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Abstract

Topics in arithmetic statistics
By Christopher Keyes

Arithmetic statistics encompasses a broad class of questions in number theory and arith-
metic geometry of a distinctly quantitative flavor. In this thesis the author addresses three
such questions, the first two of which are related to superelliptic curves, which are given by
an equation of the form Cy:y™ = f(x, z). For a fixed such curve defined over the rational
numbers Q and an appropriately chosen degree n, we give an asymptotic lower bound on
the number of finite extensions K/Q of degree n arising as the minimal field of definition
for an algebraic point on Cy, counted by absolute discriminant. Rather than fixing the
curve, we could instead ask how often a family of superelliptic curves has certain arithmetic
properties. In particular, we study how often such curves are everywhere locally soluble,
computing exactly the density of f such that C; has points everywhere locally. Finally,
we interpret the Mertens’ classical product theorem as a statement about the density of
integers lacking small prime factors. We then prove a generalization to Chebotarev sets of
prime ideals in Galois extensions of number fields.
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Chapter 1

Introduction

Arithmetic statistics encompasses a broad class of quantitative questions involving objects
and properties of interest to number theorists and arithmetic geometers. Examples of these
objects are number fields, solutions to polynomial equations, and of course, prime numbers.
In this dissertation, we address arithmetic statistical topics relating to these three objects.

To set the stage, we introduce each object, and state our main results.

1.1 Counting number fields

Fix an integer n > 2 and consider the following question.
Question 1.1.1. How many number fields K/Q of degree n are there?

Since there are infinitely many such extensions, we make this precise by considering the

asymptotic behavior of
Np(X) =#{K/Q|[K : Q] =n, [DiscK/Q|< X}.

Note that while we have chosen to count by discriminant, counting by other invariants is
also of interest; see e.g. [ASVW21, ST22].

Let K be the Galois closure of K /Q, that is the minimal field extension of K such that
K /Q is Galois. If f is a minimal polynomial for a primitive element of K, then the Galois

group Gal(f(/@) acts transitively on the n roots of f.



Suppose G is a transitive permutation subgroup of the symmetric group S,,. We can

also look to count extensions whose Galois closure has group isomorphic to G by studying
No(X,G) = # {K/Q | [K : Q] = n, |Disc K/Q|< X, Gal(K/Q) ~ G} .

Conjecture 1.1.2 (folklore). Fix n > 2. Then we have Nno(X,S,) ~ C,X for some

constant C,,.

Conjecture 1.1.2 is known to hold for n < 5. The n = 2 case is classical, with Cy = %,
which essentially follws from the computation of the density of squarefree integers and the
classification of discriminants of quadratic fields. The n = 3 case is due to Davenport and
Heilbronn [DHT71], with improved error terms given by Bhargava, Shankar, and Tsimerman
[BST13], while the n = 4,5 cases are due to Bhargava [Bha05, Bhal0].

For Galois groups G C S, more generally, Malle’s conjecture and its various refinements
provide predictions for the asymptotics of N,,(X,G). For a more detailed summary of the
conjecture and known special cases, see [Alb21].

For N, (X), relatively little is known for n > 6. The best currently known asymptotic
upper bound takes the form

N, (X) < Xxclogn)®,

due to Lemke Oliver and Thorne [LT22], with improvements for 6 < n < 94 given in
[AGHT22, BSW22].

We can reinterpret the problem of counting number fields to counting those fields which
are generated by algebraic points on the projective line, P!. Given some number field
K = Q(a), we can think of « as a geometric point on the P!, whose minimal field of

definition is K. Suppose now that C' is an algebraic curve defined over Q and define

Noo(X) = #{K/Q| K = Q(P), [K : Q] = n, [Disc K/Q|< X}

which counts fields which arise as the minimal field of definition for a degree n point P €

C(Q). We may similarly define N, ¢(X, G) for a transitive subgroup G C S,,, and ask how

these functions and their asymptotics depend on the geometry of the underlying curve C.



We present our main results in this direction below.

Theorem 1.1.3 (K.—Beneish). Let m > 2 and C:y™ = f(x) be a superelliptic curve over

Q. Then for n sufficiently large and divisible by m, we have
Npo(X) > X%

for an explicit constant 6,, given explicitly in (3.5.1).

In the case when m = 2, i.e. C is a hyperelliptic curve, we can count fields with Galois

group Sp.

Theorem 1.1.4 (K.). Let C:y?> = f(x) be a hyperelliptic curve over Q. Then for n

sufficiently large and divisible by ged (2, deg f) we have
Npc(X,Sp) > X

The results in the hyperelliptic case appeared in [Key22], while the superelliptic case is
joint with Lea Beneish [BK21a]!. In Chapter 2 we give some more detailed background on
Newton polygons and generating the symmetric group S,. Then in Chapter 3, we prove
Theorems 1.1.3 and 1.1.4, synthesizing the exposition in [Key22, BK21a] to give an account
of the general strategy of counting polynomials and then adjusting for multiplicity. We also

discuss geometric sources of higher degree points and prove the following.

Proposition 1.1.5 (K.-Beneish). Suppose m,d positive integers and q is an odd prime

satisfying
(i) 4|m|d,
(ii) m < g,
(i) n=2q < 4 — 1.

Then for a positive proportion of squarefree degree d polynomials f, ordered by height, the

superelliptic curve y™ = f(x) has finitely many points of degree n.

!The March 2021 preprint version contains errors, many of which are corrected in this dissertation.



1.2 Solubility for families of curves

Consider a collection of curves defined over Q. Before making precise what we mean, we

are motivated by the following question.
Question 1.2.1. How often does a curve in this collection have a rational point?

Note that throughout, one could more generally consider higher-dimensional varieties
over fixed global field, but we content ourselves with curves over Q.

Even for a fixed curve C'/Q, searching for rational solutions can prove challenging and
time consuming. It is thus often useful to consider obstructions to the existence of rational
points, the simplest of which are local obstructions.

The curve C' is said to be locally soluble at a prime p if the set of p-adic points C(Q,)
is nonempty, and locally soluble at the infinite place if C'(R) # ). If C is locally soluble at
all places, we say it is everywhere locally soluble. Since Q embeds into R and Q,, for all
primes p, we have that everywhere local solubility is a necessary condition for C' to have a
rational point. Moreover, it is generally straightforward to determine whether or not C' is
everywhere locally soluble in finite time.

When everywhere local solubility is a sufficient condition, we say C satisfies the Hasse
principle. The classical Hasse-Minkowski theorem implies that the Hasse principle holds
when C' has genus 0. However, this turns out not to be the case for higher genus curves.

To give only one example, and an answer to Question 1.2.1 for a specific case, consider

hyperelliptic curves of the form

Cry’ = f(x,2),

where here f is an integral binary form of degree 2g + 2. Ordering by the height of their
coefficients, we can ask about the natural density of polynomials f for which C'; has points
everywhere locally, or rational points.

Poonen and Stoll showed that a positive proportion of hyperelliptics Cy are everywhere
locally soluble [PS99b], with Bhargava, Cremona, and Fisher pinning this proportion down
to about 76% in the g = 1 case [BCF21]. A landmark result of Bhargava, Gross, and Wang

then states that a positive proportion of everywhere locally soluble hyperelliptic curves C'y



fail to have points of any odd degree [BGW17]. In particular, they lack rational points and
thus fail the Hasse principle.

Motivated by these results, we consider the collection of superelliptic curves

Cry™ = f(z,2),

where m > 2 and f is an integral binary form of degree d divisible by m. As a first step
to understanding how often such curves have (or lack) rational points or points of certain
higher degrees, we study how often they are everywhere locally soluble.

Writing f(x, 2) = cqz® + - - - + co2?¢, we set

_ #{(co,...,ca) € (ZN[-B,B))*1 | C} is everywhere locally soluble}
Prmnd = g% (2B + 1)d+1 ’

if the limit exists. In joint work with Lea Beneish, appearing in [BK23] and reproduced in

Chapter 4, we prove the following results.

Theorem 1.2.2 (Beneish-K.). Fiz (m,d) # (2,2). Then pp,q exists, 0 < ppq < 1, and

Pm.d factors into a product of local densities,
Pm,d = pm,d(oo) H pm,d(p)-
p

These local densities are made precise in (4.1.5) and (4.1.6). They may be thought of
as the probability of C; having a p-adic (resp. real) point. Thus Theorem 1.2.2 may be
thought of as stating that these local probabilities look independent of one another. To
deduce the result, we realize our family as coming from the fibers of a certain morphism of
varieties and apply a result of Bright, Browning, and Loughran [BBL16, Theorem 1.4].

The utility of Theorem 1.2.2 is that the local factors may then be estimated, yielding
estimates for p,, 4. This amounts to counting the residue classes of degree d forms f for
which we can guarantee (or rule out) the existence of F)-points on the reduction Cy(F))
which lift to Q,-points on Cf.

With some effort, this approach can be used to give exact computations of the local



factors in certain cases.

Theorem 1.2.3 (Beneish-K.). For superelliptic curves Cy = y™ = f(x, z) with m = 3 and

d = 6, the exact value of p3 e is about 0.9694.

More precisely, the local densities are given by one of two explicit rational functions
when p is sufficiently large. We write p36(p) = R;i(p) where p = i (mod 3). The explicit

formulae are given in (4.8.1), while the asymptotic behavior as p — oo are described by

2
1—Ry(t) ~ gt_‘l,

For the eight primes p = 2,3, 7,13, 19, 31, 37, 43 for which p3 6(p) is not given by one of these
rational functions, we are still able to compute p36(p) exactly, with the help of a computer,

in order to give the exact value in Theorem 1.2.3.

1.3 Mertens’ theorem

Let 7(x) denote the counting function of prime numbers p < x. The prime number theorem

famously states

which we write as
x

m@) ~ logx’

As a consequence, the natural density of the primes is 0, but approaches it rather slowly at

1

the rate gz
Suppose now, without knowing the prime number theorem, we were to try to estimate
the density of the primes in the interval (y/x,x]. An integer n in this range is prime if and

only if it is not divisible by p for all primes p < x. The natural density of integers indivisible

by all such p is given by the product



so making the naive assumption that this is the same as the density of primes in (\/z, z]
(as x goes to infinity), one would guess that the asymptotic density of the primes is equal
to the limit of the product above.

Enter a result of Mertens, proved before the prime number theorem was known [Mer74],
which states that as z — oo we have

-
P log x

p<z

Here v denotes the Euler—Mascheroni constant.

Therefore using our naive assumption above, we would obtain that the asymptotic prime

density is if;; Note that 2e™7 ~ 1.123, so this differs from the true density of loéx as
given by the prime number theorem. Thus Mertens’ theorem is capturing that for an
integer n € (y/x, x], failing to be divisible by distinct primes p, p’ < y/x are not independent
conditions.

Mertens theorem has since been extended in different directions. Almost a century later,
Williams [Wil74] showed that for a coprime to b we have

1 o—(a.b) 1/(b)
11 (1_p> ~ ( log 2 ) |

p=a (mod b)

where ¢(b) is Euler’s totient function. The constant, which we denote by e~7(% to draw a
parallel to the shape of Mertens’ theorem, is described explicitly in Williams’ paper.

For an extension of number fields £/Q, Rosen [Ros99] gave a Mertens-type formula for
prime ideals in the ring of integers O of bounded absolute norm N (P),

11 (1 - N(1P)> - l;i

N(P)<z

Here the generalized Euler constant vg is equal to v + »p, where »g is the residue of the
Dedekind zeta function (g(s) at s = 1.
In [APnKK22], joint with Santiago Arango-Pineros and Daniel Keliher, we generalize

to the setting of Chebotarev sets of primes in a Galois extension E/F of number fields,



unifying the results of both Williams and Rosen.

Theorem 1.3.1 (Arango-Pineros—Keliher-K.). Let E/F be a Galois extension of number
fields with G = Gal(E/F). For a conjugacy class C C G, let C(x) denote the unramified
primes P in Op with Artin symbol Frobp = (%) = C and bounded absolute norm

N(P) <z. Then as x — oo we have

, e allcl
11 (“N(P))” log '

PeC(x)

The proof, found in Chapter 5, follows a similar argument to that of Williams, using
character orthogonality and several Euler products. Some additional care must be taken
when G has representations of dimension greater than one.

We give explicit descriptions of the constants when E/F' is quadratic, abelian, or an

S35 sextic, as well as an application to primes represented by quadratic forms, which we

highlight here.

Corollary 1.3.2 (Arango-Pineros—Keliher-K.). Let Q be a primitive, irreducible, positive
definite, integral binary quadratic form with discriminant D. Let E be the ring class field of
the order of D. Denote by Q(x) the set of primes p < x represented by Q. Then as x — o0

we have
|C]

H . 1 5 e—(E/Q,C) \ 2h(D) H . 1
P log p)’
P\AE

PeQ(x) 5
pe

where C C Gal(E/Q) is the conjugacy class corresponding to Q wvia class field theory and

h(D) is the class number of forms of discriminant D.



Chapter 2

Preliminaries

2.1 Local fields and Newton polygons

2.1.1 Local fields

In this section, we briefly recall classical facts about local fields complete with respect to a
discrete valuation. The prototypical examples are the p-adic fields QQ, and finite extensions
thereof. We omit much explanation and most proofs, instead referring the reader to standard

texts, e.g. [Lan94, Neu99, Guil8, Mil20], for the details.

Definition 2.1.1 (p-adic valuation). For a nonzero integer n, the p-adic valuation of n
is the largest positive integer k such that p* | n.

This is naturally extended to a function v,:Q — R U {oco} by

o (3) = val@) = vy(0)

and satisfies the usual properties of a discrete valuation (see e.g. [Neu99, §I1.3]):
(i) vp(z) = oo if and only if x =0,
(ii) vp(zy) = vp(x) + vp(y) for all z,y, and
(ili) vp(z 4+ y) > min (vy(x), vp(y)) and equality holds if v,(x) # v,(y).

Property (iii) above is known as the nonarchimedean property.
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Definition 2.1.2 (p-adic absolute value). The p-adic absolute value, denoted |-|,, is
given by

o= p 7.
Here |0[,= 0 by convention.

Definition 2.1.3 (p-adic field). The p-adic field Q) is constructed as the completion of Q
with respect to |-|,. That is, Q, consists of sequences of rational numbers which are Cauchy

with respect to |-|,, up to equivalence.

Definition 2.1.4 (p-adic numbers). The p-adic numbers Z, are defined to be the inverse
limit
Zp = gﬂ Z/an7
with the natural reduction maps Z/p"*!Z — Z/p"Z and their compositions.
These analytic and algebraic definitions coincide when we take the valuation ring.

Proposition 2.1.5. The subring of Q, with nonnegative valuation coincides with Zi.

Moving forward, let K be a field, complete with respect to the absolute value given by

a nonarchimedean discrete valuation v. We recall a number of basic facts.

Proposition 2.1.6 (See e.g. [Guil8, Proposition 2.17]). With notation as above, we have

the following basic facts, generalizing the case of K = Q.
(a) O ={x € K |v(x) >0} is a subring called the valuation ring of K.
(b) O* ={x € O |v(x)=0}.
(c) m={x € O|v(z)>0} C O is the unique mazimal ideal of O, i.e. O is a local ring.
(d) m = (7) is a principal ideal. In fact, all ideals of O take the form (7%).

(e) F = O/m is known as the residue field; Whenever K/Q, is a finite extension, F is a

finite field of characteristic p.
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Perhaps the most important result in the theory of local fields, and one that we will use
later, is Hensel’s lemma. It allows us to lift factorizations of polynomials, hence also their

roots, from the residue F back to the valuation ring O.

Theorem 2.1.7 (Hensel’s lemma). With notation as above, let f(t) € O[t] and denote by

f(t) the image in F[t]. Suppose in the residue field f # 0 and we have a factorization
f=ghcF[t],
such that g, h are relatively prime. Then there exist g, h € O[t] with deg g = degg such that
f=gh, g=g (modm), and h=h (modm).

Proof. See e.g. [Neu99, I11.4.6] or [Guil8, Theorem 2.21]. O

Corollary 2.1.8. Let f(t) € O[t] and suppose its reduction f(t) is nonzero with a root @

such that the derivative T(a) # 0. Then there exists o € O with
fla)=0 and a=a (modm).

Proof. The existence of a root implies f = (t — @)h for some h € F[t]. Set § =t — a with
the coprimality of g, h following from the fact that f/(a) # 0. Now we apply Theorem 2.1.7
to lift to a linear polynomial g = ¢ — « in the factorization of f. Since g =7 (mod m), we

have a = @ (mod m). O

A refinement of the proof of Theorem 2.1.7 gives a well known strengthening of Corollary

2.1.8.

Theorem 2.1.9. Let f(t) € O[t] and suppose there ezists ag € O such that

v(f(0)) > 20(f'(e0))-

Then the sequence
flei1)
feiy)

Q; = Q-1 —
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for i > 1 converges to a € O with

fla)=0 and a=ay (modm).

Proof. See e.g. [Lan94, §11.2, Proposition 2]. O
We now give several useful properties of extensions of local fields.

Proposition 2.1.10 ([Neu99, Theorem 11.4.8]). Let K be a field complete with respect to
the discrete valuation v. If L/K is a finite extension, there is a unique extension of the

valuation v to L, with respect to which L is complete.

In light of Proposition 2.1.10, we abuse notation by also writing v for the valuation
extended to L. Note that if v was normalized on K, i.e. v(m) = 1, then it need not be

normalized on L; in fact, this will often fail to be the case.

Remark 2.1.11. Proposition 2.1.10 allows us to make sense of the valuations of the roots

of a polynomial f over Q,, by uniquely extending v to a valuation on the splitting field of
f over Q.
2.1.2 Ramification

For the remainder of the section, let K, v be as above with p the characteristic of the residue
field. Let L/K denote a finite extension with v extended to L by Proposition 2.1.10. We

use subscripts to denote the valuation rings and residue fields of the respective fields.

Definition 2.1.12 (ramification index). The ramification index of L/K is

e=e(L/K)=[v(L*):v(K*)].

We say L/K is unramified if e = 1 and totally ramified if e = [L : K]. We say L/K is

tamely ramified if p { e and wildly ramified otherwise.

Definition 2.1.13 (inertia degree). Let L/K be a finite extension and Fy,/Fx the associ-
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ated extension of residue fields. The inertia degree of L/K is

f=FL/K)=[Fr : Fg].

Proposition 2.1.14 (fundamental identity, see e.g. [Neu99, Proposition 11.6.8]). Let L/K
be a finite separable extension. Then [L : K| = ef, the product of the ramification index and
inertia degree. If T /K is the mazimal abelian subextension contained in L, this is visualized

in the diagram below.

L F,
T Fr=F;
|1
K Fx

Proposition 2.1.15 (see e.g. [Neu99, Proposition 11.9.9]). Let L/K be a finite Galois

extension. Then we have an exact sequence of finite groups
0—I(L/K)— Gal(L/K) — Gal(F./Fg) — 0,

where I(L/K) = Gal(L/T) is the inertia subgroup.

Remark 2.1.16. The residue field Fyc = F, is finite of order ¢ = p*, so Gal(F./Fg) is a

cyclic group generated by the Frobenius automorphism z — z9.

Remark 2.1.17. If L/K is unramified, then L/K is Galois and Gal(L/K) ~ Gal(Fr,/Fk),

as each automorphism of the residue extension lifts to L/K.

Totally tamely ramified extensions are nicely characterized as radical extensions, with

cyclic Galois group. This will come in handy later.

Lemma 2.1.18 (see e.g. [Sut, Theorem 11.8]). Let L/K be a finite separable extension.

L/K is totally tamely ramified, i.e. pte = [L : K], if and only if

L= K(x'/*)
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for a uniformizer m of K.

Moreover, if L/K is finite Galois and totally tamely ramified, then Gal(L/K) is cyclic.

Proof. The characterization of tamely ramified extensions as radical extensions is useful in
classifying finite extensions of local fields. For a proof of the first equivalence, see e.g. [Sut,
Theorem 11.8].

The second statement follows from the fact that in the tamely ramified case, we have
an injective group homomorphism I(L/K) — F}; see [Mil20, Corollary 7.59]. Since F; is
cyclic and I(L/K) = Gal(L/K) by totally ramified, we are done. O

Note that if L/K is tamely ramified, but not necessarily totally ramified, we have a
cyclic subgroup of order e, Gal(L/T) C Gal(L/K), for the maximal unramified intermediate
extension T/ K.

We conclude with a few elementary intermediate results that will be useful to us later.

Lemma 2.1.19. Let L/K, L'/ K be finite extensions and set E = LL' to be their composi-

tum. The ramification index e(E/K) divides the product of those of L and L,
e(E/K) | e(L/K)e(L'/K).

Proof. For brevity, let ey, er/, ep denote the ramification indices. Let T, denote the maximal
unramified extension of L/K, so [L : Tp] = ey, (and similarly for L', E'). Then we have the

diagram below, with certain degrees marked.

E

L’ Tg

LT
el LTg N L/TE eps
d\
L
N /

\
/

7\
\ /

/N
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Note that LNTgr = T, since L/T}, is totally ramified and T /T}, is unramified (and similarly
for L').
From the diagram, we now see that the degree d divides both ey and e/, hence d |

ged(er, err). Moreover,

e ey erer
—dlE: LTy N LTyl =d- L — .
en = dl 2 ] d d d

This completes the proof. ]

Remark 2.1.20. The proof of Lemma 2.1.19 shows that if ey, and ey are coprime, then
d = 1. In this case the ramification index is multiplicative, e(F/K) = e(L/K)e(L'/K).
Similar techniques reveal that if ged(er,er/) = 1 then LN L' is unramified and equal to

T, N Ty.

Lemma 2.1.21. Let L/K, L'/K be finite extensions and set E = LL' to be their com-
positum. Set Ty /K to be the mazximal unramified subextension of E/K. If the ramification
indices e(L/K) and e(L' /K) are coprime, then

LTy N L/TE =TE.

Moreover, if L, L', E are Galois over K, this implies that we have identifications

Gal(L/Ty) ~ Gal(LTg/Tg) ~ Gal(E/L'Tg).

Proof. We have that L N Tr = Ty, since any subextension of T is unramified over K, so
L N Tg is unramified and thus contained in 77,. This and the identical argument for L’
implies

[LTE . TE] = [L . TL] =€r, [L/TE . TE] = [L/ : TL’] = €r/.

If L is Galois (77, is unramified and thus Galois) then from standard Galois theory we have

Gal(LTE/TL) = Gal(LTE/L N TE) ~ Gal(L/TL) X Gal(TE/TL)
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In particular, we make the identification

Gal(L/TL) ~ Gal(LTE/TE).

By a similar argument for the L’ side, we produce the diagram below.

E

/

er, eL/

LTy L'Tg
L Tx %
T Ty

/N AN
N/

K
By the hypothesis that ged(ep,er) = 1, we find LT N L'Ty = Tg. Repeating our previous
argument, we have Gal(LTg/Tg) ~ Gal(E/L'Tg) as desired. O

2.1.3 Newton polygons

We now recall the theory of Newton polygons of polynomials; see [Neu99, §I1.6] for more.

Definition 2.1.22 (Newton polygon). Let f(t) = Z?:o a;t' € Q,[t] be a polynomial. The
p-adic Newton polygon of f is the lower convex hull in R? of the points (4,v(a;)) for
0<i<d,

NPq, (f) = conv {(i,v(a;)) | 0 <i < d}.

Note that we assume agag # 0 and interpret a; = 0 and the corresponding point (i,00) as
having no contribution. When the prime p is understood, we will simply refer to this as the

Newton polygon of f, denoted NP(f).

Example 2.1.23. Consider the sextic polynomial
ft) = p*t® + pt* + % + pt + p.

The points (i,v(a;)) and Newton polygon NP(f) are drawn below.



17

Figure 2.1.1: An example Newton polygon for a sextic polynomial

A

(0,2) ¢ (6,2)

q
~

The Newton polygon NP(f) encodes information about the valuations of the roots of f.
Note that the valuation of a root is well defined in this context by Proposition 2.1.10; see

Remark 2.1.11. To make this precise, we define the notion of a segment of NP(f).

Definition 2.1.24 (segment). Let f(t) = Zf:o a;t" € Q,[t] be a polynomial and assume
apag # 0. A Newton polygon is a finite union of line segments, each with distinct slope,
referred to as a segment of NP(f).

A segment with endpoints (i,v(a;)) and (j,v(a;)) is said to have length ¢ = j —i.

We will call a segment reduced if it passes through no lattice points other than its

endpoints. Equivalently, its length ¢ is coprime to v(a;) — v(a;).

Theorem 2.1.25 (Fundamental theorem of Newton polygons). Suppose NP(f) has a seg-

ment of length £ and slope s. Then f has precisely £ roots of valuation —s.
Proof. See [Neu99, Proposition I1.6.3]. O

An immediate consequence is that Newton polygons have the potential to reveal infor-

mation about the factorization of f over Q.

Lemma 2.1.26. Suppose NP(f) has a segment of length ¢ and slope s. Then f factors as
f = fof1 over Qp, such that deg fo = £ and the roots of fo have valuation —s.

Moreover, if s = r/{ has reduced fraction form r' /¢ then all irreducible factors of fo
over Qp have degree divisible by ¢'.

In particular, if the segment is reduced, then the fy produced above is irreducible over

Qp.
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Proof. The action of the Galois group Gal(f/Q)) on the roots of f preserves their valuations.
To see why, suppose o € Gal(f/Q,) is an automorphism of the splitting field £ = Splg, f-
We have that v extends uniquely to a valuation of E, and one can check that voo is another
valuation of E, so by the uniqueness [Neu99, Theorem I1.6.2] of the lift of v to E, we have
that Galois conjugates of a root have the same valuation.

Thus for an irreducible polynomial over Q,, all roots must have the same valuation since
they are Galois conjugate to one another. Therefore, we can decompose f into irreducible
factors and group together those whose roots have valuation —s into fy. This must have
degree £, since f has exactly £ roots with valuation —s by Theorem 2.1.25.

For the second statement, we use the same observation above to recognize that the New-
ton polygon of an irreducible polynomial has exactly one segment. Let g be an irreducible
polynomial over Q, dividing fy. Then NP(g) has one segment of slope s = r,/degg. Since

reducing this fraction also produces 7//¢, we must have ¢’ | degg. O

We caution that while the p-adic Newton polygon of a polynomial reveals some infor-
mation about its factorization over Q,, it need not determine it exactly, as in the following

example.

Example 2.1.27. Suppose p > 2 for convenience and let f denote the monic minimal
polynomial over Q, of o = p'/2 4+ p*/3. We compute deg f = 6 by considering all possible
conjugates of a.

On the other hand, suppose ¢ is the product of the monic minimal polynomials of

B =p*/? and vy = p/2 4 pP/4, giving the factorization

g(t) = (£ — p)(t* — 2pt* + p* — p?).

Note that v(a) = v(B) = v(y) = 1/2, so f and g have identical Newton polygons by
Theorem 2.1.25, shown below. This illustrates a limitation of Lemma 2.1.26; if we knew only
that a polynomial had the Newton polygon above, we could conclude that its irreducible
factors must all have even degree, but this is not enough to decide whether or not it is

irreducible.
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Figure 2.1.2: Newton polygon for f and ¢

A

(0,3)¢

6,0)

~

In certain cases, the Newton polygon may be used to deduce the cycle structure of the

Galois group Gal(f/Q,) acting on the roots of f.

Proposition 2.1.28. Suppose NP(f) has a reduced segment of length ¢, i.e. a segment of
slope s = r /€ with ged(r,£) = 1. By Lemma 2.1.26, f has an irreducible factor fy such that
the roots of f with valuation —s are precisely the roots of fo.

Suppose p > deg f and that all other irreducible factors of f have degree coprime to

deg fo = (. Then Gal(f/Qp) contains an £-cycle permuting the roots of fj.

Proof. We begin by factoring f = fofi. Let E, Ey, E4 denote the splitting fields over Q)
of f, fo, f1 respectively, obtained by adjoining roots. Let T,7Ty, T denote the maximal
unramified subextensions of F, Ey, E1 over Q).

Our goal is to find an ¢-cycle in Gal(Ey/Tp) then make identifications
Gal(Eo/To) ~ Gal(EoToTl/ToTl) ~ Gal(E/ElToTl) g Gal(E/Qp) (211)

Interpreting this ¢-cycle as permuting the roots of f in E, that it fixes E17TyT; implies that
it fixes the roots of fi, giving the result.

Let L = Qyp[t]/(fo(t)) be a degree ¢ extension of Q, obtained by adjoining a root of fj.
Since roots of fp have valuation /¢, we have ; € v(L*) (here we abuse notation by writing
v for the unique extension of v, to L). By the reducedness hypothesis, %Z C v(L*) or
equivalently the ramification index of L is divisible by ¢. Since [L : Qp] = ¢, we have that
L is in fact totally ramified, and tamely ramified since p 1 ¢.

By Lemma 2.1.18, L = Q,(7/*) for a uniformizer 7 of Q,. The Galois closure of L
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is Ey, which we identify with Qp(ﬂ'l/ ¢,¢) for a primitive /-th root of unity, (. Thus we
find an element of order ¢ in Gal(Ey/Tp), coming from the root of unity, which necessarily
permutes the roots of fy in a cyclic fashion. The first identification in (2.1.1) then follows
from elementary Galois theory, since Ey N1TyTy = Ty.

For the second identification, suppose fi; =[] ¢; is the irreducible factorization over Q,,
with the degrees degg; coprime to ¢ by hypothesis. Denote by E,,,T,,, e, the splitting
field of each g; over Qp, its maximal unramified subextension, and the ramification index
[Ey, : Ty,]. Arguing as above, we see that eg, | deg g;.

Note that E; is the compositum of the Ey,. By Lemma 2.1.19 we have

[E1TOT1 :TOT1] = [El : Tl] = G(El/(@p) ‘ Heg’i ‘ Hdeggi,

which is again coprime to £ by our hypothesis. Thus EyTyT1 N E1TyT1 = ToTh, and elemen-
tary Galois theory again provides the second identification of (2.1.1), since E = EyE1ToT}.

To conclude, we recognize that lifting our ¢-cycle from Gal(Ey/Tp) a priori only produces
an element of order ¢ in Gal(E/E TyT1) C Gal(f/Q,). However, it fixes Ej, i.e. the roots

of f1, and cyclically permutes those of fj, as seen by its restriction to Fjy. O

Remark 2.1.29. Again, we may not necessarily be able to read off enough factorization
information from NP(f) directly to satisfy the hypotheses of Proposition 2.1.28; recall

Example 2.1.27. In some cases though, we can; see Examples 2.1.30 and 2.1.33 below.

Example 2.1.30. Let p # 2,3. Consider the sextic polynomial

ft)y=1t°—p.

with Newton polygon NP(f) drawn below. This polygon has one reduced segment, so
Lemma 2.1.26 reveals that f is irreducible. Moreover, by Proposition 2.1.28 Gal(f/Q))
contains a 6-cycle.

This is not terribly surprising considering that the splitting field of f is Qp(pl/ 6.0),
where ¢ is a primitive 6-th root of unity. We see that the map p'/® — (p'/6 extends to an

automorphism of order 6 of Q,(p'/%,¢)/Q,(¢).
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Figure 2.1.3: p-adic Newton polygon for f =15 —p

(0,1)
(6,0)

\
7

Remark 2.1.31. Those familiar with tropical geometry may recognize the Newton poly-
gon, though we point out that it differs from the Newton polytope as defined in [MS15,
Definition 2.3.4]. What we call the Newton polygon is in fact the lower faces of the Newton
polytope when lifted to R? using the valuations of the coefficients. We will not make use
of this perspective, but if you are interested you may find some wisdom in studying [MS15,

Proposition 3.1.6].

Remark 2.1.32. Suppose f(t) € Q[t] is a separable polynomial of degree n. A well used
strategy to show irreducibility is to argue over Q,. We can do the same with Galois groups.
The embedding Q — @, induces a natural inclusion Gal(f/Q,) C Gal(f/Q) as permutation
subgroups of the symmetric group S,, acting on the n roots of f.

This suggests the following strategy to show Gal(f/Q) = S,: for different primes p,
compute the Newton polygon NPg,(f) and use Proposition 2.1.28 to produce cycles in
Gal(f/Q). Then, argue that these elements suffice to generate the full symmetric group .S,,.
We will adopt this strategy in Chapter 3 to show that many degree n points on hyperelliptic

curves are defined over Sj,-fields.

Example 2.1.33. Returning to the sextic polynomial f defined in Example 2.1.23,

f(t) = p*® + pt* + 2 + pt + p*.

Lemma 2.1.26 reveals that f has irreducible factors of degrees 1, 2, and 3 over Q, each of
which has roots of valuation 1, 1/2, and —2/3, respectively.
Proposition 2.1.28 shows that Gal(f/Q)) contains a 3-cycle and 2-cycle, each of which

cyclically permutes the roots of one irreducible factor while fixing the others.

Example 2.1.34. Taking the previous example a step further and illustrating the strategy
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outlined in Remark 2.1.32, suppose we have
F(t) = p*at® + pat* + ¢*t* + pt + p?

for a prime ¢ distinct from p.

The g-adic Newton polygon has a reduced segment of length 5, therefore by Lemma
2.1.26, f has irreducible factors of degrees 5 and 1 over Qg, and by Lemma 2.1.21, there is
a b-cycle in Gal(f/Q,) C Gal(f/Q).

By the rational root theorem, any rational roots lie in the set

{jzl,j:p, j:p2,j:1,j:p,in}.
qa q q
A straightforward computation confirms none of these are roots of f, so f has no linear
factors. Thus f is irreducible over Q, in light of its factorization over Qq, and Gal(f/Q) C Sg
is a transitive subgroup. The presence of a transposition and a 5-cycle suffices to give
equality; this will be proven shortly in Proposition 2.2.18.

While neither the p-adic nor g¢-adic information alone was enough to conclude f is

irreducible over Q or deduce its Galois group, combining the local information at these

places was sufficient.

2.2 Generating symmetric groups

In this section we collect some facts about permutation groups. In particular, we study

generating sets of the symmetric group.

Definition 2.2.1 (S,). The symmetric group on n letters, denoted S, is defined to
be the collection of permutations of the set {1,...,n}. Equivalently, it is the group of

automorphisms of {1,...,n} in the category of sets (i.e. bijections).

Definition 2.2.2 (permutation group). A subgroup G of the symmetric group S, is known

as a permutation group.
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To describe elements of permutation groups compactly, we use cycle notation; see e.g. [DF04,

§1.3]. As a first example, we denote by 0 = (1 2 ... {) the permutation that sends

z+1 1<z<d,

1 z=/.

We generalize this as follows.

Definition 2.2.3 (cycle). Let £ < n. We denote by ¢ = (a1 ... ag) the cyclic permutation

a1 x=a;forl <i<{,

o(z) = ay T = ay,

T x # a; for 1 <i </

Such a o is known as an £-cycle.

Definition 2.2.4 (disjointness). Two cycles 0 = (a1 ... ag), o' = (a} ... ap) € S, are
said to be disjoint if

{a,...,ae} N {a'l,...,algl} = 0.
That is, there is no element x € {1,...,n} on which both ¢ and ¢’ act nontrivially. This

can be extended to larger collections of cycles.

One can check that disjoint cycles commute with one another; in the definition above,

we have oo’ = o'0.

Proposition 2.2.5 (cycle decomposition). Every permutation has a unique decomposition

as a product of disjoint cycles (up to reordering of the factors).

Proof. This is a straightforward exercise. See e.g. [DF04, §1.3].

O

An important fact that we will make use of is that conjugation in permutation groups

corresponds to renumbering.



24

Proposition 2.2.6. Let 0 = (a; ... ag) € Sy be an L-cycle and p € S, any permutation.

Then conjugating o by p produces the £-cycle

pop~ = (p(ar) ... play)).

Proof. We need only check what pop~! does to elements {1,...,n}. Consider the action

on p(a;) for 1 <i < ¢. We have

(pop™") - plai) = plar ... ap)-a;i=p-aip1 = plais1) = (plar) ... plag)) - p(as).

Similarly, (pop~t) - p(as) = p(a1), as desired. Finally, if 2 # p(a;) for any i, we have that
p~Y(x) # a; for any i, so
(pop™t)-x=p-p H(z) =,

1

and pop~ ' acts trivially outside of {p(a;)}, and we are done. O

Corollary 2.2.7. Suppose 0; = (a;1 ... air,) € Sy is a collection of {;-cycles for 1 < i < k.

Let p € S, be any permutation. Then

P01'~'Ukp_1 = (p(an) -.. plare,)) - (plak) --. plag,))-

Thus the conjugate of a product of cycles is itself a product of cycles of the same lengths,

suitably renumbered.

Proof. Inserting copies of p~!p, we have

por-opp”t = (porp” ) (poap™") - (pokp™ ).

Then apply Proposition 2.2.6. O
Definition 2.2.8. If o1,...,0p are disjoint cycles and o; has length ¢;, then we say the
product o109 - - - oy, has cycle type (¢1,0s,...,0), or is an ({1, 4, ..., l)-cycle.

Remark 2.2.9. Corollary 2.2.7 implies that cycle type is a conjugacy class invariant. In

fact, the conjugacy classes in S,, are precisely the cycle types. This can be seen by first
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proving all ¢-cycles are conjugate to (1 ... £). Then one just has to conjugate each cyclic

factor in the decomposition appropriately to some chosen ¢;-cycle, disjoint from the others.
We now pose the central question of this section.

Question 2.2.10. How can we tell if G = S, ? What combination of properties or known

elements or cycle types in G imply that it must be the full symmetric group?

Depending on the setting from which our subgroup G arises, certain conditions may be
easier than others to satisfy, if we want to prove G = S,,.
2.2.2 Generating sets of transpositions

Definition 2.2.11 (transposition). A 2-cycle (a b) € S,, is also known as a transposition,

since it transposes a and b.
Lemma 2.2.12. An {-cycle o may be written as the product of £ — 1 transpositions.

Proof. By Corollary 2.2.7, it suffices to prove the statement for 0 = (1 ... £). We claim
that
(1...0)=23)---(—=106(1¢),

which may be verified by direct computation. Counting the transpositions on the right,
there are ¢ — 2 of the form (i i + 1) for 2 < ¢ < ¢ — 1, along with the rightmost factor

(1 0. 0

Proposition 2.2.13. The set of all transpositions generates the symmetric group,

{ab)|1<a<b<n})=S5,.

Proof. Every permutation has a unique cycle decomposition by Proposition 2.2.5. Lemma
2.2.12 states that each cyclic factor can be written as the product of transpositions. Hence

a permutation is the product of transpositions. ]

Remark 2.2.14. We note here that the factorization in Lemma 2.2.12 is not unique, and

neither is a transposition decomposition for a general permutation. It does however have



26

unique parity, i.e. for a given ¢ € S, either all way of writing ¢ as a product of transpositions
use an even number of them, or all of them use an odd number.

More careful study of this phenomenon leads to the alternating group, A,, the normal
subgroup of S, consisting of permutations that can be written as the product of an even
number of transpositions. In fact, A, is generated by the 3-cycles, in analogy to Proposition
2.2.13. The proof follows from showing that any pair of distinct transpositions may be

written as the product of 3-cycles:
(ab)(cd)=(ab)(ac)lac)ad) = (acb)(acd).

Note that we may assume above that all entries are distinct, except possibly b = d.

Notice that the generating set in Proposition 2.2.13 contains (Z) = % transpositions.

Can we make do with fewer? The answer turns out to be yes.

Proposition 2.2.15. The sets of n — 1 transpositions

T={(i+1)]1<i<n-—1}

Ty={1i)]2<i<n}

are both generating sets for Sy,.

Proof. By Proposition 2.2.13, it suffices to show that these transpositions are enough to
generate all transpositions. Given 1 < a < b < n, let’s consider the transposition (a b) and
proceed by induction on b — a to show T3 is a generating set.

Ifb—a =1then b=a+1and (a a+1) is already in our generating set. If not, then our
inductive hypothesis is that (a b— 1) is generated by the transpositions of the form (i i+ 1).
Then we have

(@b)=(ab—1)(b—1b)(ab—1)

and (a b) is also generated by transpositions of the form (i 7 + 1).
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For 15, we directly compute

(ab) = (L a)(1 B)(1 a)

for any distinct a,b # 1. O

2.2.3 Transitive subgroups

Definition 2.2.16 (transitive). A permutation subgroup G C §,, is transitive if for all
a,b € {1,...,n} there exists a permutation p € G such that p(a) = b.
This definition can be extended to any group G acting on a set .S. The action is said to

be transitive if for all s,¢ € S there exists g € G such that g-s =1t.

Many familiar groups are transitive; The symmetric group S,, alternating group A,,
dihedral group D,,, and cyclic group C,, all act transitively on {1,...,n}. Note that we are
using the usual action here; the isomorphism class of G alone does not in fact tell us if its

action is transitive or not, as in the following example.

Example 2.2.17. The group Vj ~ Z/27 x 7./27 has a natural action on {1,2,3,4} when
we identify

Vi~ {((12),(34)) C S

Under this isomorphism, there is no element which sends 1 — 3, for instance, so the action
by V} is not transitive.

However, consider another permutation group, which is also isomorphic to V, as an
abstract group:

Vi~ ((13)(24),(14)(23)).
The isomorphism is given by
(1,0) — (1 3)(2 4),

(0,1) = (1 4)(2 3),

(1,1) = (1 2)(3 4).
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The action of this group on {1,2,3,4} is transitive; for example, 1 is sent to 2, 3, and 4 by

(the images of) (1,1), (1,0), and (0, 1) respectively.

If we know that a subgroup G C S, is transitive, we can get away with very small

generating sets. In the following, assume n > 3 since the n = 1,2 cases are trivial.

Proposition 2.2.18. Let G C S, be a transitive subgroup containing an (n — 1)-cycle and

a transposition. Then G = S,.

Proof. Choose a numbering on {1,...,n} such that the (n — 1)-cycle is written o =
(12 ... n—1). The transposition is of the form 7 = (a b). By transitivity, there ex-

ists p € G such that p(b) = n, so we have

' =prp~' = (p(a) n) € G

by Proposition 2.2.6.

In particular, p(a) # n, so we have

After renumbering only {1,...,n — 1}, we can assume 7/ = (1n)and o = (12 ... n—1).

Conjugating 7 by ¥ for k < n — 2 we have

oo = (k+1n)€q.

This is a relabeling of the generating set 15 from Proposition 2.2.15, hence G = S, O

Proposition 2.2.19. Let G C S, be a transitive subgroup containing a p-cycle for some

prime p > n/2 and a transposition. Then G = S,,.

Proof. When n = 3, this is trivial, so assume n > 4, which implies p > 2. Let our p-cycle
be of the form o = (1 ... p). By transitivity, we may assume that the transposition acts
nontrivially on 1, i.e. is given by 7 = (1 a) for some a. By Proposition 2.2.15, it suffices to

see we have transpositions (1 z) € G for all 2 <z <n.
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If @ < p then since p = 2, some power o” for k < p puts a adjacent to 1. The primality

k is still a p-cycle. All of this allows us to assume a = 2 for convenience, in

of p ensures o
which case

H = (o,T)~5,

with the action restricted to {1,...,p}. We see this by conjugating 7 by o repeatedly to
generate transpositions and appealing to the generating set 77 from Proposition 2.2.15.

If instead a > p, then we set H = (o, 7), viewed as a permutation group on {1,...,p,a}
and use Proposition 2.2.18 to see that H ~ S}, 1.

In either case, we have a permutation subgroup H C G containing at least the p — 1
transpositions of the form (1 b), where b < p. Let x > p and use the transitivity of G to

find p € G such that p(1) = z. Then for each b we have

p(1b)p~" = (z p(b)) € G.

Since p— 1 > n — p — 1, by the pigeonhole principle we have that for at least one b we have

p(b) < p, which implies for this such b that

(1 p(b))(z p(b))(1 p(b)) = (1 2) € G.

Hence by Proposition 2.2.15, we are done. O

We conclude this section with examples that illustrate how things can go wrong if the

hypotheses of the various propositions are not met.

Example 2.2.20. Suppose G C S,, contains the n-cycle 0 = (1 ... n) and a transposition.
Note that this implies G is transitive. Suppose further that n is even and the transposition
takes the form 7 = (1 a) for an odd number a. Then G is not necessarily the full symmetric
group Sy.

For concreteness, we can take

G =((13),(1234))C Sy,
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which we recognize as the dihedral group Dy. In any case, explicit computation shows that
eg (12)¢ G, 50 G#S,.

Note that if either of n or a — 1 is odd, then G = (o, 7) = Sy.

Remark 2.2.21. Let n be an even integer and consider the wreath product G = 5315,, /5 C
Sp. We can realize G as two copies of S/, acting on {1,...,n/2} and {n/2 +1,...,n},
respectively, along with an element 7 of order two which swaps a with a 4+ n/2 for all
1 < a < n/2. This group is not equal to S,, but contains n/2-cycles (in fact it contains
k-cycles for all k < n/2), showing that Proposition 2.2.19 is sharp.

G also contains an n-cycle, constructed as follows. Let 0 = (1 ... n/2) and 7 as defined
above. Then

JT:<1 (2—1-1)2(%4—2) gn>

is an n-cycle. Note that elements of {1,...,n/2} (respectively {n/2 +2,...,n}) are sepa-
rated by an even number of entries.
If a permutation group H contained G = 521.5,,/2, as well as a transposition swapping

elements across the two S, 5 factors, then H would in fact be the full symmetric group.

To explore this further, we begin by generalizing an idea in the proof of Proposition
2.2.19, when we used the fact that a subgroup H C G such that H ~ S, or S,4+1 to argue
that G = S,.

