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Abstract

Topics in arithmetic statistics
By Christopher Keyes

Arithmetic statistics encompasses a broad class of questions in number theory and arith-
metic geometry of a distinctly quantitative flavor. In this thesis the author addresses three
such questions, the first two of which are related to superelliptic curves, which are given by
an equation of the form Cf : ym = f(x, z). For a fixed such curve defined over the rational
numbers Q and an appropriately chosen degree n, we give an asymptotic lower bound on
the number of finite extensions K/Q of degree n arising as the minimal field of definition
for an algebraic point on Cf , counted by absolute discriminant. Rather than fixing the
curve, we could instead ask how often a family of superelliptic curves has certain arithmetic
properties. In particular, we study how often such curves are everywhere locally soluble,
computing exactly the density of f such that Cf has points everywhere locally. Finally,
we interpret the Mertens’ classical product theorem as a statement about the density of
integers lacking small prime factors. We then prove a generalization to Chebotarev sets of
prime ideals in Galois extensions of number fields.
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Chapter 1

Introduction

Arithmetic statistics encompasses a broad class of quantitative questions involving objects

and properties of interest to number theorists and arithmetic geometers. Examples of these

objects are number fields, solutions to polynomial equations, and of course, prime numbers.

In this dissertation, we address arithmetic statistical topics relating to these three objects.

To set the stage, we introduce each object, and state our main results.

1.1 Counting number fields

Fix an integer n ≥ 2 and consider the following question.

Question 1.1.1. How many number fields K/Q of degree n are there?

Since there are infinitely many such extensions, we make this precise by considering the

asymptotic behavior of

Nn(X) = # {K/Q | [K : Q] = n, |DiscK/Q|≤ X} .

Note that while we have chosen to count by discriminant, counting by other invariants is

also of interest; see e.g. [ASVW21, ST22].

Let K̃ be the Galois closure of K/Q, that is the minimal field extension of K such that

K̃/Q is Galois. If f is a minimal polynomial for a primitive element of K, then the Galois

group Gal(K̃/Q) acts transitively on the n roots of f .



2

Suppose G is a transitive permutation subgroup of the symmetric group Sn. We can

also look to count extensions whose Galois closure has group isomorphic to G by studying

Nn(X,G) = #
{
K/Q | [K : Q] = n, |DiscK/Q|≤ X, Gal(K̃/Q) ' G

}
.

Conjecture 1.1.2 (folklore). Fix n ≥ 2. Then we have Nn(X,Sn) ∼ CnX for some

constant Cn.

Conjecture 1.1.2 is known to hold for n ≤ 5. The n = 2 case is classical, with C2 = 6
π2 ,

which essentially follws from the computation of the density of squarefree integers and the

classification of discriminants of quadratic fields. The n = 3 case is due to Davenport and

Heilbronn [DH71], with improved error terms given by Bhargava, Shankar, and Tsimerman

[BST13], while the n = 4, 5 cases are due to Bhargava [Bha05, Bha10].

For Galois groups G ⊆ Sn more generally, Malle’s conjecture and its various refinements

provide predictions for the asymptotics of Nn(X,G). For a more detailed summary of the

conjecture and known special cases, see [Alb21].

For Nn(X), relatively little is known for n ≥ 6. The best currently known asymptotic

upper bound takes the form

Nn(X)� Xc(logn)2 ,

due to Lemke Oliver and Thorne [LT22], with improvements for 6 ≤ n ≤ 94 given in

[AGH+22, BSW22].

We can reinterpret the problem of counting number fields to counting those fields which

are generated by algebraic points on the projective line, P1. Given some number field

K = Q(α), we can think of α as a geometric point on the P1, whose minimal field of

definition is K. Suppose now that C is an algebraic curve defined over Q and define

Nn,C(X) = # {K/Q | K = Q(P ), [K : Q] = n, |DiscK/Q|≤ X}

which counts fields which arise as the minimal field of definition for a degree n point P ∈

C(Q). We may similarly define Nn,C(X,G) for a transitive subgroup G ⊆ Sn, and ask how

these functions and their asymptotics depend on the geometry of the underlying curve C.
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We present our main results in this direction below.

Theorem 1.1.3 (K.–Beneish). Let m ≥ 2 and C: ym = f(x) be a superelliptic curve over

Q. Then for n sufficiently large and divisible by m, we have

Nn,C(X)� Xδn

for an explicit constant δn given explicitly in (3.5.1).

In the case when m = 2, i.e. C is a hyperelliptic curve, we can count fields with Galois

group Sn.

Theorem 1.1.4 (K.). Let C: y2 = f(x) be a hyperelliptic curve over Q. Then for n

sufficiently large and divisible by gcd(2,deg f) we have

Nn,C(X,Sn)� Xδn .

The results in the hyperelliptic case appeared in [Key22], while the superelliptic case is

joint with Lea Beneish [BK21a]1. In Chapter 2 we give some more detailed background on

Newton polygons and generating the symmetric group Sn. Then in Chapter 3, we prove

Theorems 1.1.3 and 1.1.4, synthesizing the exposition in [Key22, BK21a] to give an account

of the general strategy of counting polynomials and then adjusting for multiplicity. We also

discuss geometric sources of higher degree points and prove the following.

Proposition 1.1.5 (K.–Beneish). Suppose m, d positive integers and q is an odd prime

satisfying

(i) 4 | m | d,

(ii) m ≤ q,

(iii) n = 2q < d
2 − 1.

Then for a positive proportion of squarefree degree d polynomials f , ordered by height, the

superelliptic curve ym = f(x) has finitely many points of degree n.
1The March 2021 preprint version contains errors, many of which are corrected in this dissertation.
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1.2 Solubility for families of curves

Consider a collection of curves defined over Q. Before making precise what we mean, we

are motivated by the following question.

Question 1.2.1. How often does a curve in this collection have a rational point?

Note that throughout, one could more generally consider higher-dimensional varieties

over fixed global field, but we content ourselves with curves over Q.

Even for a fixed curve C/Q, searching for rational solutions can prove challenging and

time consuming. It is thus often useful to consider obstructions to the existence of rational

points, the simplest of which are local obstructions.

The curve C is said to be locally soluble at a prime p if the set of p-adic points C(Qp)

is nonempty, and locally soluble at the infinite place if C(R) 6= ∅. If C is locally soluble at

all places, we say it is everywhere locally soluble. Since Q embeds into R and Qp for all

primes p, we have that everywhere local solubility is a necessary condition for C to have a

rational point. Moreover, it is generally straightforward to determine whether or not C is

everywhere locally soluble in finite time.

When everywhere local solubility is a sufficient condition, we say C satisfies the Hasse

principle. The classical Hasse–Minkowski theorem implies that the Hasse principle holds

when C has genus 0. However, this turns out not to be the case for higher genus curves.

To give only one example, and an answer to Question 1.2.1 for a specific case, consider

hyperelliptic curves of the form

Cf : y2 = f(x, z),

where here f is an integral binary form of degree 2g + 2. Ordering by the height of their

coefficients, we can ask about the natural density of polynomials f for which Cf has points

everywhere locally, or rational points.

Poonen and Stoll showed that a positive proportion of hyperelliptics Cf are everywhere

locally soluble [PS99b], with Bhargava, Cremona, and Fisher pinning this proportion down

to about 76% in the g = 1 case [BCF21]. A landmark result of Bhargava, Gross, and Wang

then states that a positive proportion of everywhere locally soluble hyperelliptic curves Cf
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fail to have points of any odd degree [BGW17]. In particular, they lack rational points and

thus fail the Hasse principle.

Motivated by these results, we consider the collection of superelliptic curves

Cf : ym = f(x, z),

where m ≥ 2 and f is an integral binary form of degree d divisible by m. As a first step

to understanding how often such curves have (or lack) rational points or points of certain

higher degrees, we study how often they are everywhere locally soluble.

Writing f(x, z) = cdx
d + · · ·+ c0z

d, we set

ρm,d = lim
B→∞

#
{

(c0, . . . , cd) ∈ (Z ∩ [−B,B])d+1 | Cf is everywhere locally soluble
}

(2B + 1)d+1
,

if the limit exists. In joint work with Lea Beneish, appearing in [BK23] and reproduced in

Chapter 4, we prove the following results.

Theorem 1.2.2 (Beneish–K.). Fix (m, d) 6= (2, 2). Then ρm,d exists, 0 < ρm,d < 1, and

ρm,d factors into a product of local densities,

ρm,d = ρm,d(∞)
∏
p

ρm,d(p).

These local densities are made precise in (4.1.5) and (4.1.6). They may be thought of

as the probability of Cf having a p-adic (resp. real) point. Thus Theorem 1.2.2 may be

thought of as stating that these local probabilities look independent of one another. To

deduce the result, we realize our family as coming from the fibers of a certain morphism of

varieties and apply a result of Bright, Browning, and Loughran [BBL16, Theorem 1.4].

The utility of Theorem 1.2.2 is that the local factors may then be estimated, yielding

estimates for ρm,d. This amounts to counting the residue classes of degree d forms f for

which we can guarantee (or rule out) the existence of Fp-points on the reduction Cf (Fp)

which lift to Qp-points on Cf .

With some effort, this approach can be used to give exact computations of the local
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factors in certain cases.

Theorem 1.2.3 (Beneish–K.). For superelliptic curves Cf = ym = f(x, z) with m = 3 and

d = 6, the exact value of ρ3,6 is about 0.9694.

More precisely, the local densities are given by one of two explicit rational functions

when p is sufficiently large. We write ρ3,6(p) = Ri(p) where p ≡ i (mod 3). The explicit

formulae are given in (4.8.1), while the asymptotic behavior as p→∞ are described by

1−R1(t) ∼ 2

3
t−4,

1−R2(t) ∼ 53

144
t−7.

For the eight primes p = 2, 3, 7, 13, 19, 31, 37, 43 for which ρ3,6(p) is not given by one of these

rational functions, we are still able to compute ρ3,6(p) exactly, with the help of a computer,

in order to give the exact value in Theorem 1.2.3.

1.3 Mertens’ theorem

Let π(x) denote the counting function of prime numbers p ≤ x. The prime number theorem

famously states

lim
x→∞

π(x)
x

log x

= 1,

which we write as

π(x) ∼ x

log x
.

As a consequence, the natural density of the primes is 0, but approaches it rather slowly at

the rate 1
log x .

Suppose now, without knowing the prime number theorem, we were to try to estimate

the density of the primes in the interval (
√
x, x]. An integer n in this range is prime if and

only if it is not divisible by p for all primes p ≤ x. The natural density of integers indivisible

by all such p is given by the product

∏
p≤
√
x

(
1− 1

p

)
,



7

so making the näıve assumption that this is the same as the density of primes in (
√
x, x]

(as x goes to infinity), one would guess that the asymptotic density of the primes is equal

to the limit of the product above.

Enter a result of Mertens, proved before the prime number theorem was known [Mer74],

which states that as x→∞ we have

∏
p≤x

(
1− 1

p

)
∼ e−γ

log x
.

Here γ denotes the Euler–Mascheroni constant.

Therefore using our näıve assumption above, we would obtain that the asymptotic prime

density is 2e−γ

log x . Note that 2e−γ ≈ 1.123, so this differs from the true density of 1
log x as

given by the prime number theorem. Thus Mertens’ theorem is capturing that for an

integer n ∈ (
√
x, x], failing to be divisible by distinct primes p, p′ ≤

√
x are not independent

conditions.

Mertens theorem has since been extended in different directions. Almost a century later,

Williams [Wil74] showed that for a coprime to b we have

∏
p≤x

p≡a (mod b)

(
1− 1

p

)
∼

(
e−γ(a,b)

log x

)1/ϕ(b)

,

where ϕ(b) is Euler’s totient function. The constant, which we denote by e−γ(a,b) to draw a

parallel to the shape of Mertens’ theorem, is described explicitly in Williams’ paper.

For an extension of number fields E/Q, Rosen [Ros99] gave a Mertens-type formula for

prime ideals in the ring of integers OE of bounded absolute norm N(P ),

∏
N(P )≤x

(
1− 1

N(P )

)
∼ e−γE

log x
.

Here the generalized Euler constant γE is equal to γ + κE , where κE is the residue of the

Dedekind zeta function ζE(s) at s = 1.

In [APnKK22], joint with Santiago Arango-Piñeros and Daniel Keliher, we generalize

to the setting of Chebotarev sets of primes in a Galois extension E/F of number fields,
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unifying the results of both Williams and Rosen.

Theorem 1.3.1 (Arango-Piñeros–Keliher–K.). Let E/F be a Galois extension of number

fields with G = Gal(E/F ). For a conjugacy class C ⊂ G, let C(x) denote the unramified

primes P in OF with Artin symbol FrobP =
(
E/F
P

)
= C and bounded absolute norm

N(P ) ≤ x. Then as x→∞ we have

∏
P∈C(x)

(
1− 1

N(P )

)
∼

(
e−γ(E/F,C)

log x

)|C|/|G|
.

The proof, found in Chapter 5, follows a similar argument to that of Williams, using

character orthogonality and several Euler products. Some additional care must be taken

when G has representations of dimension greater than one.

We give explicit descriptions of the constants when E/F is quadratic, abelian, or an

S3 sextic, as well as an application to primes represented by quadratic forms, which we

highlight here.

Corollary 1.3.2 (Arango-Piñeros–Keliher–K.). Let Q be a primitive, irreducible, positive

definite, integral binary quadratic form with discriminant D. Let E be the ring class field of

the order of D. Denote by Q(x) the set of primes p ≤ x represented by Q. Then as x→∞

we have ∏
P∈Q(x)

(
1− 1

p

)
∼

(
e−γ(E/Q,C)

log x

) |C|
2h(D) ∏

p|∆E
p∈Q

(
1− 1

p

)
,

where C ⊂ Gal(E/Q) is the conjugacy class corresponding to Q via class field theory and

h(D) is the class number of forms of discriminant D.
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Chapter 2

Preliminaries

2.1 Local fields and Newton polygons

2.1.1 Local fields

In this section, we briefly recall classical facts about local fields complete with respect to a

discrete valuation. The prototypical examples are the p-adic fields Qp and finite extensions

thereof. We omit much explanation and most proofs, instead referring the reader to standard

texts, e.g. [Lan94, Neu99, Gui18, Mil20], for the details.

Definition 2.1.1 (p-adic valuation). For a nonzero integer n, the p-adic valuation of n

is the largest positive integer k such that pk | n.

This is naturally extended to a function vp:Q→ R ∪ {∞} by

vp

(a
b

)
= vp(a)− vp(b)

and satisfies the usual properties of a discrete valuation (see e.g. [Neu99, §II.3]):

(i) vp(x) =∞ if and only if x = 0,

(ii) vp(xy) = vp(x) + vp(y) for all x, y, and

(iii) vp(x+ y) ≥ min (vp(x), vp(y)) and equality holds if vp(x) 6= vp(y).

Property (iii) above is known as the nonarchimedean property.
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Definition 2.1.2 (p-adic absolute value). The p-adic absolute value, denoted |·|p, is

given by

|x|p= p−vp(x).

Here |0|p= 0 by convention.

Definition 2.1.3 (p-adic field). The p-adic field Qp is constructed as the completion of Q

with respect to |·|p. That is, Qp consists of sequences of rational numbers which are Cauchy

with respect to |·|p, up to equivalence.

Definition 2.1.4 (p-adic numbers). The p-adic numbers Zp are defined to be the inverse

limit

Zp = lim←−Z/pnZ,

with the natural reduction maps Z/pn+1Z→ Z/pnZ and their compositions.

These analytic and algebraic definitions coincide when we take the valuation ring.

Proposition 2.1.5. The subring of Qp with nonnegative valuation coincides with Zp.

Moving forward, let K be a field, complete with respect to the absolute value given by

a nonarchimedean discrete valuation v. We recall a number of basic facts.

Proposition 2.1.6 (See e.g. [Gui18, Proposition 2.17]). With notation as above, we have

the following basic facts, generalizing the case of K = Qp.

(a) O = {x ∈ K | v(x) ≥ 0} is a subring called the valuation ring of K.

(b) O× = {x ∈ O | v(x) = 0}.

(c) m = {x ∈ O | v(x) > 0} ⊂ O is the unique maximal ideal of O, i.e. O is a local ring.

(d) m = (π) is a principal ideal. In fact, all ideals of O take the form (πk).

(e) F = O/m is known as the residue field; Whenever K/Qp is a finite extension, F is a

finite field of characteristic p.



11

Perhaps the most important result in the theory of local fields, and one that we will use

later, is Hensel’s lemma. It allows us to lift factorizations of polynomials, hence also their

roots, from the residue F back to the valuation ring O.

Theorem 2.1.7 (Hensel’s lemma). With notation as above, let f(t) ∈ O[t] and denote by

f(t) the image in F[t]. Suppose in the residue field f 6= 0 and we have a factorization

f = gh ∈ F[t],

such that g, h are relatively prime. Then there exist g, h ∈ O[t] with deg g = deg g such that

f = gh, g ≡ g (mod m), and h ≡ h (mod m).

Proof. See e.g. [Neu99, II.4.6] or [Gui18, Theorem 2.21].

Corollary 2.1.8. Let f(t) ∈ O[t] and suppose its reduction f(t) is nonzero with a root α

such that the derivative f
′
(α) 6= 0. Then there exists α ∈ O with

f(α) = 0 and α ≡ α (mod m).

Proof. The existence of a root implies f = (t − α)h for some h ∈ F[t]. Set g = t − α with

the coprimality of g, h following from the fact that f
′
(α) 6= 0. Now we apply Theorem 2.1.7

to lift to a linear polynomial g = t− α in the factorization of f . Since g ≡ g (mod m), we

have α ≡ α (mod m).

A refinement of the proof of Theorem 2.1.7 gives a well known strengthening of Corollary

2.1.8.

Theorem 2.1.9. Let f(t) ∈ O[t] and suppose there exists α0 ∈ O such that

v(f(α0)) > 2v(f ′(α0)).

Then the sequence

αi = αi−1 −
f(αi−1)

f ′(αi−1)
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for i ≥ 1 converges to α ∈ O with

f(α) = 0 and α ≡ α0 (mod m).

Proof. See e.g. [Lan94, §II.2, Proposition 2].

We now give several useful properties of extensions of local fields.

Proposition 2.1.10 ([Neu99, Theorem II.4.8]). Let K be a field complete with respect to

the discrete valuation v. If L/K is a finite extension, there is a unique extension of the

valuation v to L, with respect to which L is complete.

In light of Proposition 2.1.10, we abuse notation by also writing v for the valuation

extended to L. Note that if v was normalized on K, i.e. v(π) = 1, then it need not be

normalized on L; in fact, this will often fail to be the case.

Remark 2.1.11. Proposition 2.1.10 allows us to make sense of the valuations of the roots

of a polynomial f over Qp, by uniquely extending v to a valuation on the splitting field of

f over Qp.

2.1.2 Ramification

For the remainder of the section, let K, v be as above with p the characteristic of the residue

field. Let L/K denote a finite extension with v extended to L by Proposition 2.1.10. We

use subscripts to denote the valuation rings and residue fields of the respective fields.

Definition 2.1.12 (ramification index). The ramification index of L/K is

e = e(L/K) = [v(L×) : v(K×)].

We say L/K is unramified if e = 1 and totally ramified if e = [L : K]. We say L/K is

tamely ramified if p - e and wildly ramified otherwise.

Definition 2.1.13 (inertia degree). Let L/K be a finite extension and FL/FK the associ-
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ated extension of residue fields. The inertia degree of L/K is

f = f(L/K) = [FL : FK ].

Proposition 2.1.14 (fundamental identity, see e.g. [Neu99, Proposition II.6.8]). Let L/K

be a finite separable extension. Then [L : K] = ef , the product of the ramification index and

inertia degree. If T/K is the maximal abelian subextension contained in L, this is visualized

in the diagram below.

L FL

T FT = FL

K FK

e

f f

Proposition 2.1.15 (see e.g. [Neu99, Proposition II.9.9]). Let L/K be a finite Galois

extension. Then we have an exact sequence of finite groups

0→ I(L/K)→ Gal(L/K)→ Gal(FL/FK)→ 0,

where I(L/K) = Gal(L/T ) is the inertia subgroup.

Remark 2.1.16. The residue field FK = Fq is finite of order q = pk, so Gal(FL/FK) is a

cyclic group generated by the Frobenius automorphism x 7→ xq.

Remark 2.1.17. If L/K is unramified, then L/K is Galois and Gal(L/K) ' Gal(FL/FK),

as each automorphism of the residue extension lifts to L/K.

Totally tamely ramified extensions are nicely characterized as radical extensions, with

cyclic Galois group. This will come in handy later.

Lemma 2.1.18 (see e.g. [Sut, Theorem 11.8]). Let L/K be a finite separable extension.

L/K is totally tamely ramified, i.e. p - e = [L : K], if and only if

L = K(π1/e)
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for a uniformizer π of K.

Moreover, if L/K is finite Galois and totally tamely ramified, then Gal(L/K) is cyclic.

Proof. The characterization of tamely ramified extensions as radical extensions is useful in

classifying finite extensions of local fields. For a proof of the first equivalence, see e.g. [Sut,

Theorem 11.8].

The second statement follows from the fact that in the tamely ramified case, we have

an injective group homomorphism I(L/K) → F×L ; see [Mil20, Corollary 7.59]. Since F×L is

cyclic and I(L/K) = Gal(L/K) by totally ramified, we are done.

Note that if L/K is tamely ramified, but not necessarily totally ramified, we have a

cyclic subgroup of order e, Gal(L/T ) ⊆ Gal(L/K), for the maximal unramified intermediate

extension T/K.

We conclude with a few elementary intermediate results that will be useful to us later.

Lemma 2.1.19. Let L/K, L′/K be finite extensions and set E = LL′ to be their composi-

tum. The ramification index e(E/K) divides the product of those of L and L′,

e(E/K) | e(L/K)e(L′/K).

Proof. For brevity, let eL, eL′ , eE denote the ramification indices. Let TL denote the maximal

unramified extension of L/K, so [L : TL] = eL (and similarly for L′, E). Then we have the

diagram below, with certain degrees marked.

E

LTE L′TE

LTE ∩ L′TE

L TE L′

TL T ′L

K

eL′

eL

d

eL

eL′
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Note that L∩TE = TL, since L/TL is totally ramified and TE/TL is unramified (and similarly

for L′).

From the diagram, we now see that the degree d divides both eL and eL′ , hence d |

gcd(eL, eL′). Moreover,

eE = d[E : LTE ∩ L′TE ] = d · eL
d

eL′

d
=
eLeL′

d
.

This completes the proof.

Remark 2.1.20. The proof of Lemma 2.1.19 shows that if eL and eL′ are coprime, then

d = 1. In this case the ramification index is multiplicative, e(E/K) = e(L/K)e(L′/K).

Similar techniques reveal that if gcd(eL, eL′) = 1 then L∩L′ is unramified and equal to

TL ∩ TL′ .

Lemma 2.1.21. Let L/K, L′/K be finite extensions and set E = LL′ to be their com-

positum. Set TE/K to be the maximal unramified subextension of E/K. If the ramification

indices e(L/K) and e(L′/K) are coprime, then

LTE ∩ L′TE = TE .

Moreover, if L,L′, E are Galois over K, this implies that we have identifications

Gal(L/TL) ' Gal(LTE/TE) ' Gal(E/L′TE).

Proof. We have that L ∩ TE = TL, since any subextension of TE is unramified over K, so

L ∩ TE is unramified and thus contained in TL. This and the identical argument for L′

implies

[LTE : TE ] = [L : TL] = eL, [L′TE : TE ] = [L′ : TL′ ] = eL′ .

If L is Galois (TL is unramified and thus Galois) then from standard Galois theory we have

Gal(LTE/TL) = Gal(LTE/L ∩ TE) ' Gal(L/TL)×Gal(TE/TL).
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In particular, we make the identification

Gal(L/TL) ' Gal(LTE/TE).

By a similar argument for the L′ side, we produce the diagram below.

E

LTE L′TE

L TE L′

TL TL′

K

eL eL′

eL eL′

By the hypothesis that gcd(eL, eL′) = 1, we find LTE ∩L′TE = TE . Repeating our previous

argument, we have Gal(LTE/TE) ' Gal(E/L′TE) as desired.

2.1.3 Newton polygons

We now recall the theory of Newton polygons of polynomials; see [Neu99, §II.6] for more.

Definition 2.1.22 (Newton polygon). Let f(t) =
∑d

i=0 ait
i ∈ Qp[t] be a polynomial. The

p-adic Newton polygon of f is the lower convex hull in R2 of the points (i, v(ai)) for

0 ≤ i ≤ d,

NPQp(f) = conv {(i, v(ai)) | 0 ≤ i ≤ d} .

Note that we assume a0ad 6= 0 and interpret ai = 0 and the corresponding point (i,∞) as

having no contribution. When the prime p is understood, we will simply refer to this as the

Newton polygon of f , denoted NP(f).

Example 2.1.23. Consider the sextic polynomial

f(t) = p2t6 + pt4 + t3 + pt+ p2.

The points (i, v(ai)) and Newton polygon NP(f) are drawn below.
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Figure 2.1.1: An example Newton polygon for a sextic polynomial

(0, 2)

(1, 1)

(3, 0)

(4, 1)

(6, 2)

The Newton polygon NP(f) encodes information about the valuations of the roots of f .

Note that the valuation of a root is well defined in this context by Proposition 2.1.10; see

Remark 2.1.11. To make this precise, we define the notion of a segment of NP(f).

Definition 2.1.24 (segment). Let f(t) =
∑d

i=0 ait
i ∈ Qp[t] be a polynomial and assume

a0ad 6= 0. A Newton polygon is a finite union of line segments, each with distinct slope,

referred to as a segment of NP(f).

A segment with endpoints (i, v(ai)) and (j, v(aj)) is said to have length ` = j − i.

We will call a segment reduced if it passes through no lattice points other than its

endpoints. Equivalently, its length ` is coprime to v(aj)− v(ai).

Theorem 2.1.25 (Fundamental theorem of Newton polygons). Suppose NP(f) has a seg-

ment of length ` and slope s. Then f has precisely ` roots of valuation −s.

Proof. See [Neu99, Proposition II.6.3].

An immediate consequence is that Newton polygons have the potential to reveal infor-

mation about the factorization of f over Qp.

Lemma 2.1.26. Suppose NP(f) has a segment of length ` and slope s. Then f factors as

f = f0f1 over Qp, such that deg f0 = ` and the roots of f0 have valuation −s.

Moreover, if s = r/` has reduced fraction form r′/`′ then all irreducible factors of f0

over Qp have degree divisible by `′.

In particular, if the segment is reduced, then the f0 produced above is irreducible over

Qp.
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Proof. The action of the Galois group Gal(f/Qp) on the roots of f preserves their valuations.

To see why, suppose σ ∈ Gal(f/Qp) is an automorphism of the splitting field E = SplQp f .

We have that v extends uniquely to a valuation of E, and one can check that v◦σ is another

valuation of E, so by the uniqueness [Neu99, Theorem II.6.2] of the lift of v to E, we have

that Galois conjugates of a root have the same valuation.

Thus for an irreducible polynomial over Qp, all roots must have the same valuation since

they are Galois conjugate to one another. Therefore, we can decompose f into irreducible

factors and group together those whose roots have valuation −s into f0. This must have

degree `, since f has exactly ` roots with valuation −s by Theorem 2.1.25.

For the second statement, we use the same observation above to recognize that the New-

ton polygon of an irreducible polynomial has exactly one segment. Let g be an irreducible

polynomial over Qp dividing f0. Then NP(g) has one segment of slope s = rg/deg g. Since

reducing this fraction also produces r′/`′, we must have `′ | deg g.

We caution that while the p-adic Newton polygon of a polynomial reveals some infor-

mation about its factorization over Qp, it need not determine it exactly, as in the following

example.

Example 2.1.27. Suppose p > 2 for convenience and let f denote the monic minimal

polynomial over Qp of α = p1/2 + p2/3. We compute deg f = 6 by considering all possible

conjugates of α.

On the other hand, suppose g is the product of the monic minimal polynomials of

β = p1/2 and γ = p1/2 + p3/4, giving the factorization

g(t) = (t2 − p)(t4 − 2pt2 + p2 − p3).

Note that v(α) = v(β) = v(γ) = 1/2, so f and g have identical Newton polygons by

Theorem 2.1.25, shown below. This illustrates a limitation of Lemma 2.1.26; if we knew only

that a polynomial had the Newton polygon above, we could conclude that its irreducible

factors must all have even degree, but this is not enough to decide whether or not it is

irreducible.
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Figure 2.1.2: Newton polygon for f and g

(0, 3)

(6, 0)

In certain cases, the Newton polygon may be used to deduce the cycle structure of the

Galois group Gal(f/Qp) acting on the roots of f .

Proposition 2.1.28. Suppose NP(f) has a reduced segment of length `, i.e. a segment of

slope s = r/` with gcd(r, `) = 1. By Lemma 2.1.26, f has an irreducible factor f0 such that

the roots of f with valuation −s are precisely the roots of f0.

Suppose p > deg f and that all other irreducible factors of f have degree coprime to

deg f0 = `. Then Gal(f/Qp) contains an `-cycle permuting the roots of f0.

Proof. We begin by factoring f = f0f1. Let E,E0, E1 denote the splitting fields over Qp

of f, f0, f1 respectively, obtained by adjoining roots. Let T, T0, T1 denote the maximal

unramified subextensions of E,E0, E1 over Qp.

Our goal is to find an `-cycle in Gal(E0/T0) then make identifications

Gal(E0/T0) ' Gal(E0T0T1/T0T1) ' Gal(E/E1T0T1) ⊆ Gal(E/Qp). (2.1.1)

Interpreting this `-cycle as permuting the roots of f in E, that it fixes E1T0T1 implies that

it fixes the roots of f1, giving the result.

Let L = Qp[t]/(f0(t)) be a degree ` extension of Qp obtained by adjoining a root of f0.

Since roots of f0 have valuation r/`, we have r
` ∈ v(L×) (here we abuse notation by writing

v for the unique extension of vp to L). By the reducedness hypothesis, 1
`Z ⊆ v(L×) or

equivalently the ramification index of L is divisible by `. Since [L : Qp] = `, we have that

L is in fact totally ramified, and tamely ramified since p - `.

