
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for

an advanced degree from Emory University, I hereby grant to Emory University and

its agents the non-exclusive license to archive, make accessible, and display my thesis

or dissertation in whole or in part in all forms of media, now or hereafter known,

including display on the world wide web. I understand that I may select some access

restrictions as part of the online submission of this thesis or dissertation. I retain

all ownership rights to the copyright of the thesis or dissertation. I also retain the

right to use in future works (such as articles or books) all or part of this thesis or

dissertation.

Signature:

Reed Leon Gordon-Sarney Date



Zero-Cycles on Torsors under Linear Algebraic Groups

By

Reed Leon Gordon-Sarney

Doctor of Philosophy

Mathematics

Raman Parimala

Advisor

Suresh Venapally

Committee Member

David Zureick-Brown

Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.

Dean of the James T. Laney School of Graduate Studies

Date



Zero-Cycles on Torsors under Linear Algebraic Groups

By

Reed Leon Gordon-Sarney

B.A., Wesleyan University, 2012

M.Sc., Emory University, 2015

Advisor: Raman Parimala, Ph.D.

An abstract of

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

2017



Abstract

Zero-Cycles on Torsors under Linear Algebraic Groups

By Reed Leon Gordon-Sarney

Let k be a field, let G be a smooth connected linear algebraic group over k, and let X

be a G-torsor. Totaro asked: if X admits a zero-cycle of degree d ≥ 1, does X have

a closed étale point of degree dividing d? We give a positive answer in two cases:

1. G is an algebraic torus of rank ≤ 2 and char(k) is arbitrary, and

2. G is an absolutely simple adjoint group of type A1 or A2n and char(k) 6= 2.

We also give the first known examples where Totaro’s question has a negative answer.

In particular, we exhibit failures via tori over number fields, p-adic fields, and complete

discrete valuation fields k with global residue fields of char(k) 6= 2 and show that

Totaro’s question has a negative answer in general for tori of all ranks ≥ 3.
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Chapter 1

Introduction

Central simple algebras are the subject of some of the most elegant work in

twentieth-century algebra and number theory. Consider the Schur index of a cen-

tral simple algebra, defined to be the greatest common divisor among finite degrees

of the algebra’s splitting fields over the ground field; it is a result of Schur and Noether

that it is also the minimal degree of such an extension, which we can further take

to be separable. In view of the correspondence between central simple algebras and

forms of projective space, the Schur index of a central simple algebra corresponds to

the minimal positive degree of a zero-cycle on its Severi–Brauer variety. The stated

result then says that this variety has a closed étale point of the same degree.

In general, one can define the index of a quasi-projective variety X over a field by

ind(X) := min{deg(Z) ≥ 1 : Z is a zero-cycle on X}

and ask whether X admits a closed étale point of that degree. The answer, of course,

is a resounding “no,” and the literature is rich with striking examples in the index 1

case. Colliot-Thélène–Coray produced a conic bundle over P1
Qp , a rational surface, ad-

mitting a zero-cycle of degree 1 but having no rational points [CTC79]. Florence con-

structed affine homogeneous spaces under smooth connected linear algebraic groups
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over C((x))((y)) and over local or global fields (with finite stabilizers in the latter

case) with this same property [Flo04]. Parimala gave as an example a projective

homogeneous space under a smooth connected linear algebraic group over Qp((t))

[Par05], settling a long-standing conjecture of Vĕısfĕıler in the negative [Vĕı69].

In the setting of torsors under linear algebraic groups, the index 1 variant of this

question is due to Serre, dates back to the ‘60s, and is still open in general (cf. [Ser62,

Question 5.3.(ii)], [Ser95, Question 2.4.2], [Ser, Appendix 2.4]).

Serre’s Question. Let G be a smooth connected linear algebraic group over a field.

If a G-torsor X has index 1, does X have a rational point?

In 2004, with the results on Severi–Brauer varieties–torsors under projective gen-

eral linear groups–in mind, Totaro generalized Serre’s question in another natural

way: does every quasi-projective homogeneous space under a smooth connected lin-

ear algebraic group have a closed étale point of degree equal to its index [Tot04]?

Florence’s and Parimala’s constructions were published shortly after Totaro’s paper

and sharpened Totaro’s question to the torsor case, which remained open.

Totaro’s Question. Let G be a smooth connected linear algebraic group over a field.

Does every G-torsor have a closed étale point of degree equal to its index?

The research in this thesis was embarked upon under the belief that this question

had a positive answer in general, and my graduate work concludes having constructed

the first known counterexamples with Suresh. Contributing to a limited body of

work attacking the question directly, including only the results of Totaro [Tot04],

Garibaldi–Hoffman [GH06], and Black–Parimala [BP14], we answer Totaro’s question

affirmatively in two special cases and give two classes of examples where the question

has a negative answer. Specifically, we prove the following results.

Theorem 1.0.1 ([GSb, Theorem 1.1], cf. Chapter 4). Let k be a field, and let T be

a torus over k of rank ≤ 2. Then Totaro’s question has an affirmative answer for T .
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Corollary 1.0.2 ([GSb, Corollary 1.2], cf. Chapter 4). Let X be a del Pezzo surface

of degree 6. Then X has a closed étale point of degree equal to ind(X).

Theorem 1.0.3 ([GSa, Theorem 1.1], cf. Chapter 5). Let k be a field of characteristic

not equal to 2, and let G be an absolutely simple classical adjoint group over k of type

A1 or A2n. Then Totaro’s question has an affirmative answer for G.

Theorem 1.0.4 (cf. Chapter 6). Let k be a p-adic field. Then there are smooth

connected linear algebraic groups G over k such that every non-trivial G-torsor X

has index p but has no closed points of degree p.

Corollary 1.0.5 (cf. Chapter 6). For every r ≥ 8, there is a semisimple linear

algebraic group G (and a torus T ) of rank r over Q such that every non-trivial G-

torsor (and T -torsor) has index 2 but has no closed points of degree 2.

Theorem 1.0.6 (cf. Chapter 6). Let k be a complete discrete valuation field whose

residue field is a global field of characteristic not equal to 2. Then for every r ≥ 3,

there is a smooth connected linear algebraic group G of rank r over k such that every

non-trivial G-torsor X has index 2 but has no closed points of degree 2.

Corollary 1.0.7 (cf. Chapter 6). For every r ≥ 3, there are semisimple linear alge-

braic groups G (and tori T ) of rank r over Q(t) and Qp(t) such that every non-trivial

G-torsor (and T -torsor) has index 2 but has no closed points of degree 2.
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Chapter 2

Fundamental Objects

We start by introducing the central objects of study in this thesis. For the reader’s

benefit, only select essential results will be isolated and cited, and many non-trivial

results will be stated in passing as black boxes. Each subsection will begin with

comprehensive references where the omitted details and proofs can be found.

2.1. Central Simple Algebras

For a thorough exposition of the classical structure theory, refer to Chapters 12 and

13 of Pierce [Pie82]. For a more modern and expedited treatment, refer to Chapter 2

of Gille-Szamuely [GS06]. For an exhaustive resource on the theory with involutions

in mind, begin with Chapter I of Knus–Merkurjev–Rost–Tignol [KMRT98].

2.1.1 The Brauer Group

Let k be a field. A finite-dimensional associative unital k-algebra is called central

if its center is k and simple if it has no non-trivial two-sided ideals. A central simple

algebra is called division if every non-zero element has a multiplicative inverse.



5

Theorem 2.1.1 (Wedderburn, [GS06, Theorem 2.1.3]). Let A be a central simple al-

gebra over k. Then A ∼= Mn(D) for a unique n ≥ 1 and a unique (up to isomorphism)

division algebra D over k.

Two central simple algebras A and B over k are said to be Brauer equivalent if

they identify the same division algebra. Brauer equivalence is an equivalence relation

on the set of central simple algebras over k, and each equivalence class is determined

by the unique division algebra it contains. The set of equivalence classes admits an

abelian group structure with operation induced by taking tensor products, inversion

induced by taking opposite algebras, and identity given by the equivalence class of k.

This group is called the Brauer group of k and is denoted Br(k). Define the period

of a central simple algebra A over k, denoted per(A), to be the order of [A] ∈ Br(k).

It is immediate that the period is well-defined for elements of Br(k).

2.1.2 Splitting Fields

Fix a central simple algebra A over k, and let ks denote a separable closure of k.

There is a unique d ≥ 1 such that A⊗k ks ∼= Md(k
s), which means that there is some

(non-unique) finite separable field extension L/k such that A ⊗k L ∼= Md(L). Any

field extension E/k such that A ⊗k E ∼= Md(E) is called a splitting field of (and

is said to split) A. The dimension of A over k is then a square, whose square root

we call the degree of A and denote by deg(A). If A ∼= Mn(D) as in Wedderburn’s

Theorem, then deg(A) = n deg(D), hence deg(D) | deg(A). Define the Schur index

of A, denoted indSch(A), to be deg(D). Since Brauer equivalence classes parametrize

division algebras over k, the Schur index is well-defined for elements of Br(k).

A subfield of A that is maximal with respect to containment is called a maximal

subfield. Every maximal subfield of A has degree over k equal to deg(A) and splits

A. In fact, the splitting fields of A of finite degree over k are precisely the maximal

subfields of central simple algebras that are Brauer equivalent to A. Since any central
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simple algebra that is Brauer equivalent to a split algebra is itself split, the notion

of a splitting field is therefore well-defined for elements of Br(k). We can then define

the relative Brauer group associated to any field extension L/k, denoted Br(L/k),

to be the subgroup of Br(k) ∼= Br(ks/k) whose elements are split by L.

The following theorem gives three consequences of this rich structure theory.

Theorem 2.1.2 ([Pie82, Propositions 13.4, 13.5]). Let [A] ∈ Br(k).

1. indSch(A) = gcd{[L : k] : L/k is a finite field extension and L splits A}.

2. indSch(A) = min{[L : k] : L/k is a finite field extension and L splits A}.

3. indSch(A) = min{[L : k] : L/k is a finite separable field extension and L splits A}.

2.1.3 Involutions

Suppose now that k has characteristic 6= 2. Let K/k be an étale quadratic ex-

tension and A be a central simple algebra over K. An antiautomorphism σ on A

is called an involution if σ2 = id; it is called an involution of the first kind if

[K : Kσ] = 1 and of the second kind or unitary if [K : Kσ] = 2. If σ is unitary

with fixed field Kσ = k, then for clarity, we call σ a K/k–involution, and we define

the automorphisms of (A, σ) to be the K-automorphisms of A that commute with σ.

2.2. Linear Algebraic Groups

For an elegant overview of the classification of linear algebraic groups, begin with

Chapter 3 of Bhaskhar’s thesis [Bha16]. For a deep, functorial approach, refer to

Chapter VI of Knus–Merkurjev–Rost–Tignol [KMRT98]. The geometrically-inclined

reader who is interested in tori should consider Voskresenskĭı [Vos98].

For us, a variety over k will be an integral separated scheme of finite type over
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Spec(k). An algebraic group G over k is a variety over k where the maps

m : G×k G→ G “multiplication”

i : G→ G “inversion”

e : Spec(k)→ G “identity”

are morphisms over Spec(k). A linear algebraic group is an algebraic group that

admits a Zariski-closed embedding into some GLn : (det(xij)y − 1 = 0) ⊆ An2+1
Z over

ks. Equivalently, linear algebraic groups are precisely the affine algebraic groups.

2.2.1 Algebraic Tori

For any étale algebra A over k, let Gm,A (or just Gm when the base is understood)

be the abelian group scheme SpecA[t, t−1]. A connected linear algebraic group T over

k is called an algebraic torus, k-torus, or simply a torus if

Tks := T ×k ks ∼= Gr
m,ks

for some r ≥ 1, which is called the rank of the torus. If E/k is a field extension such

that TE ∼= Gr
m,E, then E is called a splitting field of (and is said to split) T .

For any finite étale algebra A over k, let RA/k denote the Weil restriction functor

(also called the restriction of scalars functor), which takes A-schemes to k-schemes

and, in particular, takes A-tori to k-tori. Then for any finite separable field extension

L/k and any L-torus T , RL/kT is a k-torus. A k-torus T is called quasi-trivial if it

is isomorphic to a finite product of tori of the form RLi/kGm where each Li/k is a

finite separable field extension. For any finite separable field extension L/k, call

R
(1)
L/kGm := ker[RL/kGm

NL/k−−−→ Gm]



8

the norm torus associated to that extension; R
(1)
L/kGm evidently has rank [L : k]−1.