Lemma 2.2.22. Let G C S, be a transitive subgroup. Suppose there exists a subgroup
H C G which is isomorphic as a permutation subgroup to Sy for some k > n/2, when

considering the action on a k-element subset of {1,...,n}. Then G ~ S,,.

Proof. The proof is by induction on k, with trivial base case k = n. Assume n/2 < k <mn
and that the statement holds for k4 1. Renumber so that H C G fixes {k+1,...,n} and H
is identified with Si. Our goal is to add elements to H to generate a subgroup H' ~ Sj.1,
then apply the inductive hypothesis to see G = S,,.

Since H ~ S, we have that H (and thus G) contains the transpositions of the form

(1 a) for 2 < a < k. By transitivity of G, there exists p € G such that p(1) = k + 1.
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Conjugating by p, we produce k — 1 transpositions

p(La)p™ = (k+1p(a) €G

As a ranges over the k — 1 values 2 < a < k, p(a) takes k — 1 distinct values also. There are

only n — k — 2 integers between k + 2 and n, and our hypothesis that k£ > n/2 implies that

n—k—-2<k—2

so at least one of our p(a) values falls between 1 and k.
Letting a be such that 1 < p(a) = = < k, we have produced a transposition (z k+1) € G.
Setting H' = (H, (x k4 1)) C G and viewing this as a permutation subgroup of S,, on the

set {1,...,k+ 1}, we see that
{(zi)|1<i<k+1, i#z}CH.
By Proposition 2.2.15 this is a generating set for Sg11, so H >~ Si11. Applying the inductive

hypothesis, we conclude G = S,,. 0

The idea of Lemma 2.2.22 is that transitive subgroups cannot become too big — or
perhaps too interconnected — before they are forced to be the full symmetric group 5,.
Using this principle, we identify other collections of elements with specified cycle type that

force a transitive subgroup to be the full symmetric group.

Proposition 2.2.23. Fix an integer m > 2. Suppose n > m and G C S, is a transitive

subgroup containing the following elements:
(1) an l-cycle o withn —m < £ <n,
(ii) a transposition T, and

(iii) a q-cycle 0 for a prime ¢ > m.

Then G = S,,.
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Proof. When m > n/2, (i) and (iii) ensure that G satisfies the hypotheses of Proposition
2.2.19 and we have G = S,,. Hence, let us assume that n > 2m.

Assume for concreteness that £ = n — m, so choosing a suitable numbering we have
o= (1 ... n—m). The following argument will still work the same way if n —m < ¢ < n.
By the transitivity of G, we may further assume 7 = (1 a) and that 6 = (1 by... by).

Suppose first that a > n —m and consider the subgroup H = (0,7) C G. We can
view H as a permutation subgroup on {1,...,n — m,a}, i.e. as a subgroup of S, +1.
In fact, the action of H on this set is transitive; elements between 1 and n — m can be
interchanged by repeated applications of the cycle o, while a can be reached by using 7 to
move a — 1. Therefore, H is a transitive subgroup of S,,_,,+1 containing an (n — m)-cycle
and a transposition, so by Proposition 2.2.18 we have H = .S, 41.

The hypothesis that n > 2m implies that n — m + 1 > n/2, so applying Lemma 2.2.22
reveals that G = S,, in this case.

On the other hand, suppose a < n — m. Now it is not sufficient to package 7 and o
together and get a subgroup isomorphic to a large symmetric group (recall Examples 2.2.20
and Remark 2.2.21).

Instead, let H' = (7,0) C G and view H' as acting on {1,a,bs, ..., b,}. This set contains
either ¢ or ¢ + 1 many elements, depending on whether a = b; for some 4, but in either
case we have that H' is the full symmetric group acting on this set. In particular, we have
S, CH CG.

This buys us at least ¢ — 1 > m distinct transpositions of the form (1 ¢;) in G (where
the elements c¢; are either b; for 2 < j < g or ¢; = a). By the transitivity of G, there exists

p € G such that p(1) =n —m + 1 and conjugating our transpositions gives

p(lc)pt =(n—m+1p(g;)) € G.

There are only m—1 integers between n—m+1 and n, but we have at least m transpositions,
and hence images p(c;), so at least one of them satisfies 1 < p(¢;) < n —m.
After a renumbering sending p(c;) — 1 and leaving n — m + 1 alone, we have the

transposition (1 n —m + 1) € G, putting us back in the earlier case of a > n — m. Hence
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we conclude that G = 5,,. ]

Remark 2.2.24. The hypotheses of Proposition 2.2.23 are somewhat contrived. They
were originally intended to be combined with the theory of Newton polygons to show that
the Galois group of a degree n polynomial over Q may be identified with S, where the
transitivity hypothesis is equivalent to the irreducibility of the polynomial.

For polynomials arising from higher degree points on hyperelliptic and superelliptic
curves as discussed in Chapter 3, Proposition 2.1.28 seems too inflexible to produce (i),
(ii), and (iii), as it is difficult to come up with cycles of the desired lengths using only
Newton polygons. In the hyperelliptic case (see §3.3) Propositions 2.2.18 and 2.2.19 turn
out to be sufficient to show many such polynomials have symmetric Galois group. We
include Proposition 2.2.23 in hopes that it, or potential generalizations, becomes useful in

this regard or is of of independent interest.

2.3 Chebotarev’s density theorem

Let E/F be a Galois extension of number fields with G = Gal(E/F'). In this section, we
recall the statement of the classical density theorem due to Chebotarev, and record some
useful elementary consequences. For more, see e.g. [Lan94, Chapter VIII, §4] or [Neu99,
Chapter VII, §13].

We begin with some standard notation and definitions. We denote by Op the ring of
integers of F' and use P to denote maximal ideal of O with residue field Fp = Op/P. We

simply refer to such P as a prime of F.

Definition 2.3.1 (norm). Given a nonzero prime P of F, the absolute norm of P is the

size of the residue field,

Np(P) = # (Op/P) = #Fp.

This norm gives us a way to count primes and measure subsets of primes.

Definition 2.3.2 (natural density). Let S be a subset of the set of primes of F. If it exists,

the limit
. #{PeS|Np(P) <1}
o) = o P N (P) < o
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is known as the natural density of S.

In the case F' = Q, we have Ng(p) = p for a prime p (or rather the ideal (p) C Z).
We then have well known statements such as the density of rational primes p in a given

congruence class mod N.

Theorem 2.3.3 (Dirichlet). Fiz a natural number N > 1 and an integer n such that

ged(n, N) = 1. Suppose S is the set of primes p=n (mod N). Then

where ¢ is Euler’s totient function, or equivalently o(N) = # (Z/NZ)*.

Dirichlet’s theorem is special abelian case of Chebotarev’s theorem. To state the more

general version, we recall some definitions.

Definition 2.3.4 (decomposition and inertia groups). Let P be a prime of F' and @ a

prime of E above P. The decomposition group of Q is

Dg={0eG|a(Q)=Q}

Elements of ¢ fix @, and thus give well defined automorphisms of the residue field Fg,

allowing us to define define a subgroup

IQ = {U (S DQ | U’IFQ: idFQ}

known as the inertia group of Q.

We have a natural exact sequence of groups

0—1g— Dg— Gal(FQ/Fp) —0 (2.3.1)

where exactness on the right is proven in [Neu99, Proposition 1.9.4], while the rest follows
from the definition. We remark on the similarity of (2.3.1) with Proposition 2.1.15. This

is no coincidence, as Dg may be identified with the Galois group of the extension of local
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fields obtained by completing E and F' at the primes @ and P, respectively; see [Neu99,

Proposition 11.9.6]

Definition 2.3.5 (Frobenius). Let Q be a prime of E above P and Fg/Fp the associated

extension of residue fields. A Frobenius element Frobg € Dg is a preimage of the cyclic

generator under the map Do — Gal(Fg/Fp). If @ is unramified, then Frobg is unique.
For an unramified prime P, Frobp is the conjugacy class in G of Frobenius elements

Frobg for a prime ) above P.

For any @, Q" above an unramified prime P, Frobg and Frobg are conjugate. Moreover,
any conjugate of Frobg is a Frobenius element for a prime Q" above P, since G permutes

the primes above P transitively. Thus Frobp is well defined as a conjugacy class of G.

Theorem 2.3.6 (Chebotarev, see e.g. [Lan94, Ch. VIII, §4, Theorem 10]). Fiz a subset
C C G invariant under conjugation. Let S be the subset of primes of E with Frobp C C.
Then the natural density of S exists and §(S) = %
Example 2.3.7 (cyclotomic extensions and Dirichlet’s theorem). Fix N and let £ = Q({n)
for (x a primitive N-th root of unity. Set F' = Q, so we have G = Gal(Q({n)/Q) ~
(Z/N7Z)*. This is abelian, so each conjugacy class is a single element.

Let n € (Z/NZ)*. What does it mean for Frob, to correspond to n for a prime
p 1 N7 It means precisely that p = n (mod N). To see why, consider the automorphism
op € Gal(Q(¢n)/Q) given by op:(n + (X. It is straightforward to compute that this
induces the p-th power map on Fg = Z[(n]/Q, which is precisely Frobg.

But o is determined by the residue class of p modulo N, with o, = o, for p = n
(mod N). Thus Frobg = Frobp = 0,,. Chebotarev’s theorem then tells us that the density

of primes p =n (mod N) is ﬁ, which is precisely the statement of Dirichlet’s theorem.

Example 2.3.8 (Legendre symbols). Fix an integer n not a perfect square. Recall for a
prime p { n, the Legendre symbol (%) = =+1, taking the value +1 when n is a quadratic
residue modulo p and —1 if it is a nonresidue. Equivalently, in the extension E = Q(y/n)
over Q, (%) detects whether p splits or remains inert.

If p splits in F and @ is a prime above p, then we have Fgy = [F,, in which case

Frobg = Frob, is the identity element of Z/27Z = Gal(E/Q). Theorem 2.3.6 then asserts
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that 50% of primes p split in F, i.e. for half of primes p we have that n is a quadratic

residue, and vice-versa.

Example 2.3.9 (splitting). Examples 2.3.7 and 2.3.8 involve abelian (in fact cyclic and
quadratic) extensions F/Q. More generally, for arbitrary (and perhaps nonabelian) exten-
sions E/F with Galois group G, the set of primes P of F' with Frobp corresponding to the
trivial conjugacy class has density ﬁ by Theorem 2.3.6.

If Frobp is trivial, then Frobg is trivial for all primes @ above P. In this case we have

Fg = Fp, so the prime P is (totally) split in E.

2.3.1 Useful consequences of the density theorem

Some useful facts about polynomials — many of which can be proved without appealing to
Chebotarev’s result — follow from Theorem 2.3.6 together with the observations made in
Example 2.3.9. Namely, if f € Op[z] is an irreducible polynomial, K = F[z]/(f), and P is
a prime of F', then the factorization of f modulo P is related to how P splits in K. While
we will not need to use it, a theorem of Dedekind makes this precise; see e.g. [Con].

We state and later use these results in the F' = QQ case, but note that they extend to

arbitrary base fields.

Lemma 2.3.10. Let f(x) € Z[x]. There exist infinitely many primes p such that we can
find zg € Z for which f(xo) =0 (mod p).
Moreover, if f(x) is squarefree then there exist infinitely many such p and xo € Z with

p I f(xo)-

Proof. If f is not squarefree, then we may replace it by the polynomial obtained by removing
all repeated factors. Thus it suffices to prove the claims for f squarefree. If

Let E be the Galois extension obtained by adjoining all roots of f to Q. It follows from
Chebotarev’s theorem that the density of primes p splitting completely in E is positive,
equal to m In particular, there are infinitely many such primes p. Fix one of them,
sufficiently large so that p { Disc f, in which case f(z) € Fp[z] is also squarefree.

Since p splits completely in FE, it must split completely in the subextension K =

Q[x]/ fo(z) C E obtained by adjoining the root of some irreducible factor fy of f. From this
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it follows that the reduction of f(x) modulo p splits completely into linear factors, distinct
by the fact that p { Disc f.

Let (x — ) | f(z) be such a linear factor and take z¢ an integer such that z9p = «
(mod p). Then f(x¢) = 0 and equivalently p | f(xo), proving the first statement.

For the second statement, suppose p? | f(xg). We evaluate f(xg + p) using a Taylor

expansion:

f(zo+p) = f(zo) + pf'(x0) + O(p?).

Since p t Disc f, the root of f at g is not a multiple root, and thus we know p { f’(z).

Then by the above, p? { f(xg + p) and we are done. O

When f is not squarefree, it will be convenient to have an analogue of the “moreover”

statement in Lemma 2.3.10.

Corollary 2.3.11. Let f(x) € Z[x] and suppose f has an irreducible factor fo appearing
with multiplicity e > 1 in its factorization. Then there exist infinitely many primes p such

that there exists xo € Z for which p° || f(xzo).

Proof. Write the irreducible factorization f = [[;5q f;" and let g = [];5¢ fi- Applying
Lemma 2.3.10 to fp, we find infinitely many primes p > Disc g for which there exists xg € Z
such that p || fo(zg). Clearly we have p | g(x¢). Since the roots of g are distinct modulo p,
p 1 [Liso fi(wo), so we have p || g(xg). Returning to f, we have p® || fo(x0)® and p 1 fi(z0)*,
so p° || f(xo). O
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Chapter 3

Fields generated by points on

curves

3.1 Introduction

Let K be a number field, and let C'/ K be a smooth curve of genus g. Faltings [Fal83] proved
that when g > 2, the set of K-rational points on C, C'(K), is finite. It is natural to ask if
similar finiteness results hold for the higher degree points of C'. We say the degree of an
algebraic point P € C(K) is the degree [K(P) : K|, where K(P) is the minimal field of
definition for P. While in fact a curve of genus g > 2 may have infinitely many points of
some degree n > 1, it is still an interesting problem to characterize when this occurs and
prove finiteness results for “sporadic” points. There have been several recent works related
to the study of higher degree points on families of hyperelliptic curves (see [BGW17, GM19])
and on various modular curves (see [BELT19, Box21, BGRW20, BN15, DEvH'21, 0S19)).

Instead of studying the points of C, one can take the perspective of studying the set of
field extensions K (P)/K generated by algebraic points P € C(K). This idea was suggested
by Mazur and Rubin [MR18] in their program for Diophantine stability, where a variety over
K is said to be Diophantine stable for L/K if its K-rational points and L-rational points
coincide. A natural first question is to ask how many extensions generated by an algebraic

point exist for a fixed degree when ordered by discriminant, following the discussion in §1.1.
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Fixing the base field K = Q, we recall the following functions for counting number fields

by discriminant. Let
No(X) =#{K/Q|[K:Q] =n, [DiscK/Q| < X},

where X > 0 is a real number and n > 1 is any positive integer. For a fixed curve C'/Q, we

define the counting function for extensions generated by an algebraic point of C' to be

Nac(X) =#{Q(P)/Q| P € C(Q), [Q(P): Q] =n, [DiscQ(P)/Q| < X}.

We further define

Nac(X,6) = #{Q(P)/Q | P € C(@), [Q(P) : Q] = n,
DiscQ(P)/Q| < X, Gal(Q(P)/Q) ~ G}

where G is a transitive permutation subgroup of the symmetric group S,, and Q(P) denotes
the Galois closure of Q(P)/Q.

When E is an elliptic curve over Q, Lemke Oliver and Thorne [LT21] show for a pos-
itive constant d,, approaching 1/4 from below as n — oo, we have N, p(X,S,) > Xo¢.
Conditionally, this exponent can be improved to approach 1/4 from above. In fact, they
show something stronger, namely that X% ¢ is an asymptotic lower bound on degree n
extensions for which the Mordell-Weil ranks satisfy rk E(K) > rk E(Q), with specified root
number.

We first extend this approach to hyperelliptic curves.

Definition 3.1.1 (hyperelliptic curve). A hyperelliptic curve C'/Q is an algebraic curve

given by the affine equation

C:y? = f(x) = Zciaﬁi, (3.1.1)

where f(z) € Z[z] is a squarefree polynomial of degree d > 3. The genus g of C' is related

to the degree d by g = L%J

The main results of [Key22] are an asymptotic lower bound for N, ¢(X,S,) when n is
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large relative to d, generalizing that of Lemke Oliver and Thorne and recovering their bound
when g = 1. We treat the cases of d odd and even separately in Theorems 3.1.2 and 3.1.3
below. In both cases, the implied constants depend on the degree n and the polynomial f,

and we are able to improve the result somewhat when n is sufficiently large.

Theorem 3.1.2 (K. [Key22, Theorem 1.1]). Let C be a hyperelliptic curve with genus g > 1

and degree d =29+ 1. If n > d, then
Npco(X,Sy) > X

where
5 1 gn? — (g% — 29 — 3)n — 2¢°
"4 2n2(n — 1)

Moreover, if n is sufficiently large, we have the improvement

s 1 gt -2
"4 2n(n—1) °

The case that d is odd coincides with an appropriate projectivization of C' having a
rational Weierstrass point at infinity. In the general case where d is even, we restrict our
attention to even n. This turns out to be a necessary restriction in light of the fact that
a positive proportion of hyperelliptic curves over Q have no points over any odd degree
extensions [BGW17]. After making this restriction, we obtain a similar asymptotic lower

bound to Theorem 3.1.2.

Theorem 3.1.3 (K. [Key22, Theorem 1.2]). Let C' be a hyperelliptic curve with genus g > 1

and degree d =2g + 2. If n > d+ 2 is even, then
Npco(X,S) > X

where
5 _ L (1+29)n® = (20° — 29 — 8)n — (49° + 49)
"y 4n2(n — 1) ‘
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Moreover, when n is sufficiently large, we have the improvement

5 1 (1429)n—2¢° + 29 +2
g dn(n — 1) '

We continue this program of studying the the set of fields generated by points on curves

defined over QQ in the case of superelliptic curves.

Definition 3.1.4 (superelliptic curve). Fix a positive integer m > 2. A superelliptic

curve C/Q of exponent m is an algebraic curve given by the affine equation

C:y™ = f(z) = Zcixi, (3.1.2)

where f(z) € Z[z] is an m-th power free polynomial of degree d, and moreover not an e-th

power for any nontrivial divisor e | m.

Such a curve possesses a degree m map to the line A! defined over Q, sending a point
(z,y) — x. The condition on f not being an e-th power is equivalent to asking for C' to
be geometrically irreducible; see Lemma 4.2.3. Here we restrict further to the case where
m | d, or equivalently that the superelliptic map is unramified at infinity. When n is a

sufficiently large multiple of m, we have the following asymptotic lower bound for N,, ¢(X).

Theorem 3.1.5 (Beneish-K. [BK21a]). Let C be a superelliptic curve with equation (3.1.2)

with m | d and suppose n is a multiple of ged(m, d) satisfying
n > max(d,lcm(m,d) — m —d + 1,2m? — m).

Then we have

Npo(X) > X, (3.1.3)

where 6, is a constant depending on m,d, and n given explicitly in (3.5.1) and §, — # as
n — oo. The implied constant in (3.1.3) depends only on n and (the equation for) C.

Moreover, for all sufficiently large n (relative to m and d) with m | d, we have the
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improvement

0= —
m2

1(H(%rﬂm+Dn+fﬁ—mW+mk—W> (3.1.4)

2n(n —1)
where 1 <r <m and 0 < k < m are integers depending only on the residue classes of n,d

(mod m).

Remark 3.1.6. We make note of a few properties of the constant §,, in Theorem 3.1.5.

m—m2—dr+3 :

(i) For any fixed choice of m, d, the constant d,, in (3.1.3) satisfies 6,,— # ~ Gy i

the limit as n — oo, where 1 < r < m is an integer depending only on n,d (mod m).
m—m?2—dr+3

In particular, 1) is negative, so we can say that in (3.1.3), d,, approaches #

from below.

(ii) In contrast, the improved exponent in (3.1.4) satisfies 6,, — # ~ %. In the

case m = d we have r = 1 and thus 2m — 2dr +1 =1, so §, — # from above as

n — oo. If m < d, the improved ¢,, will approach # from below as in (3.1.3).

(iii) The improved exponent in (3.1.4) takes effect when we have good enough asymptotic
upper bounds for N, (X). The best currently known to the author, due to Lemke
Oliver and Thorne [LT22, Theorem 1.1], suffices when n is taken to be large. We

discuss how large n must be for (3.1.4) to be known to hold in §3.5.4; see Figure 3.5.1.

(iv) Theorem 3.1.5 agrees with or improves upon known lower bounds for N, ¢ (X, S,) in

the cases where C' is an elliptic curve [LT21] or a hyperelliptic curve [Key22].

(v) We do not expect this lower bound to be sharp; in the case where C'is an ellpitic curve,
Lemke Oliver-Thorne [LT21] suggest a heuristic of X3/47°(1) for the asymptotics of

the number of fields K/Q for which rk E(K) = rk E(Q) + 2.

The strategy for proving Theorems 3.1.2, 3.1.3, and 3.1.5, employed also in [LT21], is to
use the equation for C'/Q to find an explicit parameterized family of polynomials generating
degree n extensions Q(P)/Q with Galois closure S,,. Some effort is required to verify that

the members of the family are in fact irreducible and, when appropriate, have Galois group
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Sn. We then count the polynomials in this family and bound how often the number fields
they generate are isomorphic.

A notable limitation of Theorem 3.1.5 is the condition that m | n. We suspect that as
in the case of hyperelliptic curves, the presence of at least one rational point should allow
a similar parameterization strategy to produce infinite families of degree n fields Q(P)/Q
for all n sufficiently large. However, we do not expect this to be the general case, though
we are aware of no analogue of [BGW17] for superelliptic curves with m > 2.

In §3.6 we speculate as to whether for superelliptic curves, points of degrees n such
that ged(m,d) | n are more common than points of degrees n where ged(m,d) 1 n. This
section contains a description of various geometric sources from which we expect to find
infinitely many points on these curves. We also discuss the relationship of these sources to
the points obtained by the parameterization strategy. As a first step towards making these
heuristics concrete, we prove the following. Informally, we find that for a certain family of

superelliptic curves, many have only finitely many points of certain small degrees n.

Proposition 3.1.7 (See also Proposition 3.6.8). Suppose m,d are positive even integers
such that d > 4. Let n < % — 1 have 2-adic valuation strictly less than that of m, i.e.
va(n) < wa(m). Then for a positive proportion approaching 100% of squarefree degree d
polynomials f(x), ordered by height, the superelliptic curve C:y™ = f(x) has only finitely

many points of degree n.

3.1.1 Layout

This chapter is organized as follows. In §3.2 we give an overview of the parameterization
strategy used in the proofs of the main theorems, while §3.3 and §3.4 are devoted to proving
that our parameterization strategy almost always produces irreducible polynomials in the
hyperelliptic and superelliptic cases, respectively. Here we use the theory of Newton poly-
gons developed earlier in §2.1.3 as well as the criteria for a transitive permutation group to
be the symmetric group from §2.2. Then in §3.5 we describe how to count the polynomials
produced by our parameterization and adjust for multiplicity to obtain lower bounds for

Ny.c(X). Wherever possible, we attempt to streamline our exposition to apply to both
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hyperelliptic and superelliptic curves. A discussion of the geometric sources for infinite
collections of points on superelliptic curves, and their relevance to field counting problems

of this flavor, is given in §3.6.

3.2 The parametrization strategy

To produce algebraic points on C, our strategy is to parameterize the coordinates x and y

as rational functions in an auxiliary variable t. We set
z(t) = —= and y(t)=>=—=.

Substituting into the equation for C, given by (3.1.2), and clearing denominators, we obtain

the polynomial equation

Fyhn(t) = RO (car()+ca v () ()4 +ery (@) +eon(t) ) —g(&)"n(t)* = 0.
(3.2.1)
Suppose g, h,7,n are chosen in Z[t] such that Fy - ,(t) is irreducible with some root a.

Then

P = (z(a),y(a) = <ZEZ;’ ZEZ@)

is a point on C defined over the field Q(«), and Q(«) is the field generated by P. Given a
degree n, our approach is to count how many ways we can choose g, h,~y,n such that Fyp
is degree n, irreducible, and has Galois group S,.

Generally, the degree of F j, ., ,, is the maximum of m(degh) + d(deg~y) and m(deg g) +
d(degn), both of which are multiples of ged(m,d). Since we will eventually count the
number of such parameterizations, we want to choose g, h,~y,n so the sum of their degrees
is as large as possible, giving us the most degrees of freedom to count. Recall that in this
paper, we have assumed m < d, so this sum of degrees will be maximized by letting deg g
and deg h be large, while keeping those of v and 1 small. To that end, we simply take n =1
and suppress the notation by writing Fj , for the remainder of this paper. However, in

the general case, namely if m > d, it would be useful to take 1 to be nonconstant.
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We observe that when n is a sufficiently large multiple of ged(m,d), we can always
choose the degrees of g, h, and v to make the polynomial (3.2.1) have degree n in general.
This is done by using deg~y to control the residue class of n modulo m if necessary, and
letting deg g,deg h be as large as possible. It remains to determine how large n must be
for such degrees to exist. It is clear that we must have at least n > d by looking at the
minimum degree of Fyj . To give a more precise answer we recall the classical definition
of the Frobenius number, with a straightforward generalization to integers that are not

coprime.

Definition 3.2.1 (Frobenius number). Given natural numbers a, b with ged(a, b) = 1, the
Frobenius number, denoted Frob(a, b) is the largest natural number which is not a linear
combination ax + by where x,y > 0.

When ged(a,b) # 1, we define a generalized Frobenius number, also denoted
Frob(a,b), to be the largest multiple of gcd(a,b) that is not a linear combination ax + by

for z,y > 0.

We have the elementary result that for coprime integers a, b, the Frobenius number is

given by Frob(a,b) = ab — a — b. Recognizing that for any natural numbers a, b we have

a b
Frob(a, b)/ged(a, b) = Frob <gcd<a, )" ged(a, b>> ’

we find that the generalized Frobenius number satisfies Frob(a,b) = lem(a,b) —a — b.

For any n > max(d, Frob(m,d) + 1) we can manipulate the degrees of g, h, and 7 such
that deg Fy ,, = n in (3.2.1). Moreover, this is sharp in the sense that (3.2.1) will not take
degrees n < d or n = Frob(m,d). We conclude this section by summarizing our discussion

in the following proposition.

Proposition 3.2.2. Let C be given by (3.1.2) with m < d. For all degrees n such that
n > max(d, Frob(m,d)+1) and ged(m, d) | n, there exist g, h,y,n such that Fgp, »(t) given

in (3.2.1) has degree n.
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Ezxplicitly, we can assume n =1 and take g, h,~y to have the degrees given below:

degg =n/m
degh = |(n —d)/m] when m | n, (3.2.2)
degv =1

and
degg = [n/m]
degh = (n —rd)/m when m { n, (3.2.3)
degy =r

where r > 0 is the minimal integer such that n = rd (mod m).

Notice that the choices above accomplish our goals of maximizing the total degrees of
freedom by letting g, h have the largest possible degree, while deg~y is kept small, with
1<r<m.

Let C be a superelliptic curve with exponent m and defining polynomial f(x), as in
(3.1.2). As in Proposition 3.2.2, given any n > ng such that ged(m,d) | n, there exist
choices of degrees (3.2.2) or (3.2.3) for g, h,v such that the polynomial Fyj -(t) given in

(3.2.1) has degree n in general. Writing

degg deg h deg v
gty =Y ait'. &)=Y bit!, )= at,
i=1 j=1 =1

we can view F,j . (t) as a degree n polynomial F'(a,b,a,t) € Q(a,b,a)[t]. Here a in-
dicates the tuple of indeterminates (ao,...,adegy), and similarly for b and c. For sim-
plicity, since we have fixed the curve C' and degree n, we will denote this polynomial
family by F' € Q(a,b, )[t], and denote a rational specialization by Fg, b« € Q[t], where
ap € Qlesstl po e Qdeahtl o e Qles v+l

Since such F' € Q(a, b, a)[t] is degree n, almost all specializations Fyg, py.a, have de-

gree n. With Hilbert’s irreducibility theorem, we can say something stronger — that the
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irreducibility and Galois group structure of the polynomial family carry over to most spe-
cializations. We state this classical result for a general polynomial F(a,t) € Q(a)[t] where

a is some tuple of indeterminates.

Lemma 3.2.3 (Hilbert’s irreducibility theorem). Let F(a,t) € Q(a)[t] with Galois group
G. Suppose ay is a rational specialization such that F(ag,t) € Q[t] is irreducible with Galois
group Go. Then F(a,t) is irreducible as a polynomial in t over Q(a) and G ~ Gy for 100%

Of ag.

The following corollary is more specific, as it refers to the permutation representations

of the Galois groups. A proof may be found in [LT21, Theorem 4.2].

Corollary 3.2.4. Suppose F(a,t) € Q(a)[t] is irreducible. If a permutation representation
of Gy contains a given cycle type for a positive proportion of integral specializations ay,

then G contains an element of the same cycle type.

Using Newton polygons as discussed in §2.1.3, our aim is to show that many integral
specializations Fy, by« are in fact irreducible, and in some cases can be shown to have
certain cycle types in their Galois groups. Corollary 3.2.4 implies that F' must have those
same cycles in its Galois group over Q(a, b, ). In the case that C' is a hyperelliptic curve,
we will in fact prove that G = Gal(F/Q(a,b,a)) ~ S,, and almost all specializations

Fag,bo,a0 have Galois group S, over Q.

3.3 Polynomial families from hyperelliptic curves

We begin with the special case of hyperelliptic curves, i.e. taking m = 2 as in (3.1.1).
Using the strategy outlined in the previous section, we construct a polynomial family whose
specializations give rise to number fields generated by points on C' with symmetric Galois
group.

Let g(t) = Y% a;it' € Q(a)[t] and h(t) = Y%, bit' € Q(b)[t], where a = (ag, ... aq,)

and b = (bo, ..., bq,). Then consider the polynomial in Q(a, b)[t] given by

Fr(a.b,t) = g(t)> — f()h(t)?, (3.3.1)
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which is the family described by Proposition 3.2.2. Since 0 < r < m = 2, we take r =
degy = 1, and in this section we simply use v = t (though we occasionally will make
change of variable arguments which are equivalent to choosing a different linear ). We will
use F'f .6, (t) to denote a specialization with ag € Q%+ and by € Qéntl,

Given f(z) of degree d > 3 and a degree n, our goal is now to show that the polynomial
family (3.3.1) is irreducible over Q(a,b) with Galois group G ~ S,,. This will give us a
means of producing many degree n number fields which are generated by algebraic points

of C, which we can count later.

3.3.1 Curves with a Weierstrass point

Fix f with odd degree d > 3. Such curves C have a rational Weierstrass point at infinity.

Fix a degree n > d. We take the degrees d, and dj, as in Proposition 3.2.2,

.
(n—1)/2, n odd,
dg =
n/2, n even,
(n—d)/2, n odd,
dp =
(n—d—1)/2, n even.

\

For simplicity, we denote the polynomial family (3.3.1) by F(¢) € Q(a,b)[t] and a special-

ization by Fg, p,(t) € Q[t], leaving both f and n implicit when it will not create confusion.

Proposition 3.3.1. Fiz a polynomial f and integers n,dgy,dy as above. Then Fy is irre-

ducible in Q(a, b)[t] and Gal(Ff/Q(a, b)) ~ S,.

Proof. The irreducibility and Galois group of F¢(t) over Q(a, b) are invariant under a linear
change of variables in ¢. It will be convenient to assume that the constant term of f, cg, is
nonzero, which is always possible after such a linear change of variables. We treat the cases

of n even and odd separately.

Case 1: n is even. When n is even, we take dg =n/2 and dj, = (n—d—1)/2. Let p be a

prime that does not divide any nonzero coefficient of f. Consider an integral specialization
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ao = (ag, - - -, any2) and by = (bo, . . ., bn_q—1y/2) with the following p-adic valuations:

vp(ag) =1 (3.3.2)
vp(a;) > 1 for 0 <i<n/2

vp(an/Q) =0

vp(bj) >2for0<j<(n—d-1)/2.

These requirements on the valuations of b; allow us to effectively ignore the hp, ()2 f(x) term
of Fg, b, in constructing the Newton polygon. Inspecting the valuations of the coefficients

of gay(z)? gives the resulting Qp-adic Newton polygon for Fg, p,, shown in Figure 3.3.1.

Figure 3.3.1: NPq, (Fa,p,) With one segment of slope —2/n

(0,2)
(n/2,1)

(n,0)

\
4

The Newton polygon NPq, (Fa,.b,) has one segment of slope —2/n, so by Lemma 2.1.26,
if Fg,p, is reducible over Q, then it is the product of two degree n/2 irreducible factors.
In particular, if F' is reducible over Q(a,b), it must also be the product of two degree
n/2 irreducible factors, as any other factorization would yield an incompatible factorization
upon specializing by ag, by with the valuations given in (3.3.2).

Let us now consider a different integral specialization ag, bg with the following p-adic

valuations:

vp(ag) =0 (3.3.3)
vp(a;) > 2 for 0 <i<n/2
vp(bj) >2for0<j<(n—d—1)/2

Up(bn—d—1y2) = 1.

The constant term of Fyg p, is ag — bgco which has valuation 0. All other coefficients can be

seen to have valuation at least 2, with the leading coefficient having valuation at least 4.
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The coefficient of 2"~ ! is given by 2a,, /2—10p /2 — b%n_ d—1)/2Cd> which has valuation exactly

2. The resulting Newton polygon is shown below in Figure 3.3.2.

Figure 3.3.2: NPgq, (Fay,b,) With (n — 1)-cycle

A (n7 2 4)

(n—1,2)

~

(0,0)

This Newton polygon has a segment of length n — 1 and slope equal to 2/(n — 1),
so by Lemma 2.1.26 whenever ag, by have the p-adic valuations given in (3.3.3), we have
that Fy, p, factors as a degree n — 1 irreducible polynomial times a linear polynomial over
Qp. Such a factorization cannot occur if F' has two irreducible degree n/2 factors over
Q(a,b), so we may conclude that F' is irreducible, and hence G is a transitive permutation
subgroup of S,,. Moreover, Proposition 2.1.28 implies that the Galois group of Fg, p, over
Q contains a cycle of length n — 1 whenever ag and by satisfy the valuations in (3.3.3).
These valuation criteria are satisfied for a positive proportion of integral specializations ag
and by, so Corollary 3.2.4 implies that G contains an (n — 1)-cycle.

To produce a transposition in G, we apply a consequence of Chebotarev’s density the-
orem, Lemma 2.3.10. Since f is squarefree, there exist infinitely many primes p for which
there exists zo € Z such that p | f(zo) but p? 1 f(zg). Choosing one such prime p > n
with p 1 Disc f, ¢q4, after a possible change of variables, we may assume that v,(co) = 1 and

vp(cr) = 0.
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We consider an integral specialization ag, by with the following p-adic valuations:

vp(ag) =2 (3.3.4)
vp(ar) =0
vp(a;) > 2 for 1 <i<n/2
vp(an ) =3
vp(bo) = vp(bn—q-1)72) =1

vp(bj) >1for0<j<(n—d—1)/2.

These requirements ensure that the constant term of Fy 5, has valuation exactly 3, the
coefficient of z2 has valuation exactly 0, the 2"~ ! coefficient 2a,, /20 /2—1 — b%n_ d—1)/26d has
valuation exactly 2, and the leading term has valuation exactly 6, with all other coefficients
having valuation at least 2. The resulting Newton polygon is shown below in Figure 3.3.3.

Figure 3.3.3: NP, (Fga,,b,) With transposition

A

(n,6)

(2,0)

That 3 < d < n ensures that % < 4, so the two rightmost segments are distinct.
1

These, together with the segment of length 2 and slope —3/2 above, ensure that Fg, p,
has factors of degree 2, n — 3, and 1 over Q,, so Proposition 2.1.28 applies to reveal a
transposition in G b -

Since a positive proportion of integer tuples ag, by satisfy (3.3.4), Corollary 3.2.4 implies

that G also contains a transposition. Thus G satisfies the hypotheses of Proposition 2.2.18

and we conclude that G ~ §,,.

Case 2: n is odd. Now we take d; = (n—1)/2 and dp, = (n—d)/2. Fix a prime p not divid-

ing any nonzero coefficient of f. Consider an integral specialization ag = (ao, - . ., a(n-1) /2)
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and by = (bo, - - - bn—q)/2) with the following p-adic valuations:

vp(ag) =0 (3.3.5)
vp(a;) > 2 fori >0
vp(bj) > 2 for j < (n—d)/2

Vp(b(n—ay/2) = 1.

These requirements ensure that the constant term a? — b3co has valuation exactly 0, the
leading coefficient b?n_ d)/2¢d has valuation exactly 2, and all intermediate coefficients have
valuation at least 2. This produces the p-adic Newton polygon for Fg, p, shown below in

Figure 3.3.4.

Figure 3.3.4: NPgq, (Faqb,) With n-cycle

(n,2)

(01 0) T >

This Newton polygon has one segment of slope 2/n, and since n is odd we have

ged(2,n) = 1. Thus Lemma 2.1.26 implies that the specialization Fj is irreducible

0,bo
over Qp, hence over Q, and we have that F' must be irreducible over Q(a, b), with its Galois
group G a transitive subgroup of S,.

Next, we aim to produce a g-cycle in G for a prime ¢ > n/2. We will assume n > 3 for
now, as the case of n = d = 3 will be handled by later arguments. Recalling Bertrand’s

postulate, there exists some prime ¢ such that ”T_l < g <n —1, which is odd and satisfies

g > n/2. Consider now a specialization ag, by satisfying

Vp(G(n—g)/2) =0 (3.3.6)
vp(a;) > 2 fori# (n—q)/2
vp(bj) > 2 for j < (n—d)/2

Vp(bn—ay/2) = 1.
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These requirements ensure that the valuations of all coefficients of Fg 3, are at least 2,
except for the degree n — ¢ term, whose coefficient has valuation zero coming from the

2
presence of an Ung) /2

example p-adic Newton polygon for such a specialization Fy, p, is shown below in Figure

term. The leading coefficient b%n_ a)/26d has valuation exactly 2. An

3.3.5.

Figure 3.3.5: NPq, (Fga,,) With g-cycle

N

(0,> 4)

(n - q,O)

Note that the left side of the Newton polygon in Figure 3.3.5 need not be a single
segment, or if n = ¢ it will not exist at all. This is inconsequential however, because the
right side is of interest to us, in particular the segment of slope 2/¢ and length ¢. Since
g > n/2 is an odd prime, we have gcd(2,q) = 1 and ¢ is coprime to any integers less than or
equal to n — ¢, so Proposition 2.1.28 applies, ensuring the existence of a g-cycle in Gg, p,-
Since a positive proportion of integral specializations satisfy (3.3.6), Corollary 3.2.4 implies
that G contains a g-cycle as well.

Finally, we can produce a transposition in GG using essentially the same argument as
in the case of even n. After a possible change of variables, let p > n be a prime such
that vp(cp) = 1 and p { Disc f,c4. We consider specializations with the following p-adic

valuations.

vp(ap) =2 (3.3.7)
vp(a1) =0
vpla;)) >2for1<i<(n—1)/2

Up(bo) = Up(b(n—d)/Q) =1

vp(bj) > 1for 0 <j < (n—d)/2.
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These conditions produce the Newton polygon shown below in Figure 3.3.6.

Figure 3.3.6: NPq, (Fa,b,) With transposition
(0.3)§
(n,2)

~

(2,0)

Since n — 2 is odd, Proposition 2.1.28 applied to the segment of slope —3/2 implies that
Gag,by> and hence G' by Corollary 3.2.4, contains a transposition. Therefore, G satisfies the

hypotheses of Proposition 2.2.19, and we conclude G ~ S,. O

3.3.2 Generic case

We now present the analogous proposition for the generic case, in which we assume d is
even. Let f(x) € Z[x] be squarefree given by f(x) = Z?:o c;w’, with d > 4 even. Fix an
even integer n > d+2 and take d; = n/2 and dj, = (n—d)/2—1. Let F¢(a,b,z) € Q(a, b)]t]
denote the polynomial family in (3.3.1), which is seen to have degree n. Again, for simplicity

we denote this by F'(x) when it will not create confusion.

Proposition 3.3.2. Fiz a polynomial f, an even integer n, and degrees dg,dy as above.

Then Fy is irreducible in Q(a,b)[t] and Gal(Fr/Q(a,b)) ~ S,.

Proof. We will again need that the irreducibility of Fy and its Galois group G are invariant
under linear change of coordinates in z, to allow us to assume certain conditions on the
valuations of the c;.

As in the proof of Proposition 3.3.1, there exists a prime p > n not dividing both
Disc f, cq such that p divides f(k) exactly once for some integer k. Thus after changing
variables, we assume that v,(co) = 1.

Consider now the change of variables by scaling « to be px. The constant term cy remains
unchanged, but this allows us to assume that p | ¢; for i > 1. These assumptions are useful

for finding long cycles in G = Gal(F/Q(a, b)). We consider an integral specialization ag, by
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with the following p-adic valuations:

vp(a;) > 1 for i <n/2 (3.3.8)
vp(a’n/2) =0
Up(b()) = 0,

and no restrictions on b; for 7 > 0. These restrictions, and assumptions on the coefficients
¢i, ensure that every term of F'(x) is divisible by p, except for the leading coefficient ai /20
which has valuation 0. Moreover, the valuation of the constant term ag — bgco is exactly 1,

so the Newton polygon of Fy, p, has exactly one segment of length n and slope —1/n, as

shown in Figure 3.3.7.

Figure 3.3.7: NPgq, (Fga,,b,) with n-cycle

(0,1)
(1,0)

Proposition 2.1.28 implies that Fg, p, is irreducible over @Q@,, and hence over Q, so F' is
irreducible over Q(a,b) and G is transitive, containing an n-cycle by Corollary 3.2.4.

We use a variation of this argument to find an (n — 1)-cycle in G. Fix another prime
p > n such that after a change of variables we have v,(co) = 1 and p { ¢;. We consider an

integral specialization ag, by with the following p-adic valuations:

vp(a;) > 3 fori <n/2 (3.3.9)
Up(an/2) =0
vp(bp) =1

vp(b;) > 2 for j > 0.

These restrictions ensure that the constant term has valuation 3, while the linear coefficient,
2apa1 — bgcl — 2bgb1cg, has valuation exactly 2. All other terms have valuation at least 2
except for the leading term, which has valuation 0. This produces the Newton polygon

below in Figure 3.3.8.
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Figure 3.3.8: NPq, (Fag,b,) With (n — 1)-cycle

(0,3)

(1,2)

(n,0)

\
4

Since n > 4, the two segments are distinct, with the rightmost one of length n — 1 and
slope —2/(n — 1). As n is even, Proposition 2.1.28 is satisfied, producing an (n — 1)-cycle
in Ggg,b, and thus in G.

Finally, we produce a transposition in G, assuming that n > 8 for simplicity; nearly
identical arguments suffice for the case of d = 4 and n = 6. More care is needed here to
find a Newton polygon with exactly one segment of even length to satisfy the hypotheses
of Proposition 2.1.28.

Fix a prime p > n such that p 1 ¢q4,Disc f, ¢q is a quadratic residue modulo p, and
p | f(k) for some integer k. Such a prime exists by our earlier Chebotarev argument,
this time looking for primes splitting completely in the splitting field of f(z)(z? — cq).
After a change of coordinates, we assume v,(cp) = 1 and p { ¢;. We consider an integral

specialization ag, bg with the following restrictions:

vpla;) > 4 for i < g 9 (3.3.10)

Up(an/Q—Q) =0

vp(an/2—1) =1
ai/z
vp(an/2) = 1 such that 2 =c¢q (mod p?)

vp(bo) =1
vp(by) = 1
b2
Up(b(n—ay/2) = 1 such that % =1 (mod p?).

Note that such a,/, exists, since ¢4 is a quadratic residue, and these assumptions ensure

that p* | ai /2~ b?nf a)/2Cd> the leading coeflicient. Furthermore, we have that the constant
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coefficient has valuation 3, the linear coefficient has valuation 2, the 2"~* coefficient has
valuation 0, and both the 2”3 and 2”2 coefficients have valuation 1, with all other terms
having valuation at least 2.

Looking more closely at the coefficient of 2”1 given by

2ap/2-1n/2 = b(n—a)/2-1b(n—d)/2¢d — b%n_d)/gcd—la

we see that its valuation at least 2. To ensure it has valuation exactly 2, we fix a residue

class for %b(n,d)/g,l modulo p and ask that a,,/,_; satisfy

—1
Ap/2-1 an /2 i 12
— # (2p ) e (b(n_d)/2_1b(n_d)/26d b(n_d)/QCd—l) (mod p).  (3.3.11)

Thus combining (3.3.10) and (3.3.11), we produce the Newton polygon in Figure 3.3.9 below.

Figure 3.3.9: NPq, (Fa,b,) With transposition

N (nvz 4)

(n—4,0)

The segment of length 2 and slope 1/2, together with the fact that all other segments
have odd length " and slopes r//l" with ged(r/,1") = 1, allow us to apply Proposition 2.1.28
with | = 2 to produce a transposition in Gg,p,. The requirements (3.3.10) and (3.3.11)
are satisfied for a positive proportion of integral ag, by, so Corollary 3.2.4 implies that G
contains a transposition. Thus with its n-cycle, (n—1)-cycle, and transposition, Proposition

2.2.18 gives that G ~ 5,,. 0
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3.4 Polynomial families from superelliptic curves

We now return to the case of a superelliptic curve for general m > 2. Recall our restrictions
on d and f(z) out of convenience. First, we assume d = deg f(z) is divisible by m; this
corresponds to the superelliptic map Cy — P! being unramified at infinity. We also ask
for f(z) # fo(x)¢ for any nontrivial divisor e | m. This is automatic if we enforce that the

curve C is geometrically irreducible.

