isomers of H3O
+(H2O)3 display some distinct

vibrational features. The Eigen minimum has three hydronium stretches at ∼3000

cm−1: two asymmetric stretches and one symmetric stretch. We reported the CCSD(T)-

F12/aVTZ benchmark frequencies of Eigen minimum previously.4 Using other high-
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level ab initio method, MP2/aV5Z underestimates the hydronium stretches again by

50 cm−1 while the CCSD(T)/aVTZ frequencies are also lower than the CCSD(T)-

F12/aVTZ ones. PES gives accurate descriptions of harmonic frequencies for the

Eigen cluster especially for the hydronium stretches. The PES hydronium stretches

are very close to CCSD(T)-F12/aVTZ calculations, with only 10 cm−1 differences.

The Ring isomer of H3O
+(H2O)3 has different vibration signatures from the Eigen

minimum. This isomer has a hydronium core where only two hydrogen atoms are

shared by water monomers. Thus, it has similar hydronium stretch signatures to

H3O
+(H2O)2. The asym- and sym- stretches are at around 2350-2600 cm−1 and one

free OH stretch is at 3850 cm−1. The hydronium stretches calculated from PES are

higher than CCSD(T)/aVTZ results. According to the conclusion from the Eigen

case, our PES results may be more accurate since higher-level of ab initio calcula-

tions should predict higher frequencies of hydronium stretches. The left two isomers,

cis- and trans- Zundel isomers, display the typical Zundel signatures. There exists

two proton-involved stretches at around 800 and 1000 cm−1. However, these two

high-intensity modes differ slightly from the pure proton stretch in bare Zundel case.

Actually, in the two Zundel isomers, the proton stretches are motions that involve

both proton stretch and water wagging motions. Overall, the current PES describes

all the proton and water motions accurately, compared with CCSD(T)/aVTZ results.

Table 4.8 lists the vibrational frequencies of the H3O
+(H2O)4 cluster isomers.

For this cluster we only have MP2 results with which to compare the PES. So the

(sometimes large) differences between MP2 and CCSD(T) frequencies seen for the

smaller clusters need to be kept in mind when making comparisons between the MP2

and PES results. The four “Eigen”-like isomers (B, B2, C and R) display the signatures

of the “Eigen” frequencies in the 2000-3200 cm−1 range. The B and B2 isomers have

two hydronium asym-stretches at 2420 and 3100 cm−1 and one sym-stretch at 3140

cm−1. The PES yields good predictions of all the hydronium and water bends and
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stretches compared to the MP2/aVQZ calculations. Again, the PES frequencies of

the hydronium stretches are higher than the MP2 ones by up to 50 cm−1. The C

isomer has a chain structure with no branches. Its hydronium core is connected to

water through two hydrogen bonds and one free OH exists in its hydronium structure.

Thus, in the normal mode analysis, like in H7O
+

3 , there exists one asym-OH stretch at

2070 cm−1, one sym-OH stretch at 2322 cm−1 and one free-OH stretch at 3847 cm−1.

Compared to the same modes in H7O
+

3 , the C isomer’s two bonded OH stretches have

a 500 cm−1 red shift. This large shift is again due to the structural features, in which

the two OH bond lengths are slightly longer than those in H7O
+

3 due to the water

solvation effect. The PES results are in good agreement with the MP2 ones not only

in the hydronium stretches but also in the water vibrations like the two H-bonded

water stretches at 3400 cm−1, which carry large intensities. The R isomer has also an

“Eigen” structure but it forms a tetramer ring. The three hydronium stretches located

in the range from 2800 to 3100 cm−1, similar to the MP2/aVQZ predictions. The PES

optimized structure has a slight difference from the MP2/aVQZ optimized geometry.

As a result, the PES//PES frequencies of the hydronium stretches are associated with

ca. 100 cm−1 blue shifts. The last isomer of H3O
+(H2O)4 is the PR isomer (Pentamer

ring) with a “Zundel” structure instead. The harmonic frequencies of this isomer do

indeed show the signature of the “Zundel”. MP2 predicts two bright proton stretchs

at ca. 850 and 1100 cm−1 and another signature mode, viz. the Zundel HOH bend at

1750 cm−1. These two modes become the signatures of “Zundel” structure because of

their very large infrared intensities that will not show in the Eigen structures. The two

intense proton stretches from PES//PES are at 965 and 1219 cm−1, upshifted from

the MP2 result. It should be noted that the proton motion in these Zundel structures

is highly negatively anharmonic and so the harmonic frequencies given here are very

sensitive to the details of the anharmonic potential, which in turn is very sensitive

to the geometry of the minimum energy structure. Thus, for conducting anharmonic
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vibrational calculations, we need a much more extensive grid of points for the whole

PES rather than just focusing on the area around the minimum structure.

Table 4.8 Harmonic frequencies (cm−1) of proton-related stretches in H3O
+(H2O)n,

n=0-3, from ab initio calculations and the PES.
Isomer Mode CCSD(T) MP2 PES
H3O

+ 1 3605 -14 -4
2 3705 -4 3
3 3705 -4 3

H3O
+(H2O) 1 822 52 2

2 3759 -7 2
3 3767 -6 -1
4 3852 6 8
5 3853 5 7

H3O
+(H2O)2, 1 1 2551 -60 -31

2 2702 -62 -14
3 3828 2 11

H3O
+(H2O)2, 2 1 2552 -64 -24

2 2705 -66 -1
3 3822 4 3

H3O
+(H2O)3, Eigen 1 2995 -51 -11

2 2998 -53 -14
3 3089 -58 1

H3O
+(H2O)3, Ring 1 2367 -38 82

2 2596 -46 26
3 3856 26 -2

H3O
+(H2O)3, cis-Zundel 1 751 38 66

2 1036 -10 -9
3 3150 -40 13
4 3185 -41 15
5 3831 29 49
6 3835 27 50

H3O
+(H2O)3, trans-Zundel 1 794 21 13

2 1008 -8 -31
3 3143 -39 38
4 3162 -32 29
5 3844 23 20
6 3845 24 39

The basis set for the ab initio calculations is the largest one we used for each cluster, as shown in
Tables 3 and 4. The PES results are based on PES optimized geometries. The listed frequencies

under the MP2 and PES columns are shifts relative to the CCSD(T) and CCSD(T)-F12 (if
available) ones.

To investigate the influences of different methods in describing proton-related

stretches, we summarize the proton-related stretches of different clusters from CCSD(T),

MP2 and PES in Table 4.8. For smaller clusters, like H3O
+(H2O)n n=0,1,2 cases,
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the CCSD(T) numbers are from CCSD(T)-F12 approach with largest basis set. The

numbers of MP2 and PES are shifts in wavenumber as comparing with CCSD(T)

ones. As we have discussed before, the MP2 frequencies are generally smaller than

CCSD(T) ones for “Eigen” clusters. For “Zundel” clusters, MP2 approach gives higher

proton stretches than CCSD(T) results. Using our constructed PES, the calculated

frequencies are generally much closer to CCSD(T) frequencies. The differences be-

tween PES and CCSD(T) are mostly within 15 cm−1 for clusters up to H3O
+(H2O)3

Eigen minimum. The difference for other isomers becomes larger but we still expect

our PES frequencies are very accurate since that difference should be smaller if we

have CCSD(T)-F12 results as references.

A linear correlation between the shifts in the hydrogen bonded covalent equilib-

rium OH bond lengths (∆R) and the corresponding harmonic frequencies (∆ω) with

respect to the isolated monomer was first discussed in 1993 for water clusters46 and

recently further quantified.47 In particular, it was found that the linear expression

−∆ω = s ·∆R (4.20)

fit both the MP2 and CCSD(T) harmonic frequency vs. bond length shifts for

water clusters, with respect to the isolated monomer bond length and the average

of its symmetric and asymmetric frequencies taken as references, with a slope of

s=20.18 cm−1/0.001Å quite accurately (R2 = 0.9735).47 The linear relation between

frequency shifts and changes in the underlying bond lengths induced by an electric

field has also been previously reported for H2O and OH−.48,49 A similar linear corre-

lation was recently reported by one of us for a limited dataset (9 points) of hydronium

stretching frequencies / bond lengths in the H3O+(H2O)n clusters.50
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The present study offers the opportunity to further investigate the validity of the

previously introduced linear correlation (reported for the O-H stretches participating

in hydrogen bonds between water molecules) by extending it to a different system

(hydronium stretches participating in hydrogen bonds with water molecules) and

substantially increasing the number of sampled points with respect to the previous

hydronium dataset reported earlier.50

Figure 4.12 shows all 260 (∆ω, ∆R) pairs for the proton stretching in the n=0-5

clusters, obtained at the MP2/aVDZ (43 pairs), MP2/aVTZ (43 pairs), MP2/aVQZ

(43 pairs), MP2/aV5Z (27 pairs), CCSD(T)/aVDZ (27 pairs), CCSD(T)/aVTZ (27

pairs), CCSD(T)/aVQZ (7 pairs) as well as the PES (43 pairs), and their least-

mean-squares fit according to Eq. (11), which yields s=19.5 cm−1/0.001Å (R2 =

0.967). Only the frequencies with intensities larger than 300 km/mol are considered

for the clusters. For each case, the shifts are obtained with respect to the isolated



67

hydronium equilibrium O-H bond lengths and the average of the symmetric and

antisymmetric vibrations at that particular level of theory. The fits of the individual

points at each level of theory / basis set as well as the PES are listed in Table

4.9. They all produce slopes that are within < 1 cm−1 of the overall fit. This

further reinforces the previous thesis that errors in the harmonic frequencies arise

from the errors in the corresponding bond lengths obtained at the various levels

of theory.47 In addition, the PES was found to be able to capture this effect quite

accurately, yielding s=20.1 cm−1/0.001Å (R2 = 0.966) for the 43 pairs (see Table

4.9). Note that the above linear correlation is between the equilibrium bond lengths

and the corresponding harmonic frequencies for the proton stretching motion, which

is associated with very large anharmonicities.50

Table 4.9 Fitting details of shifts of proton-water stretches as a function of the elongation
of the OH bond lengths.

-∆ω= s ·∆R
Method Number of points s (cm−1/0.001Å) R2

MP2/aVDZ 43 19.7607 0.977
MP2/aVTZ 43 19.1786 0.977
MP2/aVQZ 43 19.3553 0.977
MP2/aV5Z 27 19.3042 0.975
CCSD(T)/aVDZ 27 19.8513 0.971
CCSD(T)/aVTZ 27 19.3750 0.970
CCSD(T)/aVQZ 7 12.7081 0.719
PES 43 20.0578 0.966
Total 260 19.4929 0.967
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man, J. M.; Kaledin, M. J. Phys. Chem. Lett. 2018, 9, 798–803.

[7] Heindel, J. P.; Yu, Q.; Bowman, J. M.; Xantheas, S. S. J. Chem. Theory Comput.

2018, 14, 4553–3566.

[8] Pinski, P.; Csányi, G. J. Chem. Theory Comput. 2014, 10, 68–75.

[9] Liu, D.-J.; Oka, T. Phys. Rev. Lett. 1985, 54, 1787–1789.

[10] Liu, D.; Haese, N. N.; Oka, T. J. Chem. Phys. 1985, 82, 5368–5372.

[11] Gruebele, M.; Polak, M.; Saykally, R. J. J. Chem. Phys. 1987, 87, 3347–3351.

[12] Okumura, M.; Yeh, L. I.; Myers, J. D.; Lee, Y. T. J. Phys. Chem. 1990, 94,

3416–3427.

[13] Tang, J.; Oka, T. J. Molec. Spec. 1999, 196, 120 – 130.

[14] Dong, F.; Uy, D.; Davis, S.; Child, M.; Nesbitt, D. J. J. Chem. Phys. 2005, 122,

224301.

[15] Dong, F.; Nesbitt, D. J. J Chem Phys 2006, 125, 144311.

[16] Begemann, M. H.; Gudeman, C. S.; Pfaff, J.; Saykally, R. J. Phys. Rev. Lett.

1983, 51, 554.

[17] Gerin, M., et al. A&A 2010, 518, L110.

[18] Huang, X.; Carter, S.; Bowman, J. M. The Journal of Physical Chemistry B

2002, 106, 8182–8188.



69

[19] Huang, X.; Carter, S.; Bowman, J. J. Chem. Phys. 2003, 118, 5431–5441.

[20] RajamÃďki, T.; Miani, A.; Halonen, L. J. Chem. Phys. 2003, 118, 10929–10938.

[21] Giacomo, F. D.; Schneider, F.; Nikitin, E. Chem. Phys. Lett. 2003, 373, 258 –

265.

[22] Huang, X.; Braams, B. J.; Bowman, J. M. J. Chem. Phys. 2005, 122, 044308.

[23] Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796–

6806.

[24] Adler, T. B.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2007, 127, 221106.

[25] Knizia, G.; Adler, T. B.; Werner, H.-J. J. Chem. Phys. 2009, 130, 054104.

[26] Werner, H.-J. et al. MOLPRO, version 2010.1, a package of ab initio programs.

[27] Braams, B. J.; Bowman, J. M. Int. Rev. Phys. Chem. 2009, 28, 577–606.

[28] Lodi, L.; Tennyson, J.; Polyansky, O. L. J. Chem. Phys. 2011, 135, 034113.

[29] Wang, Y.; Bowman, J. M. Phys. Chem. Chem. Phys. 2016, 18, 24057–24062.

[30] McCoy, A. B.; Huang, X.; Carter, S.; Landeweer, M. Y.; Bowman, J. M. J.

Chem. Phys. 2005, 122, 061101.

[31] Dai, J.; Bačić, Z.; Huang, X.; Carter, S.; Bowman, J. M. J. Chem. Phys. 2003,

119, 6571–6580.

[32] Huang, X.; Braams, B. J.; Bowman, J. M. J. Chem. Phys. 2005, 122, 044308.

[33] Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R. 2015,

[34] Xie, Z.; Bowman, J. M. J. Chem. Theory Comput. 2010, 6, 26–34.



70

[35] Wang, Y.; Shepler, B. C.; Braams, B. J.; Bowman, J. M. J. Chem. Phys. 2009,

131, 054511.

[36] Wang, Y.; Huang, X.; Shepler, B. C.; Braams, B. J.; Bowman, J. M. J. Chem.

Phys. 2011, 134, 094509.

[37] Wang, Y.; Bowman, J. M. J. Chem. Phys. 2011, 134, 154510.

[38] Partridge, H.; Schwenke, D. W. J. Chem. Phys. 1997, 106, 4618.

[39] Lodi, L.; Tennyson, J.; Polyansky, O. L. J. Chem. Phys. 2011, 135, 034113.

[40] Dunning Jr, T. H. J. Chem. Phys. 1989, 90, 1007.

[41] Rick A., K.; Dunning Jr, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.

[42] Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; van

Dam, H. J. J.; Wang, D.; Nieplocha, J.; Aprà, E.; Windus, T. L.; de Jong, W. A.

Comp. Phys. Chem. 2010, 181, 1477–1489.

[43] Xantheas, S. S. J. Chem. Phys. 1996, 104, 8821–8824.

[44] Miliordos, E.; Xantheas, S. S. J. Chem. Phys. 2015, 142, 234303.

[45] Rauhut, G.; Knizia, G.; Werner, H.-J. J. Chem. Phys 2009, 130, 054105.

[46] Xantheas, S. S.; Dunning, T. H. J. Chem. Phys. 1993, 99, 8874–8792.

[47] Miliordos, E.; Aprà, E.; Xantheas, S. S. J. Chem. Phys. 2013, 139, 114302.

[48] Hermansson, K. J. Chem. Phys. 1993, 99, 861–868.

[49] Hermansson, K. International Journal of Quantum Chemisry 1993, 45, 747–758.

[50] Fournier, J. A.; Wolke, C. T.; Johnson, M. A.; Odbadrakh, T. T.; Jordan, K. D.;

Kathmann, S. M.; Xantheas, S. S. J. Phys. Chem. A 2015, 119, 9425–9440.



71

Part III

Vibrational Dynamics of Gas-phase
Protonated Clusters
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Chapter 5 H3O
+ PES Validation and Vibra-

tional Analysis

5.1 Fidelity of the Potential and Vibrational Calcu-
lations

We now give results of a number of standard tests of the accuracy of the PES. First,

in Table 5.1, the optimized geometries of the global minimum and inversion saddle

point are given from the PES and directly from CCSD(T)-F12b/aVQZ calculations,

along with the energy of the saddle point and the electronic dissociation energy.

As seen, the PES accurately reproduces the ab initio results. Second, harmonic

frequencies at the minimum and inversion saddle point are given in Table 5.2, where

again excellent agreement with the direct ab initio results is seen.

Table 5.1 Geometry optimization of H3O+ C3v minimum and D3h inversion saddle point,
barrier height and dissociation energy

Minimum (C3v) Inversion saddle point (D3h)

ab initioa PES ab initioa PES

ROH 0.97590Å 0.97588Å 0.96871Å 0.96848 Å

∠HOH 111.87◦ 111.88◦ 120.0◦ 120.00◦

Dihedral ∠OHHH 31.36◦ 31.35◦ 0.0◦ 0.0◦

ab initioa PES

barrier 671.8 cm−1 674.3 cm−1

De 171.53 kcal/mol 171.53 kcal/mol

a CCSD(T)-F12/aug-cc-pVQZ

Using the PES, we first performed 1d calculations using the Qim model.1 In this

model, Qim is the normal coordinate of the imaginary-frequency normal mode of the

inversion saddle point. V(Qim) is the potential along Qim, which is relaxed with

respect to the other normal modes of the saddle point. This potential is shown in
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Table 5.2 Harmonic frequencies (cm−1) of H3O+ at global minimum and inversion saddle
point

Minimum Inversion saddle point
Mode ab initioa PES ab initioa PES
Umbrella 886.7 887.0 671.2i 671.2i
Deformation 1698.0 1697.4 1633.5 1633.6

1698.0 1697.5 1634.0 1633.6
OH sym stretch 3604.8 3601.3 3658.9 3651.6
OH antisym stretch 3705.1 3708.5 3810.3 3811.2

3705.1 3708.5 3810.3 3811.2
a CCSD(T)/aug-cc-pVQZ

Figure 5.1, where, as shown, it spans both global minima and inversion saddle point

that have a barrier of 674 cm−1. A numerical solution of the 1-d Schrödinger equation

is done using this potential and we show the ground state wavefunction and energies

of three states in Figure 5.1 from this calculation. As seen, the ground state energy

is about 300 cm−1 below the barrier height and the ground state wavefunction has

relatively large amplitude at the barrier. Significant tunneling splitting is observed

here that the split at ground state is about 71 cm−1. The calculated fundamental

energy of umbrella mode (imaginary mode) is then roughly 596 cm−1.
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three states based on 1-d DVR calculation
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Table 5.3 contains results of coupled anharmonic calculations of low-lying vibra-

tional states of even and odd parities (with respect to inversion about the saddle

point). These have been the focus of numerous experimental and theoretical studies,

as noted above. The current variational calculations were done with the latest version

of MULTIMODE,2 which use the saddle-point normal modes with the full-Watson

Hamiltonian. This approach was taken in previous calculations,3,4 however, with an

earlier version of MULTIMODE that was limited to fewer than 6-mode coupling in

the potential and vibrational angular momentum terms. In those calculations the

rigorous degeneracy of deformation mode was achieve numerically, however, not for

the OH antisym stretch, where the two modes were split by several wavenumbers.

Here that limitation is lifted and an exact 6-mode representation of the potential is

used. However, to illustrate the importance of the vibrational angular momentum

terms, results for 3-mode and 4-mode representations of these terms (which are often

neglected in vibrational calculations using normal modes) are given in the table. As

seen those using the 3-mode representation still show a substantial incorrect splitting

of the OH antisym stretch modes. However, the 4-mode representation does produce

the correct degeneracy to sub wavenumber accuracy. Finally, consider the compari-

son with experiment. As seen, the agreement is excellent for both parity states, with

differences no larger than 3 cm−1. Note the large tunneling splittings, for these states,

which indicate both the small barrier for the inversion motion and the effect of the

light H-atoms involved in that motion. The infrared spectrum of bare H3O
+ is further

calculated using MULTIMODE and is shown in Figure 5.2
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Table 5.3 Anharmonic energies (in cm−1) of H3O+ in 1-d DVR, MULTIMODE VCI
calculation and experimental results

1-d DVR 6MR,MC=3a 6MR, MC=4a Exp

Mode + - + - + - + - b

Umbrella 596.1 1016.6 583.5 952.7 583.8 953.7 581.17 954.40c

Deformation 1627.1 1692.0 1626.3 1691.1 1625.95 1693.87d

1627.3 1692.3 1626.3 1691.1

OH sym str 3445.6 3493.5 3445.4 3492.3 3445.00 3491.17e

OH asym str 3534.7 3571.0 3534.3 3571.1 3535.56 3574.29f

3539.7 3579.0 3534.7 3571.8

Ground state 0.00 71.1 0.00 52.19 0.00 52.48 0.00 55.35g

a 6MR indicate an exact 6-mode representation of the potential
MC=3,4 indicate a 3 or 4 mode coupled in vibrational angular momentum terms

integration
b + and - are the parity of each doublet
c Refs.5 d Refs.6 e Refs.7 f Refs.8 g Refs.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 500  1000  1500  2000  2500  3000  3500  4000

In
te

n
si

ty

Energy (cm-1)

Figure 5.2 Infrared spectrum of H3O
+

Diffusion Monte Carlo (DMC) calculations were done to rigorously determine the
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zero-point energy of H3O+. These were done with 40,000 walkers, initiated at one

minimum and propagated for 40,000 steps. The DMC zero-point energy is 7459

cm−1 with an uncertainty of roughly ±1cm−1. This is excellent agreement with the

MULTIMODE energy of 7459 cm−1. In addition, the DMC calculation samples large

regions of the PES away from the global minimum which indicates the PES has

no regions of unphysical behavior as sampled by DMC walkers. Finally, the DMC

wavefunction can be visualized as an isosurface and this is done in Figure 5.3

Figure 5.3 Isosurface of ground state wavefunction
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5.2 Summary and Conclusions

The H3O
+ PES is used in converged anharmonic coupled vibrational calculations

and results are in excellent agreement with experiment. A diffusion Monte Carlo

calculation of the ground state wavefunction demonstrates the delocalization over

the two equivalent minima and saddle point separating them. This PES can be

also presented as a building block of a many-body representation of the hydrated

proton.
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Chapter 6 Vibrational Dynamics of H7O
+

3
and H9O

+
4

6.1 First Trial of Vibrational Spectra of H7O
+

3 and
H9O

+
4

6.1.1 Introduction

The vibrational spectroscopy of the hydrated proton has been investigated both

experimentally and theoretically for several decades.1–15 and a recent review can be

found in ref. Fournier2015. In a landmark study of H+(H2O)n, n=2-11 clusters,

Ar-tagged action spectra were reported,13 and interpreted as being dominated by

the elementary Eigen or Zundel motifs of the hydrated proton.16–18 In the latter, the

proton is equally shared between two water monomers, and in the ideal case of H5O
+

2 ,

it sits midway between them at equilibrium. In the Eigen motif, the proton is closer

to one monomer and thus can be considered a perturbed hydronium ion, H3O
+.