By Lemma 2.1.18, L = Qp(π
1/`) for a uniformizer π of Qp. The Galois closure of L
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is E0, which we identify with Qp(π
1/`, ζ) for a primitive `-th root of unity, ζ. Thus we

find an element of order ` in Gal(E0/T0), coming from the root of unity, which necessarily

permutes the roots of f0 in a cyclic fashion. The first identification in (2.1.1) then follows

from elementary Galois theory, since E0 ∩ T0T1 = T0.

For the second identification, suppose f1 =
∏
gi is the irreducible factorization over Qp,

with the degrees deg gi coprime to ` by hypothesis. Denote by Egi , Tgi , egi the splitting

field of each gi over Qp, its maximal unramified subextension, and the ramification index

[Egi : Tgi ]. Arguing as above, we see that egi | deg gi.

Note that E1 is the compositum of the Egi . By Lemma 2.1.19 we have

[E1T0T1 : T0T1] = [E1 : T1] = e(E1/Qp)
∣∣∣ ∏ egi

∣∣∣ ∏ deg gi,

which is again coprime to ` by our hypothesis. Thus E0T0T1 ∩E1T0T1 = T0T1, and elemen-

tary Galois theory again provides the second identification of (2.1.1), since E = E0E1T0T1.

To conclude, we recognize that lifting our `-cycle from Gal(E0/T0) a priori only produces

an element of order ` in Gal(E/E1T0T1) ⊆ Gal(f/Qp). However, it fixes E1, i.e. the roots

of f1, and cyclically permutes those of f0, as seen by its restriction to E0.

Remark 2.1.29. Again, we may not necessarily be able to read off enough factorization

information from NP(f) directly to satisfy the hypotheses of Proposition 2.1.28; recall

Example 2.1.27. In some cases though, we can; see Examples 2.1.30 and 2.1.33 below.

Example 2.1.30. Let p 6= 2, 3. Consider the sextic polynomial

f(t) = t6 − p.

with Newton polygon NP(f) drawn below. This polygon has one reduced segment, so

Lemma 2.1.26 reveals that f is irreducible. Moreover, by Proposition 2.1.28 Gal(f/Qp)

contains a 6-cycle.

This is not terribly surprising considering that the splitting field of f is Qp(p
1/6, ζ),

where ζ is a primitive 6-th root of unity. We see that the map p1/6 7→ ζp1/6 extends to an

automorphism of order 6 of Qp(p
1/6, ζ)/Qp(ζ).
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Figure 2.1.3: p-adic Newton polygon for f = t6 − p

(0, 1)

(6, 0)

Remark 2.1.31. Those familiar with tropical geometry may recognize the Newton poly-

gon, though we point out that it differs from the Newton polytope as defined in [MS15,

Definition 2.3.4]. What we call the Newton polygon is in fact the lower faces of the Newton

polytope when lifted to R2 using the valuations of the coefficients. We will not make use

of this perspective, but if you are interested you may find some wisdom in studying [MS15,

Proposition 3.1.6].

Remark 2.1.32. Suppose f(t) ∈ Q[t] is a separable polynomial of degree n. A well used

strategy to show irreducibility is to argue over Qp. We can do the same with Galois groups.

The embedding Q→ Qp induces a natural inclusion Gal(f/Qp) ⊆ Gal(f/Q) as permutation

subgroups of the symmetric group Sn acting on the n roots of f .

This suggests the following strategy to show Gal(f/Q) = Sn: for different primes p,

compute the Newton polygon NPQp(f) and use Proposition 2.1.28 to produce cycles in

Gal(f/Q). Then, argue that these elements suffice to generate the full symmetric group Sn.

We will adopt this strategy in Chapter 3 to show that many degree n points on hyperelliptic

curves are defined over Sn-fields.

Example 2.1.33. Returning to the sextic polynomial f defined in Example 2.1.23,

f(t) = p2t6 + pt4 + t3 + pt+ p2.

Lemma 2.1.26 reveals that f has irreducible factors of degrees 1, 2, and 3 over Qp, each of

which has roots of valuation 1, 1/2, and −2/3, respectively.

Proposition 2.1.28 shows that Gal(f/Qp) contains a 3-cycle and 2-cycle, each of which

cyclically permutes the roots of one irreducible factor while fixing the others.

Example 2.1.34. Taking the previous example a step further and illustrating the strategy
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outlined in Remark 2.1.32, suppose we have

f(t) = p2qt6 + pqt4 + q2t3 + pt+ p2

for a prime q distinct from p.

The q-adic Newton polygon has a reduced segment of length 5, therefore by Lemma

2.1.26, f has irreducible factors of degrees 5 and 1 over Qq, and by Lemma 2.1.21, there is

a 5-cycle in Gal(f/Qq) ⊆ Gal(f/Q).

By the rational root theorem, any rational roots lie in the set

{
±1,±p,±p2,±1

q
,±p

q
,±p

2

q

}
.

A straightforward computation confirms none of these are roots of f , so f has no linear

factors. Thus f is irreducible over Q, in light of its factorization over Qq, and Gal(f/Q) ⊆ S6

is a transitive subgroup. The presence of a transposition and a 5-cycle suffices to give

equality; this will be proven shortly in Proposition 2.2.18.

While neither the p-adic nor q-adic information alone was enough to conclude f is

irreducible over Q or deduce its Galois group, combining the local information at these

places was sufficient.

2.2 Generating symmetric groups

In this section we collect some facts about permutation groups. In particular, we study

generating sets of the symmetric group.

Definition 2.2.1 (Sn). The symmetric group on n letters, denoted Sn, is defined to

be the collection of permutations of the set {1, . . . , n}. Equivalently, it is the group of

automorphisms of {1, . . . , n} in the category of sets (i.e. bijections).

Definition 2.2.2 (permutation group). A subgroup G of the symmetric group Sn is known

as a permutation group.
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2.2.1 Cycle notation

To describe elements of permutation groups compactly, we use cycle notation; see e.g. [DF04,

§1.3]. As a first example, we denote by σ = (1 2 . . . `) the permutation that sends

σ(x) =


x+ 1 1 ≤ x < `,

1 x = `.

We generalize this as follows.

Definition 2.2.3 (cycle). Let ` ≤ n. We denote by σ = (a1 . . . a`) the cyclic permutation

σ(x) =


ai+1 x = ai for 1 ≤ i < `,

a1 x = a`,

x x 6= ai for 1 ≤ i ≤ `.

Such a σ is known as an `-cycle.

Definition 2.2.4 (disjointness). Two cycles σ = (a1 . . . a`), σ
′ = (a′1 . . . a′`′) ∈ Sn are

said to be disjoint if

{a1, . . . , a`} ∩
{
a′1, . . . , a

′
`′
}

= ∅.

That is, there is no element x ∈ {1, . . . , n} on which both σ and σ′ act nontrivially. This

can be extended to larger collections of cycles.

One can check that disjoint cycles commute with one another; in the definition above,

we have σσ′ = σ′σ.

Proposition 2.2.5 (cycle decomposition). Every permutation has a unique decomposition

as a product of disjoint cycles (up to reordering of the factors).

Proof. This is a straightforward exercise. See e.g. [DF04, §1.3].

An important fact that we will make use of is that conjugation in permutation groups

corresponds to renumbering.
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Proposition 2.2.6. Let σ = (a1 . . . a`) ∈ Sn be an `-cycle and ρ ∈ Sn any permutation.

Then conjugating σ by ρ produces the `-cycle

ρσρ−1 = (ρ(a1) . . . ρ(a`)).

Proof. We need only check what ρσρ−1 does to elements {1, . . . , n}. Consider the action

on ρ(ai) for 1 ≤ i < `. We have

(ρσρ−1) · ρ(ai) = ρ(a1 . . . a`) · ai = ρ · ai+1 = ρ(ai+1) = (ρ(a1) . . . ρ(a`)) · ρ(ai).

Similarly, (ρσρ−1) · ρ(a`) = ρ(a1), as desired. Finally, if x 6= ρ(ai) for any i, we have that

ρ−1(x) 6= ai for any i, so

(ρσρ−1) · x = ρ · ρ−1(x) = x,

and ρσρ−1 acts trivially outside of {ρ(ai)}, and we are done.

Corollary 2.2.7. Suppose σi = (ai1 . . . ai`i) ∈ Sn is a collection of `i-cycles for 1 ≤ i ≤ k.

Let ρ ∈ Sn be any permutation. Then

ρσ1 · · ·σkρ−1 = (ρ(a11) . . . ρ(a1`1)) · · · (ρ(ak1) . . . ρ(ak`k)).

Thus the conjugate of a product of cycles is itself a product of cycles of the same lengths,

suitably renumbered.

Proof. Inserting copies of ρ−1ρ, we have

ρσ1 · · ·σkρ−1 = (ρσ1ρ
−1)(ρσ2ρ

−1) · · · (ρσkρ−1).

Then apply Proposition 2.2.6.

Definition 2.2.8. If σ1, . . . , σk are disjoint cycles and σi has length `i, then we say the

product σ1σ2 · · ·σk has cycle type (`1, `2, . . . , `k), or is an (`1, `2, . . . , `k)-cycle.

Remark 2.2.9. Corollary 2.2.7 implies that cycle type is a conjugacy class invariant. In

fact, the conjugacy classes in Sn are precisely the cycle types. This can be seen by first



25

proving all `-cycles are conjugate to (1 . . . `). Then one just has to conjugate each cyclic

factor in the decomposition appropriately to some chosen `i-cycle, disjoint from the others.

We now pose the central question of this section.

Question 2.2.10. How can we tell if G = Sn? What combination of properties or known

elements or cycle types in G imply that it must be the full symmetric group?

Depending on the setting from which our subgroup G arises, certain conditions may be

easier than others to satisfy, if we want to prove G = Sn.

2.2.2 Generating sets of transpositions

Definition 2.2.11 (transposition). A 2-cycle (a b) ∈ Sn is also known as a transposition,

since it transposes a and b.

Lemma 2.2.12. An `-cycle σ may be written as the product of `− 1 transpositions.

Proof. By Corollary 2.2.7, it suffices to prove the statement for σ = (1 . . . `). We claim

that

(1 . . . `) = (2 3) · · · (`− 1 `)(1 `),

which may be verified by direct computation. Counting the transpositions on the right,

there are ` − 2 of the form (i i + 1) for 2 ≤ i ≤ ` − 1, along with the rightmost factor

(1 `).

Proposition 2.2.13. The set of all transpositions generates the symmetric group,

〈{(a b) | 1 ≤ a < b ≤ n}〉 = Sn.

Proof. Every permutation has a unique cycle decomposition by Proposition 2.2.5. Lemma

2.2.12 states that each cyclic factor can be written as the product of transpositions. Hence

a permutation is the product of transpositions.

Remark 2.2.14. We note here that the factorization in Lemma 2.2.12 is not unique, and

neither is a transposition decomposition for a general permutation. It does however have
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unique parity, i.e. for a given φ ∈ Sn, either all way of writing φ as a product of transpositions

use an even number of them, or all of them use an odd number.

More careful study of this phenomenon leads to the alternating group, An, the normal

subgroup of Sn consisting of permutations that can be written as the product of an even

number of transpositions. In fact, An is generated by the 3-cycles, in analogy to Proposition

2.2.13. The proof follows from showing that any pair of distinct transpositions may be

written as the product of 3-cycles:

(a b)(c d) = (a b)(a c)(a c)(a d) = (a c b)(a c d).

Note that we may assume above that all entries are distinct, except possibly b = d.

Notice that the generating set in Proposition 2.2.13 contains
(
n
2

)
= n(n+1)

2 transpositions.

Can we make do with fewer? The answer turns out to be yes.

Proposition 2.2.15. The sets of n− 1 transpositions

T1 = {(i i+ 1) | 1 ≤ i ≤ n− 1}

T2 = {(1 i) | 2 ≤ i ≤ n}

are both generating sets for Sn.

Proof. By Proposition 2.2.13, it suffices to show that these transpositions are enough to

generate all transpositions. Given 1 ≤ a < b ≤ n, let’s consider the transposition (a b) and

proceed by induction on b− a to show T1 is a generating set.

If b−a = 1 then b = a+1 and (a a+1) is already in our generating set. If not, then our

inductive hypothesis is that (a b−1) is generated by the transpositions of the form (i i+1).

Then we have

(a b) = (a b− 1)(b− 1 b)(a b− 1)

and (a b) is also generated by transpositions of the form (i i+ 1).
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For T2, we directly compute

(a b) = (1 a)(1 b)(1 a)

for any distinct a, b 6= 1.

2.2.3 Transitive subgroups

Definition 2.2.16 (transitive). A permutation subgroup G ⊆ Sn is transitive if for all

a, b ∈ {1, . . . , n} there exists a permutation ρ ∈ G such that ρ(a) = b.

This definition can be extended to any group G acting on a set S. The action is said to

be transitive if for all s, t ∈ S there exists g ∈ G such that g · s = t.

Many familiar groups are transitive; The symmetric group Sn, alternating group An,

dihedral group Dn, and cyclic group Cn all act transitively on {1, . . . , n}. Note that we are

using the usual action here; the isomorphism class of G alone does not in fact tell us if its

action is transitive or not, as in the following example.

Example 2.2.17. The group V4 ' Z/2Z× Z/2Z has a natural action on {1, 2, 3, 4} when

we identify

V4 ' 〈(1 2), (3 4)〉 ⊂ S4.

Under this isomorphism, there is no element which sends 1 7→ 3, for instance, so the action

by V4 is not transitive.

However, consider another permutation group, which is also isomorphic to V4 as an

abstract group:

V4 ' 〈(1 3)(2 4), (1 4)(2 3)〉.

The isomorphism is given by

(1, 0) 7→ (1 3)(2 4),

(0, 1) 7→ (1 4)(2 3),

(1, 1) 7→ (1 2)(3 4).
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The action of this group on {1, 2, 3, 4} is transitive; for example, 1 is sent to 2, 3, and 4 by

(the images of) (1, 1), (1, 0), and (0, 1) respectively.

If we know that a subgroup G ⊆ Sn is transitive, we can get away with very small

generating sets. In the following, assume n ≥ 3 since the n = 1, 2 cases are trivial.

Proposition 2.2.18. Let G ⊆ Sn be a transitive subgroup containing an (n− 1)-cycle and

a transposition. Then G = Sn.

Proof. Choose a numbering on {1, . . . , n} such that the (n − 1)-cycle is written σ =

(1 2 . . . n − 1). The transposition is of the form τ = (a b). By transitivity, there ex-

ists ρ ∈ G such that ρ(b) = n, so we have

τ ′ = ρτρ−1 = (ρ(a) n) ∈ G

by Proposition 2.2.6.

In particular, ρ(a) 6= n, so we have

σ =
(
ρ(a) σ(ρ(a)) . . . σn−2(ρ(a))

)
.

After renumbering only {1, . . . , n− 1}, we can assume τ ′ = (1 n) and σ = (1 2 . . . n− 1).

Conjugating τ by σk for k ≤ n− 2 we have

σkτσ−k = (k + 1 n) ∈ G.

This is a relabeling of the generating set T2 from Proposition 2.2.15, hence G = Sn.

Proposition 2.2.19. Let G ⊆ Sn be a transitive subgroup containing a p-cycle for some

prime p > n/2 and a transposition. Then G = Sn.

Proof. When n = 3, this is trivial, so assume n ≥ 4, which implies p > 2. Let our p-cycle

be of the form σ = (1 . . . p). By transitivity, we may assume that the transposition acts

nontrivially on 1, i.e. is given by τ = (1 a) for some a. By Proposition 2.2.15, it suffices to

see we have transpositions (1 x) ∈ G for all 2 ≤ x ≤ n.
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If a ≤ p then since p = 2, some power σk for k < p puts a adjacent to 1. The primality

of p ensures σk is still a p-cycle. All of this allows us to assume a = 2 for convenience, in

which case

H = 〈σ, τ〉 ' Sp

with the action restricted to {1, . . . , p}. We see this by conjugating τ by σ repeatedly to

generate transpositions and appealing to the generating set T1 from Proposition 2.2.15.

If instead a > p, then we set H = 〈σ, τ〉, viewed as a permutation group on {1, . . . , p, a}

and use Proposition 2.2.18 to see that H ' Sp+1.

In either case, we have a permutation subgroup H ⊆ G containing at least the p − 1

transpositions of the form (1 b), where b ≤ p. Let x > p and use the transitivity of G to

find ρ ∈ G such that ρ(1) = x. Then for each b we have

ρ(1 b)ρ−1 = (x ρ(b)) ∈ G.

Since p− 1 > n− p− 1, by the pigeonhole principle we have that for at least one b we have

ρ(b) ≤ p, which implies for this such b that

(1 ρ(b))(x ρ(b))(1 ρ(b)) = (1 x) ∈ G.

Hence by Proposition 2.2.15, we are done.

We conclude this section with examples that illustrate how things can go wrong if the

hypotheses of the various propositions are not met.

Example 2.2.20. Suppose G ⊆ Sn contains the n-cycle σ = (1 . . . n) and a transposition.

Note that this implies G is transitive. Suppose further that n is even and the transposition

takes the form τ = (1 a) for an odd number a. Then G is not necessarily the full symmetric

group Sn.

For concreteness, we can take

G = 〈(1 3), (1 2 3 4)〉 ⊂ S4,
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which we recognize as the dihedral group D4. In any case, explicit computation shows that

e.g. (1 2) /∈ G, so G 6= Sn.

Note that if either of n or a− 1 is odd, then G = 〈σ, τ〉 = Sn.

Remark 2.2.21. Let n be an even integer and consider the wreath product G = S2 oSn/2 ⊂

Sn. We can realize G as two copies of Sn/2 acting on {1, . . . , n/2} and {n/2 + 1, . . . , n},

respectively, along with an element τ of order two which swaps a with a + n/2 for all

1 ≤ a ≤ n/2. This group is not equal to Sn, but contains n/2-cycles (in fact it contains

k-cycles for all k ≤ n/2), showing that Proposition 2.2.19 is sharp.

G also contains an n-cycle, constructed as follows. Let σ = (1 . . . n/2) and τ as defined

above. Then

στ =
(

1 (
n

2
+ 1) 2 (

n

2
+ 2) . . .

n

2
n
)

is an n-cycle. Note that elements of {1, . . . , n/2} (respectively {n/2 + 2, . . . , n}) are sepa-

rated by an even number of entries.

If a permutation group H contained G = S2 o Sn/2, as well as a transposition swapping

elements across the two Sn/2 factors, then H would in fact be the full symmetric group.

To explore this further, we begin by generalizing an idea in the proof of Proposition

2.2.19, when we used the fact that a subgroup H ⊆ G such that H ' Sp or Sp+1 to argue

that G = Sn.

Lemma 2.2.22. Let G ⊆ Sn be a transitive subgroup. Suppose there exists a subgroup

H ⊆ G which is isomorphic as a permutation subgroup to Sk for some k > n/2, when

considering the action on a k-element subset of {1, . . . , n}. Then G ' Sn.

Proof. The proof is by induction on k, with trivial base case k = n. Assume n/2 < k < n

and that the statement holds for k+1. Renumber so that H ⊆ G fixes {k+1, . . . , n} and H

is identified with Sk. Our goal is to add elements to H to generate a subgroup H ′ ' Sk+1,

then apply the inductive hypothesis to see G = Sn.

Since H ' Sk, we have that H (and thus G) contains the transpositions of the form

(1 a) for 2 ≤ a ≤ k. By transitivity of G, there exists ρ ∈ G such that ρ(1) = k + 1.
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Conjugating by ρ, we produce k − 1 transpositions

ρ(1 a)ρ−1 = (k + 1 ρ(a)) ∈ G.

As a ranges over the k− 1 values 2 ≤ a ≤ k, ρ(a) takes k− 1 distinct values also. There are

only n− k − 2 integers between k + 2 and n, and our hypothesis that k > n/2 implies that

n− k − 2 < k − 2,

so at least one of our ρ(a) values falls between 1 and k.

Letting a be such that 1 ≤ ρ(a) = x ≤ k, we have produced a transposition (x k+1) ∈ G.

Setting H ′ = 〈H, (x k + 1)〉 ⊆ G and viewing this as a permutation subgroup of Sn on the

set {1, . . . , k + 1}, we see that

{(x i) | 1 ≤ i ≤ k + 1, i 6= x} ⊂ H ′.

By Proposition 2.2.15 this is a generating set for Sk+1, so H ' Sk+1. Applying the inductive

hypothesis, we conclude G = Sn.

The idea of Lemma 2.2.22 is that transitive subgroups cannot become too big — or

perhaps too interconnected — before they are forced to be the full symmetric group Sn.

Using this principle, we identify other collections of elements with specified cycle type that

force a transitive subgroup to be the full symmetric group.

Proposition 2.2.23. Fix an integer m ≥ 2. Suppose n > m and G ⊆ Sn is a transitive

subgroup containing the following elements:

(i) an `-cycle σ with n−m ≤ ` < n,

(ii) a transposition τ , and

(iii) a q-cycle θ for a prime q > m.

Then G = Sn.
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Proof. When m ≥ n/2, (ii) and (iii) ensure that G satisfies the hypotheses of Proposition

2.2.19 and we have G = Sn. Hence, let us assume that n > 2m.

Assume for concreteness that ` = n − m, so choosing a suitable numbering we have

σ = (1 . . . n−m). The following argument will still work the same way if n−m < ` < n.

By the transitivity of G, we may further assume τ = (1 a) and that θ = (1 b2 . . . bq).

Suppose first that a > n − m and consider the subgroup H = 〈θ, τ〉 ⊆ G. We can

view H as a permutation subgroup on {1, . . . , n − m, a}, i.e. as a subgroup of Sn−m+1.

In fact, the action of H on this set is transitive; elements between 1 and n − m can be

interchanged by repeated applications of the cycle σ, while a can be reached by using τ to

move a 7→ 1. Therefore, H is a transitive subgroup of Sn−m+1 containing an (n−m)-cycle

and a transposition, so by Proposition 2.2.18 we have H = Sn−m+1.

The hypothesis that n > 2m implies that n−m+ 1 > n/2, so applying Lemma 2.2.22

reveals that G = Sn in this case.

On the other hand, suppose a ≤ n − m. Now it is not sufficient to package τ and σ

together and get a subgroup isomorphic to a large symmetric group (recall Examples 2.2.20

and Remark 2.2.21).

Instead, let H ′ = 〈τ, θ〉 ⊆ G and view H ′ as acting on {1, a, b2, . . . , bq}. This set contains

either q or q + 1 many elements, depending on whether a = bi for some i, but in either

case we have that H ′ is the full symmetric group acting on this set. In particular, we have

Sq ⊆ H ′ ⊆ G.

This buys us at least q − 1 ≥ m distinct transpositions of the form (1 ci) in G (where

the elements ci are either bj for 2 ≤ j ≤ q or ci = a). By the transitivity of G, there exists

ρ ∈ G such that ρ(1) = n−m+ 1 and conjugating our transpositions gives

ρ(1 ci)ρ
−1 = (n−m+ 1 ρ(ci)) ∈ G.

There are only m−1 integers between n−m+1 and n, but we have at least m transpositions,

and hence images ρ(ci), so at least one of them satisfies 1 ≤ ρ(ci) ≤ n−m.

After a renumbering sending ρ(ci) 7→ 1 and leaving n − m + 1 alone, we have the

transposition (1 n −m + 1) ∈ G, putting us back in the earlier case of a > n −m. Hence
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we conclude that G = Sn.

Remark 2.2.24. The hypotheses of Proposition 2.2.23 are somewhat contrived. They

were originally intended to be combined with the theory of Newton polygons to show that

the Galois group of a degree n polynomial over Q may be identified with Sn, where the

transitivity hypothesis is equivalent to the irreducibility of the polynomial.

For polynomials arising from higher degree points on hyperelliptic and superelliptic

curves as discussed in Chapter 3, Proposition 2.1.28 seems too inflexible to produce (i),

(ii), and (iii), as it is difficult to come up with cycles of the desired lengths using only

Newton polygons. In the hyperelliptic case (see §3.3) Propositions 2.2.18 and 2.2.19 turn

out to be sufficient to show many such polynomials have symmetric Galois group. We

include Proposition 2.2.23 in hopes that it, or potential generalizations, becomes useful in

this regard or is of of independent interest.

2.3 Chebotarev’s density theorem

Let E/F be a Galois extension of number fields with G = Gal(E/F ). In this section, we

recall the statement of the classical density theorem due to Chebotarev, and record some

useful elementary consequences. For more, see e.g. [Lan94, Chapter VIII, §4] or [Neu99,

Chapter VII, §13].

We begin with some standard notation and definitions. We denote by OF the ring of

integers of F and use P to denote maximal ideal of OF with residue field FP = OF /P . We

simply refer to such P as a prime of F .

Definition 2.3.1 (norm). Given a nonzero prime P of F , the absolute norm of P is the

size of the residue field,

NF (P ) = # (OF /P ) = #FP .

This norm gives us a way to count primes and measure subsets of primes.

Definition 2.3.2 (natural density). Let S be a subset of the set of primes of F . If it exists,

the limit

δ(S) = lim
x→∞

# {P ∈ S | NF (P ) ≤ x}
# {P | NF (P ) ≤ x}
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is known as the natural density of S.

In the case F = Q, we have NQ(p) = p for a prime p (or rather the ideal (p) ⊂ Z).

We then have well known statements such as the density of rational primes p in a given

congruence class mod N .

Theorem 2.3.3 (Dirichlet). Fix a natural number N ≥ 1 and an integer n such that

gcd(n,N) = 1. Suppose S is the set of primes p ≡ n (mod N). Then

δ(S) =
1

ϕ(N)

where ϕ is Euler’s totient function, or equivalently ϕ(N) = # (Z/NZ)×.

Dirichlet’s theorem is special abelian case of Chebotarev’s theorem. To state the more

general version, we recall some definitions.

Definition 2.3.4 (decomposition and inertia groups). Let P be a prime of F and Q a

prime of E above P . The decomposition group of Q is

DQ = {σ ∈ G | σ(Q) = Q}.

Elements of σ fix Q, and thus give well defined automorphisms of the residue field FQ,

allowing us to define define a subgroup

IQ = {σ ∈ DQ | σ|FQ= idFQ}

known as the inertia group of Q.

We have a natural exact sequence of groups

0→ IQ → DQ → Gal(FQ/FP )→ 0 (2.3.1)

where exactness on the right is proven in [Neu99, Proposition I.9.4], while the rest follows

from the definition. We remark on the similarity of (2.3.1) with Proposition 2.1.15. This

is no coincidence, as DQ may be identified with the Galois group of the extension of local



35

fields obtained by completing E and F at the primes Q and P , respectively; see [Neu99,

Proposition II.9.6]

Definition 2.3.5 (Frobenius). Let Q be a prime of E above P and FQ/FP the associated

extension of residue fields. A Frobenius element FrobQ ∈ DQ is a preimage of the cyclic

generator under the map DQ → Gal(FQ/FP ). If Q is unramified, then FrobQ is unique.

For an unramified prime P , FrobP is the conjugacy class in G of Frobenius elements

FrobQ for a prime Q above P .

For any Q,Q′ above an unramified prime P , FrobQ and FrobQ′ are conjugate. Moreover,

any conjugate of FrobQ is a Frobenius element for a prime Q′ above P , since G permutes

the primes above P transitively. Thus FrobP is well defined as a conjugacy class of G.

Theorem 2.3.6 (Chebotarev, see e.g. [Lan94, Ch. VIII, §4, Theorem 10]). Fix a subset

C ⊆ G invariant under conjugation. Let S be the subset of primes of E with FrobP ⊆ C.

Then the natural density of S exists and δ(S) = #C
#G .

Example 2.3.7 (cyclotomic extensions and Dirichlet’s theorem). Fix N and let E = Q(ζN )

for ζN a primitive N -th root of unity. Set F = Q, so we have G = Gal(Q(ζN )/Q) '

(Z/NZ)×. This is abelian, so each conjugacy class is a single element.

Let n ∈ (Z/NZ)×. What does it mean for Frobp to correspond to n for a prime

p - N? It means precisely that p ≡ n (mod N). To see why, consider the automorphism

σp ∈ Gal(Q(ζN )/Q) given by σp: ζN 7→ ζpN . It is straightforward to compute that this

induces the p-th power map on FQ = Z[ζN ]/Q, which is precisely FrobQ.

But σ is determined by the residue class of p modulo N , with σp = σn for p ≡ n

(mod N). Thus FrobQ = FrobP = σn. Chebotarev’s theorem then tells us that the density

of primes p ≡ n (mod N) is 1
ϕ(N) , which is precisely the statement of Dirichlet’s theorem.

Example 2.3.8 (Legendre symbols). Fix an integer n not a perfect square. Recall for a

prime p - n, the Legendre symbol
(
n
p

)
= ±1, taking the value +1 when n is a quadratic

residue modulo p and −1 if it is a nonresidue. Equivalently, in the extension E = Q(
√
n)

over Q,
(
n
p

)
detects whether p splits or remains inert.

If p splits in E and Q is a prime above p, then we have FQ = Fp, in which case

FrobQ = Frobp is the identity element of Z/2Z = Gal(E/Q). Theorem 2.3.6 then asserts
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that 50% of primes p split in E, i.e. for half of primes p we have that n is a quadratic

residue, and vice-versa.

Example 2.3.9 (splitting). Examples 2.3.7 and 2.3.8 involve abelian (in fact cyclic and

quadratic) extensions E/Q. More generally, for arbitrary (and perhaps nonabelian) exten-

sions E/F with Galois group G, the set of primes P of F with FrobP corresponding to the

trivial conjugacy class has density 1
#G by Theorem 2.3.6.

If FrobP is trivial, then FrobQ is trivial for all primes Q above P . In this case we have

FQ = FP , so the prime P is (totally) split in E.

2.3.1 Useful consequences of the density theorem

Some useful facts about polynomials — many of which can be proved without appealing to

Chebotarev’s result — follow from Theorem 2.3.6 together with the observations made in

Example 2.3.9. Namely, if f ∈ OF [x] is an irreducible polynomial, K = F [x]/(f), and P is

a prime of F , then the factorization of f modulo P is related to how P splits in K. While

we will not need to use it, a theorem of Dedekind makes this precise; see e.g. [Con].

We state and later use these results in the F = Q case, but note that they extend to

arbitrary base fields.