Proposition 3.4.1. Fiz a polynomial f(x) as above and an integer n > max(d, Frob(m, d)+
1) such that m | n. Let the degrees dg,dp,dy as in (3.2.2). Then Fy is irreducible in
Qla,b,a)]].

Moreover, for 100% of specializations ag, by, oy we have Fo, b, o € Q[t] is irreducible

of degree n.

Remark 3.4.2. Note that unlike Propositions 3.3.1 and 3.3.2, we make no claims about the
Galois group G = Gal(F/Q(a, b, &)). From irreducibility it follows that G is transitive, but
identifying elements in the Galois group using a similar Newton polygon proves somewhat
more difficult. For now we content ourselves with irreducibility, but we see no reason not

to suspect G ~ S,, in general.

Proof of Proposition 3.4.1. The second statement follows from the first by Hilbert irre-
ducibility, Lemma 3.2.3.

For the first statement, we exhibit specializations with incompatible p-adic factorizations
for several primes p, arguing via Newton polygons and Lemma 2.1.26.

Fix a prime p such that p t ¢; for all i. Consider an integral specialization ag, by, g

satisfying

v(ag) =1 (3.4.1)
v(a;)) > 1for 0 <i<n/m
v(an/m) =1

v(bj) > 1for 0 <j < (n—d)/m,
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with no restrictions on ag, a;. We end up with the Newton polygon featured below.

Figure 3.4.1: NPq, (Fag,b,a0) With one segment of slope —m/n

(0,m)

In particular, since we have assumed m | n, we have that m = ged(m,n) so by Lemma
2.1.26, all irreducible factors of F' over Q, must have degree divisible by .

Consider now an alternative specialization. By Corollary 2.3.11 there are infinitely many
primes p such that for some oy € Z we have f(«yp) is divisible by p exactly e times, where e
the multiplicity of an irreducible factor of f(x) =[], fi(x)®. Note that we may not be able
to enforce e = 1 as we did in §3.3 since f may not be squarefree, or even have an irreducible
factor of multiplicity one.

Choose some such p and «g such that p t ¢; for all i. Set y(t) = p°t + «ap, so that p©
exactly divides the constant term f(ag) of f(7(¢)) and all higher coefficients are divisible

by p. Consider now a specialization satisfying

v(a;) > efor 0 <i<n/m (3.4.2)
v(an/m) =0
U(bo) =0

v(bj) > 0for 0 <j < (n—d)/m.

This ensures that p® exactly divides the constant term of F' and all other terms except the
leading term, yielding the Newton polygon below.
As earlier, Lemma 2.1.26 implies that the an irreducible factor of I over Q, must have

degree a multiple of m.
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Figure 3.4.2: NPq, (Fag,by,a0) With one segment of slope —e/n

(0,¢)

Let Fy be an irreducible factor of F'. We have seen that

n deg Fy and . deg Fy for 1 <¢ <.
m ged(n, ;)

Starting with ¢ = 1, we apply an elementary fact, stated and proven below in Lemma 3.4.3,

with a = m and b = ged(n, €;), giving

i = i ‘ deg F{
ged(m, ged(n,e1))  sed(m,myer) | © 000

Applying again for 2 < i < r with a = ged(n,m,e1,...,e;—1) and b = ged(n, e;) we obtain

n

n
= deg R
ged(n,m,eq,...,e.) 1 ‘ °& <0

by our assumptions on the multiplicities e;, coming from the irreducibility of Cy. Hence F'

is irreducible over Q. ]

Lemma 3.4.3. Suppose 2, % | d for some integers n,d,a,b such that a,b | n. Then m ]

d.
Proof. Recall the elementary identity ged(a,b)lem(a,b) = ab. We have

n n lem(a, b)
—|d = d
a | ged(a, b) b

and similarly o | dlcmé%b)'

. lem(ab) b lem(a,b) a . . n
Since — = = ed(a ) and === = — d(a7) Are coprime, any prime factor p | sed(aD)

must divide d, and the conclusion follows. ]
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3.5 Accounting for multiplicity

In this section, we describe how to obtain an asymptotic lower bound for N, ¢, (X) or
Nn,c; (X, Sy) in our cases of interest by counting polynomials and accounting for the mul-

tiplicity of the fields that they generate.

Proposition 3.5.1. Fizm, f, and n divisible by ged(m, d) and suppose F' as given in (3.2.1)

is irreducible over Q(a, b, ). Then we have
Np,c, (X) > X,

where

5. — 1 + 2n2(m—m?—dr+3)+n(km—k2+4(m—m2—dr)—dmr+d?r?)+2(km—k?—dmr+d>r?) (3 5 1)
T m? 2m2n2(n—1) ) "

Here we take r = deg~y to be the minimal positive integer such that n = dr (mod m) as in

Proposition 3.2.2, and

min{klezzol%GZ} m|n,
k=

min{ks € Zoo | =22 €2} min.

Moreover, if Gal(F/Q(a, b, a)) ~ S, then
Nyc, (X, S8y) > X

Theorems 3.1.2, 3.1.3, 3.1.5 follow from Proposition 3.5.1 combined with one of Propo-
sition 3.3.1, 3.3.2, or 3.4.1, as appropriate, to ensure F' satisfies the relevant irreducibility
and Galois group hypotheses. The improved exponents in the large n case follow from the

discussion in 3.5.4.
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3.5.1 Coefficient bounds

In this section, we construct a family of polynomials Py, (Y") arising from certain specializa-
tions of (3.2.1) in §3.2. We will do this by imposing bounds on the coefficients of g(¢) and
h(t) in F(t) = g(t)™ —h(t)"™ f(v(t)). These bounds will be useful for counting multiplicities
of fields generated by this family of polynomials because of the following lemma that relates

the absolute values of the coefficients of a polynomial to the absolute values of its roots.

Lemma 3.5.2. Let f(z) = > I ,ciz® € Clz] be monic and have degree n. There exist
positive constants A; such that for any Y > 0, if |c;|< A; Y™™ for 0 < i < n then |a|< Y

for all roots « of f(x).

Proof. The result follows from a bound of Fujiwara [Fuj16], see [Key22, Lemma 4.1]. [

For the remainder of this section, we work with the hypotheses of Proposition 3.5.1,
namely that C is a nonsingular superelliptic curve, n is a fixed sufficiently large multiple
of ged(m, d), and F € Q(a, b, a)[t] given in Proposition 3.2.2 is irreducible (possibly with
Galois group Sy).

It will be useful to specialize a to ay, or equivalently to choose some ~(t) € Z[t], so

that Fy,, € Q(a, b)[t] is irreducible (possibly with Galois group S,).

Lemma 3.5.3. Assume the same hypotheses as Proposition 3.5.1. Then there exists o €
Z'+L, for which the partial specialization Fo, € Q(a,b)[t] is irreducible and such that
f(yo(t)) is also m-th power free.

Moreover, if Gal(F/Q(a,b, ) ~ S,, then ag may be chosen such that the partial spe-
cialization also has full Galois group Gal(Fu,/Q(a,b)) ~ S,,.

Proof. By assumption, we have that F is irreducible over Q(a, b, ). Hilbert’s irreducibility
theorem (Lemma 3.2.3 but for arbitrary base field) implies that for almost all choices of ay,
Fq, is irreducible over Q(a,b). If Gal(F/Q(a,b,)) ~ S,, then for almost all oy we have
Gal(Fa,/Q(a,b)) ~ S,.

Let us know examine more closely when f(7y(t)) is also m-th power free. Writing f as
a product of irreducible factors f = [], f{* and taking fraa = [[; fi, it is enough to check

that we can choose 7y such that fi.q(70(t)) is squarefree.
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Now we may use the discriminant Disc fraq(7(t)), viewed as a polynomial function in
variables a; fiaq(7(t)) has a multiple root whenever this polynomial vanishes, which is a
Zariski closed condition on the affine space A™! from which we are choosing cg. Hence the
space of oy giving rise to vo with fraq(70(t)) squarefree — and thus f (v (t)) m-th power free
— is Zariski dense. In particular, some such «q satisfies both F,, irreducible and f(v(t))

m-th power free. O

Moving forward, we fix some 7o(t) € Z[t] such that Fy, is irreducible (with Galois group
Sy, if appropriate) and f(79) m-th power free, by Lemma 3.5.3.
We now take Y to be a a positive real number. Let Py, (Y) be the set of polynomials

of the form

F(t) = h(6)" f(y(t) —g(®)™

that arise from certain integral specializations of (3.2.1) for which we will give certain
constraints on g(¢) and h(t) below depending on Y. That is, P, (Y) is a set of integral
specializations Fg; p,.«, Where the choice of Y imposes constraints on ag,bg and oy is

precisely the coefficients of vy. We write the coefficients of F(t) as follows:
F(t) = dpt" + dp_1t" 1 4 - + dp. (3.5.2)

In order to apply Lemma 3.5.2, we need bounds on the coefficients d; in terms of Y. To
achieve this, we impose restrictions on the coefficients of g and h. In the case where m | n

we take

9(t) = nymt™™ + @y 1"+ -+ ag, (3.5.3)
h(xz) = b(nidikl)/mt(nfdfkl)/m + b(nidikl)/milt(nfdfkl)/mfl 4t b

FOo(®) = cgat + -+ crw + .

Here k; is the minimal nonnegative integer such that (n — d — k1)/m is an integer. This
realizes the degrees in (3.2.2). Fix a,/n, to be an integer so that the partial specialization

F

Ap/m

. is irreducible (and Gal(Fy,, st Q(a, b)) ~ S, if appropriate). Such a,,,, exists by
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Lemma 3.2.3. If k1 = 0, we similarly take b(,,_q)/m, such that F, is irreducible

n/m:D(n—d)/m>*0
(and Gal(Fy, . b, /mao/Q(@, b)) 22 Sy if appropriate). We then impose the restrictions
that a;, b; are integers satisfying |a,, /n—|< Y? for i > 0, and 0(n—d—ty) m—j] < yki/m+i for
3 >0, with [bj,—g_p)|< Y™ if ky # 0.

In the case where m { n, we choose r, the degree of (t), to be the minimal positive

integer for which n = dr (mod m). As above, we have

g(t) = a(nib)/mt(nfh)/m + a(nib)/milt(nsz)/mfl T+ ao, (354)
R(t) = bin—ary/mt" ™™ 4+ by a4 by,

FOo@) =dp™ + - + iz + ¢,

Here k9 is the minimal positive integer such that (n—kg)/m is an integer so this realizes the
degrees in (3.2.3). This time, we use Lemma 3.2.3 to find an integer b(,,_gy/m such that the

partial specialization Fy,,_, ' o is irreducible (with Gal(Fy,, ., .. a0/Q(a,b)) = Sy if ap-

)/
propriate). We then impose the restrictions that a;, b; are integers satisfying \a(n,kz) /m,z-\g
Yk2/mti for i > 0, and [bg,—gr) ym—;|< Y7 for j > 0.

We note that these polynomials F' € P, (Y) have degree n, and these restrictions on
the coefficients imply that |d;|< A;Y™"*. Applying Lemma 3.5.2 and accounting for the
implied constant, we see that for all F' € Py, (Y), we have that all roots o of F' satisfy
la|<,.; YV and thus we also have |Disc(F)|< BY™"~1 for a constant B depending on f

and n.

3.5.2 Bounding multiplicities

We bound the number of fields arising from specializations in (3.2.1) by counting the number
of polynomials in Py, (Y) and adjusting for two possible sources of multiplicity. The first
potential source of multiplicity is the case where two different g(t), h(t) give rise to the
same element F(t) in Py,(Y). The second potential source of multiplicity is that multiple
elements F(t) in Py, (Y) produce isomorphic number fields. The first potential source of
multiplicity is dealt with by the following lemma, building on the strategy in [LT21, Lemma
7.4].
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Lemma 3.5.4. Let F(t) € Z[t] be a polynomial of degree n. The number of ways to choose
nonzero polynomials g(t), h(t) € Z[t] of some fived degrees degg < - and degh < - with
one of the leading coefficients of g or h fized, such that F(t) = g(t)"™ — f(yo(t))h(t)™ is
Omn(1).

Proof. Note that we assumed f(x) is m-th power free in our definition of a superelliptic
curve in (3.1.2). We then chose 7o(¢) as in Lemma 3.5.3 such that f(yo(t)) is also m-th
power free. The coordinate ring R = C[t,y]/(y™ — f(70(t))) is a Noetherian domain of Krull
dimension one, thus its integral closure R is a Dedekind domain (see e.g. [Lan94, Ch. 1,
§6, Theorem 2]). Thus in R, the ideal (F) factors uniquely into a product of finitely many
primes, of the form (¢ — ty,y — yo) satisfying both yo = f(v(tp)) and F(t9) = 0. There are
mn such solutions, counted with multiplicity, so we have at most mn prime factors of (F').

As in the proof of [LT21, Lemma 7.4], we observe that given any such g, h there is a
factorization

m—1

F=g"—fo)h™=]] (g ~ Cif('m)l/mh) ,

i=0
where ¢ is a primitive m-th root of unity. The ideal (g — f(70)Y/™h) divides (F) so there
are at most 2™ possibilities for its prime factorization. Thus there are at most 2™ choices
for the ideal (g — f ('yo)l/ "h). It remains to show that if g and h satisfy the hypotheses of

the lemma, this ideal determines them precisely.
Suppose we have ¢, b’ satisfying the hypotheses with (g— f(70)/™h) = (¢'— f(70) /™).
Then for some unit v € R*, we have g — f(70)"/™h = u(g’ — f(70)/™h'). This unit

necessarily satisfies a minimal monic polynomial
k k—1 —
u’ +vp_u" T+ -+ viu+ v =0, (3.5.5)
where v; € R and vy € R*. Multiplying by ¢’ — f(70)"/™’, this becomes

0= (g’ - f(fyo)l/mh') (uk + v v+ vo)

= (9= F00)!/"0) (7! oianl ko) o (o= o))
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If £ > 1 then this contradicts minimality of (3.5.5), so we must have k = 1, in which case
we have u € R*.

With this in hand, we may write u = u(t) as

—_

m—

ut) = Y fyo(®) ™ ui(t)

1=0

with u;(t) € C[t]. The relation u(g — f(70)"™h) = ¢ — f(70)"/™h’ implies

upg — Um—1f(y0)h=¢ (3.5.6)
urg — uph = 1’

uzg —urh =0

uig—u;—1th=0 forall2<i<m-—1

Um—19 — Um—2h =0

as polynomials in C[t]. Multiplying each line by appropriately by powers of g and/or h, we
determine

U1 F = tum_1(g™ — K™ f(70)) = ¢'h™ " + gh™ 21/, (3.5.7)

If upm—1 # 0, the left hand side has degree degu,,—1 + n, while the right hand side has
degree at most degg + (m — 1)degh < n, producing a contradiction. Therefore, we have
um—1 = 0, and tracing through the relations, this implies u; = 0 for all 1 <7 < m — 1, i.e.
u(t) = up(t).

Finally, we observe that since the degrees of g and h are fixed, u = up must be a constant.
Moreover, since we also require the leading coefficients of either g, ¢’ or h, h’ to be fixed,
we must have u = 1. Therefore, the ideal (g — f(70)"/™h) can come from at most one g,h

satisfying the hypotheses. O

When m | n, the restrictions imposed in (3.5.3) and the following discussion fix the
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degrees of g and h and the leading coefficient of g such that the hypotheses of Lemma
3.5.4 are satisfied. Thus each choice of g(t) and h(t) coincides with at most finitely many
others. The same is true for the m { n case by (3.5.4). Thus we can give a count for the
number of F(t) in Py, (Y) based on the number of choices for g(t) and h(t). More precisely,
#P;,(Y) <Y€ for ¢ to be determined below.

In the case where m | n, we have

n/m (n—d—ki1)/m

c:;z‘Jr > (j+2>:n}ﬂ<n2+n(m—d)+d2+(k1_2d)m_k%>.(3.5.8)

J=0

In the case where m { n, we have

(n—k2)/m (n—rd)/m 9 9 9
ka . 1 9 d*r? + (ko — dr)m — k3
c= ZEZO (m—l—z)—i- ]Ezl j:m2<n +n(m —dr) + 5 .
(3.5.9)

Let Py, (Y, irr) denote the subset of Py, (Y") consisting of irreducible polynomials. Similarly,
let P, (Y,S,) denote the subset of irreducible polynomials with Galois group S, over Q.
Since we have assumed F is irreducible and chosen a,, /,,, ot b(,,_gr)/m appropriately, Lemma
3.5.3 implies that # Py, (Y,irr) < Y¢. Similarly, #Ps,(Y,S,) < Y¢ if I’ has symmetric
Galois group.

To address the second source of potential multiplicity (that there may be multiple ele-
ments of F'(t) that produce isomorphic number fields), we use a strategy of Ellenberg and
Venkatesh [EV06] for counting number fields, and the multiplicity counts of Lemke Oliver
and Thorne [LT21]. See also [Key22, §5] for a detailed discussion.

As mentioned previously our assumptions on the sizes of |a;|, |bj| ensure that the coeffi-
cients of (3.5.2) are bounded by |d,,_;|< AY" for some constant A. In particular the leading
terms are bounded, and hence we may divide by some constant integer w. We define the
set

SY):={F=t"+d, t" '+ ... +dy € (L/w)Z[t] : |dj,_;| <nyY'}

with the additional condition that F(¢) is irreducible. Note that by this construction,

elements of Py, (Y,irr) (and Pf,(Y,Sy,)) are in bijection with a subset of S(Y'), provided
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we choose the implied constant appropriately.
We define the multiplicity of a number field K of degree n in S(Y') to be the number of

polynomials in S(Y') that cut out the field K,
Mg(Y):=#{F € S(Y)|Q[t]/F(t) ~ K} .
We state here several bounds related to this multiplicity M (Y') that we will use to compute

bounds on N,, ¢(X,Sy,). The following is a bound of Lemke Oliver and Thorne on Mg (Y).

Lemma 3.5.5 (Lemke Oliver-Thorne [LT21, Proposition 7.5]). We have
Mg (Y) < max (Y” Disc(K)|"/2, vy 2).

The proof of this lemma uses the geometry of numbers, building on the strategy suggested
in [EV06].

This bound of Lemke Oliver and Thorne for Mg (Y') together with the following theorem
of Schmidt on general number field counts with bounded discriminant are used in [Key22]

to give a bound for the sum of multiplicities of fields with discriminant bounded by T'.

Theorem 3.5.6 (Schmidt, [Sch95]). For n > 3, we have

n+2

Np(X) < X 7. (3.5.10)
Lemma 3.5.7 (K., [Key22, Lemma 5.4]). Let T'<Y™. Then

Z Mg (Y) < YT,
|Disc(K)|<T

where the sum runs over all degree n number fields K such that |Disc(K)| < T.

Remark 3.5.8. Schmidt’s bound in Theorem 3.5.6 has been superseded both in the large
and intermediate degree case, meaning Lemma 3.5.7 could be improved. However, we defer
this discussion until §3.5.4, where we discuss how better upper bounds for N, (X) improve

our lower bound on N, ¢(X) for n sufficiently large.
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3.5.3 Bounding N, (X, S,)
We now have all the tools to prove Proposition 3.5.1.

Proof of Proposition 3.5.1. By our construction, for any F' € Py, (Y,irr) and any root a
of F, we have («, %) € Cy(K) where K = Q(a) is a field of degree n. Recall also that
we have |[Disc(K)| < BY™»D for a constant B. Roughly speaking, we are taking our
count for the polynomials and dividing by a bound for the multiplicity (i.e. the number of
polynomials per field) to get the number of fields.

First, we will show fields of low discriminant are negligible in their contributions to

Ny.c(X). Using Lemma 3.5.7, we choose T = KY 7 (4= Al (m=1)m) - (2(dr —k) (drth—m)) /n)

so that

> Mg(Y) < s (3.5.11)
|Disc(K)|<T
and we recall that
#Ps (Y, irr) <Y€ (3.5.12)

where ¢ is given either by (3.5.8) or (3.5.9). We choose x to be sufficiently small so that
the quantity in 3.5.11 is at most # Py, (Y,irr)/2. Thus we produce negligibly many fields
of discriminant at most 7. Since the bound in Lemma 3.5.5 is decreasing with respect
to |Disc(K)|, we have My (Y) < T~Y2Y™ for all K of discriminant T' < |Disc(K)| <
BY™~1). We obtain a lower bound for N,, c(BY™"~1) by dividing # Py, (Y, irr) by this

worst case multiplicity.

N’n,C(BYn(n_l)) > Yc_nT1/2

_ Yﬁ (n2+n(2+mfm27dr)+(7k2+4m+k:mf4m274dr7dmr+d2r2)/2+(d2r2 7k2+km7dmr)/n)

(3.5.13)

To obtain the exponent 8, in (3.1.3), we replace Y in (3.5.13) by (X/B)Y""=1_ This
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produces (3.5.1)

S 1 2n2 (m—m?—dr+3)+n(km—k%24+4(m—m?—dr)—dmr+d?r?)+2(km—k% —dmr+d3r?)
n

— m?2 2m2n2(n—1)

and thus N, ¢(X) > X, as desired.
In the case Gal(F/Q(a, b, a)) ~ Sy, no changes to the above strategy are required, since
Pr (Y, S,) <Y€ as well. O

3.5.4 Improvements for n sufficiently large

As in [Key22, §5.4], we can improve on our lower bound when n is sufficiently large by
employing better known upper bounds for N, (X). The idea is to show that if the upper
bound for N, (X) is good enough, then the best case scenario of Lemma 3.5.5 applies, and

we can assume Mg (V) < Y2, Thus
Nn(Yn(n_l)) > Yc_%

where ¢ is given in (3.5.8) or (3.5.9), as appropriate. It remains to compute this exponent
and determine when the improved upper bounds for N, (X) take effect.

Assume we have an upper bound of the form
(¥) Np(X) < xemmid)
where €(n,m,d) > 1 is a constant depending on n and the m, d values for our curve C. We
will use a modification of (the proof of) Lemma 5.5 which is somewhat more flexible.

Lemma 3.5.9. Let T <Y™. Assume (x) for some constant e(n,m,d). Then

YnTa(n,m,d)—%

M (Y YnTs(n,m,d)—l/Q .
Z k(YY) < * 2e(n,m,d) — 1

|Disc K|<T
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In particular, when we take T =Y"™ we have

Y Mg(Y) < v,
|Disc K|<Y™
Proof. Write
M(Y)(t) = max {Mg(Y) : |Disc K|= t}

for the maximal multiplicity of a number field with discriminant ¢. Note that the bound in
Lemma 3.5.5 depends only on the discriminant so we have M (Y)(t) < max (Y"¢t1/2,y"/2) |

We set up a Riemann-Stieljes integral as in [Key22, Lemma 5.4],

T
> Mg(Y)< [ MY)(t)dN,(t)
|Disc K|<T -
T 1
< [ Y™ 3dN,(t)
-

_1 yr (T s

Substituting () into the last line above gives the first statement of the lemma. O

Note that Lemma 3.5.7 follows from this by taking e(n,m,d) = "2 as in (3.5.10),
Schmidt’s bound [Sch95]. However, this is not good enough for Y2 +"=(mmd) to he o(Y).

For this we need
c 1
ym,d) < — — —.
(xx) e(n,m,d) ~ =3
Using the best known upper bounds we can find when (%) is satisfied for a given C' and n.

Theorem 3.5.10 (Lemke Oliver-Thorne, [LT22, Theorem 1.1]). For n > 6 we have
Nn(X) < X1.564(10gn)2'

This is sufficient to give the proof of (3.1.4) in Theorem 3.1.5, which we state as a

corollary.

Corollary 3.5.11. Fix m, f and suppose that for all sufficiently large n, F' as given in
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(3.2.1) is irreducible over Q(a, b, ). Then for n > 0 we have
Ny, (X) > X0,

where

5=

n*mg

1 (2m — 2dr + 1)n + d*r? — mdr + mk — k>
1+ :
2n(n —1)

Here r, k are defined as in Proposition 3.5.1.

Moreover, if for all sufficiently large n, Gal(F/Q(a,b, ) ~ S,,, then for n > 0 we have
Noc,y (X, Sn) > X,

Proof. Fix a choice of Cf, so m and d are fixed. Assume n > 6 and set e(n,m,d) =
1.564(log n)?, so Theorem 3.5.10 ensures (*) is satisfied. Recalling ¢ from (3.5.8) or (3.5.9)
we see that in either case, = — % grows linearly with n, as k1, k2, and/or r are bounded,
depending on m,d. Clearly (logn)? grows more slowly with n, so for n sufficiently large

() is satisfied.

As noted above, Lemma 3.5.9 together with (x), (%) implies that

> Mg(Y)=o(Y).
|Disc K|<Y™
Thus the contribution of fields with discriminant up to Y™ to # Py, (Y, irr) is negligible. For
fields K with Y™ < |Disc K|< Y"1 we have Mg (Y) < Y2 by Lemma 3.5.5. Hence,
we have

Npoy (YD) > 40Py (Y, 8,)Y 72 > Vo2,

1
To get d), we set Y = X n(»=1) and take §/, = 5@71/12), which we can compute explicitly to
obtain the stated value.
The same argument applies for N, ¢, (X, Sy) since # Py, (Y, S,) < Y. O

The question remains to find when the improved asymptotic lower bound above takes

effect; that is, to determine when (%) and (xx) are both satisfied. To do this, we make use
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of a more flexible version upper bound of Lemke Oliver and Thorne, which we state below

with some variables changed to avoid confusion with our notation.
Theorem 3.5.12 (Lemke Oliver-Thorne, [LT22, Theorem 1.2]). Let n > 2.
1. Let a be the least integer for which (‘Hf) >2n+1. Then

a(a—1)(a+4)
6n

No(X) < X207

2. Let 3 <b<n and let a be such that (aZfIl) > bn. Then

Na(X) < X,

For a fixed superelliptic curve, i.e. choice of m and d, we aim to find an integer N
such that for all n > N satisfying ged(m,d) | n and the irreducibility (or Galois group)

hypothesis, Corollary 3.5.11 is true. Below we summarize this procedure.

1. Set e(n,m,d) = 1.564(logn)? and find Ny such that (xx) is satisfied for all n > Nj.

((x) satisfied by Theorem 3.5.10.)

2. For ng = max(d,lem(m,d) — m — d,2m? —m) < N < Ny, use Theorem 3.5.12 search

for a, b values to find e(n, m,d) satisfying both (x) and (xx).

For several small values of m and d, we compute N with this procedure, displayed below in

Figure 3.5.1.

m_|| 2 3 Il 4 Il 5 Il 6 Il 7 Il 10

d ” no N ” no N ” no N ” no N ” no N ” no N ” no N

3 6 106 15 552

4 6 108 15 553 28 1164

5 6 110 15 555 28 1161 45 2015

6 6 112 15 558 28 1162 45 2014 66 3192

7 7 114 15 559 28 1163 45 2015 66 3187 91 4438

10 10 120 17 565 28 1166 45 2020 66 3190 91 4438 190 10860
100 100 234 197 662 100 1256 100 2110 194 3278 593 4525 190 10940
1000 1000 1000 1997 1997 1000 2040 1000 3045 1994 4130 5993 5993 1000 11800

Figure 3.5.1: When is Corollary 3.5.11 taking effect?
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3.6 Geometric sources of higher degree points

Let C be a superelliptic curve over Q given by an affine equation of the form y™ = f(x) where
f(z) has degree d. The parametrization strategy in (3.2.1) produces points on superelliptic
curves that generate degree n field extensions, whenever we can prove that F' given in (3.3.1)
is irreducible. The entire strategy fails to produce degree n extensions when ged(m,d) 1 n
in general. In this section, we attempt to provide some heuristics for why one should expect
degree n points on superelliptic curves with ged(m, d) 1 n to appear less often compared to
degree n points with ged(m, d) | n.

As previously mentioned, in the case of hyperelliptic curves, m = 2 and ged(2,d) =
2, this parametrization does not produce any odd degree points (cf. [Key22]). This is
consistent with a result of Bhargava-Gross—Wang [BGW17] which says that a positive
proportion of locally soluble hyperelliptic curves have no odd degree points (and thus that
a positive proportion of all hyperelliptic curves have no odd degree points).

While we are far from proving an analogous result to [BGW17] for degree n points with
ged(m, d) 1 n on superelliptic curves, we attempt to give some heuristics and examples
suggesting that points of degree n with ged(m,d) | n appear more often than those with

ged(m, d) ¥ n and we ask the following;:

Question 3.6.1. What, if anything, can be said about the sparsity or abundance of various
degrees n of points on superelliptic curves given by affine equation of the form C : y™ = f(x)
where f(x) has degree d? In particular, can something be said in terms of the relationship

of n to the quantities m, d, and ged(m,d)?

Another way to phrase this question is in terms of the index of the curve C'/K. The
index of a curve C, denoted I(C), is the greatest common divisor of degrees [L : K], where
L/K ranges over algebraic extensions such that C(L) # (). See [GLL13, Shal8] for more
on the index of a curve. The result of Bhargava—Gross—Wang [BGW17] can be phrased as
stating that a positive proportion of hyperelliptic curves over Q have index 2 over Q.

For a general superelliptic curve C'/Q, one can ask whether its index over Q is related to
ged(m, d). It is already clear for instance that I(C) | ged(m, d) but we ask if more is true.

If the exponent m is prime, Creutz [Crel3] describes how descent can be used to determine
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whether or not Pic!(C') contains no divisor classes defined over Q — which implies the index
of C'/Q is m — and gives a specific example of a curve with m = 3, d = 6 with index 3 (see
[Crel3, Example 7.3]). At present, the authors are not aware of similar explicit examples
for other (m,d) pairs or of families of superelliptic curves with index ged(m, d) aside from

m = 2.

3.6.1 Arithmetic from geometry

A geometric source from which we can expect to find infinitely many points on C' are maps
to PL. The most apparent of these are the natural maps of degree m and d from our curve
C to P!. That is, we can get infinitely many points by pulling back along the degree m and
degree d maps to P'. Thus we know there are infinitely many degree n points that are either
multiples of d or multiples of m. For other discussions on sources of infinitely many points on
different types of curves, or more general curves, see [AH91, BEL"19, DF93, HS91, SV22].

In what follows, for n the degree of the points and g the genus of the curve, we discuss

maps from C' to P! in the case n < g and in the case n > 2g.

The case of n < g

We first wish to characterize potential sources of infinitely many points on C of degree
n < g. Suppose further that the exponent m is prime (we remark about the composite
case below), so we have either ged(m,d) = 1 or ged(m,d) = m. In the former case, the
normalization of C' has a ramified rational point at infinity. If ged(m,d) = m, then we are
only guaranteed the existence of points of degree n a multiple of m.

Let n < g, and define the nth symmetric product of C' as usual by Sym"™(C) := C"/S,,.
The points of Sym™(C) correspond to effective degree n divisors on C. We have a natural
map

a: Sym"(C) — Pic"(C),

defined by taking D — [D]. Pic™(C) is a g-dimensional variety (it is a torsor of the Jacobian
of C'), and the image «o(Sym"(C)), often denoted by W, is a proper closed subvariety of
Pic"(C).
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Suppose there exists a degree n divisor class [Dy], defined over Q. Then Pic"(C) is
isomorphic to the Jacobian of C, denoted J¢, by the map [D] — [D] — [Dy], and we extend
the map a above to Jg by composition with the isomorphism. In the case where m is prime,
by a result of Zarhin [Zar18, Theorem 1.2] we have that for a generic C, J¢ is geometrically
simple. That is, generically Jo does not contain a translated proper abelian subvariety and
therefore a(Sym™(C)) does not contain an abelian subvariety.

By a theorem of Faltings [Fal94], this implies there are only finitely many points of
a(Sym™(C')) and therefore only finitely many points of Sym™(C') that do not come from a

gy on C.

Theorem 3.6.2 (Faltings, [Fal94]). Let X be a closed subvariety of an abelian variety A,
with both defined over a number field K. Then the set X (K) equals a finite union UB;(K),

where each B; is a translated abelian subvariety of A contained in X.

In other words, there are only finitely many points of Sym™(C') apart from those coming
from the positive dimensional fibers of a. We know that for some n (namely, n = m or n
a multiple of m) the map « must have positive dimensional fibers, because in particular
the points of Sym”(C) that are the result of pulling back points from maps from C to P!
(e.g. a gl) map to a point of Jo. This is because the Jacobian of P! is trivial. However,
the lack of a complete characterization of the positive dimensional fibers prevents us from
concluding anything about finiteness of C'(K) in certain degrees.

For hyperelliptic curves, there is a complete characterization of the positive dimensional
fibers (see e.g., Arbarello-Cornalba—Griffiths—Harris, [ACGHS85] page 13). Any effective
degree n divisor D having positive rank on a hyperelliptic curve H must contain a sub-
divisor of the form P+:(P) where P is some point on H and ¢ is the hyperelliptic involution.
In other words, the only positive dimensional fibers of the map a when C' is a hyperelliptic
curve are multiples of the g4 (i.e. the only source of infinitely many points is pulling back
along the degree 2 map to P'). Gunther-Morrow in [GM19, Proposition 2.6] use this and
argue as above to show that for 100% of hyperelliptic curves C' (asymptotically as g — o0),
C has finitely many degree n < g points that do not arise from pulling back a degree n/2

point of P!.
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Remark 3.6.3. In the case of m composite, we no longer have that Jo is geometrically
simple, however work of Occhipinti-Ulmer [OU15] provides a useful understanding of the
abelian subvarieties that appear in the Jacobian. More precisely, for a fixed polynomial

ap

f(x) with m = pi"* ...p]" (composite), the curve Cp,:y™ = f(z) has maps to other curves

of the form C,,:y™/ P — f(z) where 1 < b; < a; and m’' := m/ pi-”'. These maps between

curves induce homomorphisms from the Jacobian Je: to Jg,,. They define JiF¥ to be the

quotient of Jo by the sum of the images of these morphisms for all proper divisors m’ of

m. Jg,, is isogenous to the product of JM" with m’ ranging over all divisors of m. They
new

show that for some sufficiently large M, Ji;™ does not contain any abelian subvarieties of

dimension less than or equal to the genus of C.

The case of n > 2g

For a fixed curve y™ = f(z) where f(z) has degree d, the parametrization in Proposition
3.2.2 produces infinitely many points of sufficiently large degrees n divisible by ged(m,d).
Choose finitely many such points P; ... P, of degrees ni...n, on C.

We now illustrate how one can use such points to produce a degree n = i n; map to
P!, that is, another source of infinitely many points of degree n. In this cazs:eln will (by
construction) be a multiple of ged(m, d).

To each point P;, one can associate an element of Sym™ (C) i.e., the effective degree
n; divisors D; defined over Q corresponding to the Galois conjugates of P;. Take D :=
Dy +---+4+ D,. Let w be a positive integer large enough such that n > 2g. Using that C
is smooth and integral, we may identify Weil divisors with line bundles (see e.g., [Har77],

11.6.16), and hence consider the line bundle L(D), which is defined over Q. By Riemann-
Roch (see e.g., [Har77], IV.1.3), the line bundle L(D) is basepoint free and has

h(C, L(D)) = h'(C,L(D)) +n+1—-g>g+1>2,

and so the sections of L(D) define a map to P!. We may assume that the sections of L(D)
define a degree n map to P'. If h?(C, L(D)) is greater than 2, we may instead take a

sub-linear series. Using a geometric version of the Hilbert Irreducibility Theorem (see e.g.,
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[Ser97] §9.2, Proposition 1), the fibers over all but a thin set of the rational points on P!
give us degree n points on C. Note that if for our given curve, ged(m,d) = 1, then this
produces a degree n map to P! giving us infinitely many points on C for all n sufficiently

large.

Remark 3.6.4. The above construction of a degree n map to P! began with points P, ... P,
coming from parametrization (3.2.1) that each had degrees that were multiples of ged(m, d).
The same construction could be carried out with P ... Py, if one found a point P,y on
the curve not coming from the parametrization, but instead having some degree n,+1 that
is not a multiple of ged(m, d). The result of this would be that for n sufficiently large, there
is an infinite source of points that have degree n (i.e. a degree n map to P!) where n is not

a multiple of ged(m,n).

Remark 3.6.5. If g+ 1 < n < 2g and L(D) is not basepoint free, we can still obtain a
degree n map to P! from the curve minus the base point locus. By the “curve to projective”
extension theorem, such a map extends to a map to P! from the curve but the degree can
be smaller by the degree of the base locus divisor. The degree of the base locus divisor must

be divisible by the index of the curve.

3.6.2 Heuristics for a special case using a result of Bhargava—Gross—Wang

Suppose we have a curve C given by an affine equation y™ = f(z) where f(z) has degree
d > 4. Suppose further that m and d satisfy 2¢ | ged(m, d) where i > 2. Let n = 2¢ for q
an odd prime. In particular, for this case we have that ged(m,d) t n. In what follows we
suggest that for ¢ sufficiently large, one should not expect to find many points of degree n.

Let C be the superelliptic curve given by y" = f(x) with f(z) of degree d and let H
be the hyperelliptic curve given by y? = f(z) (note that this is the same f(z) as in the
equation of C'). We made the assumption that d > 4, so H has genus at least 2. We have
a natural map ¢ from C to H, given by sending points {(z, %/f(x))} to {(z, /f(x))}. If
P is a point of degree n on C, we can map it to a point P’ on H as below. Let Q(P) and

Q(P’) be the extensions generated by a point P on C' and by a point P’ on H, respectively.
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Q(P) C {(0,%0)}
i s I
n| QP H {(z0,53")}
‘d¢ ¥ I
Q P! {(zo: 1)}

By assumption, [Q(P) : Q] = n = 2¢. This means that the possibilities for dy and dg

are as follows:

Map || Case 1 | Case 2 | Case 3 | Case 4

Case 1: One should expect this to happen rarely as this would imply Q(P) = Q(P’),

or equivalently Q (xo, f (350)) =0 (mo, f (:Uo)> , Is an equality of degree n number fields.

Case 2: In this case H has a rational point. Since we assumed g(H) > 2, Faltings’
theorem [Fal83] implies that the set H(Q) is finite. In fact, Shankar-Wang [SW18] show
that for even, monic hyperelliptic curves H of genus g(H) > 9 with a marked rational
non-Weierstrass point oo, a positive proportion (tending to 100% as g(H) — oo) have ex-
actly two rational points, namely oo and —oo, the conjugate of co under the hyperelliptic
involution. By assumption we have that H is even, but even if H is not monic, we may
still be able to bound the number of rational points. Under certain technical assumptions
(when r < g(H) — 3, for r the rank of Jg), Stoll [Stol9] gives an explicit uniform bound for
#H(Q) depending only on the genus of the curve and the rank of its Jacobian using the
Chabauty—Coleman method [Cha4l, Col85] (see also [MP12]). Therefore we may say that

this does not happen often.

Case 3: We have that d is bounded above by the degree of ¢, so the Riemann-Hurwitz
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formula gives an upper bound

g(C) -1

dg < deg(¢) < m

Thus for n sufficiently large (i.e. ¢ sufficiently large), Case 3 is excluded entirely.

Case 4: Here P’ is an odd degree point of H. However, Bhargava—Gross—Wang [BGW17]
show that a positive proportion of hyperelliptic curves H have no odd degree points, ex-

cluding this case. Note that for this positive proportion of curves, Case 2 also does not occur.

We conclude with an illustrative special case, in which we show that for many curves C
satisfying some conditions on m, d, k, we have at most finitely many points of degree n.
Let f(x) be a squarefree polynomial of even degree d = 2¢g+2. This gives a hyperelliptic

curve with affine equation

H:y? = f(2) = cogy2a®? + cog 129 + - 4 ¢ (3.6.1)

with coefficients ¢; € Z. We define the height of the polynomial f(z) to be

ht(f) == max{fei[},

where ¢; are as above.

We remark that [GM19, Propositions 2.5 and 2.6(2)] hold for even degree hyperelliptic
curves as in (3.6.1). The results of Gunther-Morrow are stated for (odd) hyperelliptic curves
with a rational Weierstrass point and their hyperelliptic curves are ordered by a slightly
different height. We phrase the result in terms of densities of polynomials f(x) so that our
height is compatible with the height used in [BGW17]. We record the minor differences in

the proofs in the following lemma.

Lemma 3.6.6. Forn an even positive integer and g > n, for 100% of squarefree polynomials

f(x) ordered by height, the corresponding hyperelliptic curve H given in (3.6.1) of genus g

over Q have finitely many degree n points not obtained by pulling back degree % points of
2
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Proof. First we show, as in [GM19, Proposition 2.5], that for 100% of squarefree polynomials
f(x), the corresponding genus g hyperelliptic curves with affine equation y? = f(x) have
geometrically simple Jacobian.

To see this, let to,...t2g+2, so that we may show that polynomial F(z,to,...,t,) =
t29+2x29+2 + -+ + tp has Galois group Sg42 over Q(%o,...t2g+2). Take the specialization
with to = -+- =19y = 0, tg = t1 = —1, and t9442 = 1. This gives us the polynomial
22972 — x — 1, which is irreducible and has Galois group Sa,+2 by Corollary 3 of [Osa87).
This implies that the curve H given by affine equation H:y? = f(x) has geometrically
simple Jacobian by a result of Zarhin [Zar10]. By Hilbert’s irreducibility theorem, Lemma
3.2.3, we see that 100% of specializations of F'(x,t1,...,t,) have Galois group Sag42 and
thus for 100% of squarefree polynomials f(x) the corresponding genus g hyperelliptic curve
H with affine equation y? = f(z) has geometrically simple Jacobian.

The rest follows from exactly the same proof as [GM19, Proposition 2.6], outlined in
§3.6.1, except that since we do not assume there is a rational Weierstrass point, one defines
an Abel Jacobi map Sym"”(H) — Jg using a fixed degree 2 divisor Dy on the curve and

sending D + 2D — nDy (we know such a divisor exists because of the map to P!). O

We also note that the above height on the polynomials ht(f) := max{|c;|} agrees with
the height defined by Bhargava—Gross—Wang in [BGW17] when H is embedded in the

weighted projective space P(1,g + 1,1) and expressed by the following equation:

H:y? = f(x,2) = 029+2x29+2 + cngngHz 44 cp229t2, (3.6.2)

Bhargava—Gross—Wang define the height of such a curve C to be ht'(H) := max{|c;|}. This
height on curves in weighted projective space corresponds exactly to the height ht(f) on
the defining polynomial f(x) when we dehomogenize by taking z = 1. Thus by [BGW17,
Theorem 1] when ordered by height, a positive proportion of squarefree polynomials f(x)

have no odd degree points.
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Proposition 3.6.7. Suppose m and d are positive even integers and q is an odd prime

satisfying
e 4|m]|d,
e 7 <gq,
° n:2q<g—1.

Then for a positive proportion of squarefree degree d polynomials f(x) ordered by height,
the superelliptic curve given by C:y™ = f(x) has finitely points of degree n.
Moreover, for such a curve C and point P € C of degree n, the image ¢(P) € H as

defined above is of degree n and is not the pullback of a degree q point on P'.

Proof. Let H be the corresponding hyperelliptic curve with equation H:y? = f(z). By
methods of [GM19] (see Lemma 3.6.6), we have that for 100% of polynomials f(x) of degree
d, the corresponding hyperelliptic curve has only finitely many points of degree n < g(H)
that are not the pullback of a degree § point on P'. We also know that a positive proportion
of such hyperelliptic curves do not have any odd degree points by [BGW17, Theorem 1].
Thus for a positive proportion of polynomials f(z), the hyperelliptic curve H has both of
these properties. For such H, let C:y™ = f(z) be the superelliptic curve with map to H
given by ¢: (zg,y0) — (xo,ygn/z) as above. Take P to be a point on C of degree n with
¢(P) = P’ its image in H. By considering Cases 1 — 4 above, we show there are only
finitely many such P.

Cases 2 and 4 are excluded by the fact that H has no odd degree points. To see that
Case 3 is impossible, we recall ¢ = dy < deg(¢) = . This contradicts the hypothesis, so
dg cannot be equal to g.

All that remains is Case 1, in which both P and its image P’ are degree n points.
Suppose P = (z9,%0), so P’ = (xo, ygn/Q), and the image of P, P' in P! is xo. If P’ is the
pullback of a degree ¢ = n/2 point of P!, then [Q(zg) : Q] = q and f(xg) is not a square
in Q(z). However, this implies that the degree of W over Q(zp) is greater than 2,

which contradicts that the degree of P is n.
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Thus we see that P’ cannot be the pullback of a degree ¢ point of P!. Since n < % —-1=
g(H) by our assumption, we have that only finitely many such P’ can exist. Hence at most

finitely many points P on C of degree n can exist. O

The argument for Case 1 in the proof of Proposition 3.6.7 can be refined to prove
Proposition 3.1.7, restated below, at the expense of the description of the image of P in
H. For this, we do not use [BGW17, Theorem 1], allowing us to obtain a proportion

approaching 100%.

Proposition 3.6.8 (See Proposition 3.1.7). Suppose m,d are positive even integers such
that d > 4. Let n < % — 1 have 2-adic valuation strictly less than that of m, i.e. va(n) <
va(m). Then for a positive proportion approaching 100% of squarefree degree d polynomials
f(x), ordered by height, the superelliptic curve C:y™ = f(x) has only finitely many points

of degree n.