Much detailed spectroscopic information about these motifs has been learned from

experiment and theory and much of it has been reviewed recently.14 In particular,

for Eigen clusters, a near linear correlation between the bridging proton OH bond

length and the proton stretch fundamental for a variety of such cluster types has

been reported.14 We showed this linear correlation19 using the bare Zundel, H5O
+

2 ,

potential energy surface, where, as the OO distance increases from equilibrium, the

Zundel motif at equilibrium changes to Eigen-like as a result of the development of a

barrier that localizes the proton.

These and other studies indicate strong coupling of this stretch mode in these

clusters, which presents a major challenge for theory. Ideally, the theoretical analysis

of these clusters would follow the approach carried out for H5O
+

2 . For this cation,
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full-dimensional CCSD(T)-based potential and MP2-based dipole moment surfaces20

were used in anharmonic, coupled-mode calculations of the IR spectrum. The most

rigorous one, using MCTDH methodology, resulted in a near perfect match with ex-

periment.21 Clearly, this approach is daunting for the next larger clusters, H7O
+

3 and

H9O
+

4 , as was recently noted.15 Nevertheless, we report major progress in addressing

the computational spectroscopy of the H7O
+

3 and H9O
+

4 clusters using methods that

are close to those mentioned above for H5O
+

2 .

Using the developed many-body potential and dipole moment surfaces for proto-

nated water clusters. Coupled-mode VSCF/VCI22,23 calculations of the IR spectrum

of these clusters, using the code MULTIMODE, become feasible.22 Here, we will

present some first trial calculations of vibrational spectra of H7O
+

3 and H9O
+

4 . The

first version of many-body PES was used where the hydronium-water-water 3-body

interaction is calculated from a simple expression (As seen in Chapter 4)
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6.1.2 Results and Analysis

Table 6.1 Optimized geometry and harmonic frequencies of H7O+
3 minimum

minimum MP2 CCSD(T)-F12 PES/no h-w-w PES/ h-w-w
ROH(1) (Å) 0.967 0.964 0.961 0.963
ROH(2) (Å) 1.038 1.029 1.066 1.040
ROO (Å) 2.487 2.491 2.417 2.480

∠OHO (deg) 174.4 175.1 175.6 174.6
Mode CCSD(T)-F12 PES/no h-w-w PES/h-w-wa PES/h-w-wb
1 342 372 389 336
2 366 416 391 364
3 392 443 417 388
4 394 461 426 408
5 479 485 520 490
6 589 675 622 575
7 1054 1235 1080 1036
8 1242 1345 1301 1216
9 1625 1534 1618 1626
10 1654 1617 1645 1660
11 1699 1636 1717 1692
12 1709 1715 1738 1708
13 2551 2013 2349 2511
14 2702 2113 2466 2615
15 3818 3802 3792 3807
16 3818 3805 3795 3809
17 3828 3865 3860 3830
18 3914 3901 3882 3902
19 3914 3901 3886 3903

ROH(1) is the free OH bond length in hydronium core, ROH(2) is the bounded OH
bond length in hydronium core, ROO is the distance between hydronium oxygen and

water oxygen.
PES/h-w-wa is the frequencies using PES optimized minimum structure while
PES/h-w-wb is using CCSD(T)-F12 minimum geometry. Basis set for MP2 and

CCSD(T)-F12 calculation is aVTZ



81

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1000  1500  2000  2500  3000  3500  4000
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1000  1500  2000  2500  3000  3500  4000
 0

 500

 1000

 1500

 2000

 2500

 3000

 500  1000  1500  2000  2500  3000  3500  4000
 0

 500

 1000

 1500

 2000

 2500

 3000

 500  1000  1500  2000  2500  3000  3500  4000

PES

CCSD(T)-F12/aVTZ

PES

CCSD(T)-F12/aVTZ

500 1000 1500 2000 2500 3000 3500 40001000 1500 2000 2500 3000 3500 4000

Intensity 

(km/mol)

Energy (cm-1) Energy (cm-1)

H7O3
+

H7O3
+

H9O4
+

H9O4
+

0

500

1000

1500

2000

2500

3000

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

2500

3000

3500

4000

500

1000

1500

2000

2500

3000

3500

4000

H3O+ OH str

H3O+ free OH str

H2O str

H3O+, H2O 
bends

H3O+ OH str

H2O str

H3O+, H2O 
bends

H3O+ 

umbrella
H3O+ 

umbrella
In

te
n

s
it
y
 (

k
m

/m
o

l)

Figure 6.1 Double-harmonic spectra of H7O+
3 and H9O+

4 from many-body PES/DMS
(upper panels) and CCSD(T)-F12b/aug-cc-pVTZ calculations (lower panels)

Several tests of the accuracy of this version of PES were done against direct

CCSD(T)-F12b/aug-cc-pVTZ calculations over H7O
+

3 and H9O
+

4 .24 These are equi-

librium structures, normal-mode frequencies (results are in the 6.1) and double-

harmonic spectra, shown in Figure 6.1. Before commenting on these spectra, we

note that the reference configurations used in all calculations are the ab initio ones.

These differ slightly from the ones obtained directly from optimizations using the

many-body PES. For example, for H7O
+

3 , the H2O-H3O
+ O-O distance from the

PES is 2.48 Å comparing with the direct ab initio value of 2.49 Å . This is small dif-

ference, but the effect on the perturbed H3O
+ harmonic frequencies is large (as shown

in Table 6.1). This major dependence of these frequencies on this O-O distance was

discussed in detail in several recent papers,14,25 including one from us.19 With this

slight alignment of the PES reference configuration in mind, we see good agreement

between the the PES/DMS and direct ab initio double-harmonic spectra. The most
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intense peak is the perturbed H3O
+ asymmetric stretch and the frequencies from the

PES are downshifted from the ab initio ones by 40-100 cm−1. However, these dif-

ferences do not necessarily indicate the size of systematic errors in an anharmonic

coupled-mode calculations, which sample much greater regions of the potential than

the curvature of the potential at the minimum. It should also be kept in mind that

the monomer components of the PES are based on higher level ab initio theory than

the present CCSD(T) calculations, which nevertheless are benchmark calculations for

these clusters. In summary, these tests do indicate that the many-body approach

taken is at least semi-quantitative and these double-harmonic spectra also provide a

jumping-off point for the MULTIMODE VSCF/VCI spectra presented next.

The VSCF/VCI calculations use the full Watson Hamiltonian and for H7O
+

3

and H9O
+

4 , which have 24 and 33 vibrational modes, respectively, restrictions are

necessary in the number of modes that are coupled and in the n-mode representation

of the potential and dipole moment surfaces. For the latter, because we have a

full-dimensional PES and DMS, we use n=4, a value which typically is needed to

obtain results that are converged to a few wavenumbers, for a give number of coupled

modes.26,27 We also did calculations for n equal 2 (a commonly used value) and 3 and

results are in 6.2. These underscore the significant mode-coupling in these clusters,

especially for the perturbed hydronium stretches, and, as expected, there is less mode

coupling in the 2-mode calculations compared to the 3 and 4-mode ones. We use n

= 3 for the representation of the DMS.

For H7O+
3 , we selected total 18 modes for calculation with 6 low-frequency modes

left. OO stretches, hydronium “frustrated" rotation, umbrella, wagging, bending, OH

asym- and sym- stretches and all H2O bending, stretches are included in MM calcu-

lation. The maximum sum of mode excitation is 10, 9, 8, 7 for one-mode, two-mode,

three-mode, four-mode expansion. The final matrix size reaches 157790 and Lanczos

method is utilized for matrix diagonalization. In the intensity calculation, 3-mode
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Table 6.2 Multimode calculation of H7O+
3 and H9O+

4 (in cm−1)
H7O+

3 2MR 3MR 4MR
“h" wag 1432 1212 1050
“h" umb 1546 1344 1211

“h" bend,“w" bend 1733,1863,1871 1535,1635,1657 1450,1566,1569
1899,1961,1994 1701,1722,1735 1574,1620,1680

“h" asym str 1529,2988 1535,1765,1841,1848 1450,1838,1870
“h" sym str 1899,1994,3044 1968 1912,1993,2192
“h" free str 3573,3803,3962 3844,3878 3674,3680,3683
“w" str 3984,3926,4074,4079 3754,3776,3854,3856 3635,3654,3743,3745

H9O+
4 2MR 3MR 4MR

“h" wag 1088 964 908
“h" umb 1309 1165 1112

“h" bend,“w" bend 1733,1738,1753 1621,1624,1669 1559,1560,1597,1612
1784,1800 1691,1693 1613,1638,1639

“h" asym str 2248,2300,2406,2639 2103,2131,2587,2628
2474,2476,2481,2486

2510,2523,2545,2547,2560
2589,2591,2638,2676,2719

“h" sym str 2639 2587,2642 2552,2568,2727

“w" str 3984,3926,4074,4079 3698,3723,3729 3656,3662,3663
3753,3761,3762 3733,3734,3735

“h" is mode in hydronium core and “w" is mode in water fragments

representation of the dipole moment is used and the intensities are obtained through

calculating the transition moment with calculated vibrational CI wavefunctions. As

for H9O+
4 , all hydronium umbrella, rotation,wagging, bending and stretching modes

are involved together with all intramolecular modes in water. Again, 4-mode repre-

sentation of the potential is used and the sum of mode excitation becomes 11,9,8,7 in

VCI calculation. The matrix size is 158503 and intensity calculation also uses 3-mode

representation of the dipole moment. The vibrational spectra are for transitions from

the ground vibrational state and the potential and dipole transition matrix elements

were calculated using standard numerical quadratures. For H7O+
3 there are 1373 VCI

state energies in the range 1000-4000 cm−1. Of these, 309 have intensities larger than

1 km/mol and 81 such states are in the range 1800-2500 cm−1. For the larger clus-
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ter, H9O+
4 , additional mode restrictions were needed and so all modes with harmonic

frequencies less than 500 cm−1 were excluded. Thus, the spectrum is not as complex

as H7O+
3 with around 98 sticks in the range 500-4000 cm−1 and 32 sticks with rel-

atively large intensities in the range 2200-2800 cm−1 The resulting stick intensities

were broadened using a Gaussian function of 10 cm−1 FWHM.
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2 “h” free-OH str 3684 3580a

3 “w” sym-str 3654 3639a

4 comb (low-freq modes) 2309 2280b

5 comb (low-freq modes) 2192 2180b

6,7 “h” sym-str+low freq 1993,2100 2100b

8 “h” sym-str 1912 1920b

9 “h” asym-str 1870 1880a

10,11,12 “h” bnd, “w” bnd 1680,1569,

1450
1630,1520a

13,14 “h” umb, “h” wag 1211,1050 1090b

Figure 6.2 Calculated MULTIMODE (MM) infrared spectrum of H7O+
3 in the range

1000-4000 cm−1 with assignments given in the inset. “h" and “w" denote hydronium and
water. See text for more details about peak assignments. Experimental results: a is from
ref. Jorden2005, b is from ref. Fournier2015

The calculated vibrational spectrum of H7O+
3 is shown in Figure 6.2, where for

convenience the maximum intensity is assigned the value 1.0. A table showing ex-

perimental peak positions13,14 is also given. A comparison to the double-harmonic

spectrum, shown in Fig.6.1, reveals a more complex spectrum, however, some fea-

tures are common to both, e.g., the prominent intense peak labeled 9 at 1870 cm−1

is seen in the double-harmonic spectrum, but at 2500 cm−1. The calculated peak

position at 1870 cm−1 is in good agreement with experiment,13 which has a strong



85

band at 1880 cm−1. The breadth of the band at 1870 cm−1 results from contributions

from eigenstates with large components of H3O
+ asymmetric stretch and also bending

modes and low frequency modes. For example, there is combination state involving

the the hydronium frustrated rotation and umbrella modes with some H3O
+ asym-

metric stretch that has significant intensity at 1838 cm−1. The band at 1912 cm−1,

labeled 8, is mainly from the perturbed H3O
+ symmetric stretch and agrees well with

experiment, where an intense peak is seen at around 1920 cm−1.13 In the 2000 to

2500 cm−1 range, there are numerous small peaks, labeled 4,5,6,7. This correspond

to mixed states involving combination bands of low-frequency modes, labeled that

contain small components of perturbed H3O
+ asymmetric or symmetric stretches.

Note, in experiment there does not appear to be an intense peak corresponding to

calculated peak 6. There are two bands labeled 13 and 14 below 1400 cm−1 which

are mainly the H3O+ wagging fundamental at 1050 cm−1 and H3O+ umbrella mode

fundamental at 1211 cm−1. These states provide an explanation for the broad fea-

ture around 1100 cm−1 in the experimental spectrum. The bands labeled 10, 11, 12

correspond to H2O and H3O+ bending fundamental bends. The intense band at 1450

cm−1 is mainly the H2O bend but is coupled with the H3O+ asymmetric OH stretch.

With this significant coupling, the intensity of this band bend is larger than the bands

labeled 10 and 11 at 1569, 1680 cm−1, respectively. (Note this intensity feature is

not seen in the double harmonic spectrum.) The vibrational bands in this region are

in very good agreement with experiment, where a broad and strong-intensity band is

located at 1500 cm−1, with another sharp peak at 1650 cm−1. At energies between

2500 and 3500 cm−1 there are several weak bands not labeled. These correspond to

several overtones and complicated combination bands The final important features in

H7O+
3 are the water stretches and hydronium free-OH stretch. The H2O asymnmetric

and symmetric stretch peaks, 1, 2, are in good agreement with experiment. However,

there is a roughly 100 cm−1 difference with experiment for the H3O+ free-OH stretch,
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Figure 6.3 Calculated (upper panel) and experimental (lower panel) infrared spectrum of
H9O+

4 , experimental data from ref. McCoy2012

labeled, 3.

To conclude this discussion of H7O+
3 , we note the assignments here of prominent

bands are in good accord with those made previously from combined experiment and

theory, i.e., scaled MP2/aug-ccpVDZ harmonic and 2-mode MP2/aug-ccpVDZ VSCF

calculations.13 However, those calculations give the perturbed hydronium asymmetic

stretch at 2381 and 1984 cm−1, respectively, which are roughly 500 and 100 cm−1,

respectively, higher than experiment and the present calculations. Next consider the

H9O+
4 cluster, where the hydronium core is fully hydrated. The calculated and Ar-

tagged experimental spectra6 are shown in Figure 6.3, where good correspondence

is seen. The largest intensity in the calculations is 692 km/mol at roughly 2500

cm−1 and, again, we assign the value of this peak to 1.0 for convenience. This band,
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labeled 3, is mainly perturbed hydronium asymmetric stretch(es). These are seen

in the double-harmonic spectrum, but at roughly 2920 cm−1. This calculated band,

which consists of 14 stick transitions with significant intensity, is broader than the

corresponding one in H7O+
3 and is almost as broad as the corresponding experimental

band, which has a peak at around 2650 cm−1. There exits small feature at around

2720 cm−1 in the calculated spectrum which is mainly combination band of hydronium

umbrella and the bending motion. There is a hint of this in the experimental spectrum

at around 2850 cm−1. Note, the calculated peak positions are around 100 cm−1 lower

than experiment. This may be a reflection of the similar difference at the harmonic

level seen in the Figure 6.1, or they may be due to the lack of lower-frequency modes

in the calculation.

The calculated sharp bands at 3656 cm−1 and 3734 cm−1, labeled 2 and 1, are

the H2O symmetric and asymmetric stretches, respectively, are in good agreement

with experiment. Bands labeled 4 and 5 around 2300 cm−1 are seen experimentally,

but, as noted in ref Johnson2016, not in VPT2 calculations. The calculated band at

2264 cm−1 is a combination band of the H3O+ frustrated rotation and H3O+ bending

modes. The band at 2336 cm−1 is the combination band of H3O+ frustrated rotation

and the H2O bending modes. The explanation of why these two combination bands

have relatively large intensity is explained nicely by McCoy et al.,6 who stress the

importance of electrical anharmonicity for the transition moment of ionic molecules, in

this case, the hydrated hydronium ion. From another point of view, we observe strong

coupling with hydronium OH asymmetric stretches for both of the two combination

bands. In this aspect, the two combination bands can borrow intensity from the

hydronium stretches and thus there exits bright signature around 2264 and 2336

cm−1.

The band at 2000 cm−1 , 6, and the doublet at 1802 cm−1 ,7 and 8, are combi-

nation bands. The one at 2000 cm−1 is a combination band of hydronium frustrated
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rotation and umbrella modes and the 1802 cm−1 band is mainly a hydronium wagging

and umbrella excitation. Both of these two combination bands have some coupling

with the bright perturbed H3O
+ stretches. We tentatively propose that these bands

correspond to the bands labeled “a10" and “a11" in the experimental spectrum of

D2-tagged H9O+
4 .15 Note, however, that calculated peak 6 is more intense than the

experimental band close to it in energy. We do not have a simple explanation for

this singular difference; however, it is likely an issue with the calculationsThe calcu-

lated band at 1639 cm−1 is mainly a bend fundamental, which has the character of

a collective bending motion of both H3O
+ and H2O. This collective motion results

from the near degeneracy of the perturbed H3O
+ and H2O harmonic frequencies, in

accord with the simple analysis we carried out for the evolution of the perturbed

H3O
+ harmonic frequencies,19 when applied to H9O+

4 .

Finally, the hydronium frustrated rotation and umbrella fundamentals, 10 and 11,

respectively, are at 908 and 1112 cm−1, respectively. In the experiment, a broad band

appears in the region 900-1100 cm−1. Probably, inclusion of low-frequency modes

would further broaden the calculated bands.

6.1.3 Conclusions

In summary, we reported VSCF/VCI calculations of the vibrational spectra of

H7O+
3 and H9O+

4 , with a 4-mode representation of the potential and 18 coupled modes.

The calculations were feasible with the novel many-body representation of the poten-

tial and dipole moment surfaces. The calculated spectra do capture, quantitatively or

semi-quantitatively, the complex Ar-tagged experimental spectra and the similarities

and differences in these two spectra are also captured well by the present calculations.
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6.2 Vibrational Spectra of the Eigen, Zundel and
Ring Isomers of H+(H2O)4—Find a Single Match to
Experiment

6.2.1 Introduction

The hydrated proton is perhaps the most important and intensively studied hy-

drated ion.1 One central issue is the relative importance of the “Eigen" and “Zundel"

motifs of the hydrated proton. “Eigen" clusters are hydrated hydronium, whereas

“Zundel" ones have the proton roughly equidistant between two water monomers.

Gas-phase IR spectroscopy of protonated water clusters has been a vital tool to in-

vestigate the structure of various clusters, with the major goal of identifying them

as either being “Eigen" or “Zundel".2–4 Ultrafast 2D IR spectroscopy of protons in

water5 conclude that Zundel plays a key role in proton transfer, based in large part

on the observation of bands at 1760 and 3200 cm−1. The former is seen in the classic

Zundel cluster, H5O
+

2 , while the band at 3200 cm−1 is only seen in calculations for

larger Zundel clusters4,6

The pioneering study of these clusters in the gas phase by the Johnson and

Duncan group, using tagged IR spectroscopy, has shown that these IR spectra are

quite complex and not always amenable to double-harmonic analysis.2,4,7,8 The se-

ries H+(H2O)n, n=2,3,4, is particularly important as the expectation is that n =

2 is “Zundel", n = 4 is “Eigen" and n = 3 is something in between. Joint experi-

mental and theoretical (double-harmonic and VPT2 using B3LYP energies) studies

concluded that n = 4 is indeed “Eigen"’. However, as noted recently, there are some

shortcomings of these calculations, both in the level of electronic structure calcula-

tions and the VPT2 treatment of vibrational dynamics.9 Wang and Agmon reported

“AIMD" and VPT2 calculations of the IR spectrum, using a dispersion-corrected DFT

Functional and MP2(full)/6-31++G** calculations, respectively. To quote from that

paper: “With these issues properly addressed, all theoretical methods generate the
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same spectra (at least for the fundamental bands), agreeing with experiment for the

Zundel isomer, but not for the Eigen isomer as the sole contributor to the spectrum."9

At about the same time, Yagi and Thomsen reported a “direct" and very cpu-intensive

calculation of the IR spectra of the Eigen and trans-Zundel isomers using vibrational

quasi-degenerate perturbation theory, however, with limited mode coupling and a

mixture of CCSD(T) electronic energies for 1-mode terms and B3LYP for coupled

terms.10 The comparisons with experiments for each isomer were not quantitative

and so unfortunately not definitive.

Shortly after these papers appeared, we reported a Communication on the IR spec-

trum of the Eigen isomer of H+(H2O)4 ,11 using vibrational self-consistent field/virtual

state configuration interaction (VSCF/VCI) calculations, as implemented in the code

MULTIMODE12 with a many-body representation of the potential energy surface

(PES) These calculations, although limited to the Eigen isomer, reproduced the ex-

perimental spectrum with far greater accuracy than previous ones, and thus allowed

us to conclude that the experimental spectrum was consistent with the calculated

one for the Eigen isomer. However, the lack of corresponding calculations of the IR

spectra for other isomers of H+(H2O)4 left open the question of whether these could

contribute to the experimental spectrum.

This is now fully addressed in this work, where IR spectra for the Eigen, cis and

trans-Zundel and ring isomers are reported using the above approach, and with a

much more extensive fit to the hydronium-water-water 3-body interaction. In addi-

tion, in order to describe the Zundel isomers, the above many-body representation

was extended by using a weighted sum-of-potentials, in which feasible assignments

for the hydronium are made.13
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6.2.2 Computational Details and Results

To begin we give the MP2/aug-cc-pVTZ electronic energies of the isomers of

H+(H2O)4, ∆Eelec, relative to the Eigen isomer, which is the lowest energy isomer

and the energy differences including harmonic zero-point energy, ∆E0. We also give

the absolute energies Eelec (in Hartree) of all these isomers in Table 6.3.