Lemma 2.3.10. Let f(x) ∈ Z[x]. There exist infinitely many primes p such that we can

find x0 ∈ Z for which f(x0) ≡ 0 (mod p).

Moreover, if f(x) is squarefree then there exist infinitely many such p and x0 ∈ Z with

p || f(x0).

Proof. If f is not squarefree, then we may replace it by the polynomial obtained by removing

all repeated factors. Thus it suffices to prove the claims for f squarefree. If

Let E be the Galois extension obtained by adjoining all roots of f to Q. It follows from

Chebotarev’s theorem that the density of primes p splitting completely in E is positive,

equal to 1
# Gal(E/Q) . In particular, there are infinitely many such primes p. Fix one of them,

sufficiently large so that p - Disc f , in which case f(x) ∈ Fp[x] is also squarefree.

Since p splits completely in E, it must split completely in the subextension K =

Q[x]/f0(x) ⊂ E obtained by adjoining the root of some irreducible factor f0 of f . From this
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it follows that the reduction of f(x) modulo p splits completely into linear factors, distinct

by the fact that p - Disc f .

Let (x − α) | f(x) be such a linear factor and take x0 an integer such that x0 ≡ α

(mod p). Then f(x0) = 0 and equivalently p | f(x0), proving the first statement.

For the second statement, suppose p2 | f(x0). We evaluate f(x0 + p) using a Taylor

expansion:

f(x0 + p) = f(x0) + pf ′(x0) +O(p2).

Since p - Disc f , the root of f at x0 is not a multiple root, and thus we know p - f ′(x0).

Then by the above, p2 - f(x0 + p) and we are done.

When f is not squarefree, it will be convenient to have an analogue of the “moreover”

statement in Lemma 2.3.10.

Corollary 2.3.11. Let f(x) ∈ Z[x] and suppose f has an irreducible factor f0 appearing

with multiplicity e ≥ 1 in its factorization. Then there exist infinitely many primes p such

that there exists x0 ∈ Z for which pe || f(x0).

Proof. Write the irreducible factorization f =
∏
i≥0 f

ei
i and let g =

∏
i≥0 fi. Applying

Lemma 2.3.10 to f0, we find infinitely many primes p > Disc g for which there exists x0 ∈ Z

such that p || f0(x0). Clearly we have p | g(x0). Since the roots of g are distinct modulo p,

p -
∏
i>0 fi(x0), so we have p || g(x0). Returning to f , we have pe || f0(x0)e and p - fi(x0)ei ,

so pe || f(x0).
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Chapter 3

Fields generated by points on

curves

3.1 Introduction

Let K be a number field, and let C/K be a smooth curve of genus g. Faltings [Fal83] proved

that when g ≥ 2, the set of K-rational points on C, C(K), is finite. It is natural to ask if

similar finiteness results hold for the higher degree points of C. We say the degree of an

algebraic point P ∈ C(K) is the degree [K(P ) : K], where K(P ) is the minimal field of

definition for P . While in fact a curve of genus g ≥ 2 may have infinitely many points of

some degree n > 1, it is still an interesting problem to characterize when this occurs and

prove finiteness results for “sporadic” points. There have been several recent works related

to the study of higher degree points on families of hyperelliptic curves (see [BGW17, GM19])

and on various modular curves (see [BEL+19, Box21, BGRW20, BN15, DEvH+21, OS19]).

Instead of studying the points of C, one can take the perspective of studying the set of

field extensions K(P )/K generated by algebraic points P ∈ C(K). This idea was suggested

by Mazur and Rubin [MR18] in their program for Diophantine stability, where a variety over

K is said to be Diophantine stable for L/K if its K-rational points and L-rational points

coincide. A natural first question is to ask how many extensions generated by an algebraic

point exist for a fixed degree when ordered by discriminant, following the discussion in §1.1.
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Fixing the base field K = Q, we recall the following functions for counting number fields

by discriminant. Let

Nn(X) = # {K/Q | [K : Q] = n, |DiscK/Q| ≤ X} ,

where X > 0 is a real number and n ≥ 1 is any positive integer. For a fixed curve C/Q, we

define the counting function for extensions generated by an algebraic point of C to be

Nn,C(X) = #
{
Q(P )/Q | P ∈ C(Q), [Q(P ) : Q] = n, |DiscQ(P )/Q| ≤ X

}
.

We further define

Nn,C(X,G) = #
{
Q(P )/Q | P ∈ C(Q), [Q(P ) : Q] = n,

|DiscQ(P )/Q| ≤ X, Gal(Q̃(P )/Q) ' G
}

where G is a transitive permutation subgroup of the symmetric group Sn and Q̃(P ) denotes

the Galois closure of Q(P )/Q.

When E is an elliptic curve over Q, Lemke Oliver and Thorne [LT21] show for a pos-

itive constant δn approaching 1/4 from below as n → ∞, we have Nn,E(X,Sn) � Xδn−ε.

Conditionally, this exponent can be improved to approach 1/4 from above. In fact, they

show something stronger, namely that Xδn−ε is an asymptotic lower bound on degree n

extensions for which the Mordell–Weil ranks satisfy rkE(K) > rkE(Q), with specified root

number.

We first extend this approach to hyperelliptic curves.

Definition 3.1.1 (hyperelliptic curve). A hyperelliptic curve C/Q is an algebraic curve

given by the affine equation

C: y2 = f(x) =
d∑
i=0

cix
i, (3.1.1)

where f(x) ∈ Z[x] is a squarefree polynomial of degree d ≥ 3. The genus g of C is related

to the degree d by g =
⌊
d−1

2

⌋
.

The main results of [Key22] are an asymptotic lower bound for Nn,C(X,Sn) when n is
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large relative to d, generalizing that of Lemke Oliver and Thorne and recovering their bound

when g = 1. We treat the cases of d odd and even separately in Theorems 3.1.2 and 3.1.3

below. In both cases, the implied constants depend on the degree n and the polynomial f ,

and we are able to improve the result somewhat when n is sufficiently large.

Theorem 3.1.2 (K. [Key22, Theorem 1.1]). Let C be a hyperelliptic curve with genus g ≥ 1

and degree d = 2g + 1. If n ≥ d, then

Nn,C(X,Sn)� Xδn

where

δn =
1

4
− gn2 − (g2 − 2g − 3)n− 2g2

2n2(n− 1)
.

Moreover, if n is sufficiently large, we have the improvement

δn =
1

4
− gn+ g2 − 2g

2n(n− 1)
.

The case that d is odd coincides with an appropriate projectivization of C having a

rational Weierstrass point at infinity. In the general case where d is even, we restrict our

attention to even n. This turns out to be a necessary restriction in light of the fact that

a positive proportion of hyperelliptic curves over Q have no points over any odd degree

extensions [BGW17]. After making this restriction, we obtain a similar asymptotic lower

bound to Theorem 3.1.2.

Theorem 3.1.3 (K. [Key22, Theorem 1.2]). Let C be a hyperelliptic curve with genus g ≥ 1

and degree d = 2g + 2. If n ≥ d+ 2 is even, then

Nn,C(X,Sn)� Xδn

where

δn =
1

4
− (1 + 2g)n2 − (2g2 − 2g − 8)n− (4g2 + 4g)

4n2(n− 1)
.
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Moreover, when n is sufficiently large, we have the improvement

δn =
1

4
− (1 + 2g)n− 2g2 + 2g + 2

4n(n− 1)
.

We continue this program of studying the the set of fields generated by points on curves

defined over Q in the case of superelliptic curves.

Definition 3.1.4 (superelliptic curve). Fix a positive integer m ≥ 2. A superelliptic

curve C/Q of exponent m is an algebraic curve given by the affine equation

C: ym = f(x) =
d∑
i=0

cix
i, (3.1.2)

where f(x) ∈ Z[x] is an m-th power free polynomial of degree d, and moreover not an e-th

power for any nontrivial divisor e | m.

Such a curve possesses a degree m map to the line A1 defined over Q, sending a point

(x, y) 7→ x. The condition on f not being an e-th power is equivalent to asking for C to

be geometrically irreducible; see Lemma 4.2.3. Here we restrict further to the case where

m | d, or equivalently that the superelliptic map is unramified at infinity. When n is a

sufficiently large multiple of m, we have the following asymptotic lower bound for Nn,C(X).

Theorem 3.1.5 (Beneish–K. [BK21a]). Let C be a superelliptic curve with equation (3.1.2)

with m | d and suppose n is a multiple of gcd(m, d) satisfying

n ≥ max(d, lcm(m, d)−m− d+ 1, 2m2 −m).

Then we have

Nn,C(X)� Xδn , (3.1.3)

where δn is a constant depending on m, d, and n given explicitly in (3.5.1) and δn → 1
m2 as

n→∞. The implied constant in (3.1.3) depends only on n and (the equation for) C.

Moreover, for all sufficiently large n (relative to m and d) with m | d, we have the
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improvement

δn =
1

m2

(
1 +

(2m− 2dr + 1)n+ d2r2 −mdr +mk − k2

2n(n− 1)

)
, (3.1.4)

where 1 ≤ r < m and 0 ≤ k < m are integers depending only on the residue classes of n, d

(mod m).

Remark 3.1.6. We make note of a few properties of the constant δn in Theorem 3.1.5.

(i) For any fixed choice of m, d, the constant δn in (3.1.3) satisfies δn− 1
m2 ∼ m−m2−dr+3

m2(n−1)
in

the limit as n→∞, where 1 ≤ r < m is an integer depending only on n, d (mod m).

In particular, m−m
2−dr+3

m2(n−1)
is negative, so we can say that in (3.1.3), δn approaches 1

m2

from below.

(ii) In contrast, the improved exponent in (3.1.4) satisfies δn − 1
m2 ∼ 2m−2dr+1

2m2(n−1)
. In the

case m = d we have r = 1 and thus 2m − 2dr + 1 = 1, so δn → 1
m2 from above as

n→∞. If m < d, the improved δn will approach 1
m2 from below as in (3.1.3).

(iii) The improved exponent in (3.1.4) takes effect when we have good enough asymptotic

upper bounds for Nn(X). The best currently known to the author, due to Lemke

Oliver and Thorne [LT22, Theorem 1.1], suffices when n is taken to be large. We

discuss how large n must be for (3.1.4) to be known to hold in §3.5.4; see Figure 3.5.1.

(iv) Theorem 3.1.5 agrees with or improves upon known lower bounds for Nn,C(X,Sn) in

the cases where C is an elliptic curve [LT21] or a hyperelliptic curve [Key22].

(v) We do not expect this lower bound to be sharp; in the case where C is an ellpitic curve,

Lemke Oliver–Thorne [LT21] suggest a heuristic of X3/4+o(1) for the asymptotics of

the number of fields K/Q for which rkE(K) = rkE(Q) + 2.

The strategy for proving Theorems 3.1.2, 3.1.3, and 3.1.5, employed also in [LT21], is to

use the equation for C/Q to find an explicit parameterized family of polynomials generating

degree n extensions Q(P )/Q with Galois closure Sn. Some effort is required to verify that

the members of the family are in fact irreducible and, when appropriate, have Galois group
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Sn. We then count the polynomials in this family and bound how often the number fields

they generate are isomorphic.

A notable limitation of Theorem 3.1.5 is the condition that m | n. We suspect that as

in the case of hyperelliptic curves, the presence of at least one rational point should allow

a similar parameterization strategy to produce infinite families of degree n fields Q(P )/Q

for all n sufficiently large. However, we do not expect this to be the general case, though

we are aware of no analogue of [BGW17] for superelliptic curves with m > 2.

In §3.6 we speculate as to whether for superelliptic curves, points of degrees n such

that gcd(m, d) | n are more common than points of degrees n where gcd(m, d) - n. This

section contains a description of various geometric sources from which we expect to find

infinitely many points on these curves. We also discuss the relationship of these sources to

the points obtained by the parameterization strategy. As a first step towards making these

heuristics concrete, we prove the following. Informally, we find that for a certain family of

superelliptic curves, many have only finitely many points of certain small degrees n.

Proposition 3.1.7 (See also Proposition 3.6.8). Suppose m, d are positive even integers

such that d > 4. Let n < d
2 − 1 have 2-adic valuation strictly less than that of m, i.e.

v2(n) < v2(m). Then for a positive proportion approaching 100% of squarefree degree d

polynomials f(x), ordered by height, the superelliptic curve C: ym = f(x) has only finitely

many points of degree n.

3.1.1 Layout

This chapter is organized as follows. In §3.2 we give an overview of the parameterization

strategy used in the proofs of the main theorems, while §3.3 and §3.4 are devoted to proving

that our parameterization strategy almost always produces irreducible polynomials in the

hyperelliptic and superelliptic cases, respectively. Here we use the theory of Newton poly-

gons developed earlier in §2.1.3 as well as the criteria for a transitive permutation group to

be the symmetric group from §2.2. Then in §3.5 we describe how to count the polynomials

produced by our parameterization and adjust for multiplicity to obtain lower bounds for

Nn,C(X). Wherever possible, we attempt to streamline our exposition to apply to both
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hyperelliptic and superelliptic curves. A discussion of the geometric sources for infinite

collections of points on superelliptic curves, and their relevance to field counting problems

of this flavor, is given in §3.6.

3.2 The parametrization strategy

To produce algebraic points on C, our strategy is to parameterize the coordinates x and y

as rational functions in an auxiliary variable t. We set

x(t) =
γ(t)

η(t)
and y(t) =

g(t)

h(t)
.

Substituting into the equation for C, given by (3.1.2), and clearing denominators, we obtain

the polynomial equation

Fg,h,γ,η(t) = h(t)m
(
cdγ(t)d+cd−1γ(t)d−1η(t)+· · ·+c1γ(t)η(t)d−1+c0η(t)d

)
−g(t)mη(t)d = 0.

(3.2.1)

Suppose g, h, γ, η are chosen in Z[t] such that Fg,h,γ,η(t) is irreducible with some root α.

Then

P = (x(α), y(α)) =

(
γ(α)

η(α)
,
g(α)

h(α)

)
is a point on C defined over the field Q(α), and Q(α) is the field generated by P . Given a

degree n, our approach is to count how many ways we can choose g, h, γ, η such that Fg,h,γ,η

is degree n, irreducible, and has Galois group Sn.

Generally, the degree of Fg,h,γ,η is the maximum of m(deg h) + d(deg γ) and m(deg g) +

d(deg η), both of which are multiples of gcd(m, d). Since we will eventually count the

number of such parameterizations, we want to choose g, h, γ, η so the sum of their degrees

is as large as possible, giving us the most degrees of freedom to count. Recall that in this

paper, we have assumed m ≤ d, so this sum of degrees will be maximized by letting deg g

and deg h be large, while keeping those of γ and η small. To that end, we simply take η = 1

and suppress the notation by writing Fg,h,γ for the remainder of this paper. However, in

the general case, namely if m > d, it would be useful to take η to be nonconstant.
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We observe that when n is a sufficiently large multiple of gcd(m, d), we can always

choose the degrees of g, h, and γ to make the polynomial (3.2.1) have degree n in general.

This is done by using deg γ to control the residue class of n modulo m if necessary, and

letting deg g,deg h be as large as possible. It remains to determine how large n must be

for such degrees to exist. It is clear that we must have at least n ≥ d by looking at the

minimum degree of Fg,h,γ . To give a more precise answer we recall the classical definition

of the Frobenius number, with a straightforward generalization to integers that are not

coprime.

Definition 3.2.1 (Frobenius number). Given natural numbers a, b with gcd(a, b) = 1, the

Frobenius number, denoted Frob(a, b) is the largest natural number which is not a linear

combination ax+ by where x, y ≥ 0.

When gcd(a, b) 6= 1, we define a generalized Frobenius number, also denoted

Frob(a, b), to be the largest multiple of gcd(a, b) that is not a linear combination ax + by

for x, y ≥ 0.

We have the elementary result that for coprime integers a, b, the Frobenius number is

given by Frob(a, b) = ab− a− b. Recognizing that for any natural numbers a, b we have

Frob(a, b)/gcd(a, b) = Frob

(
a

gcd(a, b)
,

b

gcd(a, b)

)
,

we find that the generalized Frobenius number satisfies Frob(a, b) = lcm(a, b)− a− b.

For any n ≥ max(d,Frob(m, d) + 1) we can manipulate the degrees of g, h, and γ such

that degFg,h,γ = n in (3.2.1). Moreover, this is sharp in the sense that (3.2.1) will not take

degrees n < d or n = Frob(m, d). We conclude this section by summarizing our discussion

in the following proposition.

Proposition 3.2.2. Let C be given by (3.1.2) with m ≤ d. For all degrees n such that

n ≥ max(d,Frob(m, d)+1) and gcd(m, d) | n, there exist g, h, γ, η such that Fg,h,γ,η(t) given

in (3.2.1) has degree n.
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Explicitly, we can assume η = 1 and take g, h, γ to have the degrees given below:

deg g = n/m

deg h = b(n− d)/mc when m | n, (3.2.2)

deg γ = 1

and

deg g = bn/mc

deg h = (n− rd)/m when m - n, (3.2.3)

deg γ = r

where r > 0 is the minimal integer such that n ≡ rd (mod m).

Notice that the choices above accomplish our goals of maximizing the total degrees of

freedom by letting g, h have the largest possible degree, while deg γ is kept small, with

1 ≤ r < m.

Let C be a superelliptic curve with exponent m and defining polynomial f(x), as in

(3.1.2). As in Proposition 3.2.2, given any n ≥ n0 such that gcd(m, d) | n, there exist

choices of degrees (3.2.2) or (3.2.3) for g, h, γ such that the polynomial Fg,h,γ(t) given in

(3.2.1) has degree n in general. Writing

g(t) =

deg g∑
i=1

ait
i, h(t) =

deg h∑
j=1

bjt
j , γ(t) =

deg γ∑
`=1

α`t
`,

we can view Fg,h,γ(t) as a degree n polynomial F (a, b,α, t) ∈ Q(a, b,α)[t]. Here a in-

dicates the tuple of indeterminates (a0, . . . , adeg g), and similarly for b and α. For sim-

plicity, since we have fixed the curve C and degree n, we will denote this polynomial

family by F ∈ Q(a, b,α)[t], and denote a rational specialization by Fa0,b0,α0 ∈ Q[t], where

a0 ∈ Qdeg g+1, b0 ∈ Qdeg h+1,α0 ∈ Qdeg γ+1.

Since such F ∈ Q(a, b,α)[t] is degree n, almost all specializations Fa0,b0,α0 have de-

gree n. With Hilbert’s irreducibility theorem, we can say something stronger — that the
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irreducibility and Galois group structure of the polynomial family carry over to most spe-

cializations. We state this classical result for a general polynomial F (a, t) ∈ Q(a)[t] where

a is some tuple of indeterminates.

Lemma 3.2.3 (Hilbert’s irreducibility theorem). Let F (a, t) ∈ Q(a)[t] with Galois group

G. Suppose a0 is a rational specialization such that F (a0, t) ∈ Q[t] is irreducible with Galois

group G0. Then F (a, t) is irreducible as a polynomial in t over Q(a) and G ' G0 for 100%

of a0.

The following corollary is more specific, as it refers to the permutation representations

of the Galois groups. A proof may be found in [LT21, Theorem 4.2].

Corollary 3.2.4. Suppose F (a, t) ∈ Q(a)[t] is irreducible. If a permutation representation

of G0 contains a given cycle type for a positive proportion of integral specializations a0,

then G contains an element of the same cycle type.

Using Newton polygons as discussed in §2.1.3, our aim is to show that many integral

specializations Fa0,b0,α0 are in fact irreducible, and in some cases can be shown to have

certain cycle types in their Galois groups. Corollary 3.2.4 implies that F must have those

same cycles in its Galois group over Q(a, b,α). In the case that C is a hyperelliptic curve,

we will in fact prove that G = Gal(F/Q(a, b,α)) ' Sn, and almost all specializations

Fa0,b0,α0 have Galois group Sn over Q.

3.3 Polynomial families from hyperelliptic curves

We begin with the special case of hyperelliptic curves, i.e. taking m = 2 as in (3.1.1).

Using the strategy outlined in the previous section, we construct a polynomial family whose

specializations give rise to number fields generated by points on C with symmetric Galois

group.

Let g(t) =
∑dg

i=0 ait
i ∈ Q(a)[t] and h(t) =

∑dh
i=0 bit

i ∈ Q(b)[t], where a = (a0, . . . adg)

and b = (b0, . . . , bdh). Then consider the polynomial in Q(a, b)[t] given by

Ff (a, b, t) = g(t)2 − f(t)h(t)2, (3.3.1)
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which is the family described by Proposition 3.2.2. Since 0 < r < m = 2, we take r =

deg γ = 1, and in this section we simply use γ = t (though we occasionally will make

change of variable arguments which are equivalent to choosing a different linear γ). We will

use Ff,a0,b0(t) to denote a specialization with a0 ∈ Qdg+1 and b0 ∈ Qdh+1.

Given f(x) of degree d ≥ 3 and a degree n, our goal is now to show that the polynomial

family (3.3.1) is irreducible over Q(a, b) with Galois group G ' Sn. This will give us a

means of producing many degree n number fields which are generated by algebraic points

of C, which we can count later.

3.3.1 Curves with a Weierstrass point

Fix f with odd degree d ≥ 3. Such curves C have a rational Weierstrass point at infinity.

Fix a degree n ≥ d. We take the degrees dg and dh as in Proposition 3.2.2,

dg =


(n− 1)/2, n odd,

n/2, n even,

dh =


(n− d)/2, n odd,

(n− d− 1)/2, n even.

For simplicity, we denote the polynomial family (3.3.1) by F (t) ∈ Q(a, b)[t] and a special-

ization by Fa0,b0(t) ∈ Q[t], leaving both f and n implicit when it will not create confusion.

Proposition 3.3.1. Fix a polynomial f and integers n, dg, dh as above. Then Ff is irre-

ducible in Q(a, b)[t] and Gal(Ff/Q(a, b)) ' Sn.

Proof. The irreducibility and Galois group of Ff (t) over Q(a, b) are invariant under a linear

change of variables in t. It will be convenient to assume that the constant term of f , c0, is

nonzero, which is always possible after such a linear change of variables. We treat the cases

of n even and odd separately.

Case 1: n is even. When n is even, we take dg = n/2 and dh = (n−d−1)/2. Let p be a

prime that does not divide any nonzero coefficient of f . Consider an integral specialization
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a0 = (a0, . . . , an/2) and b0 = (b0, . . . , b(n−d−1)/2) with the following p-adic valuations:

vp(a0) = 1 (3.3.2)

vp(ai) ≥ 1 for 0 < i < n/2

vp(an/2) = 0

vp(bj) ≥ 2 for 0 ≤ j ≤ (n− d− 1)/2.

These requirements on the valuations of bj allow us to effectively ignore the hb0(x)2f(x) term

of Fa0,b0 in constructing the Newton polygon. Inspecting the valuations of the coefficients

of ga0(x)2 gives the resulting Qp-adic Newton polygon for Fa0,b0 , shown in Figure 3.3.1.

Figure 3.3.1: NPQp(Fa0,b0) with one segment of slope −2/n

(0, 2)
(n/2, 1)

(n, 0)

The Newton polygon NPQp(Fa0,b0) has one segment of slope −2/n, so by Lemma 2.1.26,

if Fa0,b0 is reducible over Qp then it is the product of two degree n/2 irreducible factors.

In particular, if F is reducible over Q(a, b), it must also be the product of two degree

n/2 irreducible factors, as any other factorization would yield an incompatible factorization

upon specializing by a0, b0 with the valuations given in (3.3.2).

Let us now consider a different integral specialization a0, b0 with the following p-adic

valuations:

vp(a0) = 0 (3.3.3)

vp(ai) ≥ 2 for 0 < i ≤ n/2

vp(bj) ≥ 2 for 0 ≤ j < (n− d− 1)/2

vp(b(n−d−1)/2) = 1.

The constant term of Fa0,b0 is a2
0− b20c0 which has valuation 0. All other coefficients can be

seen to have valuation at least 2, with the leading coefficient having valuation at least 4.
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The coefficient of xn−1 is given by 2an/2−1an/2 − b2(n−d−1)/2cd, which has valuation exactly

2. The resulting Newton polygon is shown below in Figure 3.3.2.

Figure 3.3.2: NPQp(Fa0,b0) with (n− 1)-cycle

(0, 0)

(n− 1, 2)

(n,≥ 4)

This Newton polygon has a segment of length n − 1 and slope equal to 2/(n − 1),

so by Lemma 2.1.26 whenever a0, b0 have the p-adic valuations given in (3.3.3), we have

that Fa0,b0 factors as a degree n− 1 irreducible polynomial times a linear polynomial over

Qp. Such a factorization cannot occur if F has two irreducible degree n/2 factors over

Q(a, b), so we may conclude that F is irreducible, and hence G is a transitive permutation

subgroup of Sn. Moreover, Proposition 2.1.28 implies that the Galois group of Fa0,b0 over

Q contains a cycle of length n − 1 whenever a0 and b0 satisfy the valuations in (3.3.3).

These valuation criteria are satisfied for a positive proportion of integral specializations a0

and b0, so Corollary 3.2.4 implies that G contains an (n− 1)-cycle.

To produce a transposition in G, we apply a consequence of Chebotarev’s density the-

orem, Lemma 2.3.10. Since f is squarefree, there exist infinitely many primes p for which

there exists x0 ∈ Z such that p | f(x0) but p2 - f(x0). Choosing one such prime p > n

with p - Disc f, cd, after a possible change of variables, we may assume that vp(c0) = 1 and

vp(c1) = 0.
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We consider an integral specialization a0, b0 with the following p-adic valuations:

vp(a0) = 2 (3.3.4)

vp(a1) = 0

vp(ai) ≥ 2 for 1 < i < n/2

vp(an/2) = 3

vp(b0) = vp(b(n−d−1)/2) = 1

vp(bj) ≥ 1 for 0 < j < (n− d− 1)/2.

These requirements ensure that the constant term of Fa0,b0 has valuation exactly 3, the

coefficient of x2 has valuation exactly 0, the xn−1 coefficient 2an/2an/2−1− b2(n−d−1)/2cd has

valuation exactly 2, and the leading term has valuation exactly 6, with all other coefficients

having valuation at least 2. The resulting Newton polygon is shown below in Figure 3.3.3.

Figure 3.3.3: NPQp(Fa0,b0) with transposition

(0, 3)

(2, 0)

(n− 1, 2)

(n, 6)

That 3 ≤ d < n ensures that 2
n−3 < 4, so the two rightmost segments are distinct.

These, together with the segment of length 2 and slope −3/2 above, ensure that Fa0,b0

has factors of degree 2, n − 3, and 1 over Qp, so Proposition 2.1.28 applies to reveal a

transposition in Ga0,b0 .

Since a positive proportion of integer tuples a0, b0 satisfy (3.3.4), Corollary 3.2.4 implies

that G also contains a transposition. Thus G satisfies the hypotheses of Proposition 2.2.18

and we conclude that G ' Sn.

Case 2: n is odd. Now we take dg = (n−1)/2 and dh = (n−d)/2. Fix a prime p not divid-

ing any nonzero coefficient of f . Consider an integral specialization a0 = (a0, . . . , a(n−1)/2)
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and b0 = (b0, . . . b(n−d)/2) with the following p-adic valuations:

vp(a0) = 0 (3.3.5)

vp(ai) ≥ 2 for i > 0

vp(bj) ≥ 2 for j < (n− d)/2

vp(b(n−d)/2) = 1.

These requirements ensure that the constant term a2
0 − b20c0 has valuation exactly 0, the

leading coefficient b2(n−d)/2cd has valuation exactly 2, and all intermediate coefficients have

valuation at least 2. This produces the p-adic Newton polygon for Fa0,b0 shown below in

Figure 3.3.4.

Figure 3.3.4: NPQp(Fa0,b0) with n-cycle

(0, 0)

(n, 2)

This Newton polygon has one segment of slope 2/n, and since n is odd we have

gcd(2, n) = 1. Thus Lemma 2.1.26 implies that the specialization Fa0,b0 is irreducible

over Qp, hence over Q, and we have that F must be irreducible over Q(a, b), with its Galois

group G a transitive subgroup of Sn.

Next, we aim to produce a q-cycle in G for a prime q > n/2. We will assume n > 3 for

now, as the case of n = d = 3 will be handled by later arguments. Recalling Bertrand’s

postulate, there exists some prime q such that n−1
2 < q < n− 1, which is odd and satisfies

q > n/2. Consider now a specialization a0, b0 satisfying

vp(a(n−q)/2) = 0 (3.3.6)

vp(ai) ≥ 2 for i 6= (n− q)/2

vp(bj) ≥ 2 for j < (n− d)/2

vp(b(n−d)/2) = 1.



53

These requirements ensure that the valuations of all coefficients of Fa0,b0 are at least 2,

except for the degree n − q term, whose coefficient has valuation zero coming from the

presence of an a2
(n−q)/2 term. The leading coefficient b2(n−d)/2cd has valuation exactly 2. An

example p-adic Newton polygon for such a specialization Fa0,b0 is shown below in Figure

3.3.5.

Figure 3.3.5: NPQp(Fa0,b0) with q-cycle

(0,≥ 4)

(n− q, 0)

(n, 2)

Note that the left side of the Newton polygon in Figure 3.3.5 need not be a single

segment, or if n = q it will not exist at all. This is inconsequential however, because the

right side is of interest to us, in particular the segment of slope 2/q and length q. Since

q > n/2 is an odd prime, we have gcd(2, q) = 1 and q is coprime to any integers less than or

equal to n − q, so Proposition 2.1.28 applies, ensuring the existence of a q-cycle in Ga0,b0 .

Since a positive proportion of integral specializations satisfy (3.3.6), Corollary 3.2.4 implies

that G contains a q-cycle as well.

Finally, we can produce a transposition in G using essentially the same argument as

in the case of even n. After a possible change of variables, let p > n be a prime such

that vp(c0) = 1 and p - Disc f, cd. We consider specializations with the following p-adic

valuations.

vp(a0) = 2 (3.3.7)

vp(a1) = 0

vp(ai) ≥ 2 for 1 < i ≤ (n− 1)/2

vp(b0) = vp(b(n−d)/2) = 1

vp(bj) ≥ 1 for 0 < j < (n− d)/2.
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These conditions produce the Newton polygon shown below in Figure 3.3.6.