Proof. Fix a squarefree polynomial f(z) of degree d. Since m is even, we have a map C' — H

given by (z,y) — (z,%"/?) in affine coordinates. Let P € C(Q) with [Q(P) : Q] = n and

denote its image P’ € H(Q), setting n’ = [Q(P’) : Q].

By Lemma 3.6.6, for a positive proportion (approaching 100%) of f(x) ordered by height,
H has finitely many points of degree n’ <n < g(H) = % — 1 which are not the pullback of
a degree %l point of P!. Suppose P’ is the pullback of a degree %l point on P'. Then since

the composition C — H — P! is the degree m superelliptic map C' — P!, we have that P

. . 1 .. . )
is the pullback of a degree n/m point on P*. This implies that n’ = ="
However, by our hypothesis on the 2-adic valuations, va(2n) < wvy(m), so ve(n’) < 0.

Since n’ is an integer, it must be odd, contradicting that P’ is the pullback of a degree %/

point on P!. Hence we conclude that P’ is not the pullback of a degree %, point on P!,
and for each n’ | n there are finitely many points of degree n’ on H which could be the
image of a degree n point on C. Since each such P’ has finitely many preimages in C, we
conclude that C has finitely many points of degree n for all f(z) in the aforementioned

positive proportion. O
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Chapter 4

Solubility densities in families of

superelliptic curves

4.1 Introduction

In 1983, Faltings proved that if C'is a curve of genus g > 1 over QQ, then the set of Q-rational
points of C', C(Q), is finite [Fal83]. The questions of counting and classifying the Q-rational
points of a given curve and the study of how C(Q) varies as C' varies in families are areas
of active work. For example, there has been recent work on sparsity of rational points on
hyperelliptic and superelliptic curves by Ellenberg—Hast, Poonen—Stoll, Shankar-Wang, and
Stoll [EH21, PS14, SW18, Stol9]. See also [Cha4l, Col85, Kim05, Kim09, MP12] for work
on the Chabauty—Coleman method and its generalization, the Chabauty—Kim method. In
studying the Q-rational points of a curve it is often useful to examine the QQ)-rational points
of the curve, for p a place of Q.

In particular, one can ask when a curve is everywhere locally soluble, that is, if the
curve has a point over Q, for every place p of Q (including the infinite place, Qs = R).
Poonen-Stoll [PS99b, PS99a] using the sieve of Ekedahl [Eke91] have shown that this pro-
portion is positive in the case of hyperelliptic curves. Bright-Browning—Loughran [BBL16]
have generalized this method to certain families of varieties over number fields. Bhargava—

Cremona-Fisher [BCF16, BCF21] determined the proportion of everywhere locally sol-
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uble plane cubics (= 75.96%) and genus one curves (= 97.3%) by expressing the local
densities as rational functions of p (in forthcoming work, they compute this quantity for
hyperelliptic curves of genus g > 1). In higher dimensions, Bright-Browning-Loughran,
Fisher-Ho—Park and Poonen—Voloch have studied local solubility of various hypersurfaces
[BBL16, FHP21, PV04]. Further, Browning [Brol7] studied certain cubic hypersurfaces in
P3, giving explicit rational functions for the local densities to show that nearly all (=~ 99%)
are everywhere locally soluble, and moreover proving that a positive proportion of such
surfaces have global points.

In recent years, there have been several works studying the arithmetic of superelliptic
curves such as [Aru2l, Aru20, EH21, BK21a], including work of Watson [Wat21] on the
failure of the Hasse principle in twist families of superelliptic curves. In this chapter, we
study the proportion of (everywhere) locally soluble superelliptic curves.

We recall from Definition 3.1.4 that a superelliptic curve Cf/Q of exponent m > 2 is a

projective curve with affine equation

Cpy™ = f(x) = Zc,x’ (4.1.1)

Note that unlike in Chapter 3, we need not enforce that f is m-th power free, nor that f
is not a perfect e-th power for a nontrivial divisor e | m; these conditions represent 0% of
polynomials f, and hence will not affect the proportions in which we are interested.

Such a curve C'y possesses a cyclic degree m map to the projective line P! defined over
Q, sending a point (x,y) — x. The genus of Cf over an algebraically closed field k is

computed by the Riemann—Hurwitz formula to be

o(Cy) = % (m(|B|—2) _ Z(m,ra)> +1, (4.1.2)

aEeB

where we denote by B the set of branch points of the map to P' and we denote by 7,
the order of a as a root of f(x). The value ro is analogously defined and we use that
(m, 7o) = (m,deg(f)). When m | d, equivalent to the superelliptic map Cy — P! being

unramified at infinity, C'y embeds as a closed subvariety into the weighted projective space
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P (1, %, 1) as the vanishing set of

d
F(z,y,2) =y™ — f(z,2) =y™ — Zcmizd_i. (4.1.3)
=0

We study the local solubility of these curves in three ways. First, by showing that
the proportion of everywhere locally soluble superelliptic curves is positive and given by
a product of local factors. Next, we prove explicit lower bounds for the proportion of
everywhere locally soluble superelliptic curves in terms of an Euler product depending
on m. Finally, we give an explicit rational function for the local factors, in the case of
superelliptic curves with m = 3 and d = 6.

We now define precisely this proportion. Given a superelliptic curve Cy of exponent m
and degree d divisible by m as in (4.1.3), we define its height h(Cy) to be the height of its
defining polynomial A(f) := max{|co|, ..., |cq|}, the maximum of the absolute values of the

coefficients. Then we define the proportion as

#{Cy | Cy is everywhere locally soluble and h(Cy) < B}
#{Cy | h(Cy) < B} ’

Pm,d = lim (4.1.4)
B—o0o
where here Cy ranges over superelliptic curves of exponent m and degree d. We refer to
Pm,d as the adelic density of equations of everywhere locally soluble such curves.
To define the corresponding local densities, let p be a prime and p, be a Haar measure

on the additive group Zg“, normalized such that p, (ZgH) = 1. We define

Pm.a(P) = yp ({(co, co.,0q) € Zg“ | y™ = car® + -+ + cpz% has a Qp—point}) . (4.1.5)

For the place at infinity, we let f1oo denote the usual Euclidean measure on R4! and set

1
Pm,d(00) = a1 Hoo ({(co, ) € 1,1 ™ = cgr? 4 -+ oz has an R—point}) .

(4.1.6)
Our first result shows that the proportion of locally soluble superelliptic curves of ex-
ponent m and degree d, p,,q is positive using the methods of Poonen—Stoll and Bright—

Browning-Loughran [BBL16, PS99b, PS99a] and further that the adelic density py, 4 can
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be computed as a product of the local densities.

Theorem 4.1.1. Fiz integers m > 2 and d divisible by m, such that (m,d) # (2,2). Then
we have py, 4 > 0, i.e. a positive proportion of superelliptic curves over Q of the form (4.1.3)
are everywhere locally soluble.

Moreover, the adelic density may be computed as the product of local densities,

Pm,d = Pm,d(OO) H pm,d(p)‘
p

Remark 4.1.2. A version of this theorem holds over number fields as well as over Q; for

the statement (and proof) of this theorem in full generality see Corollary 4.2.6.

For the remainder of the paper we focus on bounding and computing the local densities
pm.,d(p) for the finite primes p of Q, using these to compute or bound the adelic densities
Pm.d- Given m,d, we find explicit lower bounds for p,, 4(p) in Propositions 4.3.2, 4.3.4, 4.3.6,
and 4.3.9, and an upper bound for p,, 4(2) in Lemma 4.4.1. By Theorem 4.1.1, this yields
upper and lower bounds for p,, 4; see Corollary 4.3.10 and Examples 4.3.15 and 4.3.16.

These bounds are sufficient to then bound the limiting behavior of p,, 4 for fixed m as

d — oo; see Corollaries 4.3.14, 4.3.13, and 4.4.2. We summarize these below for prime m.

Theorem 4.1.3. Fiz a prime m and suppose m | d. The limiting behavior of pm.q as

=

When m > 2, we have the following numerical estimates, uniform in m:

d — oo may be described by

.. 1
imint o2 (1 ) 11
p=1(m)

] 1
H - p2r+1) |-

p#0,1(m)

lim inf p, ¢ > 0.83511
d—o00 ’

and

1
limsup pyq <1 — 5 =~ 0.99804.

d—o00
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Remark 4.1.4. When the exponent m is composite, the methods of bounding py, 4(p) from
below discussed in Section 4.3 still apply, but the resulting expressions for a lower bound

of pm,q may be less compact. See Example 4.3.18 for a discussion in the case of m = 4.

After giving several examples of lower bounds for various pairs m, d, we employ meth-
ods similar to those of Bhargava—Cremona—Fisher to compute exact formulas for the local
densities p36(p) for p sufficiently large, the first case of superelliptic curves not already ad-
dressed by [BCF16], [BCF21], or their forthcoming paper on hyperelliptic curves of higher
genus.

We give this local density as a rational function in p depending on the residue class of
p modulo 3 (assuming p is sufficiently large). We compute lower bounds for the solubility
when p is small using a brute force search, allowing us to give an approximate proportion

of locally soluble m = 3, d = 6 superelliptic curves.

Theorem 4.1.5. For superelliptic curves of the form (4.1.3) with m = 3 and d = 6, the
exact value of p3 e is about 96.94%.

Moreover, there exist rational functions Ry(t) and Ra(t) such that the local density

p3,6(p) is given by

Ri(p), p=1 (mod 3) and p > 43
pa6(p) =
Ry(p), p=2 (mod 3) and p > 2.

The explicit formula is given in (4.8.1). The asymptotic behavior of Ri(t) and Ra(t) is

described by

2
1— Ry(t) ~ g75—4,

53 _

Remark 4.1.6. The proof, given in §4.5, involves relating p3 ¢ to several quantities. These
relations were implemented in Sage [Sag21] to solve for the explicit formula. The Sage
notebook used for these calculations can be found in the GitHub repository associated to

this paper [BK21b, SEC_rho36_23Aug21.ipynb], accessible at the link below:
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Remark 4.1.7. In contrast to the work of Bhargava—Cremona—Fisher, where the local
density at a prime p for a genus one curve is given by a degree-9 rational function of p
[BCF21] and the that of a plane cubic curve is given by a degree-12 rational function of p
[BCF16], the local density of our superelliptic curves ps¢(p) is a degree-57 rational function
of p. This situation produced considerably more cases to check. Moreover, one can see
that the number of such cases increases quickly in both m and d, and certain independence
arguments we make do not hold for d > 8; see Remark 4.5.20. For this reason, we restricted

our attention to m = 3,d = 6 superelliptic curves for the exact expression.

This chapter is organized as follows. §4.2 contains the proof of a more general version of
Theorem 4.1.1, that the proportion of locally soluble superelliptic curves over any number
field k£ is positive. §4.3 contains the proof of Theorem 4.1.3, the lower bounds for the
proportion of locally soluble superelliptic curves with exponent m and degree d with m | d
and several examples of lower bounds for p,, 4(p) for specific pairs m, d. This is contrasted
in §4.4 with a discussion of upper bounds for the local densities, leading to a general upper
bound for py, 4. §4.5 contains the proof of the exact formula for the local densities p3¢(p).
§4.6 contains an explanation of a computational approach to bounding the local densities
Pm.,d(p) for small primes. In §4.7 we detail how to count the number of degree 2 < d < 6
binary forms f(z,z) over F, having the different possible factorization types. Finally, in

§4.8 we provide the explicit expressions for numerous rational functions from §4.5, including

p3.6(p) itself.
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4.2 The proportion is positive

In proving Theorem 4.1.1, we can in fact produce a more general statement about superel-
liptic curves over number fields. For the remainder of this section, let m > 2 be an integer
and d be a multiple of m. Let k/Q be an algebraic number field, with Oy denoting the ring
of integers, k, denoting the v-adic completion at a place v, and A denoting the ring of

adeles.

Definition 4.2.1. A scheme X/k is everywhere locally soluble if X (k,) # 0 for all

places v of k.

If X is proper over k, then the adelic points of X are the product of the k,-points,

X(Ap) =[] X (k).

In this case we have that X is everywhere locally soluble if and only if X (Aj) # 0. Note
that a superelliptic curve Ct/k is projective, and therefore proper over k.

To define the density of superelliptic curves C of the form (4.1.3) with integral coef-
ficients (¢;)L, = ¢ € (’),‘f“ which are locally soluble, we will need a suitable way to take
limits, which specializes to the usual density over Q. Let ks = O ®7z R and take ¥ C kg@‘l

to be a bounded subset of positive measure whose boundary has measure zero, pi(0¥) = 0.

One can then take a limit to define the density

#{c e O N BUH | Cp(Ay) # @}

drp = lim 4.2.1
Note that in the case of k = Q, we have ks = R and may choose ¥ = [—1,1], so that

Pm,d,v takes the form

g {ce i n[-B, B | Cy(Ay) # 0}
Pm,dQ,[-11] = lim ;
; 7@7[ ) } B—oo # {C c Zd+1 N [_B’ B]d+1}

which agrees with (4.1.4) upon observing h(Cy) < B precisely when ¢ € [-B, B]**!. Note

also that this definition depends on the choice of ¥; for example taking k = R and ¥ =
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[0, 1]9+! instead would produce a different answer. Asking for ¥ to be convex and symmetric
in ky is likely desirable.

To extend the definitions of the local densities, for a finite place v { 0o, we have
pman(®) = o ({e € (ORI |y = cqz” + -+ + co2" has a ky-point )

where p, is a normalized Haar measure on (Of)%*!, thus extending (4.1.5). At the infinite

places, we take

- oo ({c EV|y™ =cqx?+ -+ cpz? has a koo—point})

Pm,d kw0
( foo (W)

This could further be broken down into a product of local densities for v | oo, but it is not
necessary for our analysis.

We can use ideas of Bright-Browning-Loughran [BBL16] to show that pp, 45w exists,
is nonzero, and is computable via a product of local densities. This was already known for
hyperelliptic curves over Q (i.e. the py 40,1, case) by work of Poonen and Stoll [PS99b].
In particular, we will need the following result, which is a slight weakening of [BBL16,

Theorem 1.4].

Theorem 4.2.2 (see [BBL16, Theorem 1.4]). Let k be a number field and m: X — A" a
dominant quasiprojective k-morphism with geometrically integral generic fiber, and let Xp

denote the fiber of m over a point P € A}. Assume further that
(i) the fiber of m above each codimension 1 point of A™ is geometrically integral,
(ii) X(Ax) #0,

(iii) for each real place v of k, we have Br(X (ky)) C w(X (ky)) for all B > 1.

Let W' C kI be a bounded subset of positive measure lying in (X (ko)) whose boundary

has measure zero. Then the limit

oy FAPEORNBY | Xp(Ay) # 0}
1m
B0 #{P e OpnNBY'}

(4.2.2)
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exists, is nonzero, and is equal to the product of local densities,

[T e (P € (On)y | Xp(Qp) #0}).
vtoo
We now translate our problem into this language. Consider the affine space AZH =
Specklco, . ..,cq] and let P = Py (1, %, 1) be the weighted projective space into which
curves of the form C} naturally embed, with coordinates [z : y : z]. Thus the vanishing set
of F(x,y,z) = (4.1.3) gives a variety X C AZH X Pi. We have a natural map m: X — Ag“,
where the fiber Xp over a k-point P € Ai“(k) corresponds to a specialization Cy, where
the coefficients of f are given by the coordinates of P.
If U C k%! is a bounded subset of positive measure with po(O¥) = 0, we take ¥/ =
U N 7(X(ks)); that is, the polynomials f with coeflicients given in ¥ such that C; has
points over all archimedean completions of k. Thus if Theorem 4.2.2 holds, we have
# {P € O N BY | Xp(Ay) # (ZJ} # {P e 0Hn B\II’}

Pm.d kv = lim .
B0 " {P S anty B\If’} ” {P c0ttn B\If}

= Pk w(00) [ | pm.ak(v),

vfoo

as the ratio of the lattice points contained in BU’ to BU approaches fioo(¥’)/ o (¥) as
B — oo. To apply Theorem 4.2.2, we need to prove that m and ¥’ has the desired properties
and verify (i), (ii), and (iii). We begin by characterizing when varieties cut out by equations

of the form (4.1.3) are geometrically integral.

Lemma 4.2.3. Fiz m > 2 and d divisible by m. Let k be any base field. Suppose f(x,z) €
[z, z] is homogeneous of degree d and take Cy the closed subvariety of Py (1, %, 1) cut out

by (4.1.3). The following are equivalent.

(a) f # ah? for all prime divisors q | m, a € k, and homogeneous degree d/q polynomials

h(z, z) € k[z, 2].

(b) f # g7 for all prime divisors q | m and homogeneous degree d/q polynomials g(x,z) €

klx, z].
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(c) Cy is geometrically integral.

Proof. For the (a) == (b) direction, we prove the contrapositive. Suppose f = ¢? for
some prime divisor ¢ | m and g € k[z,2]. We will find a € k and h € k[z, z] such that
f = ahi. For the moment, let us further assume that the characteristic of k is prime to q.
Write g = apgo where ag € k and g has leading coefficient 1 (i.e. the highest power of
x appears with coefficient 1). Then we have
_ q
f = aggs = aj (bd/qxd/q +bgjq Tz 4 bozd/q) '
Assume for convenience that b;/, = 1; if not, it must be zero by our construction, and the

proof proceeds identically, starting with the first nonzero value of by/,_;. The leading term

d 1

of fis alz?, so al € k. Set a = al. Now we examine the 2412 term: it is aqbd/q_lwd_ Z, SO
using the fact that a and ¢ are units in & (here we use char(k) { ¢), we see that by, € k.

Proceeding inductively, we show bg/,_; € k for all 0 <i < d/q. The 972" term of f
looks like

a(...+ qbd/q,i)xd*iz",

where the omitted terms consist only of bg/,_; for j < ¢, and hence are already known to be
in k by the induction hypothesis. Thus we conclude bg/,_; € k, showing that gy € k[z, 2].
Setting h = gg, we have written f = ah? for h defined over k.

Suppose now that char(k) = ¢ and write g = bii/qa?d/q 4 -+ 4 bhz%9. We have
f=9"= (b))% + -+ (bh) 727

Hence (¥})? € k for all i. Moreover, the ¢g-th power map £* — k* is an isomorphism, so we
take a = 1 and h = bd/qxd/q + -+ bpz¥ for the unique b; € k such that (b;)? = b%, finding
that f = ahd.

To prove (b) = (c), we claim it suffices to show that the standard open affine pieces
U:y™ = f(z,1) and U’:y™ = f(1, z), obtained by pulling back the map Cy — P! along the
standard affine patches, are geometrically integral. In particular, this implies that the stalks

of the structure sheaf of Cy (over k) are integral domains. A straightforward computation
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shows that this sheaf has only the constants as its global sections, hence C'y is geometrically
connected. Since C} is Noetherian and nonempty, geometric connectedness and integral
stalks suffice to ensure C is geometrically integral (see e.g. [Vak17, Exercise 5.3.C]).

We now argue that U = Spec k[x,y]/(y™ — f(x, 1)) is geometrically integral by exploiting
its map to A! = Spec k[x]. The same argument applies to U’. We compute the generic fiber
of this map to be the spectrum of k(x) e} klx,yl/(y™ — f(x,1)) ~ k(2)[y]/(y™ — f(z,1)).
This is a field by our hypothesis (b); if not, f(x,1) = go(x)? for some prime ¢ | m, and we

have

flz,2) = zdf(m/z, 1) = zdgo(x/z)q = (zd/qgo(a:/z)>q,

violating (b).
Finally, we verify that the natural map of rings k[z,y]/(y™ — f(z,1)) — k(z)[y]/(y™ —
f(x,1)) is injective. Taking g(z,y) in the kernel of this map and assuming its degree in y

is less than m, we have

g(zy) = Y gi(@)y’ = [ D hi@)y | (v — f(=,1)),
0<i<m 5>0
where h; € k(z) for all i. Expanding the right hand side, we see g;(z) = —h;(x) f(x, 1) for
0 <i<mand hj(x) = hjrm(x)f(x,1) for all j. Since hj(x) = 0 for all j > 0, we must
have h; = 0 for all j, hence g(z,y) = 0. Thus k[z,y]/(y™ — f(z,1)) injects into a field, and
therefore must be an integral domain, making U geometrically integral.
The (¢) = (a) direction follows from the observation that if f = ah? then over k we

have the nontrivial factorization of (4.1.3)

y" = Sz = T] (v - Clah(a,2)),

1<i<q
for ¢ a primitive g-th root of unity and « € k satisfying a? = a. O

Lemma 4.2.4. Let m: X — A%l as above, be considered as a morphism of k-varieties.

Then m is dominant, projective, and has geometrically integral generic fiber.

Proof. The generic fiber of 7 is the curve given by (4.1.3), but viewed as a closed subscheme
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of Ph(co,....cq)- This is geometrically integral by an application of Lemma 4.2.3 over the base
field k(co,...,cq) because the generic degree d polynomial is not an ¢-th power over the
algebraic closure of k(co, . .., ¢q) for any prime divisor ¢ | m (in fact it is squarefree, since the
discriminant of such a polynomial is nonzero in k(cy,...,cq)). Interpreting this (or rather
Spec of the function field) as the generic point of X, we see that the generic point of X maps
to that of Ai“, so 7 is dominant . For quasiprojectivity, we note that since P — Speck is
projective and projectivity is preserved under base change, we have Ag“ X P — Ai“ is
projective. Closed embeddings are projective and projectivity is closed under composition,

giving that X — AZH X Pr — AZ‘H is projective. O

In order to justify (i) of Theorem 4.2.2, we first need to understand the ¢g-th power map
on polynomials for a prime ¢q. Viewing A%l as the space of polynomials of degree up to d,

we define a map

g AT 5 AT

g(z) = g(x)?

for ¢ any prime dividing d. By identifying a polynomial g(z) = ad/qznd/q + -+ ag with the
prime ideal (ag — to,..., a4/ — ta/q) € Spec k[to, - . - std/q) and studying the coefficients of
g(x)4, one can produce the equations for ¢.

What we need from this is a lower bound on the codimension of the image of this map,

a fact which is proven for the ¢ = 2 case in [PS99b, Lemma 3|, so long as d > 2.

Lemma 4.2.5. For a positive integer d and a prime q | d, let qﬁ:AZ/QH — Ag“ be the q-th
power map described above. Let V' C Azﬂ be the scheme theoretic image of ¢. So long as

(d,q) # (2,2), V has codimension at least 2.

Proof. Let I be the ideal of V' and A the discriminant of a degree d polynomial (viewed as a
function on AZH). Since I corresponds to the functions vanishing on V', and an element of
the image of the ¢g-th power map is necessarily not separable, we have (A) C I. Moreover,
only in the case ¢ =2 and d = 2 is (A) = I. A degree two polynomial is a perfect square

if and only if it is nonseparable, but for all (d, q) # (2,2), there exist degree d polynomials
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which are neither separable nor perfect ¢-th powers. As (A) is prime (see e.g. [GKZO08,
Example 1.4]), we have the chain (0) € (A) C I, making the codimension of V' at least

2. O

Corollary 4.2.6. Suppose d > 2. Let k be a number field and m: X — AZH, as above, be
considered as a morphism of k-varieties. Suppose ¥ C kgjl s a bounded subset such that
U = U Nn(X(ks)) has positive measure with po(0¥') = 0. Then pm.dkw, as defined in

(4.2.1), exists, is nonzero, and is equal to a product of local densities.

Proof. By Lemma 4.2.4, we have that m is dominant, projective, and has geometrically
integral generic fiber. It remains to show that the hypotheses (i), (ii), and (iii) of Theorem
4.2.2 apply.

Let P € Ag“ be a codimension one point. By Lemma 4.2.3, the fiber Xp is geometrically
integral precisely when P ¢ V, for some prime ¢ | m, where V; is the scheme-theoretic image
of the g-th power map described above. By Lemma 4.2.5, each such V; has codimension at
least 2 and thus cannot contain P. Put informally, it takes more than just one algebraic
relation on the coefficients to force f(z,z) to be an ¢-th power for some ¢ | m. Thus (i) is
satisfied.

For (ii), we have X (Ay) # () because X (k) # (). That is, there exist superelliptic curves

Cy with k-rational points. For example, one can take

Crpy™ = o + 22771,
which has a k-rational point at [0: 0 : 1].
Finally, to see that for real places v, m(X(ky)) is closed under the action of R>;, simply
note that positive m-th roots are in R, so if Cy has a k, point [z : y : 2] then Cpy has the
k, point [z : VBy: 2]. O

To prove Theorem 4.1.1, we need only specialize £k = QQ and find an appropriate ¥ C
m(X(R)) satisfying the desired properties in Corollary 4.2.6, such that the limit (4.2.2)

computes the limit in Theorem 4.1.1.
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Proof of Theorem 4.1.1. When k = Q we have ko, = R, so we set ¥ = [~1,1]"" N7 (X (R)),
which may be viewed as the set of homogeneous polynomials f(z, z) of degree d with real
coefficients of absolute value at most 1 such that Cy has a real point. This subset is clearly
bounded, and has positive measure since it contains the set {c € [-1,1]"! |0 < ¢y < 1},
whose measure is half that of the unit cube. To see why, we merely recognize that if c¢g > 0
then Cy has an R-point [0 : §/co : 1].

To check fi00(O¥) = 0, with respect to the Euclidean measure fio, on [—1, 1]+ we use
the evaluation map, evy,.; for a point [z : 2] € PL. This map takes evig(e) = f(z,2),

where f is the degree d binary form in R[z, z] defined by c¢. We observe

U= U evil ((0,00)) | U {ce[-1,1]| f(z,2z) =0 for some [z : z] € IP’]%Q} .

[x:2]
[x:2]€PE

As evy,., is continuous (in fact it is linear), the union Ulg:2]epl ev[;:lz] ((0,00)) is open, and
hence OV is contained in the set

{ce[-1,1]| f(z,2) <0 forall [z: 2] € Pk and f(z,z) =0 for some} .

To be in this set, it is necessary for each such root of f(x,z) = 0 to have even multiplicity,
and in particular ¢ is contained in the vanishing set of the discriminant polynomial, which

has measure zero.

Thus the limit (4.2.2) computes 5 L 7;(";0) = [ 00 Pm.a(p) as a product of local densities

Pm.d(p) = pp (m(X(Qp))), completing the proof of Theorem 4.1.1. O

We conclude this section by making some observations about py, 4.(00). If k is totally
complex, i.e. it has no real places and only complex places, then we have that p(oc0) = 1.
Using the fact that C is algebraically closed, any choice of f(x,z) with coefficients ko, will
have a solution [z : y : 2] for any choice of [z : 2] € IP,I%O.

Whenever m is odd, we have p,, 4(00) = 1, because real numbers always have an m-th
root in this case. Geometrically, we observe that 7 is surjective on koo-points, m(X (kso)) =

A (ko). Conversely, if m is even, Pm.dk(00) depends only on d, and not on m. In
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particular, p,, 40(0c0) is equal to the proportion of (real) polynomials f(x,z) which take a
positive value somewhere.

One can easily determine

3
Pm,d,Q,[-1,1](00) = 1

by observing that ¢4 > 0 or ¢y > 0 is sufficient to ensure the existence of a real point,
but at present no analytic approach for computing it is known. Bhargava—Cremona—Fisher

[BCF21, Proposition 3.1] determined
0.873914 < pp.ag(o0) < 0.874196

for even m using a rigorous numerical approach. As observed in [BCF21], one could also
use a Monte Carlo method to sample the coefficient space to estimate p(cc). See Example

4.3.18 for such approximations of ps 4(c0) when 4 < d < 20.

4.3 Lower bounds for the proportion

In this section, we give a closed form lower bound for the density p,, 4, albeit one containing
infinite products over primes, using only a naive form Hensel’s lemma (Theorem 2.1.7),
which allows us to lift roots of equations over [F,, to ones over Z,. We restate what we need

from Corollary 2.1.8 and Theorem 2.1.9 in the special case O = Z,, below.

Theorem 4.3.1 (Hensel’s lemma). Let F(t) € Z,[t] be a polynomial and F(t) € F,[t] its
reduction modulo p. Use F/(t) to denote the formal derivative with respect to t. If there

exists to € Fp, such that

F(fo) =0 and F'(f) #0,

then there exists a lift to € Zy, such that F(tg) = 0 and the reduction of to modulo p is 0.

More generally, if there exists t1 € Zj, such that
v(F(t1)) > 2v (F'(t1)), (4.3.1)

where v denotes the p-adic valuation, then there exists to € Z, such that F(tg) = 0 and
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o(to — t1) = v(F(t1)) — 20(F'(t1)).

Let S be a subset of the set of binary degree d forms over F,,. The translation invariance
of the Haar measure p,, implies that the measure of the set of degree d forms over Z, which
reduce modulo p to an element of S is equal to the ratio of #S to the (finite) number of

binary degree d forms over F,

#S
#{f(x,2) € Fyz,2] | f deg.d form}"

Hp ({f(l’?Z) € Zyplz,2] | f deg.d form, f € S}) =

In particular, this means that when conditions on the reduction f(z,z) guarantee Cy to
have a Q,-point, we can count the number of forms over F, satisfying these conditions to
give a lower estimate of p,, 4(p).

In the case of this section, we use the first statement of Theorem 4.3.1 to give sufficient
conditions on f(z,z) for Cy to have a Q,-point, with F(z,y, z) = (4.1.3), with one of z, y,
or z taking the place of the lifting variable ¢. This relatively simple approximation strategy
yields lower bounds for p, 4, as demonstrated for (m,d) = (3,6) and (5,5) in Examples
4.3.15 and 4.3.16. Moreover, they give clues as to the limiting behavior of the density for

fixed m as d — o00; see Corollary 4.3.13 and Example 4.3.17.

4.3.1 Lower bounds for local densities p,, 4(p)

Fix a prime exponent m and a degree d divisible by m. Recall that the genus of a superel-
liptic curve Cy:y™ = f(x, z) is given by (4.1.2). If f is separable of degree d, this becomes
g= (m—lg(d—2)‘

When C'is a smooth curve and p is sufficiently large, the Weil conjectures imply that
C(F,) — oo as p grows large among primes of good reduction. C' has bad reduction at only
finitely many primes, so this together with Hensel’s lemma shows that C' is soluble over Q,

for all but finitely many primes p.

To make this effective, we can use the Hasse-Weil bound, which states that

#CO(E,) — (p+ 1] < 29/p. (4.3.2)
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This can be improved further,

[#C([Fp) — (p+ D] < g[2v/p) (4.3.3)

see [Serl2, §4.7.2.2]. This implies that for the superelliptic curve Cy, if f(z, z) is separable

over [F,, then whenever

we have #C¢(F,) > 0. Taking p > 4¢*> — 1 = (m — 1)?(d — 2)? — 1 is sufficient in the case

that m | d. This leads us to the following proposition.

Proposition 4.3.2. Suppose m is prime and d is divisible by m. For all primes p >

(m —1)%(d — 2)% — 1 we have the lower bound

—d(m—1)

pm,d(p) >1l—p

Proof. Let f denote the reduction of f modulo p. By Lemma 4.2.3, If f # ah™ for a € Fp
and h € Fp[z, 2], then the curve over F, given by y™ = f(z,2) is geometrically integral,
hence the reduction of C'y modulo p is geometrically integral. A straightforward count shows
that there are p%“ homogeneous polynomials f(z,z) = ah(x,2)™ € F,[x, 2] of degree d,
or equivalently, that the fraction of f which are not m-th powers modulo p is given in the
statement.

It remains to prove that if f is not an m-th power modulo p, then its reduction modulo
p has a smooth point. IfCTc is smooth, then the size assumption on p and the bound (4.3.2)
ensure that Cf(F,) # 0, and the smoothness allows us to lift to a point in C¢(Q,) via
Hensel’s lemma (Theorem 4.3.1).

If CTc is not smooth, then we must normalize. Denote the normalization by 6’} The

genus of CTc 18 9 = 2 p sing srp(rp — 1), where rp denotes the multiplicity at P (see e.g.
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[Har77, Ch. V, Example 3.9.2]). When P is singular we have rp > 2, allowing us to compute

#CO(Fy) = #Cr— D T

P sing

>pti-2(g- 3 srete -1 | Vi Xore (by (432))

P sing P sing

=p+1-—29\p+ Z (rp(rp—l)\/f?—rp)

P sing
>p+1—-29p+ ZTP(TP—2) (vVp>1)
P sing
>p+1-29p.
This quantity is positive by our assumption on the size of p. O

The argument of Proposition 4.3.2 can be extended to the case of m composite by

considering the prime divisors of m and proceeding via inclusion-exclusion.

Corollary 4.3.3. Fix positive integers m,d such that m | d and let w denote the number of
distinct prime divisors of m. Set go to be the genus of Cy when f is separable of degree d,

given by (4.1.2). For all primes p such that p+1 — go|2,/p| > 0, we have the lower bound

—d(q192—1) —d((q1-quw)—1)

pmd >1_Zp d(g 1)+ Z p na - Z p  aw

q1,92|m q15e-5qw|m
1792 q; distinct

Consider now the case of primes p with ged(p—1, m) = 1. If m is prime, this is equivalent
to p # 1 (mod m). Here the m*™® power map F, — F, is an isomorphism of rings, and in
particular is surjective. Suppose [zg : zp] € IP’IIFP such that f(xo,20) # 0 (mod p). Then we

m

may apply Hensel’s lemma to the polynomial (in y) y™ = f(xo, 20) for any lift of x¢, 29 to

Zy, giving rise to a local solution.

Proposition 4.3.4. Fiz integers m and d divisible by m such that ged(p — 1,m) = 1 and

pfm.
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(a) If p> %51 we have the lower bound

1
pm,a(p) = 1 — A

(b) If p < %l — 1 we have the lower bound

1
pm,d(p) >1- ]m-

Proof. If f takes a nonzero value in F, at any [zg : 2o], then the above discussion can be
used to lift an Fp-solution to y™ = f(zo, 20) to Q,. Also, if f has a simple root (zo, zp) in
[F,, then we can use Hensel’s lemma on one of = or z to lift it to a Q,-solution y™ = f(z, 2)
with p | y. The only case not immediately dealt with by Hensel’s lemma is if f has a double
root at every [z : 20].

If f is nonzero modulo p and p > % — 1, then this cannot happen solely for degree
reasons. Having a double root at each value is equivalent to the degree 2(p + 1) polynomial
2?(x —1)2--. (z — (p — 1))22? dividing the degree d polynomial f. This is not possible for
D> % — 1, so the only case not addressed by Hensel’s lemma is if f =0 (mod p), giving the

lower bound in (a).

To verify (b), we have
flz,2) = gz, 2)2*(x — 2)* - (x — (p — 1)2)?2? (4.3.4)

for some degree d — 2(p + 1) form g(x, z). There are p=2P+D+1 such choices of g, so the

proportion of forms f for which f is not as in (4.3.4) is given in (b). O

We can also make use of some basic linear algebra to obtain lower estimates for p,, 4(p),
by viewing the evaluation of f as a matrix-vector product. This turns out to be useful,
especially for primes p =1 (mod m) that are too small for Proposition 4.3.2 to apply.

As usual write f(z,2) = cgz? + cq 1297 2 + - + 122?71 + ¢92? and denote by A the



103

(p+1) x (d+ 1) matrix

1 0 0 0
1 1 1 1

e 1 2 2d-1 24
L (p—1) - (-1 (p—1)
0 0 0 1

with entries in [F,,. We can simultaneously evaluate f(xo, z0) at all [z : 2o in IP’Ilgp by taking

the product

co £(0,1)
a1 f(1,1)
A —
Cd—1 flp—1,1)
cd £(1,0)

We use this relationship to find lower bounds for the number of f(z,z) € Fp[x, 2] of degree

d with at least one m-th power value in .

Lemma 4.3.5. For the matriz A above, we have

d—p, p<d
dimp, ker A =
0, p>d
which is equivalent to
p+1, p<d
rk A=
d+1, p>d.

Proof. Suppose ¢ € ker A, where c is viewed as an element of Fg“. Then the corresponding
degree d binary form f(x,z) has roots at all [x : 2] € P]%p, and equivalently the degree p+ 1

form z(z — 2)--- (z — (p — 1)2)z divides f. If p > d this is a contradiction unless ¢ = 0. If
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p < d, then we write

fl@,2) = g, z)a(x = 2) - (2 = (p — 1)2)2

for some degree d — p — 1 form g(z, z). There are p?~P choices of such g, hence in this case

the kernel of A has dimension d — p. The rank of A is given by d + 1 — dim ker A. O

Proposition 4.3.6. Fix positive integers m and d. For a prime p{m, denote the fraction
of elements of ), that are nonzero m-th powers by ®(p) = #(F, )™ /#F,. Let r denote the
rank of A. Then we have

p(p) > 1—(1—2(p))".

By Lemma 4.3.5 we have

1—(1-®(p)Ptt, p<d
p(p) > .
1—(1—®(p)*t, p>d

Proof. We may perform column reduction on A by multiplying on the right by U P, where
U is an invertible upper triangular matrix and P is a permutation matrix, if appropriate.
This gives A = AUP of rank r. Note that the image of A’ coincides with that of A, so in
particular an entry of Ac is in (F;)m whenever the corresponding entry of A/(UP) !¢ is.

We argue that the lower bound holds as follows. The first row of A’ thus reveals that
the proportion of f for which f(0,1) = ¢ is in (F;f)m is ®(p). For a fixed ¢g, we let ¢; vary
and use the second row of A’ to see that f(1,1) ranges over all F,,, and the proportion for
which f(1,1) € (F;)m is again ®(p).

Continuing in this fashion, we see that for any fixed co,...,¢;—; with i <r —1, f(i,1)
(or f(1,0) if i = d) is given by the (i + 1)-th row of A’ containing a pivot (note that this
may not coincide with the (i + 1)-th row). Hence the (i + 1)-th (pivot) entry is in (F;)m
for ®(p) of the possible ¢;. Thus letting ¢ vary, the proportion for which at least one of the

first r entries of Ac = A’c is in (F;)m is

(p) + (1= (p) (2(p) + (1 = () (2(p) + (1 = (@) (+++))) =1 - (1 - &(p))".
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Since p 1 m, one such value f(x,z) € (F;)m is sufficient to lift via Hensel’s lemma to a
Qp-point of C'y. This yields the result, and Lemma 4.3.5 may be used to determine the rank
. O

Remark 4.3.7. This bound is somewhat crude in the sense that we are ignoring a great
deal of possible liftable points, especially when p > d is very large. By only using d + 1 of
the p+1 points f(z, z), we are able to compute an explicit lower bound, but it is quite likely
that one of the points we ignore also lifts. Nevertheless, Proposition 4.3.6 will be sufficient
for us to prove results about p,, 4 in the limit as d — oo, e.g. Corollary 4.3.13. For any
fixed (m,d) one can use a brute force computer search to obtain much better estimates; see

§4.6 and Examples 4.3.15 and 4.3.16.

Remark 4.3.8. Another way to refine the proof of Proposition 4.3.6 is to consider points
[z : 2] where f(x,z) = 0. These lift whenever the partial derivative f,(x,z) or f,(z,z) is
nonzero. By formulating a matrix similar to A and applying the same column reduction
used to obtain A’, one can give a lower estimate that improves on Proposition 4.3.6 for
p < 7. However, this method adds considerable effort and (what the authors believe is)
unnecessary confusion, while providing only marginal improvement for finitely many primes,

so we elect to omit this.

Finally, let us consider the case of primes p dividing m. These require some special
attention, because the strategy of lifting using Hensel’s lemma on y™ = f(xg,20) as in
Proposition 4.3.4 fails when p | m, as the partial derivative with respect to y vanishes.

However, when m = p or more generally ged(p — 1,m) = 1, the m-th power map is
an isomorphism of F,. In this case, for any point [zg : 2¢], there exists yo € F,, such that
Yo" = f(2o,20) (mod p). This means that for each [zg : 2], we need only check whether or

not Hensel’s lemma applies to lifting via = or z, allowing us to obtain a point of C(Q),).

Proposition 4.3.9. Fix positive integers m and d divisible by m. Suppose p is a prime
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dividing m with ged(p — 1,m) = 1. Then we have the lower bound

PmdP) = 41—L d=2p

1—# d > 2p.

\

Proof. We begin by by evaluating f at the point at infinity, f(1,0) = ¢4. We know that
there exists yo € IF), such that yi* = g4, since the m-th power map is an isomorphism in this
case, so the polynomial f(1,2) —y% = c4+ cq_12 + -+ -+ coz? — y&* has a solution at z = 0.
The derivative with respect to z is cq_1 +2¢cq_o0z+ -+ + dcozd_l, which is nonzero at z =0
if and only if ¢4_1 # 0 (mod p). If this is the case, then Hensel’s lemma applies and f has
a Qp-point.

We have seen that p | c4—1 is a necessary condition for the point at infinity not to
lift, so we now study the affine points [x : 1]. Again, for any xg, there exists yo solving
Yo' = f(zo,1) (mod p), and this solution lifts via Hensel’s lemma if the derivative f'(zq) =
dcdmg_l +---4¢1 #0 (mod p). Thus for f not to have any liftable points we need p | ¢4_1
and z(z —1)--(z = (p— 1)) | f['(2).

We have deg f/(z) = d — 2 since p | d forces the 297! term to vanish. Let h(z) =
Zf:_g_p a;x" be a polynomial, such that z(x — 1) --- (z — (p — 1))h(x) has degree d — 2. We

count the number of h that produce

oz —1)- (@ — (p— 1)h(a) = F(a).

If d = p, then this is only possible if h = f/ =0 (mod p).

Notice that for all integers 0 < k < d/p, the xP*~1 term of f/(z) vanishes modulo p.
This determines d/p — 1 independent linear conditions on the coefficients a;, so there are at
most pd—2-P=d/p+2 — pd=p=d/p choices of h(x). We see this by observing that the leading
term of z(x —1)--- (z — (p — 1)) is 2P, while the trailing term is (p — 1)!xz = —z (mod p)

by Wilson’s theorem. We also impose the condition that cg4_; = 0, i.e. the linear condition
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that ag_p_o = 0. These conditions on the a;’s are summarized in the following matrix

« -+ ¥+ -100 ---0 0 ---00 ---0 0
0 0 0 1 =« x* —1 0 0 0 0
0 0 0 00 0 0 1 * x —1
0 0 0 00 0 O 0 0 0 1
for which we require @ = (ao, . .., ad,p,g)T to be in the kernel. When this matrix of relations

has full rank, each condition is independent.

It is clear that the first d/p — 1 rows are independent. The final row is assured to be
independent from the others so long as d/p—1 > 2, i.e. d > 2p. This is sharp, as illustrated
by the case of p = 3 and d = 6, when we find the rank of the 2 x 2 matrix above is one.

Suppose fi, fo have f{ = f}, = x(x —1)---(x — (p — 1))h(z). Then all coefficients are
equal except those of 2P* for 0 < k < d/p. Thus for each h(z) there are p/pt1 polynomials
f for which f' = x(x —1)---(x — (p — 1))h. This brings the total number of possible such
f to be

p? when d = p,
pP! when d = 2p,

p?P when d > 2p.

Upon dividing by the total number of forms, p?*!, we obtain a lower bound for the pro-
portion of f whose reduction modulo p has at least one Hensel-liftable point, given in the

proposition. O]

4.3.2 Lower bounds for the adelic density p,, 4

Assembling together Propositions 4.3.2, 4.3.4, 4.3.6, and 4.3.9, we give a lower bound for p

which is explicitly computable, at least in principle, when the exponent m is a prime.
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Corollary 4.3.10. Let m be an odd prime and d an integer divisible by m. Define

mm717
Lo(m,d) =1~ 1, d=2m
1— —, d>2m
p—]. p+1
L™ d) = 1—11———
1 (m7 ) _H ( < mp) )
p=1(m)
p<d
_ 1)\ 4t
Lty = 1 (l‘ (-5 )
p=1(m) mp

d<p<(m—1)2(d—2)?

i 1
Ly%(m,d) = 11 (1 - d(ml)) )
1(m) p m
—1)%(d—2)?

(1 2(p+1))
)
1

,1(m

#1(m, d) H
0,1(

d
=2

Z
bi
L;é%(m’ d) H <1 d+1>
p?-fﬁ,l(m)
p

Then we have a computable lower bound
P > Lo(m, d) L™ (m, d) LY (m, d) LY (m, d) L35 (m, d) L% (m. d).

Proof. This follows directly from applying Propositions 4.3.2, 4.3.4, 4.3.6, or 4.3.9 to each

local density p(p) in

pma= [ p)=pm) ] @ p(p)

p prime p=1(m) p?—OJ(m)

splitting the products further into the ranges in the statement as appropriate. When p =1

(mod m), the fraction of nonzero m-th power residue classes used in Proposition 4.3.6 is
-1

Remark 4.3.11. Corollary 4.3.10 provides a way to compute an explicit lower bound for
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pm.a- Notice that all the products involved are finite, save for LY%(m,d) and L?g%(m, d).
These products are related to the Riemann zeta function ((d(m — 1)/m) and ((d + 1),
respectively, as the product runs over the appropriate Euler factors, but only for the primes
in certain (unions of) conjugacy classes.

This alone ensures that when d is sufficiently large, these products are close to one,
because they are part of the tail of {(s) and ((s) — 1 as s — oo. Explicit values, valid to
several decimal places, of similar products of this form were computed in [Mat10, p. 26 —

34].

We can make this result less explicit, but somewhat more pleasant by fixing m and

allowing d — oo, which is tantamount to allowing g — oo.
Lemma 4.3.12. For a fized prime m, we compute the limits of some of the products defined
in Corollary 4.3.10 as d — oo;

Jim. Lred(m,d) =1,

lim LY(m,d) = 1,

d—00

dli_g)lO Ll;i%(m, d) =1.