The ab initio relative electronic energies (MP2/aVTZ) of Zundel and Ring isomers

are in the range of 1233∼1316 cm-1 above Eigen minima. Under low temperature

environment (10-20 K in experiment8,14), according to Boltzmann distribution, the

Eigen minima is most stable and prominent while the ratios of Zundel and Ring iso-

mers are very small. To verify the existence of these isomers, beyond Boltzmann

distribution, we need to analysis the detailed spectra for each isomer. Before pre-

senting the VSCF/VCI IR spectra for these isomers, we first show the equilibrium

structures and double-harmonic spectra of these isomers from the many-body PES

and DMS and direct ab initio calculations. (The very good agreement between them

is an important validation of the many-body approach.)

Table 6.3 Ab initio electronic energy of optimized H9O
+

4 isomers, Eelec (absolute
energy), ∆Eelec (relative electronic energy without ZPE correction), ∆E0 (relative
electronic energy with ZPE correction)
MP2/aVTZ Eigen cis-Zundel trans-Zundel Ring
Eelec (Hartree) -305.7114407 -305.7058241 -305.7056922 -305.7054429
∆Eelec (cm−1) 0 1233 1262 1316
∆E0 (cm−1) 0 776 669 1636

We also mention that the absolute energy of H9O
+

4 Eigen minimum structure opti-
mized in CCSD(T)-F12/aVTZ is -305.8583278 in Hartree
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Eigen Cis-Zundel

Trans-Zundel Ring

Figure 6.4 Optimized geometry of H9O
+

4 Eigen, cis- and trans-Zundel and Ring isomers
using the current PES.
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Table 6.4 Harmonic frequencies (in cm−1) and double harmonic intensity (in km/mol) of
H9O

+
4 of the Eigen minimum structure. The text in bold are modes included in the

VSCF/VCI calculation and text in italics are hydronium stretches.
Mode MP2/aVTZ CCSD(T)-F12/aVTZ PES
1 64 (0.94) 55 64 (1.43)
2 64 (1.07) 61 64 (1.49)
3 72 (1.31) 63 68 (0.67)
4 104 (0.42) 76 101 (0.71)
5 106 (0.10) 121 102 (0.58)
6 119 (59.79) 130 117 (62.28)
7 241 (68.22) 147 258 (48.24)
8 262 (204.61) 162 277 (170.48)
9 266 (199.67) 175 278 (166.17)
10 286 (12.09) 271 284 (21.17)
11 342 (151.79) 307 335 (132.29)
12 342 (150.90) 308 336 (132.54)
13 377 (75.37) 343 367 (131.71)
14 378 (81.57) 343 369 (135.04)
15 417 (73.68) 372 410 (84.35)
16 738 (0.18) 712 712 (0.15)
17 963 (68.61) 944 925 (62.51)
18 967 (69.08) 948 929 (63.43)
19 1217 (232.71) 1186 1189 (201.11)
20 1635 (65.61) 1644 1669 (67.98)
21 1635 (66.88) 1645 1669 (68.81)
22 1646 (0.34) 1654 1681(3.87)
23 1728 (8.07) 1731 1766 (5.42)
24 1729 (8.27) 1733 1767 (5.78)
25 2928 (2947.69) 2995 2978 (3095.16)
26 2932 (2937.66) 2998 2979 (3087.25)
27 3024 (172.58) 3089 3091 (145.35)
28 3797 (76.46) 3856 3828 (81.65)
29 3797 (76.82) 3858 3828 (81.12)
30 3798 (6.57) 3858 3836 (2.91)
31 3905 (76.84) 3955 3921 (60.16)
32 3906 (113.12) 3955 3921 (52.42)
33 3907 (335.19) 3956 3922 (423.30)
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Table 6.5 Harmonic frequencies (in cm−1) and double harmonic intensity (in km/mol) of
H9O

+
4 cis-Zundel isomer. The text in bold are modes included in the VSCF/VCI

calculation and text in italics are proton stretches.
Mode MP2/aVTZ PES
1 25 (0.0) 22 (0.4)
2 50 (0.0) 52 (4.4)
3 85 (35.0) 89 (21.2)
4 114 (26.3) 121 (34.1)
5 138 (10.2) 142 (9.9)
6 215 (403.2) 234 (339.3)
7 270 (1.4) 290 (1.0)
8 287 (179.3) 305 (100.9)
9 308 (104.0) 326 (98.5)
10 309 (87.4) 328 (200.7)
11 353 (138.3) 357(177.0)
12 366 (1.4) 367 (4.2)
13 435 (145.1) 453 (148.5)
14 611 (11.6) 600 (56.5))
15 622 (64.7) 602 (87.0)
16 665 (2.8) 672 (4.1)
17 824 (2452.8) 824 (2489.0)
18 971 (9.4) 969 (12.2)
19 1047 (1415.9) 1018 (893.1)
20 1485 (158.7) 1502 (111.7)
21 1573 (50.1) 1613 (67.2)
22 1643 (194.4) 1659(269.5)
23 1643 (20.4) 1674 (14.1)
24 1732 (5.9) 1763 (3.7)
25 1769 (707.4) 1780 (560.4)
26 3094 (974.7) 3140 (884.2)
27 3128 (2035.9) 3176 (2084.6)
28 3797 (61.3) 3790 (66.6)
29 3797 (41.8) 3809 (82.1)
30 3838 (204.7) 3879 (174.5)
31 3840 (143.5) 3893 (208.3)
32 3906 (66.8) 3928 (39.6)
33 3906 (266.5) 3928 (271.5)
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Table 6.6 Harmonic frequencies (in cm−1) and double harmonic intensity (in km/mol) of
H9O

+
4 trans-Zundel isomer. The text in bold are modes included in the VSCF/VCI

calculation and text in italics are proton stretches.
Mode MP2/aVTZ PES
1 19(0.0) 18 (1.0)
2 60 (22.4) 63 (12.7)
3 68 (0.7) 67 (0.2)
4 99 (33.3) 102 (43.7)
5 105 (1.8) 115 (5.6)
6 194 (191.7) 211 (476.0)
7 195 (167.5) 236 (164.5)
8 197 (770.6) 239 (389.3)
9 301 (58.4) 305 (52.4)
10 326 (158.8) 320 (146.8)
11 337 (8.7) 337(3.0)
12 368 (8.6) 363 (1.3)
13 379 (0.1) 399 (1.0)
14 595 (18.8) 583 (31.6))
15 621 (299.1) 602 (319.2)
16 639 (5.8) 644 (4.8)
17 840 (1582.3) 823 (1615.0)
18 1012 (144.1) 1005 (149.6)
19 1017 (1587.8) 972 (1216.6)
20 1468 (262.4) 1492 (275.4)
21 1591 (51.3) 1614 (57.7)
22 1641 (20.4) 1666(8.8)
23 1643 (176.7) 1658 (222.6)
24 1715 (0.4) 1730 (6.7)
25 1763 (717.9) 1777 (473.6)
26 3088 (2478.6) 3156 (2064.6)
27 3114 (696.6) 3172 (1031.0)
28 3802 (82.5) 3803 (18.9)
29 3803 (24.0) 3835 (91.4)
30 3846 (124.3) 3871 (193.0)
31 3848 (210.8) 3891 (206.5)
32 3914 (171.4) 3942 (171.5)
33 3913 (169.8) 3943 (142.9)
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Table 6.7 Harmonic frequencies (in cm−1) and double harmonic intensity (in km/mol) of
H9O

+
4 Ring isomer. The text in bold are modes included in the VSCF/VCI calculation

and text in italics are hydronium stretches.
Mode MP2/aVTZ PES
1 52(1.8) 57 (1.5)
2 99 (3.6) 108 (3.5)
3 114 (0.3) 142 (0.6)
4 195 (12.0) 206 (19.2)
5 244 (69.1) 251 (87.1)
6 245 (15.1) 260 (27.3)
7 300 (102.5) 300 (107.3)
8 304 (7.4) 335 (6.6)
9 365 (205.5) 372 (209.4)
10 418 (40.1) 420 (46.8)
11 451 (10.5) 469(119.9)
12 461 (134.8) 479 (1.5)
13 526 (198.2) 546 (221.8)
14 559 (125.8) 588 (109.1))
15 603 (124.1) 617 (103.8)
16 682 (39.3) 722 (54.0)
17 702 (113.4) 735 (124.8)
18 1087 (3.5) 1097 (4.5)
19 1301 (231.7) 1289 (211.9)
20 1610 (33.1) 1644 (0.1)
21 1624 (25.1) 1656 (57.7)
22 1630 (100.9) 1686 (31.5)
23 1656 (27.0) 1690 (54.0)
24 1818 (183.8) 1889 (175.3)
25 2316 (2613.9) 2312 (2778.4)
26 2541 (1874.0) 2520 (1735.9)
27 3619 (248.0) 3556 (368.8)
28 3644 (628.9) 3563 (734.0)
29 3768 (25.2) 3752 (34.5)
30 3798 (201.7) 3820 (274.5)
31 3862 (351.7) 3834 (99.4)
32 3866 (102.2) 3872 (264.5)
33 3869 (164.9) 3880 (67.1)
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Figure 6.5 Double harmonic spectra of H9O
+

4 Eigen minimum structure using
CCSD(T)-F12/aVTZ (intensities are calculated in MP2/aVTZ) and PES
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Figure 6.6 Double harmonic spectra of H9O
+

4 Eigen minimum structure using
MP2/aVTZ and PES
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Figure 6.7 Double harmonic spectra of H9O
+

4 cis-Zundel isomer using MP2/aVTZ and
PES
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Figure 6.8 Double harmonic spectra of H9O
+

4 trans-Zundel isomer using MP2/aVTZ
and PES
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Figure 6.9 Double harmonic spectra of H9O
+

4 Ring isomer using MP2/aVTZ and PES

As seen, there is very good agreement between the PES results and the direct ab

initio ones. Note especially the ones for the Eigen isomer, where the comparison in-

cludes benchmark CCSD(T)-F12/aVTZ results. Zeroing in the hydronium stretches,

the PES frequencies are roughly 20 cm−1 below the CCSD(T) ones (Interestingly,

the MP2 frequencies are downshifted from the CCSD(T) ones by nearly 70 cm−1.)

By contrast, the PES intense water bends at around 1670 cm−1 are higher than the

CCSD(T) ones by nearly 25 cm−1. Turning next to the trans-Zundel isomer, we

see that the PES frequency for the intense Zundel OH-stretch is roughly 70 cm−1

higher than the MP2 frequency. Based on the PES-CCSD(T)-MP2 comparisons for

the Eigen isomer for the hydronium stretches, we lean towards the PES frequency as

being more accurate than the MP2 one for this Zundel stretch.

The highlights of these approximate IR spectra are the following: for the Eigen

isomer, the fundamentals with the largest intensities are two hydronium asymmetric

stretches, located at 2978 and 2979 cm−1, while the hydronium symmetric stretch (at

3091 cm−1) has much lower intensity. For the cis- and trans- isomers, these harmonic
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spectra show expected features of Zundel, namely two proton involved stretches at

824,1018 cm−1 for cis-Zundel isomer and 823, 972 cm−1 for trans-Zundel isomer.

Also, the two Zundel OH stretches at around 3100 cm−1 have almost equal strong

intensity. Finally, the harmonic spectra for the ring-isomer is much simpler, with

the most intense transition corresponding to perturbed hydronium asym- and sym-

stretches at 2312 and 2520 cm−1), respectively. As shown next, the coupled mode

VSCF/VCI spectra are very different from these double-harmonic ones.

To understand the content of a VSCF/VCI calculation, one equation relating the

eigenstates of the Hamiltonian to the underlying basis is given as follows:

ψJ =
N∑
i=1

C
(J)
i χi, (6.1)

where ψJ is the Jth eigenstate, {χ} is the expansion basis of N zero-order functions,

for example, harmonic-oscillator functions, but in the VSCF/VCI calculations, these

are the virtual states15 of the VSCF ground-state Hamiltonian,12 and C
(J)
i are the

“CI" coefficients. Note the sum of the squares of these coefficients equals 1.0 and

thus the weight of each term in the above expansion is |C(J)
I |2. If there is one, or

perhaps two, dominant “CI" coefficient (say greater than 0.7), then the eigenstate is

typically assigned using the character of the associated basis function, for example,

an OH-stretch. If this is not the case, and there are many “CI" coefficients of roughly

equal weight, then the eigenstate cannot be given a conventional assignment and more

sophisticated methods of analysis are required.

Since it is not computationally feasible to couple all 33 vibrational modes, subsets

of modes were considered. For Eigen, 15 normal modes (including water bends) are

in one group and the second consists of 9 water bends and stretches. For the Zundel

isomers, 14 normal modes (without any flanking water modes) are in one group and

the second consists of the bends and stretches of the two flanking waters, and for the

ring 14 normal modes (including the water bends) are in one group and the second

group consists of the nine water modes. For all calculations, a 4-mode representation
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of the full-dimensional potential is used and the excitation space consists of singles,

doubles, triples and quadruple excitations. The final Hamiltonian matrix is of order

138661 for Eigen (and thus N in Eq. (2) equals 138661). Dipole matrix elements from

the ground vibrational state are done numerically using a 3-mode representation of the

dipole moment. To plot the spectra, each energy stick is broadened with a Gaussian

function of FWHM 10 cm−1.
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Figure 6.10 Calculated VSCF/VCI (Theory) and experimental14 (Experiment)
vibrational spectrum of the Eigen isomer of H9O

+
4 . Black lines are water stretches

calculated separately, see text for details.

First, consider the spectrum for Eigen, shown in Fig 6.10, along with the exper-

imental spectrum.8 As seen, there is very good agreement between them. Note that

the peak of the most prominent band is at 2640 cm−1 for H9O
+

4 , which is downshifted



104

from the most intense peak in the double-harmonic spectrum by approximately 400

cm−1; this is a very large and atypical downshift. Before discussing the features in

these spectra, it is important to note that the calculated IR spectra for the other

isomers have little in common with the experimental spectrum and so the conclusion

that experiment is indeed giving the IR spectrum of the Eigen isomer, predominantly

at least, is secure.

Continuing with the analysis of the H9O
+

4 Eigen spectrum, to further investigate

the prominent band at 2640 cm−1, we examined the “CI" coefficients and do not find

one that is larger than 0.4, corresponding to a weight of 0.16. Thus, this band cannot

be “assigned" in the sense described above. Details of the distribution of the CI coeffi-

cients are given in SI; however, the major finding is that for a bright eigenstate in the

center of the band, there are roughly 60 basis functions that contribute roughly 90% of

the weight of the eigenstate. These involve combinations of the “bright", zero-order

hydronium asymmetric stretch fundamental with lower-frequency, frustrated H3O
+

modes such as the wag, rotation etc. The strong coupling between low-frequency

intermolecular modes and the asymmetric stretch, seen here quantitatively, is consis-

tent with recent qualitative analyses showing high sensitivity of the proton stretch

harmonic frequency with the position of adjacent water monomers.8,14,16 These posi-

tions change with excitation of the intermolecular modes. The numerous less intense

bands downshifted from the main are less strongly mixed and involve hydronium and

water bends. The bands seen in theory and experiment at around 1760 cm−1 are

noteworthy, as there is a feature at this energy in Zundel spectra,6,9,17,18 which is

also confirmed in the calculated Zundel spectra presented here. Since both Eigen and

Zundel spectra have the intense band at 1760 cm−1, the use of this feature as spectral

marker for Zundel should be used with caution. The sharp bands, upshifted from the

main band, are the assignable free water OH-stretches.
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Figure 6.11 Calculated VSCF/VCI vibrational spectrum of the cis-Zundel isomer of
H9O

+
4 , black lines are water bends and stretches calculated separately. See text for details
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Figure 6.12 Calculated VSCF/VCI vibrational spectrum of the trans-Zundel isomer of
H9O

+
4 , black lines are water bends and stretches calculated separately. See text for details.

Next consider the calculated IR spectra of the Zundel isomers shown in Figure
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6.11-6.12. The signature band in these Zundel isomers are all found at around 1000

cm−1, which is also consistent with the bare (H5O
+

2 ) Zundel spectrum.17,18 This

brightest peak is associated with shared proton stretch, which does not show as

strong coupling as the shared proton stretches in Eigen. The next feature of the

Zundel isomers is the intense peak at 3100-3200 cm−1. The contributing motions are

two Zundel stretches, whose harmonic frequencies are around 3150 cm−1. As seen in

Table S3 and S4 in SI, these two Zundel stretches have very large double-harmonic

intensity (same level as the proton stretches). However, due to the coupling with

other low-frequency modes, in VSCF/VCI spectra, the intensity of this main feature

is much lower than those of the proton stretches. Moreover, several states appear from

2500 cm−1 to 2800 cm−1. These states do come from the complex combination bands

involving low-frequency modes and bending modes, which have significant coupling

with Zundel stretches. As to the bending region, Zundel isomers have a strong peak

around 1760 cm−1 which is the main evidence used to identify Zundel isomers in

experiment. However, it should be noted that the intensity of this Zundel bend

feature is lower than the shared proton stretch at 1000 cm−1. Thus, it seems that

spectral features at around 1000, 1750 and 3200 cm−1, should be used to identify the

“Zundel" motif.

We next analyze the calculated spectrum of the ring isomer, shown in Fig 6.13.

The structure of this ring isomer can be simply characterized as the H-bonded addi-

tion of a water molecule to the H7O
+

3 cluster, forming the ring. Thus, the spectrum

should contain signatures of H7O
+

3 and water. Indeed, H7O
+

3 features appear at four

major bands at roughly 1450, 1750, 2000 and 3660 cm−1, seen in experiment4,14 and

VSCF/VCI calculations.11 The peaks at 1450 cm−1 and 1750 cm−1 are water and hy-

dronium bends, which are mixed with the hydronium asym-stretch. The broad band

around 2000 cm−1 has contribution from both hydronium asym- and sym- stretches.

The peak at 3660 cm−1 is the hydronium free OH stretch. We stress that the peaks at
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1450, 1750 and 2000 cm−1 all have significant contribution from hydronium stretches

and their intensities are very sensitive to the corresponding VCI coefficients. Because

of the strong coupling with low-frequency modes and bending modes, these states are

not very bright comparing with the two hydronium stretches in the double-harmonic

spectrum. Thus, the two water stretches at 3350 cm−1 become the brightest peaks

in the calculated spectrum. It should be noted again that the spectra of ring isomer

also has a feature in 1750 cm−1.
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Figure 6.13 Calculated VSCF/VCI vibrational spectrum of the ring isomer of H9O
+

4 .
Black lines are water stretches calculated separately. See text for details.

Finally, we present a comparison between VSCF/VCI Eigen and the experimen-

tal8 IR spectra of D9O
+

4 in Figure 6.14. Similar to Eigen H9O
+

4 , the major band

at around 2000 cm−1 results from many highly-mixed states involving hydronium

stretches, combination bands of frustrated D3O
+ modes and water/hydronium bend-

ing modes. Comparing with the experiment, key features around 1700 cm−1 and

several bands at 1300-1500 cm−1 are also seen in the calculated spectrum. The two
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peaks around 1700 cm−1 are due to combination bands of hydronium rotation and

water/hydronium bend, which are coupled with the bright hydronium asym-stretch.

The hydronium and water bend fundamentals appear at 1200 cm−1, in agreement

with experiment. Finally, the weak, broad feature at roughly 2300 cm−1 is also re-

produced by theory.
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Figure 6.14 Calculated VSCF/VCI (Theory) and experimental8 (Experiment)
vibrational spectrum of the deuterated Eigen isomer of D9O

+
4 . Black lines are water

stretches calculated separately. See text for details.
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6.2.3 Conclusion

To summarize, the IR spectra of Eigen, cis and trans Zundel and ring isomers of

H9O
+

4 were reported, using VSCF/VCI methods and many-body, high-level potential

energy and dipole moment surfaces. The calculated Eigen spectrum is in very good

agreement with experiment for both H9O
+

4 and D9O
+

4 . Spectra for the two Zundel

and ring isomers show prominent bands that are not present in experiment, with the

exception of an intense band around 1750 cm−1 for the Zundel isomers. However

this band is also present in the calculated Eigen spectrum and so it alone is not

sufficient to distinguish between the two. Distinguishing bands of the Zundel isomer

are at roughly 1000 and 3100 cm−1 and for the ring isomer at roughly 3350 cm−1.

The calculated spectra of the Zundel and ring isomers can guide further experimental

studies of this centrally important hydrated proton cluster.
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6.3 Vibrational Spectra of the ProtonatedWater Trimer
H7O

+
3 —Combined Experimental and Theoretical Study

6.3.1 Introduction

The vibrational spectra of the small protonated water clusters, H+(H2O)n, ob-

tained using the messenger “tagging" technique1 over the past three decades,2–26

have yielded a microscopic picture of excess proton speciation within H-bonded water

networks. One aspect of these spectra that is currently under discussion is the degree

to which even the cold cluster spectra reflect large amplitude motions in both the

(zero-point) ground and OH stretching vibrationally excited states.27In this regard,

the smallest clusters, n = 2 to 6, provide the most intimate view of the interplay

between the usual spectroscopic properties of H-bonds (red-shifts and intensity en-

hancement) and the special features associated with excess proton accommodation

(vibrationally driven, inter-molecular proton transfer). Here we focus on the proto-

nated water trimer, H+(H2O)3, denoted 3H, with the calculated structure displayed

in the top of Fig. 6.15. We are particularly interested in this cluster because it repre-

sents an intermediate case between the n = 2, H+(H2O)2 Zundel ion,28 which features

an equally shared proton between two water molecules in the global minimum struc-

ture, and the Eigen form29 of the n = 4 cluster in which the three water molecules

largely play the role of neutral ligands bound to the H3O+ core ion. As such, the

protonated trimer presents an interesting case where two protons in the hydronium

core bind strongly to the two flanking water molecules with a HOH angle of 115.16◦

in Fig. 6.15, somewhat distorting them toward the pyramidal structure of the core

H3O
+ ion’s 111.86◦ angle. Vibrational excitation of these H-bonded protons then

occurs in a quasi-covalent regime, leading to a scenario where the ν= 1 OH stretch

excited states adopt a partial inter-molecular proton transfer character as the shared

protons approach the nearby water molecules. Such mechanics would, for example,

be expected to result in strongly anharmonic effects in the vibrational spectra, and
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indeed, many features in the reported spectra are not recovered at the harmonic level,

as indicated by the comparison in Fig. 6.16

Figure 6.15 Vibrational predissociation spectra of (a) 3H-D2 and (b) 3D-D2 with the free
OH region of 3H-He on top, where the 3H and 3D denote the H+(H2O)3 and D+(D2O)3
isotpologues and 3H-X denotes the complexes with X = He or D2. Colored lines
correspond to analogous vibrational modes of the isotopologues. 3H-He presents the least
perturbed position of the free hydronium OH (blue). Arrows represent the fundamentals of
the bare hydronium umbrella (purple) and bending (green) modes as well as that of the
water bending mode (green). Band labels refer to features in the experimental spectra of
3H-D2 and 3D-D2, respectively. The minimum energy structure of 3H, computed at the
CCSD(T)f12/aVTZ level, is presented in two orientations. A complete list of band
positions and assignments is presented in Figure 6.19. νH2O

sym and νH2O
asym refer to the

symmetric and antisymmetric stretches of the OH groups on the flanking water molecules.
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Figure 6.16 A comparison of 3H spectra (a) with harmonic spectra computed using the
PES (b) and evaluated at the CCSD(T)-F12/aVTZ (c) levels of theory shown as inverted
traces.