Figure 3.3.6: NPQp(Fa0,b0) with transposition

(0, 3)

(2, 0)

(n, 2)

Since n− 2 is odd, Proposition 2.1.28 applied to the segment of slope −3/2 implies that

Ga0,b0 , and hence G by Corollary 3.2.4, contains a transposition. Therefore, G satisfies the

hypotheses of Proposition 2.2.19, and we conclude G ' Sn.

3.3.2 Generic case

We now present the analogous proposition for the generic case, in which we assume d is

even. Let f(x) ∈ Z[x] be squarefree given by f(x) =
∑d

i=0 cix
i, with d ≥ 4 even. Fix an

even integer n ≥ d+2 and take dg = n/2 and dh = (n−d)/2−1. Let Ff (a, b, x) ∈ Q(a, b)[t]

denote the polynomial family in (3.3.1), which is seen to have degree n. Again, for simplicity

we denote this by F (x) when it will not create confusion.

Proposition 3.3.2. Fix a polynomial f , an even integer n, and degrees dg, dh as above.

Then Ff is irreducible in Q(a, b)[t] and Gal(Ff/Q(a, b)) ' Sn.

Proof. We will again need that the irreducibility of Ff and its Galois group G are invariant

under linear change of coordinates in x, to allow us to assume certain conditions on the

valuations of the ci.

As in the proof of Proposition 3.3.1, there exists a prime p > n not dividing both

Disc f, cd such that p divides f(k) exactly once for some integer k. Thus after changing

variables, we assume that vp(c0) = 1.

Consider now the change of variables by scaling x to be px. The constant term c0 remains

unchanged, but this allows us to assume that p | ci for i ≥ 1. These assumptions are useful

for finding long cycles in G = Gal(Ff/Q(a, b)). We consider an integral specialization a0, b0
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with the following p-adic valuations:

vp(ai) ≥ 1 for i < n/2 (3.3.8)

vp(an/2) = 0

vp(b0) = 0,

and no restrictions on bj for j > 0. These restrictions, and assumptions on the coefficients

ci, ensure that every term of F (x) is divisible by p, except for the leading coefficient a2
n/2,

which has valuation 0. Moreover, the valuation of the constant term a2
0 − b20c0 is exactly 1,

so the Newton polygon of Fa0,b0 has exactly one segment of length n and slope −1/n, as

shown in Figure 3.3.7.

Figure 3.3.7: NPQp(Fa0,b0) with n-cycle

(0, 1)
(n, 0)

Proposition 2.1.28 implies that Fa0,b0 is irreducible over Qp, and hence over Q, so F is

irreducible over Q(a, b) and G is transitive, containing an n-cycle by Corollary 3.2.4.

We use a variation of this argument to find an (n − 1)-cycle in G. Fix another prime

p > n such that after a change of variables we have vp(c0) = 1 and p - c1. We consider an

integral specialization a0, b0 with the following p-adic valuations:

vp(ai) ≥ 3 for i < n/2 (3.3.9)

vp(an/2) = 0

vp(b0) = 1

vp(bj) ≥ 2 for j > 0.

These restrictions ensure that the constant term has valuation 3, while the linear coefficient,

2a0a1 − b20c1 − 2b0b1c0, has valuation exactly 2. All other terms have valuation at least 2

except for the leading term, which has valuation 0. This produces the Newton polygon

below in Figure 3.3.8.



56

Figure 3.3.8: NPQp(Fa0,b0) with (n− 1)-cycle

(0, 3)

(1, 2)

(n, 0)

Since n ≥ 4, the two segments are distinct, with the rightmost one of length n− 1 and

slope −2/(n − 1). As n is even, Proposition 2.1.28 is satisfied, producing an (n − 1)-cycle

in Ga0,b0 and thus in G.

Finally, we produce a transposition in G, assuming that n ≥ 8 for simplicity; nearly

identical arguments suffice for the case of d = 4 and n = 6. More care is needed here to

find a Newton polygon with exactly one segment of even length to satisfy the hypotheses

of Proposition 2.1.28.

Fix a prime p > n such that p - cd,Disc f , cd is a quadratic residue modulo p, and

p | f(k) for some integer k. Such a prime exists by our earlier Chebotarev argument,

this time looking for primes splitting completely in the splitting field of f(x)(x2 − cd).

After a change of coordinates, we assume vp(c0) = 1 and p - c1. We consider an integral

specialization a0, b0 with the following restrictions:

vp(ai) ≥ 4 for i <
n

2
− 2 (3.3.10)

vp(an/2−2) = 0

vp(an/2−1) = 1

vp(an/2) = 1 such that
a2
n/2

p2
≡ cd (mod p2)

vp(b0) = 1

vp(bj) ≥ 1

vp(b(n−d)/2) = 1 such that
b2(n−d)/2

p2
≡ 1 (mod p2).

Note that such an/2 exists, since cd is a quadratic residue, and these assumptions ensure

that p4 | a2
n/2 − b

2
(n−d)/2cd, the leading coefficient. Furthermore, we have that the constant
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coefficient has valuation 3, the linear coefficient has valuation 2, the xn−4 coefficient has

valuation 0, and both the xn−3 and xn−2 coefficients have valuation 1, with all other terms

having valuation at least 2.

Looking more closely at the coefficient of xn−1 given by

2an/2−1an/2 − b(n−d)/2−1b(n−d)/2cd − b2(n−d)/2cd−1,

we see that its valuation at least 2. To ensure it has valuation exactly 2, we fix a residue

class for 1
pb(n−d)/2−1 modulo p and ask that an/2−1 satisfy

an/2−1

p
6≡
(

2
an/2

p

)−1 1

p2

(
b(n−d)/2−1b(n−d)/2cd − b2(n−d)/2cd−1

)
(mod p). (3.3.11)

Thus combining (3.3.10) and (3.3.11), we produce the Newton polygon in Figure 3.3.9 below.

Figure 3.3.9: NPQp(Fa0,b0) with transposition

(0, 3)

(1, 2)

(n− 4, 0)

(n− 2, 1)

(n− 1, 2)

(n,≥ 4)

The segment of length 2 and slope 1/2, together with the fact that all other segments

have odd length l′ and slopes r′/l′ with gcd(r′, l′) = 1, allow us to apply Proposition 2.1.28

with l = 2 to produce a transposition in Ga0,b0 . The requirements (3.3.10) and (3.3.11)

are satisfied for a positive proportion of integral a0, b0, so Corollary 3.2.4 implies that G

contains a transposition. Thus with its n-cycle, (n−1)-cycle, and transposition, Proposition

2.2.18 gives that G ' Sn.
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3.4 Polynomial families from superelliptic curves

We now return to the case of a superelliptic curve for general m ≥ 2. Recall our restrictions

on d and f(x) out of convenience. First, we assume d = deg f(x) is divisible by m; this

corresponds to the superelliptic map Cf → P1 being unramified at infinity. We also ask

for f(x) 6= f0(x)e for any nontrivial divisor e | m. This is automatic if we enforce that the

curve Cf is geometrically irreducible.

Proposition 3.4.1. Fix a polynomial f(x) as above and an integer n ≥ max(d,Frob(m, d)+

1) such that m | n. Let the degrees dg, dh, dγ as in (3.2.2). Then Ff is irreducible in

Q(a, b,α)[t].

Moreover, for 100% of specializations a0, b0,α0 we have Fa0,b0,α0 ∈ Q[t] is irreducible

of degree n.

Remark 3.4.2. Note that unlike Propositions 3.3.1 and 3.3.2, we make no claims about the

Galois group G = Gal(F/Q(a, b,α)). From irreducibility it follows that G is transitive, but

identifying elements in the Galois group using a similar Newton polygon proves somewhat

more difficult. For now we content ourselves with irreducibility, but we see no reason not

to suspect G ' Sn in general.

Proof of Proposition 3.4.1. The second statement follows from the first by Hilbert irre-

ducibility, Lemma 3.2.3.

For the first statement, we exhibit specializations with incompatible p-adic factorizations

for several primes p, arguing via Newton polygons and Lemma 2.1.26.

Fix a prime p such that p - ci for all i. Consider an integral specialization a0, b0,α0

satisfying

v(a0) = 1 (3.4.1)

v(ai) ≥ 1 for 0 < i < n/m

v(an/m) = 1

v(bj) ≥ 1 for 0 ≤ j ≤ (n− d)/m,



59

with no restrictions on α0, α1. We end up with the Newton polygon featured below.

Figure 3.4.1: NPQp(Fa0,b0,α0) with one segment of slope −m/n

(0,m)

(n, 0)

In particular, since we have assumed m | n, we have that m = gcd(m,n) so by Lemma

2.1.26, all irreducible factors of F over Qp must have degree divisible by n
m .

Consider now an alternative specialization. By Corollary 2.3.11 there are infinitely many

primes p such that for some α0 ∈ Z we have f(α0) is divisible by p exactly e times, where e

the multiplicity of an irreducible factor of f(x) =
∏
i fi(x)ei . Note that we may not be able

to enforce e = 1 as we did in §3.3 since f may not be squarefree, or even have an irreducible

factor of multiplicity one.

Choose some such p and α0 such that p - ci for all i. Set γ(t) = pet + α0, so that pe

exactly divides the constant term f(α0) of f(γ(t)) and all higher coefficients are divisible

by p. Consider now a specialization satisfying

v(ai) ≥ e for 0 ≤ i < n/m (3.4.2)

v(an/m) = 0

v(b0) = 0

v(bj) ≥ 0 for 0 ≤ j ≤ (n− d)/m.

This ensures that pe exactly divides the constant term of F and all other terms except the

leading term, yielding the Newton polygon below.

As earlier, Lemma 2.1.26 implies that the an irreducible factor of F over Qp must have

degree a multiple of n
gcd(n,e) .
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Figure 3.4.2: NPQp(Fa0,b0,α0) with one segment of slope −e/n

(0, e)

(n, 0)

Let F0 be an irreducible factor of F . We have seen that

n

m

∣∣∣ degF0 and
n

gcd(n, ei)

∣∣∣ degF0 for 1 ≤ i ≤ r.

Starting with i = 1, we apply an elementary fact, stated and proven below in Lemma 3.4.3,

with a = m and b = gcd(n, ei), giving

n

gcd(m, gcd(n, e1))
=

n

gcd(n,m, e1)

∣∣∣ degF0.

Applying again for 2 ≤ i ≤ r with a = gcd(n,m, e1, . . . , ei−1) and b = gcd(n, ei) we obtain

n

gcd(n,m, e1, . . . , er)
=
n

1

∣∣∣ degF0

by our assumptions on the multiplicities ei, coming from the irreducibility of Cf . Hence F

is irreducible over Q.

Lemma 3.4.3. Suppose n
a ,

n
b | d for some integers n, d, a, b such that a, b | n. Then n

gcd(a,b) |

d.

Proof. Recall the elementary identity gcd(a, b) lcm(a, b) = ab. We have

n

a
| d =⇒ n

gcd(a, b)

∣∣∣ d lcm(a, b)

b
,

and similarly n
gcd(a,b) | d

lcm(a,b)
a .

Since lcm(a,b)
a = b

gcd(a,b) and lcm(a,b)
b = a

gcd(a,b) are coprime, any prime factor p | n
gcd(a,b)

must divide d, and the conclusion follows.
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3.5 Accounting for multiplicity

In this section, we describe how to obtain an asymptotic lower bound for Nn,Cf (X) or

Nn,Cf (X,Sn) in our cases of interest by counting polynomials and accounting for the mul-

tiplicity of the fields that they generate.

Proposition 3.5.1. Fix m, f, and n divisible by gcd(m, d) and suppose F as given in (3.2.1)

is irreducible over Q(a, b,α). Then we have

Nn,Cf (X)� Xδn ,

where

δn = 1
m2 + 2n2(m−m2−dr+3)+n(km−k2+4(m−m2−dr)−dmr+d2r2)+2(km−k2−dmr+d2r2)

2m2n2(n−1)
. (3.5.1)

Here we take r = deg γ to be the minimal positive integer such that n ≡ dr (mod m) as in

Proposition 3.2.2, and

k =


min{k1 ∈ Z≥0 | n−d−k1m ∈ Z} m | n,

min{k2 ∈ Z>0 | n−k2m ∈ Z} m - n.

Moreover, if Gal(F/Q(a, b,α)) ' Sn then

Nn,Cf (X,Sn)� Xδn .

Theorems 3.1.2, 3.1.3, 3.1.5 follow from Proposition 3.5.1 combined with one of Propo-

sition 3.3.1, 3.3.2, or 3.4.1, as appropriate, to ensure F satisfies the relevant irreducibility

and Galois group hypotheses. The improved exponents in the large n case follow from the

discussion in 3.5.4.
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3.5.1 Coefficient bounds

In this section, we construct a family of polynomials Pf,n(Y ) arising from certain specializa-

tions of (3.2.1) in §3.2. We will do this by imposing bounds on the coefficients of g(t) and

h(t) in F (t) = g(t)m−h(t)mf(γ(t)). These bounds will be useful for counting multiplicities

of fields generated by this family of polynomials because of the following lemma that relates

the absolute values of the coefficients of a polynomial to the absolute values of its roots.

Lemma 3.5.2. Let f(x) =
∑n

i=0 cix
i ∈ C[x] be monic and have degree n. There exist

positive constants Ai such that for any Y > 0, if |ci|≤ AiY
n−i for 0 ≤ i ≤ n then |α|≤ Y

for all roots α of f(x).

Proof. The result follows from a bound of Fujiwara [Fuj16], see [Key22, Lemma 4.1].

For the remainder of this section, we work with the hypotheses of Proposition 3.5.1,

namely that Cf is a nonsingular superelliptic curve, n is a fixed sufficiently large multiple

of gcd(m, d), and F ∈ Q(a, b,α)[t] given in Proposition 3.2.2 is irreducible (possibly with

Galois group Sn).

It will be useful to specialize α to α0, or equivalently to choose some γ0(t) ∈ Z[t], so

that Fα0 ∈ Q(a, b)[t] is irreducible (possibly with Galois group Sn).

Lemma 3.5.3. Assume the same hypotheses as Proposition 3.5.1. Then there exists α0 ∈

Zr+1, for which the partial specialization Fα0 ∈ Q(a, b)[t] is irreducible and such that

f(γ0(t)) is also m-th power free.

Moreover, if Gal(F/Q(a, b,α)) ' Sn then α0 may be chosen such that the partial spe-

cialization also has full Galois group Gal(Fα0/Q(a, b)) ' Sn.

Proof. By assumption, we have that F is irreducible over Q(a, b,α). Hilbert’s irreducibility

theorem (Lemma 3.2.3 but for arbitrary base field) implies that for almost all choices of α0,

Fα0 is irreducible over Q(a, b). If Gal(F/Q(a, b,α)) ' Sn then for almost all α0 we have

Gal(Fα0/Q(a, b)) ' Sn.

Let us know examine more closely when f(γ0(t)) is also m-th power free. Writing f as

a product of irreducible factors f =
∏
i f

ei
i and taking frad =

∏
i fi, it is enough to check

that we can choose γ0 such that frad(γ0(t)) is squarefree.
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Now we may use the discriminant Disc frad(γ(t)), viewed as a polynomial function in

variables α; frad(γ(t)) has a multiple root whenever this polynomial vanishes, which is a

Zariski closed condition on the affine space Ar+1 from which we are choosing α0. Hence the

space of α0 giving rise to γ0 with frad(γ0(t)) squarefree — and thus f(γ0(t)) m-th power free

— is Zariski dense. In particular, some such α0 satisfies both Fα0 irreducible and f(γ0(t))

m-th power free.

Moving forward, we fix some γ0(t) ∈ Z[t] such that Fα0 is irreducible (with Galois group

Sn if appropriate) and f(γ0) m-th power free, by Lemma 3.5.3.

We now take Y to be a a positive real number. Let Pf,n(Y ) be the set of polynomials

of the form

F (t) = h(t)mf(γ0(t))− g(t)m

that arise from certain integral specializations of (3.2.1) for which we will give certain

constraints on g(t) and h(t) below depending on Y . That is, Pf,n(Y ) is a set of integral

specializations Fa0,b0,α0 where the choice of Y imposes constraints on a0, b0 and α0 is

precisely the coefficients of γ0. We write the coefficients of F (t) as follows:

F (t) = dnt
n + dn−1t

n−1 + · · ·+ d0. (3.5.2)

In order to apply Lemma 3.5.2, we need bounds on the coefficients di in terms of Y . To

achieve this, we impose restrictions on the coefficients of g and h. In the case where m | n

we take

g(t) = an/mt
n/m + an/m−1t

n/m−1 + · · ·+ a0, (3.5.3)

h(x) = b(n−d−k1)/mt
(n−d−k1)/m + b(n−d−k1)/m−1t

(n−d−k1)/m−1 + · · ·+ b0,

f(γ0(t)) = c′dx
d + · · ·+ c′1x+ c′0.

Here k1 is the minimal nonnegative integer such that (n − d − k1)/m is an integer. This

realizes the degrees in (3.2.2). Fix an/m to be an integer so that the partial specialization

Fan/m,α is irreducible (and Gal(Fan/m,α0 ,Q(a, b)) ' Sn if appropriate). Such an/m exists by
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Lemma 3.2.3. If k1 = 0, we similarly take b(n−d)/m such that Fan/m,b(n−d)/m,α0 is irreducible

(and Gal(Fan/m,b(n−d)/m,α0/Q(a, b)) ' Sn if appropriate). We then impose the restrictions

that ai, bj are integers satisfying |an/m−i|≤ Y i for i > 0, and |b(n−d−k1)/m−j |≤ Y k1/m+j for

j > 0, with |b(n−d−k1)|≤ Y k/m if k1 6= 0.

In the case where m - n, we choose r, the degree of γ(t), to be the minimal positive

integer for which n ≡ dr (mod m). As above, we have

g(t) = a(n−k2)/mt
(n−k2)/m + a(n−k2)/m−1t

(n−k2)/m−1 + · · ·+ a0, (3.5.4)

h(t) = b(n−dr)/mt
(n−dr)/m + b(n−dr)/m−1t

(n−dr)/m−1 + · · ·+ b0,

f(γ0(t)) = c′dt
dr + · · ·+ c′1x+ c′0.

Here k2 is the minimal positive integer such that (n−k2)/m is an integer so this realizes the

degrees in (3.2.3). This time, we use Lemma 3.2.3 to find an integer b(n−dr)/m such that the

partial specialization Fb(n−dr)/m,α0 is irreducible (with Gal(Fb(n−dr)/m,α0/Q(a, b)) ' Sn if ap-

propriate). We then impose the restrictions that ai, bj are integers satisfying |a(n−k2)/m−i|≤

Y k2/m+i for i ≥ 0, and |b(n−dr)/m−j |≤ Y j for j > 0.

We note that these polynomials F ∈ Pf,n(Y ) have degree n, and these restrictions on

the coefficients imply that |di|� AiY
n−i. Applying Lemma 3.5.2 and accounting for the

implied constant, we see that for all F ∈ Pf,n(Y ), we have that all roots α of F satisfy

|α|�n,f Y and thus we also have |Disc(F )|≤ BY n(n−1) for a constant B depending on f

and n.

3.5.2 Bounding multiplicities

We bound the number of fields arising from specializations in (3.2.1) by counting the number

of polynomials in Pf,n(Y ) and adjusting for two possible sources of multiplicity. The first

potential source of multiplicity is the case where two different g(t), h(t) give rise to the

same element F (t) in Pf,n(Y ). The second potential source of multiplicity is that multiple

elements F (t) in Pf,n(Y ) produce isomorphic number fields. The first potential source of

multiplicity is dealt with by the following lemma, building on the strategy in [LT21, Lemma

7.4].
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Lemma 3.5.4. Let F (t) ∈ Z[t] be a polynomial of degree n. The number of ways to choose

nonzero polynomials g(t), h(t) ∈ Z[t] of some fixed degrees deg g ≤ n
m and deg h < n

m with

one of the leading coefficients of g or h fixed, such that F (t) = g(t)m − f(γ0(t))h(t)m is

Om,n(1).

Proof. Note that we assumed f(x) is m-th power free in our definition of a superelliptic

curve in (3.1.2). We then chose γ0(t) as in Lemma 3.5.3 such that f(γ0(t)) is also m-th

power free. The coordinate ring R = C[t, y]/(ym−f(γ0(t))) is a Noetherian domain of Krull

dimension one, thus its integral closure R̃ is a Dedekind domain (see e.g. [Lan94, Ch. 1,

§6, Theorem 2]). Thus in R̃, the ideal (F ) factors uniquely into a product of finitely many

primes, of the form (t− t0, y − y0) satisfying both y0 = f(γ(t0)) and F (t0) = 0. There are

mn such solutions, counted with multiplicity, so we have at most mn prime factors of (F ).

As in the proof of [LT21, Lemma 7.4], we observe that given any such g, h there is a

factorization

F = gm − f(γ0)hm =
m−1∏
i=0

(
g − ζif(γ0)1/mh

)
,

where ζ is a primitive m-th root of unity. The ideal (g − f(γ0)1/mh) divides (F ) so there

are at most 2mn possibilities for its prime factorization. Thus there are at most 2mn choices

for the ideal (g − f(γ0)1/mh). It remains to show that if g and h satisfy the hypotheses of

the lemma, this ideal determines them precisely.

Suppose we have g′, h′ satisfying the hypotheses with (g−f(γ0)1/mh) = (g′−f(γ0)1/mh′).

Then for some unit u ∈ R̃×, we have g − f(γ0)1/mh = u(g′ − f(γ0)1/mh′). This unit u

necessarily satisfies a minimal monic polynomial

uk + vk−1u
k−1 + · · ·+ v1u+ v0 = 0, (3.5.5)

where vi ∈ R and v0 ∈ R×. Multiplying by g′ − f(γ0)1/mh′, this becomes

0 =
(
g′ − f(γ0)1/mh′

)(
uk + vk−1u

k−1 + · · ·+ v1u+ v0

)
= (g − f(γ0)1/mh)

(
uk−1 + vk−1u

k−2 + · · ·+ v1

)
+ v0

(
g′ − f(γ0)1/mh′

)
.
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If k > 1 then this contradicts minimality of (3.5.5), so we must have k = 1, in which case

we have u ∈ R×.

With this in hand, we may write u = u(t) as

u(t) =

m−1∑
i=0

f(γ0(t))i/mui(t)

with ui(t) ∈ C[t]. The relation u(g − f(γ0)1/mh) = g′ − f(γ0)1/mh′ implies

u0g − um−1f(γ0)h = g′ (3.5.6)

u1g − u0h = h′

u2g − u1h = 0

...

uig − ui−1h = 0 for all 2 ≤ i ≤ m− 1

...

um−1g − um−2h = 0

as polynomials in C[t]. Multiplying each line by appropriately by powers of g and/or h, we

determine

um−1F = um−1(gm − hmf(γ0)) = g′hm−1 + ghm−2h′. (3.5.7)

If um−1 6= 0, the left hand side has degree deg um−1 + n, while the right hand side has

degree at most deg g + (m − 1) deg h < n, producing a contradiction. Therefore, we have

um−1 = 0, and tracing through the relations, this implies ui = 0 for all 1 ≤ i ≤ m− 1, i.e.

u(t) = u0(t).

Finally, we observe that since the degrees of g and h are fixed, u = u0 must be a constant.

Moreover, since we also require the leading coefficients of either g, g′ or h, h′ to be fixed,

we must have u = 1. Therefore, the ideal (g − f(γ0)1/mh) can come from at most one g, h

satisfying the hypotheses.

When m | n, the restrictions imposed in (3.5.3) and the following discussion fix the
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degrees of g and h and the leading coefficient of g such that the hypotheses of Lemma

3.5.4 are satisfied. Thus each choice of g(t) and h(t) coincides with at most finitely many

others. The same is true for the m - n case by (3.5.4). Thus we can give a count for the

number of F (t) in Pf,n(Y ) based on the number of choices for g(t) and h(t). More precisely,

#Pf,n(Y ) � Y c for c to be determined below.

In the case where m | n, we have

c =

n/m∑
i=1

i+

(n−d−k1)/m∑
j=0

(
j +

k1

m

)
=

1

m2

(
n2 + n(m− d) +

d2 + (k1 − d)m− k2
1

2

)
. (3.5.8)

In the case where m - n, we have

c =

(n−k2)/m∑
i=0

(
k2

m
+ i

)
+

(n−rd)/m∑
j=1

j =
1

m2

(
n2 + n(m− dr) +

d2r2 + (k2 − dr)m− k2
2

2

)
.

(3.5.9)

Let Pf,n(Y, irr) denote the subset of Pf,n(Y ) consisting of irreducible polynomials. Similarly,

let Pf,n(Y, Sn) denote the subset of irreducible polynomials with Galois group Sn over Q.

Since we have assumed F is irreducible and chosen an/m or b(n−dr)/m appropriately, Lemma

3.5.3 implies that #Pf,n(Y, irr) � Y c. Similarly, #Pf,n(Y, Sn) � Y c if F has symmetric

Galois group.

To address the second source of potential multiplicity (that there may be multiple ele-

ments of F (t) that produce isomorphic number fields), we use a strategy of Ellenberg and

Venkatesh [EV06] for counting number fields, and the multiplicity counts of Lemke Oliver

and Thorne [LT21]. See also [Key22, §5] for a detailed discussion.

As mentioned previously our assumptions on the sizes of |ai|, |bj | ensure that the coeffi-

cients of (3.5.2) are bounded by |dn−i|≤ AY i for some constant A. In particular the leading

terms are bounded, and hence we may divide by some constant integer w. We define the

set

S(Y ) :=
{
F = tn + d′n−1t

n−1 + ...+ d′0 ∈ (1/w)Z[t] :
∣∣d′n−i∣∣�n,f Y

i
}

with the additional condition that F (t) is irreducible. Note that by this construction,

elements of Pf,n(Y, irr) (and Pf,n(Y, Sn)) are in bijection with a subset of S(Y ), provided
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we choose the implied constant appropriately.

We define the multiplicity of a number field K of degree n in S(Y ) to be the number of

polynomials in S(Y ) that cut out the field K,

MK(Y ) := # {F ∈ S(Y ) | Q[t]/F (t) ' K} .

We state here several bounds related to this multiplicity MK(Y ) that we will use to compute

bounds on Nn,C(X,Sn). The following is a bound of Lemke Oliver and Thorne on MK(Y ).

Lemma 3.5.5 (Lemke Oliver–Thorne [LT21, Proposition 7.5]). We have

MK(Y )� max
(
Y n |Disc(K)|−1/2 , Y n/2

)
.

The proof of this lemma uses the geometry of numbers, building on the strategy suggested

in [EV06].

This bound of Lemke Oliver and Thorne for MK(Y ) together with the following theorem

of Schmidt on general number field counts with bounded discriminant are used in [Key22]

to give a bound for the sum of multiplicities of fields with discriminant bounded by T .

Theorem 3.5.6 (Schmidt, [Sch95]). For n ≥ 3, we have

Nn(X)� X
n+2
4 . (3.5.10)

Lemma 3.5.7 (K., [Key22, Lemma 5.4]). Let T ≤ Y n. Then

∑
|Disc(K)|≤T

MK(Y )� Y nTn/4,

where the sum runs over all degree n number fields K such that |Disc(K)| ≤ T .

Remark 3.5.8. Schmidt’s bound in Theorem 3.5.6 has been superseded both in the large

and intermediate degree case, meaning Lemma 3.5.7 could be improved. However, we defer

this discussion until §3.5.4, where we discuss how better upper bounds for Nn(X) improve

our lower bound on Nn,C(X) for n sufficiently large.
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3.5.3 Bounding Nn,C(X,Sn)

We now have all the tools to prove Proposition 3.5.1.

Proof of Proposition 3.5.1. By our construction, for any F ∈ Pf,n(Y, irr) and any root α

of F , we have (α, g(α)
h(α)) ∈ Cf (K) where K = Q(α) is a field of degree n. Recall also that

we have |Disc(K)| ≤ BY n(n−1) for a constant B. Roughly speaking, we are taking our

count for the polynomials and dividing by a bound for the multiplicity (i.e. the number of

polynomials per field) to get the number of fields.

First, we will show fields of low discriminant are negligible in their contributions to

Nn,C(X). Using Lemma 3.5.7, we choose T = κY
1
m2 (4n−4(dr+(m−1)m)+(2(dr−k)(dr+k−m))/n)

so that

∑
|Disc(K)|≤T

MK(Y )� κn/4Y c, (3.5.11)

and we recall that

#Pf,n(Y, irr) � Y c (3.5.12)

where c is given either by (3.5.8) or (3.5.9). We choose κ to be sufficiently small so that

the quantity in 3.5.11 is at most #Pf,n(Y, irr)/2. Thus we produce negligibly many fields

of discriminant at most T . Since the bound in Lemma 3.5.5 is decreasing with respect

to |Disc(K)|, we have MK(Y ) � T−1/2Y n for all K of discriminant T < |Disc(K)| ≤

BY n(n−1). We obtain a lower bound for Nn,C(BY n(n−1)) by dividing #Pf,n(Y, irr) by this

worst case multiplicity.

Nn,C(BY n(n−1))� Y c−nT 1/2

= Y
1
m2 (n2+n(2+m−m2−dr)+(−k2+4m+km−4m2−4dr−dmr+d2r2)/2+(d2r2−k2+km−dmr)/n).

(3.5.13)

To obtain the exponent δn in (3.1.3), we replace Y in (3.5.13) by (X/B)1/n(n−1). This
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produces (3.5.1)

δn = 1
m2 + 2n2(m−m2−dr+3)+n(km−k2+4(m−m2−dr)−dmr+d2r2)+2(km−k2−dmr+d2r2)

2m2n2(n−1)

and thus Nn,C(X)� Xδn , as desired.

In the case Gal(F/Q(a, b,α)) ' Sn, no changes to the above strategy are required, since

Pf,n(Y, Sn) � Y c as well.

3.5.4 Improvements for n sufficiently large

As in [Key22, §5.4], we can improve on our lower bound when n is sufficiently large by

employing better known upper bounds for Nn(X). The idea is to show that if the upper

bound for Nn(X) is good enough, then the best case scenario of Lemma 3.5.5 applies, and

we can assume MK(Y )� Y n/2. Thus

Nn(Y n(n−1))� Y c−n
2

where c is given in (3.5.8) or (3.5.9), as appropriate. It remains to compute this exponent

and determine when the improved upper bounds for Nn(X) take effect.