Proof. For Llfig (m,d) and L;i%(m, d), the conclusion follows from recognizing that as d — oo,
the product consists of a subset of factors of the convergent product ¢(s) for s = w, d+1
respectively. Thus the limit is necessarily 1.

For Lﬁned (m, d) the conclusion requires more work. First, observe that since the product

in Lﬁned(m, d) runs over primes congruent to 1 modulo m, we have p > m + 1. This implies

N dH1 d+1
1—<1—p1> 21—<m> .
mp m+1

Thus we have
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We can compute the limit of the rightmost expression as d — oo by taking logarithms.

Use 71,m(X) to denote the number of primes p =1 (mod m) with p < X, so

log H (1 _ <nﬁ1>d+l> = (m1m((m —1)*(d — 2)> — 1)) log (1 _ (mrj_1>d+1> .

p=1(m)
p<(m—1)2(d—2)2

Using the Taylor series for the logarithm, we have

d+1 (d+1)j
log [1— mn = Zl _m
m—+1 SIAm +1

Finally, we observe that upon taking limits, we have

lim 7y ((m — 1)%(d — 2)% - 1)ﬂ =0
dooo 1= ()@t =

since the exponential (-2-)4*1 decays more quickly than 71, ((m — 1)?(d — 2)% — 1), which

m—+1
is bounded above by a (fixed) polynomial in d.
Thus as d grows, LP*d(m, d) sits in between 1 and another product approaching 1, so

we must have limg_,o, LF°4(m, d) = 1. d

This gives us a way to see where these lower bounds are going for a fixed prime m

dividing d as d grows, in an entirely computable way. We can restate this as follows.

Corollary 4.3.13. Let m be a fixed odd prime. Then

()

. 1
imintpua2 (1 ) 11

p=1(m)

1 1
H o p2r+1) )

pZ0,1(m)

When m = 2 we have

-1 pt+1
liminf P24 > T IT(1—(t- p=- ~ 0.66120.
d—oo pd(00) 8 2p
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Proof. By Corollary 4.3.10 and Lemma 4.3.12, we need only take the limits of Lg(m,d),
Li™(m,d), and L¥}(m,d) as d — oo, since Lred(m, d), Lll)ig(m, d), and L];i% can all be made
arbitrarily close to 1.

In the case of m = 2, Corollary 4.3.10 applies to the local densities at the finite
places, but ps 4(c0) # 1. Thus by taking a limit as d — oo, we obtain a lower bound

for lim inf —P2d
© d—o0 Pz,d(oo) M

Moreover, the infinite products in Corollary 4.3.13 are straightforward to compute to

several decimal places of precision. By recognizing that p > m + 1 in the first product, we

have that
_ p+1 _ p+1 p+1
I1 (1-(1—“) )zH (1—(1—“) ) I1 (1—<711> )
m m m
p=1(m) P p=1(m) P p=1(m)
p<A p>A

The rightmost factor is seen to converge to 1 quickly, e.g. by taking logarithms and com-

paring to a geometric series. In fact, we have

11 (1 - <nﬁ1>p+1) >1- <m111>A+1’ (4.3.5)

p=1(m)
p>A

so we may choose A large enough so this factor is as close to 1 as desired. It remains to
compute the factors for the finitely many p < A. Furthermore, this is quite well behaved
in m, in that for any level of precision, we need only choose A to be a sufficiently large
multiple Cm, where C' does not depend on m.

For the other factor, we employ a similar strategy and compare to the Riemann zeta

function,

1 1 1
<1 o p2(p+1)> = H (1 B p2(p+1)> H <1 o p2(B+2)> : (4.3.6)
p>B

p#0,1(m)
p<B

p#0,1(m)

The rightmost factor is the tail of ((2B + 4)~!, which converges to 1 rapidly. For example,
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taking B = 10 is sufficient to show

e ) = 20t sz :
pZ0,1(m) p v+ ¢(24) p;‘é0<,11(0m) p ) p<10 p
P>

When m > 7, the first product runs over all primes up to 10, producing the lower bound of

at least 0.98422.

Corollary 4.3.14. Let m be a fixed odd prime. Then

lim inf p,, ¢ > 0.83511.
(o)

d—

Proof. Direct computation shows the result holds for m = 3,5,7; see Example 4.3.17.
Suppose now that m > 11 is an odd prime. By the above discussion, using (4.3.6) with

B =10, we have

1
H (1 — w) > 0.98422...
p

pZ0,1(m)

p+1
and we note that 1—# > 1—11%, so it remains to bound the H <1 - (1 — %) >

p=1(m)
factor from below for an arbitrary prime m > 11.
Using (4.3.5) with A = 20m, we observe that if p = 1 (mod m) for p < 20m, then
p = 2km + 1 for some 1 < k < 9. Furthermore, we have 3 | 2km + 1 for three such values

of k, so we can omit those k’s. Since these factors are increasing in p, we achieve a lower

bound by omitting k = 3,6,9. We have then

11 1—(1—p> > I 1—(1—km> ,
) mp 124578 m(2km + 1)

p=1(m
p<A

p+1 20m+1 11 221
IT (1- _m > (- >1— (=) ~0.999999995.
m—+ 1 m—+1 12

p=1(m)
p>A

For the latter, we can take m = 11, as the right hand side is seen to be increasing in m. This

factor is very nearly 1, and thus will have negligible impact. For the former, we observe the
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right hand side is decreasing in m, so it suffices to take a limit as m — co. We have

2km+2
fim (1o (1- 2 —1—e 2
m—00 m(2km + 1)

= II (- <1 - > > (1 _ e—%) ~ 0.84850.
mp
) k=1,2,4,5,7,8

p=1(m
p<A

v
—

Taken together, this verifies the claim for m > 11. O

4.3.3 Examples

In this subsection, we compute numerical lower bounds for p,, 4 for selected (m,d) values.
The reader primarily interested in such numerical values — especially for d sufficiently large
relative to a fixed m — may find these lower bounds sufficient for their purposes without
going through the considerable additional effort of computing local densities p(p) exactly,
as we do later only in the case of (m,d) = (3,6).

The computations referenced in the following examples are detailed in the GitHub repos-

itory [BK21b, SEC_lowerbound_examples_28Aug21.ipynb]|, available at

https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/main/SEC_

lowerbound_examples_28Aug2l.ipynb.


https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/main/SEC_lowerbound_examples_28Aug21.ipynb
https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/main/SEC_lowerbound_examples_28Aug21.ipynb
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Example 4.3.15 (m = 3,d = 6). In the case where (m,d) = (3,6) the genus of Cy is

generically 4. We can use Corollary 4.3.10 to bound p3 ¢ by computing

1 26
L = 1 _——_— = —
0(37 6) 33 277
Li™(3,6) = 1,
med b 1 !
yei3,6)= J[ (1-(1-%—) | ~059724,
I 3p
p=1(3)
p<61
big 1 1\! 1
Ly(3,6)= [] 1= )= 11 1= 11 1= 27 ) = 0.9999008,
p=1(3) p=1(3) p=1(3)
p>61 p<61

bi 1 1\ ! 1
LY%3,6)= [ (1 - 7) = (1 - 27) 11 (1 - p7> ~ 0.999987,

to find that

P3.6 Z 0.56612.

That is, at least 56% of curves 3> = f(x,z) over Q with deg f = 6 are locally soluble.
Note that the infinite products [],—;s) (1 — #) and [] o) (1 — 1%) above are termed
Euler modulo products and denoted (31(4) and (32(7) respectively in [Matl0, see p. 25],
and the values used in the above computations were taken from that paper.

There is room for improvement in the lower bound above for L¥4(3,6), due to the
fact that we expect Proposition 4.3.6 to be missing many liftable points; see Remark 4.3.7.
Since there are only seven primes involved in Lrlned(3, 6), one may use a computer algebra
system to enumerate all sextic forms f(z, z) and search for points that lift. The results are
tabulated in Table 4.3.1. See §4.6 for a more detailed description of this approach.

We can then take the product of these lower bounds and use them in place of L*4(3,6)

in the calculations above, producing

3.6 > 0.93134.
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Table 4.3.1: Lower bounds for p3¢(p) for primes p =1 (mod 3) up to p = 61

p3,6(p) >
7 810658 ~ 0.98435
13 Soviesty ~ 0.99851
19 | 598660256 ~ 0.99976
31| ZIEZ080 ~ .99999
37 | JA98ITA2LS2 . 0.999998
43 | ZUBISSLTS () 9999996
61 | 3142742684700 -, () 99999995

Example 4.3.16 (m = 5,d = 5). In the case where (m,d) = (5,5), we use Corollary 4.3.10

to obtain

1
Lo(5,5) = 1 — 2 = 0.9984,

L"(5,5) =1,
p—1\°
(5,5 = [ (1 — <1 - > ) ~ 0.10671,
op
p=1(5)
p<131
i 1
ye(s,5) = [ (1 — 4> ~ 0.999999994,
- p
p=1(5)
p>131
;61?(5’ 5) =1,
bi 1 N
Ly56,5 = 1 <1 - pﬁ> ~ 0.98301.
p#£0,1(5)

Putting these together with Corollary 4.3.10 yields the following (albeit somewhat disap-

pointing) bound,
P5,5 > 0.10473.

As with Example 4.3.15, the primes p =1 (mod 5) which are too small for Proposition
4.3.2 to apply are the limiting factor in this approach. We again improve these values with

a computer search as described in §4.6, and tabulate them below in Table 4.3.2
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Table 4.3.2: Lower bounds for ps 5(p) for primes p =1 (mod 5) up to p = 131

P p36(p) >

1 120840 ~ 0.97644

31 887443302~ () 99993

41 | 4TB01028%6 () 9999997
61 | 24220371384 ~ 0.99999994
71| 128100279888 - () 99999996
101 | 1061520142440 1, () 999999992
131 | 2053913130552 1, () 999999997

This produces the considerable improvement
ps,5 > 0.95826,

demonstrating once again the outsize impact that small primes have on the adelic density,
as well as the limitations of Proposition 4.3.6.

We also note that these computations revealed that for all p > 31, irreducible curves
of the form y®> = f(z,2) where deg f = 5 possess a smooth F,-point, and hence a lift
y® = f(x,2) possesses a Qp-point. This improves on the range of validity for Proposition

4.3.2 in the case when m = 5 and d = 5.

Example 4.3.17 (d — o). For a fixed prime m, we consider the behavior of the lower
bound for p,, 4 given by Corollary 4.3.10 as d grows. For example, taking m = 3, we
compute a lower bound for p,, 4 using Corollary 4.3.10 for several values of d. These lower
bounds, and the approximate values of L™, Lllned, and L;Hi are included in the Table 4.3.3
below.

Note that Lrlned(?), d) is increasing with d, as expected by Lemma 4.3.12. Using Corollary

4.3.13 and the ensuing discussion, we can quickly compute a decimal approximation of a
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Table 4.3.3: Lower bounds for p3 4(p) for small d via Corollary 4.3.10

d | LB d~ [ LB d~ | LHB.d ~ | psa>

6 1 0.59723 0.98437 | 0.56612
9 | 0.93223 0.69389 0.98437 | 0.62890
12 | 0.93223 0.81839 0.98437 | 0.74174
15 | 0.92682 0.91381 0.98437 | 0.82342
18 | 0.92682 0.96277 0.98437 | 0.86753
21 | 0.92635 0.98536 0.98437 | 0.88744

lower bound for liminfy_, p3 4. Taking A = 60 in (4.3.5) and B = 10 in (4.3.6), we find

H 1— (1 - 3> > (0.92635,
) p

p=1(3
1
H <1 - 2(p+1)> > (0.98437,
p=2(3) b

SO

liminf p3 4 > 0.90061.
d—o0 ’

Below in Table 4.3.4, we compute a lower bound for liminf;_,. for other small prime
exponents m, where we take A = 20m and B = 10 to compute the necessary infinite

products, as above.

Table 4.3.4: Lower bounds for 1i;n inf py, ¢ via Corollary 4.3.13 for selected odd primes m
—00

m | liminfy pm,d(p) > m liminfy o0 pm,d(p) >
3 0.90061 I :

5 0.89457 103 0.98183
7 0.97143 107 0.98156
11 0.87167 109 0.98418
13 0.96823 113 0.85336
17 0.98206 127 0.96662
19 0.98418 5 :

23 0.86036 1009 0.98417
29 0.85968 1013 0.84918
31 0.98418 1019 0.85128
37 0.96546 1021 0.98417
41 0.85737 f :
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We make a few brief observations about Table 4.3.4. First is that these methods will not
produce lower bounds exceeding Hp;_ém(m) (1 — m) In particular, when m > 7 above,
our lower bounds do not exceed 0.98422. However some m values come quite close, e.g.
m = 19,31,109, 1009, 1021, indicating that for such primes, to improve our lower bounds
for py,.q4, we need to improve our bounds for L;ﬂ(m, d).

Note the drops present at several m values, e.g. m = 11,23,29,113,1013,1019. These
can be explained by considering the smallest prime p = 1 (mod m). For example, when
m = 7, the smallest prime p = 1 (mod 7) is p = 29, while the smallest prime p = 1
(mod 11) is lower at p = 23. The small primes have an outsize impact on our lower bounds

. . B _p—1 ptl
for the infinite product [, {1 1= .

Example 4.3.18 (m = 4). To illustrate the similarities and differences when m is com-
posite, consider m = 4 and d a multiple of 4. While we cannot apply Corollaries 4.3.10 or
4.3.13 directly, the methods of this section nevertheless apply to determine py 4(p) for the
finite primes p.

For the prime p = 2 and primes p = 1 (mod 4), Propositions 4.3.2, 4.3.6, and 4.3.9 apply
as usual, with the genus gy = @. If p=3 (mod 4), we observe that (IF;)4 = (F;)Q, SO
Cy has an Fp-point if and only if the hyperelliptic curve y? — f(z, ) has one. This allows us
to apply the result of Proposition 4.3.2 for all primes p = 1 (mod 4) such that p > (d — 2)?,

instead of p > 4¢3. Thus whenever d > 8 we have

LT (-0 ) (-5 ) 0

p=1(4) p=1(4 )
p<d d<p<4g? p>4g3
p—1\"" p—1\"" 1
X_H <1_<1_ 2p> _H U 1\t m )
p=3(4) p=3(4) p=3(4)
p<d d<p<(d—2)2 p>(d—2)?

In the case of d = 4 we replace 7/8 by 3/4 to account for the behavior at p = 2.
For small values of d, this produces the values in Table 4.3.5. In the limit as d — oo,
we find

.. P4a,d
lim inf
d—o0 ,04,d(00)

> (0.49471,
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which is slightly worse than the lower bound for m = 2 case computed in Example 4.3.17,
as one might expect, given that for primes p = 1 (mod 4) there are fewer quartic residues
in [Fp.

To deal with the infinite place, we observe that Cy has a real point precisely when f(z, z)
takes a positive value. When m is even and d = 4, [BCF21] rigorously show py, 4(c0) >
0.873914. For 4 < d < 20, we obtained the approximations for p,, 4(c0) using a Monte

Carlo approach with 107 samples and recorded them in Table 4.3.5.

Table 4.3.5: Lower bounds for ps 4/p4,4(00) and approximations of p4 4(oco) for small d

d | pad/psda(00) > | paa(oo) ~
4 0.10125 0.8739562
8 0.01711 0.9183913
12 0.03419 0.9378118
16 0.08218 0.9493136
20 0.14848 0.9568297

4.4 Upper bounds for the proportion

In this section, we consider obstructions to local solubility to give upper bounds on py, 4(p),
and thus p,, 4. Our primary goal is to show that even in the limit as d — oo, strictly fewer
than 100% of superelliptic curves are everywhere locally soluble; see Corollary 4.4.2. For

this, it is sufficient to study the behavior at p = 2.

Lemma 4.4.1. Fiz an integer m > 2 and suppose d > 6 is divisible by m. Then

1 1

pm,d(2) <1- ? + W

Proof. Consider the degree d forms f(z,z) which reduce modulo 2 as
Fflax, 2) = h(z, 2)2?(x + 2)2? (4.4.1)

for h(z,z) € Falx, z] a nonzero form of degree d — 6. There are 247176 — 1 such forms, so

the probability that f(x, z) reduces this way is 2% - 2(1%.
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We now claim that if f(z, z) satisfies (4.4.1) then the probability of y™ = f(z, z) having
no Qo-solutions is at least 3. Consider first a solution [z : y : 1] = [0: 0 : 1] (mod 2), i.e.
x,y € 2Zs. A mnecessary condition for such a solution to exist is for 22 | ¢y, which occurs
with probability % The same argument shows that 22 | ¢; and 22 | Zg:o ¢; are necessary
for the Fo-solutions [1 : 0 : 1] and [1 : 0 : 0] to lift to Qq-solutions, each occurring with
probability 1/2. Thus the chance of none of these necessary conditions being met is 1/8.

Combining this with our earlier calculation, we may compute a lower bound for the

probability of f(z, z) for which C; has no Qq-points, hence

1/1 1 1 1
1_pm’d(2)28<26_2d+1> =99 T 9did-
Rearranging the inequality gives the desired result. O

Taking limits as d — oo, we obtain upper bounds for the limiting behavior of p,, 4,

complementing Corollary 4.3.14.

Corollary 4.4.2. Fiz an integer m > 2. Then

1
limsup pyq <1 — 5 =~ 0.99804.

d—o0

Proof. We make the trivial observation that p,, 4 < pm a(2) and apply Lemma 4.4.1. Since

this bound is uniform in d (and in fact in m) we can take the limit as d — oc. O

We conclude this section by turning our attention to primes p more generally. Following
the convention established in §4.7, let IN;o denote the number of binary degree d forms in
[z, z] up to scaling which have no roots. Let Ngj,, denote the number of irreducible such
forms. We have the trivial observation that Ng;, < Ngo. In the following lemma only, we

use i to denote the usual Mobius function.

Lemma 4.4.3. Fiz positive integers m > 2 and d divisible by m such that (m,d) # (2,2).

Then

p—1 p—1 d\ .
pmd(P) <1 — 25— Ngo <1 — u()p-
m pRAt2 — pd+l d (p2d+2 — pd+1) eZM: e
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Proof. Suppose f(x,z) = 0, which occurs with probability ]ﬁ. Then for any point on Cf,
we must have p | y. Since m > 2, this implies p? | f(z,2), or equivalently that [z : z] is a
root of %f(:c, z). If %f(a:, z), viewed as a binary form of degree d up to scaling over F), has

no roots, then Cy is insoluble. This proves the first inequality, since we have shown

1= pma(p) > 1 Nao _ L (= DNag
PrdP) = St \ pd £ pd=1 4. p+ 1) ptrt \ pdti—1 )

For the second inequality, we use the observation that Ny < Ngo. We also have that,
up to scaling, we may assume that an irreducible degree d form is monic. A standard result

in elementary number theory shows

1 d
N irr = - e?
din = Edu<e>p

see e.g. [IR90, §7.2, Corollary 2|, and this is sufficient to yield the second inequality. O

While Lemma 4.4.3 is not suitable for giving nontrivial upper estimates for p,, 4 as
d — o0, it is sufficient to allow us to conclude py, 4(p) < 1 for all primes p. In the case
where (m,d) = (3,6) and p = 2 (mod 3), Lemma 4.7.1 states that Ngo ~ £5p5; thus the

bound in Lemma 4.4.3 asymptotically becomes

53
1—p3e(p) > P

which is seen to be sharp by Theorem 4.1.5.

4.5 An exact formula for the m = 3 and d = 6 case

The goal of this section is to prove Theorem 4.1.5, giving an exact formula for p,, 4(p) when
m =3 and d = 6. As in §4.3, the idea is to study when C has solutions modulo p™ which
may be lifted via Hensel’s lemma. Here however, we must be more careful in dealing with
the case that these points may not be smooth. Some of the strategies we employ resemble
those of [BCF21] for genus one curves, but here there are far more cases to check. We also

comment that this strategy to achieve exact density formulas may not generalize well to
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cases of larger m (see Remark 4.5.20).

We lay out the idea of the argument below in §4.5.1, detailing the five cases of interest.
In §4.5.2, we give geometric arguments to deal with three (easier) cases. §4.5.3 contains
intermediate results which will be used multiple times thereafter, giving a flavor for the
type of argument to compute exact local densities. The final two cases are then handled in

§4.5.4 and §4.5.5, culminating in the proof of Theorem 4.1.5 in §4.5.5.

4.5.1 Setup

Let m = 3, d = 6, and F the defining polynomial of C for f(x,z) a binary sextic form,

6 4.2

— 52’z — et — eqa32B

F=y"— f(z,2) =y — cox — a2t — ez’ — 28, (4.5.1)

Let F € F,[z,y, 2] denote the image under the reduction modulo p map. As we will see in

Lemma 4.5.2 there are five possible ways that F could factor in F,[z, 2][y]:

1. F is absolutely irreducible;

2. F has three distinct linear factors over Fp, ie. F = [[>_,(y — hi(x,2)) for binary

quadratic forms h;(z, z) € Fplz, z];

3. F has a linear factor over F, and a pair of conjugate factors over Fe, ie. F =
(y — h(z,2))(y — g1(z, 2))(y — g2(x, z)) for binary quadratic forms h(z, z) € Fplz, 2],

and a conjugate pair g1, g2 € Fz2[z, 2];
4. F has three conjugate factors over Fs, F' = H?:1(y —gi(z, 2));
5. F has a triple root, F' = (y — h(z, 2))® where h(z, 2) € Fp[x, 2].

Remark 4.5.1. More generally, one could study factorization of weighted homogeneous
polynomials

y? 4 hiz, 2)y* + g(@, 2)y + f(z,2),

similar to the generalized binary quartics of [BCF21], and obtain more diverse factorization
types. Since we are interested in superelliptic curves, we will stick to the five factorization

types above.
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We define an auxiliary condition (x), which is satisfied by F' if and only if ¢5 ¢ Fg.

Equivalently, we have
F satisfies (*) <= y° — s is irreducible in Fp[y]. (4.5.2)

If F satisfies () then C has no point at infinity modulo p, as F(1,y,0) = 0 has no solutions.
It is analogous to the condition (%) as defined in [BCF21] and plays a similar role, making
appearances in §4.5.4 and §4.5.5. We denote by p*(p) the local density of curves for which
F satisfies condition ().

The first thing we need to know is how often each of the factorization types 1 — 5

appear for F. This is computed below for all F' and for those satisfying condition (*) in

Lemma 4.5.2.

Lemma 4.5.2. Let F' correspond to the reduction of a superelliptic curve of the form (4.5.1).
The table below indicates the frequencies for which each factorization type 1 — 5 appear, as

(the reductions of) cg,...co range from 0 to p — 1.

Factorization type p=3|p=1 (mod3) | p=2 (mod 3)
1. Abs. drr. 2160 | p?(p* —1) p3(p* —1)

2. 8 distinct linear over I, || 0 (p*-1) 0

3. Linear + conj. 0 0 p—1

4. 3 conjugate factors 0 %(p3 -1) 0

5. Triple factor 27 1 1

Total 37 p’ o7

The following table lists the analogous counts of factorization types when condition (x) is

satisfied.
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Factorization type p=3|p=1 (mod 3) p=2 (mod 3)
1. Abs. irr. 0 2pp-1(p*—1) | 0
2. 8 distinct linear over Fy, || 0 0 0
3. Linear + conyj. 0 0 0
4. 8 congjugate factors 0 %pQ(p -1) 0
5. Triple factor 0 0 0
Total 0 3% —1) 0

Proof. Assume for the moment that p # 3. If F is not absolutely irreducible over F,, then
by Lemma 4.2.3 we must have f(z,2) = ah(z,2)? for a € F, and h € Fplz, z]. We may

further assume that h has leading term 1. Thus F factors as

F = (y —ah(z,2))(y —wah(z, 2))(y — w?ah(z, 2))

where o3

= a and w is a primitive third root of unity defined possibly over F2. It is now
clear that the five listed possibilities are the only possible factorizations of F', and the only
way to find a triple factor is if hg = 0, so F = y3.

Assume now that f # 0 and consider p = 1 (mod 3). Then w € F,, so F has either
3 linear factors over I}, or three conjugate factors over F 3, depending on the value of a,

putting us in type 2 or 4. We know that there are 51 nonzero cubic residues and @
nonresidues mod p, so we obtain the stated counts by recognizing that there are p? +p+ 1
ways to choose h for each nonzero value of a.

Assume now that p = 2 (mod 3). In this case, the cube map is an isomorphism of F;,
but w ¢ Fp, so we must be in type 3, because a is always in F,;. Hence there are again
(p—1)(p> +p+1) = p® — 1 ways in which F is reducible, this time all landing in type 3.

In either case, we have exhausted the possibilities for which F is (absolutely) reducible.
Since there were p? of these in total, we are left with p” — p? occurrences of type 1.

Condition (%) can only be satisfied in the case that p = 1 (mod 3), because otherwise
there exists a root to y>—cg = 0 (mod p). Since there are %(p— 1) nonzero cubic nonresidues

that could be the residue of cg, and the other coefficients of F' may be chosen freely, there

are %pG(p — 1) total choices of F satisfying (). These clearly cannot come from a triple
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factor or distinct linear factors over ), so the only possibilities are types 1 or 4. Since we
need the z2 term of h to be nonzero, there are only %pz (p—1) ways to factor in type 4 while
satisfying condition (), and subtracting this from the total gives the frequency of type 1.
Now we consider the case of p = 3. Since F3 is characteristic 3, if F is reducible, we
have F = 3® — h(z,2)® = (y — h(x,2))3. Thus there are 3% = 27 ways to choose h(z,z) in
this case, all of which give rise to a triple factor. The remaining 37 — 3% = 2160 choices of

F must all be absolutely irreducible over Fs. O

Let ¢ denote the density of the set of f(x,z) for which F = y3 — f(z, ) has reduction
F with factorization type i for 1 <4 < 5. Similarly, let & denote the density of f(z,z) for
which the associated F' also satisfies condition (x). The counts of Lemma 4.5.2 allow us to

compute & and & directly.

Corollary 4.5.3. The densities & are given by the table below.

§& | p=3 | p=1(mod3) | p=2 (mod3)
& || 80/81 | 1— # 1— #

§a || 0 57 (0* = 1) 0

& || 0 0 S (0* = 1)

a |l 0 (0 —1) 0

& || 1/81 | o o

If p=1 (mod 3) and F satisfies condition (x), the nonzero densities £ are

. 1 __—
G =1-—, §4:E~

Returning to local solubility, suppose the reduction of F' as given in (4.5.1) has factor-
ization type ¢ and let o; denote the density of F' possessing a Q) solution. Let o} denote

the density of F' with factorization type i satisfying (*) having a Qp-solution. Then we have

p(p) = Zfi% (4.5.3)

p*(p) = &0 + 1oy (4.5.4)
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Thus to obtain an exact formula for the local density p(p), we may consider separately the
local densities o; with prescribed factorization types.

Along the way, we will also need to know the frequency of various factorization types
for binary forms of degrees up to 6. In the proofs of Lemmas 4.5.17, 4.5.19, and 4.5.21 for
instance, it is often useful to know the the proportion of such forms having types of roots.
Namely, having no roots can be used to see that there are no points, while having a simple
root implies the existence of a (Q,-point by Hensel lifting arguments. We will also need to
know how often roots have higher multiplicities to determine the exact probabilities.

More precisely, we will count nonzero degree d forms over I, in two ways: up to scaling

by F,’, and monic forms.
Definition 4.5.4 (monic). A degree d binary form f(z,z) is monic if f(1,0) = 1.

It is straightforward to see that there are p? distinct monic degree d forms f(z,z) over

Fp, by writing
d
fla,z) =) 'z,
i=0

taking ¢; = 1 and choosing ¢; freely for 0 < i < d. We can then use this to determine that
there are p? 4+ p%1 4. .. 4+ p+1 distinct degree d forms up to scaling by a nonzero constant:
if ¢g # 0, then scaling f by é yields a monic form. More generally, there is a unique way

— up to scaling by a nonzero constant — to write

flz,z) = zkfo(:r, z),

where fp is a monic degree d — k form for some 0 < k < d. Counting the number of such
forms gives the desired total.

Since [z, 2] is a unique factorization domain, there is a unique way to factor a degree
d form f(x,z), considered up to scaling, into its factors, also considered up to scaling.

Similarly, if f(x,z) is monic, it can be factored uniquely into monic factors.

Definition 4.5.5 (factorization type). Let f(z,z) be a degree d considered up to scaling



(resp. monic) binary form with unique factorization

f(.CIT,Z) = Hfl(li, Z)aia
i=1
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where the irreducible factors f;(x, z) are also considered up to scaling (resp. monic). The

factorization type of f(x, z) is the data of the degrees d; = deg f; and multiplicities a; of

the factors. This can be shortened to (dy'd3?---df).

For convenience (and uniqueness of the type) we adopt a lexicographic ordering, that

d; < diyq for all i and a; < a;41 if dj = d;y1. When a; = 1, it is omitted. If f(x,z) has

a linear factor of multiplicity one, its factorization type takes the form (1d5?---d%"). This

case will be denoted more compactly as (1x).

The proportion of degree d forms up to scaling (resp. degree d monic forms) possessing

certain factorization types, indexed by an integer 4, is denoted 74; (resp. ?72[71. for monic

forms). The following lemma is a direct consequence of Lemma 4.7.1, which can be found

in §4.7, and will be used repeatedly.

Lemma 4.5.6. The proportions 14, 1;; are given as follows, for 2 < d < 6.

d | Fact. type nNd,i 77:1,1
—1 -1
0. No roots M P
2(p2 +p+1) 2p
2 | 1 (1) (p+)p p—1
2(p2 +p+1) 2p
2. (12) p + 1 1
pPP+p+1 p
—1 1 -1
0. No roots (p )» 7(10 D@ )
3(p% +1) 3p?
I (2p+1)p 2(p+1)(p—1)
' 3(p2 +1) 3p?
1 1
2. (1%) 5 il
p+1 p2
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Fact. type Nd,i 77:1,1'
0. No roots (3p* +p+2)(p = p (B’ +p+2)(p-1)
8t +p3 +p2+p+1) 8p3
1. (1%) (502 +p+2)(p+ Lp (5p% +3p+2)(p— 1)
' 8(pt + % +p2 +p+1) 8p?
2. (122) (p+1)(p—-1p p—1
20p* +p3 +p? +p+1) 2p?
2 (1212) (p+1)p p—1
20p" +p* +p? +p+1) 2p3
p+1 1
. (14 _ =
A pr+pP+p?+p+1 P
0. No roots (11p* — 5p + 6) (p — 1)p (11p* = 5p+6)(p+1)(p — 1)
30(p? +p+1)(p? —p+1) 30p4
1 (1) (19p° + 6p* +4p+1)p (19p% + 14p* + 4p — 6) (p — 1)
' 30(p2 +p+1)(p2 —p+1) 30p1
2. (123) (p+Dp—1)p p+De-1)
32 +p+ )P —p+1) 3p3
3. (1%2) (p—Dp p—1
2(p2+p+1)(p2 —p+1) 2p3
p p—1
4. (171%)
P> +p+1)(P*—p+1) p?
L 1
5. (17) 1
P> +p+ 1P —p+1) p!
0. No roots (53p* +26p° +19p> —2p+24)(p—1)p | (53p* +26p° +19p> — 2p+24)(p — 1)
‘ 144(pS +p> +p* +p3 +p2 +p+ 1) 144p°
1 (%) (91p* +26p° +23p2 + 16p — 12)(p+ 1)p | (91p® —27p? +50p —48)(p+ 1)(p— 1)
‘ 144(pS +p5> +p* +p3 +p2 +p+ 1) 144p°
2. (124), (1222) (Br° +p+2)(p+ (P —p (B3p% +p+2)(p—1)
’ 8PS +p°+p' +p° + P2 +p+1) 8p*
3 (12122) (p+1)(p_1)p2 (p— 1)2
4(pC +p5 +pt +p3 +p2 +p+1) 4p*
6(p® +p° +p* +p*+p* +p+1) 6p°
5. (1) b+ 1)°(p— 1p @+ Ue-1)
3(p® +p°+pt +pP+p? +p+1) 3p*
6 (1313) (p+1)p p—1
200 +p°+pt+ P +p*+p+1) 2p°
7. (112) (p+1)(p—1p p—1
2p°+p°+pt + P+ P2 +p+1) 2p*
8 (1214) (p+1)p p—1
6 5 4 3 + 2 +1 5
p® +p°>+p*+p°+p°+p P
9. (1% , pr 1
pS+p°+p*+pP+p?+p+1 p°

4.5.2 Geometric arguments: computing o, 0, and o3

When F is absolutely irreducible, we can leverage the proof of Proposition 4.3.2 to see that

o1 = 1 when p is sufficiently large.
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Proposition 4.5.7. Suppose Cy is given by (4.5.1) with F absolutely irreducible over F,.

Then the reduction Cy has a smooth Fy,-point whenever
(i) p=1 (mod 3) and p > 43, or
(i) p=2 (mod 3) and p > 2.
In particular, whenever (i) or (ii) above is satisfied we have o1 = o] = 1.

Proof. The curve Cy is cut out by F. Note that the reduction of f(z,z) is not a cube
if F is absolutely irreducible. Taking m = 3 in the proof of Proposition 4.3.2, we have
that since f is not a cube, the reduction Cif is guaranteed to have a smooth F,-point when
p> (m—1)%(d—2)? -1 = 63. Furthermore, the improved Hasse-Weil bound (4.3.3) shows
that C7 is guaranteed to have a smooth point when p = 61. Hence in case (i) we have
o1 =1 and of =1 as well, since this argument is independent of the (x) condition.

When p =2 (mod 3), taking d = 6 in the proof of Proposition 4.3.4 shows that for p > 2
such that 3 { p, there always exists an [}, solution of F = 0 which is liftable by Hensel’s

lemma. Hence in case (ii) we have 01 = 1 as well. O

When F has factorization types 2 or 3, which occur when F has at least one factor of
the form y — g(z, z) where g is a (nonzero) binary quadratic form, we study the Fy-points
on the irreducible components of C7f See [BCF21, Proposition 2.6] for the analogous case

for genus one curves.

Proposition 4.5.8. Suppose Cy is given by (4.5.1) and F has factorization type 2 modulo

p. Then Cy has a Q, point, or equivalently, oo = 1.

Proof. For p=3 and p =2 (mod 3) the result is vacuously true, since factorization type 2
does not occur. Thus we may assume p = 1 (mod 3), and in particular p > 3.

We have F = H:;:l(y — hi(z, z)) for distinct binary quadratics h;, so C is the union of
Ci:y = hi(z,2). Each C; has p + 1 points in F,, and each distinct (4, j) pair has at most

two intersection points. To see this, suppose (o, 3,7) is on C; and Cy, i.e.

hi(a,y) = B = ha(a,7).
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Thus (yz — az) is a linear factor of the binary quadratic h; — ha, and there are at most two
such factors.

With this in hand, we have a maximum of 6 total intersection points. This gives at least
3(p+1) —2-6 = 3(p — 3) smooth points, so whenever p > 3 we can lift one of these [,

points to a @, point on C, giving o9 = 1. O

Proposition 4.5.9. Suppose Cy is given by (4.5.1) and F has factorization type 3 modulo

p. Then Cy has a Q, point, or equivalently, o3 = 1.

Proof. As in the proof of Proposition 4.5.8, the statement is vacuously true for p = 3 and
all primes p =1 (mod 3), so we assume p = 2 (mod 3).

Recall that by the proof of Lemma 4.5.2 we have
F = (y—h(z,2))(y*+ hz, 2)y + h(z, 2)?),
where h(z, z) is a (nonzero) binary quadratic form over F,,. Let
Cr:y = h(z, 2), Co:y? + h(z, 2)y + h(zx, 2)? = 0.

In fact, Cy is geometrically reducible, factoring over [F,2, where the third root of unity is
defined. This means that after a finite extension, we are in the same situation as in the
proof of Proposition 4.5.8, and each of the components has at most two intersection points.

In particular C; has p + 1 [Fp-points and at most 4 F2-points of intersection with Co,
forming (at most) two conjugate pairs. Thus at most two F,-points of C intersect with
Cy, so p— 1 > 0 of the points on C; are smooth solutions to F = 0, which we can lift to a

Qp-solution. O

Remark 4.5.10. These arguments can be generalized to larger m, if one is willing to
exclude small primes p. Suppose m is prime and d = km for k£ > 1. Consider a superelliptic
curve of the form Cy:y™ = f(x,z), where the reduction of f modulo p is nonzero. We
have already seen, through the proofs of Propositions 4.3.2 and 4.3.4, that when f is not a

perfect m-th power, there exists a Q, point on Cy for sufficiently large primes p.
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If f is a perfect m-th power, then over E, the reduction CT: breaks up into m components

Ci: Yy = hl(xv Z)v

where h; is a (nonzero) binary form of degree k = %. The argument in the proof of

Proposition 4.5.8 shows that each C; intersects with another C; in at most k points.

Suppose at least one of the components, say C1, is defined over IF,, thus excluding
factorization type 4 when (m,d) = (3,6), which will require more care. Since C; has p + 1
[F,-points, we have that p+1 — k(m — 1) of these points lift by Hensel’s lemma. Thus when
p > km — (k + 1), the curve Cy is guaranteed a Q,-point.

The caveat is that relatively few superelliptic curves have these factorization types. Only
pF*1 —1 out of the p? choices for f(x,z) modulo p have that f is a nonzero m-th power. If
p =1 (mod m), then further pm—_; of those will have a factor defined over IF,,. As d — oo for

fixed m, these fail to make up a positive proportion.

Considering only factorization types 1 — 3, we are essentially no better off than in §4.3,

where using m = 3 and d = 6 we obtain lower bounds

) > 1—}% p=1 (mod 3), p>43
P3,6\P) =
1—1% p=2 (mod3), p> 2,

via Propositions 4.3.2 and 4.3.4. Thus even just to obtain the improved asymptotics of

Theorem 4.1.5, it is necessary to consider factorization types 4 and 5.

4.5.3 Intermediate results

The following intermediate results will be used repeatedly, as will the strategies of their
proofs. Throughout, f(z,z) denotes a binary sextic form with coefficients ¢; € Z, and Cy

the equation cut out by 3® — f(z, 2).

Lemma 4.5.11. Let p =1 (mod 3). Suppose c4,cs5,c6 € pZy and c3 € Zy, are fized, such
that the reduction 3 is neither a cubic residue nor zero, i.e. ¢3 ¢ IF?,. Let B be the probability

that Cy has a Qp-point of the form [x :y : 1], as co, c1, ca range over Z,. Let o denote the



132

same probability, but with cy,c1,c2 € pZy,. We have

fe @ +p+1)
pr4+pPpi4p+ 1

g PP AP+

Pt P+l

Proof. The reduction 6’7f is isomorphic to the curve cut out by

3

y? = fx,2) = c3x® + coa®z + c1x2® +co2®  (mod p). (4.5.5)

We look for a smooth solution [z : y : 1] to (4.5.5), which lifts to a Q,-point on Cf by

Hensel’s lemma. Note that there are no solutions of the form [z : y : 0] because ¢3 ¢ Fg.
The normalization of Cif has geometric genus at most 1. Applying the Hasse—Weil bound

method to (4.5.5) as in the proof of Proposition 4.3.2, we see that whenever f(z,z) doesn’t

have a triple root (equivalently f # ¢3(x — az)? for some « € F,,), we have
#CF " (Fy) > p+1—2p > 0.

The rightmost inequality follows from the fact that p > 7 since p = 1 (mod 3). Thus we
have found our desired Q,-point whenever f # e3(x — az)3.

The proportion of cubics over I, with fixed leading coefficient c3 having a triple root
is equal to 77:’3,2 = # (see Lemma 4.5.6). In this case, after a change of variables, we may

assume (4.5.5) is of the form y = c3z3 (mod p), i.e. co, c1,c2 € pZp. The probability of Cy

having a Q,-point in this case is precisely o. Thus we have

1 «
B=1-——=+—. (4.5.6)
p* P
We now assume co, c1, c2 € pZjp, and we are looking to lift solutions of > = c3x3 (mod p),
whose only [F,-solution is the (singular) point (0,0) by our assumption on c3. Thus p | z,y
is necessary, so looking modulo p?, we see that p? | ¢o is also a necessary condition, which
occurs with probability ]lg as cg runs through pZ,.

Assuming p? | cg, we perform a change of variables by replacing z and y by pz and py.
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Dividing by p?, the equation for C’if is now

C1 €o

0= —z+ — (mod p).
PR ( )

If vy(c1) = 1, then this is merely a linear equation, so for any choice of y € Z,, we can find
an [F), solution that lifts to a Q,-one. This occurs with probability 1 — %, so with probability
% we have p? | ¢1.

Assuming p? | ¢1, we again find it is necessary for p® | ¢o. Dividing the equation for Cy
by p? instead of p? as above, we obtain

Co

c c
y? = cgx® + 2a? + —;as + —  (mod p),
p p

b

which puts us back in the case of 3, where cg, ¢1,c2 € Z,,. That is, we have shown

(1:1(1—14—%)
b b P
I

1

Combining (4.5.6) and (4.5.7) and solving simultaneously, we obtain the claimed values. [

The strategy employed in the proof of Lemma 4.5.11 — making successive reductions
until we reach a case we know and solving a system of equations to determine desired
probabilities — will be used repeatedly. For results with longer proofs, it is convenient to

organize the argument with a table. We illustrate this below with the computation for «.

v(cg) wv(cs) wlea) w(ez) wv(ex) wvler) wleo)

a= a.= >1 >1 >1 =0 >1 >1 >1
ap = 1—%—{—%(10 >1 >1 >1 =0 >1 >1 >2

Qe = %ad >1 >1 >1 =0 >1 >2 >2
ag= >1 >1 >1 =0 >1 >2 >3
= f >4 >3 >2 =0 >0 >0 >0

The first step in the table above was recognizing that p? | ¢ is necessary for a solution

to lift. In the second step, we assume v(cy) > 2 and compute the probability of a liftable
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solution when v(c;) = 1, moving to the next line if p® | ¢, and so on. One sees that

combining the steps in the table, we achieve the same formula for « in terms of 8 as (4.5.7).

Repeating the argument of the proof of Lemma 4.5.11, we obtain similar results when c3

is fixed of valuation 1 or 2. We will use all of these later as well. Note that the probabilities

depend on the conjugacy class of p modulo 3, owing to the fact that the probability of a

nonzero element of ), being a cubic residue differs in each case.

Lemma 4.5.12. Suppose c3, ¢4, c5,c6 € Ly are fized with p-adic valuation given below. Let

o, B, B" denote the probabilities that C'y has a Q,-point of the form [x :y : 1] as co, c1, ¢2

vary over Z, with the specified valuation(s).

v(cs)

v(cs)

v(ca)

v(c3)

v(cz)

v(er)

v(co)

1

2p°+2p°4+3  _ 5 =3
3w rpitptl) 80 P

2p+2p° +3p+1

3(p4+p3+p2+p+1)) p = 1 (mOd 3)
2p* +2p3+3p+3 _
Ttrrrrpry  P=2 (mod3)
(4.5.8)
3p°+2p°+2p _ 7 -3
37 tpitpt) 80 P
3p*+p® +2p24-2p _
oy P=1 (mod3)
3p*+3p°+2p*+2p =
Sty P=2 (mod3)
(4.5.9)
2p°+2p°+3p  _ 27 -3
35 ptpt) 400 P
2p*+2p°+p>+3p =
Tty P=1 (mod3)
2p*+2p°+3p2+3p —9 d3
Sotrarprty  P=2 (mod3)
(4.5.10)
3p°+2p+2  _ 89 -3
3 tp2ipil) — 1200 P T
4 3
P +3p”+2p+2 —
Tty P=1 (mod3)
3p*+3p°+2p+2 _
oy P=2 (mod3)
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Proof. Starting with o/, in order for there to be a liftable Fp-point of the form [z : y : 1],
we need y = 0 (mod p), and a root of the polynomial %(631'3 + cox? + 17 + ¢g) (mod p).
(1- 1)

1 1
3
chance of no roots, and an 73 , = # chance of a triple root (see Lemma 4.5.6). If we have

There is an 73 ; = 2(1- -z) chance of the existence of a simple root, an Mo =

a triple root, we may assume it is at = 0 (mod p) after a change of variables, allowing us
to assume v(c2),v(c1),v(co) > 2.

Considering the resulting polynomial mod p3, we have that z is a root if and only if
p3 | cg, which occurs with probability %. Changing variables by replacing z,y by px, py and
dividing by p3 gives us that cg,c5,c4 € p2Zp (though their valuations may increase), and

v(cp),v(er) > 0, while v(cg) > 1 and ¢3 remains unchanged. This is precisely the case of 3/,

/ /
by B2 1 p
CK7’]3,1+p33<1—pz)+p3,

giving us

regardless of the choice of prime p.

Now we compute 3. If v(¢1) = 0 then we can always find a smooth solution to ¢z +co =
0 (mod p), as a linear polynomial always has a simple root. If v(¢;) > 1 then mod p we
have F(x,y,1) = y® — co. Suppose v(cp) = 0, for if not we are in the case of o/. If p = 1
(mod 3) this has a liftable solution with probability 1/3, as 1/3 of the residue classes in F;
are cubic residues. If p = 2 (mod 3), this probability is 1, since every nonzero residue is a
cube. If p = 3, then the change of variables y — y + a, where a = ¢y (mod p) gives the new
equation

F(x,y,1) = y3 — 32> — cox® — 1 — ¢ + a®,

3

and since ¢y = a® (mod p) we have that p | ¢y after a change of variables. Hence, we have

(31— %) + %O/)7 p=1 (mod 3)

D =

F=q0-H+ia-H+Lla), p=2 (mod3)

(1—%)4—%0/7 p=3.