2.2.2 Adjoint Groups of Type An

Let k be a field of characteristic 6= 2, let K/k be an étale quadratic extension, let

A be a central simple algebra over K, and let σ be a K/k–involution on A. Then the

automorphisms of (A, σ) are the K-automorphisms of A that commute with σ, and

Aut(A, σ) is a linear algebraic group with k-points

Aut(A, σ)(k) ∼= {Int(a) ∈ AutK(A) : a ∈ A×, σ(a)a ∈ k×},

where Int(a) : A→ A is given by Int(a)(x) = axa−1. The elements a ∈ A× such that

σ(a)a ∈ k×, called the similitudes of (A, σ), form a group denoted Sim(A, σ)(k); it

is clear that they only determine the automorphisms of (A, σ) up to scalars from K×.

Viewed functorially, we have a short exact sequence of linear algebraic groups over k

1→ RK/kGm → Sim(A, σ)
Int−→ Aut(A, σ)→ 1.

Adjoint groups appear as images of adjoint representations Ad : G→ Aut(Lie(G))

where Lie(G) is the Lie algebra associated to a semisimple linear algebraic group G.

The classification of absolutely simple (i.e., simple over a separable closure) linear

algebraic groups separates classical groups from exceptional groups where abso-

lutely simple classical groups are classified into types An, Bn, Cn, and Dn (trialitarian

D4 excluded). By work of Weil, classical adjoint groups can be interpreted in the lan-

guage of algebras with involution; in particular, an absolutely simple classical adjoint

group of type An over k is isomorphic to Aut(A, σ) for a central simple algebra A of

degree n+ 1 over an étale quadratic extension K/k and σ a K/k-involution on A.
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2.2.3 Torsors and Zero-Cycles

Let G be a linear algebraic group over k, and let ks denote the separable closure of

k. A non-empty variety X over k equipped with a right G-action is called a right G-

torsor over k or a principal homogeneous space under G if the right G(ks)-action

on X(ks) is simply transitive. In other words, X is a right G-torsor if the morphism

X ×k G → X ×k X given by (x, g) 7→ (x, xg) becomes an isomorphism over ks. If

X ×k G ∼= X ×k X as varieties over k, then X is said to be the trivial torsor. (The

definition is similar for left G-torsors, and these two definitions coincide when G is

abelian. From here on, every torsor will be a right torsor.) The following theorem is

an easy exercise but a crucial fact in the study of torsors and rational points.

Theorem 2.2.1. A G-torsor X over k is trivial if and only if X(k) 6= ∅.

Now, let X be a scheme and x ∈ X be a closed point. We define the residue field

x, denoted k(x), to be the quotient OX,x/mx of the local ring at x by its corresponding

maximal ideal. Suppose further that X is a quasi-projective variety over a field k.

Then k(x) is a finite extension of k, whose degree we call the degree of x. (If k(x)/k

is a finite separable field extension, then we say that x ∈ X is a closed étale point.)

For any finite field extension L/k, X(L) 6= ∅ if and only if there is a morphism

Spec(L)→ X over Spec(k) if and only if there is a closed point x ∈ X whose residue

field k(x) is k-isomorphic to a subfield of L. So X(k(x)) 6= ∅.

Let Z0(X) denote the free abelian group on closed points of X, whose elements

we call zero-cycles on X. The degree map on closed points of X extends linearly

to a group homomorphism deg : Z0(X) → Z, and so we say that the degree of a

zero-cycle Z =
m∑
i=1

nixi is deg(Z) =
m∑
i=1

ni[k(xi) : k]. Define the index of X by

ind(X) := min{deg(Z) ≥ 1 : Z ∈ Z0(X)}.

If X(k) 6= ∅, then ind(X) = 1. But the converse need not hold.



10

Chapter 3

Galois Cohomology

Galois cohomology is a toolkit to probe the arithmetic behavior of objects over

fields. The standard text is Serre [Ser], but it is dense for a first treatment. For a gen-

tler introduction, refer to Chapter 3 of Gille–Szamuely [GS06]. Explicit computations

in the Brauer group setting can be found in Chapter 14 of Pierce [Pie82].

3.1. Finite Group Cohomology

Let G be a finite group. If an abelian group M has a (left) G-action, then we say

that M is a (left) G-module. Equivalently, M is a G-module if it is a module over

the group ring Z[G]. If the G-action on M is trivial, then we say that M is a trivial

G-module. We say that a G-module P is a projective G-module if for any surjection

of G-modules A→ B, the map HomG(P,A)→ HomG(P,B) induced by composition

are onto. A projective resolution of a G-module M is an infinite exact sequence

· · · p3−→ P2
p2−→ P1

p1−→ P0
p0−→M

p−1−−→ 0

where each Pi is a projective G-module.
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Now, fix a G-module M and a projective resolution of the trivial G-module Z

· · · p3−→ P2
p2−→ P1

p1−→ P0
p0−→ Z p−1−−→ 0.

Since HomG(−,M) is a contravariant left exact functor from the category of G-

modules to the category of sets, we have an induced left exact sequence

HomG(P0,M)
d1−→ HomG(P1,M)

d2−→ HomG(P2,M)
d3−→ · · ·

For each i ≥ 1, define H i(G,M) := ker(di+1)/im(di) and H0(G,M) := HomG(Z,M).

Maps in HomG(Pi,M), ker(di+1), and im(di) are called i-cochains, i-cocycles, and

i-coboundaries, respectively. It turns out that these H i(G,M) do not depend on the

choice of projective resolution, and so they are well-defined abelian groups associated

to the G-module M that we call cohomology groups (with coefficients in M).

Theorem 3.1.1 ([GS06, Proposition 3.1.9]).

(a) If M is a G-module, then H0(G,M) ∼= MG.

(b) For any G-module homomorphism A → B, there is a canonical group homo-

morphism H i(G,A)→ H i(G,B) for each i ≥ 0.

(c) Given a short exact sequence of G-modules

0→ A→ B → C → 0,

there is a canonical long exact sequence of abelian groups

· · · → H i(G,A)→ H i(G,B)→ H i(G,C)
δ−→ H i+1(G,A)→ · · ·

beginning with i = 0.



12

If M is not a G-module but a non-abelian group with G-action, then techniques

similar to those above may be used only to construct H0(G,M) ∼= MG and H1(G,M).

These will be pointed sets rather than abelian groups–called cohomology sets–which

means that exactness as in Theorem 3.1.1.(c) should be reinterpreted in terms of the

point. Nevertheless, one can still obtain an exact sequence of cohomology sets. If we

have a short exact sequence of (not all abelian) groups with G-action

1→ A→ B → C → 1,

then the exact sequence of pointed sets is

1→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C).

If A is a G-module and central in B, then the sequence extends to H2(G,A).

3.2. Profinite Group Cohomology

Let k be a field, and let Γ = Gal(ks/k) be the absolute Galois group of k. Our

ultimate goal is understand Γ-modules (or sets) G(ks) for some linear algebraic groups

G by constructing cohomology groups (or sets) H i(Γ, G(ks)). We can exploit that Γ

is “assembled from” finite groups to define cohomology as in the previous section.

An inverse system of sets consists of a partially ordered set I such that for every

i, j ∈ I, there is an l ∈ I such that i ≤ l and j ≤ l, a collection of sets Gi indexed

by I, and a collection of maps ρij : Gj → Gi for each i ≤ j such that each ρii is the

identity and ρij ◦ ρjl = ρil whenever i ≤ j ≤ l. For example, let I be the index set

for the collection of finite Galois extensions Li/k, let i ≤ j if and only if Li ≤ Lj, let

Gi = Gal(Li/k), and for each i ≤ j, let ρij = resLj/Li : Gal(Lj/k)→ Gal(Li/k). It is
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clear that this data defines an inverse system. Define its inverse limit by

lim←−
n

Gal(Ln/k) := {(gi) ∈
∏
i

Gal(Li/k) : ρij(gj) = gi whenever i ≤ j}.

Not only is it clear that Γ ∼= lim←−
n

Gal(Ln/k), but this construction suggests a topol-

ogy on Γ: give each Gal(Ln/k) the discrete topology, give
∏
n

Gal(Ln/k) the product

topology, and then give Γ ↪→
∏
n

Gal(Ln/k) the subspace topology. In general, in-

verse limits of finite groups equipped with a topology in this way are called profinite

groups with the profinite topology. The open subgroups of Γ are precisely the

closed subgroups of finite index, which correspond to finite field extensions of k.

Now, let M be a Γ-module (or set) with the discrete topology. We say that

Γ acts continuously on M if the stabilizer of each m ∈ M is open in Γ. If Γ acts

continuously on M , then our cohomology construction in terms of continuous cocycles

and coboundaries is compatible with the inverse limit in the sense that

H i(Γ,M) ∼= H i(lim←−
n

Gal(Ln/k),M) := lim−→
n

H i(Gal(Ln/k),MGal(Ln/k))

where the right-hand side is a direct limit of the directed system of cohomology

groups (or sets) H i(Gal(Ln/k),MGal(Ln/k)), whose constructions are similar (but “op-

posite”) to those in the inverse setting. If our Γ-module is G(ks) for some abelian

linear algebraic group G over k–or if we are considering the Γ-action on the non-

abelian group G(ks) if G is not abelian–we define H i(k,G) := H i(Γ, G(ks)) to be the

ith Galois cohomology group (or Galois cohomology set) associated to G.

Theorem 3.2.1.

(a) If G is a linear algebraic group over k, then H0(k,G) ∼= G(ks)Γ = G(k).

(b) For any homomorphism A→ B of abelian linear algebraic groups over k, there

is a canonical group homomorphism H i(k,A)→ H i(k,B) for each i ≥ 0.
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(c) Given a short exact sequence of abelian linear algebraic groups over k

0→ A→ B → C → 0,

there is a canonical long exact sequence of groups

· · · → H i(k,A)→ H i(k,B)→ H i(k, C)
δ−→ H i+1(k,A)→ · · ·

beginning with i = 0.

The same caveats as before apply when G–hence G(ks)–is not abelian.

3.3. Some Important Maps

Given a homomorphism f : H → G of finite groups, any G-module M can be

made into an H-module via the action h · m = f(h)m. This procedure takes pro-

jective G-modules to projective H-modules and thus induces maps on cohomology

f ∗i : H i(G,M)→ H i(H,M) for each i ≥ 0. If f is simply the inclusion map of a sub-

group H ≤ G, then we call the associated maps on cohomology restriction maps. As

before, we can construct restriction maps in the non-abelian case by viewing G-sets

as H-sets. The notion of restriction extends to profinite group cohomology.

Proposition 3.3.1 ([GS06, Construction 4.2.8]). Let L/k be a finite field extension,

and let G be a linear algebraic group over k. Then for each i ≥ 0 where cohomology is

defined, there is a restriction map induced by the inclusion of absolute Galois groups

res : H i(k,G)→ H i(L,GL).

This is a group homomorphism if G is abelian and a map of pointed sets otherwise.

In the abelian case, if H ≤ G has finite index, then there is a procedure to
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take projective H-modules to projective G-modules, yielding corestriction maps

g∗i : H i(H,M)→ H i(G,M). This notion also extends to the profinite setting.

Proposition 3.3.2 ([GS06, Construction 4.2.8]). Let L/k be a finite field extension,

and let G be an abelian linear algebraic group over k. Then for each i ≥ 0, there is a

corestriction homomorphism

cor : H i(L,GL)→ H i(k,G).

With this same notation in force, we note that for any G-torsor X over k,

res([X]) = [XL], but the corestriction is very much not an inverse of the restriction.

Proposition 3.3.3 ([GS06, Proposition 4.2.10]). Let L/k be a finite field extension

of degree n, and let G be an abelian linear algebraic group over k. Then for each

i ≥ 0, the composition

cor ◦ res : H i(k,G)→ H i(k,G)

is the multiplication-by-n map.

3.4. Some Important Computations

The following theorem in Galois cohomology underpins the work in this thesis.

Theorem 3.4.1 ([Ser, Proposition I.5.33]). Let G be a linear algebraic group over k.

Then there is a bijection between the set of classes of G-torsors over k and the pointed

set H1(k,G) that identifies the class of the trivial torsor with the point in H1(k,G).

Recall Theorem 2.2.1: a G-torsor X over k is trivial if and only if X(k) 6= ∅.

These theorems tell us that proving the existence or lack thereof of rational points on

torsors under linear algebraic groups, a task that appears to fall squarely under the
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umbrella of geometry, amounts to demonstrating the triviality or non-triviality of a

Galois cohomology class, which is more amenable to algebraic techniques.

Nevertheless, understanding H1(k,G) via Theorem 3.2.1 ultimately requires some

prior understanding of other “related” Galois cohomology groups and sets. In this

section, we mention a number of results that will help us in this vein. To begin,

we will often cite a fundamental result of Hilbert, commonly referred to as Hilbert

Theorem 90 or just Hilbert 90, of which we give two useful interpretations.