We begin this study by extending the previous survey of the spectrum of 3H-

Ar,17,30,31 to include the D2-tagged spectra of both the H+(H2O)3 and D+(D2O)3 clus-

ters (denoted 3H-D2 and 3D-D2, respectively), with the results presented in Fig.6.15a

and 1b. The umbrella mode of the embedded hydronium ion (a11) sharpens consider-

ably upon deuteration (b11), similar to the behaviors found in the 4H and 4D spectra

by Wolke et al.9 There are also surprises, however, not anticipated by previous the-

oretical analysis, as we discuss further below. In particular, the strong band (a8)

in the 3H spectrum, long assumed to be assigned to the antisymmetric stretch of

the bound OH groups,9 is replaced by a strong doublet (b8a and b8b) in the 3D

spectrum. In addition, both spectra display a series of transitions towards higher

energies of the dominant transitions, while strong bands (a10 and b10) appear below

the intramolecular HOH bend fundamentals for isolated H2O (Ref. 32) and H3O+
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(Ref. 33) (Fig.6.15a green arrows) that are presently unassigned. This behavior is

particularly significant as “extra" features near the bending mode have presented a

long-standing puzzle in the spectra of the n = 3-6 clusters, where they have been

associated with both the bend and the ionic H-bonded OH (IHB) modes based on

calculations at the harmonic level with and without inclusion of anharmonicity with

a perturbative (VPT2) treatment.34,35

Very recently, high level vibrational self-consistent field methods combined with

vibrational configuration interaction (VSCF/VCI) calculations have been carried out

to map the extended potential energy and dipole moment surfaces associated with the

3H system.36 These were benchmarked by comparing the spectrum computed from

these quantities, displayed in Fig. 6.17.c, with the experimental 3H-Ar spectrum,9

which is very similar to that obtained here with D2-tagging. This computational ap-

proach indeed recovered the large ( 400 cm-1) red-shifts in the H-bonded OH stretch-

ing fundamentals relative to the CCSD(T)-F12 harmonic values and indicated that,

as expected, the dominant band (a8 in Fig. 6.17.a) was primarily due to the anti-

symmetric stretch of the H-bonded OH groups. The progression of bands a5-a7 were

then attributed to combination bands of the antisymmetric stretch with various soft

modes, while the a10 feature was attributed to an exterior water bend that is strongly

coupled to the H-bonded antisymmetric stretch. Given this relatively straightforward

assignment scheme, however, the observation of a strong doublet (b8a and b8b) in

the 3D isotopologue is unexpected (Fig. 6.17.f), as anharmonic fundamentals in this

energy range typically follow a scaling of 1/1.23 or so upon deuteration.37,38 Such

mass-dependent complexities can arise, however, when modes couple as they become

close in energy (e.g., Fermi resonances39). To understand the behavior of the 3D-

D2 spectrum, we extended these calculations to 3D using the same PES and dipole

surfaces as those used for 3H, with the result presented in Fig. 6.17d. Surprisingly,

the calculated pattern is again rather simple, consistent with a dominant band aris-
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ing largely from the antisymmetric H-bonded OD (IDB) stretches, in contrast to the

dominant doublet character of the observed spectrum. We next address two possibil-

ities for this discrepancy: perturbation by the D2 tag molecules and/or some issues

with the 3-body hydronium-water-water (3-b h-w-w) potential energy surface that

was used in those VSCF/VCI calculations

Figure 6.17 D2 vibrational predissociation spectra of (a) 3H-D2 and (f) 3D-D2 with their
corresponding anharmonic calculations. Traces (b) and (e) correspond to 18-mode
VSCF/VCI calculations on an updated PES (see text), which are compared to 17- and 18-
mode calculations (d,c) using the previously reported PES. Greek symbols (αn and βn)
refer to significant features in the theoretical spectra after convolution with a standard
Gaussian with FWHM of 15 cm-1 (see Figure 6.19). View Fig.6.15 caption for
experimental peak labeling scheme.
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Because high level calculations of the vibrational quantum structure can only be

carried out on the bare protonated trimer, while the experimental results thus far

have been reported with the messenger tagging (H2, Ar and He) technique where the

tags could perturb the spectrum, we undertook a study to obtain the spectrum of

the cold, bare 3H cluster. The main experimental challenge in obtaining a tag-free

spectrum is that the binding energy of the trimer (to H+(H2O)2 + H2O) is about 7000

cm1,40 which is much higher than the <3700 cm−1 energy range of the fundamen-

tals. To observe the linear (e.g., one photon) spectrum of the cold ion, we adopted

a variation of the two-color, IR-IR multiple photon dissociation (IR2MPD) strategy

recently reported by Niedner-Schatteburg and co-workers.41 In particular, we applied

it to cryogenically cooled ions prepared in the Yale triple focusing photofragmentation

mass spectrometer, described in detail elsewhere.1 In this application, photodissoci-

ation was carried out with selective photodissociation of ions excited with a single

photon from a scanning laser h1 by two photons from a second laser fixed at h2 =

2900 cm−1 (see level diagram top of Fig. 6.18).
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Figure 6.18 Comparison of the IR2MPD spectrum of bare 3H at 100 K (b) and 20 K (c)
with 3H-D2 (d) and 3H-He (a). The level diagram of the IR2MPD scheme used to collect
the bare spectra (described in the text), where hÎ¡2=2900 cmâĂŚ1, is top left.
Temperatures indicate measurements taken from sensors mounted directly to the trap. See
Fig. 6.15 caption for labeling scheme.

The 3H spectrum is compared with that of 3H-D2 in Fig. 6.18.c and 6.18.d,

respectively, along with the He-tagged spectrum of the high energy region in Fig.

6.18.a, reproduced from ref. 42. Most importantly, although the OH stretch of the

hydronium bound to the D2 tag (a3) is strongly shifted by about 90 cm−1,43 the

positions of the dominant features from 1400 to 2000 cm−1, which correspond to the

key intramolecular bends and H-bonded OH stretches, are not significantly affected

by the D2 tag. Specifically, the features (a7-10) in the 3H-D2 and 3H spectra are at

most displaced by 24 cm−1 (a10). Interestingly, the bands in both the D2 and He-

tagged 3H spectra are narrower than those in the IR2MPD spectrum. This suggests
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that the 3H ions are not cooled uniformly in the 3D Paul trap, which is expected for

such a light ion.44 Note that the free OH bands are the same in the He-tagged and

bare 3H ion, where the disagreement is within the error of our experiment (3668 cm−1

± 4 cm−1 for both the bare 3H-He and 3H), confirming that the weakly bound He

tag does not significantly affect the spectroscopic properties of the 3H ion. It is also

evident that the umbrella mode (a11) is not well developed in the bare ion spectrum

compared to the D2 tag trace, which is consistent with this energy ( 1000 cm−1)

falling below the two-photon threshold for dissociation at h2 = 2900 cm−1 (where

1000 cm−1 + 2 x 2900 cm−1 < D0). Although it is clear that temperature is only

approximate in the current arrangement, we also obtained the spectra for bare 3H at

trap temperatures of 20 and 100 K to explore how sensitive the band pattern is to

increasing internal energy, with the 100 K results presented in Fig. 6.18.b. Like the

H+(H2O)5 case discussed earlier, the pattern is preserved, but broadens considerably

with increasing temperature. This confirms the expectation that the 3H dynamics

occur over a deep minimum in the potential surface at the equilibrium geometry. This

is in contrast, for example, to the strongly temperature dependent spectrum of the

I−(H2O)2 ion, in which the spectra change markedly when the water dimer moiety

breaks apart above 125 K.45

Application of the IR-IR method to the 3D isotopologue is more challenging be-

cause of the lower energies associated with the key ion-bound OD stretches and in-

tramolecular bends. Nonetheless, we were able to obtain a sufficiently resolved spec-

trum, to establish that the basic doublet structure (b8a and b8b) is intact in the bare

3D ion. This, together with the minimal perturbation of the key bands in 3H by the

D2 tag, indicates that the discrepancy between the 3D spectrum calculated by ex-

tending the previous methods36 (Fig. 6.17.d) and the experimental 3D-D2 spectrum

(Fig. 6.17.f) stems from either the potential surface or the VCI method itself rather

than from tag perturbations. We next turn to the sensitivity of the calculated band
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pattern to the details of the potential energy and dipole surfaces. The earlier PES

was a simple fit to several hundred ab initio 3-b energies. Subsequently, we developed

a new fit to 52067 CCSD(T)-F12/aVDZ ab initio 3-b electronic energies and repeated

the VCI calculations with the results displayed in Fig. 6.17.b and 2e for 3H and 3D,

respectively. Note that, while the character of the 3H spectrum is similar with the

new PES, it now recovers the strong doublet in the 3D spectrum.9

The agreement with both isotopologues provides compelling evidence that subtle

details in the PES are in play in this system, and indeed this raises the important

question of what types of motions are actually involved in the observed bands. Of par-

ticular importance in this regard are, of course, the strongest bands in the fingerprint

region, as well as the features appearing near the intramolecular bends. The latter

are of particular interest as the lower energy members (a10 and b10) are suppressed

in the 3D-D2 spectrum. The VCI calculations with the new PES provide an unprece-

dented picture of the nature of the various absorptions, as it yields a description of

the various vibrational eigenstates, Ψν(E), as superpositions in a normal mode basis:

Ψν(E) =
∑
i

C
(ν)
i

3N−6∏
j=1

ψ(kj)(Qj) (6.2)

where ψ(kj)(Qj) is the normal mode basis for mode Qj with kj excitation, C
(ν)
i is the

coefficients with i for index of tuples (k1, k2, · · · , k3N−6).

The results of this decomposition are included in Figure 6.19, which highlights

the contributions to the strong absorptions. It is clear at a glance that the bands

calculated to carry significant oscillator strength in the region nominally associated

with the ion-bound OH groups are heavily mixed with a variety of background dark

states. To emphasize the extent of this mixing, we use a participation number, Pν ,

defined as:

Pν =
1∑

i |C
(ν)
i |4

(6.3)

which ranges from 1.0 for a pure state at the harmonic level and increases as the
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state becomes more dilute. Thus, most of the contributing vibrations in key energy

regions close to the intramolecular bends involve complex motions distributed around

the cluster. These states largely involve combination modes that act to break the H-

bond such as rotation of the H3O
+ ion both in and out of the O-O-O atom plane.

In particular, the a8 feature is still dominated by the antisymmetric stretch, but the

weight of the zero-order antisymmetric stretch state is only 0.25 for the most intense

transition in this band. In both b8a and b8b the antisymmetric stretch is a “bright"

contributor, but in b8a the frustrated hydronium rotation and perturbed hydronium

bend mix with this state. In b8b, the other relevant modes are the perturbed hy-

dronium wag and umbrella modes. Note that, although the 3H spectrum appears

simpler, the strongest band (a8), is also calculated to result from a congested series of

transitions to similarly mixed levels, as indicated in Figure 6.19. An important con-

sequence of this analysis is that low order treatments commonly used by perturbation

approaches (such as VPT2 as implemented in Gaussian09), will not even qualitatively

reproduce the essential physics controlling the vibrational band pattern.
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Figure 6.19 Band assignments for tagged and bare 3H and 3D, compared to 18 mode
VSCF/VCI calculations of the bare protonated water trimer. Note that IH(D)B refers to
the hydrogen bonded OH(D) stretches
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6.3.2 Conclusion

Since the detailed descriptions of the various states are rather complex, it is useful

to step back and consider the situation from a more general perspective. The main

conclusion is that, as the potential surface enables large amplitude motion along the

H-bonded stretching degree of freedom, excitation of this motion necessarily couples

this mode to bending distortions of both the H3O+ and flanking H2O molecules. Such

coupling effectively provides a detailed, molecular level picture of friction associated

with translocation of an excess proton. One aspect of this that has caused confusion

in the literature, for example, is the origin of âĂĲextraâĂİ features that occur in the

region of the intramolecular bends in the n=3-5 clusters,8, as well as the unusually

high energy of the bending mode of the flanking water molecules in the Zundel ion,

H+(H2O)2. These features are most pronounced in the light isotopologues, and the

VCI calculation of the 3H spectrum indicates that the a10 band, which falls about

60 cm1 below the nominal bend fundamental of an isolated water molecule, is traced

to a mixed state involving the bound OH stretches and the bends of the flanking

water molecules. This effect appears to be amplified when the bound OH stretching

frequency approaches the energy of the bend, and points to a mechanism for the

activation of similar bands in the 4H and 5H spectra that have caused considerable

controversy5,46–48 in not only the assignments of the bands, but indeed the structures

of the clusters. With this new understanding revealed through careful theoretical

analysis integrated with experiment, a fruitful direction for further study of these

systems will be to experimentally establish the character of the various bands. Ex-

tensions of the study to include measurements of the spectroscopic behavior of mixed

isotopomers as well as the perturbations caused by increasingly strongly bound tag

molecules12 appear likely avenues to accomplish this demanding task.
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6.4 Deconstructing Prominent Bands in the Tera-
hertz Spectra of H7O

+
3 and H9O

+
4 : Intermolecular

Modes in Eigen Clusters

6.4.1 Introduction

Recent ultrafast, infrared (IR) spectroscopic studies of excess protons in water

have provided new insights into the nature of aqueous proton transfer, in general,

and the role of Zundel- vs. Eigen-like motifs, particular.1,2 The spectral diffusion

associated with the characteristic IR absorptions of these local hydration motifs has

been disentangled by gas-phase vibrational action spectroscopy on cold protonated

water clusters H+(H2O)n, which directly correlates local distortions of the hydrogen-

bonded network with vibrational frequencies in the mid- and near IR spectral regions

as a function of the displacement of the transferring proton.3 However, the character-

istic spectral signatures of H+(H2O)n clusters in the far-IR or terahertz region (<600

cm-1), namely intermolecular hydrogen-bond stretching and deformation modes4–7

remain largely ill-characterized. IR photodissociation (IRPD) spectra in this spectral

region, which require the intense and widely tunable radiation from an IR free elec-

tron laser, have only been reported for some of the larger (n>5) clusters,8–10 but not

for the prototypical Eigen ion, H3O
+(H2O)3 itself. Such spectra are reported here for

the first time. The IRPD spectra of small protonated water clusters,3,8,10–20 especially

the one for H9O
+

4 , have been the subject of numerous theoretical analyses,3,10,17 21-

24 using VPT2 theory and also “on-the-fly" ab initio molecular dynamics simulations

of the IR spectra (both using DFT or MP2 electronic energies) and with conflicting

conclusions about whether the experimental spectra are for the Eigen12,21 or Zundel22

isomers. Recently, we reported many-body representations of the potential and dipole

moment surfaces that are suitable for a variety of post-harmonic analyses.13,23,24 The

representation for the potential is based on the CCSD(T)-level of theory, currently

the “gold standard" method. Details of the many-body representations of the poten-
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tial energy and dipole moment surfaces and validation are given elsewhere.13,24 They

were recently used in coupled-mode VSCF/VCI quantum calculations, employing the

exact Watson Hamiltonian, of the IR spectra of H7O
+

3 and H9O
+

4 to unambiguously

confirm the original assignment11 that these ions exhibit Eigen-type (hydronium ion)

cores (see Figure 6.20), i.e., they correspond to H3O
+(H2O)2 (3E) and H3O

+(H2O)3

(4E), respectively.

6.4.2 Computational Details

The IR spectra of H7O
+

3 and H9O
+

4 in the region 0 to 1200 cm−1 were calculated

using a quasiclassical molecular dynamics (QCMD) approach to obtain the dipole-

dipole correlation function, the Fourier transform of which provides the IR spectrum.

For both H7O
+

3 and H9O
+

4 , 100 trajectories were run for the QCMD spectra. Each

trajectory was integrated for 12 ps, and the step size is 0.06 fs. We used a modified

normal mode sampling to prepare the initial conditions of the trajectories. Zero-

point energy was assigned to all the intermolecular modes as well as the umbrella

mode of the H3O
+, in both cases. We didn’t put any energy in other intramolecular

modes. The total angular momentum was set to zero. Then the trajectories were

propagated using the velocity-Verlet algorithm. The dipole moment was calculated

at each step using the instantaneous configuration, and the dipole correlation function

was calculated as C(t) = 〈µ(t) ·µ(0)〉, where the brackets indicate an average over 100

trajectories of the same total energy. Then C(t) was Fourier transformed to obtain

the IR spectra. Note these are not thermal spectra, but microcanonical ones. More

details of driven molecular dynamics are given in supporting information in ref. ?

The QCMD approach we take is a minor modification of the procedure described

by Van-Oanh et al.,25 where zero-point energy is given initially to each normal mode

of a molecule. This approach is widely used in reaction dynamics, where it is referred

to as the quasiclassical approach and so we use that terminology here. It is well-known
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that this approach suffers from “zero-point leak", because it is actually an approximate

semi-classical quantization procedure and thus mode-mode energy transfer can occur.

(This “leak" would in principle be eliminated if exact semi-classical quantization of the

zero-point state was done.) The energy transfer from high-frequency intramolecular

modes to low-frequency intermolecular ones can result in rapid dissociation of the

molecule/complex. To mitigate this rapid dissociation, we apply the approximate

quasiclassical quantization to intermolecular modes only and give zero energy initially

to the intramolecular modes.

6.4.3 Results and Discussion

Here, we present the IRPD spectra of the cryogenically-cooled, D2-tagged proto-

nated water trimer, H+(H2O)3-D2, denoted as 3H-D2, and tetramer, H+(H2O)4-D2

(4H-D2), in the spectral region 210-2200 cm−1. Tagging is required to probe the lin-

ear absorption regime and D2 was chosen to mitigate well-documented tagging issues.

We conclusively assign the spectral features to hydrogen-bond stretching as well as

water wagging modes based on anharmonic calculations using the high-level poten-

tial and dipole moment surfaces mentioned above. These calculations include the

previous VSCF/VCI ones in the spectral range above 1000 cm−1 and quasiclassical

molecular dynamics (QCMD) calculations, described below, for the spectral range

below 1000 cm−1. Unfortunately, in this range the quantum approach becomes pro-

hibitively difficult, as the large-amplitude, torsional motion of the flanking waters is

poorly described by the Watson Hamiltonian. Classical MD simulations of IR spectra

for low frequency modes are expected to be a substantial improvement over double

harmonic oscillator (DHO) ones, as has been amply demonstrated in the literature,

and also here. Addition of zero-point energy may also improve MD spectra24,25 and

so that is done here, but only for the intermolecular modes. This approach is essen-

tially the well-known quasiclassical one, used in reaction dynamics calculations and
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so we used the term “quasiclassical" molecular dynamics above. Some analysis of

the QCMD spectra is done using Driven Molecular Dynamics (DMD), which is the

mechanical analog of the classical interaction of an external oscillating electric field

with the molecular dipole. Finally, rigorous diffusion Monte Carlo calculations are

done for the zero-point wavefunctions for the trimer and tetramer. These are shown,

without comment, in Figure 6.20.

Figure 6.20 Isosurface plots of the ground vibrational wavefunctions of H+(H2O)3 (3E)
and H+(H2O)4 (4E) obtained from diffusion Monte Carlo calculations. Red represents the
O nuclei and green the H nuclei.



131

Figure 6.21 Comparison of the calculated (a) double-harmonic (DHO), (b) QCMD and
(c) VSCF/VCI vibrational spectra of 3E to the (d) experimental IRPD spectrum of 3H-D2
in the spectral region from 0 to 2200 cm−1. See Figure 6.22 for band positions and
assignments. The calculated DHO and VSCF/VCI spectra were convoluted with Gaussian
line shape functions with a fwhm width of 10 and 30 cm−1, respectively
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Figure 6.22 Experimental IRPD band positions (in cm1) of 3H-D2, computed harmonic
(HO), VSCF/VCI and QCMD vibrational wavenumbers (in cm1) of 3E and assignments.

The experimental IRPD spectrum of 3H-D2 in the spectral range 210 to 2200 cm−1

is compared to the DHO, QCMD spectra and previous VSCF/VCI calculations above

900 cm−1 of (bare) 3E in Figure 6.21. Experimental band positions and assignments,

based on calculations, are listed in Figure 6.22. The IRPD spectrum reveals (at least)

ten features, labeled with a6 to a15 (see ref.13 for bands a1 to a5). Bands a6-a11 agree

satisfactorily with the previously published data for 3H-D2 by Duong et al..13 Minor

discrepancies with respect to relative intensities are observed for a6 and the low-

energy shoulder of a10, which may be attributed to the slightly different conditions

in the two experiments. Features a12 to a15 have not been previously reported and,

in particular, the three prominent bands at 508 cm−1 (a13), 344 cm−1 (a14) and 234

cm−1 (a15) correspond to the first experimental observation of transitions involving

the intermolecular water modes in the protonated water trimer.



133

Figure 6.23 Total energy absorbed vs time for H7O3+ at the indicated driving frequencies

As usual, we turn to theory to assign/interpret experiment, with a specific focus

on the new experimental bands. First, consider the DHO spectrum, which does have

a single intense band and a higher-energy doublet in the range of experimental bands

a15 and a14. However, there are other strong bands in the DHO spectrum that are

not present in experiment and vice versa. Clearly then, DHO is not reliable, or at

least not globally reliable. By contrast, the QCMD spectra are in good agreement

with experiment over the expected range of applicability of these spectra and beyond

that range the VSCF/VCI spectrum continues the good agreement with experiment.

The QCMD spectra was analyzed using DMD and the results, are that for the bands

around 241 and 355 cm−1 the energy absorption continues monotonically, as seen in

Fig. 6.23. This is an indication from DMD that these are intense bands, in agreement

with the QCMD results (and also the DHO ones) and experiment. By contrast, the

energy absorbed stops for the two intense DHO bands at 1051 and 1240 cm−1 (see

Figure 6.22), indicating that these are in fact weak absorbers. This agrees with the
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QCMD spectrum and also experiment; however, not with the DHO results. Finally,

we note that there are no DHO peaks in the spectral range 1750-2200 cm−1, in contrast

to experimental and VSCF/VCI spectra.