Solving these equations for o/ and 3’ gives the values in the tables.

To compute o, we proceed as in the calculation for o/. We can compute the probability
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that #(03:63 + c22% + 1 + ¢) has a simple root or triple root, and notice that if there is
a triple root, it can be moved to x =0 (mod p), putting us in the case of 5”. Thus

1 !
no__ 1 /8 _2 1 ,8
Od—77371+pQ—3(1—p2)+Z)2.

For 3", we immediately make the change of variables x — pz,y — py and divide by
p3. This doesn’t change c3, but puts the valuations of ¢2,c1,¢o at at least 2, 1, and 0
respectively. If p # 3 and v(cg) = 0, then we can compute the probability that y* = cg
has a solution depending on the residue class of p. If p | co then we look mod p?, where
our polynomial becomes linear. If v(c;) > 2 then we must have p? | ¢ in order to have a
solution, putting us back in the case of o”.

If p = 3 then we can take the same approach as for 3. After changing variables in y,

we may assume that p | ¢p, and then follow the same argument as p # 3. Thus the values

of 8" in terms of o” become

B = 1_14_%((1_%)4_%@”), p=2 (mod 3)

p p
-5+ @ p=3
Solving the equations for o’ and " gives the values stated in the table. O

Remark 4.5.13. The probabilities in Lemmas 4.5.11 and 4.5.12 are independent of ¢y, c5,
and cg, even though they may be changed in the second parts of the proofs. This is key,

and also noted in the proof of [BCF21, Lemma 2.8].

We conclude this subsection with another result which will be used repeatedly in what
follows. While it is independent from the later results, we will make reference in the proof
to quantities which will be defined and determined in §4.5.5, in an effort to keep the paper

compact.

Lemma 4.5.14. Fiz a prime p > 31, or p > 2 satisfying p =2 (mod 3). Suppose cy, 5, co

are fized with cs,ce € p3Z, (resp. p*Zy) and vy(ca) =2 (resp. vp(ca) = 1). Let p (resp. p')
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denote the proportion of f for which Cy has a Qp-point of the form [x : y : 1] as co,c1, c2, c3

vary over pZZp (resp. pZy). Then

45p'1 —6p94+5p2 —30p8+69p7 —29p°® —39p° +81p* —120p3 +60p2+108p—T72

72p11 9 p = 1 (mOd 3)
/"L =
5pt0—3p9+2p7+3p8—16p°+25p* —16p3 —8p%+20p—8) (p+1
(5p10—3p?+2p7+3p pgplf p°—8p p—8) (p )’ p=2 (mod 3)
(4.5.12)
u’ = (4.8.6).

Proof. Consider first p, so let v(cq) =2, ¢5,¢6 € pSZp, and cg, c1, c2, c3 vary in pQZp. A nec-

essary condition for [z : y : 1] to satisfy F' = 0is p | y, hence z% (csa® + cor? 4+ 1@+ ¢g) =0
(mod p). Thus the probability depends on how this quartic factors modulo p, the propor-
tions of which are given by 7711,2' from Lemma 4.5.6.

If 1% (03303 +cox? + iz + co) has no roots modulo p, then there can necessarily be no
liftable solution. If it has a root of multiplicity 1, then we can lift it to a Qp-solution. If it
has a double root, then after composing with an automorphism of P!, we may assume the
root occurs at [z : z] = [0 : 1], i.e. we have v(cg),v(c1) > 3 while v(e2) = 2. Thus we are
precisely in the case of 8, to be defined in §4.5.5 and computed in Lemma 4.5.21. Similarly,
if the quartic has two double roots, the probability of at least one lifting is given by 3. If it
has a quadruple root, the probability of it lifting is given by 07, which is valid for all primes

p>3lorp>2if p=2 (mod 3). Thus we have
1= 11 + 14902 + 1 303 + 0y 407 (4.5.13)

which gives the value stated in (4.5.12).

For 4/, a similar analysis shows that
p' = g1+ yoT2 1y 3T3 + 4T (4.5.14)

where again the 7; are to be defined in §4.5.5 and computed in Lemma 4.5.19. This gives

the value of p/ which given in (4.8.6). We comment that while none of the 7; use u’ as
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defined here, the value of u is used in the computation of 7, so this rational function for

w' is valid for all primes p > 31 or p > 2 if p =2 (mod 3). O

4.5.4 Three conjugate factors: computing o,

By Lemma 4.5.2 and Corollary 4.5.3, this type only occurs when p = 1 (mod 3), so we
assume this for the remainder of §4.5.4. If F' has three distinct conjugate factors, none of

which are defined over [F),, then the proof of Lemma 4.5.2 shows that
F(J}: Y, Z) = yS - aho(.’IJ, Z)Sv

where a ¢ (FY)? is nonzero and ho(z, z) is a binary quadratic form defined over F, up to
scaling. Note also that (x) is satisfied whenever h above is monic.

It is thus clear that F' has no Fp-solutions for which ho(z, 2) # 0. However, if ho(zg, 20) =
0, the point (9, 0, 29) is not a smooth point of F'. After considering the possible factorization

types of ho(z, z) we obtain the following value for o4 when p is sufficiently large.

Proposition 4.5.15. Suppose C is given by (4.5.1) and F has factorization type 4 modulo
p for a prime p > 43. Then the proportions of f and f satisfying (x) for which C¢(Qp) # 0

are

o4 = (4.8.3)

of = (4.8.4).

The proof is given in §4.5.4, after studying the factorization types of the binary quadratic
form ho(z, z) individually.
ho(z, z) has no roots in F,,.

If this is the case, then there are no Q,-points, because there are no IF,, solutions to hy(z, z) =

0, which is necessary by the above argument.

The probability of ho(z, z) having no roots is n2 9 = ggg;_l)f). If F satisfies (%), then we
p—1

may as well assume hg(z, z) is monic, and the probability of it having no roots is 77/2,0 = %.



139

ho(z,z) has distinct roots in F).

The probability of this occurring is 21 = %, and n ; = % in the case of condition (x).

After composing with an automorphism of P!, we may assume the roots of hg are located at

[:2] =[1:0] and [0 : 1], so we have ho(z,2) = xz. Thus we have F(z,y,2) = y> — az323,
where a € F¥ — (Fy)®. We now need to compute the probabilities that [0 : 0 : 1] and
[1:0:0] lift to Q,-points. This is analogous to [BCF21, §2.3.2], and follows from Lemma

4.5.11 applied to each root.

Corollary 4.5.16. Suppose F' has factorization type 4, with ho(x,z) having distinct linear
factors mod p. Then the probability that F' has a Qp-solution is given by

pPPAp+ D2 +pd+2p2 +p+1)

1— 1—a2:<
( ) (P*+p®+p2+p+1)>

where « is as defined in Lemma 4.5.11.

Proof. Suppose F(z,y,z) = y> — ahg(x,2)? (mod p), where a ¢ IF?), such that ho(z, z)
has distinct linear factors mod p. After a change of coordinates, we may assume that
ho(x, z) = zz, giving us

F(z,y,2) = y° — az®23.

The only Fp-points of F =0 are at [1:0: 0] and [0: 0 : 1], both of which are singular.
Since cg, c1, €2, ¢4, ¢5,¢6 € pZy and c3 = a ¢ Iﬁ‘g, for the point [0 : 0 : 1] we are in the case
of Lemma 4.5.11. The probability that [0 : 0 : 1] lifts to a Q,-point is thus . Note that by
Remark 4.5.13, this only depends on the choices of cg, ¢1, co. Similarly, but with the roles of
x and z reversed, the probability that [1 : 0 : 0] lifts is also «, and only depends on ¢y, 5, c6.
Thus the two probabilities are independent, allowing us to compute the probability that at

least one of the points lifts by 1 — (1 — a)?. O
ho(x,z) has a double root
We now need to carry out the analysis for when hg(z, z) has a double root. This occurs

p*—
pd_

with probability 729 = } and in the case of (x), 77572 = %. This case requires more work,

which we organize into the following lemma.
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Lemma 4.5.17. Assume p > 3 and suppose F' has factorization type 4, with ho(z, z) having

a double root modulo p. Then the probability that F' has a Qp-solution is given by X\, where

1
A=)+ (- ) (72p25 F72p% 4 72p?2 4 24pt — 24p20 1 36p19 — 84p!8 1 72p!7

—27p'% + 18p® — 13pt* — 12p" — 36p'2 + 25ptt — 550 + 12p% — 115p8
+105p7 — 178p° + T3p° — 35p* + 67p° — 93p? + 36p — 12) / (72p22(p5 - 1)).

(4.5.15)

2 so we have F(x,y,2) =

Proof. After a change of variables, we may assume ho(z,2) = x
y3 — ax%, where a ¢ Fg. That is, we have ¢ € Z, such that ¢g = a (mod p) and cg, ..., c5 €
pZy. The only Fp-point of F is the singular point at [0 : 0 : 1] since a ¢ IF;’,. Thus A is the
probability that this point lifts.

The table below lists the valuations of the coefficients of f. For each line, we compute
the probability that the singular point lifts or not, and then move on to the next line.
The probability for moving to the next line will always be %. This will give rise to a linear

relation between A and p*, the probability that F' has a Q,-point when its leading coefficient

is not a cube mod p.
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Ce Cs Cq c3 Cc2 c1 Co
A= = in -0 >1 >1 >1 >1 >1 >1
Ao = (1—%)+l/\c =0 >1 >1 >1 >1 >1 >2
Ae = %)\d =0 =21 >1 =21 21 22 2=>2
Ay = (1_%)-{-1)\8 =3 >3 >2 >1 >0 >0 >0
Ao = (—%)erf =3 >3 >2 >1 >1 >0 >0
A\ = @(p)-i—%)\g =3 >3 >2 >1 >1 >1 >0
Ay = (1—%)0/—&-;)% -3 >3 >2 >1 >1 >1 >1
An = (1—%)(%4—1%2)-1—1)\, -3 >3 >2 >2 >1 >1 >1
A = (1—%) 1 -3 >3 >2 >2 >2 >1 >1
A= =3 >3 >2 >2 >2 >2 >1
M= (1=1)u+Ix =3 >3 >2 >2 >2 >2 >2
A = (1—%)0//—}—%)% -3 >3 >3 >2 >2 >2 >2
Am= (1-3) (Bt 4+ @203 L1 | =3 >3 >3 >3 >2 >2 >3
A = (1—%)4—%)\0 =3 >3 >3 >3 >3 >2 >2
o= X =3 >3 >3 >3 >3 >3 >2
A= =0 >0 >0 >0 >0 >0 >0

Putting together the steps above gives (4.5.15). Each step is justified below.

(a) The only possible point reduces to [0: 0 : 1], so p | z,y. Reducing F(z,vy,2) mod p?

reveals that v(cg) > 2 is necessary.

(b) If v(c1) = 1, which occurs with probability 1 — 113 then we can fix y € pZ, and look for
solutions to F'(x,y,1) as a function of z. While it is clear p | z is necessary, we have
v(F'(z,y,1)) = 1, so we need to look for solutions mod p3. Looking modulo p?, we
have the linear equation c1z+cy = 0 (mod p?), which we can solve, finding something

that lifts. If v(c;) = 2 then we move to the next line.

(c) Again we have p | z,y, so we reduce mod p* and find that it is necessary to have
p3 | co. This occurs with probability %. Before moving to the next line we replace

both x and y with px and py, then divide by p3.

(d) With probability 1 — % we have v(cz) = 0, in which case C; is isomorphic to

yP = o’z 4 ez + cp2® (mod p)
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and its normalization has geometric genus at most 1. Since f # ah? for a € F, and
h € Fplz, 2], we apply the Hasse-Weil bound (see the proof of Proposition 4.3.2) to
find

4O (Fy) > p+1-2yp > 1,

where the rightmost inequality holds for all primes p > 4. CT: has only the point
[1:0: 0] above infinity, so there must exist some smooth F,-point [z : y : 1] which

lifts to a Qp-point of Cy. If v(c2) > 1 we move to the next line.

With probability 1 — % we have v(c;) = 0 and the reduced equation is F(z,y,1) =
y3 — c1x — cp, which is linear in 2 and thus has a solution with y € pZLy. With

probability % we have v(c;) > 1 and move to the next line.

The reduced equation is now F = y® — ¢y. The probability that ¢y is a nonzero cubic
residue is ®(p) = 3 (1 - ]%) (see Proposition 4.3.6 for the definition). If p { ¢y is not a
cubic residue, then no point lifts. With probability % we have v(cg) = 1 and we move

to the next line.

With probability 1 — % we have v(c3) = 1 and we are in the case of o/. See (4.5.8)

from Lemma 4.5.12. With probability % we move to the next line.

With probability 1 — % we have v(cg) = 1. It is clear that for any solution, we must

have p | y and 113(023:24-0196—%00) =0 (mod p). The quadratic %(621’24-01%4-60) has no

(-1 1(p-1)
2 p

roots with probability 77570 = % and distinct roots with probability 77&,1 =

hS]

In the case of distinct roots, one can check that either root lifts to the xz-coordinate
of a Q,-point with y € pZ,. A double root occurs with probability 77572 = 1%’ and the
probability of a solution lifting is equal to 7o, to be defined later shown to be 7 = %

in Lemma 4.5.19. Thus we have

1 1 1N\ (p—1 1 1
Mz(l—) Ty + 7o +A~=(1—> <+)+x.
p (a1 + 12272) p™ p 2p  p2)  p"

Reducing mod p we see that any solution must have p | y. If v(c1) = 1 then %(claﬁ—&—co)

is linear in z and has a solution modulo p. A straightforward check shows that an
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z-value solving this equation modulo p lifts to a solution of F(z,y,1) = 0 (mod p?)
with p | y, and hence to a Qp-solution by Hensel’s lemma. With probability % we

move to the next line.

Reducing mod p?, we have ¢q € pzZp is necessary to obtain a Q,-solution. This occurs

with probability %, and we move to the next line.

With probability 1 — % we have v(cy) = 2 and we are in the case of p from Lemma

4.5.14. With probability % we move to the next line.

With probability 1 — % we have v(c3) = 2 and we are in the case of . See (4.5.10)

from Lemma 4.5.12. With probability ;1) we move to the next line.

With probability 1—% we have v(cg) = 2. It is clear that for any solution, we must have

p |y and ]%(02:1:2 + 1z + ¢9) =0 (mod p). The quadratic I%(CQJ:2 + c1z + ¢p) has no

(p—1) (p—1) ‘

roots with probability 75 , = % > p

and distinct roots with probability 7 ; = :
In the case of distinct roots, one can check that either root lifts to the x-coordinate
of a Qp-point with y € pZ,. A double root occurs with probability 77/2,2 = 1%’ and

the probability of a solution lifting is equal to 63, to be defined later shown to be

0y — (p+2)(2p°—3p+3)

602 in Lemma 4.5.21. Thus we have

— 2_
A = (1 - %) (mo,1 +11,262) + A0 = (1 - ;) (% n w> W

If v(c1) = 2 then we can lift a root of ]%(cla: +¢p) =0 (mod p) to a solution. If not,
we move to the next line.

We have p | y, so reducing modulo p* shows that cq € p3Zp is necessary, which occurs

with probability ]%. Replacing y by py and dividing by p? moves us to the next line.

Recalling that cg is not congruent to a cubic residue mod p, we are in the case of p*,

because we have assumed no conditions on the coefficients except the (%) condition.

O]
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Completing the proof of Proposition 4.5.15

Proof of Proposition 4.5.15. Lemma 4.5.17 gives us a linear relation between p*(p) and A.

Here we give another such relation, and solve the system for p*(p) and A. Recall
p*(p) =& + &g

since 0] = 1 when p > 43. We have given the values of £ in Corollary 4.5.3. We break
oy down into the cases where hg(z, z) has no roots, distinct simple roots, or a double root,

giving us

by Corollary 4.5.16. Combining these, we have the relation

p'(p) =& +& ((;72—1)1) (1-(1-a)?)+ 1/\> .

p

We also write o4 as

o4 =121 (1 = (1 = a)®) + m2.2X
1p(p? —1 21
(oo (523)

Using the above relations and (4.5.15) from Lemma 4.5.17, we have four equations relating

04,04, p*, A, which may be solved using computer algebra software to produce (4.8.2) —
(4.8.7). For an implementation using Sage [Sag21], see the GitHub repository associated to

this paper [BK21b, SEC_rho36_23Aug21.ipynb]. O

4.5.5 Triple factors: computing o5

Suppose p # 3. Then if F' has factorization type 5, we have F' = 3® (mod p), so the

coefficients of f(z,z) are all divisible by p.


https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
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For any solution, that is, for any [z : yo : 20| such that F(zo, yo, 20) = 0, we have that
ys = f(zo,20). Since we are assuming that [xg : yo : 20] is a solution, we also have that
0= y3 — f(z0,20) = ¥ (mod p), and thus p | y§ so we have that p | y3. Since we have
Yo = f(@o, 20), then p* | f(zo, 20).

Writing f1 = %f, we see that each solution [z : yo : zo] satisfies fi(x0,20) = yo = 0
(mod p). Thus we will consider the different possible factorizations of fi(z, z) modulo p. If
fi(x,2) = 0 (mod p) then all the coefficients of f are divisible by p? and so we can write
fo= #f. Now each solution [zq : yo : 20] must satisfy fa(xg,20) = yo =0 (mod p) and so
we consider the different possible factorizations of fa(z,z) modulo p.

Now if fa(z,2) = 0 (mod p), then all of the coefficients of f(x,z) are divisible by p3.
In this case we can replace y by py and divide through by p? and obtain another arbitrary
superelliptic curve with m = 3 and d = 6, namely, y> = % fa(z, z) with coefficients in Z, in
which case, the probability of solubility is p. This occurs with probability ﬁ.

For 7 = 0,...,9, we denote by 7e; the probability of each possible factorization type
for a binary sextic modulo p (see Lemma 4.5.6), and we denote by 7; (respectively ;) the

probability of solubility of f; (respectively fa) with factorization type ¢ modulo p. Thus we

have:
9 9
1 1 T—1
o5 =P+ <1 - 7> > " 16.7i + <pl4> > " 16.i0:.
p P/ iz p i=0

In order to compute the 7; and 6;, we make the following definitions. Let of be the
probability that F'(z,y, z) has a Qp-solution when v(cg) = 1 and v(¢;) > 1 for 0 < i < 5.
Take of to be the probability that F(z,y, z) has a Qp-solution when v(cg) = 2 and v(¢;) > 2

for 0 <4 <5.

Proposition 4.5.18. Suppose C is given by (4.5.1) and F has factorization type 5 modulo
p for a prime p > 43 or p > 2 with p = 2 (mod 3). Then the proportion of f for which

C(Qp) # 0 is a rational function in p given explicitly by

g5 = (4.8.5).



The proportions of and of defined above are also rational functions in p,

ot = (4.8.8),
o = (4.8.9).
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The proofs of these equalities are spread across the remainder of this section. of is

computed in the proof Lemma 4.5.19, along with the values of 7;. of is computed in the

proof of Lemma 4.5.21, along with the 6; values. The proof is completed in §4.5.5 with the

computation of o5, along with p3.

Lemma 4.5.19. The 7; values are tabulated below. These hold for all primes p > 31, and

forp >3 ifp=2 (mod 3).

3p3+p2+2p+2 —
Wity P=1 (wod3)
T0 = 0 Ty =
(3p2+2)(p+1) _
G P=2 (wod3)
=1 76 =1— (1 —75)% = (4.8.10)
1
T2 = — T7 = (4.8.11)
p
9 2p—1
=1-(1-7)" = — 8 =1—(1—7)(1 —77)=(4.8.12)
p
3p®—3p+1
m=l-(l-n)P =L P10 (4513)
p

Proof. Recall that f; = % f and assume f; Z 0 (mod p). We consider the possible factor-

ization types of fi as a binary sextic form, given by the index ¢ in the d = 6 row of Lemma

4.5.6, and compute the probabilities 7; of a root fi(z, z) = 0 lifting to a Qp,-point of Cf.

No roots: 7y

If fi(z,2) =0 (mod p) has no roots in F,, then f(z,2) =0 (mod p?) has no solutions and

thus f(z,2) =0 (mod p?) has no solutions, so 79 = 0.
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Simple roots: 7;

If fi(x,2) =0 (mod p) has a simple root in [, it lifts to a Q,-point on Cy of the form

[0 @ yo @ z0] with p | yo (see also A; in the proof of Lemma 4.5.17), so 7, = 1.

Double roots: m™, 13, and 74

If fi(xz,z) =0 (mod p) has a double root in [F,, we can assume this root occurs at [0 : 1]

and the valuations of the coefficients are as in the first line of the following table.

Ce Cs Cy4 C3 C9 C1 Co
o= Ta= 7w [>1 21 >1 >1 =1 >2 >2

Ty = 1 >4 >3 >2 >1 =0 =20 >0

(a) Since p | z, reducing modulo p? reveals that p | ¢y is necessary, which occurs with

probability %. Before moving to the next line, we replace x,y by pz, py and divide by

P

(b) The justification is identical to that of A4.

Thus we have 5 = %.

If fi(x,z) has two double roots in Fp, then after composing with an automorphism
of P!, they occur at [0 : 1] and [1 : 0], and we have v(cg),v(c1),v(c5),v(cg) > 2 and
v(e2) = v(eq) = 1. The probability, 7, that the root at [0 : 1] lifts to a Q,-point depends
only on ¢p; the same argument with cg shows that 7 is the probability [1 : 0] lifts and thus

the two are independent. This allows us to write

2p —1
7'3:1—<1—T2)2: pp2 .

If fi(z,z) has three double roots in F),, then after composing with an automorphism of
P!, we may assume they occur at [0 : 1], [1 : 1], and [1 : 0]. To extend the independence
argument above to these three roots, we need to argue that the probability of [1 : 1] lifting
is still 79, even if we assume the points at [0 : 1] and [1 : 0] do not lift. To see this, we

recognize that f(1,1) = Z?:o ¢i, and our assumption that f; has a double root at [1 : 1]
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is equivalent to requiring v <Ef:0 cz-) > 2. Running through the proof of 7 shows that

we need only for v (Zgzo ci> > 3, which occurs with probability ;1), independent of the
valuations of ¢, c1,cs,c6 (i.e. independent of the lifting behavior at [0 : 1] and [1 : 0]).
Therefore

3p* —3p+1
7'4:1_(1—7'2)3:%.

Triple roots: 75 and 74

If fi(z,2) =0 (mod p) has a triple root in ), we can assume the valuations of the coefficients

are as in line 1 of the following table.

C6 Cs5 C4 Cc3 C2 &1 €o
5= Tsa= T | >1 >1 >1 =1 >2 >2 >2

m= p |>4 =23 >2 =1 >1 >0 >0

(a) Since p | z, reducing modulo p? reveals that p | ¢y is necessary, which occurs with
probability %. Before moving to the next line, we replace x,y by pz, py and divide by

P

(b) We are in the situation of 3’ = (4.5.9); see Lemma 4.5.12.

In the case of 75, f(z,2) has one triple root and no other roots, therefore any Q, point
must come from lifting the triple root which happens with probability %,6” , thus giving
5 = % B3', which is equal to the stated expression.

In the case of 74, f(z,z) has two triple roots. We assumed that one triple root was
at [z : z] = [0 : 1] and we could similarly assume the other triple root is at [1 : 0]. The
probabilities of these lifting are independent because the computation of the former involves

coefficients ¢s, ¢1, ¢y and the second involves coefficients c4, ¢5, cg. Thus each point lifts to a

Q, point with probability % A, and hence

16 =1—(1—15)% = (4.8.10).
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Quadruple roots 77 and 73

If fi(z,z) =0 (mod p) has a quadruple root in I, we can assume the the root occurs at

[0: 1] and the coefficients have valuations as listed in the first line of the following table.

Cé Cs C4 C3 C2 c1 co

Tr = Tog = %771) >1 >1 =1 =22 >2 >2 >2
= (1-1)+1m >4 >3 =2 >2 >1 >0 >0

Tre = ®(p) + ;77 >4 >3 =2 >2 >1 >1 >0
ra= (1-1) (B +d)+ime |24 23 =2 22 21 21 =1
- (1_%)+%T7f >4 >3 =2 >2 >2 >1 >1

Trf = %7’79 >4 >3 =2 >2 >2 >2 >1
T = L >4 >3 =2 >2 >2 >2 >2

(a)

Since p | x, reducing modulo p? reveals that p | co is necessary, which occurs with

probability L. Before moving to the next line, we replace .,y by pz, py and divide by
P

P

With probability 1 — % we have v(c;) = 0 and the reduced equation is F(x,y,1) =
y3 — c1x — co, which is linear in 2 and thus has a solution with y € pZLy. With

probability % we have v(c;) > 1 and move to the next line.

The reduced equation is now F = y? — ¢y. The probability that ¢y is a nonzero cubic

residue is

3 1—1) =1 (mod 3)

T

o(p) =
1-1 p=2 (mod 3)

(see Proposition 4.3.6 for the definition of ®(p)). If p{ ¢p is not a cubic residue, then

no point lifts. With probability % we have v(cp) = 1 and we move to the next line.

With probability 1 — }D we have v(cg) = 1. It is clear that for any solution, we must

have p | y and %(623324-61%4-00) =0 (mod p). The quadratic %(csz—l—clm%—co) has no

(p=1) (p=1)
P p

roots with probability 75 , = : and distinct roots with probability 7, ; = :

In the case of distinct roots, one can check that either root lifts to the x-coordinate
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of a Q,-point with y € pZ,. A double root occurs with probability 77572 = %, and the

probability of a solution lifting is equal to 79 = %. Thus we have

N, 1 < 1><p—1 1> 1
T7d = 1—)?7 +nhom) + —Tre=(1—=) [ —=—+ = | + —Tre.
( P (2,1 + 1272) p D o2 p2) p"°

(e) Modulo p? we have %(61334—00), so if v,(¢1) = 1, which happens with probability 1 — %,

then there is a solution that lifts to Q.

(f) Reducing modulo p?, we see that p? | co is necessary to get a Q, solution. This

happens with probability ]% and so we move to the next line.

(g) We are now in the case of y = (4.5.12) from Lemma 4.5.14.

In the case of 77 there is only a quadruple root so any Q,-point must come from lifting
a quadruple root which happens with probability 77, computed to be (4.8.11).

In the case of 75, there is a quadruple root and a double root. We can make the usual
argument about independence of these lifting based on which coefficients were used for the
argument. Then

s=1—(1-77)(1—m) = (4.8.12).

Sextuple roots: 79 and of,

If fi(xz,2) =0 (mod p) has a sextuple root in F,, we can assume this root occurs at [0 : 1]

and the valuations of the coefficients are as in the first line of the following table.



(a)

151

Ce Cs Cq C3 C2 C1 Co

T9 = Toa = Tob =1 >2 >2 >2 >2 >2 >2
Tgb:(l—%)"r%ﬂ)c —4 >4 >3 >2 >1 >0 >0
T9c = ®(p) + 3704 =4 >2 >1 >1 >0
ma=(1-1) (B2 + &) + Lo =4 >2 >1 >1 >1
moe = (1= 1) + 3o —4 >4 >3 >2 >2 >1 >1
Tof = 5Tog =4 >4 >3 >2 >2 >2 >1
ng:(l—%)a”-i-%Tgh —4 >4 >3 >2 >2 >2 >2
ron=(1-1) (5t +2) + =4 >4 >3 >3 22 >2 >3
rgi:(l—%)+§rgj —4 >4 >3 >3 >3 >2 >2
Toj = 5 Tok =4 >4 >3 >3 >3 >3 >2
7'91@:(1—%)4—%7'9@ -1 >1 >0 >0 >0 >0 >0
’7'9[7(1)(17)4—(l—fb(p)—%)ﬁ-‘r%Tgm -1 >1 >1 >0 >0 >0 >0
rgm:(1—§)+%mn -1 >1 >1 >1 >0 >0 >0
Tgn:(l—%)-F%Tgo 1 >1 >1 >1 >1 >0 >0
90 = P(p) + 1 7op =1 >1 >1 >1 >1 >1 >0
Top = oL —1 >1 >1 >1 >1 >1 >1

Since p | x, reducing modulo p? reveals that p® | ¢ is necessary, which occurs with

probability %. Before moving to the next line, we replace x,y by pz, py and divide by

P

With probability 1 — 1% we have v(c;) = 0 and the reduced equation is F(x,y,1) =
y3 — c1x — co, which is linear in z and thus has a solution with y € pZy. With

probability % we have v(c;) > 1 and move to the next line.

The reduced equation is now F = 33 — ¢y. The probability that ¢ is a nonzero cubic
residue is ®(p). If p 1 ¢p is not a cubic residue, then no point lifts. With probability

% we have v(cg) = 1 and we move to the next line.

The justification is identical to 774, producing

— (1= 1) (4 thoms) +me = (12 ) (Bt L) 4
T9d = p M2,1 T 72,272 p7'9e— p % 5 pTge-

Modulo p? we have I%(cm:—i— co), so if v,(c1) = 1, which happens with probability 1 — %,

then there is a solution that lifts to Q,.
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Reducing modulo p?, we see that p? | ¢ is necessary to get a Qp solution. This

happens with probability % and so we move to the next line.

If v(cg) = 2, then we are in the situation of o’ = (4.5.10) from Lemma 4.5.12. This
happens with probability 1 — 1/p, so with probability 1/p we have v(c3) > 3 and we

move to the next line.

With probability 1—% we have v(c2) = 2. It is clear that for any solution, we must have

p |y and I%(CQCCQ + 1z + ¢9) =0 (mod p). The quadratic 1%(02372 + c12 + ¢p) has no

(p—1) (=1
P P

roots with probability 75 , = % and distinct roots with probability 7, ; = %
In the case of distinct roots, one can check that either root lifts to the x-coordinate
of a Qp-point with y € pZ,. A double root occurs with probability 77572 = %, and the
probability of a solution lifting is equal to 6s, given in Lemma 4.5.21. Thus we have

1 1 1 p—1 6 1
Toh = <1 - p> (77/2,1 + 7757292) + ;)7'92' = <1 - > < + p) + 57’91.

D 2p

Modulo p? we have #(clx + ¢p), so if vy(c1) = 2, which happens with probability

1-— %, then there is a solution that lifts to Q.

Reducing modulo p? reveals that p® | cg is necessary, which occurs with probability

%. Before moving to the next line, we replace y by py and divide by p3.

With probability 1 — % we have v(cs) = 0, in which case the normalization of C; is
seen to have geometric genus at most 3. Since f # ah® for a € F,, and h € Fp[x, 2],

we apply the Hasse-Weil bound (see the proof of Proposition 4.3.2) to find
#?fsm(Fp) >p+1-6yp>1,

where the rightmost inequality holds for all primes p > 31. CTc has only the point
[1:0 :0] above infinity, so there must exist some smooth F,-point [z : y : 1] which
lifts to a Q,-point of Cy. If p =2 (mod 3), it suffices to take p > 2 (see the proof of

Proposition 4.3.4). If v(c4) > 1 we move to the next line.
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(¢) With probability 1 — 1% we have v(c3) = 0, in which case the normalization of C7 is
seen to have geometric genus at most 1. If p=1 (mod 3) and ¢3 € (IE‘?)S is a nonzero
cubic residue, then whenever f # cs3(z —az) for a € Fplz, 2], we apply the Hasse-Weil

bound (see the proof of Proposition 4.3.2) to find

#COF " (Fy) > p+1—2yp > 3,

where the rightmost inequality holds for all primes p > 7. In this case, C’if must
possess a smooth Fp-point [z : y : 1] which then lifts to a Qp-point of Cy. On the
other hand, if f = c3(z —z) then the fact that c3 is a cubic residue produces a liftable
solution. If ¢3 is not a cubic residue, the probability of solution is given by 5. If p =2
(mod 3), it suffices to take p > 2 (see the proof of Proposition 4.3.2). In either case,

we have

o = B(p) + (1 o) - ;) 5+ 1rum,

which is well defined when p = 2 (mod 3) even though S is not, since 1 —®(p) —+ = 0.

1
P
(m) The justification is identical to that of A4.

(n) The justification is identical to that of line (b).

(o) The justification is identical to that of line (c).

(p) This is the definition of of,.

The table above gives us a relation between 79 and of, while the definition of of gives

another:
9
05 =D T
=0
Solving the two simultaneously give the values of 79 = (4.8.13) and of = (4.8.8). O

Remark 4.5.20. The independence argument used in the computation of 74 in terms of
7o makes use of the 3-transitivity of AutP!. This argument breaks down if attempting to
lift more than three such roots independently, suggesting that more care may be needed to

compute pp, 4(p) exactly when d > 8.
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Lemma 4.5.21. The 6; values are tabulated below. These hold for all primes p > 31, and

forp >3 ifp=2 (mod 3).

p*43p% +2p+2

oy P=1 (mod 3)
fo = 0 0 = (p*+p3+p2+p+1)
(3p°+2) (p+1) _
Sy P2 (mod 3)
01 =1 0 = (4.8.16)
(2p%—3p+3) (p+2) p=1 (mod 3)
6p3 9 -
0, = " 0; = (4.8.17)
2_
(2p?=3p+2)(p+1) 3;2;:32)(;)-1—1)’ p=2 (mod 3)
O3 =1— (1 —62)? = (4.8.14) s = (4.8.18)
0y =1—(1—62)° = (4.8.15) 0 = (4.8.19)

Proof. Recall that fo = # f and assume fo Z 0 (mod p). We consider the possible factor-
ization types of fo as a binary sextic form, given by the index ¢ in the d = 6 row of Lemma
4.5.6, and compute the probabilities ; of a root fa(x,z) = 0 lifting to a Qp-point of C.
No roots: 6

If fo(x,2) =0 (mod p) has no roots in F,, then f(z,2z) =0 (mod p*) has no solutions, so
6y = 0.

Simple roots: 6;

If fo(x,2) = 0 (mod p) has a simple root in Fp, it lifts to a Q,-point on Cy of the form
[0 : Yo : z0] with p | yo, so 6 = 1.

Double roots: 65, 03, and 64

If f2(z,2) (mod p) has a double root in F,, after composition with an automorphism of P!,
we can assume the root occurs at [0 : 1]. Replacing z,y by px,py and dividing by p* we

obtain the valuations of the coefficients listed in the first line of the following table.
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C6 Cs Cy4 c3 C2 C1 o
b= 6= @(p)+ 0% >5 >4 >3 >2 =1 >1 >0
b= 3(1-1)+16 |25 >4 23 22 =1 21 >1
b2 = 3024 >5 >4 >3 >2 =1 >2 >2
Org= 1 >8 >6 >4 >2 =0 >0 >0

(a) After the change of variables, reduced equation is F' = ¢ — c¢y. The probability that
¢p is a nonzero cubic residue is ®(p). If p 1 ¢y is not a cubic residue, then no point

lifts. With probability % we have v(cp) = 1 and we move to the next line.

(b) In this case, we consider the quadratic %(CQZ’Q + c1x + co) over F). If it has a simple

root, which happens with probability 77571 = % (1 — %), these lift to Q, points with
y € pZ,. If it has no roots, the equation is insoluble, and if the quadratic has a double
root, which happens with probability 77572 = %, we can shift it to [0 : 1], giving the

valuations in the next line.

(c) Reducing modulo p? reveals that p3 | ¢y is necessary, which occurs with probability

]%. Before moving to the next line, we replace z,y by pz, py and divide by p>.

(d) The justification is identical to that of A4.

This gives the expression for 5 in the statement. The same independence arguments as

for 7 and 73 in the proof of Lemma 4.5.19 apply here to give
03 =1— (1 —67)% = (4.8.14).

For 04, we need to modify the argument from 74 slightly. We observe that for p > 2 if
c1,...,cq are fixed (satisfying the conditions above) then as ¢g varies, the probability of a
lift is precisely 0. This is already clear for steps 65, and 5. above. To see why this holds

for 695, we consider the quadratic

1 €0
?+ =zt —,
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whose discriminant % — 42—(2’ determines its factorization type. This discriminant is linear
in ¢, so for fixed ¢y, c2, as ¢ runs through pZ,, it will take quadratic residue/nonresidue
values with probability %, and be divisible by p with probability %.

Hence, we see that for p # 2, we can view 02 as depending only on the value of ¢y. Thus,
as in the determination of 74 in the proof of Lemma 4.5.19, we see that after moving the
roots to [0 : 1],[1 : 1], and [1 : 0], the lifting behavior at [1 : 1] is independent of the other
points, making

0, =1—(1—6)° = (4.8.15).

In the case of p = 2 — which will be needed in §4.5.6 — we observe that the proof of
02 above shows that lifting [0 : 1] depends only on ¢y, ¢1, and the valuation of ¢y. thus the
lifting behavior of [1 : 0] depends only on ¢, c¢g, and the valuation of ¢4. For 64, the other

double root is located at [1 : 1], and the lifting argument depends on

6

f1,1)=>"¢; and f’(l,l):Zic,-.

6
i=0 =0

The latter can be controlled by c3, while the former may be controlled by writing co = 4+8c
for some ¢, € Zy and letting ¢, vary. This is independent of ¢, ¢1, ¢5, cg, and so we have

that 6y = 1 — (1 — 02)% = (4.8.15) for p = 2 as well.

Triple roots: 05 and 64

If fo(z,2) (mod p) has a triple root in F, after composition with an automorphism of P!,
we can assume the root occurs at [0 : 1]. Replacing z,y by px,py and dividing by p* we

obtain the valuations of the coefficients listed in the first line of the following table.

Ce Cs C4 C3 C2 Cc1 co

5= Osa= ®(p)+ ;05 >5 >4 >3 =2 >2 >1 >0
b= (1-1)+30s |25 24 23 =2 22 >1 21
Osc = ;054 >5 24 23 =2 22 22 >1
Osg = o >5 >4 >3 =2 >2 >2 >2

(a) After the change of variables, reduced equation is F' = 32 — c¢y. The probability that
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¢ is a nonzero cubic residue is ®(p). If p { ¢p is not a cubic residue, then no point

lifts. With probability % we have v(cg) = 1 and we move to the next line.

(b) Modulo p? we have %(claz +cp), so if vy(c1) = 1, which happens with probability 1 — %,

then there is a solution that lifts to Q.

(c) Reducing modulo p? reveals that p? | ¢y is necessary, which occurs with probability

%, and we move to the next line.

(d) We are in the situation of o = (4.5.10) from Lemma 4.5.12.

This gives the expression for 65 in the statement. The same independence argument as

for 75 and 7g in the proof of Lemma 4.5.19 apply to give

O =1 — (1 —05)% = (4.8.16).

Quadruple roots: 67 and 0s

If fa(z,2) (mod p) has a quadruple root in F), after composition with an automorphism of

P!, we can assume the root occurs at [0 : 1]. Replacing x,y by px, py and dividing by p® we

obtain the valuations of the coefficients listed in the first line of the following table.

ce cs C4 cs c2 c1
b= Ora= D(p)+10n >5 >4 =3 >3 >2 >1
b= (1-1)+26n >5 >4 =3 >3 >2 >1
frc = 07 >5 >4 =3 >3 >2 >2
bra= (1-2) (3 (1-2)+1202) + 26 [ 25 >4 =3 >3 >2 >2
Ore = (1—%)+%97f >5 >4 =3 >3 >3 >2
Orp = 014 >5 >4 =3 >3 >3 >3
frg= 1 >2 >1 =0 >0 >0 >0

Co

(A2 VAR VAR A VAR A VAR V4
[\V] [\ - - o

IV
o [\V]

(a) The reduced equation is F© = 3> — ¢y. The probability that cq is a nonzero cubic

residue is ®(p). If p 1 ¢p is not a cubic residue, then no point lifts. With probability

% we have v(cp) = 1 and we move to the next line.

(b) Modulo p? we have %(claz—i-co), so if v,(c1) = 1, which happens with probability 1 — %,

then there is a solution that lifts to Q,.



158

(c) Reducing modulo p? reveals that p? | ¢y is necessary, which occurs with probability

%, and we move to the next line.

(d) With probability 1—% we have v(cz) = 2. It is clear that for any solution, we must have

p |y and Z%(CQZUQ + c1x + ¢9) =0 (mod p). The quadratic p%(CQCL’g + c1x + ¢p) has no

p—1) 1(p—1)
p 2 p -

—~

roots with probability 75 o = 3 and distinct roots with probability 15 ; =
In the case of distinct roots, one can check that either root lifts to the z-coordinate
of a Q,)-point with y € pZ,. A double root occurs with probability 77572 = %, and the
probability of a solution lifting is equal to 5. Thus we have

1 1 1\ (p—1 6\ 1
9d=<1—> M1 + 1 902 +976:<1—) (+>+97e.
i p (. + 12.202) p p 20 p)

(e) Modulo p? we have (c1z + cp), so if v,y(c1) = 2, which happens with probability 1 — %,

then there is a solution that lifts to Q,.

(f) Reducing modulo p?® reveals that p? | cg is necessary, which occurs with probability

%. Before moving to the next line, we replace y by py and divide by p3.

(g) The justification is identical to that of 7.

This gives the expression for 67 in (4.8.17). The same argument as for 77 and 73 in the

proof of Lemma 4.5.19 applies here to give

Os =1— (1 —07)(1 — ) = (4.8.18).

Sextuple roots: 6

If fo(x,z) (mod p) has a sextuple root in F,, after composition with an automorphism of
P!, we can assume the root occurs at [0 : 1]. Replacing x,y by pz, py and dividing by p® we

obtain the valuations of the coefficients listed in the first line of the following table.
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Co Cs Cq C3 Cc2 C1 Co
0y = 69a:<b(p)+%99b =5 >5 >4 >3 22 >1 >0
b = (1 1) + 360 =5 >5 >4 >3 >2 >1 >1

foc = 509a =5 >5 >4 >3 >2 >2 >1
boa=(1-2) (3(1-2)+20:) + 200 | =5 25 >4 >3 >2 >2 >2

boc = (1 1) + 60 =5 >5 >4 >3 >3 >2 >2
Hgfzié’gg =5 25 >4 >3 >3 23 =>2

0oy = ®(p) + (1 - @(p) ~ 1) B+ L6an =2 >2 >1 >0 >0 >0 >0
99h=(1—%)+;991 =2 >2 >1 >1 >0 >0 >0
99i=(1—5)+;9% —2 >2 >1 >1 >1 >0 >0

B9; = @(p) + ;0% =2 22 21 =1 =1 21 20

bor = (1= 1) ' + L00s =2 >2 >1 >1 >1 >1 >1
995:(1—%)a’+%99m —2 >2 >2 >1 >1 >1 >1

O = 1—%)(%+;}2)+%99n —2 >2 >2 >2 >1 >1 >1
egnf(l—%)juiago —2 >2 >2 >2 >2 >1 >1

090 = 3 0op =2 22 22 22 22 22 x1

fop = o’ —2 >2 >2 >2 >2 >2 >2

(a) The reduced equation is now F = y? — c¢g. The probability that ¢y is a nonzero cubic

residue is ®(p). If p { ¢p is not a cubic residue, then no point lifts. With probability

% we have v(cg) = 1 and we move to the next line.

Modulo p? we have %(clx—i- co), so if v,(c1) = 1, which happens with probability 1 — %,

then there is a solution that lifts to Q,.

Reducing modulo p?, we see that p? | co is necessary to get a Qp solution. This

happens with probability % and so we move to the next line.

The justification is identical to 674, producing

1 1 1 p—1 69 1
o= (1) G a0+ = (1-2) (42 4 L
9d < p> (772,1 2,2 2) p9 » 2% » p9

Modulo p? we have #(clx + ¢p), so if vy(c1) = 2, which happens with probability

1-— ]%, then there is a solution that lifts to Q.

Reducing modulo p3, we see that p> | ¢ is necessary to get a Q, solution. This
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happens with probability %. Before moving to the next line, we replace y by py and

divide by p®.
(g) The justification is identical to that of 7o,.
(h) The justification is identical to that of A4.

(i) With probability 1 — % we have v(c;) = 0 and the reduced equation is F(x,y,1) =
y® — c1x — cp, which is linear in x and thus has a solution with y € pZ,. With

probability % we have v(c;) > 1 and move to the next line.

(j) The reduced equation is now F = 3> — c¢g. The probability that ¢y is a nonzero cubic

residue is ®(p). If p 1 ¢p is not a cubic residue, then no point lifts. With probability

% we have v(cg) = 1 and we move to the next line.

(k) If v(cq) = 1 we are in the situation of p = (4.8.6) from Lemma 4.5.14. This happens
with probability 1 — %, so with probability % we have v(cq) > 2 and we move to the

next line.

(0) If v(cg) = 1, then we are in the situation of o/ = (4.5.10) from Lemma 4.5.12. This
happens with probability 1 — z%’ so with probability % we have v(c3) > 2 and we move

to the next line.

(m) The justification is identical to 794 of Lemma 4.5.19, producing

1 1 1 p—1 1 1
0o :<1—> My +1a272) + — 09 =<1—> <+>+99.
m P (2,1 2,2 ) » n D 2p p2 P n

(n) The justification is identical to that of line (b).
(o) The justification is identical to that of line (c).

(p) This is the definition of o .

The table above gives us a relation between g and o7, while the definition of of gives

another:

9

" /

05 = E Uﬁ,i9i~
i=0
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Solving the two simultaneously give the values of 9 = (4.8.19) and of = (4.8.9). O

Completing the proofs of Proposition 4.5.18 and Theorem 4.1.5

To complete the proof of Proposition 4.5.18, we must compute o5. In doing so, we will also
compute the exact value of p, thereby completing the proof of part of Theorem 4.1.5 as

well.