Theorem 3.4.2 ([CF67, Section V.2.7]).

(a) If L/k is a finite cyclic extension such that Gal(L/k) ∼= 〈σ〉 and a ∈ L× such

that NL/k(a) = 1, then there is some b ∈ L× such that a = σ(b)b−1.

(b) H1(k,Gm) = 0.

Recalling that Gm = GL1(k), the cohomological Hilbert 90 can be generalized.

Theorem 3.4.3 ([GS06, Lemma 2.7.4]). If [A] ∈ Br(k), then H1(k,GL1(A)) = 1.

An easy consequence of Hilbert 90 is the following basic result of Kummer theory.

Theorem 3.4.4 ([GS06, Proposition 4.3.6]). If char(k) - n, then H1(k, µn) ∼= k×/(k×)n.

Furthermore, we will also repeatedly identify isomorphism classes of central simple

algebras and elements of the Brauer group with special Galois cohomology classes.

Theorem 3.4.5 ([GS06, Theorem 2.4.3]). There is a bijection between the set of

isomorphism classes of central simple algebras of degree n over k and the pointed set

H1(k,PGLn) that identifies [Mn(k)] with the point in H1(k,PGLn).

Theorem 3.4.6 ([GS06, Theorem 4.4.7]). If L/k is a Galois extension, then Br(L/k) ∼=

H2(Gal(L/k),Gm). In particular, if L = ks, then Br(k) ∼= H2(k,Gm).

Finally, we cite an essential property of the Weil restriction functor.

Theorem 3.4.7 ([Ser, Section I.5.b]). If L/k is a finite field extension and G is a

linear algebraic group over L, then H1(k,RL/k(G)) ∼= H1(L,G).
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3.5. Totaro’s Question, Revisited

Let G be a smooth connected linear algebraic group over a field k, and let X be a

G-torsor over k. As in Section 2.2.3, each closed point x ∈ X identifies a finite field

extension L/k such that X(L) 6= ∅, in which case XL identifies the trivial torsor in

H1(L,GL) by Theorem 3.4.1. This last condition can be restated as

[X] ∈ ker[H1(k,G)
res−→ H1(L,GL)],

and so any Z ∈ Z0(X) yields some finite field extensions L1, . . . , Lm/k such that

[X] ∈ ker[H1(k,G)

m∏
i=1

res

−−−→
m∏
i=1

H1(Li, GLi)].

We can now reformulate Totaro’s question in the language of Galois cohomology.

Totaro’s Question. Let G be a smooth connected linear algebraic group over a

field k, and let [X] ∈ H1(k,G). If L1, . . . , Lm/k are finite field extensions with

gcd{[Li : k]} = ind(X) such that

[X] ∈ ker[H1(k,G)

m∏
i=1

res

−−−→
m∏
i=1

H1(Li, GLi)],

then is there a separable field extension F/k with [F : k] = ind(X) such that

[X] ∈ ker[H1(k,G)
res−→ H1(F,GF )]?
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Chapter 4

Totaro’s Question for Tori of Low

Rank

This chapter is largely excerpted from the author’s paper of the same name to

appear in Transactions of the American Mathematical Society [GSb].

Theorem 4.0.1. Let k be a field, and let T be a torus over k of rank ≤ 2. Then

Totaro’s question has an affirmative answer for T .

We remark that the theorem is true even if the ground field is not perfect. Define

the separable index of a variety X over a field, denoted inds(X), to be the minimal

positive degree of a zero-cycle of closed étale points on X. The question of equality

between ind(X) and inds(X) was raised by Lang–Tate and answered affirmatively by

recent work of Gabber–Liu–Lorenzini when X is a generically smooth and non-empty

scheme of finite type over a field [GLL13, Theorem 9.2]. Since torsors under tori over

fields satisfy these hypotheses, we only need to consider separable field extensions in

the proof of Theorem 4.0.1.

Now, if X is regular over a field and U ⊆ X is open and dense, then ind(X) =

ind(U) by a general moving lemma for zero-cycles. So the index is a birational

invariant among regular varieties over a given field. Together with Theorem 4.0.1, we
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obtain from this a result on points of toric varieties (cf. Section 4.4).

Corollary 4.0.2. Let X be a regular variety over a field containing a principal ho-

mogeneous space of a smooth torus of rank ≤ 2 as a dense open subset. If X admits

a zero-cycle of degree d ≥ 1, then X has a closed étale point of degree dividing d.

In particular, Manin proved that del Pezzo surfaces of degree 6 are toric varieties

as in Corollary 4.0.2 [Man72]. So the following is a special case of the corollary.

Corollary 4.0.3. Let X be a del Pezzo surface of degree 6. If X admits a zero-cycle

of degree d ≥ 1, then X has a closed étale point of degree dividing d.

4.1. Lemmata

In order to prove Theorem 4.0.1, a number of key lemmas will be cited repeatedly.

Lemma 4.1.1. Serre’s question has a positive answer for abelian algebraic groups.

Proof. Let G be an abelian algebraic group defined over a field k. By Proposition

3.3.3, the composition of the natural restriction and corestriction maps associated to

any finite field extension L/k is the multiplication-by-[L : k] map. Now, fix [X] ∈

H1(k,G), whose order as a group element we call the period of X and denote by

per(X). If [XL] = 0 ∈ H1(L,GL) for some finite field extension L/k, then

[L : k][X] = (cor ◦ res)([X]) = cor(0) = 0 ∈ H1(k,G),

and so per(X) | [L : k]. Since L is arbitrary, per(X) | ind(X). If ind(X) = 1, then

per(X) = 1, meaning that [X] = 0 ∈ H1(k,G). So X(k) 6= ∅.

Lemma 4.1.2. Let L/k be a finite separable field extension and T = R
(1)
L/kGm.

(a) H1(k, T ) ∼= k×/NL/k(L
×).
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(b) If L/k is cyclic, then H1(k, T ) ∼= Br(L/k).

(c) H1(L, TL) = 0. In particular, ind(X) | [L : k] for all [X] ∈ H1(k, T ).

Proof. From the short exact sequence of k-tori

0→ R
(1)
L/kGm → RL/kGm

NL/k−−−→ Gm → 0,

Theorems 3.2.1.(c), 3.4.2, and 3.4.7 yield the exact sequence of abelian groups

L×
NL/k−−−→ k× → H1(k, T )→ 0,

yielding (a). Now, for any finite cyclic field extension L/k with Gal(L/k) ∼= 〈σ〉, we

have a canonical isomorphism (see [GS06, Corollary 4.4.10])

k×/NL/k(L
×) ∼= Br(L/k)

given by

γ 7→ (L/k, σ, γ)

where (L/k, σ, γ) is the cyclic algebra generated over L by u with relations ux =

σ(x)u for any x ∈ L and u[L:k] = γ. From this, (b) follows immediately. Finally, if

L ∼= k[x]/ (p(x)) and a1, . . . , am are the roots of p(x) in L, then

p(x) = q(x)
m∏
i=1

(x− ai)

for some q(x) ∈ L[x]. By the Chinese Remainder Theorem,

L⊗k L ∼= L⊗k k[x]/ (p(x))

∼= L[x]/ (q(x))×
m∏
i=1

L[x]/ (x− ai)

∼= L× A
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where A/L is a finite étale algebra. So the following diagram commutes.

L

L⊗k L L× A∼

NL⊗kL/L id ·NA/L

In particular, NL⊗kL/L is surjective since

(id ·NA/L)(λ, 1, . . . , 1) = λ

for any λ ∈ L. Then

H1(L, TL) ∼= L×/NL⊗kL/L
(
(L⊗k L)×

)
= 0,

hence (c).

Lemma 4.1.3. Let T be a k-torus with a (not necessarily minimal) splitting field E

of finite degree over k, and let [X] ∈ H1(k, T ).

(a) ind(X) | [E : k].

(b) If [E : k] is prime, then Totaro’s question has a positive answer for T .

Proof. Since TE is split, H1(E, TE) = 0 by Theorem 3.4.2. Then ind(X) | [E : k],

proving (a). If [E : k] is prime, then by (a), ind(X) = 1 or [E : k]. If ind(X) = 1,

then [X] = 0 ∈ H1(k, T ) by Lemma 4.1.1. Otherwise, [XE] ∈ H1(E, TE) = 0.

Now, for any finite extension of étale algebras A/B, define

(A×)
(1)
B := {a ∈ A× : NA/B(a) = 1}.
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Lemma 4.1.4. Consider the following diagram of separable field extensions

L

K1

K2

k

m
n

n
m

for some m,n > 1, and let T = RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
.

(a) The following sequences of k-tori are exact.

0→ T → RK1/k(R
(1)
L/K1

Gm)
NL/K2−−−−→ R

(1)
K2/k

Gm → 0

0→ T → RK2/k(R
(1)
L/K2

Gm)
NL/K1−−−−→ R

(1)
K1/k

Gm → 0

(b) The following sequences of abelian groups are exact.

(L×)
(1)
K1

NL/K2−−−−→ (K×2 )
(1)
k → H1(k, T )

δ1−→ K×1 /NL/K1(L
×)

(L×)
(1)
K2

NL/K1−−−−→ (K×1 )
(1)
k → H1(k, T )

δ2−→ K×2 /NL/K2(L
×)

Proof. Left exactness of both sequences is clear from the construction of T , so proving

(a) amounts to showing that NL/K2 and NL/K1 are surjective after extending scalars

to ks. If Φ : (ks)mn → (ks)n and Ψ : (ks)mn → (ks)m are the maps defined by

Φ(xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n) =

(
m∏
i=1

xi1, . . . ,

m∏
i=1

xin

)
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and

Ψ(xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n) =

(
n∏
j=1

x1j, . . . ,

n∏
j=1

xmj

)
,

then the following diagram commutes.

L

K1

K2

k

NL/K1 NL/K2

NK1/k NK2/k

(ks)mn

(ks)n

(ks)m

ks

Φ
Ψ

N(ks)n/ks
N(ks)m/ks

⊗kks

⊗kks

⊗kks

⊗kks

Any a ∈ (R
(1)
K2⊗kks/ks Gm)(ks) then corresponds to an m-tuple (a1, . . . , am) ∈ (ks)m

such that
m∏
i=1

ai = 1. But Ψ is surjective: if xij = ai when j = 1 and xij = 1

otherwise, then

Ψ(xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n) = Ψ(a1, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

, a2, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

, . . . , am, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

)

= (a1, . . . , am),

and in fact,

Φ(xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n) = Φ(a1, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

, a2, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

, . . . , am, 1, . . . , 1︸ ︷︷ ︸
n− 1 times

)

= (1, . . . , 1︸ ︷︷ ︸
n times

).

So this mn-tuple yields a ks-point of R
(1)
L⊗kks/K1⊗kks Gm mapping to a ∈ R(1)

K2⊗kks/ks(k
s).
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Then NL/K2 is surjective as a map of algebraic groups. By a symmetric argument,

NL/K1 is surjective too, proving (a). (b) follows from (a), Theorem 3.2.1.(c), and

Lemma 4.1.2.

4.2. Technical Results

Two technical propositions are needed for the proof of Theorem 4.0.1.

Proposition 4.2.1. Let L/K/k be a tower of separable quadratic extensions with no

intermediate fields between k and L other than K, and let

T = RK/k(R
(1)
L/K Gm).

Then Totaro’s question has a positive answer for T .

Proof. Let M be the Galois closure of L/k in ks and G = Gal(M/k). Either M = L,

in which case G ∼= Z /4Z, or [M : L] = 2, in which case G ∼= D4. Suppose that

M = L. Then

K ⊗k L ∼= L× L

as K ⊆ L, [K : k] = 2, and K/k is separable, and

L⊗k L ∼= (L× L)× (L× L)

as [L : k] = 4 and L/k is Galois. So the following diagram commutes.

K ⊗k L L× L

L⊗k L (L× L)× (L× L)
∼

NL⊗kL/K⊗kL NL×L/L ×NL×L/L

∼
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Since NL×L/L ×NL×L/L is surjective, so is NL⊗kL/K⊗kL, and so by Lemma 4.1.2.(a),

H1(L, TL) ∼= (K ⊗k L)×/NL⊗kL/K⊗kL
(
(L⊗k L)×

)
= 0.

If [M : L] = 2, then since D4 contains three distinct subgroups of order 2, there is

another tower of separable extensions M/L′/k such that [M : L′] = 2,

K ⊗k L′ ∼= M,

and

L⊗k L′ ∼= M ×M.

So the following diagram commutes.