Figure 6.24 Comparison of the calculated (a) double-harmonic (DHO), (b) QCMD and
(c) VSCF/VCI vibrational spectra of 4E to the (d) experimental IRPD spectrum of 4H-D2
in the spectral region from 0 to 2200 cm−1. See Figure 6.25 for band positions and
assignments. The calculated DHO and VSCF/VCI spectra were convoluted with Gaussian
line shape functions with a fwhm width of 10 and 30 cm−1, respectively



135

Figure 6.25 Experimental IRPD band positions (in cm1) of 4H-D2, computed harmonic
(HO), VSCF/VCI and QCMD vibrational wavenumbers (in cm1) of 4E and assignments

The experimental IRPD spectrum of 4H-D2 in the spectral range from 210 to

2200 cm−1 is compared to the DHO and QCMD spectra of bare 4E in Figure 6.24.

Band positions and assignments are listed in Figure 6.25. The IRPD spectrum shows

eight bands (a10’-a17’) in total, with two characteristic and intense IR bands and a

weaker feature in the far IR region at 316 cm−1 (a16’), 236 cm−1 (a17’) and 503 cm−1

(a15’). Bands a10’-a14’ agree satisfactorily with the previously reported spectrum

of 4H-D2 by Wolke et al..3 Minor discrepancies with respect to band maxima (-10

cm−1) of a10’ and a11’ are observed and due to slightly different band profiles. We

first discuss the assignments of the prominent experimental bands labeled a17’ and

a16’. By examining trajectories that correspond to these, the intensity of band a17’

is due to mainly “wagging" motion of the flanking H2O molecules and for band a16’

it is the embedded H3O
+ hydrogen bond stretching (or “H3O

+ rattle") mode that is

the dominant motion. In both cases there is evidently a large change in the dipole

moment. This is worth investigating in detail and this is done in Figure 6.26, where

the components of the full dipole moment are plotted along with the component

from the above many-body representation of the dipole moment, as a function of the

corresponding intermolecular normal mode corresponding closest to the quasiclassical
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motion. Even though this normal mode may not be as accurate a description of the

QC motion, it suffices for this qualitative explanation of the intensity. In the upper

panel, for the wagging motion, we see that the sum of the 1-b water+water dipole

tracks the full dipole nearly exactly as a function of Q. The magnitude is less but

the derivative is nearly identical and so we are safe in assigning the intensity to the

change in the sum of the water monomer dipole moments. The lower panel shows

a more complex picture for the dipole moment for band a16’; however, it is clear

that change in the 1-body hydronium dipole plus the 2-b hydronium water dipole

moment are the main contributors to the intensity. This picture is not as obvious as

the one for the wagging of the flanking water; however, it results from coupling of

the hydronium and the water intermolecular modes, in this case the H3O
+ hydrogen

bond stretch mode.
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Figure 6.26 Normal mode dependence of the major component of the dipole moment for
bands a15 and a14 of 3E. See text for details.

Comparison of the intense bands below 800 cm−1 with those observed in-between

800 and 2100 cm−1 in the IRPD spectra of 3H-D2 and 4H-D2 reveals that the lower

frequency bands are considerably narrower, exhibiting fwhm widths of 15 cm−1,

similar (a) to the bands found in the free O-H stretching region as well as (b) to the
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corresponding bands in the spectra of 5H-D2 and 6H-H2. The QCMD results predict

broader band profiles for a13/a14 (3E) and a16’/a17’ (4E), but these bands from

theory do show some sensitivity to the energy of the trajectories; this is typical of MD

approaches. We find no evidence that this narrowness originates from multiphoton

absorption effects. We employed modest laser pulse energies (<1 mJ below 500 cm−1)

and estimates of the dissociation limit, when zero-point and internal energies are

considered, support that single photon photodissociation is feasible. Tagging effects

should also not alter the band widths dramatically, but probably do contribute to the

deviations regarding the band positions and relative intensities. However, because

the spectra in the THz region are highly anharmonic and coupled, the numerical

values of the shifts should not be taken as accurate. Summarizing, the intermolecular

stretching and wagging frequencies appear surprisingly insensitive to the inherent

floppiness of these hydrogen-bonded ions.

Figure 6.27 Evolution of the band positions (in cm−1) of the IR-active hydrogen-bond
stretching vibrations associated with the H3O

+ core in the experimental IR spectra of
protonated water clusters H+(H2O)n with cluster size n up to the condensed phase limit.
a. Ref,10 b. Ref,8 c. Ref,9 d. Ref7

Finally, it is of interest to discuss, how the present values for the IR-active low-
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frequency modes compare to those in larger protonated water clusters and in solution

(see Figure 6.27). The Eigen ion 4E exhibits twelve vibrational normal modes in

the terahertz spectral region (<600 cm−1), which correspond to frustrated transla-

tions and rotations of the flanking water molecules. These are, in order of decreasing

frequency, the three hydrogen bond stretching, three water wagging, three water rock-

ing and three hydrogen bond deformation (bending) modes. Each set consists of a

symmetric and a doubly degenerate antisymmetric combination, of which only the

antisymmetric hydrogen bond stretching and water wagging modes carry significant

IR intensity. These are observed at 316 and 236 cm−1, respectively, in the spectrum

of 4H-D2. Removal of one of the flanking water leads to 3E with only single antisym-

metric stretching and wagging modes (3H-D2: 344 cm−1 and 234 cm−1, respectively).

While it proves difficult to unambiguously identify the wagging modes of the flank-

ing water molecules in larger water clusters, due to their delocalized nature over an

increased number of water molecules, the respective hydrogen-bond stretching modes

involving the embedded H3O
+ can be traced all the way to the solution phase data

(see Figure 6.27). The asymmetrically solvated H3O
+ in 5E and 6E results in a

splitting of the IR-active (antisymmetric) hydrogen bond stretches, one that is blue-

shifted in the spectra of 5H-D2 (405 cm−1)10 and 6H-D2 (373 cm−1) and another that

is red-shifted (5H-D2: 298 cm−1, 6H-D2: 279 cm−1), with respect to their position

in the 4H-D2 spectrum. This yields mean frequencies for these modes of 351 cm−1

(n=5) and 326 cm−1 (n=6). At n=21, H3O
+ is more symmetrically solvated again

and the 21H-D2 spectrum9 features a single, prominent broad IR-active band at 341

cm−1, very close to the solution value of 340 cm−1. Summarizing, the mean frequen-

cies of the IR-active hydrogen-bond stretching modes involving the hydronium core

in protonated water clusters lie in a narrow spectral window ( 310-360 cm−1) and

seem to have converged close to the bulk value of 340 cm−1 (n=∞) already for n=21,

suggesting a rather localized nature of these modes.
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6.5 Revisit of Vibrational Spectra of H7O
+

3 and H9O
+

4 :
Classical, Thermostatted Ring Polymer, and Quan-
tum VSCF/VCI Calculations

6.5.1 Introduction

The central importance of the hydrated proton in chemistry and biology1–4 and

proton transport5,6 has stimulated extensive experimental and theoretical research,

with much of the recent experimental work focused on 1d and 2d IR spectroscopy

of the protonated water clusters7–11 and the excess proton in liquid water, respec-

tively.4,12–15 There is currently much interest (and perhaps some controversy) about

the dominance of one of two structural motifs of the hydrated proton, namely the Zun-

del cation H5O
+

2 , with the proton located roughly equidistant between two flanking

water molecules,16,17 and the Eigen cation H9O
+

4 , with hydronium roughly equally

shared by three solvated water molecules.18 Thus, small protonated water clusters

that conform to the Zundel or Eigen structure are important models that help un-

derstand the structural, dynamical property and infrared spectroscopy of hydrated

proton.7–11,19–29

The vibrational spectra of cold protonated water clusters over a large size-range

have been investigated both experimentally and theoretically with the aim of iden-

tifying signatures of Zundel or Eigen motifs.8–11,23–25,28,30,31 Post-harmonic theoret-

ical methods to calculate the vibrational spectra of protonated water cluster in-

clude vibrational second order perturbation theory (VPT2),11,31,32 quasi-degenerate

VPT2 theory,33 vibrational self-consistent field/virtual state configuration interac-

tion (VSCF/VCI)28,34–38 and multiconfiguration time-dependent Hartree (MCTDH)

method.39–41 These quantum methods provide predictions of vibrational states and

the corresponding vibrational spectra but come with high computational cost, espe-

cially the VSCF/VCI and MCTDH ones. The MCTDH method, which was suc-

cessfully applied to reproduce and provide an interpretation of the spectrum of



144

H+(H2O)2 40 and hopefully can be applied to larger clusters such as H7O
+

3 and H9O
+

4 .

The VPT2 method is comparatively cheaper for vibrational analysis and it has been

applied to the spectrum calculation of different sizes of protonated water cluster.10,11,31

Though many success have been achieved using this method, it cannot fully deal with

a very anharmonic system and thus cannot provide explanations to some important

regions in spectra.10,11 Recent VSCF/VCI calculations of the IR spectra of H7O
+

3

and H9O
+

4 , based on ab initio many-body potential and dipole moment surfaces,

are in good agreement with experiment in the spectral range 1000-4000 cm−1.28,38,42

These are computationally expensive calculations; however, the large degree of mode

coupling is captured by them.

In addition to quantum approaches, which are computationally intensive, molecu-

lar dynamics (MD) is an efficient and very general approach to obtain the vibrational

spectra of protonated water clusters, especially large ones. These simulations can

be done “on the fly”, using an efficient electronic structure theory, such as density

functional theory (DFT).43 This AIMD approach has been used in several studies of

the IR spectra of a variety of protonated water clusters.31,44 However, because the

MD approach is classical, it misses a number of important quantum effects such as

zero-point energy and tunneling. Using it with a low-level electronic structure theory,

such as DFT, can also be problematic, depending on the application.

Situated between classical MD and quantum approaches are ring polymer ap-

proaches. These approaches aim to include some quantum effects, notably zero-point

energy, into dynamics calculations, however, quantum coherence is not described.

The two major versions of the approach are centroid molecular dynamics (CMD)21,45

and ring polymer molecular dynamics (RPMD).46,47 Both methods originate from the

imaginary time path integral formalism of quantum statistical mechanics. CMD is



145

classical MD on a potential of the mean force generated by the thermal fluctuations

of ring polymer around its centroid, whereas RPMD is classical MD in the extended

phase space of the ring polymer. These two methods have been successfully used to

calculate short-time dynamical correlation functions for anharmonic potentials. How-

ever, when using RPMD or CMD to simulate the vibrational IR spectra, there can

be unphysical results.48 RPMD suffers from spurious peaks in the spectrum when the

frequency of a physical vibration is in resonance with internal modes of the ring poly-

mer.49 CMD does not have the resonance problem but the high-frequency stretching

modes can be coupled with low-frequency angular modes to produce an exaggerated

downshift and line broadening; this “curvature" effect is temperature dependent.

To remove the spurious resonances in RPMD calculations, an internal-mode ther-

mostat was added to the dynamics and this is termed thermostatted ring polymer

molecular dynamics (TRPMD).50,51 Two thermostats have been used with RPMD,

with the latest one introduced in 2018.51 These are denoted as path-integral Langevin

equation (PILE) and generalized Langevin equation (GLE). Both are options in the

i-PI software,52 and both are used in the TRPMD calculations here. A discussion of

the pluses and minuses of these thermostats is given in ref. 51; however, we note that

the GLE thermostat is designed to be more accurate for high-frequency modes but

may be less accurate for low-frequency ones than the PILE thermostat.

The TRPMD method has been applied to the IR spectrum of the protonated

water dimer, H5O
+

2 ,50,51 using an accurate ab initio, full-dimensional potential energy

(PES) and dipole moment (DMS) surfaces.53 This cluster is not only the smallest

protonated cluster that displays the Zundel motif, it is exactly the Zundel, because

the proton is shared equally and symmetrically between the two water monomers.

Thus, owing to the central importance of this cluster, its experimental spectrum came

under intense study. Space does not permit a detailed review of this history; however,
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it is important to note that the tagged spectrum of Johnson and co-workers for the

cold cluster and theory were finally in good accord.54 And as noted above, excellent

agreement between theory (MCTDH using the ab initio PES and DMS mentioned

above) and experiment was achieved, including a doublet feature at around 1000

cm−1.40 This benchmark calculation enables testing of approximate methods and in

particular it was used to test the accuracy of the original RPMD approach55 and more

recently the TRPMD approach.50 The comparisons indicate some limitations of the

ring polymer approach. Indeed as stated in ref. 50,“Next, to illustrate the limitations

of using any method like RPMD, CMD, or TRPMD to simulate gas phase vibrational

spectra, we have considered a significantly more complex test case: the Zundel cation

H5O
+

2 ...". For more details, the interested reader is referred to that paper; however,

we note that the this is a challenging problem owing to the large amplitude motion

of both the shared proton and the flanking water molecules.

VSCF/VCI calculations (using the rectilinear normal mode Watson Hamilto-

nian,56) of the IR spectra of H7O
+

3 and H9O
+

4 have been reported using a many-

body PES and DMS,28,38,42 and comparisons with experiment show good agreement.

These clusters appear much more challenging for theory than H5O
+

2 owing to in-

creasing number of vibrational modes. In fact, the VSCF/VCI calculations used a

reduced number of coupled modes (typically 15) and groups of modes. This reduces

the computational cost of VSCF/VCI calculation but captures important coupling

behavior between essential vibration motions.

The experimental spectra of these clusters (at roughly 20 K) display intense,

complex bands that involve the bright proton (hydronium) stretch modes. These

bands are of particular interest in that they appear downshifted by several hundred

wavenumbers from the double-harmonic prediction of the intense proton (hydronium)

stretch band. In addition, there are bands with lower frequencies that are close to the

proton stretch of the Zundel isomers of the H9O
+

4 cluster. This has resulted in a lively
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discussion in the literature about the possible presence of this isomer in experiment.

This issue has largely been settled by recent theoretical and experimental work28,38,42

and in particular very recent joint experimental/theoretical work on HD8O
+

4 .57

From the above work, it is clear that theory continues to play an important role in

helping interpret complex experimental spectra. As the systems become larger and for

spectroscopy of the condensed phase, where quantum calculations become increasingly

difficult to perform, methods such as the classical and ring polymer ones may become

the only feasible methods to apply. Thus, it is important to continue to test these

methods. We do that here for the H7O
+

3 and H9O
+

4 Eigen clusters. Specifically, we

performed TRPMD simulations of the IR spectra of the H7O
+

3 and H9O
+

4 clusters

at 100 K and compare the results with previous VSCF/VCI calculations at 0 K and

the experimental spectra of cold clusters. TRPMD calculations at 20 K are too

computationally intensive for us to perform and even the ones presented here for 100

K were cpu intensive but we were able to perform them on our computer cluster.

(Details of the computational effort for all the calculations are given below.)

6.5.2 Classical MD and TRPMD IR Spectra Calculation

Classical molecular dynamics (MD) calculations were performed for H7O
+

3 and

H9O
+

4 (Eigen) at 20 K and 100 K using the i-PI software.52 The Langevin thermo-

stat was used in the NVT calculations and for each cluster 10 trajectories were per-

formed. Each trajectory was propagated for 100 picoseconds and the dipole moment

was recorded every 0.25 femtoseconds. As to the TRPMD calculations, the temper-

ature was set as 100 K, since a 20-K calculation requires more beads (replicas) and

is too computationally intensive. A path integral molecular dynamics (PIMD) calcu-

lation was first run for 50-picoseconds to obtain the equilibrium structures that were

used as the starting structures for the TRPMD calculations. Two thermostats were

used in TRPMD simulations. These are the path integral Langevin equation (PILE)
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thermostat50and Generalized Langevin equation (GLE) thermostat.51 For each clus-

ter with one chosen thermostat, 8 independent trajectories were run with the initial

structure from previous PIMD simulation. Each TRPMD trajectory was run for 50

picoseconds with 64 beads. As to the dipole moment, we recorded the dipole moment

of each bead every 0.25 femtoseconds again and the value for the dipole moment at

each step is:

µµµ =
1

n

n∑
i=1

µµµi (6.4)

where i indicates the ith replica (bead) of the ring polymer.

The IR absorption coefficient α(ω) is obtained as usual (see e.g.,48) by

α(ω) =
πω

3~cV n(ω)ε0
(1− e−β~ω)Iµµ(ω)

∝ ω(1− e−β~ω)Iµµ(ω),
(6.5)

where Iµµ(ω) is the Fourier transform of the dipole autocorrelation function:

Iµµ(ω) =

∫
< µµµ(0) · µµµ(t) > e−iωtdt. (6.6)

For simplicity we calculated the right hand side of the lower equation for α(ω) above

and do not report absolute absorption intensities.

6.5.3 VSCF/VCI and Quasi-classical MD IR Spectra Calcula-
tion

The VSCF/VCI spectra of H7O
+

3 and H9O
+

4 (Eigen)28,42 were calculated using

MULTIMODE software.58 Specifically for H7O
+

3 , 18 normal modes (above 350 cm−1)

were selected and they were coupled using a 4-mode representation of the potential.

The excitation space in the VCI calculation consists of single, double, triple and

quadruple excitations. The Hamiltonian matrix is of the order of 150,000 and was

diagonalized using a block-Davidson method. As to H9O
+

4 , we carried out 15-mode

calculation using a 4-mode representation of the potential and the order of the Hamil-

tonian matrix was roughly 140,000. For water stretches, we did a separate calculation
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that included all water bends and stretches with also 4-mode representation of the

potential. More details of these VSCF/VCI calculations are given in our papers.28,42

The calculation of the IR spectrum of H7O
+

3 and H9O
+

4 in the range 0 to 1200

cm−1 is problematic for the Watson Hamiltonian,56 which is used in MULTIMODE,

because the large amplitude, torsional motion of the flanking waters cannot be ac-

curately described by the rectilinear normal modes used in this Hamiltonian. These

modes were not included in the published VSCF/VCI calculations. Instead, we con-

ducted quasiclassical molecular dynamics (QCMD) simulations of the spectra in this

range with 100 independent trajectories for each molecule. Each trajectory was run

for 12 ps and the step size of 0.06 fs. The zero-point energy was assigned to all in-

termolecular modes as well as the umbrella mode of H3O
+ and we did not put any

energy in other intramolecular modes. The dipole correlation function was then calcu-

lated by averaging over 100 trajectories. After Fourier transformation, the IR spectra

of H7O
+

3 and H9O
+

4 in the low-frequency region was obtained. These calculations

have been reported in a recent experiment/theory paper30 and more details are given

in that paper. Also, we note that the QCMD approach is the same as the original

“semiclassically prepared molecular dynamics" approach59 which we renamed to the

QCMD approach.60

Before presenting results, we comment on the computational effort for the MD,

TRPMD and VSCF/VCI calculations using the same PES/DMS and the cluster node

(Intelr Xeonr CPU E5-2630 v3 @ 2.40 GHz Base Clock Frequency). For H9O
+

4 the

MD calculation for a 100-picosecond trajectory took roughly 35 cpu hours using two

cores on a single node where one core is used for i-PI solver and another is for the

client to evaluate potential and forces. For the TRPMD calculation, a 50-picosecond

trajectory with 64 beads, took over 240 cpu hours using 16 cores of a single computer

node (one for i-PI solver and 15 for potential/force calculations). Even with the

parallel processing feature of the i-PI software to evaluate the potential and forces of
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each bead, the 64 bead TRPMD calculation is still much more expensive than the

classical MD one. The VSCF/VCI calculations with 15 modes coupled took roughly

150 cpu hours using 8 cores of a single node. This included the time to generate

all the n-mode grids, n=1,4 and to set up and diagonalize the Hamiltonian matrix.

Clearly, Both TRPMD and VSCF/VCI require more computational cost than the

classical MD calculations.

6.5.4 Results and Discussion

In the following sub-sections we present the calculated and experimental IR spec-

tra of H7O
+

3 and H9O
+

4 (Eigen isomer). We also present the distributions of the

hydronium O-H bond lengths as well as the O-O distance where one O refers to the

hydronium core. These are used to aid in the interpretation of the centrally important

intense hydronium stretch band seen in the IR spectra of these clusters.

To begin, we show the minimum energy structures of these clusters in Figure 6.28.

The H7O
+

3 structure can be described as a distorted hydronium core hydrated by

two water molecules. The lowest energy isomer of H9O
+

4 , the Eigen isomer, has the

hydronium equally shared by three water molecules.

H7O3
+ H9O4

+,	Eigen

Figure 6.28 Global minimum structure of H7O
+

3 and H9O
+

4 ( Eigen)
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1. H7O
+

3

The calculated and experimental spectra of H7O
+

3 in the range of 0-4000 cm−1

are shown in Figure 6.29. Consider first the MD spectrum at 20 K and the double-

harmonic stick spectrum shown in Figure.2.a). The double-harmonic one is a 0 K spec-

trum obtained in the usual harmonic approximations and the frequencies/intensities

were reported in tables in ref. 61. As expected, there is good agreement between the

MD and double-harmonic spectra, since at such low temperature, classical motion

is confined to the region near the global minimum structure. The large sticks and

MD bands at around 2600 cm−1 correspond to the signature hydrated hydronium

proton stretches. The harmonic frequencies at 2520 cm−1 and 2688 cm−1 are the

asymmetric and symmetric O-H stretches of the hydronium. The free hydronium

O-H stretch is at 3839 cm−1 and is of lower intensity. At the higher temperature

of 100 K, the calculated classical MD spectrum shows broader bands, especially for

the hydronium stretches. However, the central peaks of different bands remain close

to the 20 K bands. A quick comparison with the experimental spectrum,42 shows a

500-600 cm−1 down-shift of the hydronium stretches and 100-200 cm−1 down-shift for

water stretches. Clearly, the MD simulations do not capture these large down-shifts.