Proof of Proposition 4.5.18. Recall that of = (4.8.8) and of = (4.8.9) were computed in
the proofs of Lemmas 4.5.19 and 4.5.21, respectively. Thus all that remains is to compute
g5.

Recall that o5 is related to p by

1 1\ < -1\ @
o5 = P T (1 - p7> > neiTi+ (p14> > 6,0,
i=0 i=0

where the values of 7g,, 74, 0; are given in Lemmas 4.5.6, 4.5.19, and 4.5.21, respectively. On

the other hand, we have
5
p="> &oi
=1

with &; given in Corollary 4.5.3 and o; for 1 < ¢ < 4 given in Propositions 4.5.7, 4.5.8, 4.5.9,
4.5.15, respectively. We can thus solve the two equations above for o5 and p as rational

functions in p,

p=(4.8.1),

o5 = (4.8.5),

thereby completing the proof of Proposition 4.5.18. For an implementation in Sage [Sag21],

see the GitHub repository associated to this paper [BK21b, SEC_rho36_23Aug21.ipynb].
Thus we have verified that for ¢ = 1,2, we have p(p) = R;(p) for an explicit rational

function R;(t) and all sufficiently large primes p = i (mod 3) as stated in Theorem 4.1.5.

It remains to observe the asymptotic behavior, i.e. that when p =1 (mod 3), this explicit


https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
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function satisfies

1—p(p) ~ 20",
and if p =2 (mod 3) then
53 _.
1— 2
pp) ~ TP

4.5.6 Small primes

All that remains to prove Theorem 4.1.5 is to compute p(p) for the remaining eight primes
p, not handled directly by Propositions 4.5.7, 4.5.8, 4.5.9, 4.5.15, and 4.5.18, namely p =
2,3,7,13,19,31,37,43. We handle the cases of p = 2 and p = 3 separately from the six
remaining primes p = 1 (mod 3) and conclude this section with the the exact calculation

of P3,6 ~ 9694%

The case of p =2

Suppose p = 2. By the proof of Proposition 4.3.4, for all binary sextic forms f(x,z) such
that f # 0, 2%(x + 2)222, we can lift a point on the reduction 07f to a Q2-point of C'y. Thus

we first restrict our attention to lifting Fa-points of

y? = 2?(x + 2)%22

By the same argument as that for 64 in the proof of Lemma 4.5.21, the probability of
0:0:1],[1:0:1], or [1:0:0] lifting to a Qa-point are equal and independent. Thus it
suffices to determine how often [0 : 0 : 1] lifts. In fact, we will need the following lemma for

all primes p # 3.

Lemma 4.5.22. Let p # 3 be a prime. Fizx cy such that v(cz) = 0 and c3,c4,c5,¢6 € Zyp.

As cg,c1 range over pZ,, let v denote the probability that the Fp-solution [0 : 0 : 1] to
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F(z,y,2) =0 lifts to a Qp-solution to F(x,y,z) =0. We have

3p*—p3+p?—3p+6 _
% p=1 (mod 3),

V= (775,1 + 77/2,292) =

D=

p74+p3;§)27p+2 p=2 (mod 3).

Proof. Let [z :y : 2] =1[0:0: 1] (mod p). We observe that v(cox?z* + c122°) > 2, so
if v(cp) = 1, the equation is seen to be insoluble modulo p?. With probability % we have
co € pQZp.

Replacing x by px, our equation becomes

6
y' =) plea’.
=0

Rewriting ¢; as p’c;, we have the valuations (in descending order) are given by

IV
()
v
ot
IV
B
v
w
Il
o
v
o
IV
)

p—1

Thus it is necessary for p3 | (c2x? + c12 +cp), so with probability M0 = TR the equation is

insoluble. With probability 7 ; = %, we have a lift, and with probability 75 , = %, we are
in the situation of A3 of Lemma 4.5.21, and the proof is seen to be valid for all p. Putting

this together yields the giving probability that [0 : 0 : 1] lifts to a QQ,-solution. O

Corollary 4.5.23. Let f(z, z) be a binary sextic form with f(x,z) = 22(z+2)%2% (mod 2).

The probability that Cy has a Qa-point is

2675

1—(1—1/)3—m

The probability that Cy has an affine Qo-point of the form [x :y: 1] is
1
1-(1-v)?= 135
256

Proof. The two statements follow from applying Lemma 4.5.22 to the two affine and three
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total Fo-points of Cy independently (see the argument for 6, in the proof of Lemma 4.5.21).

At this point, we have

p36(2) =1

L1275
—=|——=+0
27 \ 4006 ' °°)

where o5 is the probability of solubility when f(z,z) = 0.

O]

(4.5.16)

To compute o5, we can follow the proofs of Proposition 4.5.18. For 0 < ¢ < 6, the values

of 7; and 6; from Lemmas 4.5.19 and 4.5.21 hold for p = 2. Corollary 4.5.23 can be used

to compute 07, u, 77, and 4/, in that order. We catalog these values below and highlight the

modified steps.

) _ 13575
T 16384
g _ 62727
& 65536
90887
= 131072
3760903
= ——
3388608
12149511
T§= ———
16777216
, 40461063
M = 67108364

135
use 979 = % y

(use updated 67),

(use updated 07 in (4.5.13)),
(use 77y = p),

(use updated 73),

(use updated 77 in (4.5.14)).

We then solve the following equations, using the values above and Corollary 4.5.23
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appropriately in the calculation of 9,

Lo 7283817 1136 1
T9 = o use T, = — + —— + — T
97 327687 ° " 16252928 k=9 956 2%
9
o5 = 277/6,1'73‘ (use updated 77, 7s) ,
1=0
1 3559852801497
0o — " dated ¢/ in 0
9= 3976875 T 1260607557632 (use updated 4" in fi)
9
ol = an,iei (use updated 67, 0g) ,
1=0
9 9
1 1 27 — 1
95 = 51aP T (1 - 27> Zﬁﬁ,m + <214> 2776,1'91,
=0 =0
1 1 (/2675
pzl_ﬁ+ﬂ<w%+%> (see (4.5.16)).
This yields
45948977725819217081
9) = ~ 0.99532 4.5.17
P36(2) 46164832540903014400 ’ ( )

1

a considerable improvement over 1 — 5.

The case of small primes p =1 (mod 3)

Suppose p is one of p = 7,13,19,31,37,43. Here we are not able to conclude that when
F(z,y,z) is absolutely irreducible, that Cy has a QQp-point, i.e. that o7 = 1. At various
other junctures, including the calculations of 7; and 6; in Lemmas 4.5.19 and 4.5.21, we
use assumptions about the size of p to conclude that certain equations over [, always
possess a liftable point. To circumvent this and fix the necessary calculations, we need a
few intermediate results.

Consider equations of the form
3 _ 3 2
Yy’ = c3x” + cax” + c1x + ¢ (4.5.18)

and denote by p%%(p) the probability that (4.5.18) has an affine Q,-point as co, c1, ¢z, ¢3

vary in Z, with v(cz) = 0.
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Lemma 4.5.24. Let p=1 (mod 3). When p > 7 we have

5 3pt+3p3 +p*+3p+1
3pt+pP+pP+p+1)°

2
3 3

In the case of p =17,
401245

1
aﬁ — p—
p373(7) (2002 + 28c) YINLZa

~ 2058

Proof. Note that the justification when p > 7 is essentially that of 79, or fg,. Whenever
c3 € (IE‘;)?’ we have a solution, as the Hasse bound (4.3.2) applies to the normalization of
the reduction of (4.5.18) whenever p > 7, and if the right hand side factors as c3(z — a)?,
we can lift [a + 1 : y : 1] using Hensel’s lemma. If ¢z ¢ (IF;)?’, then we are in the situation
of B, giving the first statement.

When p = 7, a computer search shows that of the 2058 equations (4.5.18) over F7 with
v(es) = 0, 2002 can be lifted via Hensel’s lemma, 28 are insoluble, and 28 are of the form
y® = c3(z — a)3, where c3 ¢ (F;)g. See the procedure count_cubic_forms(p), contained
in the file CountForms.m, found in the GitHub repository associated to this paper [BK21b],
for an implementation in Magma [BCP97]. The probability of lifting in this case is given

by «, proving the second statement. O

The following lemma complements Lemma 4.5.22, in that it provides the probability

that a triple root modulo p lifts to a Q,)-point.

Lemma 4.5.25. Let p =1 (mod 3) and fix c4,c5,c6 € Zy. As o, c1, C2, c3 vary in Zy, with
v(c3) =0, the Fp-solution [0: 0 : 1] to F(z,y,z) = 0 lifts to a Q,-solution to F(x,y,z) =0

with probability

17694619 —7
141229221 p=1
1 1 1 4
T=—— -5+ 3p33=
p b p
6 4 3 2
3O 3ptidptppP 1 o
sttt P

Proof. The proof follows techniques similar to ones we have already seen.


https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/f492b080352291c758e10fe9f82a49618e7e095b/CountForms.m
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C6 Cs5 C4 c3 Co cl Co
T= Ta =, >0 > >0 =0 >1 >1 >1
ﬂ'b:(l—%)—i-l%ﬂ'c >6 >5 >4 =3 >3 >2 >2
e = Ly >6 >5 >4 =3 >3 >3 >2
Tq = pii% >3 >2 >1 =0 >0 >0 >0

(a) We observe that v(c3z®+coz? +c17) > 2, s0 it is necessary for v(cp) > 2, which occurs
with probability %. At this point, we replace = by pz and ¢; by p'c; and move to the

next line.
(b) The justification is identical to that of y..
(c) The justification is identical to that of fg¢.

(d) The probability of finding a solution of the form [z : y : 1] is precisely pgg(p) by

definition.

Putting these steps together, along with the value of pgfg from Lemma 4.5.24 yields the

given formula. O

Consider now equations of the form
y3 = eyt + 323 + c92® + 1z + o (4.5.19)

with v(c3) = 0. Let the proportion of equations (4.5.19) over Z, possessing an affine Q,-
point be denoted pgi(p). This quantity came up in computing 67 and 19, (see in particular
674, Tor), and hence also the quantities derived from them, including y, i/, 77, 73, 63, and 6.
When p > 31, an application of the Hasse-Weil bound (4.3.2) is sufficient to guarantee the

existence of a Q,-point; for p < 31, we have the following.
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Lemma 4.5.26. Let p =1 (mod 3). For p > 31 we have pgi =1. For p < 31, we have

93877018682
aff
S 1
P3.4(7) = Gegsootodor > 090891,
813159544
aff
13) = 22220 ) 99684
P3a(18) = gremsnmar & 0-99684,
6856
aff
19) = 229 0.99956.

Proof. For p > 31 this is a consequence of the Hasse-Weil bound (4.3.2). For the four
primes p < 31, the proof proceeds by enumeration of all binary quartic forms f(z, z) over
[, with ¢4 # 0 (mod p). If for any [z : 1] we have f(x,1) € (F;)g or f(x,1) = 01is a root of
multiplicity 1, then Hensel’s lemma allows us to lift to a Q,-point. Of course, if v = f(z,2)
is insoluble modulo p, then there exist no Q,-points.

The only other possibility is that f(z,z) has one or two double roots. In either case,
the probability that such a root lifts to a Q,-point is v, by Lemma 4.5.22. By enumerating
all such f(x,z) and determining their value sets and factorizations, we computed pgi(p) as
listed above, finding in particular that pgi(iﬂ) =1.

This enumeration procedure was implemented in Magma [BCP97]. The relevant proce-
dure, count_quartic_forms(p), is contained in the file CountForms.m and can be found

in the GitHub repository associated to this paper [BK21b]. O

With a similar approach as that of Lemmas 4.5.24 and 4.5.26, we can determine o1 and

o7 exactly for p = 7,13,19, 31, 37,43.

Proposition 4.5.27. For the primes p = 1 (mod 3) with p < 43, the values of o1 and o}

are given below.

_577619497568784534247 ~653206973052553734217

71(7) = Fegasaszrioasorzezoo - 040 71D = Groaisisrasaasastaon - 07462
719 = S orrmoemans =0 oi09)= o ~ 000

ot - Oy DO

o1(31) = gggzgg: ~ 0.999993 o (31) = i;;ii; ~ 0.999989

01(37) = gg:zgg ~ 0.999998 o3 (37) = ggz;;g ~ 0.999998
01(43)2:3%%3;;%% ~ 0.9999998 o{(43)::§§%22%% ~ 0.9999997


https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/f492b080352291c758e10fe9f82a49618e7e095b/CountForms.m
https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/f492b080352291c758e10fe9f82a49618e7e095b/CountForms.m
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Proof. We proceed by enumerating binary sextic forms f(x,z) and checking for liftable
points in Magma [BCP97]; see §4.6 for a description, including optimizations necessary to
shorten the runtime of these calculations, and [BK21b] for the code.

Let f(z,2) be a binary sextic form over F, which is not equal to h(z, z)? for any binary
quadratic form h(z, z) (resp. also satisfying condition (x)). If f(z,z) € (IF;)B or f(z,2) =0
is a root of multiplicity 1, then by Hensel’s lemma it lifts to a Q,-point of Cy.

If no such [z : 2] exist, then the equation is either insoluble, in which case C¢(Qp) = 0,
or the only IF,-points come from multiple roots of f(z, 2). These could be up to three double
roots, or a triple root (note that two triple roots or a sextic root are ruled out by being in
factorization case 1). By Lemma 4.5.22; each double root lifts (independently, by the same
arguments as those for 6, in the proof of Lemma 4.5.21) to a Q,-point with probability v,
while a triple root lifts with probability = by Lemma 4.5.25.

Summing up the number of forms and weighting by the appropriate probability yields

the given values of o1 (resp. o). See (4.6.1) for the case of p = 13 as an example. O

At this point, we can repeat the calculations of §4.5.4, 4.5.5 — namely those of o4 and o5
— using the modifications above as appropriate. These modifications are described below;

for the full implementation, see [BK21b, SEC_rho36_23Aug21.ipynb].

o 07y = pgﬁ in the proof of Lemma 4.5.21. This is used to compute 07, which is then

used to compute u, 77, and g/ in succession, and these values are used throughout.

e In the proof of Proposition 4.5.15, the correct o] value from Proposition 4.5.27 must

be used in (4.5.4).

e In the calculation of 79 in Lemma 4.5.19, we use

1\ . 1
Tor = |1 — > p54(p) + —T9¢ and
( ’ 5.4(p) ’

1\ g, 1
Tor = (1 - p) P53(p) + L 7om:

where p%% (p) and pgi (p) are given in Lemmas 4.5.24 and 4.5.26, respectively.
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e In the calculation of A9 in Lemma 4.5.21, we use
1 1
oy = <1 - ) P35 (p) + =Ogp.
g ’ 53(p) )

e In the final calculation of p, we use the correct o, value from Proposition 4.5.27 in

(4.5.3).

The exact values of p3 6(p) are recorded in (4.8.20) — (4.8.25).

The case of p =3

Suppose now that p = 3. This case breaks from the others in that when f(x,z) Z 0 (mod 3),
one cannot determine whether there exists a Qs-solution to y* = f(z, z) from information
modulo p alone. Instead, one needs to know information modulo 3% = 27.

In Z /277, the nonzero cubic residue classes are precisely
(Z/27ZX)3 ={1,8,10,17,19,26} .

For a € Z3 with v(a) = 0, there exists y € Z3 satisfying y* = a if and only if a € (Z/Z?ZX)B.
This is seen by applying Hensel’s lemma, in the form of (4.3.1), with respect to y. Note also
that for any a € Zs, we have that its residuc a € (Z/272>)" if and only if a+9 € (Z/272*);
this will be used later.

Our approach mirrors that of the other primes p in this section; we first establish some
technical results, then use them to adapt our general strategy to work for p = 3, yielding a
value for p36(3). We begin with the following lemma, which effectively takes the place of

® in the proofs of various lifting results.

Lemma 4.5.28. Consider the probability of F(x,y,1) = 0 having a Qs-solution under the

following conditions.

(a) Fiz c3,cq,c5,c6 € 323 and vary co € Zs — 3Zs and c1,c2 € 3Zs. The probability that

F(z,y,1) =0 has a Qs-solution is é—?.
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(b) Fix c3,cq4,¢5,¢c6 € 973 and vary co € Zs — 3Z3, ¢1 € 3Z3, and cy € 37Z3 — 9Zs3. The
probability that F(x,y,1) =0 has a Q3-solution is %

(¢) Fix ca,c3,c4,¢5,c6 € 93 and vary co € Zs — 3Zs and ¢y € 3Zs. The probability that

7
g-

F(z,y,1) =0 has a Qs-solution is
Proof. The restrictions on the ¢; guarantee that for any (z,y) € Z3, we have v (F(z,y,1)) =
0. Thus it suffices to work modulo 33 = 27 and determine if f(z,1) takes a value in
(z/ 27ZX)3. By our earlier observation that nonzero cubic residues modulo 27 are invariant

under addition by multiples of 9, we have that f(z,1) € (Z/272)" if and only if f(z+3,1) €

(z/ 27ZX)3, and hence it suffices to check at

f(Oa 1) = Co,
6
f(1,1) = Zci,and
Zzo |
F-11) =S (<1
=0

We have that ¢y € (Z/27Z%) with probability % If not, then we may check at the other
values.

Consider first (a). If ¢ is not in (Z/27ZX)3 then let ¢ = ¢+ 3+ ¢4+ ¢5 + ¢ (mod 27).
Exactly one of ¢, ¢+ 3, and ¢ — 3 are in (Z/Q?ZX)B, and as c¢1, o varying in 3Zs, we have
that ¢, + o = 0,3, —3 (mod 9) each with equal probability of 1/3. If ¢ ¢ (Z/272%),
then we verify by direct enumeration that the probability of —c; + ¢ satisfying > (—1)ic; €

(Z/277%)* is also 1/3. Hence we have the probability in (a) is given by

1 n 2 /1 n 2 /1 19

3 3\3 3\3)) oor
For (b) and (c), we are in a similar situation, except we can ignore cs,...,cg entirely
as their values will not affect whether f(z,1) takes a value in (Z/ 27ZX)3. To compute (b),
we note that if ¢ is not in (Z/ 27ZX)3, then ¢y + ¢o is with probability %, since 9 1 ca.

If this is the case, there is a 3 chance that 9 | ¢; and we have f(1,1) € (Z/272%)°. 1f
co+ca ¢ (Z/272%)%, then there is a 2 chance that one of f(+1,1) € (Z/272%). This



172
comes out to the probability
1 n 2 (/1) 2
3 3\2) 3

For (c) we follow a similar approach, observing that if ¢y is not in (Z/ 27ZX)3, we have a
% chance that one of ¢y & ¢; is, as only when 9 | ¢; is the sum not a cube modulo 27. Thus

we obtain

O]

We now compute the probability of lifting a point [z : 0 : z] on y* = f(z,2) when
f(x,z) has a double root modulo 3; after a change of coordinates, we may consider the

point [0: 0: 1]. We call this probability v as in Lemma 4.5.22.

Lemma 4.5.29. Fiz co,c3,¢4,¢5,¢6 € Z3 and suppose v(cy) = 0. As co, c1 vary in 3Zs, the

F3-solution [0 : 0 : 1] to F(x,y,z) = 0 lifts to a Q3-solution to F(x,y,z) = 0 with probability

43
EPYES

Proof. Following the proof of Lemma 4.5.22, we have

UV =

(775,1 + U§,292) .

h

To compute 0o, we follow the proof of Lemma 4.5.21, except that in the first step we take

2 2 1
aazf' o 797
20 = 3 (3)+32b

justifying as follows. With probability % we have v(cp) = 0, putting us in the case of Lemma
4.5.28(c), in which case a lift exists with probability %, giving the left-hand term. With
probability % we have 3 | ¢y, and we continue with the computation of #3 as in the proof of
Lemma 4.5.21.

Note that in the last step, we may take 655 = 1 as usual, since the partial derivative of

the quadratic coz? + c12 + ¢ can only vanish modulo 3 for at most one value of z. Hence
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one of the other x values may always be used to lift to a Q3-solution. This results in

16 43
02 = ﬁ and V= @

O]

Next, we consider o;. The values of pgg and pgi will follow from similar reasoning. Of
the 2160 (see Lemma 4.5.2) binary sextic forms f(x,z) modulo 3 with F absolutely irre-
ducible, all but 54 have at least one [x : 2] such that the partial derivative of F' with respect
to x (or z) is nonvanishing modulo 3, and hence liftable via Hensel’s lemma (see Proposition
4.3.9). The remaining 54 may be enumerated and are seen to have the factorization types

as follows:
e 24 have one double root (i.e. f(x,z) has factorization type 124 or 1222) modulo 3,
e 12 have two double roots (i.e. f has type 12122) modulo 3,
e 8 have three double roots (i.e. f has type 12121%) modulo 3, and
e 10 have no roots modulo 3.
This leads to our determination of o1, as well as pgg and pgi.
Proposition 4.5.30. When p = 3, we have

5780143846

_ 200N 0.99463
917 5811307335 ’
2103
aff ~
P = a5 ~ 096335,
4585681
aff
_ 2209090 1).95875.
P34 = 1782069

Proof. To compute o1, we need only determine the probability of lifting for each of the four
values [x : z], and see that they are independent of one another. When f(x, z) # 0 (mod 3),
the probability of lifting is %, exactly the proportion of residues in (Z/27Z)* in the image
of the cube map. The probability of a double root modulo p lifting is v, as after a change

of coordinates we may assume [z : z] = [0 : 1], putting us in the case of Lemma 4.5.29.
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For the independence, we treat each of the four cases separately, illustrating the argu-
ment in the case that f(z,z) has exactly one double root modulo 3, occurring at [0 : 1].
By Lemma 4.5.29 the probability of lifting is v, and since this proof relies on Lemma
4.5.28(c), the lifting behavior depends only on the values of ¢y and ¢;. The lifting behavior
at [z :z] =[1:1],[-1:1],[1:0], for which f(z,2z) #Z 0 (mod 3), does not depend on the
choice of lift of [z : z] to Z/27Z by our earlier discussions. Hence this depends only on, say,
cs3, ¢4, and cg.

Since lifting a double root depends only on f(z,2) and f’(z,z) modulo 27, lifting a
nonzero value depends only on the value itself in this case, and we have 7 coefficients

varying, the argument above easily extends to the other three cases. This justifies

1= ﬁ (2106 + 10 <1 - <§>4> + 24 (1 - @)3)
s (1= () ) rs0-0-m 3)).

For pgi, the story is similar, except we are only interested in lifting affine solutions
[z : 1]. Of the 162 quartics cqz* + c32® + c22? + c12 + co modulo 3, all but 18 have
nonzero partial derivative, with the cases of no (affine) roots, one (affine) double root,
and two (affine) double roots each appearing 6 times. The same lifting probabilities and
independence arguments above apply, yielding the stated value.

Finally, to compute pgg, we note that so long as ¢y, co are not both in 3Z3, the partial
derivative does not vanish and we have a root by Hensel’s lemma. If 3 | ¢y, c2, then f(x,2) =

c31323 + ¢92°, and after a change of variables over F3, we may assume f(z,z) = 2325

Let f(x,z) € Zs[x, 2] be a binary sextic form reducing to f = z32%. Using the same
techniques as in the proof of Lemma 4.5.28, we have that the probability that [+1 : 1] has
a lift to a Q3-point is % for each. Note that this can be made independent of the choices of
¢4, c5 and cg, which is necessary to use in our calculations of 6y, and 79,. If neither of these

lift, the probability that [0 : 1] is computed by first replacing x by 3z, giving the valuations

on ¢z, c2,C1,Co

I
w
v
w
v
[\
v
—_
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We compute that we have a lift with probability % + Q%pgg, yielding that

8 1/5 4/2 1
aff _ © I . — aff
P33 =9 Ty <9 9 <9 + 27P3,3>> :

and solving for pgfg gives the stated value. O

Taken together, we once again repeat the calculations of §4.5.5 to obtain o5 and p, using
the same modifications we did previously with the primes p =1 (mod 3) up to p = 43. We
also must replace ® by the appropriate probability in Lemma 4.5.28 wherever necessary in

the proofs of Lemmas 4.5.19 and 4.5.21. Finally solving

2160 1

p36(3) = TS?UI + 2*705

yields
~900175334869743731875930997281
~908381960435133191895132960000

p3.6(3) ~ 0.99096. (4.5.20)

Once again, the implementation may be found in [BK21b, SEC_rho36_23Aug21.ipynb].

Calculating p3¢ exactly

We are now ready to complete the proof of Theorem 4.1.5.

Proof of Theorem /.1.5. We have already seen that p(p) = R;(p) for sufficiently large p =
(mod 3); see §4.5.5. For the remaining primes, p = 2,3,7,13,19, 31, 37,43, we have com-
puted p(p) in the preceding sections; see (4.5.17), (4.8.20) — (4.8.25), and (4.5.20). This

yields the exact expression

P36 = 1T i) I R I R

p=2,3,7,13,19,31,37,43 p=1 (mod 3) p=2 (mod 3)
p>43 p>2

To obtain a numerical value, we compute the product of p(p) for all p < 10000, finding
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[1,<10000 £(P) =~ 0.96943. Using the estimates R () > 1 — t=* and Ro(t) > 1 -t 7, we find

1> J[ R JI Ralp)=1-1.6856-10"",

p=1 (mod 3) p=2 (mod 3)
»>10000 »>10000

which more than suffices to conclude our numerical value is correct to several decimal
places. Once again, these calculations are recorded in the GitHub repository associated to

this paper [BK21b, SEC_rho36_23Aug21.ipynb]. O

4.6 Bounds for p,, (p) via computer search

The lower bounds for p3¢ and ps5 produced by Corollary 4.3.10, discussed in Examples
4.3.15 and 4.3.16, were limited by the performance of Proposition 4.3.6 for primes p = 1
(mod m) such that p < 4¢g. As noted in Remarks 4.3.7 and 4.3.8, the proof of Proposition
4.3.6 likely leaves out many liftable points, including those given by roots of f(x,z) of
multiplicity 1. Here we discuss how to use a computer search to improve our lower bounds
of pm.a(p), an implementation in the case of p3(13), and how this approach is used in the
exact determination of o1 (p) for small primes p in §4.5.6. The relevant code may be found

in the GitHub repository associated to this paper [BK21b], available at the link below:
https://github.com/c-keyes/Density-of-locally-soluble-SECs.

Suppose p 1 m. Using a computer algebra system it is straightforward to enumerate all

binary degree d forms f(z,z) over F, and for each such f, determine whether
e there exists a root f(xg,20) = 0 of multiplicity 1, or

e there exists [z : 20] such that f(xo,z20) € (F;)m.

In either case, for any f(z,z) € Z,[z, 2] such that f = f (mod p), Hensel’s lemma (Theorem
4.3.1) ensures C¢(Qp) # 0.

Naively, this amounts to enumerating p®*! polynomials, which quickly becomes pro-
hibitively time consuming. To mitigate this, we first recognize that C'y has a smooth point

if and only if Cyms does for u € F;;. This corresponds to the change of variables y — g


https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
https://github.com/c-keyes/Density-of-locally-soluble-SECs
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Thus we may assume that the leading coefficient, ¢4, of f(x, z) is either 0 or equal to one
of the representatives of the three cosets in )’/ (F;)m This cuts down the running time
by about a factor of p, as we need only enumerate the coefficients cg, ..., cq_1.

To further improve the running time by a factor of p, we ran these searches for fixed
values of the constant term ¢y in parallel. To avoid having to run p such programs, which
again becomes cumbersome for large p, we observe that for a generator a € ', the change
of variables z — az transforms the constant term by a factor of a?, without affecting the
leading term. Thus we may assume ¢y to be either 0 or equal to one of the representatives
of the ged(d,p — 1) cosets in F;/(F;)d. In particular, ged(d, p — 1) is bounded by d, so the
number of parallel computations needed is bounded as p grows.

We implemented the strategy above in Magma [BCP97] for (m,d) = (3,6) to obtain
better bounds for ps¢(p) for the seven primes p such that p =1 (mod 3) and p < 61. The
relevant file is [BK21b, CountForms .m]; namely, the procedure count_sextic_forms (p, cy)
counts binary sextic forms f(z,z) which, after the aforementioned changes of variables,
have specified coefficient ¢y and such that ¢y = f(z, z) has a smooth point. It is convenient
to also keep track of whether or not the forms satisfy condition (%), whether y® — f(z, 2) is
absolutely irreducible, or both, to give lower bounds for p*, o, and o7.

To illustrate this procedure, the output in the p = 13 case is tabulated below in Table
4.6.1. Notice the symmetry present in the table; the ¢y and —c¢g rows are identical. This is
the result of the facts that (2) = Fy5, and 2® = —1 (mod 13), and our observations above
about the change of variables z — 2z. Considering only the presence of Hensel-liftable

points and insoluble equations, these computations produce the following bounds.

62655132 < 4819929

AT o 3 b
62748517 — p(13) < 4826809

740621 < 370433

*(13) <
712586 = 7 (13) = 377503

8605 43034
. ~ —— < < —=0.
0.99837 3619 = o01(13) < 13005 0.99858

1 264
05803 <ot(13) < 6459
106080 26520

0.99851 ~ ~ 0.99857

0.99735 ~

~ 0.99768

0.99738 ~ ~ 0.99769

To verify the data in Table 4.3.1, we repeat these computations considering only the
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Table 4.6.1: Counts of binary sextic forms f(z, z) € Fi3[z, z] with smooth points for specified

constant coefficient, using count_sextic_forms (13, cy)

co Hensel  insoluble total
0 4825604 0 4826809
1 4814593 10608 4826809
2 4820270 5680 4826809
3 4820634 5364 4826809
4 4820619 5364 4826809
5 4813393 12024 4826809
6 4820255 5680 4826809
7 4820255 5680 4826809
8 4813393 12024 4826809
9 4820619 5364 4826809
10 4820634 5364 4826809
11 4820270 5680 4826809
12 4814593 10608 4826809
Totals | 62645132 89440 62748517

Hensel-liftable and insoluble equations for the seven primes p = 1 (mod 3) with p < 61.
The resulting lower bounds are recorded in Table 4.6.2 below along with the approximate
runtime of an instance of count_sextic_forms(p,cg) on a server with four Intel Xeon
E5-4627 CPUs, a total of 40 cores, and 1 TB of memory. As one expected, the complexity
is about O(p®). Note in particular that for p = 61, the computation reflects the improved

Hasse-Weil bound (4.3.3), which implied o1 = of = 1 for p = 61 in Proposition 4.5.7.

Table 4.6.2: Lower bounds for p, p*, 01, o for p=1 (mod 3) with p <61

P p> pr > o1 > o} > | runtime (s)
- 810658 32731 7237 32731 18
823543 33614 7350 33600
13 62645132 740621 8605 105803 419
62748517 742586 8619 106080
19 893660256 2475177 522607 825059 2061
893871739 2476099 522728 825360
31 | 27512408250 28628820 | 3697903 | 477147 37161
27512614111 28629151 3607928 | 477152
37 | 94931742132 69343806 937764 608279 90131
94931877133 69343957 937765 608280
271818511748 | 294016723 | 41047793 | 3818399
43 | 371STS611107 | 294016886 | 41047800 | 3818400 194243
3142742684700 | 13845840
61 | STi07ios30021 | 1384584l 1 1 1091730

For (m,d) = (5,5), a similar procedure using the above mentioned parallelization strat-
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egy was used to produce the data for p =1 (mod 5) with p < 131, tabulated in Table 4.3.2
in Example 4.3.16. For other (m, d), this enumeration strategy could be useful in estimating
Pm.d(p) and offers an improvement on Proposition 4.3.6, at the cost of the time required.

This enumeration strategy was also instrumental in determining the exact values of
o1 and o7 for small primes p, i.e. the proof of Proposition 4.5.27. After enumerating all
binary sextic forms f(x, z) with Hensel-liftable points, we keep track of the factorization type
modulo p — namely the presence of multiple roots — and determine the lifting probabilities
using v and 7 (see Lemmas 4.5.22, 4.5.25).

For example, when determining o7(13), we find that 62644400 of the 62746320 forms
f(z,2) produce F(z,y,z) with a Hensel-liftable point and 88816 are insoluble. Of the
remaining f(x,z), we find 10920 that have one double root, 2184 having two double roots,

and no other factorization types occur. Thus

1 5931415654903952
13) = — (62644400 + 109200 + 2184(1 — (1 — 1)?)) =
01(13) = gm0 | + v +2184(1 ~ (1 = v)%)) = gor o o6232655”
(4.6.1)

the value given in Proposition 4.5.27. This calculation is repeated for the primes p =

7,19,31,37,43 and a similar philosophy is used for p = 3 in Proposition 4.5.30.

4.7 Counting binary forms by factorization type

Lemma 4.7.1. For 2 < d < 6 let Ng; (resp. N} ;) denote the number of binary forms
f(z,2) over IF, up to scaling (resp. monic) having the factorization types specified by i in
the second column of the table below. For Ng; and NC’M can be computed in terms of p and

are tabulated below.

d | Fact. type Ng,; Ncli,i
0. No roots ip—1)p fp-1p
2 | 1. (1%) lp+1p lp—1p
2. (1%) p+1 p
0. No roots %(p +1L(p-1p %(P +1@-1p
3| 1. (1% 3@2p+1(p+1p 3+ -1p
2. (1%) p+1 P
0. No roots %(3}72 +p+2)(p— 1)p %(3}02 +p+2)(p— 1)p
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d | Fact. type Ng, i N{i,i
1. (1%) s(p*+p+2)(p+1p s(5p% +3p+2)(p— )p
2. (172) s+ 1)—1p F(p—1)p?
3. (1°1%) sp+1)p s(p—1p
4. (1%) p+1 P
0. No roots 2= (11p% = 5p+6)(p+ 1)(p — 1)p 2= (11p2 —5p+6)(p+ 1)(p — 1)p
1. (1%) 35 (19p® + 6p% +4p+ 1) (p+ 1)p 2 (19p® + 14p? + 4p — 6)(p — L)p
5|2 (123) Lp+1)*(p-p $(p+1)(p — 1)p?
3. (1%2) sp+1)(p—1p 5(p—1)p?
4. (171%) (p+1)p (»—1p
5. (1°) p+1 P
0. No roots 57 (53p* +26p° +19p% — 2p+24) (p — )p | 735 (53p* +26p° + 19p% — 2p+ 24) (p — 1)p
1. (1%) 137 (91p + 26p% +23p2 + 16p — 12) (p+ 1)p | 137 (91p° — 27p? + 50p — 48) (p + 1)(p — 1)p
2. (124), (1222) s@P*+p+2)(p+ (- 1p (32 +p+2)(p—1)p?
3. (12122) 1+ 1) —1)p? 0 —1)%p?
ol (121%12) s+ 1—-1p so—1—-2)p
5. (1%3) Lp+1)%(p-1p Lp+1)(p—1)p?
6. (1%13) s(p+1p $(p—1p
7. (142) s+ 1)(p—1p 5(p—1)p?
8. (1%1%) (p+1)p (p—1p
9. (1°) p+1 P

Proof. This is an elementary computation, as noted in [BCF21, Lemma 2.3|, in which each
subsequent row is obtained from the previous one. We give a proof for d = 6 here, assuming
the results in the previous rows of the table. To obtain the result for d < 6 — or indeed
any d value if one is patient — one can use the same idea.

Let f(z,z) be a degree 6 binary form over F,, up to scaling. We first consider all
cases in which f has a multiple root but no simple root, which are precisely Types 2 — 9
above. Several of these can be calculated via combinatorics alone, beginning with Case 9,
where f has a sextuple root, or factorization type (1°). There are exactly p + 1 such roots,
corresponding to the p+ 1 distinct linear factors up to scaling, so we have p+ 1 forms up to
scaling. Case 8 is similar: to give a form of type (121%) up to scaling, it suffices to identify
a distinct linear factor for each root. Since the multiplicities are different, order matters,
giving (p + 1)p possibilities. Types 4 and 6 ((121212) and (1313) respectively) are similar,

p+1

but order does not matter, so there are (p'gl) and ( 5 ) possibilities, respectively.
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To deal with Type 7, (142), we use the d = 2 row in the table to determine how many
binary quadratic forms there are up to scaling, and multiply this by p + 1, the number of
possible 14 factors. Similar arguments work for (133) and (124), using the result for degrees
3 and 4.

The case of (1x) is the most involved, so we break the calculation down into cases
based on the number of distinct simple roots f has, i.e. the number of 1’s appearing in its
factorization type. If f has 6 distinct simple roots, there are (p ng) possibilities for f. It
is not possible to have exactly 5 simple roots, so we move to the case of 4 distinct simple
roots times a quadratic which has no double roots. There are (pII)NQ’O possibilities when
the quadratic is irreducible and (Z) N> 2 when the quadratic has a double root. Note there is
one fewer linear factor to choose the 4 simple roots from, since they must avoid the double
root of the quadratic factor.

Continuing along this line, we find

p+1 p+1 P p+1 P
Ngq1 = N- N- N: N:
6,1 (6 >+<4 > 2,0+<4> 2,2-1-( 3 3,0 T 3] V32
+1 -1
+ <p 5 >N4,o + <§> (Na2 + Nya) + <p 5 >N4,3

+(p+1)Nsg+p(Ns2+ Ns3+ Nss)+ (p—1)Ns 4,

which may be computed via computer algebra software; an implementation is included in
the GitHub repository associated to this paper [BK21b, SEC_rho36_23Aug21.ipynb|. To
conclude, we recognize that Types 1 — 9 are precisely those f possessing a root. Therefore

we have
6 d
Ne,o = (ZPZ> - ZNG,J'
i=0 j=1

The same strategies work for computing each NéJ for the monic case. The only differ-
ences are that there are p choices of linear factors, rather than p 4+ 1, due to the monic-
ity assumption, and that the appropriate monic quantities N/, are used in place of Ng;

throughout. O

Proof of Lemma 4.5.6. Let ng; (resp. n&’i) denote the proportion of binary degree d forms


https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
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f(z,2) over F, up to scaling by F; (resp. f(z,2) is monic) having a factorization type

corresponding to ¢ in Lemma 4.7.1. By our earlier observations,

- Nai o = Ny,
,i - d AR d,’i — 4 -
D=0 p
These values are precisely those in Lemma 4.5.6. O

Remark 4.7.2. There is no serious obstacle to extending Lemma 4.7.1 and thus Lemma
4.5.6 to higher degrees. In fact, one would likely have to do so in order to compute exact

formulas for p,, 4 when d > 6.

Remark 4.7.3. Let ng; (resp. n),;) denote the proportion of degree d forms f(xz,z) €
[F,[x, 2] which possess at least one simple root. Writing 741 = 74,1(p) and taking limits as
p,d — 0o, we find

1
lim lim 7g3(p) = lim lim n;,(p) =1 — - = 0.63212.
’ e

d—00 p—00 d—o00 p—0

To see why, consider the case of monic forms; that of forms up to scaling follows from the
same argument. We first observe that as p — oo, the proportion of forms with a multiple
root goes to 0, so we may safely ignore these when considering the large p limit.

We then count forms with at a root by inclusion-exclusion. There are p¢ = p - p¢!
choices of f = (x — a)g for g monic of degree d — 1, but this double counts those of the form

f=(z—a)(x—p)h for a # B and h monic of degree d — 2, of which there are seen to be

(g) p?=2. Continuing in this manner, we find

11 1
Taking the limit as d — oo, we obtain Z(—l)”l,—' = 1 — —, as seen from the Taylor
, J! e
j21
expansion of the exponential function.

This is related to the proportion of permutations in Sy possessing at least one fixed
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point, which is well known to approach 1 — % as d — oo. For much more, and results on

the density of polynomials with a fixed number of roots, see [BCFG22].

4.8 Explicit formulas for rational functions

(

(1296p57 + 3888p°% 4+ 9072p°° + 16848p°* + 27648p°% + 39744p°2 + 53136p°" + 66483p°°
+80019p*2 +-93141p*® + 107469p*7 +120357p*% +-135567p*° + 148347p** +162918p*% + 176004p*?
+190278p*" + 203459p° + 218272p3% + 232083p°% + 243639p%7 + 255267p>° + 261719p%°
+264925p%% + 265302p°° + 261540p%2 + 254790p°" + 250736p°0 + 241384p2° + 226503p%8
+214137p27 +195273p2% +170793p2° +151839p2% +136215p2° +118998p?2 +105228p>" +94860p2°
+ 80471p® + 67048p*® + 52623p"7 + 40617p'C + 28773p'° + 19247p'* + 12109p'3 + 7614p'?
+3420p' ! + 756p10 — 2248p° — 4943p% — 6300p7 — 6894p° — 5994p° — 2448p* — 648p> + 324p?

4+ 1296p + 1296) / (1296(p12

—pu+p9—p8+p6—p4+p3—p+1)(p8—p6+p4—p2+1)
X (105+p5+p4+p3+p2+p+1)(p4+p3+p2+p+1)3(p4—p3+p2—p+1)

X (P2 +p+ 1) (p2 + l)p“) s

(144p57 + 432p°% + 1008p°° + 1872p°% + 3168p°2 + 4608p°2 + 6336p° L + 8011p°° + 9803p*°
+11357p*® + 13061p*7 + 14525p*¢ + 16295p2° + 17875p** + 1965493 + 21212p*2 + 23030p*!

+ 24563p*0 + 26320p°° + 27771p%% + 20711p°7 + 30859p3% + 31135p3° + 31525p54

+31510p°% + 20436p°2 + 28502p°" + 28616p°° + 26856p2° + 25087p2% + 25057p27

+23041p2% + 19921p2% + 18119p%* + 16287p%> + 13798p?2 + 12140p2* + 10844p2° p=2 (mod 3)
+9191p™® + 7480p"® + 5839p'7 4 4265p% + 2909p° + 1943p'* + 1109p*3 + 590p'2

10 144p% — 87p® — 84p” — 678p% — 618p° — 144p* — 168p> — 156p2 + 144p

+604p't 4+ 372p
+144)/(144(p12 o+ = % =t 40 1) (0° -0 4t -0 1)
x (P 4p 4 pt P+ ) (P P 2 1) (0 P 0% p 1)
x (P*+p+1) (p2+1)p11),

(4.8.1)

(72p®* + 216p®* + 432p* + 720p" + 1008p*° + 1224p*? + 1260p*® + 1296p>”
+1152p?% + 1080p%° + 1068p>* + 1032p>3 + 1104p*2 + 1092p** + 1116p*°
+1089p™° 4 1104p™® + 1088p!” + 1126p6 + 1149p*® + 1017p** 4 906p*® + 830p*2
+ 634p't + 360p10 + 441p° + 378p° + 194p” + 280p° + 327p° + 93p* + 36p°

+60p2 —36p — 72) [ (720" = p° 40" = P2+ 1) (0" + 97+ 2 4 p+ 1)
X (=P 40— p ) (PP + 1) (0 + 1))
(4.8.2)
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(72p* + 180p°® + 396p*” + 684p°° + 1044p* + 1392p>* 4 1608p>*
+ 1824p%2 + 1848p2* + 1872p%° + 1845p™? 4 1860p*® + 1844p*7 + 1882p'6
+1905p*° + 1845p™* + 1878p'3 + 2018p'? + 2110p*! + 2124p*° + 2349p°
+ 2214p° + 1850p" + 1504p° + 1119p° + 525p* + 216p° + 96p* — 36p

—72)/(72(}98—pG+p4—p2+1)(p4+p3+p2+p+1)3(p4—p3+p2—p—|—1)
X (p2+p+1)(p2+1)p2)
(4.8.3)

(72p* + 108p®® + 288p*” + 432p°® + 648p*° + 852p** + 960p>* + 1104p**
+1092p? + 1116p%° 4 1089p"® + 1104p'® + 1088p' ™ + 1126p'°
+ 1149p* + 1089p™* + 1122p'3 + 1262p'? + 1354p*! + 1368p*° + 1593p°
+1530p% + 1202p" + 1000p° + 759p° + 309p* + 108p> + 60p* — 36p

—12) [ (200° —p° + 9 =P+ ) (" 07+ PR+ p+ 1) (0 P PP -+ 1)
< (0 + 1) (p+ 1p’)

(4.8.4)

(8191750 +2691p*° +6309p*8 +12573p*7 +21573p*C + 32895p*° + 45387p** + 59238p*3 + 73080p*?
+86742p*! +100547p*0 +114472p3° +128439p38 +141579p°7 +157131p>30 +169247p>° +184741p>*
+ 203094p>3 + 219096p32 + 237726p°" + 261800p°C + 276904p2° + 283923p>% + 291645p27

+ 286281p2% + 267993p2° + 254943p3* + 240039p2° + 222678p22 + 208152p>" + 198396p>°

+183383p*% +170848p"8 +156267p" 7 +142677p" ¢ +128205p"° +115607p'* +101365p 2 +86670p'2 P = 1 (mod 3)
+73512p 1 +57564p 0 +39824p” +25201p° +13608p7 +2430p° — 2106p° — 864p* — 1080p° — 540p°>

+ 1296p + 1296) / (1296(1012 "+ P+ —pt 4 -t 1) (ps -8+ —p% 4 1)

x (1% +p% 40t 4% 402 4o+ 1) (p 40P 402 4 p 1) (00 P P2 —p 1)

X (p2 +p+ 1) (p2 + 1)p4) )

(91p5° + 299p*° 4 701p*® 4 1397p*7 + 2420p%6 + 3767p*° + 5347p** + 6982p*° + 8684p*?