K ⊗k L′ M

L⊗k L′ M ×M∼

NL⊗kL′/K⊗kL′ NM×M/M

∼

Since NM×M/M is surjective, so is NL⊗kL′/K⊗kL′ , and so by Lemma 4.1.2.(a),

H1(L′, TL′) ∼= (K ⊗k L′)×/NL⊗kL′/K⊗kL′
(
(L⊗k L′)×

)
= 0.

So ind(X) | 4 for any [X] ∈ H1(k, T ), and if ind(X) = 4, then either F = L or L′

will suffice.

Suppose now that ind(X) = 2. Identify [X] with [β] for some β ∈ K× that is

not a norm from L×. Since ind(X) = 2, it can be assumed by [GLL13, Theorem

9.2] using standard Galois theory reductions (cf. [GH06, Lemma 1.5]) that there is a

tower of separable field extensions E ′/E/k such that [E ′ : E] = 2, [E : k] = m for
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some odd m, and

β ∈ NL⊗kE′/K⊗kE′
(
(L⊗k E ′)×

)
.

Write

E ′ ∼=

 E[x]/(x2 + x+ a) if char(k) = 2

E[x]/(x2 − a) if char(k) 6= 2

for some a ∈ E×. In both cases, identify the class of x with i ∈ E ′. Then there are

u0, v0 ∈ LE not both zero such that

β = NL⊗kE′/K⊗kE′(u0 + v0i)

=
(
NLE/KE(u0) + aNLE/KE(v0)

)
+ TE(u0, v0)i

where

TK(u, v) =

 trL/K(uv) +NL/K(v) if char(k) = 2

trL/K(uv) if char(k) 6= 2

Since β ∈ K×, TE(u0, v0) = 0, and so

β = NLE/KE(u0) + aNLE/KE(v0).

If v0 = 0, then β = NLE/KE(u0), in which case β ∈ K× is represented by the K-

quadratic form NL/K after extending scalars to KE. But [KE : K] = [E : k] = m

is odd. Then by Springer’s Theorem [Spr52], β ∈ NL/K(L×), a contradiction. So

v0 6= 0.

Now, write

K ∼=

 k[y]/(y2 + y + b) if char(k) = 2

k[y]/(y2 − b) if char(k) 6= 2

for some b ∈ k×. In both cases, identify the class of y with j ∈ K. Then there are
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β1, β2 ∈ k not both zero such that

β = β1 + β2j.

Let N1, N2 : L→ k and Q1, Q2 : L2 → k be the k-quadratic forms defined by

NL/K = N1 +N2j,

Q1(u, v) = β1N
1(u) + bβ2N

2(u)−N1(v),

and

Q2(u, v) =

 (β1 + β2)N2(u) + β2N
1(u) +N2(v) if char(k) = 2

β1N
2(u) + β2N

1(u)−N2(v) if char(k) 6= 2

Then setting x0 = v−1
0 and y0 = u0v

−1
0 ,

a = βNLE/KE(x0)−NLE/KE(y0)

= (β1 + β2j)(N
1
LE +N2

LEj)(x0)− (N1
LE +N2

LEj)(y0)

= Q1
E(x0, y0) +Q2

E(x0, y0)j.

Since a ∈ E×, Q1
E(x0, y0) = a and Q2

E(x0, y0) = 0. Now, case by char(k).

First, suppose that char(k) 6= 2. Since trLE/KE(y0) = 0, the isotropic vector for

Q2
E comes from the subspace

LE ⊕ (LE)0 ∼= (L⊕ L0)⊗k E

where L0 = ker trL/K ⊆ L. But as [E : k] = m is odd, Q2 is isotropic by Springer’s

Theorem [Spr52]. So there is some (x1, y1) ∈ L⊕ L0 such that

Q2(x1, y1) = β1N
2(x1) + β2N

1(x1)−N2(y1) = 0.
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If x1 = 0, then y1 is an isotropic vector for N2. But isotropic quadratic forms

are universal. So for any x, there is a y such that N2(y) = β1N
2(x) + β2N

1(x),

i.e., Q2(x, y) = 0. Then we can assume that x1 6= 0. So

α = Q1(x1, y1)

= Q1(x1, y1) +Q2(x1, y1)j

= βNL/K(x1)−NL/K(y1)

means that

NL/K(x−1
1 )(NL/K(y1) + α) = β.

With F = k(
√
α), [F : k] = 2, and since y1 ∈ L0,

NL⊗kF/K⊗kF

(
y1 +

√
α

x1

)
= β.

Then [XF ] = 0 ∈ H1(F, TF ), as desired.

Now, suppose that char(k) = 2. Let T 1, T 2 : L→ k be the k-linear maps defined

by

trL/K = T 1 + T 2j.

Since

(T 1
E(y0) + 1) + T 2

E(y0)j = trLE/KE(y0) + 1

= trLE/KE(u0v
−1
0 ) + 1

= NLE/KE(v0)
(
trLE/KE(u0v0) +NLE/KE(v0)

)
= 0,

T 2
E(y0) = 0, and so the isotropic vector for Q2

E comes from the subspace

LE ⊕ (LE)# ∼= (L⊕ L#)⊗k E
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where L# = kerT 2 ⊆ L. But as [E : k] = m is odd, Q2 is isotropic by Springer’s

Theorem [Spr52]. So there is some (x1, y1) ∈ L⊕ L# such that

Q2(x1, y1) = (β1 + β2)N2(x1) + β2N
1(x1) +N2(y1) = 0.

If x1 = 0, then y1 is an isotropic vector for N2. But the symmetric bilinear form

bN2 : L2 → k

defined by

bN2(x, y) := N2(x+ y)−N2(x)−N2(y) = T 2(xy)

is non-degenerate. Then N2 is regular and isotropic, hence universal [EKM08, Propo-

sition 7.13]. So as before, we can assume that x1 6= 0. Let γ = T 1(y1). If γ = 0, then

y1 = 0 as y1 ∈ L#. Setting α = Q1(x1, 0) and F = k[z]/(z2 + z + α) and identifying

the class of z with λ ∈ F yields that

NL⊗kF/K⊗kF

(
λ

x1

)
= β.

If γ 6= 0, then

NL⊗kF/K⊗kF

(
y1 + γλ

γx1

)
= β.

In both cases, [F : k] = 2 and [XF ] = 0 ∈ H1(F, TF ), as desired.
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Proposition 4.2.2. Consider the following diagram of separable field extensions

L

K1

K2

k

m
n

n
m

for some coprime m,n > 1, and let

T = RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
.

Then Totaro’s question has a positive answer for [X] ∈ H1(k, T ) of index m, n, and

mn. Furthermore, if (ind(X),m) = 1, then ind(X) | n, and if (ind(X), n) = 1, then

ind(X) | m.

Proof. By Lemma 4.1.4.(b), the following sequences of abelian groups are exact.

(L×)
(1)
K1

NL/K2−−−−→ (K×2 )
(1)
k → H1(k, T )

δ1−→ K×1 /NL/K1(L
×)

(L×)
(1)
K2

NL/K1−−−−→ (K×1 )
(1)
k → H1(k, T )

δ2−→ K×2 /NL/K2(L
×)

The proof will proceed according to the index.

First, suppose that ind(X) = m. Since [L : K2] = n, K×2 /NL/K2(L
×) is n-torsion.

But (m,n) = 1, and per(X) | ind(X). So δ2([X]) = 0. Then [X] lifts to some

β ∈ (K×1 )
(1)
k . Now,

K2 ⊗k K2
∼= K2 ×B
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where B/K2 is an étale algebra as K2/k is separable,

K1 ⊗k K2
∼= L

as K1, K2 ⊆ L have coprime degrees and are therefore k-linearly disjoint such that

[K1 : k][K2 : k] = mn = [L : k],

and

L⊗k K2
∼= L× A

where A ∼= B ⊗K2 L/L is an étale algebra as K2 ⊆ L and K2/k is separable. After

identifying through the natural isomorphisms, the following diagram commutes.

L

K1

K2

k

NL/K1 NL/K2

NK1/k NK2/k

L× A

L

K2 ×B

K2

id ·NA/L NL/K2 ×NA/B

NL/K2

id ·NB/K2

⊗kK2

⊗kK2

⊗kK2

⊗kK2

Observe that

(id ·NA/L)(β, 1) = β

and

(NL/K2 ×NA/B)(β, 1) =
(
NK1/k(β), NA/B(1)

)
= (1, 1),
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meaning that [XK2 ] = 0 ∈ H1(K2, TK2). Since ind(X) = [K2 : k] = m, it suffices to

take F = K2. But only that (ind(X), n) = 1 is needed to show that [XK2 ] = 0. So

(ind(X), n) = 1 implies that ind(X) | m. By a symmetric argument, F = K1 suffices

when ind(X) = n, and (ind(X),m) = 1 implies that ind(X) | n.

Now, suppose that ind(X) = mn. Since the sequence of k-tori

0→ T → RK1/k(R
(1)
L/K1

Gm)
NL/K2−−−−→ R

(1)
K2/k

Gm → 0

is short exact, so is the sequence of K2-tori

0→ TK2 → RL/K2(R
(1)
L×A/LGm)

NL×A/K2×B−−−−−−−→ R
(1)
K2×B/K2

Gm → 0.

Since Ks
2-points of R

(1)
K2×B/K2

Gm take the form (NB⊗K2
Ks

2/K
s
2
(β−1), β) for β ∈ (B⊗K2

Ks
2)×,

R
(1)
K2×B/K2

Gm
∼= Gm,B .

By a similar argument,

RL/K2(R
(1)
L×A/LGm) ∼= RL/K2 Gm,A .

So

0→ TK2 → RL/K2 Gm,A

NA/B−−−→ Gm,B → 0

is a short exact sequence of K2-tori. Since A/L is an étale algebra, H1(L,Gm,A) = 0

by Theorem 3.4.2. Theorem 3.2.1.(c) then yields the exact sequence of abelian groups

A×
NA/B−−−→ B× → H1(K2, TK2)→ 0.
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So [XK2 ] lifts to some β ∈ B×. Let C/L be the étale algebra such that

L⊗K2 L
∼= L× C.

Then since

A⊗K2 L
∼= B ⊗K2 L⊗K2 L

∼= B ⊗K2 (L× C)

∼= A× (B ⊗K2 C),

the following diagram commutes.

B ⊗K2 L A

A⊗K2 L A× (B ⊗K2 C)
∼

NA⊗K2
L/A id ·NB⊗K2

C/A

∼

But

(id ·NB⊗K2
C/A)(β, 1) = β,

meaning that [XL] = [(XK2)L] = 0 ∈ H1(L, TL). Since [L : k] = mn, F = L

suffices.

Corollary 4.2.3. Consider the following diagram of separable field extensions

L

K1

K2

k

p
q

q
p
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for some distinct primes p and q, and let

T = RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
.

Then Totaro’s question has a positive answer for T .

Proof. The claim follows immediately from Proposition 4.2.2.

4.3. Proof of Theorem 4.0.1

Let Γ = Gal(ks/k). For any rank r k-torus T , define its character module to

be

X(T ) := Hom(Tks ,Gm,ks) [ ∼= Hom(Gr
m,ks ,Gm,ks) ∼= Zr ].

Then X(T ) is a rank r Γ-module. The association T 7→ X(T ) is an antiequivalence

between the categories of k-tori and finitely-generated Γ-modules; in fact, it is an

antiequivalence between the categories of k-tori split by a finite Galois extension E/k

and finitely-generated Gal(E/k)-modules. The Γ-action on X(T ) yields a continuous

representation

Γ→ Aut(X(T )) ∼= Aut(Zr) ∼= GLr(Z)

whose kernel h E Γ corresponds to the minimal splitting field of T , a finite Galois

extension E/k. The group GLr(Z) contains the image of this representation, a copy

of Γ/h ∼= Gal(E/k). Call this the Galois group of T . On the other hand, an em-

bedding Gal(E/k)→ GLr(Z) lifts to a continuous representation Γ→ GLr(Z), which

determines a Γ-action on X(Gr
m), identifying the rank r k-torus Spec

(
E[X(Gr

m)]Γ
)
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whose Galois group is Gal(E/k). Explicitly,

{rank r k-tori}/∼= ↔ {rank r Γ-modules}/∼=

↔ H1(k,Aut(X(Gr
m)))

↔ H1(k,Aut(Zr))

↔ H1(k,GLr(Z))

= Hom(Γ,GLr(Z))/∼

where ρ ∼ ρ′ if and only if ρ(Γ) and ρ′(Γ) are conjugate in GLr(Z).

To classify rank r tori, it is necessary to count the conjugacy classes of finite

subgroups of GLr(Z). There are 13 such classes in GL2(Z); in [Vos65], however,

Voskresenskĭı gave explicit representations of 15 finite groups in terms of matrix

generators along with their associated rank 2 tori. He later corrected this in a short

geometric proof that rank 2 tori are rational [Vos98]; here, he noted that there are

only two distinct maximal finite subgroups of GL2(Z) up to conjugacy, D4 and D6,

whereas he produced two faithful representations of each of these groups in GL2(Z)

in his earlier classification paper.