The TRPMD spectra with indicated thermostats are similar in the water stretches

region, at around 3750 cm−1, which is downshifted by roughly 100-200 cm−1 relative

to the harmonic frequencies and are in good agreement with the experimental band

positions. The success of TRPMD in simulating the water stretches has been previ-

ously noted.62 As to the hydronium stretches, there is a 200-300 cm−1 downshift in

the TRPMD spectrum using generalized Langevin equation (GLE) compared with

the MD spectrum. However, this hydronium stretch band is still ∼300 cm−1 higher

than experiment. Also, the TRPMD bands are broad, even at 100 K. Using the GLE

thermostat does produce a narrower band than using the PILE one, as it was intended

to, and does resolve the two hydronium shared O-H stretch bands but with the bands
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at around 3750 cm−1 not resolved. This general issue of thermostat broadening has

been discussed in detail by the developers of the methods and the reader is referred

to literature for more details and discussion.51,62

Next, consider the VSCF/VCI spectrum, shown in the range 1200-4000 cm−1.42

As seen, there is good agreement with experiment with respect to band positions and

band fine structure. Both VSCF/VCI and experiment spectra predict the intense

peak at around 1900 cm−1 and the hydronium stretches contribute most to this sig-

nature band. As to other less intense bands at around 1950-2500 cm−1, according

to VSCF/VCI analyses, the hydronium asymmetric and symmetric stretches have

strong coupling with different combination bands. Because of the highly mixing fea-

ture, those combination bands borrow intensity from hydronium stretches and show

large infrared intensity.42

 0  200  400  600  800  1000  1200  1400

0

a) MD, 20 K

e) QCMD

g) Expt(1)

c) TRPMD-GLE, 100 K

b) MD, 100 K

d) TRPMD-PILE,100 K

f) VSCF/VCI

 1500  2000  2500  3000  3500  4000

h) Expt(2)

 0  500  1000  1500  2000  2500  3000  3500  40000 500 1000 1500 2000 2500 3000 3500 4000

Energy (cm-1)

Figure 6.29 Overview of the IR spectrum of H7O
+

3 using the indicated methods. The
stick spectrum is from a standard double-harmonic calculation. (1) reference 30 (2)
reference 42
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Figure 6.29 also shows the spectra in the far-infrared region, 0-1200 cm−1. The

experimental spectrum has recently been reported together with quasi-classical molec-

ular dynamics simulation results.30 As seen, there are two intense peaks below 500

cm−1. The feature around 240 cm−1 has been assigned to the flanking water wagging

motion, while the embedded H3O
+ hydrogen-bond stretching mode contributes to

the band at around 350 cm−1. Another small feature at 508 cm−1 is seen in both ex-

perimental and QCMD spectra. This is due to a combination band of low-frequency

modes.30 The MD spectra at 20 K and 100 K, predict both two peaks below 500

cm−1. Thus, these two bands are not affected very much by anharmonic effects and

so they are close to the QCMD and experimental bands. A major difference appears

in the TRPMD spectrum using the GLE thermostat. The band at 240 cm−1 is absent

and only the 350 cm−1 band is seen below 500 cm−1. With the PILE thermostat,

the corresponding TRPMD spectrum has a broad feature in the range 240-400 cm−1

whereas from experiment (and the previous QCMD calculations) there are two bands

observed. Actually, it was noted that GLE thermostat can cause unphysical results in

low-frequency region of vibrational spectrum and this may be the reason for the miss-

ing 240 cm−1 band in TRPMD-GLE spectrum.51 Overall, the VSCF/VCI calculated

spectra are in the best agreement with experiment above 1500 cm−1 and the QCMD

spectrum is overall in the best agreement with experiment in the far-IR region.

To delve into the source of the large downshift of the intense hydronium band,

we recall that at the harmonic level, a significant change in the average hydronium

proton-stretch frequency across a range of protonated clusters has been reported

in the literature.11,61 This change in frequency shows a near liner dependence on

the equilibrium hydronium O-H bond length for a given cluster.11 This is shown in

Figure ?? from a variety of calculations over a large range of clusters. The data in

this figure are adapted from a recent test of our PES and DMS.61 In short, as the

O-H bond length increases there is a large downshift in the frequency. The correlation
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is well-represented by a linear relationship given by ω=a ROH+ b where a=-18362.0

cm−1/Å ,b=21560.2 cm−1. (An even simpler demonstration of this correlation is seen

in the bare Zundel cation H5O
+

2 , as the distance between the two water monomers

changes.63) This correlation, together with information about the distribution of the
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Figure 6.30 Correlation between average proton-stretch harmonic frequency and O-H
equilibrium bond lengths for H3O

+(H2On),n=0-5 clusters from ref. 30 and a linear
least-square fit ω=a ROH+ b where a=-18362.0 cm−1/Å , b=21560.2 cm−1

hydronium O-H bond lengths can be used to rationalize the intense proton band

position from various calculations. To begin, note that the hydrated O-H equilibrium

bond length is 1.029 Å .61 Using this value in the correlation plot we read off a value

of roughly 2600 cm−1 for the average proton stretch band. This is in good agreement

with the harmonic frequency noted above. The VSCF/VCI (and experimental) band

is shifted much below the harmonic estimate, as noted already, and this suggests,

according to Figure 6.30, that the quantum shift in the hydrated O-H bond length is

to larger values, relative to the equilibrium value. This is verified, semi-quantitatively,

using a simple local O-H 1d analysis of the hydronium O-H stretches. As shown

in Figure 6.31, 1d potential and corresponding ground vibrational state probability
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densities are plotted for the free and two equivalent hydrated O-H stretches. Both

distributions have a maximum shifted up from the equilibrium value. This shift is

larger for the hydrated O-H stretch, owing to the softer and thus more anharmonic

potential. As indicated, the maximum for the hydrated O-H stretch is roughly 1.05

Å . Using bond length we determine a frequency of roughly 2280 cm−1, which is

downshifted by 320 cm−1 from the equilibrium harmonic frequency. The agreement

with the VSCF/VCI (and experimental) band position, which is downshifted by an

additional several hundred wavenumbers, is not quantitative. This is not surprising,

given the approximation inherent in the 1d analysis. For the free O-H stretch, the

maximum is roughly 0.97 Å and the corresponding frequency is 3750 cm−1, which

is roughly 100 cm−1 downshifted relative to the harmonic frequency of 3839 cm−1.

So, the simple 1d analysis captures large downshift of the hydrated hydronium O-H

stretch and the small change in frequency of the free O-H stretch. The results are

qualitatively in good agreement with the corresponding VSCF/VCI and experimental

band positions.
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Figure 6.31 Density of the ground vibrational state hydronium O-H bond lengths in
H7O

+
3 from 1d DVR calculations

Next, consider the (thermal) distributions of the hydronium O-H stretches ob-
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tained from MD and TRPMD calculations; these are shown in Figures 6.32. The

distributions from the two TRPMD calculations are very similar, so we only show the

one with the PILE thermostat. The MD distribution at 20 K shows relatively sharp

maxima, centered around the equilibrium values of 0.964 Å and 1.029 Å, respec-

tively.61 At 100 K, the MD distribution is broader, as expected; however, the centers

of the two peaks are almost unchanged. The corresponding TRPMD distribution at

100 K is broader than the MD one and the peak corresponding to the hydrated O-H

stretch is at roughly 1.045 Å . This is significantly longer than the corresponding MD

peak, owing to the effect of zero-point motion in the anharmonic potential. However,

the peak in the free O-H stretch is slightly shorter than the MD one. This is seen for

both thermostats and disagrees quantitatively with the 1d DVR analysis. However,

both analyses indicate a rather minor deviation from the equilibrium value of this

stretch and thus a relatively minor deviation from the harmonic analysis.

Figure 6.32 Distribution of hydronium OH bond length in H7O
+

3 from indicated
methods.

Using these hydronium O-H peak values in the correlation relationship we can
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Figure 6.33 Distribution of the O-O distance between the hydronium and water O atoms
of H7O

+
3 from indicated methods.

determine the corresponding frequencies. For the MD peak at 1.029 Å the corre-

sponding frequency is roughly 2600 cm−1, in good agreement with the average of

harmonic asymmetric and symmetric hydrated O-H stretch frequencies. For the MD

peak at 0.964 Å the corresponding frequency is 3859 cm−1, which is in good agree-

ment with harmonic frequency of the free O-H stretch. These are the expected results.

For the TRPMD distribution the peak at 1.045 Å corresponds to the hydrated O-H

stretch and the corresponding average frequency is ∼2350 cm−1, in good agreement

with the intense band maximum in the TRPMD spectra and somewhat closer to the

TRPMD-GLE one. This is a 300 cm−1 downshift, relative to the harmonic frequency.

The second peak, as noted already, is slightly shorter than the MD one and has a

corresponding frequency of roughly 4000 cm−1, which is a few percent higher than

the harmonic estimate.

We conclude this subsection with a short discussion of the MD and TRPMD

distributions of O-O bond length between the hydronium oxygen and the flanking
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water oxygen. These are shown in Figure 6.33. As seen, the TRPMD distribution is

broader than the MD one; however, both are peaked close to the equilibrium value of

2.491 Å.

Next, we present analogous results and analyses for the H9O
+

4 Eigen cluster,

where the hydronium is fully hydrated.

2. H9O
+

4 (Eigen)

The equilibrium of the Eigen isomer of H9O
+

4 , shown in Figure ??, has the hy-

dronium surrounded by three water molecules. The signature experimental band is

an intense, broad band centered around 2650 cm−1.10,11 Similar to H7O
+

3 , it was a

challenge theoretically to explain the origin of large downshift of this hydronium band

relative to a harmonic analyses, which gives the intense hydronium bands at around

3000 cm−1 based on CCSD(T)-F12/aVTZ calculations.61 Thus, there is a roughly

400 cm−1 downshift for the anharmonic spectrum. We presented a detailed analysis

of this band using VSCF/VCI calculations28,57 and the interested reader is directed

to those papers for details.

The calculated and experimental IR spectra are given in Figure 6.34. Clearly, and

not surprisingly, these spectra bear a resemblance to the spectra just discussed for

H7O
+

3 . As seen, the classical MD simulations at 20 and 100 K are only in quali-

tative agreement with experiment for the prominent band mentioned above and do

not show the large downshift. As expected, and in accord with analogous results

for H7O
+

3 , the positions of these bands are essentially the same as bands from a

double-harmonic analysis. The MD bands are again broad and do not resolve the

fine structure in experiment (as was the case for H7O
+

3 ). The TRPMD spectra

successfully reproduce the band positions of the water stretches, which are roughly

downshifted from the harmonic bands by 100-200 cm−1. For the intense hydronium

proton stretch band the TRPMD-GLE predicts the hydronium stretch band position

at ∼2800 cm−1 while with TRPMD-PILE band position is at around 2750 cm−1.
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While these are significantly downshifted from the MD band, they are not sufficiently

downshifted to be in good agreement with experiment. Also, the TRPMD bands are

too broad to resolve the fine structure in the experimental spectra in the range from

1500-2400 cm−1, as seen in the Figure 6.34. These features and the band positions are

captured by VSCF/VCI calculation. The VSCF/VCI calculation successfully locates

the postion of the hydronium stretches at around 2650 cm−1. These stretches are

coupled with other vibrational states including several complex combination bands.

The VSCF/VCI spectrum also provides explanations of all small featured bands in

1750-2400 cm−1. These bands origin mainly from the important combination bands

involving hydronium core frustrated rotation, wagging and umbrella motions. Each

combination band has coupling with hydronium stretches (asym- or sym-stretches)

and thus they carry significant intensity in the spectrum.

0

a) MD, 20 K

e) QCMD

g) Expt(1)

c) TRPMD-GLE, 100 K

b) MD, 100 K

d) TRPMD-PILE,100 K

f) VSCF/VCI

h) Expt(2)

 0  500  1000  1500  2000  2500  3000  3500  40000 500 1000 1500 2000 2500 3000 3500 4000

Energy (cm-1)

 0  200  400  600  800  1000  1200  1400 1500  2000  2500  3000  3500  4000

Figure 6.34 Overview of the IR spectrum of H9O
+

4 using the indicated methods. The
stick spectrum is from a standard double-harmonic calculation. (1) reference 30 (2)
reference 10
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Next, consider the spectra in the far-infrared region (0-1250 cm−1). Here, as

for H7O
+

3 , the QCMD method reproduces the prominent sharp bands below 500

cm−1 which are due to the flanking water large amplitude torsional and monomer

stretching modes. Details about these bands can be found in a recent joint experi-

mental/theoretical paper.30 The TRPMD-PILE spectrum does describe these bands,

however, with considerable broadening.

We now present the analyses of the intense proton stretch band, analogous to the

one done for H7O
+

3 . First, note that the equilibrium hydronium O-H distance is

1.005 Å .61 From the frequency correlation, this corresponds to a harmonic frequency

of 3106 cm−1, is good agreement with the stick position and the MD band peak.

A 1d DVR calculation of the zero-point state of the hydronium O-H stretch yields

a density maximum at 1.022Å . The corresponding frequency is 2794 cm−1 and is

thus a large downshift relative to the MD band. The MD and TRPMD hydronium

O-H distributions are shown in Figure 6.35. Again, the distributions from the two

TRPMD simulations are almost superimposable so only one (the PILE one) is shown.

As expected, the MD distribution at 20 K gives a narrow O-H distribution centered

around the equilibrium value, 1.005 Å . At 100 K, the MD distribution broadens,

but remains centered at around 1.005 Å. With quantum zero-point effects included,

the TRPMD distribution is shifted up from the equilibrium value and the peak value

is roughly 1.018 Å . This correlates with a frequency of 2870 cm−1, which is in good

agreement with the TRPMD-PILE band peak. The VSCF/VCI (and experimental)

band position is roughly 2650 cm−1, which would correlate with a larger O-H distance

than the ones obtained from the 1d DVR and TRPMD distributions.

Overall, the correlation analysis giving the harmonic frequency of the hydronium

O-H stretch provides (as with H7O3) a simple explanation for the different peak

positions of the MD, TRPMD and VSCF/VCI bands.
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Figure 6.35 Distribution of hydronium OH bond length in H9O
+

4 from various methods

Finally, consider the distribution of O-O distances shown in Figure 6.36. Similar

to the situation in H7O
+

3 molecule, the MD distribution at 20 K is narrowly peaked

around 2.555 Å. With higher temperature at 100 K, The MD presents broader distri-

bution but still centers around 2.555 Å. Unlike the distribution of ROH, the TRPMD

distribution of O-O distance is peaked at the same value as the MD one although the

distribution is broader.

Considering now the results for the two clusters, we conclude that the TRPMD

approach does capture the large downshift (relative to the harmonic estimates) of

the intense proton bands in these clusters. But the band positions are still several

hundred wavenumbers upshifted from the VSCF/VCI (and experimental) ones. The

explanation for this may lie in the complex coupling with many modes that was shown

in the detailed analysis of the VSCF/VCI results.28,30,38,42 Another source for the

difference is perhaps the limited sampling of the anharmonicity from the zero-point

motion, which is described in the TRPMD approach. The vibrational transition is of

course a quantum event that “starts" in the zero-point state and “ends" in an excited
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Figure 6.36 Thermal distributions of the O-O distance of H9O
+

4 from indicated
calculations

state, which samples more of the potential energy surface than the ground state. This

quantum transition is a coherence effect that is not described by TRPMD. Instead,

the motion of the ring polymer in the zero-point state accounts for the vibrational

resonances seen in the IR spectrum. In general, one could argue that this is an

underestimate of the anharmonicty relevant to the vibrational transition. Indeed,

from semi-classical theory it has been shown that a trajectory based on the average

of the initial and final quantum numbers of a transition produces more accurate results

than using the initial quantum number.64–66

We conclude this section with some general and somewhat speculative remarks

about using MD, TRPMD and (if feasible) VSCF/VCI calculations of the IR spectrum

of the hydrated proton in liquid water at room temperature. Recent 2D IR spectra

of the proton bands have been reported by two groups with the aim of identifying

the dominant motif of the hydrated proton in the liquid.12,14 In principle the PES

and DMS we have developed can be used to obtain corresponding spectra. Such
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calculations could be done using the approach we took for calculating the IR spectrum

of liquid water.67,68 Namely, we take “snapshotsâĂİ from a reasonable and efficient

MD simulation and then perform calculations of the clusters of the hydrated proton

with as many modes as possible coupled in the VSCF/VCI calculations. MD and

TRPMD calculations could be done on the same clusters of course.

Aiming at the recent IR spectra reported by the Tokmakoff group,13 there are

broad bands associated with the proton modes (in H5O
+

2 , as evidenced in this pa-

per) and so this might be a more reasonable application for the MD and TRPMD

approaches. We hope to carry out such calculations in the near future.

Finally, we note the recent success of the Divide-and-Conquer Semiclassical Initial

Value Representation, which was recently applied to the vibrational energies of Zundel

cation.69 This is an efficient modification of the original Semiclassical Initial Value

Representation approach for IR spectroscopy.70 It would be interesting to apply this

method to larger clusters.

6.5.5 Conclusions

The IR spectra of H7O
+

3 and H9O
+

4 were calculated in the range 0-4000 cm−1

using classical and thermostatted ring polymer molecular calculations with ab initio

many-body potential and dipole moment surfaces. The classical MD spectra at 20

and 100 K are close to the double-harmonic spectrum, although considerably broader.

TRPMD calculations done at 100 K successfully produce large downshifts in the

water and hydronium O-H stretch bands, relative to the classical MD ones. However,

the TRPMD bands are broader than experiment and for the intense proton stretch

band the downshift is not sufficient to produce good quantitative agreement with

experiment. Such agreement with experiment is seen with VSCF/VCI calculations

(using the same PES and DMS).

The downshifting of the proton (hydronium) stretch band was successfully inves-
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tigated using a previous linear correlation between the hydronium O-H bond length

and harmonic frequency.

Bibliography

[1] Heberle, J.; Riesle, J.; Thiedemann, G.; Oesterhelt, D.; Dencher, N. A. Nature

1994, 370, 379.

[2] Stowell, M. H. B.; McPhillips, T. M.; Rees, D. C.; Soltis, S. M.; Abresch, E.;

Feher, G. Science 1997, 276, 812–816.

[3] Luecke, H.; Richter, H.-T.; Lanyi, J. K. Science 1998, 280, 1934–1937.

[4] Rini, M.; Magnes, B.-Z.; Pines, E.; Nibbering, E. T. J. Science 2003, 301, 349–

352.

[5] Agmon, N. Chem. Phys. Lett. 1995, 244, 456.

[6] de Grotthuss,; T., C. J. Ann. Chim. 1806, 58, 54.

[7] Yeh, L. I.; Lee, Y. T.; Hougen, J. T. J. Mol. Spectrosc. 1994, 164, 473.

[8] Shin, J.-W.; Hammer, N. I.; Diken, E. G.; Johnson, M. A.; Walters, R. S.;

Jaeger, T. D.; Duncan, M. A.; Christie, R. A.; Jordan, K. D. Science 2004, 304,

1137.

[9] Headrick, J. M.; Diken, E. G.; Walters, R. S.; Hammer, N. I.; Christie, R. A.;

Cui, J.; Myshakin, E. M.; Duncan, M. A.; Johnson, M. A.; Jordan, K. D. Science

2005, 308, 1765.

[10] Wolke, C. T.; Fournier, J. A.; Dzugan, L. C.; Fagiani, M. R.; Odbadrakh, T. T.;

Knorke, H.; Jordan, K. D.; McCoy, A. B.; Asmis, K. R.; Johnson, M. A. Science

2016, 354, 1131.



165

[11] Fournier, J. A.; Wolke, C. T.; Johnson, M. A.; Odbadrakh, T. T.; Jordan, K. D.;

Kathmann, S. M.; Xantheas, S. S. J. Phys. Chem. A 2015, 119, 9425–9440.

[12] Thämer, M.; De Marco, L.; Ramasesha, K.; Mandal, A.; Tokmakoff, A. Science

2015, 350, 78–82.

[13] Fournier, J. A.; Carpenter, W. B.; Lewis, N. H. C.; Tokmakoff, A. Nat. Chem.

2018, 10, 932–937.

[14] Dahms, F.; Fingerhut, B. P.; Nibbering, E. T. J.; Pines, E.; Elsaesser, T. Science

2017, 495, 491–495.

[15] Biswas, R.; Carpenter, W.; Fournier, J. A.; Voth, G. A.; Tokmakoff, A. J. Chem.

Phys. 2017, 146, 154507.

[16] Zundel, G.; Metzger, H. Z. Phys. Chem. 1968, 58, 225.

[17] Zundel, G. Adv. Chem. Phys. 1999, 111, 1.

[18] Eigen, M. Angew. Chem., Int. Ed. Engl. 1964, 3, 1.

[19] Begemann, M. H.; Gudeman, C. S.; Pfaff, J.; Saykally, R. J. Phys. Rev. Lett.

1983, 51, 554.

[20] Yeh, L. I.; Okumura, M.; Myers, J. D.; Price, J. M.; Lee, Y. T. J. Chem. Phys.

1989, 91, 7319.

[21] Jiang, J.-C.; Wang, Y.-S.; Chang, H.-C.; Lin, S. H.; Lee, Y. T.; Niedner-

Schatteburg, G.; Chang, H.-C. J. Am. Chem. Soc. 2000, 122, 1398.

[22] Douberly, G. E.; Ricks, A. M.; Duncan, M. A. J. Phys. Chem. A 2009, 113,

8449.

[23] Douberly, G. E.; Walters, R. S.; Cui, J.; Jordan, K. D.; Duncan, M. A. J. Phys.

Chem. A 2010, 114, 4570.



166

[24] Asmis, K. R.; Pivonka, N. L.; Santambrogio, G.; Brummer, M.; Kaposta, C.;

Newmark, D. M.; Woste, L. Science 2003, 299, 1375–1377.

[25] Heine, N.; Fagiani, M. R.; Rossi, M.; Wende, T.; Berden, G.; Blum, V.; As-

mis, K. R. J. A. Chem. Soc. 2013, 135, 8266–8273.

[26] Xantheas, S. S. Nature 2009, 457, 673.

[27] Berkelbach, T. C.; Lee, H. S.; Tuckerman, M. E. Phys. Rev. Lett. 2009, 103,

238302.

[28] Yu, Q.; Bowman, J. M. J. Am. Chem. Soc. 2017, 139, 10984–10987.

[29] Agmon, N.; Bakker, H. J.; Campen, R. K.; Henchman, R. H.; Pohl, P.; Roke, S.;
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Vibrational Spectra of the Aqueous
Proton
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Chapter 7 High-Level VSCF/VCI Calcula-
tions Decode the Vibrational Spectrum of the
Aqueous Proton

7.1 Introduction

The aqueous proton is a fundamental cationic species whose transport process is

ubiquitous and plays an important role in biological and chemical systems.1–4 Due

to the strength and flexibility of the hydrogen bond (H-bond) network, the aqueous

proton system exhibits unique properties such as ultrafast proton mobility. The Grot-

thuss mechanism is used to explain this ultrafast rearrangement process, whereby a

series of sequential transfers of individual protons resulting in overall charge trans-

port.5–7 Both experimental and theoretical efforts have been made in investigating

the structures and ultrafast dynamics of the hydrated proton complex, from gas phase

protonated water clusters8–16 to the hydrated proton in the condensed phase.7,17–26

The vibrational spectra of acidic solutions provide essential information on the ul-

trafast dynamics and various structures of the excess proton.21,22,24,26–28 In the lin-

ear infrared28–30 and Raman24,31 spectra of acidic solutions, the “proton continuum"

presents as a broad continuous absorption spanning the mid-IR from below 1000 cm−1

up to 3000 cm−1. Even though rich information about the structure, H-bonding en-

vironment, and dynamics of aqueous species can be obtained from vibrational spec-

troscopy,18 the broad featureless spectrum of the excess proton eludes straightforward

interpretation.