Assume we have an upper bound of the form

(∗) Nn(X)� Xε(n,m,d),

where ε(n,m, d) ≥ 1 is a constant depending on n and the m, d values for our curve C. We

will use a modification of (the proof of) Lemma 5.5 which is somewhat more flexible.

Lemma 3.5.9. Let T ≤ Y n. Assume (∗) for some constant ε(n,m, d). Then

∑
|DiscK|≤T

MK(Y )� Y nT ε(n,m,d)−1/2 +
Y nT ε(n,m,d)− 1

2

2ε(n,m, d)− 1
.
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In particular, when we take T = Y n we have

∑
|DiscK|≤Y n

MK(Y )� Y
n
2

+nε(n,m,d).

Proof. Write

M(Y )(t) = max {MK(Y ) : |DiscK|= t}

for the maximal multiplicity of a number field with discriminant t. Note that the bound in

Lemma 3.5.5 depends only on the discriminant so we haveM(Y )(t)� max
(
Y nt−1/2, Y n/2

)
.

We set up a Riemann-Stieljes integral as in [Key22, Lemma 5.4],

∑
|DiscK|≤T

MK(Y ) ≤
∫ T

1−
M(Y )(t)dNn(t)

�
∫ T

1−
Y nt−

1
2dNn(t)

= Y nT−
1
2Nn(T ) +

Y n

2

∫ T

1−
t−

3
2Nn(t)dt.

Substituting (∗) into the last line above gives the first statement of the lemma.

Note that Lemma 3.5.7 follows from this by taking ε(n,m, d) = n+2
4 as in (3.5.10),

Schmidt’s bound [Sch95]. However, this is not good enough for Y
n
2

+nε(n,m,d) to be o(Y c).

For this we need

(∗∗) ε(n,m, d) <
c

n
− 1

2
.

Using the best known upper bounds we can find when (∗∗) is satisfied for a given C and n.

Theorem 3.5.10 (Lemke Oliver–Thorne, [LT22, Theorem 1.1]). For n ≥ 6 we have

Nn(X)� X1.564(logn)2 .

This is sufficient to give the proof of (3.1.4) in Theorem 3.1.5, which we state as a

corollary.

Corollary 3.5.11. Fix m, f and suppose that for all sufficiently large n, F as given in
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(3.2.1) is irreducible over Q(a, b,α). Then for n� 0 we have

Nn,Cf (X)� Xδ′n ,

where

δ′n =
1

m2

(
1 +

(2m− 2dr + 1)n+ d2r2 −mdr +mk − k2

2n(n− 1)

)
.

Here r, k are defined as in Proposition 3.5.1.

Moreover, if for all sufficiently large n, Gal(F/Q(a, b,α) ' Sn, then for n� 0 we have

Nn,Cf (X,Sn)� Xδ′n .

Proof. Fix a choice of Cf , so m and d are fixed. Assume n ≥ 6 and set ε(n,m, d) =

1.564(log n)2, so Theorem 3.5.10 ensures (∗) is satisfied. Recalling c from (3.5.8) or (3.5.9)

we see that in either case, c
n −

1
2 grows linearly with n, as k1, k2, and/or r are bounded,

depending on m, d. Clearly (log n)2 grows more slowly with n, so for n sufficiently large

(∗∗) is satisfied.

As noted above, Lemma 3.5.9 together with (∗), (∗∗) implies that

∑
|DiscK|≤Y n

MK(Y ) = o(Y c).

Thus the contribution of fields with discriminant up to Y n to #Pf,n(Y, irr) is negligible. For

fields K with Y n < |DiscK|≤ Y n(n−1) we have MK(Y ) � Y n/2 by Lemma 3.5.5. Hence,

we have

Nn,Cf (Y n(n−1))� #Pf,n(Y, Sn)Y −
n
2 � Y c−n

2 .

To get δ′n we set Y = X
1

n(n−1) and take δ′n = c−n/2
n(n−1) , which we can compute explicitly to

obtain the stated value.

The same argument applies for Nn,Cf (X,Sn) since #Pf,n(Y, Sn) � Y c.

The question remains to find when the improved asymptotic lower bound above takes

effect; that is, to determine when (∗) and (∗∗) are both satisfied. To do this, we make use
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of a more flexible version upper bound of Lemke Oliver and Thorne, which we state below

with some variables changed to avoid confusion with our notation.

Theorem 3.5.12 (Lemke Oliver–Thorne, [LT22, Theorem 1.2]). Let n ≥ 2.

1. Let a be the least integer for which
(
a+2

2

)
≥ 2n+ 1. Then

Nn(X)� X2a−a(a−1)(a+4)
6n .

2. Let 3 ≤ b ≤ n and let a be such that
(
a+b−1
b−1

)
> bn. Then

Nn(X)� Xab.

For a fixed superelliptic curve, i.e. choice of m and d, we aim to find an integer N

such that for all n ≥ N satisfying gcd(m, d) | n and the irreducibility (or Galois group)

hypothesis, Corollary 3.5.11 is true. Below we summarize this procedure.

1. Set ε(n,m, d) = 1.564(log n)2 and find N0 such that (∗∗) is satisfied for all n ≥ N0.

((∗) satisfied by Theorem 3.5.10.)

2. For n0 = max(d, lcm(m, d)−m− d, 2m2 −m) ≤ N < N0, use Theorem 3.5.12 search

for a, b values to find ε(n,m, d) satisfying both (∗) and (∗∗).

For several small values of m and d, we compute N with this procedure, displayed below in

Figure 3.5.1.

m 2 3 4 5 6 7 10
d n0 N n0 N n0 N n0 N n0 N n0 N n0 N

3 6 106 15 552
4 6 108 15 553 28 1164
5 6 110 15 555 28 1161 45 2015
6 6 112 15 558 28 1162 45 2014 66 3192
7 7 114 15 559 28 1163 45 2015 66 3187 91 4438
10 10 120 17 565 28 1166 45 2020 66 3190 91 4438 190 10860
100 100 234 197 662 100 1256 100 2110 194 3278 593 4525 190 10940
1000 1000 1000 1997 1997 1000 2040 1000 3045 1994 4130 5993 5993 1000 11800

Figure 3.5.1: When is Corollary 3.5.11 taking effect?
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3.6 Geometric sources of higher degree points

Let C be a superelliptic curve over Q given by an affine equation of the form ym = f(x) where

f(x) has degree d. The parametrization strategy in (3.2.1) produces points on superelliptic

curves that generate degree n field extensions, whenever we can prove that F given in (3.3.1)

is irreducible. The entire strategy fails to produce degree n extensions when gcd(m, d) - n

in general. In this section, we attempt to provide some heuristics for why one should expect

degree n points on superelliptic curves with gcd(m, d) - n to appear less often compared to

degree n points with gcd(m, d) | n.

As previously mentioned, in the case of hyperelliptic curves, m = 2 and gcd(2, d) =

2, this parametrization does not produce any odd degree points (cf. [Key22]). This is

consistent with a result of Bhargava–Gross–Wang [BGW17] which says that a positive

proportion of locally soluble hyperelliptic curves have no odd degree points (and thus that

a positive proportion of all hyperelliptic curves have no odd degree points).

While we are far from proving an analogous result to [BGW17] for degree n points with

gcd(m, d) - n on superelliptic curves, we attempt to give some heuristics and examples

suggesting that points of degree n with gcd(m, d) | n appear more often than those with

gcd(m, d) - n and we ask the following:

Question 3.6.1. What, if anything, can be said about the sparsity or abundance of various

degrees n of points on superelliptic curves given by affine equation of the form C : ym = f(x)

where f(x) has degree d? In particular, can something be said in terms of the relationship

of n to the quantities m, d, and gcd(m, d)?

Another way to phrase this question is in terms of the index of the curve C/K. The

index of a curve C, denoted I(C), is the greatest common divisor of degrees [L : K], where

L/K ranges over algebraic extensions such that C(L) 6= ∅. See [GLL13, Sha18] for more

on the index of a curve. The result of Bhargava–Gross–Wang [BGW17] can be phrased as

stating that a positive proportion of hyperelliptic curves over Q have index 2 over Q.

For a general superelliptic curve C/Q, one can ask whether its index over Q is related to

gcd(m, d). It is already clear for instance that I(C) | gcd(m, d) but we ask if more is true.

If the exponent m is prime, Creutz [Cre13] describes how descent can be used to determine
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whether or not Pic1(C) contains no divisor classes defined over Q — which implies the index

of C/Q is m — and gives a specific example of a curve with m = 3, d = 6 with index 3 (see

[Cre13, Example 7.3]). At present, the authors are not aware of similar explicit examples

for other (m, d) pairs or of families of superelliptic curves with index gcd(m, d) aside from

m = 2.

3.6.1 Arithmetic from geometry

A geometric source from which we can expect to find infinitely many points on C are maps

to P1. The most apparent of these are the natural maps of degree m and d from our curve

C to P1. That is, we can get infinitely many points by pulling back along the degree m and

degree d maps to P1. Thus we know there are infinitely many degree n points that are either

multiples of d or multiples of m. For other discussions on sources of infinitely many points on

different types of curves, or more general curves, see [AH91, BEL+19, DF93, HS91, SV22].

In what follows, for n the degree of the points and g the genus of the curve, we discuss

maps from C to P1 in the case n < g and in the case n ≥ 2g.

The case of n < g

We first wish to characterize potential sources of infinitely many points on C of degree

n < g. Suppose further that the exponent m is prime (we remark about the composite

case below), so we have either gcd(m, d) = 1 or gcd(m, d) = m. In the former case, the

normalization of C has a ramified rational point at infinity. If gcd(m, d) = m, then we are

only guaranteed the existence of points of degree n a multiple of m.

Let n < g, and define the nth symmetric product of C as usual by Symn(C) := Cn/Sn.

The points of Symn(C) correspond to effective degree n divisors on C. We have a natural

map

α : Symn(C)→ Picn(C),

defined by taking D 7→ [D]. Picn(C) is a g-dimensional variety (it is a torsor of the Jacobian

of C), and the image α(Symn(C)), often denoted by Wn, is a proper closed subvariety of

Picn(C).



76

Suppose there exists a degree n divisor class [D0], defined over Q. Then Picn(C) is

isomorphic to the Jacobian of C, denoted JC , by the map [D] 7→ [D]− [D0], and we extend

the map α above to JC by composition with the isomorphism. In the case where m is prime,

by a result of Zarhin [Zar18, Theorem 1.2] we have that for a generic C, JC is geometrically

simple. That is, generically JC does not contain a translated proper abelian subvariety and

therefore α(Symn(C)) does not contain an abelian subvariety.

By a theorem of Faltings [Fal94], this implies there are only finitely many points of

α(Symn(C)) and therefore only finitely many points of Symn(C) that do not come from a

grd on C.

Theorem 3.6.2 (Faltings, [Fal94]). Let X be a closed subvariety of an abelian variety A,

with both defined over a number field K. Then the set X(K) equals a finite union ∪Bi(K),

where each Bi is a translated abelian subvariety of A contained in X.

In other words, there are only finitely many points of Symn(C) apart from those coming

from the positive dimensional fibers of α. We know that for some n (namely, n = m or n

a multiple of m) the map α must have positive dimensional fibers, because in particular

the points of Symn(C) that are the result of pulling back points from maps from C to P1

(e.g. a g1
m) map to a point of JC . This is because the Jacobian of P1 is trivial. However,

the lack of a complete characterization of the positive dimensional fibers prevents us from

concluding anything about finiteness of C(K) in certain degrees.

For hyperelliptic curves, there is a complete characterization of the positive dimensional

fibers (see e.g., Arbarello–Cornalba–Griffiths–Harris, [ACGH85] page 13). Any effective

degree n divisor D having positive rank on a hyperelliptic curve H must contain a sub-

divisor of the form P+ι(P ) where P is some point on H and ι is the hyperelliptic involution.

In other words, the only positive dimensional fibers of the map α when C is a hyperelliptic

curve are multiples of the g1
2 (i.e. the only source of infinitely many points is pulling back

along the degree 2 map to P1). Gunther–Morrow in [GM19, Proposition 2.6] use this and

argue as above to show that for 100% of hyperelliptic curves C (asymptotically as g →∞),

C has finitely many degree n < g points that do not arise from pulling back a degree n/2

point of P1.
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Remark 3.6.3. In the case of m composite, we no longer have that JC is geometrically

simple, however work of Occhipinti–Ulmer [OU15] provides a useful understanding of the

abelian subvarieties that appear in the Jacobian. More precisely, for a fixed polynomial

f(x) with m = pa11 . . . pall (composite), the curve Cm: ym = f(x) has maps to other curves

of the form Cm′ : y
m/p

bi
i = f(x) where 1 ≤ bi ≤ ai and m′ := m/pbii . These maps between

curves induce homomorphisms from the Jacobian JC′m to JCm . They define Jnew
m to be the

quotient of JCm by the sum of the images of these morphisms for all proper divisors m′ of

m. JCm is isogenous to the product of Jnew
m′ with m′ ranging over all divisors of m. They

show that for some sufficiently large M , Jnew
M does not contain any abelian subvarieties of

dimension less than or equal to the genus of C.

The case of n ≥ 2g

For a fixed curve ym = f(x) where f(x) has degree d, the parametrization in Proposition

3.2.2 produces infinitely many points of sufficiently large degrees n divisible by gcd(m, d).

Choose finitely many such points P1 . . . Pw of degrees n1 . . . nw on C.

We now illustrate how one can use such points to produce a degree n =
w∑
i=1

ni map to

P1, that is, another source of infinitely many points of degree n. In this case n will (by

construction) be a multiple of gcd(m, d).

To each point Pi, one can associate an element of Symni(C) i.e., the effective degree

ni divisors Di defined over Q corresponding to the Galois conjugates of Pi. Take D :=

D1 + · · · + Dw. Let w be a positive integer large enough such that n ≥ 2g. Using that C

is smooth and integral, we may identify Weil divisors with line bundles (see e.g., [Har77],

II.6.16), and hence consider the line bundle L(D), which is defined over Q. By Riemann–

Roch (see e.g., [Har77], IV.1.3), the line bundle L(D) is basepoint free and has

h0(C,L(D)) = h1(C,L(D)) + n+ 1− g ≥ g + 1 ≥ 2,

and so the sections of L(D) define a map to P1. We may assume that the sections of L(D)

define a degree n map to P1. If h0(C,L(D)) is greater than 2, we may instead take a

sub-linear series. Using a geometric version of the Hilbert Irreducibility Theorem (see e.g.,
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[Ser97] §9.2, Proposition 1), the fibers over all but a thin set of the rational points on P1

give us degree n points on C. Note that if for our given curve, gcd(m, d) = 1, then this

produces a degree n map to P1 giving us infinitely many points on C for all n sufficiently

large.

Remark 3.6.4. The above construction of a degree n map to P1 began with points P1 . . . Pw

coming from parametrization (3.2.1) that each had degrees that were multiples of gcd(m, d).

The same construction could be carried out with P1 . . . Pw+1 if one found a point Pw+1 on

the curve not coming from the parametrization, but instead having some degree nw+1 that

is not a multiple of gcd(m, d). The result of this would be that for n sufficiently large, there

is an infinite source of points that have degree n (i.e. a degree n map to P1) where n is not

a multiple of gcd(m,n).

Remark 3.6.5. If g + 1 ≤ n < 2g and L(D) is not basepoint free, we can still obtain a

degree n map to P1 from the curve minus the base point locus. By the “curve to projective”

extension theorem, such a map extends to a map to P1 from the curve but the degree can

be smaller by the degree of the base locus divisor. The degree of the base locus divisor must

be divisible by the index of the curve.

3.6.2 Heuristics for a special case using a result of Bhargava–Gross–Wang

Suppose we have a curve C given by an affine equation ym = f(x) where f(x) has degree

d > 4. Suppose further that m and d satisfy 2i | gcd(m, d) where i ≥ 2. Let n = 2q for q

an odd prime. In particular, for this case we have that gcd(m, d) - n. In what follows we

suggest that for q sufficiently large, one should not expect to find many points of degree n.

Let C be the superelliptic curve given by ym = f(x) with f(x) of degree d and let H

be the hyperelliptic curve given by y2 = f(x) (note that this is the same f(x) as in the

equation of C). We made the assumption that d > 4, so H has genus at least 2. We have

a natural map φ from C to H, given by sending points {(x, m
√
f(x))} to {(x, 2

√
f(x))}. If

P is a point of degree n on C, we can map it to a point P ′ on H as below. Let Q(P ) and

Q(P ′) be the extensions generated by a point P on C and by a point P ′ on H, respectively.
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Q(P ) C {(x0, y0)}

Q(P ′) H {(x0, y
m/2
0 )}

Q P1 {(x0 : 1)}

dφ

n

φ

dψ ψ

By assumption, [Q(P ) : Q] = n = 2q. This means that the possibilities for dψ and dφ

are as follows:

Map Case 1 Case 2 Case 3 Case 4

dφ 1 n q 2

dψ n 1 2 q

Case 1: One should expect this to happen rarely as this would imply Q(P ) = Q(P ′),

or equivalently Q
(
x0,

m
√
f(x0)

)
= Q

(
x0,
√
f(x0)

)
, is an equality of degree n number fields.

Case 2: In this case H has a rational point. Since we assumed g(H) ≥ 2, Faltings’

theorem [Fal83] implies that the set H(Q) is finite. In fact, Shankar–Wang [SW18] show

that for even, monic hyperelliptic curves H of genus g(H) ≥ 9 with a marked rational

non-Weierstrass point ∞, a positive proportion (tending to 100% as g(H) → ∞) have ex-

actly two rational points, namely ∞ and −∞, the conjugate of ∞ under the hyperelliptic

involution. By assumption we have that H is even, but even if H is not monic, we may

still be able to bound the number of rational points. Under certain technical assumptions

(when r ≤ g(H)− 3, for r the rank of JH), Stoll [Sto19] gives an explicit uniform bound for

#H(Q) depending only on the genus of the curve and the rank of its Jacobian using the

Chabauty–Coleman method [Cha41, Col85] (see also [MP12]). Therefore we may say that

this does not happen often.

Case 3: We have that dφ is bounded above by the degree of φ, so the Riemann–Hurwitz
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formula gives an upper bound

dφ ≤ deg(φ) ≤ g(C)− 1

g(H)− 1
.

Thus for n sufficiently large (i.e. q sufficiently large), Case 3 is excluded entirely.

Case 4: Here P ′ is an odd degree point of H. However, Bhargava–Gross–Wang [BGW17]

show that a positive proportion of hyperelliptic curves H have no odd degree points, ex-

cluding this case. Note that for this positive proportion of curves, Case 2 also does not occur.

We conclude with an illustrative special case, in which we show that for many curves C

satisfying some conditions on m, d, k, we have at most finitely many points of degree n.

Let f(x) be a squarefree polynomial of even degree d = 2g+2. This gives a hyperelliptic

curve with affine equation

H: y2 = f(x) = c2g+2x
2g+2 + c2g+1x

2g+1 + · · ·+ c0 (3.6.1)

with coefficients ci ∈ Z. We define the height of the polynomial f(x) to be

ht(f) := max{|ci|},

where ci are as above.

We remark that [GM19, Propositions 2.5 and 2.6(2)] hold for even degree hyperelliptic

curves as in (3.6.1). The results of Gunther–Morrow are stated for (odd) hyperelliptic curves

with a rational Weierstrass point and their hyperelliptic curves are ordered by a slightly

different height. We phrase the result in terms of densities of polynomials f(x) so that our

height is compatible with the height used in [BGW17]. We record the minor differences in

the proofs in the following lemma.

Lemma 3.6.6. For n an even positive integer and g > n, for 100% of squarefree polynomials

f(x) ordered by height, the corresponding hyperelliptic curve H given in (3.6.1) of genus g

over Q have finitely many degree n points not obtained by pulling back degree n
2 points of
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P1.

Proof. First we show, as in [GM19, Proposition 2.5], that for 100% of squarefree polynomials

f(x), the corresponding genus g hyperelliptic curves with affine equation y2 = f(x) have

geometrically simple Jacobian.

To see this, let t0, . . . t2g+2, so that we may show that polynomial F (x, t0, . . . , tn) =

t2g+2x
2g+2 + · · · + t0 has Galois group S2g+2 over Q(t0, . . . t2g+2). Take the specialization

with t2 = · · · = t2g = 0, t0 = t1 = −1, and t2g+2 = 1. This gives us the polynomial

x2g+2 − x − 1, which is irreducible and has Galois group S2g+2 by Corollary 3 of [Osa87].

This implies that the curve H given by affine equation H: y2 = f(x) has geometrically

simple Jacobian by a result of Zarhin [Zar10]. By Hilbert’s irreducibility theorem, Lemma

3.2.3, we see that 100% of specializations of F (x, t1, . . . , tn) have Galois group S2g+2 and

thus for 100% of squarefree polynomials f(x) the corresponding genus g hyperelliptic curve

H with affine equation y2 = f(x) has geometrically simple Jacobian.

The rest follows from exactly the same proof as [GM19, Proposition 2.6], outlined in

§3.6.1, except that since we do not assume there is a rational Weierstrass point, one defines

an Abel Jacobi map Symn(H) → JH using a fixed degree 2 divisor D0 on the curve and

sending D 7→ 2D − nD0 (we know such a divisor exists because of the map to P1).

We also note that the above height on the polynomials ht(f) := max{|ci|} agrees with

the height defined by Bhargava–Gross–Wang in [BGW17] when H is embedded in the

weighted projective space P(1, g + 1, 1) and expressed by the following equation:

H: y2 = f(x, z) = c2g+2x
2g+2 + c2g+1x

2g+1z + · · ·+ c0z
2g+2. (3.6.2)

Bhargava–Gross–Wang define the height of such a curve C to be ht′(H) := max{|ci|}. This

height on curves in weighted projective space corresponds exactly to the height ht(f) on

the defining polynomial f(x) when we dehomogenize by taking z = 1. Thus by [BGW17,

Theorem 1] when ordered by height, a positive proportion of squarefree polynomials f(x)

have no odd degree points.
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Proposition 3.6.7. Suppose m and d are positive even integers and q is an odd prime

satisfying

• 4 | m | d,

• m
2 < q,

• n = 2q < d
2 − 1.

Then for a positive proportion of squarefree degree d polynomials f(x) ordered by height,

the superelliptic curve given by C: ym = f(x) has finitely points of degree n.

Moreover, for such a curve C and point P ∈ C of degree n, the image φ(P ) ∈ H as

defined above is of degree n and is not the pullback of a degree q point on P1.

Proof. Let H be the corresponding hyperelliptic curve with equation H: y2 = f(x). By

methods of [GM19] (see Lemma 3.6.6), we have that for 100% of polynomials f(x) of degree

d, the corresponding hyperelliptic curve has only finitely many points of degree n < g(H)

that are not the pullback of a degree n
2 point on P1. We also know that a positive proportion

of such hyperelliptic curves do not have any odd degree points by [BGW17, Theorem 1].

Thus for a positive proportion of polynomials f(x), the hyperelliptic curve H has both of

these properties. For such H, let C: ym = f(x) be the superelliptic curve with map to H

given by φ: (x0, y0) 7→ (x0, y
m/2
0 ) as above. Take P to be a point on C of degree n with

φ(P ) = P ′ its image in H. By considering Cases 1 — 4 above, we show there are only

finitely many such P .

Cases 2 and 4 are excluded by the fact that H has no odd degree points. To see that

Case 3 is impossible, we recall q = dφ ≤ deg(φ) = m
2 . This contradicts the hypothesis, so

dφ cannot be equal to q.

All that remains is Case 1, in which both P and its image P ′ are degree n points.

Suppose P = (x0, y0), so P ′ = (x0, y
m/2
0 ), and the image of P, P ′ in P1 is x0. If P ′ is the

pullback of a degree q = n/2 point of P1, then [Q(x0) : Q] = q and f(x0) is not a square

in Q(x0). However, this implies that the degree of m
√
f(x0) over Q(x0) is greater than 2,

which contradicts that the degree of P is n.
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Thus we see that P ′ cannot be the pullback of a degree q point of P1. Since n < d
2 −1 =

g(H) by our assumption, we have that only finitely many such P ′ can exist. Hence at most

finitely many points P on C of degree n can exist.

The argument for Case 1 in the proof of Proposition 3.6.7 can be refined to prove

Proposition 3.1.7, restated below, at the expense of the description of the image of P in

H. For this, we do not use [BGW17, Theorem 1], allowing us to obtain a proportion

approaching 100%.

Proposition 3.6.8 (See Proposition 3.1.7). Suppose m, d are positive even integers such

that d > 4. Let n < d
2 − 1 have 2-adic valuation strictly less than that of m, i.e. v2(n) <

v2(m). Then for a positive proportion approaching 100% of squarefree degree d polynomials

f(x), ordered by height, the superelliptic curve C: ym = f(x) has only finitely many points

of degree n.

Proof. Fix a squarefree polynomial f(x) of degree d. Since m is even, we have a map C → H

given by (x, y) 7→ (x, ym/2) in affine coordinates. Let P ∈ C(Q) with [Q(P ) : Q] = n and

denote its image P ′ ∈ H(Q), setting n′ = [Q(P ′) : Q].

By Lemma 3.6.6, for a positive proportion (approaching 100%) of f(x) ordered by height,

H has finitely many points of degree n′ ≤ n < g(H) = d
2 − 1 which are not the pullback of

a degree n′

2 point of P1. Suppose P ′ is the pullback of a degree n′

2 point on P1. Then since

the composition C → H → P1 is the degree m superelliptic map C → P1, we have that P

is the pullback of a degree n/m point on P1. This implies that n′ = 2n
m .

However, by our hypothesis on the 2-adic valuations, v2(2n) ≤ v2(m), so v2(n′) ≤ 0.

Since n′ is an integer, it must be odd, contradicting that P ′ is the pullback of a degree n′

2

point on P1. Hence we conclude that P ′ is not the pullback of a degree n′

2 point on P1,

and for each n′ | n there are finitely many points of degree n′ on H which could be the

image of a degree n point on C. Since each such P ′ has finitely many preimages in C, we

conclude that C has finitely many points of degree n for all f(x) in the aforementioned

positive proportion.
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Chapter 4

Solubility densities in families of

superelliptic curves

4.1 Introduction

In 1983, Faltings proved that if C is a curve of genus g > 1 over Q, then the set of Q-rational

points of C, C(Q), is finite [Fal83]. The questions of counting and classifying the Q-rational

points of a given curve and the study of how C(Q) varies as C varies in families are areas

of active work. For example, there has been recent work on sparsity of rational points on

hyperelliptic and superelliptic curves by Ellenberg–Hast, Poonen–Stoll, Shankar–Wang, and

Stoll [EH21, PS14, SW18, Sto19]. See also [Cha41, Col85, Kim05, Kim09, MP12] for work

on the Chabauty–Coleman method and its generalization, the Chabauty–Kim method. In

studying the Q-rational points of a curve it is often useful to examine the Qp-rational points

of the curve, for p a place of Q.

In particular, one can ask when a curve is everywhere locally soluble, that is, if the

curve has a point over Qp for every place p of Q (including the infinite place, Q∞ = R).

Poonen–Stoll [PS99b, PS99a] using the sieve of Ekedahl [Eke91] have shown that this pro-

portion is positive in the case of hyperelliptic curves. Bright–Browning–Loughran [BBL16]

have generalized this method to certain families of varieties over number fields. Bhargava–

Cremona–Fisher [BCF16, BCF21] determined the proportion of everywhere locally sol-
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uble plane cubics (≈ 75.96%) and genus one curves (≈ 97.3%) by expressing the local

densities as rational functions of p (in forthcoming work, they compute this quantity for

hyperelliptic curves of genus g > 1). In higher dimensions, Bright–Browning–Loughran,

Fisher–Ho–Park and Poonen–Voloch have studied local solubility of various hypersurfaces

[BBL16, FHP21, PV04]. Further, Browning [Bro17] studied certain cubic hypersurfaces in

P3, giving explicit rational functions for the local densities to show that nearly all (≈ 99%)

are everywhere locally soluble, and moreover proving that a positive proportion of such

surfaces have global points.

In recent years, there have been several works studying the arithmetic of superelliptic

curves such as [Aru21, Aru20, EH21, BK21a], including work of Watson [Wat21] on the

failure of the Hasse principle in twist families of superelliptic curves. In this chapter, we

study the proportion of (everywhere) locally soluble superelliptic curves.

We recall from Definition 3.1.4 that a superelliptic curve Cf/Q of exponent m ≥ 2 is a

projective curve with affine equation

Cf : ym = f(x) =
d∑
i=0

cix
i. (4.1.1)

Note that unlike in Chapter 3, we need not enforce that f is m-th power free, nor that f

is not a perfect e-th power for a nontrivial divisor e | m; these conditions represent 0% of

polynomials f , and hence will not affect the proportions in which we are interested.

Such a curve Cf possesses a cyclic degree m map to the projective line P1 defined over

Q, sending a point (x, y) 7→ x. The genus of Cf over an algebraically closed field k is

computed by the Riemann–Hurwitz formula to be

g(Cf ) =
1

2

(
m(|B|−2)−

∑
α∈B

(m, rα)

)
+ 1, (4.1.2)

where we denote by B the set of branch points of the map to P1 and we denote by rα

the order of α as a root of f(x). The value r∞ is analogously defined and we use that

(m, r∞) = (m,deg(f)). When m | d, equivalent to the superelliptic map Cf → P1 being

unramified at infinity, Cf embeds as a closed subvariety into the weighted projective space
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P
(
1, dm , 1

)
as the vanishing set of

F (x, y, z) = ym − f(x, z) = ym −
d∑
i=0

cix
izd−i. (4.1.3)

We study the local solubility of these curves in three ways. First, by showing that

the proportion of everywhere locally soluble superelliptic curves is positive and given by

a product of local factors. Next, we prove explicit lower bounds for the proportion of

everywhere locally soluble superelliptic curves in terms of an Euler product depending

on m. Finally, we give an explicit rational function for the local factors, in the case of

superelliptic curves with m = 3 and d = 6.