+ 10358p*t + 12035p*0 + 13648p°° + 15243p>8 4 17183p>7 + 18907pC + 19903p>° + 21877p>*
+ 23878p°3 + 24684p°2 + 26774p>" + 30344p30 + 31608p2° + 32719p%8 + 34705p27 + 34273p2C
+31873p2° + 30647p>% + 28815p23 + 26470p32 + 24668p2L + 23516p2° + 21719p° + 20152p'8
+18367p"7 + 16793p* % + 15005p° + 13607p'* + 11765p"> + 10094p'2 + 8524p't

10 4 4464p° + 3081p° + 1788p7 + 330p° — 186p° — 168p° — 156p> + 144p

+ 6708p
+144)/(144(”12’pu*PQ*P8+P6*P4+P3*P+1)(P87p6+p47172+1)

x (1540 40+t 402 4o+ 1) (0t 40 402 o+ 1) (60 -0 0% p 1)

x (P +p+1)(»° +1)p4> :

(4.8.5)
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(45p°° — 18p'? + 27p'® + 18p'" — 36p'® — 12p" + 12p"*
+36p'* — 27p"t — 6p'% + 5p” — 30p° + 69p” — 29p° p=1 (mod 3)
— 39p° + 81p* — 120p + 60p> + 108p — 72) / 72p20,

(5p20 _ 2p19 +3p18 +2p17 _4p16 +4p15 _4p14+4p12 _3p11 _|_2p10 b= 2 (mOd 3)
—3p”+2p%+5p” — 13p° +9p° +9p* — 24p® + 12p* +12p - 8) / 8p2°,

(72p* + 144p®" + 288p?® + 504p®° + T44p** + 888p*3 + 1068p*2
+1092p?* + 1116p%° + 1089p'? + 1104p'® + 1088p*™ 4 1126p'°
+1149p™ + 1089p™* + 1122p™% + 1262p*2 + 1354p*! + 1368p'° + 1665p°
+ 1566p° + 1346p” + 1144p° + 903p° + 417p* + 180p° + 96p* — 36p

~72) / (72(p8 St P ) P P+ 1) (0 PP R 1)

x (P*+1)(p+ 1)p2)

(4.8.7)

(91p3° +246p2° +478p%% + 850p%7 +1262p%% + 1680p2° + 1902p>* + 2202p23 + 2242p22 + 2271p%t

+2243p20 4+ 2270p"° + 2214p'8 + 2185p'7 + 2299p1 ¢ 4 2142915 + 2228p'* + 2570p"> + 2512p'2
+2701p" ! 4 3300p"° + 2984p° + 2348p% + 2323p7 4 1363p° + 288p° + 186p* + 60p° — 264p> p= 1 (HlOd 3)

*72P+144)/(144(P8*P6+P4*P2+1)(P4+P3+P2+P+1)3(P4*P3+P2*P+1)

X (P2 + 1)(17 + l)pa) ;

(91p3° +246p2° +478p2% + 850p7 4+ 1294p2% + 1792p2° + 2206p>* + 2410p2> + 2578p22 + 2671p>"

+2635p20 4 2574p"0 + 2590p'8 + 2769p 7 + 2667p ¢ + 2286p'° + 2580p'* + 2826p"> + 2160p'2
+2781p't + 3852p'0 + 3096p° + 2628p° + 3195p7 + 1827p° + 432p° + 522p* + 252p° — 360p°

*72P+144)/(144(138*P6+P4*P2+1)(P4+P3+P2+P+1)3(P4*P3+P2*P+1>

X (P2 + 1)(p+ 1)p3) ;
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4.8.1

T6 =

7 =

(819p43 +2376p*2 + 4599p*1 + 7424p*° + 11091p3° + 14515p5% + 16101p°7 + 19341p%6

+19532p°% + 19542p3 + 20605p°2 + 21042p32 + 21969p°1 + 25640p°° + 27075p2° + 25531p28
+26901p27 + 24399p2% 1 18864p2° + 19800p%% + 18900p2° + 16200p22 + 14580p" + 14148p2°

4 394p"8 4 468p'2 + 180ptt

+ 8478p % + 6102p*® + 3492p'7 + 1476p"% + 378p'° + 378p

— 864p 0 4 594p° + 2052p°% + 684p” + 3096p° + 4590p° + 1674p* + 648p> + 1080p% — 648p
8 6 4 2 4 3 2 3/ 4 3 2

- 1296)/(1296(;0 “% 4t = 1) (P T 1) (0t - PP+ 0P —p 1)

X (pZ + 1)(17 + 1)p16) )

(91p43 +300p*? + 607p*t + 1024p° + 1531p3° + 1903p>% + 2329p°7 + 2581p3°

+ 2404p3° + 2686p°* + 2725p°3 + 2166p°2 + 2497p° + 3216p>30 + 2739p%° + 294338
+3897p%7 + 3279p2% + 2544p2° + 2004p3* + 2676p>> + 1992p22 + 1908p3! + 1764p>°
+1134p*° + 630p*® + 324p'7 + 180p'% + 90p'° — 54p'* — 36p'3 + 180p'2 — 108p'!
— 288p'Y + 162p° + 180p% — 180p7 + 360p° + 558p° + 90p* + 72p> + 216p% — 72p

_144)/(144("8_96‘*‘1’4—P2+1)(P4+93+p2+p+1)3(p4—p3+p2 —p+1)

X (p2 + 1)(p + 1)1716) )
7; values (see Lemma 4.5.19)

(60" + 3" + 5% + 4p + 4) (3" + b2+ 2p +2) [9(p" + 9"+ +p + 1)

(6p* +3p® +3p” +4p+4) (3p” +2)(p + 1)/9(p4+p3 +pP+p+1)°

(72p'® — 48p'® + 12p'* 4 36p"* — 27p"" — 6p™° + 5p” — 30p°
+69p” — 29p° — 39p° + 81p* — 120p* + 60p* + 108p — 72) / 72p"7

(8p16 _ 4p14 + 4p12 _ 3p11 + 2p10 _ 3p9 + 2p8 + 5p7
—13p5 + 9p° 4+ 9p* — 24p3 4+ 12p% + 12p — 8) /8p17,

186

p=1 (mod 3)
p=2 (mod 3)
(4.8.9)

p=1 (mod 3)
p=2 (mod 3)
(4.8.10)

p=1 (mod 3)
p=2 (mod 3)

(4.8.11)



R =

T9 —

4.8.2

(144p'" — 120p'® + 60p'® — 12p"* + 36p'® — 63p'?
+ 21p* 4+ 11p'0 — 35p° + 99p® — 98p” — 10p° + 120p°
— 201p* + 180p° + 48p? — 180p + 72) / 72p18,

(16p17 _ 8p16 _ 4p15 + 4p14 4 4p13 _ 7p12 4 5p11 _ 5p10

+5p° + 3p° — 18p7 + 22p° — 33p™ + 36p® — 20p + 8) / 8p's,

(144;744 +336p*% + 600p*2 + 936p*" + 1416p*° + 1704p>° + 1968p>8 + 2160p°7 + 2328p3°
+2136p3° + 2280p°% + 2472p°3 + 2592p%2 + 2784p°" + 3115p3C + 3030p%° + 2806p°°

+2650p%7 + 2366p2% + 2256p2° + 1998p3* + 1914p?% 4 1642p2? + 1335p3! + 827p2°

12 gq 11

+566pY + 246p*8 4+ 25p17 — 29p16 4+ 6p?° — 52p'* + 98p*3 — 80p 83p

+276p'0 + 200p° + 20p% + 523p7 + 259p° — 288p° — 54p* + 12p> — 264p% — 72p

+144)/(144(p8_P6+p4—P2+1)(1’4+P3+p2+p+1)3(p4—p3+p2—p+1)

X <p2 + 1)(10 + 1)1718) )

(144p44 + 432p*3 4+ 792p*? 4 1224p* + 1800p*0 + 2184p>° 4 2352p°% + 2640p%7 + 2712p°0

+ 2424p3° 4 2472p3% 4 2664p>2 + 2592p°2 4 2880p°T + 3403p30 + 3414p2° + 3286p22

+3226p27 + 2878p2% + 2656p2° + 2494p>? + 2122p23 + 1786p22 + 1447p2! + 835p20

+390p"° + 238p'8 + 120p'7 — 45p'6 — 138p'° + 108p'* + 162p'° — 432p'? — 99ptt

+ 540p'0 — 72p% — 180p% + 819p” + 243p°% — 432p° + 90p* + 108p° — 360p% — 72p

+144)/(144(p8,p6+p4,p2+1)(p4+,,3+p2+p+1)3(p4,p3+p2,pH)

x (P2 + 1)(17 + 1)1718) )
¢; values (see Lemma 4.5.21)

(10p° — p® +3p — 6) (2p> — 3p +3) (p + 2)/36p6,

(2° +p* +p — 2) (2 —3p+2)(p+1)/4p6,

187

p=1 (mod 3)
p=2 (mod 3)

(4.8.12)
p=1 (mod 3)
p=2 (mod 3)

(4.8.13)
p=1 (mod 3)
p=2 (mod 3)

(4.8.14)



(76p° — 14p° + 43p* — 90p* + 21p — 36p + 36)
x (202 — 3p+3)(p+ 2)/216p9,

=
Il
—_

Il
O

(4p° + 2p° + 3p* — —3p2—4p+4)(2p2—3p+2)(p+1)/8p9, p

5p* + 3p® +6p° +dp+4) (p* + 3p* +2p + 2 /9p +p® +p? +p+1) p=1

{ (3p" +3p® + 6p* + 4p +4) (3p° +2) (p + 1 /9p +p*+pP+p+1)?, P

=2
(20" + 4" — 6p° + 3p° + 2p* — 4p® + 2p* + 9p — 6) /6p", p=1
—2p5 4 pP + 2p* — dp® + 2p% + 3p— 2) /2" p=2
P p + p p” +2p” + op — P,
(20p"" +20p'° — 40p° + 54p® — 37p" + 27p°
4 2 11 p=1
+10p* — 3p3 + 21p% — 72p + 36) /36p ,
11 7 6 5 4 3 2 11 =2
(4p —2p% —p" +7p% — 4p® —6p* + 13p> — 3p 78p+4)/4p , p
(432p37 +2160p3% + 3888p°% + 6264p°* + 9720p°% + 12528p>2 + 13392p>"
+ 16848p°Y + 19440p%° + 21168p28 + 22842p>7 + 25920p2% + 24948p?° + 23004p>*
+ 22356p>> + 20907p%2 + 19548p2" + 19179p2° + 20276p'° + 19569p'® + 20185p17
+17433p"% + 16929p'° + 13646p'* + 10200p'3 + 7753p12 + 8118p't + 5301p1° p= 1
+5336p° + 6501p° + 4741p" + 1665p° + 2547p° + 450p* — 882p> — 540p? + 108p
3
—648)/<1296(p8 %+t —p7 + 1)(104 +9° +07 +p+ 1) (p4 - +p°—p+ 1)
X (P2 + 1)(17 + 1)p10) ,
Oy =
(144p37 + 432p36 4 720p3° 4 1080p>* + 1656p>2 + 1872p32 + 1872p3! + 2160p30 + 2448p2°
+ 2448p2% + 2826p27 + 3264p2° + 3252p2° + 3036p2 + 2964p2> + 2803p>2 + 2592p2t
+2515p20 + 2644p° + 2665p 8 + 2389p17 + 2221p'0 + 2041p'% + 1414p'* + 976p'% + 817p'2 p= 2
+ a74p™ + 229p'0 1+ 480p° + 453p% + 297p" + 453p°% + 387p° + 66p* + 30p° + 36p2 — 84p
3
772)/(144(1087176+p47p2+1)(p4+p3+p2+p+1) (p47p3+172 7p+1)
X (P2 + 1)(? + 1)1710) ,

188

(mod 3)

(mod 3)

(4.8.15)

(mod 3)

(mod 3)

(4.8.16)

(mod 3)

(mod 3)

(4.8.17)

(mod 3)

(mod 3)

(4.8.18)

(mod 3)

(mod 3)

(4.8.19)
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Small primes p (see §4.5.6)

6310449475517862285160329262318727705474373018364567 7893972
64083174787206696882429945655801281538844149896400159815375

~ 0.98472

(4.8.20)

7877728357244577414025901931296747409682076255666526984515273526822853
7890643570620106747776737292792780623510727026420779539893772399701475

~ 0.99836

(4.8.21)

3122673715489206150449285868243361150392235799365815266879438393279346795671

3123410013311365155035964479837966797560851333614271490136481337080636454180 0.99976

(4.8.22)

9196796457678318869139089936786462146535210039832850454297877482020635073857159758299 0.999992
9196865061587843544830089041473808798913128587425995645857828572610918436035833907250

(4.8.23)

171128647900820194784458101787952920169924464886519055453844647154184805036447476640345735119 0.999998
~ U.
171128889636157060536894474187017088464271236509977199491208939449738127658679723715588944500

(4.8.24)

__ 84000121343283090388653356431804100707331364779290664490547105768867844862712134447832720508750281 ~_ 0.9999996
~ U.

84000151671513555191647712567596101710800846209116830568013729377404991150901973105093039939237500

(4.8.25)
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Chapter 5

Mertens’ theorem for Chebotarev

sets

5.1 Introduction

The Chebotarev density theorem (c.f. Theorem 2.3.6) is a deep generalization of the prime
number theorem; it contains Dirichlet’s theorem for primes in arithmetic progressions as a
special case. In [Wil74], Williams proved Mertens’ theorem for primes in arithmetic pro-
gressions. Here, adapting Williams’ method, we generalize Mertens’ theorem to Chebotarev
sets of prime ideals in a number field. Given a Galois extension of number fields £/ F with

Galois group G := Gal(E/F), and given a conjugacy class C' C G, we prove

1 o—1(B/F0)\ FO#C
11 <1 — N(P)> ~ o s . as T — oo, (5.1.1)

N(P)<z
FI‘ObP:C

where P runs over all primes of F' which are unramified in £ and with absolute norm
bounded by x. In addition, we provide a power saving error term and a description of the
constant e~ 7(E/FC),

Taking £ = F = Q, (5.1.1) specializes to Mertens’ theorem [Mer74]; i.e.,

677

1
H (1 - > ~ , as T — 00, (5.1.2)
P log

p<z
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where v is the Euler constant. See, for example, [MV06, Theorem 2.7] for a modern discus-
sion and proof of (5.1.2).

Further, taking a cyclotomic extension F = Q({3) D F = Q, the Galois group is
isomorphic to (Z/bZ)*. Picking the conjugacy class corresponding to some element a €
(Z/bZ)*, and letting p(b) := #(Z/bZ)* be the usual totient function, (5.1.1) specializes to

Williams’ theorem [Wil74, Theorem 1]

1 e*’Y(a,b) 1/p(b)
H <1—p> ~ < Togz > ,  as T — 0. (5.1.3)

plw
p=a mod b

Our result relies heavily on work of Rosen [R0s99, Theorem 2], who proved the Mertens-
type analog of Landau’s prime ideal theorem. Taking F = F' D Q, (5.1.1) specializes to

Rosen’s result; i.e.,

p— ¢ 14
H ( - N(P)> ~ og as r — 00. (5.1.4)
N(P)<z

We summarize these cases, in analogy with the corresponding prime number theorems, in

Table 5.1.1 below.

5.1.1 Notation

We use s to denote a complex variable and write s := o+t for its real and imaginary parts.

For an algebraic number field F/Q, let Op be its ring of integers. Given a non-zero
integral ideal I <9 Op, we use Np(I) := #(Op/I) and ¢p(I) := #(Or/I)* to denote its
absolute norm and totient, respectively. We will take X to be the set of maximal ideals of
Or.

The Dedekind zeta function of F' is denoted by (r(s), and sp will stand for its residue
at the pole s = 1.

Given a subset S C ¥ and a real number z > 2, we define S(z) :={P € S: Np(P) <

x}. If S has a natural density, it will be denoted by 0(.S) as in Definition 2.3.2.
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Table 5.1.1: Prime number theorems vs. Mertens-type theorems

Trivial extension |Prime number theorem Mertens’ theorem
_ _ 1 -
E=F=Q ZlNloggE;x H<1_5>Nligx
p<z p<z
Cyclotomic extension| Dirichlet’s theorem Williams’ theorem
_ _ 1 1 () \ 1/ (b)
E=QG).F=Q | Y 1~ I (-1~ (=)
p<z p<z
p=a mod b p=a mod b
Number field Laundau’s theorem Rosen’s theorem
_ 1 VB
E=F2Q > 1~ I1 (“W)N?@@
N(P)<z N(P) <=z
Galois extension Chebotarev’s theorem Equation 5.1.1
#C 1 —v(E/F,C) #C/#G
E2F2Q > I~dows | I (1_N(P)>N<6 logz )
N(P)<z N(P)<z
Frobp=C Frobp=C

Throughout the chapter, E/F will be a Galois extension of number fields with Galois
group G := Gal(E/F), and C' C G will be a fixed conjugacy class. The letters Q and P
stand for elements of g and Y, respectively. Moreover, ) will always be a prime of F

above P. Their respective residue fields are denoted by Fg and Fp.

E D Q FQ
G=Gal(E/F) ‘ ‘ Gal(F /Fp)
F > P Fp

As in §2.3, we denote by Ig < Dg C G the inertia and decomposition groups of a prime
Q@ above P. Choosing another prime above P, the corresponding inertia and decomposition
groups are G-conjugates of I and Dg. Recall from Definition 2.3.5 that a Frobenius element
Frobg € Dg has image in Gal(Fg/Fp) the cyclic generator. Frobenius elements are only
defined modulo the inertia subgroup. Recall that P € ¥ is unramified in F if and only if
P does not divide the discriminant ideal A := Ap/p. We will denote the set of unramified
primes by Sg/p C Y. For an unramified prime, P, we denote by Frobp the (well defined)

conjugacy class of Frobenius elements at all primes @ above P. Given a conjugacy class
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C C G, let C be the set of unramified primes in X with Frobenius conjugacy class equal
to C.
Let p: G — GL,(C) be a representation of G with underlying vector space V. We will

use X to denote the trace of p. Given any prime P € ¥, and @) € ¥ above P, let
Lp(s,x,F) =0 >1, (5.1.5)

be the Artin Euler factor at P. The Artin L-function of y is defined for ¢ > 1 by the
Euler product L(s, x, F) := [[pex, Lr(s,x; F). We will use the facts that L(s,x, F') has
a meromorphic extension to the complex numbers, and if y is a nontrivial character then
L(1,x, F) # 0. When a Galois extension E/F is fixed, we abbreviate L(s, x, F') to L(s, x)-

For a comprehensive introduction to the topic of Artin L-functions, see [MM12].

5.1.2 Main result

Now that we have the necessary notation in place, we are ready to state our main result.

Theorem 5.1.1. Let E/F be a Galois extension of number fields, with Galois group G :=

Gal(E/F), and let C C G be a conjugacy class. Then,

1 B/ Re)\ FO#E 1
11 <1‘N<P>>:< log 2 ) +0 (g (5.1.6)

PeC(x)

when © — 00, and the implied constant depends on the extension E/F and C. Furthermore,

E/F,C)

the constant e s given by

(E/FC) 1 a(E/F,C;P)
- M =T 1———— q.
e e H < N(P)) (5.1.7)
PeXp
where v := v + log »xp, and
-1, P A,
o(E/F,C;P)=q %% _ 1, Frobp = C, (5.1.8)

#C ’

-1, Frobp # C.
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A result similar to Theorem 5.1.1, of which we became aware after finishing our work,
appears in an unpublished survey article of Bardestani and Freiberg [BF, §8]. The approach
sketched there follows an adaptation of a proof of Mertens’ Theorem due to Hardy, while our
method closely follows the strategy of Williams and obtains both an improved statement

for the error term and a description of the constants involved.

Remark 5.1.2 (Error terms). The error term O (W) in (5.1.6) agrees with that
given by Williams [Wil74]. In the case of a cyclotomic extension Q((,)/Q, the error term
may be improved by studying zero-free regions of Dirichlet L-functions; see [LZ07]. As-
suming the generalized Riemann hypothesis (GRH), one can improve this error term all
the way to O (W) [LZ07, Theorem 4]. Assuming GRH, one also obtains similarly
sharp error estimates for (5.1.4), Mertens’ theorem over number fields; see [Leb07, Theorem
7]. In order to carry these improvements to the error term in (5.1.6) to the general case, we
need faster convergence of L(1, x) for irreducible non-trivial y than what we use in Theorem
5.2.1 (see [R0s99, Theorem 5]). This was studied in a recent paper of Garcia and Lee [GL22,
Theorem B].

5.1.3 Layout

In §5.2, we summarize the work of Williams and Rosen and prove some supporting lemmas.

In §5.3 we prove Theorem 5.1.1. In §5.4 we provide some examples.
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5.2 Background

5.2.1 Williams’ argument

Consider momentarily the case of a cyclotomic extension. Let b be a positive integer, and

choose 0 < a < b coprime to b. In [Wil74], Williams proved

1/¢(b)
1 e—(ab) 1
| I 1—-) = _ . 2.1
( p) ( log = > + O ((loga:)l/w(b)ﬂ) (5.2.1)

p<w
p=amod b

Furthermore, he was able to give a formula for the constant y(a,b) in terms of
e the Euler constant 7 := limg_,;+ <C(s) - S_%),
o the ramified primes of the extension Q((y)/Q, namely J[,,(1 — p )L =b/p(b);

e the values at s = 1 of the Dirichlet L-functions L(s, x), for all non-trivial irreducible

characters x of the Galois group Gal(Q(¢)/Q) = (Z/bZ)™;

e the values at s = 1 of some auxiliary functions K (s, ), attached to all non-trivial

irreducible characters x of the Galois group Gal(Q(¢)/Q) = (Z/bZ)*.

Explicitly,

X(a)
e—’y(a,b) — e—’YL H <K(17X)> i (522)

o0 L\ T

The crux of the proof is to use the orthogonality relations between irreducible characters

of finite groups to write

NG Nl
11 (1—p> =1I1111 (1—p> , (5.2.3)

plz X |p<z
p=a mod b

where x ranges over all the irreducible characters of (Z/bZ)*. Afterward, he defines an
arithmetic function k, (n) for each x that allows one to factor out the Euler factors of the

Dirichlet L-function as follows

1\ X(P)
(1-3)
b

(1 - X;p)> (1 - kx;m)l . (5.2.4)
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Defining

ps

-1
K(s,x):= HKp(s, X) = H <1 - kX(p)) , foro >0, (5.2.5)

the argument then reduces to calculating the asymptotics as x — oo of the partial products

I zr )" and ] Kp(1,x).

p<x p<z

When x = xp, the calculation follows from Mertens’ theorem. For non-trivial characters,
the result follows by standard methods. See [Wil74] for additional details.

Back to the general case of an arbitrary Galois extension of number fields E/F, with
Galois group G, and C' C G a fixed conjugacy class, essentially the same argument works
when all the irreducible representations of G' are one dimensional (e.g. the case of abelian
extensions). However, for higher dimensional representations, we are led to consider a linear

approximation of Artin’s L-function, which we call M (s, p) for alphabetical reasons.

5.2.2 Rosen’s Work

Our goal is now to extend the tools used by Williams to the case of arbitrary Galois
extensions. The following theorems of Rosen in [Ros99] gives estimates of analogues of the
partial products of Lp(1,x) and (r(s) as above.

Rosen’s generalization of Mertens’ theorem is analogous to the so called prime ideal
theorem, Landau’s generalization of the prime number theorem to prime ideals in number

fields.

Theorem 5.2.1 (Theorem 2 in [Ros99]). Let F/Q be an algebraic number field. Then,

I1 (1 - N(1P)> - le;;; ) <10g12x> : (5.2.6)

PEZF(JZ)

as x — oo. Furthermore, vy = v + log»p, and the implied constant in the error term

depends only on the number field F'.

Rosen’s proof of Theorem 5.2.1 extends to a general class of Dirichlet series based on

F (Theorem 4 in [R0s99]). In particular, he proves a Mertens-type theorem for Artin L-
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functions based of F', see [Ros99, Theorem 5]. We reformulate the original statement in the

equivalent case of an irreducible representation.

Theorem 5.2.2. Let E/F be a Galois extension of number fields with Galois group G. Let

x be a mon-trivial irreducible character of G. Then,

1 1
Il Zrx)'=+—=+0xr () : (5.2.7)
PeSe () L(1, x) log =

Proof. We are specializing [R0s99, Theorem 5] to the case of an irreducible and non trivial

character. In Rosen’s notation, p = x, k = 0, and « = L(1, x). O

5.2.3 The M-function

Let P € ¥F, and let p be an Artin representation of G. Let
fx.p(T) := det (I — p(Frobg)|,1,T) € C[T] (5.2.8)

be the characteristic polynomial of p corresponding to P via any Frobenius element. Denote

the trace of Frobenius at P by
X(P) = Tr p(Frobgq)|, 14 (5.2.9)
for any prime @ € X above P € Y. Isolating the linear term, we have
fx.p(T) =1 = x(P)T + g, p(T)T?, (5.2.10)

where g, p(T') € C[T]. Factoring out the linear term, we may write

9x,p(T)T?
Taking the change of variables T'= N(P)™%, we obtain
(1 XD\ g p(N(P)*)  \7
w0 = (1= ps) (U v amy) 0 h 62
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Since —logy(py(|T]) = o, we have 0 < [T[< ﬁ < 1 when o > 1. Define
&y = sup ( sup |gX7p(T)\> (5.2.13)
PeXp \T€0,1/2]

to give an upper bound g, p(7T) < &,. This is well defined since g, p(T") depends only on

the class of Frobg and the set of the g, p is finite.
Definition 5.2.3 (M-function). Given P € ¥ and p and Artin representation of G with

character , define the M-Euler factor at P by

x(P)
N(P)s

-1
Mp(s,x) = <1 - > , foro>1. (5.2.14)

We define the M-function as the Euler product M (s, x) := H Mp(s,x).
PeXp

Note that M (s, x) defines an holomorphic function in the half plane o > 1. When p is
one dimensional, the polynomial R, p(T') is zero, and in particular L(s, x) = M (s, x). For
higher dimensional representations, this is certainly not the case. We think of M (s, x) as a
linear approximation of L(s, x), at least on the level of local factors.

As a preliminary step in the proof of Theorem 5.1.1, we prove a Mertens-type theorem
for M(s,x). Though it would be interesting to further explore the analytic properties of
M (s, x), we restrict ourselves to applications of M (s, x) to the proof of the main theorem.

When the representation p is one dimensional, x(P) is always a root of unity. For
higher dimensional representations, x(P) is a sum of roots of unity and |x(P)|< x(1). In
particular, it may be the case that y(P) = N(P). To deal with these technicalities, we

restrict to a cofinite subset S of Xz over which this inconvenience disappears. Define
S :={P € Sg/r : [x(P)|< N(P), for every irreducible character x of G}. (5.2.15)

Lemma 5.2.4. Let E/F be a Galois extension of number fields with Galois group G. Let

X be a non-trivial irreducible character of G and let S be as in (5.2.15). Then,

M.
I1 MP(l,x)”:iRS’X Sx oL, (5.2.16)
L(1,x) log =

PeS(x)
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when x — oo and the implied constant in the error term depends on the extension E/F.

Furthermore, the constants Rs, and Ms , are given by

Rsy =[] Re(1,x)" and Ms, = J[ Lr(1,x). (5.2.17)
PeS PeXp-S

Proof. Factoring the linear term of the characteristic polynomial of Frobenius

2
Sx.p(T) = (1 =x(P)T) (1 + %) : (5.2.18)

and define,

gX,P(N(P)—l)N(P)_2> _ <1+ N(gx,p(N(P)‘l) > (5.2.19)

Re(t) = (14 s S OEE P)(N(P) ~ x(P)

Combining (5.2.19) with (5.2.12) and (5.2.14) gives us that

LP<17X) - MP(17X)RP(17X)_1' (5220)

Taking a product over P € S(x) of the above expression, we get

H Mp(1,x)~ H Lp(Lx)™" ] Re(x)™" (5.2.21)

PeS(x PeS(x PeS(z)

We can use Theorem 5.2.2 to understand the product of Lp(1,x). Doing so, one sees

H Lp(l,x) ' = H LP1X - H Lp(1,x)

PES PGEF PGEF(x)fS(:r)

- II Zrax (L(11,><)+OX’F (béz» (5.2.22)

PeXp(xz)—S(x)

What remains is to understand the product over Rp(1,x)7!, i.e.,

-1 _ gx,P(N(P)_l) -1
PeljS[(x Re(l™ = PEI_S[(x) (1 * N(P)(N(P) — X(P))> ) (5.2.23)
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and to show the product of Rp(1,x)~! over all P € S converges, say to

Rs, =[] Rr(1,x)"".

PeS
We have, for large enough z,
H Rp(1,x)"' =Rsy [[ Rr(Lx). (5.2.24)
PeS(x N(P)>z

To understand the rightmost term above, take logs and expand via Taylor series as follows,

p(N(P)™!
log | [] Re(x)||=]| D log (1+N(1g I;\;(P()zxzp)o

PeS PeS
N(P)>z N(P)>x

I
=]
M

\_/9

-

=

N(P)>z j= 17 .
S:OI; N(PZM ()(N(%)'X(P))
gi; N(P)>xO<N(1P)2> :ij< <>>J:O<i>.

(5.2.25)

Where the first equality in (5.2.25) follows from the prime ideal theorem and partial sum-

mation. From (5.2.25) and the Taylor series of the exponential, observe exp (O (l)) =

xT

1+0 (%) This is sufficient to establish

1
Il Brax)=1+0 <) : (5.2.26)
N(P)>z r
and further
1
I[ Rr(t.x) ' =Rsy+0 (> : (5.2.27)
PeS(z) t

Finally, starting from (5.2.21) and substituting in both (5.2.22) and (5.2.27) appropri-

ately suffices to prove the lemma. O



201
5.2.4 The K-function

In this section, we investigate the analog of Williams’ K-function, defined in the case of

cyclotomic extensions by (5.2.4) and (5.2.5).

Definition 5.2.5 (K-function). Given P € ¥ and p an Artin representation of G with

character y, define

kx(P) := N(P)

1— < - ]’\Cf((];))) <1 - N(1P)> _X(P)] . (5.2.28)

The K-Euler factor at P is defined by

-1
Kp(s,x) = (1 — Z’?(PP))S) , (5.2.29)

and we define the K-function as the Euler product K(s,x) := [[peyx, Kpr(s, X)-

Note that |x(P)|< N(P), so Kp(1,x) is well defined and non-zero for every prime
PeXp.

To prove Theorem 5.1.1 it is enough to restrict the Euler product in the definition of K
to the primes in S.

First we show the truncated product J]pcg(,) Kp(1,x) converges to [[pes Kp(1,X)
quickly, in a precise sense. This is the statement of Lemma 5.2.9. To prove this, we will
need some intermediate lemmas. The following lemma is implicit in [Wil74] and will be

critical to the analysis of k, (p).

Lemma 5.2.6. Let a,b be complex numbers such that |a/b|< 1 and b > 2. Then,

o[-0 00 ] R ] e

While we omit the details of the proof of Lemma 5.2.6, we comment that it follows from
writing the left hand side as a doubly infinite series. We can then rearrange this series into
a power series in %, then use induction to show that the coefficients take the desired form.

The key application of Lemma 5.2.6 is the following estimate.
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Lemma 5.2.7. Let x be a d-dimensional irreducible character of G. Then for all P € S,

(5.2.31)

for some constant Cy > 0 depending only on d.

Proof. Fix P € §. The conditions of Lemma 5.2.6 are satisfied for a = x(P) and b = N(P).

Noting that |x(P)|< d, we have

[k (P)|=

=
&
<
&
|
=
1

=
=
=
3
+
-z
3
_|_
[\V]

)
dd+1) 1 d(d+1) &< (n—14d)!
= ( 2 NP

dd+1) 1 dld+1) = (n—1+d) 1 1
= +< D DR 2n>N(P)2'

n=0

The constant Cy is given by the expression inside the big parenthesis in the last inequality,

(%:du+&)§im—l+dﬂi

. 5.2.32
d! n! n ( )

n=0

To determine the convergence of the series, it is enough to notice that (n — 1+ d)! /n! is a

polynomial of degree d — 1 in n. O

Combining the estimate of Lemma 5.2.7 with the prime ideal theorem, we have the

following estimate on the tail of the infinite sum of |k, (P)|/N(P) over primes P € S.

Lemma 5.2.8. Let z > 0. Then

where the implied constant depends on the extension E/F.

Proof. Notice that when z is sufficiently large, all primes P with norm N(P) > z are

contained in S. This allows us to drop the requirement in the summation that P € S.
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By (5.2.31) we have

ky(P)| _ d*+d 1 1
<
Z NP) — 2 Z N(P)2 +Ca Z N(P)?
N(P)>x N(P)>x
for the constant Cj depending on the dimension of the representation associated to x

given above in (5.2.32). Of course, 1/N(P)3 < 1/N(P)? so it suffices to show that

2N(PY>a ﬁP)? = O(1/z). This follows from the same argument as in (5.2.25). O

Lemma 5.2.9. Let E/F be a Galois extension of number fields with Galois group G. Let

X be a non-trivial irreducible character of G, and let S be as defined in (5.2.15). Then

1
II Er(1,x)=Ksy+0 <) 7 (5.2.33)
PeS(z) r
when © — oo and the implied constant depends on the extension E/F. Furthermore, the

constant Ks . is given by

Ksy =[] Kpr(1,x). (5.2.34)
PeS

Proof. The set S as defined in (5.2.15) provides that |x(P)|< N(P), so for all P € S, we
can see by (5.2.28) that k,(P) # N(P), and hence by (5.2.29) the local factor Kp(1,x)
is both well defined and nonzero. Our goal is thus to show that the infinite product Kgs ,
converges and that the truncation J]pcg(,) Kp(1,x) converges to it with the error term
O (1),

Taking logarithms, the limit of

/fx(P)>

log | [[ Kr(lx) | =- log (1—N(P)
PeS(x) PeS(x)

converges as ¥ — oo. To see this, and obtain the desired asymptotic, it suffices to estimate

the tail

AN
2 os (1= )|
N(P)>z

For z sufficiently large, all primes of sufficiently large norm are in S, so it suffices to estimate
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this tail for all N(P) > z. Taking absolute values and using the Taylor series expansion,

which is valid since P € S, we have

> (- 3m)| <

N(P)>zx

=

> i(Em)
< > (%R
5 > (5 ﬁ)l
555 ) S )

N(P)>z j=1

J

=

E
>z
vV
8
<.

IN

The last equality follows from Lemma 5.2.8. As in (5.2.25), this suffices to establish

[Inpyse Kp(1,x) =140 (1), completing the proof of (5.2.33). O

5.3 Proof of Theorem 5.1.1

In this section we will first prove the content of Theorem 5.1.1 and then show an alternative

determination of the constant following a method shown in [LZ07, §6].

5.3.1 Proof of the main theorem

The starting point of our proof is the same as that of Williams, namely, the orthogonality
relations for irreducible characters of finite groups. Given a fixed conjugacy class C' of G,

and an unramified prime P € Sg/p, we have

%, if C = Frobp,
> x(P)x(C) = (5.3.1)
X 0, it C' # Frobp.

This leads to the natural generalization of Equation (5.2.3).

11 (1 - N(1P)> ree =111 1I (1 — N(1P)>X(P) : (5.3.2)

PeSc(x) X [PeSg/p(z)
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When x = xo is the trivial character, Rosen’s theorem (Theorem 5.2.1) yields

I (vt 2o o

When yx # xg, we first split the product as follows

1 (1_N(1P)>X<P>: 1 <1_]\[(1P>>X(P)P€1;I(I)<1_]\I(1P)>X(P)'

(5.3.4)

Call Bs  the constant given by the product over the primes P € Sg/r—S§ in the right hand
side of (5.3.4). For every P € S we are able to factor out Mp(1,x) from the expression,

obtaining

x(P)
11 (1 - N(lp)) = [ Me(1,x)" H Kp(1,x) (5.3.5)

PES(Q?) PES(JE PGS
_ [ RsxMsy 1 1
B { L(1,x) o <loga:>] [K&x +0 (l,)] (5.3.6)
_ BRsxMsyKsx 1
- L(Lx) +O logz ) (5.3.7)

The equality in (5.3.6) follows from applying Lemma 5.2.4 and Lemma 5.2.9. Again, the
constants only depend on the extension E/F. Assembling the pieces together, we get the
desired result.

Finally, the constant —y(E/F, C) is defined by the equality

x(C)
e—"/(E/F,C) — N(A) H <B$,XRS,XM$7XKS7X>X e VF . (538)

p(A) S0 L(1,x)

Note that the constants Bs, and Mg, are easily computed finite products. To obtain a

numerical value for e~7(E/FC)

for a given, E/F and C C G, one would need to compute
these along with the infinite products Rs.,, Ksy, and the L-function L(1,x) for each

nontrivial character y of G.
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5.3.2 An alternative determination of the constant

Languasco and Zaccagnini observed in [LZ07] that the orthogonality relations of finite group
characters can also be used to provide a cleaner formula for the constant e~ 7@ appearing
in Williams’ theorem. Their method extends to this setting as well, and we record it here
for completeness.

First, note

Thus, from (5.3.8),

—(E/F,C) —F N(A) 1 XEHAO)
S A i I H <1‘N<P>>

X#Xo PESE,r
>t X(PIX(O)
:e—VFMﬁ) im ] <1—N1P > o
p(a) e, AL (P)
1 o(E/F,C;P)
— e VF 3 _
=e xlgglo H <1 N(P)) (5.3.9)
1 a(E/F,C;P)
— e F 1— ;
! < N(P))
PeXp
where, using character orthogonality (5.3.1),
.
-1, P|A,
a(E/F,C;P) = i—g —1, Frobp =C,
—1, Frobp 75 C.

and (5.3.9) follows from the product formula of the Euler totient function
p(A) 11 ( 1 )
2 1——— ).
@)~ AN

This calculation is sufficient to prove (5.1.7) of Theorem 5.1.1.
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5.4 Examples

5.4.1 Quadratic extensions

Set F =Q and let £ = Q(\/ﬁ), with D square-free, be a quadratic extension of Q.

Corollary 5.4.1. Let E/Q be a quadratic extension of discriminant A. Then

(A e VN
11 <1 p> so(A)long(l p> +O<<logx>3/2)’

(5)= e
p

where v = ~yq 18 the usual Euler constant.

In this case, G = Gal(£/Q) = {£1}, so there is one nontrivial conjugacy class {—1} C G,
consisting of the inert primes in O, while the trivial class corresponds to the split primes.

Our two characters are the trivial character, xo, and the nontrivial character

1, if pis split,
x1(p) =
—1, if pis inert.

This is precisely the quadratic residue symbol, x1(p) = (%), which in our notation also
coincides with Frob,,.

Following the algorithm implicit in the proof of the main theorem (§5.3.1), we have
Ixi(p)] = 1 < p for both i = 0,1 and all primes p, so S = Sg/q is precisely the set of
unramified primes.

First consider the case where C' = {1}. By (5.3.2) and (5.3.3) we have

(-0 = At o (k).
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where v is the usual Euler constant. Taking square roots, we have
A e 2N 1
1 - 1
1 () (n-) ) o)
5 p o( )logxpm p log®/“ x
If we took C' = {—1}, then we find

o (2= (Aem(-))

plA

1
+O0| —— |-
<log3/2x>

Using Theorem 5.1.1 (5.1.7) we obtain the exact same formula for the constant.

5.4.2 Primes represented by quadratic forms

Let

Qz,y) = az? + bry + cy?® € Zlz,y],

be a binary integral quadratic form. Assume that ) is primitive, irreducible, and positive
definite. That is, a and c are positive integers with ged(a, b, c) = 1, D = b — 4ac is not a
square, and D < 0. An integer n is said to be represented by @ if there exist integers = and
y such that Q(z,y) = n.

Denote by Q the set of rational primes represented by Q.

Corollary 5.4.2. Let QQ be a primitive, irreducible, positive definite, and integral binary
quadratic form with discriminant D, and let E be the ring class field of the order of D.
Then,

#C
1 e—(E/Q,C) \ 2:(D) 1 1
p og T p|Ap p (log a:) 2h(D)

pEQ(w)
peQ

where C' C Gal(E/Q) is the conjugacy class corresponding to Q wvia class field theory, and
h(D) is the class number of Q(v/D).

Proof. By class field theory and the theory of quadratic forms, see for example [Cox13,
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Chapter 9], the class [Q] corresponds to an element oy € Gal(E/Q(vD)) C Gal(E/Q).
Therefore, the class C is the Gal(E/Q)-conjugacy class of 0. The result follows by noting

that Q — C is the finite set of primes ramified in L that are represented by (). In particular

ﬁa if @ is equivalent to its opposite.

ﬁ, otherwise.

The relation between C and Q is made explicit in the proof of [Cox13, Theorem 9.12] using
the ring class field as described in [Cox13, §9.A]. O

5.4.3 General abelian extensions

In the special case the Galois group G is abelian, all irreducible representations are one-
dimensional. In particular, the trace of Frobenius is a root of unity, and as such it has
absolute value strictly smaller that the norm of every prime. In our notation, this means
§ = Sg/r. Moreover, the Artin L-function coincides with the M-function, and we have the

following corollary.

Corollary 5.4.3. Let E/F be an abelian Galois extension of number fields, with Galois

group G, and let g € G be any element. Then,

1 o—1(E/Fg)\ Y/ ET] 1
11 (1 — N(P)> o Gerr +0 <(log $)1+1/[E:F}> (5.4.2)

Frobp=g

when © — oo and the implied constant depends on the extension E/F. Furthermore, the

constant v(E/F, g) is given by

x(g)
e~ VWE/Fg) — o=F N(A) Kp(1,x)
Ao 1 Pri (LX)
_ e N 1\ 1!
o U ( N<P>> 11 < N(P))
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5.4.4 Sextic S3-extensions

Finally, we consider the case when E/Q sextic Ss-extension. We denote the three conjugacy
classes of G by the identity class C, the class of transpositions C, and the class of 3-cycles

(3. The three irreducible characters xg, x1, x2 are given by the character table in Figure

5.4.1.
Ci | Oy ] Cs

Yo!| 1111

xi| 1|11

2| 2] 0|1

Figure 5.4.1: The character table for Ss

It is clear from the table that for all odd primes p, we have |x(p)|< p, so all odd
unramified primes are contained in S. For the even prime, 2 ¢ S if (i) it is ramified or (ii)
if it is unramified and x(2) = 2 for some x. From Figure 5.4.1, (ii) can only occur for xs in
the case where Frobs is the identity class, i.e., precisely when 2 is totally split in £. This
condition does occur, for example it happens with p = 2 in the case where F is the splitting
field of 25 — 22° — 1423 + 12322 — 208z + 164 over Q [LMF21, Number field 6.0.80062991.1].

This allows us to compute Bg y:

1 x(P) ﬁ’ if 2 is unramified and Froby = C1,
Be. — _ - 4.
s I (1 50m) | >43)
PESE/Q—S 1, otherwise.
Similarly we can compute Mg :
MS,X = H Lp(la X)
pEEQ—S
La(1,x) [Ipja Lp(1, x), if 2 is unramified and Frobs = C1, ( )
= 5.4.4

[pa Lo(1,x), otherwise.


https://www.lmfdb.org/NumberField/6.0.80062991.1
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From the definition of k,(p) in (5.2.28), we have

;

0, if x(p) =0 or x(p) =1,

kx(p) = § 1/p, if x(p) = —1,

p/(p—1)% if x(p) =2.

This allows us to produce K (1,x) for x = x1, x2 according to (5.2.29):

anom (-4

F‘rObPZCQ
1 -1 1\ !
ko= I (gte) I (1-5)
Frob,=C (p ) Frob,=C: p
p=01 robp=0_C3

It remains to describe L and Rs . Since x = X1 is one dimensional, we have L,(s, x) =
M,y(s,x) and Rs,, = 1. On the other hand, x» is two dimensional, and as such Rs , is
nontrivial. Thus, if 2 is not totally split £/Q, we may use (5.4.3) and (5.4.4) to give a more

explicit description of e~ 7(F/Q:C) given in (5.3.8):

-1
e 1B/QC) — e_vN(i) H Ly(1,x1) H <1 - 12) X
(P( ) ptA Frob,=C5 p

i G

piA Frob,=C1 Frob,=C3
e — = N T 10 ] (1_12),

QO(A) ptA Frob,=Cs p

-1

e_V(E/QL%):e_VN(i) HLp(l,Xl)_l H (1—12> X

(P( ) ptA Frob,=C> p

L1,

S (-5) I (1-5)
Six2 Froby=Ci p Froby=Cj p

If 2 is unramified and totally split in F, these can be modified by taking Bs, and Ms
as in (5.4.3) and (5.4.4). One could use Theorem 5.1.1 (5.1.7) for an alternate determination

of the constants e~ 7(E/Q.Ci) ahove.
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5.4.5 Future work

We suspect our methods can be extended to the case of global function fields in a straight-
forward manner. More generally, it would be interesting to consider the case of varieties
over finite fields, by using Lebaque’s [Leb07] generalization of Mertens’ theorem in place of

Rosen’s theorem (Theorem 5.2.1).

Theorem 5.4.4 ([Leb07, Theorem 5]). Let X be a smooth, projective, and geometrically
irreducible variety of dimension d defined over a finite field Fy. Call »x the residue of the

Weil zeta function (x(s) at s =d. Then

I1 <1 - N&D)d) = e;\;x +0 <A1,2> : (5.4.5)

degP<N

where the product runs over the closed points P € X and vx = 7 + log(»x log q).
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