To address this issue, gas-phase vibrational spectroscopy of small protonated water

clusters has provided invaluable insight on the fundamental geometries and motions

of the excess proton. By carefully analyzing IR spectra of clusters ranging from hy-
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dronium H3O+ to larger clusters H+(H2O)n, n = 2 − 28,10–12,14,32 researchers have

described the structure of the aqueous proton within the framework of two idealized

structures. On one end, the excess proton localizes on one water to form a hydro-

nium ion with a particularly tight first solvation shell, known as the Eigen species

H9O
+

4 .33,34 On the other extreme, the proton is equally shared between two flank-

ing waters, behaving collectively as the Zundel complex H5O+
2 .31 In the gas phase,

the spectra of these two species display distinguishable sets of resonances that reflect

the complexes’ inherent molecular symmetries, and thus have been used to broadly

categorize clusters of differing sizes as corresponding to Eigen-like or Zundel-like ge-

ometries. In particular, the protonated water hexamer H+(H2O)6 is the smallest

cluster for which both two structural motifs coexist at low temperature. In the ex-

periment conducted by Asmis and coworkers, the IR spectra of these two isomers were

decomposed via double-resonance spectroscopy, revealing distinct Eigen and Zundel

forms whose resonances were significantly broadened and coupled due to anharmonic-

ity in their nuclear potentials, as revealed by ab initio molecular dynamics (AIMD)

simulations.32

Within the last few years, multiple simulation studies have begun to provide in-

sight into the broad features in the aqueous-phase proton spectrum. With the aid

of molecular dynamics simulations using the Multi-State Empirical Valence Bond

(MS-EVB) force field,35,36 the spectrum of the aqueous proton was modelled at the

harmonic level, revealing spectral trends with the geometry of the hydrated proton

complex, the extent of vibrational delocalization, and the mixture of stretching and

bending character in the normal modes.30 Even at the harmonic level, the study un-

covered that the vibrations of the excess proton are highly mixed and delocalized,

requiring a careful interpretation of the vibrational bands. Another landmark study

combined linear IR and Raman spectroscopies with anharmonic local-mode spectral

calculations on protonated clusters drawn from ab initio simulations.29 This study
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treated the stretching motions of the excess proton one-dimensionally, applying a dis-

crete variable representation (DVR) of the Schrödinger equation to the proton stretch

with potential energy also calculated with DFT at the B3LYP level. This study pre-

dicted the presence of asymmetric “Zundel-like" species in solution, similar to Zundel’s

original conception and later supported by ultrafast IR experiments.24,26,37 Despite

the contributions these studies have played in illuminating the nature of the aqueous

excess proton, the multidimensional anharmonic nature of the vibrational potential

was not addressed, which have been investigated in small gas-phase protonated water

clusters.13,16,38

Recently, the 2D IR spectrum of the aqueous excess proton was measured to in-

vestigate the vibrational potentials of the various modes and to directly observe the

effects of anharmonic mode mixing.24,26 Excitation of the proton stretch mode at 1200

cm−1 produces an excited state absorption between the first and second vibrational

excited states at higher frequency than the ground state bleach.24 This indicates that

the vibrational potential of the excess proton is strongly confined by two waters with

Zundel-like vibrational behavior, rather than associating with solely with one water

as predicted for a hydronium species. A subsequent 2D IR study spanning the entire

mid-IR found that cross peaks between every main feature imply that one predomi-

nant motif describes the aqueous proton complex.26 The polarization-dependent cross

peaks between all of the main features can be self-consistently explained by a persis-

tent Zundel-like core around the aqueous proton. However, the relationship between

the molecular configurations of aqueous proton complexes and the vibrational poten-

tials of their highly anharmonic modes has yet to be understood. Thus, to capture the

essentials of the vibrational spectrum of the hydrated proton complex, more rigorous

theoretical tools should be applied for analysis.

Calculating the vibrational anharmonicity and mode mixing has previously been

more successful in small protonated water clusters. Vendrell, Meyer and coworkers
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applied multiconfiguration time-dependent Hartree (MCTDH) method to decipher

the spectrum of H+(H2O)2 successfully.13 For larger gas-phase clusters, the vibrational

self-consistent field/virtual state configuration interaction (VSCF/VCI) approach was

successfully applied to reproduce the IR spectra of H+(H2O)3 and H+(H2O)4.16,38,39

These high-level quantum calculations are based on highly accurate ab initio potential

energy surfaces and dipole moment surfaces (PES/DMS) of protonated water clusters

that some of us developed.40–42 The VSCF/VCI approach and accurate PES/DMS

have enabled access to the anharmonic and multi-dimensional nuclear potentials to

disentangle the complicated spectra of protonated water clusters. However, as the size

of clusters gets larger, such as in the cases of H+(H2O)6 or aqueous proton complexes,

it becomes unfeasible to conduct full-dimensional vibrational analysis due to the high

dimensionality and cost of potential calculation.

To overcome the dimensionality limitations, the local monomer approximation was

developed to calculate the IR spectra of larger systems.43 This approximation reduces

computational cost by breaking a large system into smaller local monomer subgroups

and discarding the coupling constants between vibrational modes on different local

monomers. The spectrum of the whole system is a sum of contributions of vibrations

from each defined monomer. This approximation has proved to be useful and accurate

for calculating the IR spectra of the liquid and ice forms of H2O and D2O, capturing

broad, anharmonic features such as the bend-libration combination band at 2200 cm−1

in H2O.44–47 Thus, it becomes natural to apply the local monomer approximation on

the structures of the aqueous proton and efficiently generate accurate anharmonic

vibrational spectra for the multiple possible configurations in the liquid phase.

In this study, we extend the local monomer approximation to VSCF/VCI calcu-

lations of hydrated proton clusters as a technique to analyze and interpret the IR

spectrum of the aqueous proton. Hydrated proton configurations were drawn from

800 H+(H2O)6 geometries accessed from aqueous-phase MS-EVB trajectories. As
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mentioned above, protonated hexamers constitute the smallest cluster that incor-

porates Eigen-like and Zundel-like species, providing a workable trade-off between

calculation cost and incorporation of many-body effects from the solvation environ-

ment. H+(H2O)6 can be rewritten as [H+(H2O)2](H2O)4, where we define the lo-

cal monomers as the central H+(H2O)2 and four remaining water monomers. The

vibrational spectrum of the aqueous proton can be approximated as the spectral

contribution from central H+(H2O)2 in those [H+(H2O)2](H2O)4 clusters. To bench-

mark the local monomer approximation, we first compare our calculations of the

gas-phase Eigen and Zundel isomers of the protonated water hexamer to the experi-

mental spectra mentioned above, finding excellent agreements with peak position and

intensity, even for subtler features. We then present the IR spectrum obtained from

the VSCF/VCI calculations on protonated hexamer geometries drawn from aqueous

MS-EVB simulations.30 We also find agreement with the experimental aqueous-phase

linear spectrum, and we decompose the spectrum based on vibrational character to

assign the various regions across the mid-IR. The difference with the harmonic spec-

trum underscores the importance of taking into account the full anharmonicity in the

vibrational potentials of the aqueous proton. We then correlate shared proton stretch

frequency with various structural parameters and decompose the full spectrum by

geometry to uncover spectral trends as proton configurations transition from behav-

ing more Zundel-like to more Eigen-like. This information can aid the interpretation

of the experimental infrared spectrum in each IR frequency range. The high-level

treatment of the anharmonicity in these calculations also reveals substantial mode

mixture of different proton-associated vibrations, in particular the proton stretching

and bending modes of Zundel-like complexes.
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7.2 Computational Details

To analyze the spectrum of the aqueous proton, we made use of 800 clusters

extracted from the snapshots of MS-EVB simulations performed in Ref. 30. The

molecular dynamics simulations were performed using 256 SPC/Fw water molecules

and one excess proton in the presence of a chloride ion. This reactive MD simulation

was based on MS-EVB 3.2 model. The system was equilibrated in constant NVT

ensemble for 1 ns with density 1.0 gm/cm3 and room temperature 298 K. The time

step was set as 0.5 fs with Nosé-Hoover chain thermostats. 1 ns constant NVE tra-

jectories were run afterwards for generating small clusters. We used the same criteria

in identifying the proton position as in Ref. 30: from instantaneous configurations

of the MS-EVB trajectory, we extracted clusters of molecules centered on a H atom

that participates in an O1-H· · ·O2 hydrogen bond, selecting them on the basis of

the proton sharing parameter δROH = |rO1H-rO2H|. Among the three protons of the

hydronium moiety, the proton with the lowest δROH was chosen as the excess pro-

ton. We selected 800 clusters from the MS-EVB trajectory snapshots with all waters

whose oxygen atoms were within 5Å to the defined proton, written as H+(H2O)n,

n ≈ 16 − 18. From each H+(H2O)n cluster, we further decreased the cluster size

to H+(H2O)6 which only included the proton and its closest six water molecules.

We identified the central H+(H2O)2 structure with the proton and two closest water

monomers for all 800 H+(H2O)6 clusters and 800 H+(H2O)n, n ≈ 16 − 18 clusters.

The H+(H2O)n, n ≈ 16−18 clusters were used for harmonic analysis to compare with

the previously calculated harmonic spectra.30 The H+(H2O)6 clusters were used for

both harmonic analysis and VSCF/VCI calculation based on local monomer approx-

imation. The distribution of 800 clusters according to proton asymmetry coordinate

(seen in Table 7.1) was kept the same as that in total data set. More details about

the MD simulations are referred to ref 30.
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Table 7.1 Population distribution of 800 chosen protonated water clusters from MS-EVB
trajectory

δROH (Å) Number Population (%) MS-EVB population(%)
0.0-0.1 184 23 23
0.1-0.2 240 30 30
0.2-0.3 248 31 31
0.3-0.4 112 14 14
0.4- 16 2 2

ROH (Å) Number Population (%) MS-EVB polulation(%)
1.00-1.05 82 10 11
1.05-1.10 278 35 35
1.10-1.15 290 36 36
1.15-1.20 142 18 17
1.20- 8 1 1

Zundel-like 424 53 53
Eigen-like 376 47 47

Examples of the two sizes of clusters, H+(H2O)n and H+(H2O)6 are shown in the

right panel of Figure 7.4 along with their central H+(H2O)2 structure encircled in

red. This central H+(H2O)2 can be identified as proton with two water monomers or

the hydronium H3O
+ with its closest water according to different proton positions.

We classified all cluster structures according to the proton asymmetry δROH, with

the criterium of δROH = 0.2 Å to identify Zundel-like (< 0.2Å) and Eigen-like (≥

0.2Å) species. As shown in Table 7.1, among those 800 H+(H2O)6 clusters, we obtain

53% Zundel-like clusters and 46% Eigen-like clusters which agrees with previous re-

sults.29,30 Further decomposition by δROH of the total trajectory and the 800 analyzed

configurations is presented in the SI and indicates that the clusters are representative

of the trajectory.

For each H+(H2O)6 cluster, we located the central H+(H2O)2 as describe above.

This central H+(H2O)2, denoted as the “special pair,"48,49 is the smallest structure

to that includes both Zundel-like and hydronium-like geometries and is the largest

local monomer that we can apply in VSCF/VCI calculations. Larger structures like

H+(H2O)3 require much more computational cost mainly because of the increasing
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number of normal modes. In the local H+(H2O)2 monomer analysis, we conducted

normal mode analysis on the central H+(H2O)2 structure with all remaining water

monomers fixed at their geometries. For all 800 H+(H2O)6 clusters, we conduct

VSCF/VCI calculation using normal vectors in the local Zundel monomer analysis.

For each cluster, we choose all vibrational modes from local Zundel monomer analy-

sis with harmonic frequency larger than 700 cm−1, resulting in 12-15 modes for each

cluster. Here, we did not add any imaginary frequencies because it has been demon-

strated that the imaginary frequencies do not contribute much to the total vibrational

spectra.30 We apply 4-mode representation of the potential (4MR) and generate the

excitation space with maximum sum of singles, doubles, triples and quadruple ex-

citations as 9, 8, 7, 6. The final size of the Hamiltonian matrix for each cluster is

around 10,000 × 10,000. After obtaining the vibrational wavefunction and associated

vibrational energies for all ground and excited VCI states, we calculate the quantum

expectation values of OH and OO distances in the central H+(H2O)2 structure using

the ground state wavefunction. For the two isomers of gas phase H+(H2O)6 clus-

ter, to obtain the total spectra, we also conduct the local water monomer analysis

of each isomer and then VSCF/VCI calculations of each water molecules separately.

The spectra of each isomer include the contribution from central H+(H2O)2 struc-

ture and also all remaining water molecules. All the above VSCF/VCI calculations

are finished using code MULTIMODE which can conduct calculations using exact

normal-coordinate Watson Hamiltonian. The local monomers for these two isomers

include (1) central H+(H2O)2 which is a proton with two water monomers for the

Zundel isomer and hydronium with the closest water monomer for the Eigen isomer

(2) each of four remaining water monomers. The VSCF/VCI spectrum of each isomer

is sum of contributions from all above local monomers.

Both harmonic analysis and VSCF/VCI calculations were done based on accurate

ab initio many-body PES/DMS. This PES/DMS has already been verified to be
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highly accurate in describing the structures, energies, and vibrational properties of

different sizes of protonated water clusters.16,38,41,42,50,51

7.3 Vibrational Spectra of Two Isomers of H+(H2O)6

Before we show the vibrational spectra of aqueous proton, we first illustrate the

accuracy of the local monomer VSCF/VCI calculations with two important isomers

of the gas-phase protonated water hexamer [H+(H2O)2](H2O)4, known as the Zundel

and Eigen isomers. The Zundel isomer consists of the symmetric “Zundel" core with

four solvating water molecules, while the Eigen isomer has the standard “Eigen"

core with additional two waters accepting H-bonds from the waters in hydronium’s

first solvation shell. Their calculated spectra and comparisons with experiment32 are

shown in Figure 7.1. Their double harmonic spectra are also plotted in Figures 7.2

and 7.3. The harmonic spectra appear qualitatively different from the experimental

spectra with peak position inaccuracies of several hundred wavenumbers for some

features. However, upon including anharmonicity and mode coupling, the VSCF/VCI

spectra achieve excellent agreement with experiment in terms of frequency positions

and relative intensities, even with the local H+(H2O)2 monomer and local water

monomer approximation. Additionally, the agreement between the calculated and

experimental spectra for the Eigen isomer demonstrate that the choice of a local

H+(H2O)2 monomer can also be applied for Eigen-like configurations.
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Figure 7.1 Vibrational spectra of (a)-(b) Zundel (6Z) and (c)-(d) Eigen (6E) isomers of
protonated water hexamer from experiment32 and VSCF/VCI calculations.
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Figure 7.2 Calculated spectra of Zundel isomer of H+(H2O)6
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Figure 7.3 Calculated spectra of Eigen isomer of H+(H2O)6

Detailed peak frequencies and assignments from experiment, VSCF/VCI, and har-

monic analysis are listed in Table 7.2. Briefly, from the VSCF/VCI calculation, the

Zundel isomer displays a strong proton stretch band at 1102 cm−1 which is more than

100 cm−1 blue shifted from its harmonic frequency. Another signature band of the

Zundel isomer is the bending mode of the proton’s hydration waters at around 1760

cm−1, which has relatively large intensity due to coupling with the proton stretch.

The band at 3167 cm−1 from experiment is verified as the OH stretch of the two flank-

ing water monomers within the central H+(H2O)2. The harmonic analysis predicts

the frequency at around 3350 cm−1 which is almost 200 cm−1 higher than both exper-

iment and VSCF/VCI calculations. The shift of important signature bands relative

to their harmonic predictions is even larger in the Eigen isomer, as seen in Figure

7.3 and Table 7.2. Harmonic analysis produces three hydronium stretches at 3197,

2783 and 2728 cm−1, but experiment demonstrates three strong and broad bands at

3007, 2425 and 1951 cm−1. With the VSCF/VCI approach, we successfully reproduce

these three important bands and verify their origins. The hydronium stretches are
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redshifted 200-700 cm−1 from their harmonic counterparts due to the anharmonicity

of the system and extensive mode coupling within the local monomer. As introduced

before, this phenomenon has been seen in vibrational analyses of other protonated

water clusters, H+(H2O)3 and H+(H2O)4, where the VSCF/VCI approach works very

well while harmonic and some post-harmonic approaches (like VPT2) cannot fully

explain the experimental spectra.16,38

Table 7.2 Peak positions (cm−1) of two isomers of H+(H2O)6in the experimental spectra
and calculated (harmonic and VSCF/VCI) values along with detailed assignments based
on VSCF/VCI spectrum

Zundel isomer of H+(H2O)6
Exp. (cm−1) Theory, VSCF/VCI (cm−1) Theory, harmonic (cm−1) Assignment

3737 3739, 3762 3938, 3958 w free O-H asym-str
3651 3655, 3677 3844, 3856 w free O-H sym-str
3167 3128, 3136 3353, 3371 z O-H str
1759 1765 1796 z proton bend
1618 1633, 1643 1671, 1692 w bend
1050 1102 964, 765 z proton str

Eigen isomer of H+(H2O)6
Exp. (cm−1) Theory, VSCF/VCI (cm−1) Theory, harmonic (cm−1) Assignment

3738 3744, 3750 3939, 3953 w free O-H asym-str
3714 3730 3895 w free O-H str
3651 3650, 3677 3825, 3840 w free O-H sym-str
3312 3319 3525 w H-bonded O-H str
3007 2895 3197 h O-H str
∼2425 2345 2783 h O-H str
1951 1991 2728 h O-H str
1618 1587,1619 1656,1669 w bend
1097 1219 1297 h umbrella

bold font are frequencies of proton stretch/hydronium stretch. Experimental data
are from refs. 32

7.4 Vibrational Spectra of 800 H+(H2O)6 clusters

Before presenting the anharmonic spectrum of the aqueous proton, we briefly sum-

marize the features of the harmonic spectra from local H+(H2O)2 monomer analysis

of two sizes of clusters, H+(H2O)n , n ≈ 16 − 18 and H+(H2O)6 (Figure 7.4). For

both sizes of clusters, the spectrum of their central H+(H2O)2 consists of a broad con-
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tinuum from below 1000 cm−1 to above 3000 cm−1. This spectral shape agrees with

the previously calculated difference spectral density for aqueous proton at the B3LYP

level (Figures 3.e and 3.f in Reference 30). Even though the spectrum in Figure 7.4 is

the spectral contribution from central H+(H2O)2, the spectrum in the previous study

was calculated from the difference spectral density between protonated water clusters

and bulk water clusters.30 The harmonic spectrum includes contributions from both

Zundel-like H+(H2O)2 cores and Eigen-like structures’ central H3O
+ and its closest

water, which already produces the IR continuum of absorption. There are only small

differences between the spectrum of the central H+(H2O)2 moiety embedded in the

H+(H2O)n and H+(H2O)6 clusters, which implies that the central H+(H2O)2 spectrum

is more influenced by its first solvation shell and the excess proton than by the sol-

vation water beyond the first four hydration molecules. These observations indicate

that calculating the vibrational spectrum with a central H+(H2O)2 in a H+(H2O)6

cluster instead of in a H+(H2O)n cluster is a qualitatively reasonable approxima-

tion. Additionally, since the broad continuum is recovered using a local H+(H2O)2

monomer, the VSCF/VCI calculation of these structures should also be able to re-

cover the main features of the aqueous excess proton spectrum. To emphasize the

local H+(H2O)2 monomer strategy, we will denote the clusters as [H+(H2O)2](H2O)4

rather than H+(H2O)6 in the following text.
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Figure 7.4 Double harmonic spectra of H+(H2O)2 structure in 800 protonated water
clusters with different sizes. H+(H2O)n has 16-18 water molecules and H+(H2O)6 has
proton with 6 water molecules. The harmonic frequencies are calculated from local
H+(H2O)2 monomer analysis where central H+(H2O)2 structures are circled in the right
panel for different clusters.
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Figure 7.5 Infrared spectrum of the aqueous proton from experiment and VSCF/VCI
calculations. The experimental spectra include neat water (blue), 2 M HCl (red) and the
maximum entropy difference component (black). The theoretical (VSCF/VCI) spectrum is
spectra contributed from central H+(H2O)2 part of 800 [H+(H2O)2](H2O)4 clusters.

To analyze the aqueous proton spectrum, we begin with an introduction to the

experimental linear IR spectral features that grow in upon introduction of strong

acid. The experimental spectrum associated with aqueous HCl solution is presented

as the second spectral component derived from the maximum entropy analysis of

the acid concentration series. We find that the component resembles an acid-water

difference spectrum consisting of broad features centered around 1200 cm−1, 1750

cm−1, 3000 cm−1, with continuous absorption between each of these maxima and

also a small positive peak around 3500 cm−1. Since the maximum entropy analysis

cannot extract components due to solvation of the H+ or the Cl– individually, we also

present the results of the same maximum entropy analysis on a NaCl concentration

series, which shows features centered at 1640 cm−1 and 3470 cm−1. The 3470 cm−1

peak in both the HCl and NaCl spectra are centered at the same frequency in the

ATR spectrum, but it is nontrivial to directly interpret these spectral contributions
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in highly-congested spectral regions.
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Figure 7.6 Decomposition of the calculated spectra of aqueous proton according to
different 〈δROH〉 values.

The calculated VSCF/VCI spectrum of the H+(H2O)2 local monomers summed

over 800 [H+(H2O)2](H2O)4 configurations (Figure 7.5b) consists of a continuum and

three broad bands, consistent with experiment. Examples of VCI spectra for indi-

vidual clusters are presented in Figure 7.6. The first signature band spans 1000-1500

cm−1 with center frequency at 1200 cm−1 in experiment but is blueshifted to 1300

cm−1 in the VSCF/VCI calculations. According to previous analyses, the feature has

been assigned to both asymmetric proton stretches in Zundel-like configurations13,30

and umbrella modes in Eigen-like configurations.52 The second signature band is cen-

tered at 1750 cm−1 in both the harmonic and VSCF/VCI and harmonic calculations,
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but the bandwidths and relative intensities of the 1750 cm−1 and 1200 cm−1 features

are better captured by the anharmonic calculations. The 1750 cm−1 band has been

assigned to bending motions of the waters flanking the excess proton,10,22,24,30 but

other studies have demonstrated that highly redshifted hydronium OH stretches in

gas-phase H+(H2O)21 clusters are also located at this frequency.14

Between 1900 and 3000 cm−1 lies the proton continuum, which has been assigned

to both hydronium stretches in Eigen-like configurations53 and OH stretches of the

flanking waters in Zundel-like configurations.26,29 The third signature band is around

3000 cm−1 both in experiment and in our calculations. This band in the VSCF/VCI

spectrum is more prominent than in the harmonic calculation. This feature has also

been associated with Zundel-like configurations, arising from OH stretches of the

two flanking waters around the central excess proton.10,13,22 To assess the various

assignments across the mid-IR and to explore the influence of anharmonic mode-

coupling, we will decompose this spectrum by geometric variables and vibrational

character below.