We now define precisely this proportion. Given a superelliptic curve Cf of exponent m

and degree d divisible by m as in (4.1.3), we define its height h(Cf ) to be the height of its

defining polynomial h(f) := max{|c0|, . . . , |cd|}, the maximum of the absolute values of the

coefficients. Then we define the proportion as

ρm,d = lim
B→∞

#{Cf | Cf is everywhere locally soluble and h(Cf ) ≤ B}
#{Cf | h(Cf ) ≤ B}

, (4.1.4)

where here Cf ranges over superelliptic curves of exponent m and degree d. We refer to

ρm,d as the adelic density of equations of everywhere locally soluble such curves.

To define the corresponding local densities, let p be a prime and µp be a Haar measure

on the additive group Zd+1
p , normalized such that µp

(
Zd+1
p

)
= 1. We define

ρm,d(p) = µp

({
(c0, . . . , cd) ∈ Zd+1

p | ym = cdx
d + · · ·+ c0z

d has a Qp-point
})

. (4.1.5)

For the place at infinity, we let µ∞ denote the usual Euclidean measure on Rd+1 and set

ρm,d(∞) =
1

2d+1
µ∞

({
(c0, . . . , cd) ∈ [−1, 1]d+1 | ym = cdx

d + · · ·+ c0z
d has an R-point

})
.

(4.1.6)

Our first result shows that the proportion of locally soluble superelliptic curves of ex-

ponent m and degree d, ρm,d is positive using the methods of Poonen–Stoll and Bright–

Browning–Loughran [BBL16, PS99b, PS99a] and further that the adelic density ρm,d can
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be computed as a product of the local densities.

Theorem 4.1.1. Fix integers m ≥ 2 and d divisible by m, such that (m, d) 6= (2, 2). Then

we have ρm,d > 0, i.e. a positive proportion of superelliptic curves over Q of the form (4.1.3)

are everywhere locally soluble.

Moreover, the adelic density may be computed as the product of local densities,

ρm,d = ρm,d(∞)
∏
p

ρm,d(p).

Remark 4.1.2. A version of this theorem holds over number fields as well as over Q; for

the statement (and proof) of this theorem in full generality see Corollary 4.2.6.

For the remainder of the paper we focus on bounding and computing the local densities

ρm,d(p) for the finite primes p of Q, using these to compute or bound the adelic densities

ρm,d. Given m, d, we find explicit lower bounds for ρm,d(p) in Propositions 4.3.2, 4.3.4, 4.3.6,

and 4.3.9, and an upper bound for ρm,d(2) in Lemma 4.4.1. By Theorem 4.1.1, this yields

upper and lower bounds for ρm,d; see Corollary 4.3.10 and Examples 4.3.15 and 4.3.16.

These bounds are sufficient to then bound the limiting behavior of ρm,d for fixed m as

d→∞; see Corollaries 4.3.14, 4.3.13, and 4.4.2. We summarize these below for prime m.

Theorem 4.1.3. Fix a prime m and suppose m | d. The limiting behavior of ρm,d as

d→∞ may be described by

lim inf
d→∞

ρm,d ≥
(

1− 1

mm+1

) ∏
p≡1(m)

(
1−

(
1− p− 1

mp

)p+1
) ∏
p 6≡0,1(m)

(
1− 1

p2(p+1)

)
.

When m > 2, we have the following numerical estimates, uniform in m:

lim inf
d→∞

ρm,d ≥ 0.83511

and

lim sup
d→∞

ρm,d ≤ 1− 1

29
≈ 0.99804.
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Remark 4.1.4. When the exponent m is composite, the methods of bounding ρm,d(p) from

below discussed in Section 4.3 still apply, but the resulting expressions for a lower bound

of ρm,d may be less compact. See Example 4.3.18 for a discussion in the case of m = 4.

After giving several examples of lower bounds for various pairs m, d, we employ meth-

ods similar to those of Bhargava–Cremona–Fisher to compute exact formulas for the local

densities ρ3,6(p) for p sufficiently large, the first case of superelliptic curves not already ad-

dressed by [BCF16], [BCF21], or their forthcoming paper on hyperelliptic curves of higher

genus.

We give this local density as a rational function in p depending on the residue class of

p modulo 3 (assuming p is sufficiently large). We compute lower bounds for the solubility

when p is small using a brute force search, allowing us to give an approximate proportion

of locally soluble m = 3, d = 6 superelliptic curves.

Theorem 4.1.5. For superelliptic curves of the form (4.1.3) with m = 3 and d = 6, the

exact value of ρ3,6 is about 96.94%.

Moreover, there exist rational functions R1(t) and R2(t) such that the local density

ρ3,6(p) is given by

ρ3,6(p) =


R1(p), p ≡ 1 (mod 3) and p > 43

R2(p), p ≡ 2 (mod 3) and p > 2.

The explicit formula is given in (4.8.1). The asymptotic behavior of R1(t) and R2(t) is

described by

1−R1(t) ∼ 2

3
t−4,

1−R2(t) ∼ 53

144
t−7.

Remark 4.1.6. The proof, given in §4.5, involves relating ρ3,6 to several quantities. These

relations were implemented in Sage [Sag21] to solve for the explicit formula. The Sage

notebook used for these calculations can be found in the GitHub repository associated to

this paper [BK21b, SEC_rho36_23Aug21.ipynb], accessible at the link below:
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https://github.com/c-keyes/Density-of-locally-soluble-SECs.

Remark 4.1.7. In contrast to the work of Bhargava–Cremona–Fisher, where the local

density at a prime p for a genus one curve is given by a degree-9 rational function of p

[BCF21] and the that of a plane cubic curve is given by a degree-12 rational function of p

[BCF16], the local density of our superelliptic curves ρ3,6(p) is a degree-57 rational function

of p. This situation produced considerably more cases to check. Moreover, one can see

that the number of such cases increases quickly in both m and d, and certain independence

arguments we make do not hold for d ≥ 8; see Remark 4.5.20. For this reason, we restricted

our attention to m = 3, d = 6 superelliptic curves for the exact expression.

This chapter is organized as follows. §4.2 contains the proof of a more general version of

Theorem 4.1.1, that the proportion of locally soluble superelliptic curves over any number

field k is positive. §4.3 contains the proof of Theorem 4.1.3, the lower bounds for the

proportion of locally soluble superelliptic curves with exponent m and degree d with m | d

and several examples of lower bounds for ρm,d(p) for specific pairs m, d. This is contrasted

in §4.4 with a discussion of upper bounds for the local densities, leading to a general upper

bound for ρm,d. §4.5 contains the proof of the exact formula for the local densities ρ3,6(p).

§4.6 contains an explanation of a computational approach to bounding the local densities

ρm,d(p) for small primes. In §4.7 we detail how to count the number of degree 2 ≤ d ≤ 6

binary forms f(x, z) over Fp having the different possible factorization types. Finally, in

§4.8 we provide the explicit expressions for numerous rational functions from §4.5, including

ρ3,6(p) itself.
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4.2 The proportion is positive

In proving Theorem 4.1.1, we can in fact produce a more general statement about superel-

liptic curves over number fields. For the remainder of this section, let m ≥ 2 be an integer

and d be a multiple of m. Let k/Q be an algebraic number field, with Ok denoting the ring

of integers, kv denoting the v-adic completion at a place v, and Ak denoting the ring of

adeles.

Definition 4.2.1. A scheme X/k is everywhere locally soluble if X(kv) 6= ∅ for all

places v of k.

If X is proper over k, then the adelic points of X are the product of the kv-points,

X(Ak) =
∏
v

X(kv).

In this case we have that X is everywhere locally soluble if and only if X(Ak) 6= ∅. Note

that a superelliptic curve Cf/k is projective, and therefore proper over k.

To define the density of superelliptic curves Cf of the form (4.1.3) with integral coef-

ficients (ci)
d
i=0 = c ∈ Od+1

k which are locally soluble, we will need a suitable way to take

limits, which specializes to the usual density over Q. Let k∞ = Ok⊗ZR and take Ψ ⊂ kd+1
∞

to be a bounded subset of positive measure whose boundary has measure zero, µ∞(∂Ψ) = 0.

One can then take a limit to define the density

ρm,d,k,Ψ = lim
B→∞

#
{
c ∈ Od+1

k ∩BΨd+1 | Cf (Ak) 6= ∅
}

#
{
c ∈ Od+1

k ∩BΨd+1
} . (4.2.1)

Note that in the case of k = Q, we have k∞ = R and may choose Ψ = [−1, 1], so that

ρm,d,Q,Ψ takes the form

ρm,d,Q,[−1,1] = lim
B→∞

#
{
c ∈ Zd+1 ∩ [−B,B]d+1 | Cf (Ak) 6= ∅

}
# {c ∈ Zd+1 ∩ [−B,B]d+1}

,

which agrees with (4.1.4) upon observing h(Cf ) ≤ B precisely when c ∈ [−B,B]d+1. Note

also that this definition depends on the choice of Ψ; for example taking k = R and Ψ =
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[0, 1]d+1 instead would produce a different answer. Asking for Ψ to be convex and symmetric

in k∞ is likely desirable.

To extend the definitions of the local densities, for a finite place v -∞, we have

ρm,d,k(v) = µv

({
c ∈ (Ok)d+1

v | ym = cdx
d + · · ·+ c0z

d has a kv-point
})

,

where µv is a normalized Haar measure on (Ok)d+1
v , thus extending (4.1.5). At the infinite

places, we take

ρm,d,k,Ψ(∞) =
µ∞

({
c ∈ Ψ | ym = cdx

d + · · ·+ c0z
d has a k∞-point

})
µ∞(Ψ)

This could further be broken down into a product of local densities for v | ∞, but it is not

necessary for our analysis.

We can use ideas of Bright–Browning–Loughran [BBL16] to show that ρm,d,k,Ψ exists,

is nonzero, and is computable via a product of local densities. This was already known for

hyperelliptic curves over Q (i.e. the ρ2,d,Q,[−1,1] case) by work of Poonen and Stoll [PS99b].

In particular, we will need the following result, which is a slight weakening of [BBL16,

Theorem 1.4].

Theorem 4.2.2 (see [BBL16, Theorem 1.4]). Let k be a number field and π:X → An a

dominant quasiprojective k-morphism with geometrically integral generic fiber, and let XP

denote the fiber of π over a point P ∈ Ank . Assume further that

(i) the fiber of π above each codimension 1 point of An is geometrically integral,

(ii) X(Ak) 6= ∅,

(iii) for each real place v of k, we have Bπ(X(kv)) ⊆ π(X(kv)) for all B ≥ 1.

Let Ψ′ ⊂ kn∞ be a bounded subset of positive measure lying in π(X(k∞)) whose boundary

has measure zero. Then the limit

lim
B→∞

# {P ∈ Onk ∩BΨ′ | XP (Ak) 6= ∅}
#
{
P ∈ Onk ∩BΨ′

} (4.2.2)
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exists, is nonzero, and is equal to the product of local densities,

∏
v-∞

µv ({P ∈ (Ok)nv | XP (Qp) 6= ∅}) .

We now translate our problem into this language. Consider the affine space Ad+1
k =

Spec k[c0, . . . , cd] and let Pk = Pk
(
1, dm , 1

)
be the weighted projective space into which

curves of the form Cf naturally embed, with coordinates [x : y : z]. Thus the vanishing set

of F (x, y, z) = (4.1.3) gives a variety X ⊂ Ad+1
k ×Pk. We have a natural map π:X → Ad+1

k ,

where the fiber XP over a k-point P ∈ Ad+1
k (k) corresponds to a specialization Cf , where

the coefficients of f are given by the coordinates of P .

If Ψ ⊂ kd+1
∞ is a bounded subset of positive measure with µ∞(∂Ψ) = 0, we take Ψ′ =

Ψ ∩ π(X(k∞)); that is, the polynomials f with coefficients given in Ψ such that Cf has

points over all archimedean completions of k. Thus if Theorem 4.2.2 holds, we have

ρm,d,k,Ψ = lim
B→∞

#
{
P ∈ Od+1

k ∩BΨ′ | XP (Ak) 6= ∅
}

#
{
P ∈ Od+1

k ∩BΨ′
} ·

#
{
P ∈ Od+1

k ∩BΨ′
}

#
{
P ∈ Od+1

k ∩BΨ
}

= ρm,d,k,Ψ(∞)
∏
v-∞

ρm,d,k(v),

as the ratio of the lattice points contained in BΨ′ to BΨ approaches µ∞(Ψ′)/µ∞(Ψ) as

B →∞. To apply Theorem 4.2.2, we need to prove that π and Ψ′ has the desired properties

and verify (i), (ii), and (iii). We begin by characterizing when varieties cut out by equations

of the form (4.1.3) are geometrically integral.

Lemma 4.2.3. Fix m ≥ 2 and d divisible by m. Let k be any base field. Suppose f(x, z) ∈

k[x, z] is homogeneous of degree d and take Cf the closed subvariety of Pk
(
1, dm , 1

)
cut out

by (4.1.3). The following are equivalent.

(a) f 6= ahq for all prime divisors q | m, a ∈ k, and homogeneous degree d/q polynomials

h(x, z) ∈ k[x, z].

(b) f 6= gq for all prime divisors q | m and homogeneous degree d/q polynomials g(x, z) ∈

k[x, z].
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(c) Cf is geometrically integral.

Proof. For the (a) =⇒ (b) direction, we prove the contrapositive. Suppose f = gq for

some prime divisor q | m and g ∈ k[x, z]. We will find a ∈ k and h ∈ k[x, z] such that

f = ahq. For the moment, let us further assume that the characteristic of k is prime to q.

Write g = a0g0 where a0 ∈ k and g0 has leading coefficient 1 (i.e. the highest power of

x appears with coefficient 1). Then we have

f = aq0g
q
0 = aq0

(
bd/qx

d/q + bd/q−1x
d/q−1z + · · ·+ b0z

d/q
)q
.

Assume for convenience that bd/q = 1; if not, it must be zero by our construction, and the

proof proceeds identically, starting with the first nonzero value of bd/q−i. The leading term

of f is aq0x
d, so aq0 ∈ k. Set a = aq0. Now we examine the xd−1z term: it is aqbd/q−1x

d−1z, so

using the fact that a and q are units in k (here we use char(k) - q), we see that bd/q−1 ∈ k.

Proceeding inductively, we show bd/q−i ∈ k for all 0 ≤ i ≤ d/q. The xd−izi term of f

looks like

a(. . .+ qbd/q−i)x
d−izi,

where the omitted terms consist only of bd/q−j for j < i, and hence are already known to be

in k by the induction hypothesis. Thus we conclude bd/q−i ∈ k, showing that g0 ∈ k[x, z].

Setting h = g0, we have written f = ahq for h defined over k.

Suppose now that char(k) = q and write g = b′d/qx
d/q + · · ·+ b′0z

d/q. We have

f = gq = (b′d/q)
qxd + · · ·+ (b′0)qzd.

Hence (b′i)
q ∈ k for all i. Moreover, the q-th power map k× → k× is an isomorphism, so we

take a = 1 and h = bd/qx
d/q + · · ·+ b0z

d/q for the unique bi ∈ k such that (b′i)
q = bqi , finding

that f = ahq.

To prove (b) =⇒ (c), we claim it suffices to show that the standard open affine pieces

U : ym = f(x, 1) and U ′: ym = f(1, z), obtained by pulling back the map Cf → P1 along the

standard affine patches, are geometrically integral. In particular, this implies that the stalks

of the structure sheaf of Cf (over k) are integral domains. A straightforward computation
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shows that this sheaf has only the constants as its global sections, hence Cf is geometrically

connected. Since Cf is Noetherian and nonempty, geometric connectedness and integral

stalks suffice to ensure Cf is geometrically integral (see e.g. [Vak17, Exercise 5.3.C]).

We now argue that U = Spec k[x, y]/(ym−f(x, 1)) is geometrically integral by exploiting

its map to A1 = Spec k[x]. The same argument applies to U ′. We compute the generic fiber

of this map to be the spectrum of k(x)⊗k[x] k[x, y]/(ym− f(x, 1)) ' k(x)[y]/(ym− f(x, 1)).

This is a field by our hypothesis (b); if not, f(x, 1) = g0(x)q for some prime q | m, and we

have

f(x, z) = zdf(x/z, 1) = zdg0(x/z)q =
(
zd/qg0(x/z)

)q
,

violating (b).

Finally, we verify that the natural map of rings k[x, y]/(ym − f(x, 1))→ k(x)[y]/(ym −

f(x, 1)) is injective. Taking g(x, y) in the kernel of this map and assuming its degree in y

is less than m, we have

g(x, y) =
∑

0≤i<m
gi(x)yi =

∑
j≥0

hj(x)yj

 (ym − f(x, 1)),

where hi ∈ k(x) for all i. Expanding the right hand side, we see gi(x) = −hi(x)f(x, 1) for

0 ≤ i < m and hj(x) = hj+m(x)f(x, 1) for all j. Since hj(x) = 0 for all j � 0, we must

have hj = 0 for all j, hence g(x, y) = 0. Thus k[x, y]/(ym − f(x, 1)) injects into a field, and

therefore must be an integral domain, making U geometrically integral.

The (c) =⇒ (a) direction follows from the observation that if f = ahq then over k we

have the nontrivial factorization of (4.1.3)

ym − f(x, z) =
∏

1≤i≤q

(
ym/q − ζiαh(x, z)

)
,

for ζ a primitive q-th root of unity and α ∈ k satisfying αq = a.

Lemma 4.2.4. Let π:X → Ad+1, as above, be considered as a morphism of k-varieties.

Then π is dominant, projective, and has geometrically integral generic fiber.

Proof. The generic fiber of π is the curve given by (4.1.3), but viewed as a closed subscheme
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of Pk(c0,...,cd). This is geometrically integral by an application of Lemma 4.2.3 over the base

field k(c0, . . . , cd) because the generic degree d polynomial is not an q-th power over the

algebraic closure of k(c0, . . . , cd) for any prime divisor q | m (in fact it is squarefree, since the

discriminant of such a polynomial is nonzero in k(c0, . . . , cd)). Interpreting this (or rather

Spec of the function field) as the generic point of X, we see that the generic point of X maps

to that of Ad+1
k , so π is dominant . For quasiprojectivity, we note that since Pk → Spec k is

projective and projectivity is preserved under base change, we have Ad+1
k × Pk → Ad+1

k is

projective. Closed embeddings are projective and projectivity is closed under composition,

giving that X → Ad+1
k × Pk → Ad+1

k is projective.

In order to justify (i) of Theorem 4.2.2, we first need to understand the q-th power map

on polynomials for a prime q. Viewing Ad+1 as the space of polynomials of degree up to d,

we define a map

φ:Ad/q+1 → Ad+1

g(x) 7→ g(x)q

for q any prime dividing d. By identifying a polynomial g(x) = ad/qx
d/q + · · ·+ a0 with the

prime ideal (a0 − t0, . . . , ad/q − td/q) ∈ Spec k[t0, . . . , td/q] and studying the coefficients of

g(x)q, one can produce the equations for φ.

What we need from this is a lower bound on the codimension of the image of this map,

a fact which is proven for the q = 2 case in [PS99b, Lemma 3], so long as d > 2.

Lemma 4.2.5. For a positive integer d and a prime q | d, let φ:Ad/q+1
k → Ad+1

k be the q-th

power map described above. Let V ⊆ Ad+1
k be the scheme theoretic image of φ. So long as

(d, q) 6= (2, 2), V has codimension at least 2.

Proof. Let I be the ideal of V and ∆ the discriminant of a degree d polynomial (viewed as a

function on Ad+1
k ). Since I corresponds to the functions vanishing on V , and an element of

the image of the q-th power map is necessarily not separable, we have (∆) ⊆ I. Moreover,

only in the case q = 2 and d = 2 is (∆) = I. A degree two polynomial is a perfect square

if and only if it is nonseparable, but for all (d, q) 6= (2, 2), there exist degree d polynomials
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which are neither separable nor perfect q-th powers. As (∆) is prime (see e.g. [GKZ08,

Example 1.4]), we have the chain (0) ( (∆) ( I, making the codimension of V at least

2.

Corollary 4.2.6. Suppose d > 2. Let k be a number field and π:X → Ad+1
k , as above, be

considered as a morphism of k-varieties. Suppose Ψ ⊆ kd+1
∞ is a bounded subset such that

Ψ′ = Ψ ∩ π(X(k∞)) has positive measure with µ∞(∂Ψ′) = 0. Then ρm,d,k,Ψ, as defined in

(4.2.1), exists, is nonzero, and is equal to a product of local densities.

Proof. By Lemma 4.2.4, we have that π is dominant, projective, and has geometrically

integral generic fiber. It remains to show that the hypotheses (i), (ii), and (iii) of Theorem

4.2.2 apply.

Let P ∈ Ad+1
k be a codimension one point. By Lemma 4.2.3, the fiberXP is geometrically

integral precisely when P /∈ Vq for some prime q | m, where Vq is the scheme-theoretic image

of the q-th power map described above. By Lemma 4.2.5, each such Vq has codimension at

least 2 and thus cannot contain P . Put informally, it takes more than just one algebraic

relation on the coefficients to force f(x, z) to be an q-th power for some q | m. Thus (i) is

satisfied.

For (ii), we have X(Ak) 6= ∅ because X(k) 6= ∅. That is, there exist superelliptic curves

Cf with k-rational points. For example, one can take

Cf : ym = xd + xzd−1,

which has a k-rational point at [0 : 0 : 1].

Finally, to see that for real places v, π(X(kv)) is closed under the action of R≥1, simply

note that positive m-th roots are in R, so if Cf has a kv point [x : y : z] then CBf has the

kv point [x :
m
√
By : z].

To prove Theorem 4.1.1, we need only specialize k = Q and find an appropriate Ψ ⊆

π(X(R)) satisfying the desired properties in Corollary 4.2.6, such that the limit (4.2.2)

computes the limit in Theorem 4.1.1.
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Proof of Theorem 4.1.1. When k = Q we have k∞ = R, so we set Ψ = [−1, 1]d+1∩π(X(R)),

which may be viewed as the set of homogeneous polynomials f(x, z) of degree d with real

coefficients of absolute value at most 1 such that Cf has a real point. This subset is clearly

bounded, and has positive measure since it contains the set
{
c ∈ [−1, 1]d+1 | 0 ≤ c0 ≤ 1

}
,

whose measure is half that of the unit cube. To see why, we merely recognize that if c0 ≥ 0

then Cf has an R-point [0 : m
√
c0 : 1].

To check µ∞(∂Ψ) = 0, with respect to the Euclidean measure µ∞ on [−1, 1]d+1, we use

the evaluation map, ev[x:z] for a point [x : z] ∈ P1
R. This map takes ev[x:z](c) = f(x, z),

where f is the degree d binary form in R[x, z] defined by c. We observe

Ψ =

 ⋃
[x:z]∈P1

R

ev−1
[x:z] ((0,∞))

 ∪ {c ∈ [−1, 1] | f(x, z) = 0 for some [x : z] ∈ P1
R
}
.

As ev[x:z] is continuous (in fact it is linear), the union ∪[x:z]∈P1
R

ev−1
[x:z] ((0,∞)) is open, and

hence ∂Ψ is contained in the set

{
c ∈ [−1, 1] | f(x, z) ≤ 0 for all [x : z] ∈ P1

R and f(x, z) = 0 for some
}
.

To be in this set, it is necessary for each such root of f(x, z) = 0 to have even multiplicity,

and in particular c is contained in the vanishing set of the discriminant polynomial, which

has measure zero.

Thus the limit (4.2.2) computes
ρm,d

ρm,d(∞) =
∏
p-∞ ρm,d(p) as a product of local densities

ρm,d(p) = µp (π(X(Qp))), completing the proof of Theorem 4.1.1.

We conclude this section by making some observations about ρm,d,k(∞). If k is totally

complex, i.e. it has no real places and only complex places, then we have that ρ(∞) = 1.

Using the fact that C is algebraically closed, any choice of f(x, z) with coefficients k∞ will

have a solution [x : y : z] for any choice of [x : z] ∈ P1
k∞

.

Whenever m is odd, we have ρm,d,k(∞) = 1, because real numbers always have an m-th

root in this case. Geometrically, we observe that π is surjective on k∞-points, π(X(k∞)) =

Ad+1(k∞). Conversely, if m is even, ρm,d,k(∞) depends only on d, and not on m. In
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particular, ρm,d,Q(∞) is equal to the proportion of (real) polynomials f(x, z) which take a

positive value somewhere.

One can easily determine

ρm,d,Q,[−1,1](∞) ≥ 3

4

by observing that cd ≥ 0 or c0 ≥ 0 is sufficient to ensure the existence of a real point,

but at present no analytic approach for computing it is known. Bhargava–Cremona–Fisher

[BCF21, Proposition 3.1] determined

0.873914 ≤ ρm,4,Q(∞) ≤ 0.874196

for even m using a rigorous numerical approach. As observed in [BCF21], one could also

use a Monte Carlo method to sample the coefficient space to estimate ρ(∞). See Example

4.3.18 for such approximations of ρ4,d(∞) when 4 ≤ d ≤ 20.

4.3 Lower bounds for the proportion

In this section, we give a closed form lower bound for the density ρm,d, albeit one containing

infinite products over primes, using only a näıve form Hensel’s lemma (Theorem 2.1.7),

which allows us to lift roots of equations over Fp to ones over Zp. We restate what we need

from Corollary 2.1.8 and Theorem 2.1.9 in the special case O = Zp below.

Theorem 4.3.1 (Hensel’s lemma). Let F (t) ∈ Zp[t] be a polynomial and F (t) ∈ Fp[t] its

reduction modulo p. Use F
′
(t) to denote the formal derivative with respect to t. If there

exists t0 ∈ Fp such that

F (t0) = 0 and F
′
(t0) 6= 0,

then there exists a lift t0 ∈ Zp such that F (t0) = 0 and the reduction of t0 modulo p is t0.

More generally, if there exists t1 ∈ Zp such that

v (F (t1)) > 2v
(
F ′(t1)

)
, (4.3.1)

where v denotes the p-adic valuation, then there exists t0 ∈ Zp such that F (t0) = 0 and



99

v(t0 − t1) ≥ v(F (t1))− 2v(F ′(t1)).

Let S be a subset of the set of binary degree d forms over Fp. The translation invariance

of the Haar measure µp implies that the measure of the set of degree d forms over Zp which

reduce modulo p to an element of S is equal to the ratio of #S to the (finite) number of

binary degree d forms over Fp,

µp
({
f(x, z) ∈ Zp[x, z] | f deg. d form, f ∈ S

})
=

#S

#
{
f(x, z) ∈ Fp[x, z] | f deg. d form

} .
In particular, this means that when conditions on the reduction f(x, z) guarantee Cf to

have a Qp-point, we can count the number of forms over Fp satisfying these conditions to

give a lower estimate of ρm,d(p).

In the case of this section, we use the first statement of Theorem 4.3.1 to give sufficient

conditions on f(x, z) for Cf to have a Qp-point, with F (x, y, z) = (4.1.3), with one of x, y,

or z taking the place of the lifting variable t. This relatively simple approximation strategy

yields lower bounds for ρm,d, as demonstrated for (m, d) = (3, 6) and (5, 5) in Examples

4.3.15 and 4.3.16. Moreover, they give clues as to the limiting behavior of the density for

fixed m as d→∞; see Corollary 4.3.13 and Example 4.3.17.

4.3.1 Lower bounds for local densities ρm,d(p)

Fix a prime exponent m and a degree d divisible by m. Recall that the genus of a superel-

liptic curve Cf : ym = f(x, z) is given by (4.1.2). If f is separable of degree d, this becomes

g = (m−1)(d−2)
2 .

When C is a smooth curve and p is sufficiently large, the Weil conjectures imply that

C(Fp)→∞ as p grows large among primes of good reduction. C has bad reduction at only

finitely many primes, so this together with Hensel’s lemma shows that C is soluble over Qp

for all but finitely many primes p.

To make this effective, we can use the Hasse–Weil bound, which states that

|#C(Fp)− (p+ 1)| ≤ 2g
√
p. (4.3.2)
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This can be improved further,

|#C(Fp)− (p+ 1)| ≤ gb2√pc (4.3.3)

see [Ser12, §4.7.2.2]. This implies that for the superelliptic curve Cf , if f(x, z) is separable

over Fp then whenever

p+ 1− gb2√pc > 0,

we have #Cf (Fp) > 0. Taking p > 4g2 − 1 = (m − 1)2(d − 2)2 − 1 is sufficient in the case

that m | d. This leads us to the following proposition.

Proposition 4.3.2. Suppose m is prime and d is divisible by m. For all primes p >

(m− 1)2(d− 2)2 − 1 we have the lower bound

ρm,d(p) ≥ 1− p
−d(m−1)

m .

Proof. Let f denote the reduction of f modulo p. By Lemma 4.2.3, If f 6= ahm for a ∈ Fp

and h ∈ Fp[x, z], then the curve over Fp given by ym = f(x, z) is geometrically integral,

hence the reduction of Cf modulo p is geometrically integral. A straightforward count shows

that there are p
d
m

+1 homogeneous polynomials f(x, z) = ah(x, z)m ∈ Fp[x, z] of degree d,

or equivalently, that the fraction of f which are not m-th powers modulo p is given in the

statement.

It remains to prove that if f is not an m-th power modulo p, then its reduction modulo

p has a smooth point. If Cf is smooth, then the size assumption on p and the bound (4.3.2)

ensure that Cf (Fp) 6= ∅, and the smoothness allows us to lift to a point in Cf (Qp) via

Hensel’s lemma (Theorem 4.3.1).

If Cf is not smooth, then we must normalize. Denote the normalization by C̃f . The

genus of C̃f is g −
∑

P sing
1
2rP (rP − 1), where rP denotes the multiplicity at P (see e.g.



101

[Har77, Ch. V, Example 3.9.2]). When P is singular we have rP ≥ 2, allowing us to compute

#Cf
sm

(Fp) = #C̃f −
∑
P sing

rP

≥ p+ 1− 2

g − ∑
P sing

1

2
rP (rP − 1)

√p− ∑
P sing

rP (by (4.3.2))

= p+ 1− 2g
√
p+

∑
P sing

(
rP (rP − 1)

√
p− rP

)
> p+ 1− 2g

√
p+

∑
P sing

rP (rP − 2) (
√
p > 1)

≥ p+ 1− 2g
√
p.

This quantity is positive by our assumption on the size of p.

The argument of Proposition 4.3.2 can be extended to the case of m composite by

considering the prime divisors of m and proceeding via inclusion-exclusion.