For the convenience of the cross-referencing reader, the proof of Theorem 4.0.1 will

follow Voskresenskĭı’s original classification and will proceed according to Gal(E/k)

where E is the minimal splitting field of the torus. Recall that for a given group, there

may be multiple isomorphism classes of tori associated to that group (over suitably

general fields) depending on how many conjugacy classes represent its isomorphism

class in GL2(Z). Finally: by Lemma 4.1.1 and Lemma 4.1.3, one can reduce ind(X)

to be a non-trivial proper divisor of [E : k].

4.3.1 Rank 1 Tori

There are only two (conjugacy classes of) finite subgroups of GL1(Z) ∼= Z /2Z:

(1) and Z /2Z. These correspond to the two classes of rank 1 tori. For both types, a
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positive answer to Totaro’s question is a trivial consequence of the previous reductions.

1. Gal(E/k) ∼= (1) and T ∼= Gm

Proof. T is quasi-trivial, and so we are done by Theorem 3.4.2.

2. Gal(E/k) ∼= Z/2Z and T ∼= R
(1)
E/kGm

Proof. [E : k] is prime, and so we are done by Lemma 4.1.3.(b).

4.3.2 Rank 2 Tori

There are 9 isomorphism classes and 15 conjugacy classes of finite subgroups of

GL2(Z).

1. Gal(E/k) ∼= (1) and T ∼= Gm×Gm

Proof. T is quasi-trivial, and so we are done by Theorem 3.4.2.

2. Gal(E/k) ∼= Z /2Z

(a) T ∼= R
(1)
E/kGm×R(1)

E/kGm

(b) T ∼= Gm×R(1)
E/kGm

(c) T ∼= RE/kGm

Proof. [E : k] is prime, and so we are done by Lemma 4.1.3.(b).

3. Gal(E/k) ∼= Z /2Z×Z /2Z

E

L1 L2

k

2 2

2 2
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(a) T ∼= RL1/k

(
R

(1)
E/L1

Gm

)
Proof. Since [E : k] = 4, we can assume that ind(X) = 2. Then

H1(k, T ) ∼= H1(L1, R
(1)
E/L1

Gm) ∼= Br(E/L1)

by Lemma 4.1.2.(b). Let δ : H1(k, T ) → Br(E/L1) denote the composition.

Since

δ([XL2 ])
∼= [δ([X])⊗k L2]

∼= [δ([X])⊗L1 L1 ⊗k L2]

∼= [δ([X])⊗L1 E]

= 0 ∈ Br(E/L1)

and [L2 : k] = 2, it suffices to take F = L2.

(b) T ∼= R
(1)
L1/k

Gm×R(1)
L2/k

Gm

Proof. Since [E : k] = 4, we can assume that ind(X) = 2. As

H1(k, T ) ∼= H1(k,R
(1)
L1/k

Gm×R(1)
L2/k

Gm)

∼= H1(k,R
(1)
L1/k

Gm)×H1(k,R
(1)
L2/k

Gm)

∼= Br(L1/k)× Br(L2/k)

by Lemma 4.1.2.(b), [X] ∈ H1(k, T ) can be identified with a pair of division

algebras D1 and D2 where [D1] ∈ Br(L1/k) and [D2] ∈ Br(L2/k). Since D1

and D2 are both split over quadratic extensions L1 and L2, respectively, each

is either a field or a quaternion division algebra. If either of D1 or D2 is a field,

then it suffices to take either F = L2 or L1, respectively. So we can assume

that both D1 and D2 are quaternion division algebras.

Let D = D1⊗kD2. By Albert’s Theorem [Alb72], either D is a division algebra

or D1 and D2 have a common subfield F separable over k such that [F : k] = 2
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that necessarily splits both algebras. Suppose that D is a division algebra.

Then

indSch(D) = deg(D) = deg(D1) deg(D2) = 4.

But since ind(X) = 2, it can be assumed by [GLL13, Theorem 9.2] using stan-

dard Galois theory reductions (cf. [GH06, Lemma 1.5]) that there is a tower of

separable field extensions K ′/K/k such that [K ′ : K] = 2, [K : k] is odd, and

D1K′
and D2K′

(hence DK′) are split. Since [K : k] is odd and indSch(D) = 4,

DK is a division algebra. But as DK′ is split and [K ′ : K] = 2,

indSch(D) = indSch(DK) = 2,

a contradiction. So D1 and D2 have a common subfield F separable over k such

that [F : k] = 2 that necessarily splits both algebras, completing the proof.

4. Gal(E/k) ∼= Z /3Z and T ∼= R
(1)
E/kGm

Proof. [E : k] is prime, and so we are done by Lemma 4.1.3.(b).

5. Gal(E/k) ∼= Z /4Z = 〈φ〉 and T ∼= REφ2/k

(
R

(1)

E/Eφ2
Gm

)
Proof. We are done by Proposition 4.2.1.

6. Gal(E/k) ∼= Z /3Z×Z /2Z = 〈θ〉 × 〈τ〉

E

Eτ

Eθ

k

2
3

3
2

T = REτ/k

(
R

(1)
E/Eτ Gm

)
∩REθ/k

(
R

(1)

E/Eθ
Gm

)
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Proof. We are done by Corollary 4.2.3.

7. Gal(E/k) ∼= S3 = 〈θ〉o 〈τ〉

E

EθτEτ Eθ2τ

Eθ

k

2
3

3
2

(a) T ∼= R
(1)
Eτ/kGm.

Proof. Since [E : k] = 6, the only cases to consider are ind(X) = 2 and 3.

But by Lemma 4.1.2.(c), only ind(X) = 3 is possible, and F = Eτ suffices by

Lemma 4.1.2.(c).

(b) T ∼= REτ/k

(
R

(1)
E/Eτ Gm

)
∩REθ/k

(
R

(1)

E/Eθ
Gm

)
.

Proof. We are done by Corollary 4.2.3.

8. Gal(E/k) ∼= D4
∼= Z /4ZoZ /2Z = 〈φ〉o 〈τ〉

E

Eφ2EτEφ2τ Eφ3τ Eφτ

EφEφ2,τ Eφ2,φτ

k

2 2

2 2

2 2

(a) T ∼= REφ2,τ/k

(
R

(1)

Eτ/Eφ2,τ
Gm

)
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Proof. We are done by Proposition 4.2.1.

(b) T ∼= REφ2,φτ/k

(
R

(1)

Eφτ/Eφ2,φτ
Gm

)
Proof. T is isomorphic to the torus from (a).

9. Gal(E/k) ∼= D6
∼= Z /6ZoZ /2Z = 〈σ〉o 〈τ〉

E

Eσ4τEσ2τEτEσ3
Eσ3τ Eσ5τ Eστ

Eσ2

Eσ3,τEσ3,σ2τEσ3,σ4τ

Eσ2,στEσ2,τEσ

k

2
3

2

2

2
3

(a) T ∼= REσ2/k

(
R

(1)

E/Eσ2
Gm

)
∩REσ3/k

(
R

(1)

E/Eσ3
Gm

)
∩REτ/kGm

Proof. Observe that t ∈ T (A) for a k-algebra A if and only if

tσ
2
tσ

4
t = 1

tσ
3
t = 1

tτ = t,

which means that

T ∼= REσ2,τ/k

(
R

(1)

Eτ/Eσ2,τ
Gm

)
∩REσ3,τ/k

(
R

(1)

Eτ/Eσ3,τ
Gm

)
.

So we are done by Proposition 4.2.1.
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(b) T ∼= REσ2/k

(
R

(1)

E/Eσ2
Gm

)
∩REσ3/k

(
R

(1)

E/Eσ3
Gm

)
∩REτ/k

(
R

(1)
E/Eτ Gm

)
Proof. T is isomorphic to the torus from (a).

This exhausts Voskresenskĭı’s classification and thus completes the proof of The-

orem 4.0.1.

4.4. del Pezzo Surfaces

We now prove a general consequence of Theorem 4.0.1.

Corollary 4.4.1. Let X be a regular variety over a field containing a principal ho-

mogeneous space of a smooth torus of rank ≤ 2 as a dense open subset. If X admits

a zero-cycle of degree d ≥ 1, then X has a closed étale point of degree dividing d.

Proof. Write X = Y for some principal homogeneous space Y under a torus T of

rank ≤ 2. By a general moving lemma for zero-cycles (cf. [GLL13, Theorem 6.8]),

given a closed point of X of degree n, there is a zero-cycle on Y of degree n. So given

a zero-cycle on X of degree d, there is a zero-cycle on Y of degree d. By Theorem

4.0.1, Y ⊆ X has a closed étale point of degree dividing d.

A del Pezzo surface is a smooth projective surface X over a field k whose

anticanonical bundle ω−1
X is ample. Its degree is the self-intersection number D =

(KX , KX) of its canonical divisor KX and lies between 1 and 9. If D = 8, then Xks is

isomorphic to either P2
ks blown up at a point or P1

ks×P1
ks ; otherwise, Xks is isomorphic

to P2
ks blown up at 9 − D points in general position. Manin [Man86] is a standard

reference for these results; in fact, it is a theorem of Manin that del Pezzo surfaces

of degree 6 contain torsors of rank 2 tori as dense open subsets (cf. [Man72, Teorema

8.6], [Man86, Theorem 30.3.1]). This gives us the following result.



42

Corollary 4.4.2. Let X be a del Pezzo surface of degree 6. If X admits a zero-cycle

of degree d ≥ 1, then X has a closed étale point of degree dividing d.

Proof. This follows immediately from Corollary 6.1.

Of independent interest are the particular rank 2 tori that arise from del Pezzo

surfaces of degree 6 within Voskresenskĭı’s classification. By the explicit algebraic

computations of Blunk [Blu10], over a non-separably-closed field k, each such torus

takes the form

T = RK2/k

(
R

(1)
L/K2

Gm

)
/R

(1)
K1/k

Gm

for some diagram of separable field extensions

L

K1

K2

k

2
3

3
2

Lemma 4.4.3. T ∼= RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
.

Proof. Let Gal(L/K1) ∼= Z /2Z = 〈σ〉 and

S = RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
.

It suffices to show that the sequence of k-tori

0→ R
(1)
K1/k

Gm
ι−→ RK2/k

(
R

(1)
L/K2

Gm

)
ϕ−→ S → 0
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where ι is the inclusion map and ϕ is defined functorially for any k-algebra A by

RK2/k

(
R

(1)
L/K2

Gm

)
(A)

ϕ(A)−−→ S(A)

a 7→ σ(a)a−1

is short exact. Left exactness is clear since K1 = Lσ, so all that remains is to show

that ϕ is surjective after passing to the separable closure ks. Let β ∈ S(ks). Then

NL⊗kks/K1⊗kks(β) = 1 = NL⊗kks/K2⊗kks(β).

By Theorem 3.4.2, β = σ(γ)γ−1 for some γ ∈ (L⊗k ks)×. Set λ = NL⊗kks/K2⊗kks(γ).

Then

σ(λ)λ−1 = NL⊗kks/K2⊗kks(β) = 1,

i.e., λ ∈ ((K2 ⊗k ks)σ)× = (ks)×. Since K1/k is separable and ks is separably closed,

K1 ⊗k ks ∼= (ks)3. So there is some η ∈ (K1 ⊗k ks)× such that λ = NK1⊗kks/ks(η). Set

α = η−1γ. Then

NL⊗kks/K2⊗kks(α) = NL⊗kks/K2⊗kks
(
η−1γ

)
= λ−1NL⊗kks/K2⊗kks(γ) = 1,

i.e., α ∈ RK2/k

(
R

(1)
L/K2

Gm

)
(ks), and

ϕ(α) = ϕ
(
η−1γ

)
= σ

(
η−1γ

) (
η−1γ

)−1
= σ(γ)γ−1 = β,

completing the proof.
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Chapter 5

Totaro’s Question for Adjoint

Groups of Types A1 and A2n

This chapter is largely excerpted from the author’s paper of the same name to

appear in Proceedings of the American Mathematical Society [GSa].

Theorem 5.0.4. Let k be a field of characteristic not equal to 2, and let G be an

absolutely simple classical adjoint group over k of type A1 or A2n. Then Totaro’s

question has an affirmative answer for G.