The improved accuracy of the VSCF/VCI spectrum over the harmonic spectrum

underscores the importance of anharmonic effects on the IR spectrum of the aque-

ous proton complex. The most apparent difference between the two methods is the

intensity of the continuum across 1900-3000 cm−1. According to harmonic analysis,

this continuum is assigned as both hydronium-like OH stretches in different distorted

Eigen-like clusters and OH stretches in flanking waters. However, the extremely large

harmonic intensity and broad bandwidth of the hydronium-like stretches dominate

over the flanking water stretches in this region. In the VSCF/VCI spectrum, strong

anharmonicity and mode mixing make hydronium stretches undergo significant red-

shifts and decreases in intensity, as in the cases of smaller gas-phase clusters.50

While the VSCF/VCI method is a great improvement over a harmonic treatment,

the difference between the anharmonic calculation and the experimental spectrum
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indicates that the special pair local monomer spectrum does not fully represent the

experimental aqueous proton spectrum. For instance, the experimental band at 1200

cm−1 is blueshifted to 1300 cm−1 in the VSCF/VCI spectrum. Besides the lack of

mode coupling to other low-frequency modes (O· · ·O stretches for example) within the

local monomer, there may be some uncertainty associated with the MS-EVB model

in providing correct statistics of aqueous protons structures. The MS-EVB model re-

produces the experimental radial distribution functions better than other methods,54

but there is still some slight over-structuring that may influence the accessible config-

urations. We also expect the VSCF/VCI spectra can be further improved with more

normal modes included in the calculation. Finally, the intensity of the 3000 cm−1

feature is larger than in experiment, but there is variability in the literature on the

measured intensity of this feature,29,30 subject to details of experimental collection.

Even with the above caveats, this approach is cost-effective and reliable for calculating

highly anharmonic IR spectra and analyzing the aqueous proton spectrum.

7.4.1 Decomposition of Spectrum by Vibrational Character

To assess the various assignments outlined above, we determined the spectral con-

tributions from different vibrational components. For this analysis, the 800 clusters

were binned into Zundel-like and Eigen-like configurations based on the proton asym-

metry parameter δROH.29,30 Due to the quantum delocalization of the proton in the

VSCF/VCI calculations, the quantum expectation value, 〈δROH〉, with cutoff of 0.2

Å was used. As seen in Figure 7.7a), the spectrum of Zundel-like (〈δROH〉 < 0.2Å)

clusters display three intense and broad bands: 1300 cm−1, 1750 cm−1 and 3000 cm−1,

whereas the spectrum due to Eigen-like configurations appears as a broad continuum

from 1000-3500 cm−1 with maxima around 2000 cm−1 and 2600 cm−1. We next used

geometric cutoffs in normal mode displacements to identify the vibrational character.

Normal modes with OH stretching displacements greater than 0.01Å were counted as
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either proton stretching or flanking water stretching modes, depending on location of

the H atom in the local monomer. Bending modes consisted of normal modes where

both flanking waters changed angle by at least 1.0◦, and umbrella modes consisted

of normal modes where all three HOH angles of H3O
+ changed by more than 0.8◦

with the same phase. Modes that consisted of both proton stretch and flanking bend

character were also considered. After identifying the vibrational character of the nor-

mal mode basis in each cluster, for each VSCF/VCI state we multiplied the square of

each of its normal mode’s VCI coefficients with their respective harmonic intensities.

The results of this procedure summed over clusters are presented in Figure 7.7b-d.

Multiplying the square of VCI coefficient with normal mode’s harmonic intensity is

a good approximation to identify the spectrum contribution from different normal

mode basis, which has been used to simulate the vibrational spectrum of the formic

acid dimer.55

The vibrational character decomposition is shown for all configurations in Figure

7.7b), with Zundel-like and Eigen-like decompositions in Figure 7.7c) and d), respec-

tively. For Zundel-like configurations, the proton stretch has a significant contribution

from 800-1600 cm−1 and 1700-2000 cm−1 while the flanking water OH stretch mainly

contributes to the region in 2500-3500 cm−1. Modes with primarily flanking wa-

ter bend character and proton stretch-bend mixed character overlap strongly at 1750

cm−1. Umbrella modes do not make significant contributions to the spectrum Zundel-

like complexes. In Eigen-like configurations (Figure 7.7d), the proton stretches span

a broad region from 1500-2600 cm−1 with a maximum at 2000 cm−1, whereas the

flanking water stretches span 2500-3500 cm−1. The spectral distribution of flanking

waters in Eigen-like complexes is broader than those in Zundel-like configurations

since the OH stretches on the hydronium and nearest water differ.29 There are bend-

ing modes of Eigen-like complexes at 1750 cm−1, but they are weaker than those from

Zundel-like complexes and there is less mixing with the proton stretch. Finally, there
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is weak umbrella mode character at 1200 cm−1.
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Figure 7.7 a) Calculated spectra of the aqueous proton from all 800 clusters,
〈δROH〉 < 0.2Å (Zundel-like) clusters, and 〈δROH〉 ≥ 0.2Å (Eigen-like) clusters. b)
Decomposition of the total spectra into different components, with p-OH str as proton
stretch, bend as flanking water bend, Umb as hydronium umbrella motion, w-OH str as
flanking water stretch, p-OH str/bend as motion which has both proton stretch and
flanking water bend character. c)-d) Decomposition results for (c) Zundel-like and (d)
Eigen-like configurations.

This decomposition assists in clarifying the various assignments presented above

from the literature. At 1200 cm−1 in the total spectrum (Figure 7.7b), the proton

stretch of Zundel-like configurations dominates, with little contribution from um-

brella modes of Eigen-like geometries. The intense and broad band from 1600-2000

cm−1 comes from multiple sources, listed in order of highest to lowest importance:

flanking water bends and mixed stretch-bend modes in Zundel-like configurations,

proton stretches in Zundel-like and Eigen-like clusters, and bending modes in Eigen-
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like configurations. This heterogeneity explains why there has been controversy in the

assignment of this region, but all of these contributions should be taken into account

when analyzing this region of the IR spectrum. The continuum from 2000-2700 cm−1

consists of contributions from Eigen-like proton stretches and flanking water stretches,

while flanking water stretches in both Eigen-like and Zundel-like complexes are found

at frequencies higher than 2700 cm−1. In general, flanking water stretches do not show

strong mixing with the other modes and therefore do not donate their high intensity

to those modes. As a result, the flanking water stretches become distinguishable on

top of the continuum.

7.4.2 Influence of Structural Parameters on Proton Stretch
Frequency

To disentangle structural information encoded in the calculated vibrational spec-

trum, we conduct a statistical analysis of several important proton-related structural

parameters (ROO, ROH, δROH) and the associated proton stretch vibration in each

chosen [H+(H2O)2](H2O)4 cluster. In each local H+(H2O)2 monomer, δROH is the

previously defined proton asymmetry parameter, ROO is the distance between the

oxygen atoms of the two flanking waters, and ROH is the shortest distance between

the excess proton and one of the oxygens. Previous studies have demonstrated that

the proton stretch frequency is highly sensitive to its local environment,24,56,57 and

these local parameters may each be useful for characterizing the relationship between

proton stretch frequency and local monomer configuration. Recently, some of us ana-

lyzed the distribution of hydronium ROH in H7O
+

3 and H9O
+

4 from classical MD and

thermostatted Ring Polymer MD (TRPMD) at 100 K.50 It was found that the hydro-

nium OH distance significantly lengthens in TRPMD calculations, which reflects the

strong nuclear quantum effects of the proton and is the main reason for large shifts in

anharmonic vibrational spectra. To appropriately account for quantum delocalization

of the proton, we also calculated the expectation value of each structural parameter
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using the VCI ground state wavefunction for every cluster.

Figures 7.8a) and 7.8b) show the value of ROO and δROH drawn from the classical

simulation frames, and their expectation values from VSCF/VCI calculations. As

seen in Figure 7.8a), there exists high correlation between ROO and its expectation

value, 〈ROO〉, which indicates that the nuclear quantum effects do not have significant

impact on the central oxygen atoms. On the other hand, Figure 7.8b) shows that

the quantum expectation value of δROH decorrelates substantially from the values

in its associated cluster’s initial structure, owing to a much larger nuclear quantum

effect of the proton. A similar decorrelation is observed between ROH and 〈ROH〉

(Figure 7.9). In the VSCF/VCI calculation, the proton delocalizes and explores a

large region around the anharmonic potential energy surface, rather than remaining

fixed at the initial structure. For flat, highly anharmonic potentials such as the

proton stretch, the VSCF/VCI calculation therefore more accurately represents the

delocalization of the proton in the vibrational ground state. In Table 7.3, we list

the numbers of clusters in different δROH intervals based on initial structures and

VSCF/VCI expectation values. From the nuclear quantum effects of the proton, the

distribution of expectation values of δROH is skewed more to the extremes of δROH

(specially to low 〈δROH〉, Figure 7.10) than the distribution of initial structures.
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Figure 7.10 Distribution of δROH from 800 MS-EVB MD structures and their
expectation values 〈δROH〉 from VSCF/VCI calculations

Table 7.3 Population distribution of 800 chosen protonated water clusters from inital
structures in MS-EVB MD trajectory and VSCF/VCI calculations

MS-EVB MD
δROH (Å) 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-
Number 184 240 248 112 16

VSCF/VCI
〈δROH〉 (Å) 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-
Number 287 152 185 143 33

Taking into account the strong quantum effects on proton positions, we next ex-

plore the relationship between structural parameters and proton stretch frequency.

From Figure 7.11-7.14, we show the scatter plots for all three parameters separately.

Generally, the initial values of ROH or δROH only weakly correlate with anharmonic

proton stretch frequency, but the frequency correlations show significant improvement

with 〈ROH〉 and 〈δROH〉. As to the parameter ROO or 〈ROO〉, from Figure 7.13, it

can be seen that in Zundel-like structures, the anharmonic proton stretch decreases

with longer 〈ROO〉 while proton stretch frequencies in Eigen-like structures are less
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sensitive to changes in 〈ROO〉. Finally, among the initial and quantum expectation

values of all three parameters, we find the best correlation between proton stretch

frequency and 〈ROH〉 (Figure 7.8d). Previous studies have raised issues with using

δROH as a descriptive coordinate for the entire aqueous proton complex29,57,58 due

to the additional dependence of the proton potential on ROO and the arbitrariness

of δROH as a cutoff on a continuum of structures. Alternatively, ROH has success-

fully been used to predict the red-shift of proton-related stretches in Zundel-like and

Eigen-like protonated water clusters H+(H2O)n, n = 2−4.42,50,56 Even more recently,

vibrationally averaged ROH values were successfully analyzed to provide a unifying

picture for predicting OH stretch frequencies in bulk water, flanking waters in aqueous

proton complexes, and waters in the first solvation shell of halide anions.59 As shown

in Figure 7.8c), 〈ROH〉 correlates well with 〈δROH〉 but comparison with Figure 7.11

illustrates that 〈ROH〉 correlates better with proton stretch frequency. Interestingly,

the correlation is weaker between 〈ROH〉 = 1.1 and 〈ROH〉 = 1.2, which suggests that

incorporating other coordinates is necessary to better describe the proton stretch fre-

quency for Zundel-like configurations. This likely arises from anharmonic coupling to

other degrees of freedom such as bending modes, which are known to strongly couple

to the proton stretch in the gas phase.10,13
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7.4.3 Decomposition of Spectrum by 〈ROH〉
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Figure 7.15 Decomposition of the calculated spectra of aqueous proton according to
different 〈ROH〉 values. The percentage of clusters in each group is included in parentheses.

To examine how the various vibrations shift with 〈ROH〉, we present the full mid-

IR spectrum decomposed by 〈ROH〉 (Figure 7.15). Decomposition by 〈δROH〉 is also

presented in Figure 7.16. For 〈ROH〉 between 1.00-1.05 Å (extreme Eigen configura-

tions), the spectrum displays intense hydronium stretches at 2500-2700 cm−1 and a

weak umbrella mode around 1250 cm−1. When 〈ROH〉 lengthens to 1.05-1.10 Å, the

continuum begins to bifurcate into two broad features centered around 2000 cm−1

and 2800 cm−1. Comparing with Figure 7.7d), the split reflects the symmetry break-

ing between the three hydronium protons, resulting in a “special pair" OH stretch at

2000 cm−1 and flanking OH stretches at higher frequencies. The extreme breadth of

the higher-frequency feature may reflect that the flanking OH stretches of the central
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hydronium and the OH stretches in the adjacent water of the local monomer interact

differently with the excess proton.29

As 〈ROH〉 increases above 1.10 Å(〈δROH〉 < 0.2Å), the spectral signatures of the

aqueous proton complex appear more Zundel-like. As the proton stretch redshifts

with 〈δROH〉, spectral overlap with the bending modes increases, resulting in stronger

anharmonic mode mixing. At 1800 cm−1, there is significant stretching and bending

character, and the bending modes gain intensity as a result. The stretching modes

of the shared proton are centered at 1400 cm−1, while the flanking OH stretch band

blueshifts to 3000 cm−1 and narrows somewhat as the two flanking waters share the

excess proton more equitably. For 〈ROH〉 > 1.15Å, the spectrum appears even more

Zundel-like with three bands at 1400 cm−1, 1750 cm−1, and 3100 cm−1 and negligible

intensity between 2000 and 2500 cm−1 (like the Zundel isomer of H+(H2O)6 in Figure

7.1).

These trends illustrate how the various frequency regions report on different in-

stantaneous configurations. First, because the small populations of the extreme con-

figurations 〈ROH〉 < 1.05Å and 〈ROH〉 > 1.20Å, the vast majority of spectra are best

described as among a range of distorted Eigen-like to asymmetric Zundel-like vibra-

tional spectra. The 1000-1500 cm−1 region primarily reports on proton stretches in

Zundel-like configurations, whereas umbrella modes in Eigen-like configurations do

not contribute significantly to the overall feature in the experimental spectrum. The

intensity of the bending feature at 1750 cm−1 is largest for 1.10Å< 〈ROH〉 < 1.20Å,

where the intensity is borrowed via anharmonic coupling with proton stretching mo-

tions. In distorted Eigen-like configurations, the stretch-bend coupling is reduced

(Figure 7.7d) and so bend features are less apparent on top of the continuum. For

these distorted Eigen-like complexes, the bend also blueshifts to 1800 cm−1, which

has been observed in the gas phase32 and more recently in contact ion pairs between

H+(aq) and NO –
3 (aq).60 The continuum is only seen in Eigen-like configurations,
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but a strongly blue-shifted OH stretch involving the hydronium proton that donates

an hydrogen bond to the closest water is present at 2000 cm−1. There are multiple

overlapping contributions between 1500 and 2000 cm−1, where stretching and bend-

ing motions of both Zundel-like and Eigen-like complexes contribute. This ambiguity

may be responsible for the counterintuitive polarization response in the 2D IR cross

peak between the stretch and bend of the proton hydration complex.26
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Figure 7.16 Decomposition of the calculated spectra of aqueous proton according to
different 〈δROH〉 values.

7.4.4 Challenges and Outlook

The results here have been useful for disentangling assignments for aqueous proton

vibrations, but there are still some areas that require further study. As we mentioned

above, the VSCF/VCI spectra presented here are calculated from static structures of

local H+(H2O)2 monomers drawn from MS-EVB frames, which altogether leave out

various characteristics of the aqueous proton spectrum. In addition, recent 2D IR

spectra of the aqueous proton demonstrated that all of the main features displayed

cross peaks between each other, implying strong anharmonic mixing between every
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vibrational mode.26 However, the spectral decomposition in Figure 7.7 would imply

that coupling between Eigen-like and Zundel-like complexes would be missing cross

peaks. This might be reconciled with experiment by taking into account the spectral

dynamics associated with sub-100-fs proton rattling19,48 that may blur the distinctions

between Eigen-like and Zundel-like configurations.

Regardless, the anharmonic calculations here provide an exciting opportunity to

interpret linear IR and also 2D IR spectrum of the aqueous excess proton. Excited

state and combination band energies are calculated by the VSCF/VCI method, which

can be directly compared to excited state absorptions and cross peaks in the 2D IR

spectrum. Additionally, transition dipoles from various excitations are calculated,

which can be related to measured 2D anisotropy measurements and could possibly

bring clarity to the heterogeneity of vibrations in the 1500-2000 cm−1 region. The

multi-dimensional nuclear potential for the anharmonic proton stretch can also be

compared to its 2D lineshape to more accurately determine structure-frequency trends

and to interpret low-dimensional projections of the potential. These tools may even

be useful for benchmarking classical trajectories, which would help generate frequency

and dipole trajectories needed for capturing spectral dynamics and reproducing the

2D spectrum of the excess proton.

7.5 Summary and Conclusions

We report the anharmonic spectrum of the aqueous proton calculated from the

VSCF/VCI approach using 800 H+(H2O)6 clusters. The accuracy of the theoreti-

cal scheme is verified in the Zundel and Eigen isomers of gas-phase H+(H2O)6. The

calculated vibrational spectrum of the aqueous proton improves in agreement to ex-

periment compared to the harmonic spectrum, even though the spectrum consists

of local H+(H2O)2 monomers in hexamer clusters. By decomposing the spectrum

into different normal mode components, we successfully verify and make assignments
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of proton stretch, flanking water stretch, and bending motions across the spectrum.

The strong mixing between proton stretch and bending motion is also observed, par-

ticularly for Zundel-like snapshots. Further analysis finds strong nuclear quantum

effects of the proton and also strong correlation between excess proton-oxygen dis-

tance 〈ROH〉 and associated anharmonic proton stretch. We finally decompose the

anharmonic spectrum by 〈ROH〉 to dissect the spread of IR response over a distri-

bution of possible configurations. By comparing the trends based on 〈ROH〉 and on

normal mode decomposition, we discuss how one can interpret different frequency re-

gions of the total spectrum in terms of geometry and vibrational character. We look

forward to harnessing these anharmonic calculations for in-depth interpretation of the

2D IR spectrum of the aqueous proton and investigation of the strong anharmonic

mixing between different vibrational modes.
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man, J. M.; Kaledin, M. J. Phys. Chem. Lett. 2018, 9, 798–803.

[52] Napoli, J. A.; Marsalek, O.; Markland, T. E. J. Chem. Phys. 2018, 148, 222833.

[53] Xu, J.; Zhang, Y.; Voth, G. A. J. Phys. Chem. Lett. 2011, 2, 81–86.

[54] Biswas, R.; Tse, Y. L. S.; Tokmakoff, A.; Voth, G. A. J. Phys. Chem. B. 2016,

120, 1793–1804.

[55] Houston, P.; Van Hoozen, B. L.; Qu, C.; Yu, Q.; Bowman, J. M. Faraday Discuss.

2018, 212, 65–82.

[56] Yu, Q.; Bowman, J. M. J. Phys. Chem. Lett. 2016, 7, 5259–5265.

[57] Marx, D. ChemPhysChem 2006, 7, 1848.

[58] Swanson, J.; Simons, J. J. Phys. Chem. B 2009, 113, 5149.

[59] Boyer, M. A.; Marsalek, O.; Heindel, J. P.; Markland, T. E.; McCoy, A. B.;

Xantheas, S. S. J. Phys. Chem. Lett. 2019, 10, 918.

[60] Lewis, N. H.; Fournier, J. A.; Carpenter, W. B.; Tokmakoff, A. J. Phys. Chem.

B. 2018, 123, 225–238.


	Introduction
	I Theories and Methods
	Potential Energy Surface
	Born-Oppenheimer Approximation
	Permutationally Invariant Potential Energy Surface
	Permutational Symmetry
	Many-body Expansion

	Molecular Vibrations
	Vibrational Self-Consistent Field and Virtual-state Configuration Interaction
	MULTIMODE
	Watson Hamiltonian
	n-Mode Representation of the Potential
	Infrared Intensity

	Quantum Local Monomer Model


	II Many-body Potential Model for Hydrated Proton
	Many-body Potential Energy Surface and Dipole Moment Surface
	Assignment of Monomers
	H3O+ Potential Energy Surfaces
	Hydronium Water 2-body Interaction
	Hydronium Water 3-body Interaction
	Hydronium Water 4-body Interaction
	Water Potential
	Dipole Moment Surface
	Benchmark electronic structure calculations for H3O+(H2O)n, n=0-5 clusters 


	III Vibrational Dynamics of Gas-phase Protonated Clusters
	H3O+ PES Validation and Vibrational Analysis
	Fidelity of the Potential and Vibrational Calculations
	Summary and Conclusions

	Vibrational Dynamics of H7O3+ and H9O4+
	First Trial of Vibrational Spectra of H7O3+ and H9O4+
	Introduction
	Results and Analysis
	Conclusions

	Vibrational Spectra of the Eigen, Zundel and Ring Isomers of H+(H2O)4—Find a Single Match to Experiment
	Introduction
	Computational Details and Results
	Conclusion

	Vibrational Spectra of the Protonated Water Trimer H7O3+—Combined Experimental and Theoretical Study
	Introduction
	Conclusion

	Deconstructing Prominent Bands in the Terahertz Spectra of H7O3+ and H9O4+: Intermolecular Modes in Eigen Clusters
	Introduction
	Computational Details
	Results and Discussion

	Revisit of Vibrational Spectra of H7O3+ and H9O4+: Classical, Thermostatted Ring Polymer, and Quantum VSCF/VCI Calculations
	Introduction
	Classical MD and TRPMD IR Spectra Calculation
	VSCF/VCI and Quasi-classical MD IR Spectra Calculation
	Results and Discussion
	Conclusions



	IV Vibrational Spectra of the Aqueous Proton
	High-Level VSCF/VCI Calculations Decode the Vibrational Spectrum of the Aqueous Proton
	Introduction
	Computational Details
	Vibrational Spectra of Two Isomers of H+(H2O)6
	Vibrational Spectra of 800 H+(H2O)6 clusters
	Decomposition of Spectrum by Vibrational Character
	Influence of Structural Parameters on Proton Stretch Frequency
	Decomposition of Spectrum by "426830A ROH"526930B 
	Challenges and Outlook

	Summary and Conclusions