Corollary 4.3.3. Fix positive integers m, d such that m | d and let ω denote the number of

distinct prime divisors of m. Set g0 to be the genus of Cf when f is separable of degree d,

given by (4.1.2). For all primes p such that p+ 1− g0b2
√
pc > 0, we have the lower bound

ρm,d(p) ≥ 1−
∑
q|m

p
−d(q−1)

q +
∑

q1,q2|m
q1 6=q2

p
−d(q1q2−1)

q1q2 − · · ·+ (−1)ω
∑

q1,...,qω |m
qi distinct

p
−d((q1···qω)−1)

q1···qω .

Consider now the case of primes p with gcd(p−1,m) = 1. If m is prime, this is equivalent

to p 6≡ 1 (mod m). Here the mth power map Fp → Fp is an isomorphism of rings, and in

particular is surjective. Suppose [x0 : z0] ∈ P1
Fp such that f(x0, z0) 6≡ 0 (mod p). Then we

may apply Hensel’s lemma to the polynomial (in y) ym = f(x0, z0) for any lift of x0, z0 to

Zp, giving rise to a local solution.

Proposition 4.3.4. Fix integers m and d divisible by m such that gcd(p − 1,m) = 1 and

p - m.
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(a) If p > d−1
2 we have the lower bound

ρm,d(p) ≥ 1− 1

pd+1
.

(b) If p ≤ d
2 − 1 we have the lower bound

ρm,d(p) ≥ 1− 1

p2(p+1)
.

Proof. If f takes a nonzero value in Fp at any [x0 : z0], then the above discussion can be

used to lift an Fp-solution to ym = f(x0, z0) to Qp. Also, if f has a simple root (x0, z0) in

Fp then we can use Hensel’s lemma on one of x or z to lift it to a Qp-solution ym = f(x, z)

with p | y. The only case not immediately dealt with by Hensel’s lemma is if f has a double

root at every [x0 : z0].

If f is nonzero modulo p and p > d
2 − 1, then this cannot happen solely for degree

reasons. Having a double root at each value is equivalent to the degree 2(p+ 1) polynomial

x2(x− 1)2 · · · (x− (p− 1))2z2 dividing the degree d polynomial f . This is not possible for

p > d
2 − 1, so the only case not addressed by Hensel’s lemma is if f ≡ 0 (mod p), giving the

lower bound in (a).

To verify (b), we have

f(x, z) = g(x, z)x2(x− z)2 · · · (x− (p− 1)z)2z2 (4.3.4)

for some degree d − 2(p + 1) form g(x, z). There are pd−2(p+1)+1 such choices of g, so the

proportion of forms f for which f is not as in (4.3.4) is given in (b).

We can also make use of some basic linear algebra to obtain lower estimates for ρm,d(p),

by viewing the evaluation of f as a matrix-vector product. This turns out to be useful,

especially for primes p ≡ 1 (mod m) that are too small for Proposition 4.3.2 to apply.

As usual write f(x, z) = cdx
d + cd−1x

d−1z + · · ·+ c1xz
d−1 + c0z

d and denote by A the
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(p+ 1)× (d+ 1) matrix

A =



1 0 · · · 0 0

1 1 · · · 1 1

1 2 · · · 2d−1 2d

...

1 (p− 1) · · · (p− 1)d−1 (p− 1)d

0 0 · · · 0 1


with entries in Fp. We can simultaneously evaluate f(x0, z0) at all [x0 : z0] in P1

Fp by taking

the product

A



c0

c1

...

cd−1

cd


=



f(0, 1)

f(1, 1)

...

f(p− 1, 1)

f(1, 0)


.

We use this relationship to find lower bounds for the number of f(x, z) ∈ Fp[x, z] of degree

d with at least one m-th power value in Fp.

Lemma 4.3.5. For the matrix A above, we have

dimFp kerA =


d− p, p < d

0, p ≥ d

which is equivalent to

rkA =


p+ 1, p < d

d+ 1, p ≥ d.

Proof. Suppose c ∈ kerA, where c is viewed as an element of Fd+1
p . Then the corresponding

degree d binary form f(x, z) has roots at all [x : z] ∈ P1
Fp , and equivalently the degree p+ 1

form x(x− z) · · · (x− (p− 1)z)z divides f . If p ≥ d this is a contradiction unless c = 0. If
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p < d, then we write

f(x, z) = g(x, z)x(x− z) · · · (x− (p− 1)z)z

for some degree d− p− 1 form g(x, z). There are pd−p choices of such g, hence in this case

the kernel of A has dimension d− p. The rank of A is given by d+ 1− dim kerA.

Proposition 4.3.6. Fix positive integers m and d. For a prime p - m, denote the fraction

of elements of Fp that are nonzero m-th powers by Φ(p) = #(F×p )m/#Fp. Let r denote the

rank of A. Then we have

ρ(p) ≥ 1− (1− Φ(p))r.

By Lemma 4.3.5 we have

ρ(p) ≥


1− (1− Φ(p))p+1, p < d

1− (1− Φ(p))d+1, p ≥ d
.

Proof. We may perform column reduction on A by multiplying on the right by UP , where

U is an invertible upper triangular matrix and P is a permutation matrix, if appropriate.

This gives A′ = AUP of rank r. Note that the image of A′ coincides with that of A, so in

particular an entry of Ac is in
(
F×p
)m

whenever the corresponding entry of A′(UP )−1c is.

We argue that the lower bound holds as follows. The first row of A′ thus reveals that

the proportion of f for which f(0, 1) = c0 is in
(
F×p
)m

is Φ(p). For a fixed c0, we let c1 vary

and use the second row of A′ to see that f(1, 1) ranges over all Fp, and the proportion for

which f(1, 1) ∈
(
F×p
)m

is again Φ(p).

Continuing in this fashion, we see that for any fixed c0, . . . , ci−1 with i ≤ r − 1, f(i, 1)

(or f(1, 0) if i = d) is given by the (i + 1)-th row of A′ containing a pivot (note that this

may not coincide with the (i + 1)-th row). Hence the (i + 1)-th (pivot) entry is in
(
F×p
)m

for Φ(p) of the possible ci. Thus letting c vary, the proportion for which at least one of the

first r entries of Ac = A′c is in
(
F×p
)m

is

Φ(p) + (1− Φ(p))
(

Φ(p) + (1− Φ(p))
(

Φ(p) + (1− Φ(p))
(
· · ·
)))

= 1− (1− Φ(p))r.



105

Since p - m, one such value f(x, z) ∈
(
F×p
)m

is sufficient to lift via Hensel’s lemma to a

Qp-point of Cf . This yields the result, and Lemma 4.3.5 may be used to determine the rank

r.

Remark 4.3.7. This bound is somewhat crude in the sense that we are ignoring a great

deal of possible liftable points, especially when p ≥ d is very large. By only using d + 1 of

the p+1 points f(x, z), we are able to compute an explicit lower bound, but it is quite likely

that one of the points we ignore also lifts. Nevertheless, Proposition 4.3.6 will be sufficient

for us to prove results about ρm,d in the limit as d → ∞, e.g. Corollary 4.3.13. For any

fixed (m, d) one can use a brute force computer search to obtain much better estimates; see

§4.6 and Examples 4.3.15 and 4.3.16.

Remark 4.3.8. Another way to refine the proof of Proposition 4.3.6 is to consider points

[x : z] where f(x, z) = 0. These lift whenever the partial derivative fx(x, z) or fz(x, z) is

nonzero. By formulating a matrix similar to A and applying the same column reduction

used to obtain A′, one can give a lower estimate that improves on Proposition 4.3.6 for

p ≤ 7. However, this method adds considerable effort and (what the authors believe is)

unnecessary confusion, while providing only marginal improvement for finitely many primes,

so we elect to omit this.

Finally, let us consider the case of primes p dividing m. These require some special

attention, because the strategy of lifting using Hensel’s lemma on ym = f(x0, z0) as in

Proposition 4.3.4 fails when p | m, as the partial derivative with respect to y vanishes.

However, when m = p or more generally gcd(p − 1,m) = 1, the m-th power map is

an isomorphism of Fp. In this case, for any point [x0 : z0], there exists y0 ∈ Fp such that

ym0 ≡ f(x0, z0) (mod p). This means that for each [x0 : z0], we need only check whether or

not Hensel’s lemma applies to lifting via x or z, allowing us to obtain a point of C(Qp).

Proposition 4.3.9. Fix positive integers m and d divisible by m. Suppose p is a prime
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dividing m with gcd(p− 1,m) = 1. Then we have the lower bound

ρm,d(p) ≥


1− 1

pp−1 , d = p

1− 1
pp , d = 2p

1− 1
pp+1 d > 2p.

Proof. We begin by by evaluating f at the point at infinity, f(1, 0) = cd. We know that

there exists y0 ∈ Fp such that ym0 = cd, since the m-th power map is an isomorphism in this

case, so the polynomial f(1, z)− ym0 = cd + cd−1z+ · · ·+ c0z
d− ym0 has a solution at z = 0.

The derivative with respect to z is cd−1 + 2cd−2z+ · · ·+ dc0z
d−1, which is nonzero at z = 0

if and only if cd−1 6= 0 (mod p). If this is the case, then Hensel’s lemma applies and f has

a Qp-point.

We have seen that p | cd−1 is a necessary condition for the point at infinity not to

lift, so we now study the affine points [x : 1]. Again, for any x0, there exists y0 solving

ym0 ≡ f(x0, 1) (mod p), and this solution lifts via Hensel’s lemma if the derivative f ′(x0) =

dcdx
d−1
0 + · · ·+ c1 6≡ 0 (mod p). Thus for f not to have any liftable points we need p | cd−1

and x(x− 1) · · · (x− (p− 1)) | f ′(x).

We have deg f ′(x) = d − 2 since p | d forces the xd−1 term to vanish. Let h(x) =∑d−2−p
i=0 aix

i be a polynomial, such that x(x− 1) · · · (x− (p− 1))h(x) has degree d− 2. We

count the number of h that produce

x(x− 1) · · · (x− (p− 1))h(x) = f ′(x).

If d = p, then this is only possible if h ≡ f ′ ≡ 0 (mod p).

Notice that for all integers 0 < k < d/p, the xpk−1 term of f ′(x) vanishes modulo p.

This determines d/p− 1 independent linear conditions on the coefficients ai, so there are at

most pd−2−p−d/p+2 = pd−p−d/p choices of h(x). We see this by observing that the leading

term of x(x − 1) · · · (x − (p − 1)) is xp, while the trailing term is (p − 1)!x ≡ −x (mod p)

by Wilson’s theorem. We also impose the condition that cd−1 = 0, i.e. the linear condition
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that ad−p−2 = 0. These conditions on the ai’s are summarized in the following matrix



∗ · · · ∗ −1 0 0 · · · 0 0 · · · 0 0 · · · 0 0

0 · · · 0 0 1 ∗ · · · ∗ −1 · · · 0 0 · · · 0 0

...

0 · · · 0 0 0 0 · · · 0 0 · · · 1 ∗ · · · ∗ −1

0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 · · · 0 1


,

for which we require a = (a0, . . . , ad−p−2)T to be in the kernel. When this matrix of relations

has full rank, each condition is independent.

It is clear that the first d/p − 1 rows are independent. The final row is assured to be

independent from the others so long as d/p−1 ≥ 2, i.e. d > 2p. This is sharp, as illustrated

by the case of p = 3 and d = 6, when we find the rank of the 2× 2 matrix above is one.

Suppose f1, f2 have f ′1 = f ′2 = x(x − 1) · · · (x − (p − 1))h(x). Then all coefficients are

equal except those of xpk for 0 ≤ k ≤ d/p. Thus for each h(x) there are pd/p+1 polynomials

f for which f ′ = x(x− 1) · · · (x− (p− 1))h. This brings the total number of possible such

f to be

p2 when d = p,

pp+1 when d = 2p,

pd−p when d > 2p.

Upon dividing by the total number of forms, pd+1, we obtain a lower bound for the pro-

portion of f whose reduction modulo p has at least one Hensel-liftable point, given in the

proposition.

4.3.2 Lower bounds for the adelic density ρm,d

Assembling together Propositions 4.3.2, 4.3.4, 4.3.6, and 4.3.9, we give a lower bound for ρ

which is explicitly computable, at least in principle, when the exponent m is a prime.
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Corollary 4.3.10. Let m be an odd prime and d an integer divisible by m. Define

L0(m, d) =


1− 1

mm−1 , d = m

1− 1
mm , d = 2m

1− 1
mm+1 , d > 2m,

Lsm
1 (m, d) =

∏
p≡1(m)
p<d

(
1−

(
1− p− 1

mp

)p+1
)
,

Lmed
1 (m, d) =

∏
p≡1(m)

d<p<(m−1)2(d−2)2

(
1−

(
1− p− 1

mp

)d+1
)
,

Lbig
1 (m, d) =

∏
p≡1(m)

p≥(m−1)2(d−2)2

(
1− 1

p
d(m−1)
m

)
,

Lsm
6=1(m, d) =

∏
p 6≡0,1(m)

p≤ d
2
−1

(
1− 1

p2(p+1)

)
,

Lbig
6=1(m, d) =

∏
p 6≡0,1(m)

p> d
2
−1

(
1− 1

pd+1

)
.

Then we have a computable lower bound

ρm,d ≥ L0(m, d)Lsm
1 (m, d)Lmed

1 (m, d)Lbig
1 (m, d)Lsm

6=1(m, d)Lbig
6=1(m, d).

Proof. This follows directly from applying Propositions 4.3.2, 4.3.4, 4.3.6, or 4.3.9 to each

local density ρ(p) in

ρm,d =
∏

p prime

ρ(p) = ρ(m)
∏

p≡1(m)

ρ(p)
∏

p6≡0,1(m)

ρ(p),

splitting the products further into the ranges in the statement as appropriate. When p ≡ 1

(mod m), the fraction of nonzero m-th power residue classes used in Proposition 4.3.6 is

Φ(p) = p−1
mp .

Remark 4.3.11. Corollary 4.3.10 provides a way to compute an explicit lower bound for
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ρm,d. Notice that all the products involved are finite, save for Lbig
1 (m, d) and Lbig

6=1(m, d).

These products are related to the Riemann zeta function ζ(d(m − 1)/m) and ζ(d + 1),

respectively, as the product runs over the appropriate Euler factors, but only for the primes

in certain (unions of) conjugacy classes.

This alone ensures that when d is sufficiently large, these products are close to one,

because they are part of the tail of ζ(s) and ζ(s) → 1 as s → ∞. Explicit values, valid to

several decimal places, of similar products of this form were computed in [Mat10, p. 26 –

34].

We can make this result less explicit, but somewhat more pleasant by fixing m and

allowing d→∞, which is tantamount to allowing g →∞.

Lemma 4.3.12. For a fixed prime m, we compute the limits of some of the products defined

in Corollary 4.3.10 as d→∞;

lim
d→∞

Lmed
1 (m, d) = 1,

lim
d→∞

Lbig
1 (m, d) = 1,

lim
d→∞

Lbig
6=1(m, d) = 1.

Proof. For Lbig
1 (m, d) and Lbig

6=1(m, d), the conclusion follows from recognizing that as d→∞,

the product consists of a subset of factors of the convergent product ζ(s) for s = d(m−1)
m , d+1

respectively. Thus the limit is necessarily 1.

For Lmed
1 (m, d) the conclusion requires more work. First, observe that since the product

in Lmed
1 (m, d) runs over primes congruent to 1 modulo m, we have p ≥ m+ 1. This implies

1−
(

1− p− 1

mp

)d+1

≥ 1−
(

m

m+ 1

)d+1

.

Thus we have

1 ≥ Lmed
1 (m, d) ≥

∏
p≡1(m)

d<p<(m−1)2(d−2)2

(
1−

(
m

m+ 1

)d+1
)
≥

∏
p≡1(m)

p<(m−1)2(d−2)2

(
1−

(
m

m+ 1

)d+1
)
.
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We can compute the limit of the rightmost expression as d→∞ by taking logarithms.

Use π1,m(X) to denote the number of primes p ≡ 1 (mod m) with p ≤ X, so

log
∏

p≡1(m)
p<(m−1)2(d−2)2

(
1−

(
m

m+ 1

)d+1
)

=
(
π1,m((m− 1)2(d− 2)2 − 1)

)
log

(
1−

(
m

m+ 1

)d+1
)
.

Using the Taylor series for the logarithm, we have

∣∣∣∣∣log

(
1−

(
m

m+ 1

)d+1
)∣∣∣∣∣ =

∑
j≥1

1

j

(
m

m+ 1

)(d+1)j

≤
∑
j≥1

(
m

m+ 1

)(d+1)j

=
( m
m+1)d+1

1− ( m
m+1)d+1

.

Finally, we observe that upon taking limits, we have

lim
d→∞

π1,m((m− 1)2(d− 2)2 − 1)
( m
m+1)d+1

1− ( m
m+1)d+1

= 0,

since the exponential ( m
m+1)d+1 decays more quickly than π1,m((m− 1)2(d− 2)2− 1), which

is bounded above by a (fixed) polynomial in d.

Thus as d grows, Lmed
1 (m, d) sits in between 1 and another product approaching 1, so

we must have limd→∞ L
med
1 (m, d) = 1.

This gives us a way to see where these lower bounds are going for a fixed prime m

dividing d as d grows, in an entirely computable way. We can restate this as follows.

Corollary 4.3.13. Let m be a fixed odd prime. Then

lim inf
d→∞

ρm,d ≥
(

1− 1

mm+1

) ∏
p≡1(m)

(
1−

(
1− p− 1

mp

)p+1
) ∏
p 6≡0,1(m)

(
1− 1

p2(p+1)

)
.

When m = 2 we have

lim inf
d→∞

ρ2,d

ρ2,d(∞)
≥ 7

8

∏
p>2

(
1−

(
1− p− 1

2p

)p+1
)
≈ 0.66120.
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Proof. By Corollary 4.3.10 and Lemma 4.3.12, we need only take the limits of L0(m, d),

Lsm
1 (m, d), and Lsm

6=1(m, d) as d→∞, since Lmed
1 (m, d), Lbig

1 (m, d), and Lbig
6=1 can all be made

arbitrarily close to 1.

In the case of m = 2, Corollary 4.3.10 applies to the local densities at the finite

places, but ρ2,d(∞) 6= 1. Thus by taking a limit as d → ∞, we obtain a lower bound

for lim infd→∞
ρ2,d

ρ2,d(∞) .

Moreover, the infinite products in Corollary 4.3.13 are straightforward to compute to

several decimal places of precision. By recognizing that p ≥ m+ 1 in the first product, we

have that

∏
p≡1(m)

(
1−

(
1− p− 1

mp

)p+1
)
≥
∏

p≡1(m)
p≤A

(
1−

(
1− p− 1

mp

)p+1
) ∏
p≡1(m)
p>A

(
1−

(
m

m+ 1

)p+1
)
.

The rightmost factor is seen to converge to 1 quickly, e.g. by taking logarithms and com-

paring to a geometric series. In fact, we have

∏
p≡1(m)
p>A

(
1−

(
m

m+ 1

)p+1
)
≥ 1−

(
m

m+ 1

)A+1

, (4.3.5)

so we may choose A large enough so this factor is as close to 1 as desired. It remains to

compute the factors for the finitely many p ≤ A. Furthermore, this is quite well behaved

in m, in that for any level of precision, we need only choose A to be a sufficiently large

multiple Cm, where C does not depend on m.

For the other factor, we employ a similar strategy and compare to the Riemann zeta

function,

∏
p 6≡0,1(m)

(
1− 1

p2(p+1)

)
≥

∏
p 6≡0,1(m)
p≤B

(
1− 1

p2(p+1)

) ∏
p>B

(
1− 1

p2(B+2)

)
. (4.3.6)

The rightmost factor is the tail of ζ(2B + 4)−1, which converges to 1 rapidly. For example,
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taking B = 10 is sufficient to show

∏
p 6≡0,1(m)

(
1− 1

p2(p+1)

)
≥ 1

ζ(24)

∏
p 6≡0,1(m)
p≤10

(
1− 1

p2(p+1)

) ∏
p≤10

(
1− 1

p24

)−1

.

When m > 7, the first product runs over all primes up to 10, producing the lower bound of

at least 0.98422.

Corollary 4.3.14. Let m be a fixed odd prime. Then

lim inf
d→∞

ρm,d ≥ 0.83511.

Proof. Direct computation shows the result holds for m = 3, 5, 7; see Example 4.3.17.

Suppose now that m ≥ 11 is an odd prime. By the above discussion, using (4.3.6) with

B = 10, we have ∏
p 6≡0,1(m)

(
1− 1

p2(p+1)

)
≥ 0.98422...

and we note that 1− 1
mm+1 ≥ 1− 1

1112
, so it remains to bound the

∏
p≡1(m)

(
1−

(
1− p−1

mp

)p+1
)

factor from below for an arbitrary prime m ≥ 11.

Using (4.3.5) with A = 20m, we observe that if p ≡ 1 (mod m) for p ≤ 20m, then

p = 2km + 1 for some 1 ≤ k ≤ 9. Furthermore, we have 3 | 2km + 1 for three such values

of k, so we can omit those k’s. Since these factors are increasing in p, we achieve a lower

bound by omitting k = 3, 6, 9. We have then

∏
p≡1(m)
p≤A

(
1−

(
1− p− 1

mp

)p+1
)
≥

∏
k=1,2,4,5,7,8

(
1−

(
1− 2km

m(2km+ 1)

)2km+2
)
,

∏
p≡1(m)
p>A

(
1−

(
m

m+ 1

)p+1
)
≥ 1−

(
m

m+ 1

)20m+1

≥ 1−
(

11

12

)221

≈ 0.999999995.

For the latter, we can take m = 11, as the right hand side is seen to be increasing in m. This

factor is very nearly 1, and thus will have negligible impact. For the former, we observe the
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right hand side is decreasing in m, so it suffices to take a limit as m→∞. We have

lim
m→∞

(
1−

(
1− 2km

m(2km+ 1)

)2km+2
)

= 1− e−2k,

=⇒
∏

p≡1(m)
p≤A

(
1−

(
1− p− 1

mp

)p+1
)
≥

∏
k=1,2,4,5,7,8

(
1− e−2k

)
≈ 0.84850.

Taken together, this verifies the claim for m ≥ 11.

4.3.3 Examples

In this subsection, we compute numerical lower bounds for ρm,d for selected (m, d) values.

The reader primarily interested in such numerical values — especially for d sufficiently large

relative to a fixed m — may find these lower bounds sufficient for their purposes without

going through the considerable additional effort of computing local densities ρ(p) exactly,

as we do later only in the case of (m, d) = (3, 6).

The computations referenced in the following examples are detailed in the GitHub repos-

itory [BK21b, SEC_lowerbound_examples_28Aug21.ipynb], available at

https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/main/SEC_

lowerbound_examples_28Aug21.ipynb.

https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/main/SEC_lowerbound_examples_28Aug21.ipynb
https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/main/SEC_lowerbound_examples_28Aug21.ipynb
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Example 4.3.15 (m = 3, d = 6). In the case where (m, d) = (3, 6) the genus of Cf is

generically 4. We can use Corollary 4.3.10 to bound ρ3,6 by computing

L0(3, 6) = 1− 1

33
=

26

27
,

Lsm
1 (3, 6) = 1,

Lmed
1 (3, 6) =

∏
p≡1(3)
p≤61

(
1−

(
1− p− 1

3p

)7
)
≈ 0.59724,

Lbig
1 (3, 6) =

∏
p≡1(3)
p>61

(
1− 1

p4

)
=

∏
p≡1(3)
p≤61

(
1− 1

p4

)−1 ∏
p≡1(3)

(
1− 1

p4

)
≈ 0.9999998,

Lsm
6=1(3, 6) =

(
1− 1

26

)
=

63

64
,

Lbig
6=1(3, 6) =

∏
p≡2(3)
p>2

(
1− 1

p7

)
=

(
1− 1

27

)−1 ∏
p≡2(3)

(
1− 1

p7

)
≈ 0.999987,

to find that

ρ3,6 ≥ 0.56612.

That is, at least 56% of curves y3 = f(x, z) over Q with deg f = 6 are locally soluble.

Note that the infinite products
∏
p≡1(3)

(
1− 1

p4

)
and

∏
p≡2(3)

(
1− 1

p7

)
above are termed

Euler modulo products and denoted ζ3,1(4) and ζ3,2(7) respectively in [Mat10, see p. 25],

and the values used in the above computations were taken from that paper.

There is room for improvement in the lower bound above for Lmed
1 (3, 6), due to the

fact that we expect Proposition 4.3.6 to be missing many liftable points; see Remark 4.3.7.

Since there are only seven primes involved in Lmed
1 (3, 6), one may use a computer algebra

system to enumerate all sextic forms f(x, z) and search for points that lift. The results are

tabulated in Table 4.3.1. See §4.6 for a more detailed description of this approach.

We can then take the product of these lower bounds and use them in place of Lmed
1 (3, 6)

in the calculations above, producing

ρ3,6 ≥ 0.93134.
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Table 4.3.1: Lower bounds for ρ3,6(p) for primes p ≡ 1 (mod 3) up to p = 61

p ρ3,6(p) ≥
7 810658

823543 ≈ 0.98435

13 62655132
62748517 ≈ 0.99851

19 893660256
893871739 ≈ 0.99976

31 27512408250
27512614111 ≈ 0.99999

37 94931742132
94931877133 ≈ 0.999998

43 271818511748
271818611107 ≈ 0.9999996

61 3142742684700
3142742836021 ≈ 0.99999995

Example 4.3.16 (m = 5, d = 5). In the case where (m, d) = (5, 5), we use Corollary 4.3.10

to obtain

L0(5, 5) = 1− 1

54
= 0.9984,

Lsm
1 (5, 5) = 1,

Lmed
1 (5, 5) =

∏
p≡1(5)
p≤131

(
1−

(
1− p− 1

5p

)6
)
≈ 0.10671,

Lbig
1 (5, 5) =

∏
p≡1(5)
p>131

(
1− 1

p4

)
≈ 0.999999994,

Lsm
6=1(5, 5) = 1,

Lbig
6=1(5, 5) =

∏
p6≡0,1(5)

(
1− 1

p6

)
≈ 0.98301.

Putting these together with Corollary 4.3.10 yields the following (albeit somewhat disap-

pointing) bound,

ρ5,5 ≥ 0.10473.

As with Example 4.3.15, the primes p ≡ 1 (mod 5) which are too small for Proposition

4.3.2 to apply are the limiting factor in this approach. We again improve these values with

a computer search as described in §4.6, and tabulate them below in Table 4.3.2
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Table 4.3.2: Lower bounds for ρ5,5(p) for primes p ≡ 1 (mod 5) up to p = 131

p ρ3,6(p) ≥
11 1729840

1771561 ≈ 0.97644

31 887443392
887503681 ≈ 0.99993

41 4750102896
4750104241 ≈ 0.9999997

61 51520371384
51520374361 ≈ 0.99999994

71 128100279888
128100283921 ≈ 0.99999996

101 1061520142440
1061520150601 ≈ 0.999999992

131 5053913130552
5053913144281 ≈ 0.999999997

This produces the considerable improvement

ρ5,5 ≥ 0.95826,

demonstrating once again the outsize impact that small primes have on the adelic density,

as well as the limitations of Proposition 4.3.6.

We also note that these computations revealed that for all p > 31, irreducible curves

of the form y5 = f(x, z) where deg f = 5 possess a smooth Fp-point, and hence a lift

y5 = f(x, z) possesses a Qp-point. This improves on the range of validity for Proposition

4.3.2 in the case when m = 5 and d = 5.

Example 4.3.17 (d → ∞). For a fixed prime m, we consider the behavior of the lower

bound for ρm,d given by Corollary 4.3.10 as d grows. For example, taking m = 3, we

compute a lower bound for ρm,d using Corollary 4.3.10 for several values of d. These lower

bounds, and the approximate values of Lsm
1 , Lmed

1 , and Lsm
6=1 are included in the Table 4.3.3

below.

Note that Lmed
1 (3, d) is increasing with d, as expected by Lemma 4.3.12. Using Corollary

4.3.13 and the ensuing discussion, we can quickly compute a decimal approximation of a
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Table 4.3.3: Lower bounds for ρ3,d(p) for small d via Corollary 4.3.10

d Lsm
1 (3, d) ≈ Lmed

1 (3, d) ≈ Lsm
6=1(3, d) ≈ ρ3,d ≥

6 1 0.59723 0.98437 0.56612
9 0.93223 0.69389 0.98437 0.62890
12 0.93223 0.81839 0.98437 0.74174
15 0.92682 0.91381 0.98437 0.82342
18 0.92682 0.96277 0.98437 0.86753
21 0.92635 0.98536 0.98437 0.88744

lower bound for lim infd→∞ ρ3,d. Taking A = 60 in (4.3.5) and B = 10 in (4.3.6), we find

∏
p≡1(3)

(
1−

(
1− p− 1

3p

)p+1
)
≥ 0.92635,

∏
p≡2(3)

(
1− 1

p2(p+1)

)
≥ 0.98437,

so

lim inf
d→∞

ρ3,d ≥ 0.90061.

Below in Table 4.3.4, we compute a lower bound for lim infd→∞ for other small prime

exponents m, where we take A = 20m and B = 10 to compute the necessary infinite

products, as above.

Table 4.3.4: Lower bounds for lim inf
d→∞

ρm,d via Corollary 4.3.13 for selected odd primes m

m lim infd→∞ ρm,d(p) ≥ m lim infd→∞ ρm,d(p) ≥
3 0.90061

.
.
.

.
.
.

5 0.89457 103 0.98183
7 0.97143 107 0.98156
11 0.87167 109 0.98418
13 0.96823 113 0.85336
17 0.98206 127 0.96662

19 0.98418

.
.
.

.
.
.

23 0.86036 1009 0.98417
29 0.85968 1013 0.84918
31 0.98418 1019 0.85128
37 0.96546 1021 0.98417

41 0.85737

.
.
.

.
.
.
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We make a few brief observations about Table 4.3.4. First is that these methods will not

produce lower bounds exceeding
∏
p 6≡0,1(m)

(
1− 1

p2(p+1)

)
. In particular, when m > 7 above,

our lower bounds do not exceed 0.98422. However some m values come quite close, e.g.

m = 19, 31, 109, 1009, 1021, indicating that for such primes, to improve our lower bounds

for ρm,d, we need to improve our bounds for Lsm
6=1(m, d).