Theorem 5.0.4 has a concrete interpretation in terms of algebras with unitary

involution. Let K/k be an étale quadratic extension, let A and B be central simple

algebras over K of degree 2 or odd degree, and let σ and τ be K/k-involutions on A

and B. If L1, . . . , Lm/k are finite field extensions with gcd{[Li : k]} = d such that

(A, σ)Li
∼= (B, τ)Li for i = 1, . . . ,m, then there is a separable field extension F/k

with [F : k] | d such that (A, σ)F ∼= (B, τ)F .
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5.1. Lemmata

Proceeding with the notation from section 2.2.2, let K/k be an étale quadratic

extension, let A be a central simple algebra over K, and let σ be a K/k–involution

on A. If A is Brauer–equivalent to a division algebra D, then D also admits a K/k–

involution δ by the following existence criterion.

Theorem 5.1.1 (Albert–Riehm–Scharlau [Sch75, p. 31]). A central simple algebra

D over K admits a K/k–involution if and only if [D] ∈ ker[BrK
cor−→ Br k].

Since Totaro’s question asks about the existence of a separable field extensions over

which a given torsor has a point, the following classical theorem will prove essential.

Theorem 5.1.2 (Jacobson [Jac96, Theorem 5.3.18]). Let D be a central division

algebra over K with K/k–involution δ. Then there exists a maximal subfield E ⊆ D,

separable over k, such that δ(E) = E and E = KEδ.

If G ∼= Aut(A, σ) is absolutely simple and adjoint of type An, then H1(k,G) clas-

sifies isomorphism classes of algebras of degree n+ 1 over K with unitary involution.

Since this Galois cohomology set has trivial element [(A, σ)], for any field extension

L/k,

[(B, τ)]L = 1 ∈ H1(L,GL) ⇐⇒ (A, σ)⊗k L ∼= (B, τ)⊗k L

⇐⇒ A⊗k L ∼= B ⊗k L and σ ⊗ idL ∼= τ ⊗ idL

⇐⇒ L splits A⊗K Bop and σ ⊗ idL ∼= τ ⊗ idL .

Our objective then is to find minimal separable field extensions of k that split A⊗KBop

followed by minimal separable field extensions to make the involutions isomorphic.

In fact, σ is the adjoint involution of some hermitian form on (D, δ) determined up to

similarity in k×, and two unitary involutions on A are isomorphic if and only if their

associated hermitian forms are similar. So once the underlying algebras are isomor-
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phic, it suffices to find a minimal separable field extension to make the corresponding

hermitian forms similar.

Write W (k) for the Witt ring of quadratic forms over k, and let W (D, δ) denote

the Witt group of hermitian forms over (D, δ). The tensor product of forms induces

a W (k)–module structure on W (D, δ). The next two claims will be critical to the

proof of Theorem 5.0.4.

Lemma 5.1.3. If σ and τ are K/k–involutions on A, then (A, σ)⊗kK ∼= (A, τ)⊗kK.

Proof. By [KMRT98, Proposition 2.4], (A, σ) ⊗k K ∼= (A × Aop, ε) where ε is the

exchange involution on A× Aop. The same holds for (A, τ)⊗k K.

Proposition 5.1.4. Let σ and τ be K/k–involutions on A, and let L/k be a field

extension of odd degree. If (A, σ)⊗k L ∼= (A, τ)⊗k L, then (A, σ) ∼= (A, τ).

Proof. By the above remarks, it suffices to show that if h and h′ are hermitian forms

over (D, δ) such that h ⊗k L ∼= λ(h′ ⊗k L) for some λ ∈ L×, then h ∼= νh′ for some

ν ∈ k×. We first assume that L = k(λ) is a simple field extension of odd degree over

k. There is a natural embedding of modules (cf. [BFL90, Proposition 1.2])

r∗ : W (A, σ)→ W ((A, σ)⊗k L)

induced by the extension of scalars, and any non-vanishing k–linear functional s :

L → k induces a homomorphism of modules called the Scharlau transfer with

respect to s

s∗ : W ((A, σ)⊗k L)→ W (A, σ),

sending a class of hermitian forms [η] on D ⊗k L over L with respect to δ ⊗ 1 to the

class of

s ◦ η : (D ⊗k L)× (D ⊗k L)
η−→ L

s−→ k.
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Arguing as in [Sch85, Lemma 2.5.8] and [BFL90, Proposition 1.2], given the linear

functional defined by s(1) = 1 and s(λ) = · · · = s(λ[L:k]−1) = 0, the Scharlau transfer

with respect to s satisfies the projection formulas

s∗([h⊗k L]) = s∗(r
∗([h])) = s∗(r

∗([1])) · [h] = [h]

and

s∗([λ(h′ ⊗k L)]) = s∗([λ] · r∗([h′])) = s∗([λ]) · [h′] = [NL/k(λ)h′].

Since h⊗k L ∼= λ(h′ ⊗k L), comparing dimensions yields that h ∼= NL/k(λ)h′.

Now, if k(λ) ( L, then we can filter L/k(λ) as a tower of simple field extensions

k(λ, λ1, . . . , λn−1, λn) ) k(λ, λ1, . . . , λn−1) ) · · · ) k(λ),

each of odd degree. Let L0 = k(λ) and Li = k(λ, λ1, . . . , λi) for i = 1, . . . , n. For each

field extension Li/Li−1 of degree di, define an Li−1–linear functional si : Li → Li−1

by si(1) = 1 and si(λi) = · · · = si(λdi−1
i ) = 0. Each of of these linear functionals

is also k(λ)–linear, and so each associated Scharlau transfer satisfies si∗([λ]) = [λ] by

the projection formulas. Then

si∗([h⊗k Li]) = [h⊗k Li−1]

and

si∗([λ(h′ ⊗k Li]) = [λ(h′ ⊗k Li−1)]

for each i = 1, . . . , n. By comparing dimensions, the result is immediate.
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5.2. Proof of Theorem 5.0.4

The étale quadratic extension K is isomorphic to k× k or a quadratic field exten-

sion of k.

Case 1. K ∼= k × k.

In fact, Totaro’s question has a positive answer for adjoint groups of type An

for any n in this case. By [KMRT98, Proposition 2.4], (A, σ) ∼= (B × Bop, ε) where

B is a central simple algebra of degree n+ 1 over k and ε is the exchange involution

on B × Bop. So G ∼= Aut(A, σ) ∼= PGL1(B). Since H1(k,GL1(B)) = 1 by Theorem

3.4.3, the short exact sequence

1→ Gm → GL1(B)→ PGL1(B)→ 1

of linear algebraic groups over k yields an injection H1(k,PGL1(B)) ↪→ Br k via

Theorems 3.2.1 and 3.4.6. A PGL1(B)–torsor is a Severi–Brauer variety X as-

sociated to some central simple algebra C of degree deg(B) over k, and the in-

jection H1(k,PGL1(B)) ↪→ Br k is given by [X] 7→ [C ⊗k Bop]. So ind([X]) =

indSch(C ⊗k Bop), and the claim follows from Theorem 2.1.2.(b).

Case 2.1. K/k is a separable quadratic field extension and G is adjoint of type

A1.

G ∼= Aut(A, σ) where A is a quaternion algebra over K and σ is a K/k-involution

on A. The following theorem of Albert says that quaternion algebras with K/k–

involutions are completely determined by certain quaternion subalgebras over k.

Theorem 5.2.1 (Albert [Alb61, p. 61]). Let Q be a quaternion division algebra over
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K with K/k–involution σ. Then there exists a unique quaternion division subalgebra

Q0 ⊆ Q over k with its canonical (symplectic) involution σ0 such that Q ∼= Q0 ⊗k K

and σ ∼= σ0 ⊗ ¯ where Gal(K/k) = {id, ¯}.

So there is a unique quaternion algebra A0 over k with canonical involution σ0 such

that (A, σ) ∼= (A0, σ0) ⊗k K. Given any [(B, τ)] ∈ H1(k,G) with descent [(B0, τ0)],

(A, σ) and (B, τ) are completely determined by A0 and B0, and for any field extension

L/k,

[(B, τ)]L = 1 ∈ H1(L,GL) ⇐⇒ (A, σ)⊗k L ∼= (B, τ)⊗k L

⇐⇒ A⊗k L ∼= B ⊗k L and σ ⊗ idL ∼= τ ⊗ idL

⇐⇒ A0 ⊗k L ∼= B0 ⊗k L

⇐⇒ L splits A0 ⊗k B0.

So the field extensions trivializing [(B, τ)] ∈ H1(k,G) are precisely the splitting fields

of the central simple algebra A0 ⊗k B0. In particular, indSch(A0 ⊗k B0) = ind([B, τ ]).

By Theorem 2.1.2.(b), there is a separable splitting field of A0 ⊗k B0 of degree

indSch(A0 ⊗k B0) over k, yielding the result.

Case 2.2. K/k is a separable quadratic field extension and G is adjoint of type

A2n.

G ∼= Aut(A, σ) where A is a central simple algebra odd degree 2n + 1 over

K. Fix [(B, τ)] ∈ H1(k,G), and let D be the division algebra Brauer–equivalent

to A ⊗K Bop. If D is split by some field extension L/k, then so is A ⊗K Bop, in

which case A ⊗k L ∼= B ⊗k L. Then either σ and τ become isomorphic over L, in

which case we are done, or σ and τ become isomorphic over KL by Lemma 5.1.3.

Since every field extension that trivializes [(B, τ)] necessarily splits D, we see that

ind([(B, τ)]) = 2θ indSch(A⊗K Bop) where θ = 0 or 1.
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Suppose first that ind([(B, τ)]) = indSch(A⊗K Bop). Since Kσ = Kτ = k,

cor(D) = cor(A)cor(Bop) = 0 ∈ Br k.

So D admits a unitary involution δ such that Kδ = k by Theorem 5.1.1. By Theorem

5.1.2, D contains a maximal subfield E, separable over k, such that δ(E) = E and

E = KEδ. Since

indSch(A⊗K Bop) = deg(D) = [E : K] = [Eδ : k]

and D ⊗k Eδ ∼= D ⊗K E is split, A⊗k Eδ ∼= B ⊗k Eδ. Then ind([(B, τ)]) is odd as

ind([(B, τ)]) = indSch(A⊗K Bop) | deg(A⊗k Bop) = (2n+ 1)2.

So there is a field extension L/k of odd degree such that (A, σ)⊗k L ∼= (B, τ)⊗k L,

hence

((A, σ)⊗k Eδ)⊗Eδ (Eδ ⊗k L) ∼= ((B, τ)⊗k Eδ)⊗Eδ (Eδ ⊗k L).

In particular, σ and τ (viewed as involutions on the isomorphic algebras A ⊗k Eδ

and B ⊗k Eδ) become isomorphic over Eδ ⊗k L. Since [L : k] is odd, Eδ ⊗k L is

isomorphic to a direct product of field extensions of Eδ, at least one of which must

have odd degree, else dimEδ(E
δ ⊗k L) would be even. Call this extension M . Then

σ and τ become isomorphic over M . As [M : Eδ] is odd, σ and τ become isomorphic

over Eδ by Proposition 5.1.4, meaning that (A, σ) ⊗k Eδ ∼= (B, τ) ⊗k Eδ. Since

[Eδ : k] = ind([(B, τ)]), it suffices to take F = Eδ.

Finally, suppose that ind([(B, τ)]) = 2 indSch(A⊗KBop). Proceed exactly as above

to obtain the separable field extension Eδ/k of degree indSch(A ⊗K Bop) such that

A ⊗k Eδ ∼= B ⊗k Eδ. By Lemma 5.1.3, (A, σ) ⊗k KEδ ∼= (B, τ) ⊗k KEδ. Since
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indSch(A⊗K Bop) is odd,

[KEδ : k] = [K : k][Eδ : k] = 2 indSch(A⊗K Bop) = ind([(B, τ)]),

and so it suffices to take F = KEδ, completing the proof. �
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Chapter 6

Negative Answers to Totaro’s

Question

This chapter is largely excerpted from the author’s paper with V. Suresh entitled

“Totaro’s Question on Zero-Cycles on Torsors.” We give two classes of smooth con-

nected linear algebraic groups G for which Totaro’s question has a negative answer:

one over any p-adic field and one over complete discrete valuation fields whose residue

field is a global field of characteristic not equal to 2 (e.g., Q((t))). We then use ap-

proximation arguments to produce examples over Q, Q(t), and Qp(t). The techniques

involved are class-field-theoretic and fundamental to algebraic number theory, and so

the reader should refer to Chapters VI and VII of Cassels–Fröhlich [CF67].

In the first case, the ranks of the constructed groups depend on their chosen p-

adic ground field, but their non-trivial torsors all have index p and no closed points

of degree p. To illustrate this first construction, we give an explicit example of a rank

8 group–a torus, even–over Q2 satisfying the desired properties. In the second case,

we produce groups of rank p for any odd prime p and torsors of index 2 having no

closed points of degree 2. Finally, by an observation of Colliot-Thélène, we produce

failures of Totaro’s question in all higher ranks given each primitive example.
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6.1. Examples over p-adic Fields

To produce the first class of examples, we begin with a number of lemmas.

Lemma 6.1.1. Let k be a field, and let p be a prime not equal to char(k). Then for

any a ∈ k× − (k×)p, the kernel of the natural homomorphism

k×/(k×)p → k( p
√
a)×/(k( p

√
a)×)p

is generated by the class of a.

Proof. Let ζ ∈ ks be a primitive pth root of unity. Then p - [k(ζ) : k], and so

ker[k×/(k×)p → k(ζ)×/(k(ζ)×)p] is trivial. So by replacing k with k(ζ), we can

assume that ζ ∈ k. Then by Kummer theory, the field extension k( p
√
a)/k is cyclic

with Gal(k( p
√
a)/k) ∼= 〈σ〉 where σ( p

√
a) = ζ i p

√
a for some i coprime to p. Let b ∈ k×

such that b = cp for some c ∈ (k( p
√
a)×)p. Then σ(c) = ζjc for some j. Since p - i,

there is some i′ such that ii′ ≡ j mod p. Then σ( p
√
b/( p
√
a)i
′
) = p

√
b/( p
√
a)i
′
, hence

p
√
b/( p
√
a)i
′ ∈ k. So b = ai

′
dp for some d ∈ k×.

Lemma 6.1.2. Let k be a field, and let p be a prime not equal to char(k). Then for

any finite field extension L/k of degree n, the kernel of the natural homomorphism

k×/(k×)p → L×/(L×)p

has order at most pνp(n).

Proof. Write n = pdm where d = νp(n) and p - m. We proceed by induction on

d. First, suppose that d = 0. Then p - [L : k], and so ker[k×/(k×)p → L×/(L×)p]

is trivial. Now, suppose that d ≥ 1. Fix a ∈ k× − (k×)p with a ∈ (L×)p, and let

E = k( p
√
a) ⊆ L. By Lemma 6.1.1, ker[k×/(k×)p → E×/(E×)p] has order p. Since

[L : E] = pd−1m, by the induction hypotheses, ker[E×/(E×)p → L×/(L×)p] has order

at most pd−1. So the order of ker[k×/(k×)p → L×/(L×)p] is at most pd.
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Lemma 6.1.3. If k/Qp is a field extension of degree d, then |k×/(k×)p| ≥ pd+1.

Proof. Let q be the number of elements in the residue field of k. By [Neu99, Propo-

sition II.5.7], we have k× ∼= Z⊕(Z /(q − 1)Z)⊕ (Z /pa Z)⊕ Zdp for some a ≥ 0. Then

(Z /pZ)d+1 is isomorphic to a subgroup of k×/(k×)p.

Now, recall from local class field theory that for any p-adic field k and any n ≥

1, there are only finitely many extension of k of degree n–see [Lan94, Proposition

II.5.14]–and there is always at least one such extension.

Lemma 6.1.4. Let k be a p-adic field, and let E/k be a finite field extension con-

taining all of the degree p field extensions of k. Let D be a division algebra of degree

p over E. Then for sufficiently large M , there exist a degree M field extension L/k

and an a ∈ L× \ (L×)p such that D ⊗E (E ⊗k L( p
√
a)) is split.

Proof. Let N = [E : k]. Let ρ1, . . . , ρs denote the distinct partitions of N . For each

i = 1, . . . , s, let mi =
∑
n∈ρi

νp(n), and choose any M > max
i=1,...,s

{mi}. Since k is a p-adic

field, there exists a field extension L/k of degree M . Then E ⊗k L ∼=
t∏

j=1

Lj for some

field extensions Lj/L each of degree at most N . In fact,
t∑

j=1

[Lj : L] = [E : k] = N ,

and so these degrees form a partition of N . For each j = 1, . . . , t, let

Hj = ker[L×/(L×)p → L×j /(L
×
j )p].

By Lemma 6.1.2, the order of each Hj is at most pνp([Lj :L]). So

∑
|Hj |>1

|Hj| ≤
∏
|Hj |>1

|Hj| =
t∏

j=1

|Hj| ≤
t∏

j=1

pνp([Lj :L]) ≤ p

t∑
j=1

νp([Lj :L])

< pM .

Since |L×/(L×)p| ≥ pM+1 by Lemma 6.1.3, there exists some a ∈ L× \ (L×)p such

that a(L×)p 6∈ Hj for all j, i.e., such that a 6∈ (L×j )p for all j. As each Lj is a p-adic

field and D is a central simple algebra of degree p over E, D ⊗E Lj( p
√
a) is split by
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[CF67, Corollary VI.1.1]. Let F = L( p
√
a). Then [L : k] = M , [F : L] = p, and

E ⊗k F ∼=
t∏

j=1

Lj( p
√
a), hence D ⊗E (E ⊗k F ) is split.

E

E ⊗k L ∼=
t∏

j=1

Lj

E ⊗k F ∼=
t∏

j=1

Lj( p
√
a)

DE⊗kF
∼=

t∏
j=1

DLj( p
√
a)
∼=

t∏
j=1

Mp(Lj( p
√
a))

D

k

L

L1 · · · Lt F = L( p
√
a)

L1( p
√
a) · · · Lt( p

√
a)

DE⊗kL
∼=

t∏
j=1

DLj

p

N

M � 0

≤ N p

Theorem 6.1.5. Let k be a p-adic field, and let E/k be a finite field extension contain-

ing all of the degree p field extensions of k. Then every non-trivial RE/k(PGLp)-torsor

has index p but has no closed point of degree p.

Proof. Let G = RE/k(PGLp), and let X be a non-trivial G-torsor over k. Since

H1(k,G) classifies G-torsors over k by Theorem 3.4.1, X corresponds to an element

of H1(k,G). By Theorem 3.4.7, we have H1(k,G) ↔ H1(E,PGLp), the latter of

which classifies central simple algebras of degree p over E up to isomorphism by

Theorem 3.4.5. Since X is not the trivial torsor, the corresponding degree p algebra

D is non-split and is therefore division and of Schur index p.

Recall that for any field extension K/k, X(K) 6= ∅ if and only if D⊗E (E⊗kK) is

split. By Lemma 6.1.4, there exist degree Mi field extensions Li/k for sufficiently large

Mi and degree p field extensions Fi/Li such that the algebras D⊗E (E⊗kFi) are split.
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So each X(Fi) 6= ∅. Since we can choose the Mi to be arbitrarily large, we can also

choose M1 and M2 to be coprime. Then gcd{[F1 : k], [F2 : k]} = gcd{pM1, pM2} = p,

hence X admits a zero-cycle of degree p. So ind(X) = 1 or ind(X) = p.

If ind(X) = 1, then X has a closed point of some prime-to-p degree m. Then

D ⊗E (E ⊗k K) is split for some degree m field extension K/k. So E ⊗k K ∼=
r∏
i=1

Ki

for some field extensions K1, . . . , Kq/E such that
q∑
i=1

[Ki : E] = [K : k] = m, meaning

that D ⊗E Ki is split for each i. Since p - m, p - [Ki∗ : E] for some i∗. But D ⊗E Ki∗

being split contradicts that D has Schur index p. So ind(X) = p.

Now, if K/k is a degree p field extension, then E ⊗k K ∼=
r∏
i=1

Ei for some field

extensions E1, . . . , Er/E such that
q∑
i=1

[Ei : E] = [K : k] = p. Since K ⊆ E by the

choice of E, each [Ei : E] ≤ p − 1, else q = 1 and E ⊗k K is a field extension of E.

Just as before, each D ⊗E Ei is division since D has Schur index p. Then D ⊗k K is

not split, hence X(K) = ∅. So X has no closed points of degree p.

For an illustrative example, let k = Q2 and E = k(
√

2,
√

3,
√

5). Then [E : k] = 8,

and E contains every quadratic extension of k. Let G = RE/k(PGL2), which evidently

has rank 8. By Theorem 6.1.5, every non-trivial G-torsor has index 2 but has no closed

point of degree 2. In fact, there is only one non-trivial G-torsor over k: the class of

RE/k(C) for the conic C : (ax2 + by2 = z2) ⊆ P2
E where Q = (a, b)E is the unique

quaternion division algebra over E by local class field theory. The conic is birational

to the variety N : (NE(
√
a)/E(x+y

√
a) = b) ⊆ P1

E, a R
(1)

E(
√
a)/E

(Gm)-torsor over E. Let

T = RE/k(R
(1)

E(
√
a)/E

(Gm)). Then T is a rank 8 torus birational to G, and so RE/k(N)

is a non-trivial T -torsor of index 2 with no closed points of degrees 2.

Corollary 6.1.6. There exist a semisimple linear algebraic group G (and a torus T )

of rank 8 over Q and a non-trivial G-torsor (and T -torsor) that has index 2 but has

no closed points of degree 2.

Proof. Let k = Q, E = Q(
√

2,
√

3,
√

5), E2 = Q2(
√

2,
√

3,
√

5), and G = RE/k(PGL2).
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Observe that E ⊗k Q2
∼= E2 is a field, and so there is only one valuation ν2 on E

extending the dyadic valuation on k. Fix a real place ν∞ on E. As in the previous

example, there is a unique quaternion division algebra Q2 over E2, and furthermore,

there is a unique quaternion division algebra Q∞ over R = E∞.

From the Brauer exact sequence ([Pie82, Theorem 18.5])

0→ Br(E)→
⊕
ν∈Ω

Br(Eν)→ Q /Z→ 0

where Ω is the set of places of E, we obtain a quaternion division algebra Q over E

such that Q⊗EE2
∼= Q2, Q⊗EE∞ ∼= Q∞, and Q⊗EEν is split for all ν ∈ Ω−{ν2, ν∞}.

If Q were split by any quadratic field extension of k, then Q2 would be split by a

field extension of Q2 of degree at most 2, which is impossible by Theorem 6.1.5

as Q2 identifies a non-trivial RE2/Q2
(PGL2)-torsor. So the non-trivial G-torsor X

corresponding to Q has no closed points of degree at most 2.

Now, we show that X admits a zero-cycle of degree 2. By Lemma 6.1.4, for

sufficiently large M , there is a degree M field extension L2/Q2 and an a ∈ L×2 −(L×2 )2

such that Q2 ⊗E2 (E2 ⊗Q2
L2(
√
a)) is split. Then by Krasner’s lemma–see [Lan94,

p. 44, Section II.2, Corollary]–there is a degree M field extension L/Q such that

L2
∼= L⊗k Q2. Let ν̂2 and ν̂∞ denote valuations on L extending the dyadic and real

valuations on k, respectively. Then L∞, the completion of L with respect to ν̂∞, is

isomorphic to either R or C, hence E∞ ⊗R L∞ ∼= R or C.

Now, choose an α ∈ L× \ (L×)2 that approximates a at ν̂2 and −1 at ν̂∞. Since

Q2 ⊗E2 (E2 ⊗Q2
L2(
√
a)) and Q∞ ⊗E∞ (E∞ ⊗R L∞(

√
−1)) are both split, the Brauer

exact sequence yields that Q⊗E (E⊗kL(
√
α)) is split. So the field extension L(

√
α)/k

yields a closed point of degree 2M on X. Since M can be taken to be arbitrarily large,

X admits a zero-cycle of degree 2. So ind(X) = 1 or ind(X) = 2.

If ind(X) = 1, then X has a closed point of some odd degree m. Then Q⊗E (E⊗k
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K) is split for some degree m field extension K/k. Since [E : k] = 8, E ⊗k K ∼= EK

is a field, and so [EK : E] = [K : k] = m. But Q is a quaternion division algebra over

E, and Q ⊗E EK being split contradicts that Q has Schur index 2. So ind(X) = 2.

Arguing exactly as in the previous example yields a rank 8 torus T over Q birational

to G and a T -torsor satisfying the desired properties, completing the proof.

Remark (Colliot-Thélène). If G is a smooth connected linear algebraic group of rank r

over a field k and X is a non-trivial G-torsor exhibiting a negative answer to Totaro’s

question, then for any n ≥ 0, X ×k Gn
m and X ×k SLn2 are non-trivial torsors under

G ×k Gn
m and G ×k (SL2)n, respectively, exhibiting negative answers to Totaro’s

question. In particular, Corollary 6.1.6 then says that for every r ≥ 8, there is a

semisimple linear algebraic group G (and a torus T ) of rank r over Q such that every

non-trivial G-torsor (and T -torsor) has index 2 but has no closed points of degree 2.

6.2. Examples over Other Discrete Valuation Fields

To produce the second class of examples, we exploit an arithmetic feature of

“higher-dimensional” fields: the existence of biquaternion division algebras. We begin

by constructing quaternion algebras whose corestrictions along some field extensions

of odd prime degree are Brauer equivalent to biquaternion division algebras.

Lemma 6.2.1. Let k be a global field of characteristic 6= 2, and let p an odd prime.

Let `/k be a separable field extension of degree p. Then there exist a quaternion

division algebra Q over k and a λ ∈ `× such that

1. Q⊗k `(
√
λ) is split,

2. N`/k(λ) 6∈ (k×)2, and

3. Q⊗k k(
√
N`/k(λ)) is division.

Proof. Let Ω denote the set of places of k. As a consequence of the Chebotarev

Density Theorem–see [Neu99, Theorem VII.13.4]–there are distinct places ν, ν ′ ∈ Ω
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with respective parameters π, π′ ∈ k that split completely in ` into places ν1, . . . , νp

and ν ′1, . . . , ν
′
p. Choose θ, θ′ ∈ k× − (k×)2 such that θ 6∈ (k×ν )2 and θ′ 6∈ (k×ν′)

2.

Furthermore, let ν ′′ ∈ Ω such that `⊗k kν′′ is a field, and let ν̃ ′′ be the unique place

of ` extending ν ′′. Then `ν̃′′ ∼= `⊗k kν′′ . Since [` : k] is odd, there exists some θ′′ ∈ `×ν̃′′

such that N`ν̃′′/kν̃′′
(θ′′) /∈ (k×ν′′)

2. By approximation, we can choose a λ ∈ `× that is

(a) close to π (resp. π′) at ν1 (resp. ν ′1),

(b) close to θ (resp. θ′) at ν2, . . . , νp−1 (resp. ν ′2, . . . , ν
′
p−1),

(c) close to π−1θ−(p−2) (resp. π
′−1θ

′−(p−2)) at νp (resp. ν ′p), and

(d) close to θ′′ at ν̃ ′′.

By the Brauer exact sequence, there is a quaternion division algebra Q over k such

that Q⊗kkν and Q⊗kkν′ are division but Q⊗kkω is split for every ω ∈ Ω−{ν, ν ′}. By

(a), (b), and (c), λ is not a square at any νi or ν ′j, which means that each `νi(
√
λ)/`νi

and each `ν′j(
√
λ)/`ν′j is a quadratic field extension. Then by [CF67, Corollary VI.1.1],

each Q⊗k `νi(
√
λ) and each Q⊗k `ν′j(

√
λ) is split.

Now, since Q ⊗k kω is split for every ω ∈ Ω − {ν, ν ′}, Q ⊗k `(
√
λ) is split at

every place of `(
√
λ) and is therefore split by the Brauer exact sequence, yielding the

first condition. As N`ν̃′′/kν̃′′
(θ′′) /∈ (k×ν′′)

2, N`ν̃′′/kν′′
(λ) /∈ (k×ν′′)

2 by (d). So N`/k(λ) /∈

(k×)2, hence the second condition. By (a), (b), and (c), N`/k(λ) is close to 1 at ν,

hence
√
N`/k(λ) ∈ kν . Then Q ⊗k kν(

√
N`/k(λ)) ∼= Q ⊗k kν is division, hence so is

Q⊗k k(
√
N`/k(λ)), yielding the third condition and completing the proof.

Proposition 6.2.2. Let k be a global field of characteristic not equal to 2, let p be

an odd prime, let `/k be a separable field extension of degree p, let K be a complete

discrete valuation field with residue field k, and let L/K be the unique unramified

field extension of degree p with residue field `. Then there exists a quaternion division

algebra D over L such that indSch(corL/K(D)) = 4.

Proof. Let R ⊆ K and S ⊆ L be the rings of integers, let π ∈ R be a parameter, and

let Q be a quaternion division algebra over k and λ ∈ `× as in Lemma 6.2.1. Since
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Br(k) ∼= Br(R)–see [Cip77, p. 257, Corollary]–there is a quaternion algebra D̃0 over

R such that D̃0 ⊗R R/(π) ∼= Q. Let D0 = D̃0 ⊗R K. If u ∈ S× is a lift of λ ∈ `×,

then since Q⊗k `(
√
λ) is split, so is D0⊗K L(

√
u). Then D0⊗K L = (u, a)L for some

a ∈ L× by [GS06, Proposition 1.2.3].

Let D = (u, aπ)L. Then [D] = [(u, aπ)L] = [(u, a)L] + [(u, π)L] by [GS06, Lemma

1.5.2]. Note that corL/K([D0 ⊗K L]) = corL/K ◦ resL/K([D0]) = p[D0] by Lemma

3.3.3. Since p is odd and corL/K([(u, π)L]) = [(NL/K(u), π)K ] by [CF67, Proposition

IV.7.9.(iv)], corL/K([D]) = [D0] + [(NL/K(u), π)K ]. Noting that D0 is unramified over

R, NL/K(u) ∈ R×, and D0⊗KK(
√
NL/K(u)) is a quaternion division algebra, [FS95,

Proposition 1.(3)] yields

indSch(corL/K(D)) = indSch(D0 ⊗K (NL/K(u), π)K)

= [k(
√
N`/k(λ)) : k] · indSch(Q⊗k k(

√
N`/k(λ)))

= 4,

as desired.

k

k(
√
N`/k(λ))

`

`(
√
λ)

R = OK

S = OL

K

L

L(
√
u)

Q

D̃0

D0 = D̃0 ⊗R K

(u, a)LD = (u, aπ)L

corL/K(D)

D ⊗L L(
√
u) ∼= M2(L(

√
u))

p

2

p

2

2

2

4
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Proposition 6.2.3. Let K be a field, L/K be a separable field extension of prime

degree p, and let A be a central simple algebra over L such that p - indSch(A). Then

there exists a field extension F/K such that p - [F : k] and A⊗L (L⊗K F ) is split.

Proof. Since A is a central simple algebra over L, by Theorem 2.1.2.(c), there exists

a finite separable extension E/L such that A ⊗L E is split . Replacing E by its

Galois closure over K, we can assume that E/K is Galois. Let Sp be the p-Sylow

subgroup of the Galois group of E/K, and let F = ESp be the fixed field of Sp. Then

p - [F : K] and [E : F ] is a power of p. As [L : K] = p, F ⊆ L⊗K F ∼= LF ⊆ E. Then

p - [LF : L] and [E : LF ] is a power of p. Since A ⊗L E is split and p - indSch(A),

A⊗L LF ∼= A⊗L (L⊗K F ) is split by Theorem 2.1.2.(a).

Theorem 6.2.4. Let k be a global field of characteristic not equal to 2, let `/k be a

separable field extension of odd prime degree p, let K be a complete discrete valuation

field with residue field k, let L/K be the unramified field extension of degree p with

residue field `, and let G = RL/K(PGL2). Then there exists a non-trivial G-torsor X

such that X has index 2 but has no closed points of degree 2.

Proof. Let Q be a quaternion division algebra over L as in Proposition 6.2.2. By

Theorems 3.4.7 and 3.4.5, H1(K,G) ↔ H1(L,PGL2) classifies quaternion algebras

over L up to isomorphism. Let X be the non-trivial G-torsor over K given by Q. Then

X(K) = ∅. Let E/K be a quadratic field extension, and suppose that X(E) 6= ∅.

Then Q⊗L(L⊗KE) is split. In particular, corL/K(Q)⊗KE is split. Since [E : K] = 2,

indSch(corL/K(Q)) is at most 2 by Theorem 2.1.2, contradicting the choice of Q by

Lemma 6.2.1. So X has no closed points of degree 2.

Now, since Q is split over a quadratic field extension of L and [L : K] = p is odd,

X has a closed point of degree 2p. By Proposition 6.2.3, there exists a field extension

F/K such that p - [F : K] and Q ⊗L (L ⊗K F ) is split. Then X(F ) 6= ∅. Since

corL/K(Q)⊗K F = corLF/F (Q⊗L LF ) is split and indSch(corL/K(Q)) = 4, 4 | [F : K]
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by Theorem 2.1.2.(a). As p - [F : K], X admits a zero-cycle of degree 2. Then arguing

as in the proof of Theorem 6.1.5, ind(X) = 2.

Corollary 6.2.5. Let k be a global field of characteristic not equal to 2, let `/k be

a separable field extension of odd prime degree p, and let K be a complete discrete

valuation field with residue field k. Then there exist a torus T of rank p over K and

a non-trivial T -torsor X that has index 2 but has no closed points of degree 2.

Proof. Let Q = (a, b)L be a quaternion division algebra over L as in Proposition 6.2.2.

Then arguing as in the example from Section 6.1, the non-trivial RL/K(PGL2)-torsor

obtained in Theorem 6.2.4 is birational to a non-trivial RL/K(R
(1)

L(
√
a)/L

(Gm))-torsor,

which necessarily has index 2 but has no closed points of degree 2.

Remark. Q(t) (resp. Qp(t)) has a discrete valuation ν with residue field a global field

of characteristic not equal to 2. Arguing as in Corollary 6.1.6, the constructions of

Theorem 6.2.4 and Corollary 6.2.5 over the completion of Q(t) (resp. Qp(t)) at ν

descend to Q(t) (resp. Q(t)). So there exist smooth connected linear algebraic groups

over Q(t) and Qp(t) for which Totaro’s question has a negative answer.

Remark (Colliot-Thélène). If we take p = 3 throughout this section, then Theorem

6.2.4 and Corollary 6.2.5 yield semisimple linear algebraic groups and tori, respec-

tively, of rank 3 for which Totaro’s question has a negative answer. Arguing as before,

we then produce failures of Totaro’s question in all ranks at least 3.
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Math. Res. Not., (54):2897–2914, 2004.

[FS95] B. Fein and M. Schacher. Q(t) and Q((t))-admissibility of groups of odd

order. Proc. Amer. Math. Soc., 123(6):1639–1645, 1995.

[GH06] S. Garibaldi and D. W. Hoffmann. Totaro’s question on zero-cycles on

G2, F4 and E6 torsors. J. London Math. Soc. (2), 73(2):325–338, 2006.

[GLL13] O. Gabber, Q. Liu, and D. Lorenzini. The index of an algebraic variety.

Invent. Math., 192(3):567–626, 2013.

[GSa] R. L. Gordon-Sarney. Totaro’s question for adjoint groups of types A1

and A2n. to appear in Proc. Amer. Math. Soc.

[GSb] R. L. Gordon-Sarney. Totaro’s question for tori of low rank. to appear in

Trans. Amer. Math. Soc.

[GS06] P. Gille and T. Szamuely. Central simple algebras and Galois cohomology,

volume 101 of Cambridge Studies in Advanced Mathematics. Cambridge

University Press, Cambridge, 2006.



65

[Jac96] N. Jacobson. Finite-dimensional division algebras over fields. Springer-

Verlag, Berlin, 1996.

[KMRT98] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol. The book of invo-

lutions, volume 44 of American Mathematical Society Colloquium Publi-

cations. American Mathematical Society, Providence, RI, 1998. With a

preface in French by J. Tits.

[Lan94] S. Lang. Algebraic number theory, volume 110 of Graduate Texts in Math-

ematics. Springer-Verlag, New York, second edition, 1994.

[Man72] Yu. I. Manin. Kubicheskie formy: algebra, geometriya, arifmetika. Izdat.

“Nauka”, Moscow, 1972.

[Man86] Yu. I. Manin. Cubic forms, volume 4 of North-Holland Mathematical

Library. North-Holland Publishing Co., Amsterdam, second edition,

1986. Algebra, geometry, arithmetic, Translated from the Russian by

M. Hazewinkel.

[Neu99] J. Neukirch. Algebraic number theory, volume 322 of Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathemat-

ical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992

German original and with a note by Norbert Schappacher, With a fore-

word by G. Harder.

[Par05] R. Parimala. Homogeneous varieties—zero-cycles of degree one versus

rational points. Asian J. Math., 9(2):251–256, 2005.

[Pie82] R. S. Pierce. Associative algebras, volume 88 of Graduate Texts in Math-

ematics. Springer-Verlag, New York-Berlin, 1982. Studies in the History

of Modern Science, 9.



66

[Sch75] W. Scharlau. Zur Existenz von Involutionen auf einfachen Algebren.

Math. Z., 145(1):29–32, 1975.

[Sch85] W. Scharlau. Quadratic and Hermitian forms, volume 270 of Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathe-

matical Sciences]. Springer-Verlag, Berlin, 1985.

[Ser] J.-P. Serre. Galois cohomology. Springer-Verlag, Berlin. Translated from

the French by Patrick Ion and revised by the author.

[Ser62] J.-P. Serre. Cohomologie galoisienne des groupes algébriques linéaires. In
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