Note the drops present at several m values, e.g. m = 11, 23, 29, 113, 1013, 1019. These

can be explained by considering the smallest prime p ≡ 1 (mod m). For example, when

m = 7, the smallest prime p ≡ 1 (mod 7) is p = 29, while the smallest prime p ≡ 1

(mod 11) is lower at p = 23. The small primes have an outsize impact on our lower bounds

for the infinite product
∏
p≡1(m)

(
1−

(
1− p−1

mp

)p+1
)

.

Example 4.3.18 (m = 4). To illustrate the similarities and differences when m is com-

posite, consider m = 4 and d a multiple of 4. While we cannot apply Corollaries 4.3.10 or

4.3.13 directly, the methods of this section nevertheless apply to determine ρ4,d(p) for the

finite primes p.

For the prime p = 2 and primes p ≡ 1 (mod 4), Propositions 4.3.2, 4.3.6, and 4.3.9 apply

as usual, with the genus g0 = 3(d−2)
2 . If p ≡ 3 (mod 4), we observe that

(
F×p
)4

=
(
F×p
)2

, so

Cf has an Fp-point if and only if the hyperelliptic curve y2−f(x, z) has one. This allows us

to apply the result of Proposition 4.3.2 for all primes p ≡ 1 (mod 4) such that p ≥ (d− 2)2,

instead of p ≥ 4g2
0. Thus whenever d ≥ 8 we have

ρ4,d

ρ4,d(∞)
≥ 7

8

∏
p≡1(4)
p<d

(
1−

(
1− p− 1

4p

)p+1
) ∏
p≡1(4)
d≤p<4g20

(
1−

(
1− p− 1

4p

)p+1
) ∏
p≡1(4)
p≥4g20

(
1− 1

pd/2

)

×
∏

p≡3(4)
p<d

(
1−

(
1− p− 1

2p

)p+1
) ∏

p≡3(4)
d≤p<(d−2)2

(
1−

(
1− p− 1

2p

)p+1
) ∏

p≡3(4)
p≥(d−2)2

(
1− 1

pd/2

)
.

In the case of d = 4 we replace 7/8 by 3/4 to account for the behavior at p = 2.

For small values of d, this produces the values in Table 4.3.5. In the limit as d → ∞,

we find

lim inf
d→∞

ρ4,d

ρ4,d(∞)
≥ 0.49471,
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which is slightly worse than the lower bound for m = 2 case computed in Example 4.3.17,

as one might expect, given that for primes p ≡ 1 (mod 4) there are fewer quartic residues

in Fp.

To deal with the infinite place, we observe that Cf has a real point precisely when f(x, z)

takes a positive value. When m is even and d = 4, [BCF21] rigorously show ρm,4(∞) ≥

0.873914. For 4 ≤ d ≤ 20, we obtained the approximations for ρm,d(∞) using a Monte

Carlo approach with 107 samples and recorded them in Table 4.3.5.

Table 4.3.5: Lower bounds for ρ4,d/ρ4,d(∞) and approximations of ρ4,d(∞) for small d

d ρ4,d/ρ4,d(∞) ≥ ρ4,d(∞) ≈
4 0.10125 0.8739562
8 0.01711 0.9183913
12 0.03419 0.9378118
16 0.08218 0.9493136
20 0.14848 0.9568297

4.4 Upper bounds for the proportion

In this section, we consider obstructions to local solubility to give upper bounds on ρm,d(p),

and thus ρm,d. Our primary goal is to show that even in the limit as d→∞, strictly fewer

than 100% of superelliptic curves are everywhere locally soluble; see Corollary 4.4.2. For

this, it is sufficient to study the behavior at p = 2.

Lemma 4.4.1. Fix an integer m ≥ 2 and suppose d ≥ 6 is divisible by m. Then

ρm,d(2) ≤ 1− 1

29
+

1

2d+4
.

Proof. Consider the degree d forms f(x, z) which reduce modulo 2 as

f(x, z) = h(x, z)x2(x+ z)2z2 (4.4.1)

for h(x, z) ∈ F2[x, z] a nonzero form of degree d − 6. There are 2d+1−6 − 1 such forms, so

the probability that f(x, z) reduces this way is 1
26
− 1

2d+1 .
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We now claim that if f(x, z) satisfies (4.4.1) then the probability of ym = f(x, z) having

no Q2-solutions is at least 1
8 . Consider first a solution [x : y : 1] ≡ [0 : 0 : 1] (mod 2), i.e.

x, y ∈ 2Z2. A necessary condition for such a solution to exist is for 22 | c0, which occurs

with probability 1
2 . The same argument shows that 22 | cd and 22 |

∑d
i=0 ci are necessary

for the F2-solutions [1 : 0 : 1] and [1 : 0 : 0] to lift to Q2-solutions, each occurring with

probability 1/2. Thus the chance of none of these necessary conditions being met is 1/8.

Combining this with our earlier calculation, we may compute a lower bound for the

probability of f(x, z) for which Cf has no Q2-points, hence

1− ρm,d(2) ≥ 1

8

(
1

26
− 1

2d+1

)
=

1

29
− 1

2d+4
.

Rearranging the inequality gives the desired result.

Taking limits as d → ∞, we obtain upper bounds for the limiting behavior of ρm,d,

complementing Corollary 4.3.14.

Corollary 4.4.2. Fix an integer m ≥ 2. Then

lim sup
d→∞

ρm,d ≤ 1− 1

29
≈ 0.99804.

Proof. We make the trivial observation that ρm,d ≤ ρm,d(2) and apply Lemma 4.4.1. Since

this bound is uniform in d (and in fact in m) we can take the limit as d→∞.

We conclude this section by turning our attention to primes p more generally. Following

the convention established in §4.7, let Nd,0 denote the number of binary degree d forms in

F[x, z] up to scaling which have no roots. Let Nd,irr denote the number of irreducible such

forms. We have the trivial observation that Nd,irr ≤ Nd,0. In the following lemma only, we

use µ to denote the usual Möbius function.

Lemma 4.4.3. Fix positive integers m ≥ 2 and d divisible by m such that (m, d) 6= (2, 2).

Then

ρm,d(p) ≤ 1− p− 1

p2d+2 − pd+1
Nd,0 ≤ 1− p− 1

d (p2d+2 − pd+1)

∑
e|d

µ

(
d

e

)
pe.
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Proof. Suppose f(x, z) = 0, which occurs with probability 1
pd+1 . Then for any point on Cf ,

we must have p | y. Since m ≥ 2, this implies p2 | f(x, z), or equivalently that [x : z] is a

root of 1
pf(x, z). If 1

pf(x, z), viewed as a binary form of degree d up to scaling over Fp, has

no roots, then Cf is insoluble. This proves the first inequality, since we have shown

1− ρm,d(p) ≥
1

pd+1

(
Nd,0

pd + pd−1 + · · ·+ p+ 1

)
=

1

pd+1

(
(p− 1)Nd,0

pd+1 − 1

)
.

For the second inequality, we use the observation that Nd,irr ≤ Nd,0. We also have that,

up to scaling, we may assume that an irreducible degree d form is monic. A standard result

in elementary number theory shows

Nd,irr =
1

d

∑
e|d

µ

(
d

e

)
pe,

see e.g. [IR90, §7.2, Corollary 2], and this is sufficient to yield the second inequality.

While Lemma 4.4.3 is not suitable for giving nontrivial upper estimates for ρm,d as

d → ∞, it is sufficient to allow us to conclude ρm,d(p) < 1 for all primes p. In the case

where (m, d) = (3, 6) and p ≡ 2 (mod 3), Lemma 4.7.1 states that N6,0 ∼ 53
144p

6; thus the

bound in Lemma 4.4.3 asymptotically becomes

1− ρ3,6(p)� 53

144
p−7,

which is seen to be sharp by Theorem 4.1.5.

4.5 An exact formula for the m = 3 and d = 6 case

The goal of this section is to prove Theorem 4.1.5, giving an exact formula for ρm,d(p) when

m = 3 and d = 6. As in §4.3, the idea is to study when C has solutions modulo pn which

may be lifted via Hensel’s lemma. Here however, we must be more careful in dealing with

the case that these points may not be smooth. Some of the strategies we employ resemble

those of [BCF21] for genus one curves, but here there are far more cases to check. We also

comment that this strategy to achieve exact density formulas may not generalize well to
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cases of larger m (see Remark 4.5.20).

We lay out the idea of the argument below in §4.5.1, detailing the five cases of interest.

In §4.5.2, we give geometric arguments to deal with three (easier) cases. §4.5.3 contains

intermediate results which will be used multiple times thereafter, giving a flavor for the

type of argument to compute exact local densities. The final two cases are then handled in

§4.5.4 and §4.5.5, culminating in the proof of Theorem 4.1.5 in §4.5.5.

4.5.1 Setup

Let m = 3, d = 6, and F the defining polynomial of Cf for f(x, z) a binary sextic form,

F = y3 − f(x, z) = y3 − c6x
6 − c5x

5z − c4x
4z2 − c3x

3z3 − c2x
2z4 − c1xz

5 − c0z
6. (4.5.1)

Let F ∈ Fp[x, y, z] denote the image under the reduction modulo p map. As we will see in

Lemma 4.5.2 there are five possible ways that F could factor in Fp[x, z][y]:

1. F is absolutely irreducible;

2. F has three distinct linear factors over Fp, i.e. F =
∏3
i=1(y − hi(x, z)) for binary

quadratic forms hi(x, z) ∈ Fp[x, z];

3. F has a linear factor over Fp and a pair of conjugate factors over Fp2 , i.e. F =

(y − h(x, z))(y − g1(x, z))(y − g2(x, z)) for binary quadratic forms h(x, z) ∈ Fp[x, z],

and a conjugate pair g1, g2 ∈ Fp2 [x, z];

4. F has three conjugate factors over Fp3 , F =
∏3
i=1(y − gi(x, z));

5. F has a triple root, F = (y − h(x, z))3 where h(x, z) ∈ Fp[x, z].

Remark 4.5.1. More generally, one could study factorization of weighted homogeneous

polynomials

y3 + h(x, z)y2 + g(x, z)y + f(x, z),

similar to the generalized binary quartics of [BCF21], and obtain more diverse factorization

types. Since we are interested in superelliptic curves, we will stick to the five factorization

types above.
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We define an auxiliary condition (∗), which is satisfied by F if and only if c6 /∈ F3
p.

Equivalently, we have

F satisfies (∗) ⇐⇒ y3 − c6 is irreducible in Fp[y]. (4.5.2)

If F satisfies (∗) then Cf has no point at infinity modulo p, as F (1, y, 0) = 0 has no solutions.

It is analogous to the condition (∗) as defined in [BCF21] and plays a similar role, making

appearances in §4.5.4 and §4.5.5. We denote by ρ∗(p) the local density of curves for which

F satisfies condition (∗).

The first thing we need to know is how often each of the factorization types 1 — 5

appear for F . This is computed below for all F and for those satisfying condition (∗) in

Lemma 4.5.2.

Lemma 4.5.2. Let F correspond to the reduction of a superelliptic curve of the form (4.5.1).

The table below indicates the frequencies for which each factorization type 1 – 5 appear, as

(the reductions of) c6, . . . c0 range from 0 to p− 1.

Factorization type p = 3 p ≡ 1 (mod 3) p ≡ 2 (mod 3)

1. Abs. irr. 2160 p3(p4 − 1) p3(p4 − 1)

2. 3 distinct linear over Fp 0 1
3(p3 − 1) 0

3. Linear + conj. 0 0 p3 − 1

4. 3 conjugate factors 0 2
3(p3 − 1) 0

5. Triple factor 27 1 1

Total 37 p7 p7

The following table lists the analogous counts of factorization types when condition (∗) is

satisfied.
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Factorization type p = 3 p ≡ 1 (mod 3) p ≡ 2 (mod 3)

1. Abs. irr. 0 2
3p

2(p− 1)(p4 − 1) 0

2. 3 distinct linear over Fp 0 0 0

3. Linear + conj. 0 0 0

4. 3 conjugate factors 0 2
3p

2(p− 1) 0

5. Triple factor 0 0 0

Total 0 2
3p

6(p− 1) 0

Proof. Assume for the moment that p 6= 3. If F is not absolutely irreducible over Fp, then

by Lemma 4.2.3 we must have f(x, z) = ah(x, z)3 for a ∈ Fp and h ∈ Fp[x, z]. We may

further assume that h has leading term 1. Thus F factors as

F = (y − αh(x, z))(y − ωαh(x, z))(y − ω2αh(x, z))

where α3 = a and ω is a primitive third root of unity defined possibly over Fp2 . It is now

clear that the five listed possibilities are the only possible factorizations of F , and the only

way to find a triple factor is if h0 = 0, so F = y3.

Assume now that f 6= 0 and consider p ≡ 1 (mod 3). Then ω ∈ Fp, so F has either

3 linear factors over Fp or three conjugate factors over Fp3 , depending on the value of a,

putting us in type 2 or 4. We know that there are p−1
3 nonzero cubic residues and 2(p−1)

3

nonresidues mod p, so we obtain the stated counts by recognizing that there are p2 + p+ 1

ways to choose h for each nonzero value of a.

Assume now that p ≡ 2 (mod 3). In this case, the cube map is an isomorphism of F×p ,

but ω /∈ Fp, so we must be in type 3, because a is always in F×p . Hence there are again

(p− 1)(p2 + p+ 1) = p3 − 1 ways in which F is reducible, this time all landing in type 3.

In either case, we have exhausted the possibilities for which F is (absolutely) reducible.

Since there were p3 of these in total, we are left with p7 − p3 occurrences of type 1.

Condition (∗) can only be satisfied in the case that p ≡ 1 (mod 3), because otherwise

there exists a root to y3−c6 ≡ 0 (mod p). Since there are 2
3(p−1) nonzero cubic nonresidues

that could be the residue of c6, and the other coefficients of F may be chosen freely, there

are 2
3p

6(p − 1) total choices of F satisfying (∗). These clearly cannot come from a triple
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factor or distinct linear factors over Fp, so the only possibilities are types 1 or 4. Since we

need the x2 term of h to be nonzero, there are only 2
3p

2(p−1) ways to factor in type 4 while

satisfying condition (∗), and subtracting this from the total gives the frequency of type 1.

Now we consider the case of p = 3. Since F3 is characteristic 3, if F is reducible, we

have F = y3 − h(x, z)3 = (y − h(x, z))3. Thus there are 33 = 27 ways to choose h(x, z) in

this case, all of which give rise to a triple factor. The remaining 37 − 33 = 2160 choices of

F must all be absolutely irreducible over F3.

Let ξi denote the density of the set of f(x, z) for which F = y3 − f(x, z) has reduction

F with factorization type i for 1 ≤ i ≤ 5. Similarly, let ξ∗i denote the density of f(x, z) for

which the associated F also satisfies condition (∗). The counts of Lemma 4.5.2 allow us to

compute ξi and ξ∗i directly.

Corollary 4.5.3. The densities ξi are given by the table below.

ξi p = 3 p ≡ 1 (mod 3) p ≡ 2 (mod 3)

ξ1 80/81 1− 1
p4

1− 1
p4

ξ2 0 1
3p7

(p3 − 1) 0

ξ3 0 0 1
p7

(p3 − 1)

ξ4 0 2
3p7

(p3 − 1) 0

ξ5 1/81 1
p7

1
p7

If p ≡ 1 (mod 3) and F satisfies condition (∗), the nonzero densities ξ∗i are

ξ∗1 = 1− 1

p4
, ξ∗4 =

1

p4
.

Returning to local solubility, suppose the reduction of F as given in (4.5.1) has factor-

ization type i and let σi denote the density of F possessing a Qp solution. Let σ∗i denote

the density of F with factorization type i satisfying (∗) having a Qp-solution. Then we have

ρ(p) =
5∑
i=1

ξiσi, (4.5.3)

ρ∗(p) = ξ∗1σ
∗
1 + ξ∗4σ

∗
4. (4.5.4)
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Thus to obtain an exact formula for the local density ρ(p), we may consider separately the

local densities σi with prescribed factorization types.

Along the way, we will also need to know the frequency of various factorization types

for binary forms of degrees up to 6. In the proofs of Lemmas 4.5.17, 4.5.19, and 4.5.21 for

instance, it is often useful to know the the proportion of such forms having types of roots.

Namely, having no roots can be used to see that there are no points, while having a simple

root implies the existence of a Qp-point by Hensel lifting arguments. We will also need to

know how often roots have higher multiplicities to determine the exact probabilities.

More precisely, we will count nonzero degree d forms over Fp in two ways: up to scaling

by F×p , and monic forms.

Definition 4.5.4 (monic). A degree d binary form f(x, z) is monic if f(1, 0) = 1.

It is straightforward to see that there are pd distinct monic degree d forms f(x, z) over

Fp, by writing

f(x, z) =

d∑
i=0

cix
izd−i,

taking cd = 1 and choosing ci freely for 0 ≤ i < d. We can then use this to determine that

there are pd+pd−1 + · · ·+p+ 1 distinct degree d forms up to scaling by a nonzero constant:

if cd 6= 0, then scaling f by 1
cd

yields a monic form. More generally, there is a unique way

— up to scaling by a nonzero constant — to write

f(x, z) = zkf0(x, z),

where f0 is a monic degree d − k form for some 0 ≤ k ≤ d. Counting the number of such

forms gives the desired total.

Since Fp[x, z] is a unique factorization domain, there is a unique way to factor a degree

d form f(x, z), considered up to scaling, into its factors, also considered up to scaling.

Similarly, if f(x, z) is monic, it can be factored uniquely into monic factors.

Definition 4.5.5 (factorization type). Let f(x, z) be a degree d considered up to scaling
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(resp. monic) binary form with unique factorization

f(x, z) =
r∏
i=1

fi(x, z)
ai ,

where the irreducible factors fi(x, z) are also considered up to scaling (resp. monic). The

factorization type of f(x, z) is the data of the degrees di = deg fi and multiplicities ai of

the factors. This can be shortened to (da11 d
a2
2 · · · darr ).

For convenience (and uniqueness of the type) we adopt a lexicographic ordering, that

di ≤ di+1 for all i and ai ≤ ai+1 if di = di+1. When ai = 1, it is omitted. If f(x, z) has

a linear factor of multiplicity one, its factorization type takes the form (1da22 · · · darr ). This

case will be denoted more compactly as (1∗).

The proportion of degree d forms up to scaling (resp. degree d monic forms) possessing

certain factorization types, indexed by an integer i, is denoted ηd,i (resp. η′d,i for monic

forms). The following lemma is a direct consequence of Lemma 4.7.1, which can be found

in §4.7, and will be used repeatedly.

Lemma 4.5.6. The proportions ηd,i, η
′
d,i are given as follows, for 2 ≤ d ≤ 6.

d Fact. type ηd,i η′
d,i

2

0. No roots
(p− 1)p

2(p2 + p+ 1)

p− 1

2p

1. (1∗)
(p+ 1)p

2(p2 + p+ 1)

p− 1

2p

2. (12)
p+ 1

p2 + p+ 1

1

p

3

0. No roots
(p− 1)p

3(p2 + 1)

(p+ 1)(p− 1)

3p2

1. (1∗)
(2p+ 1)p

3(p2 + 1)

2(p+ 1)(p− 1)

3p2

2. (13)
1

p2 + 1

1

p2
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d Fact. type ηd,i η′
d,i

4

0. No roots

(
3p2 + p+ 2

)
(p− 1)p

8(p4 + p3 + p2 + p+ 1)

(
3p2 + p+ 2

)
(p− 1)

8p3

1. (1∗)
(
5p2 + p+ 2

)
(p+ 1)p

8(p4 + p3 + p2 + p+ 1)

(
5p2 + 3p+ 2

)
(p− 1)

8p3

2. (122)
(p+ 1)(p− 1)p

2(p4 + p3 + p2 + p+ 1)

p− 1

2p2

3. (1212)
(p+ 1)p

2(p4 + p3 + p2 + p+ 1)

p− 1

2p3

4. (14)
p+ 1

p4 + p3 + p2 + p+ 1

1

p3

5

0. No roots

(
11p2 − 5p+ 6

)
(p− 1)p

30(p2 + p+ 1)(p2 − p+ 1)

(
11p2 − 5p+ 6

)
(p+ 1)(p− 1)

30p4

1. (1∗)
(
19p3 + 6p2 + 4p+ 1

)
p

30(p2 + p+ 1)(p2 − p+ 1)

(
19p3 + 14p2 + 4p− 6

)
(p− 1)

30p4

2. (123)
(p+ 1)(p− 1)p

3(p2 + p+ 1)(p2 − p+ 1)

(p+ 1)(p− 1)

3p3

3. (132)
(p− 1)p

2(p2 + p+ 1)(p2 − p+ 1)

p− 1

2p3

4. (1213)
p

(p2 + p+ 1)(p2 − p+ 1)

p− 1

p4

5. (15)
1

(p2 + p+ 1)(p2 − p+ 1)

1

p4

6

0. No roots

(
53p4 + 26p3 + 19p2 − 2p+ 24

)
(p− 1)p

144(p6 + p5 + p4 + p3 + p2 + p+ 1)

(
53p4 + 26p3 + 19p2 − 2p+ 24

)
(p− 1)

144p5

1. (1∗)
(
91p4 + 26p3 + 23p2 + 16p− 12

)
(p+ 1)p

144(p6 + p5 + p4 + p3 + p2 + p+ 1)

(
91p3 − 27p2 + 50p− 48

)
(p+ 1)(p− 1)

144p5

2. (124), (1222)

(
3p2 + p+ 2

)
(p+ 1)(p− 1)p

8(p6 + p5 + p4 + p3 + p2 + p+ 1)

(
3p2 + p+ 2

)
(p− 1)

8p4

3. (12122)
(p+ 1)(p− 1)p2

4(p6 + p5 + p4 + p3 + p2 + p+ 1)

(p− 1)2

4p4

4. (121212)
(p+ 1)(p− 1)p

6(p6 + p5 + p4 + p3 + p2 + p+ 1)

(p− 1)(p− 2)

6p5

5. (133)
(p+ 1)2(p− 1)p

3(p6 + p5 + p4 + p3 + p2 + p+ 1)

(p+ 1)(p− 1)

3p4

6. (1313)
(p+ 1)p

2(p6 + p5 + p4 + p3 + p2 + p+ 1)

p− 1

2p5

7. (142)
(p+ 1)(p− 1)p

2(p6 + p5 + p4 + p3 + p2 + p+ 1)

p− 1

2p4

8. (1214)
(p+ 1)p

p6 + p5 + p4 + p3 + p2 + p+ 1

p− 1

p5

9. (16)
p+ 1

p6 + p5 + p4 + p3 + p2 + p+ 1

1

p5

4.5.2 Geometric arguments: computing σ1, σ2, and σ3

When F is absolutely irreducible, we can leverage the proof of Proposition 4.3.2 to see that

σ1 = 1 when p is sufficiently large.
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Proposition 4.5.7. Suppose Cf is given by (4.5.1) with F absolutely irreducible over Fp.

Then the reduction Cf has a smooth Fp-point whenever

(i) p ≡ 1 (mod 3) and p > 43, or

(ii) p ≡ 2 (mod 3) and p > 2.

In particular, whenever (i) or (ii) above is satisfied we have σ1 = σ∗1 = 1.

Proof. The curve Cf is cut out by F . Note that the reduction of f(x, z) is not a cube

if F is absolutely irreducible. Taking m = 3 in the proof of Proposition 4.3.2, we have

that since f is not a cube, the reduction Cf is guaranteed to have a smooth Fp-point when

p > (m− 1)2(d− 2)2− 1 = 63. Furthermore, the improved Hasse–Weil bound (4.3.3) shows

that Cf is guaranteed to have a smooth point when p = 61. Hence in case (i) we have

σ1 = 1 and σ∗1 = 1 as well, since this argument is independent of the (∗) condition.

When p ≡ 2 (mod 3), taking d = 6 in the proof of Proposition 4.3.4 shows that for p > 2

such that 3 - p, there always exists an Fp solution of F = 0 which is liftable by Hensel’s

lemma. Hence in case (ii) we have σ1 = 1 as well.

When F has factorization types 2 or 3, which occur when F has at least one factor of

the form y − g(x, z) where g is a (nonzero) binary quadratic form, we study the Fp-points

on the irreducible components of Cf . See [BCF21, Proposition 2.6] for the analogous case

for genus one curves.

Proposition 4.5.8. Suppose Cf is given by (4.5.1) and F has factorization type 2 modulo

p. Then Cf has a Qp point, or equivalently, σ2 = 1.

Proof. For p = 3 and p ≡ 2 (mod 3) the result is vacuously true, since factorization type 2

does not occur. Thus we may assume p ≡ 1 (mod 3), and in particular p > 3.

We have F =
∏3
i=1(y − hi(x, z)) for distinct binary quadratics hi, so Cf is the union of

Ci: y = hi(x, z). Each Ci has p + 1 points in Fp, and each distinct (i, j) pair has at most

two intersection points. To see this, suppose (α, β, γ) is on C1 and C2, i.e.

h1(α, γ) = β = h2(α, γ).
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Thus (γx−αz) is a linear factor of the binary quadratic h1−h2, and there are at most two

such factors.

With this in hand, we have a maximum of 6 total intersection points. This gives at least

3(p + 1) − 2 · 6 = 3(p − 3) smooth points, so whenever p > 3 we can lift one of these Fp

points to a Qp point on C, giving σ2 = 1.

Proposition 4.5.9. Suppose Cf is given by (4.5.1) and F has factorization type 3 modulo

p. Then Cf has a Qp point, or equivalently, σ3 = 1.

Proof. As in the proof of Proposition 4.5.8, the statement is vacuously true for p = 3 and

all primes p ≡ 1 (mod 3), so we assume p ≡ 2 (mod 3).

Recall that by the proof of Lemma 4.5.2 we have

F = (y − h(x, z))(y2 + h(x, z)y + h(x, z)2),

where h(x, z) is a (nonzero) binary quadratic form over Fp. Let

C1: y = h(x, z), C2: y2 + h(x, z)y + h(x, z)2 = 0.

In fact, C2 is geometrically reducible, factoring over Fp2 , where the third root of unity is

defined. This means that after a finite extension, we are in the same situation as in the

proof of Proposition 4.5.8, and each of the components has at most two intersection points.

In particular C1 has p + 1 Fp-points and at most 4 Fp2-points of intersection with C2,

forming (at most) two conjugate pairs. Thus at most two Fp-points of C1 intersect with

C2, so p− 1 > 0 of the points on C1 are smooth solutions to F = 0, which we can lift to a

Qp-solution.

Remark 4.5.10. These arguments can be generalized to larger m, if one is willing to

exclude small primes p. Suppose m is prime and d = km for k ≥ 1. Consider a superelliptic

curve of the form Cf : ym = f(x, z), where the reduction of f modulo p is nonzero. We

have already seen, through the proofs of Propositions 4.3.2 and 4.3.4, that when f is not a

perfect m-th power, there exists a Qp point on Cf for sufficiently large primes p.
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If f is a perfect m-th power, then over Fp, the reduction Cf breaks up into m components

Ci: y = hi(x, z),

where hi is a (nonzero) binary form of degree k = d
m . The argument in the proof of

Proposition 4.5.8 shows that each Ci intersects with another Cj in at most k points.

Suppose at least one of the components, say C1, is defined over Fp, thus excluding

factorization type 4 when (m, d) = (3, 6), which will require more care. Since C1 has p+ 1

Fp-points, we have that p+ 1− k(m− 1) of these points lift by Hensel’s lemma. Thus when

p > km− (k + 1), the curve Cf is guaranteed a Qp-point.

The caveat is that relatively few superelliptic curves have these factorization types. Only

pk+1 − 1 out of the pd choices for f(x, z) modulo p have that f is a nonzero m-th power. If

p ≡ 1 (mod m), then further p−1
mp of those will have a factor defined over Fp. As d→∞ for

fixed m, these fail to make up a positive proportion.

Considering only factorization types 1 — 3, we are essentially no better off than in §4.3,

where using m = 3 and d = 6 we obtain lower bounds

ρ3,6(p) ≥


1− 1

p4
p ≡ 1 (mod 3), p > 43

1− 1
p7

p ≡ 2 (mod 3), p > 2,

via Propositions 4.3.2 and 4.3.4. Thus even just to obtain the improved asymptotics of

Theorem 4.1.5, it is necessary to consider factorization types 4 and 5.

4.5.3 Intermediate results

The following intermediate results will be used repeatedly, as will the strategies of their

proofs. Throughout, f(x, z) denotes a binary sextic form with coefficients ci ∈ Zp and Cf

the equation cut out by y3 − f(x, z).

Lemma 4.5.11. Let p ≡ 1 (mod 3). Suppose c4, c5, c6 ∈ pZp and c3 ∈ Zp are fixed, such

that the reduction c3 is neither a cubic residue nor zero, i.e. c3 /∈ F3
p. Let β be the probability

that Cf has a Qp-point of the form [x : y : 1], as c0, c1, c2 range over Zp. Let α denote the
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same probability, but with c0, c1, c2 ∈ pZp. We have

α =
(p3 + p+ 1)

p4 + p3 + p2 + p+ 1
,

β =
p(p3 + p2 + 1)

p4 + p3 + p2 + p+ 1
.

Proof. The reduction Cf is isomorphic to the curve cut out by

y3 ≡ f(x, z) ≡ c3x
3 + c2x

2z + c1xz
2 + c0z

3 (mod p). (4.5.5)

We look for a smooth solution [x : y : 1] to (4.5.5), which lifts to a Qp-point on Cf by

Hensel’s lemma. Note that there are no solutions of the form [x : y : 0] because c3 /∈ F3
p.

The normalization of Cf has geometric genus at most 1. Applying the Hasse–Weil bound

method to (4.5.5) as in the proof of Proposition 4.3.2, we see that whenever f(x, z) doesn’t

have a triple root (equivalently f 6= c3(x− αz)3 for some α ∈ Fp), we have

#Cf
sm

(Fp) ≥ p+ 1− 2
√
p > 0.

The rightmost inequality follows from the fact that p ≥ 7 since p ≡ 1 (mod 3). Thus we

have found our desired Qp-point whenever f 6= c3(x− αz)3.

The proportion of cubics over Fp with fixed leading coefficient c3 having a triple root

is equal to η′3,2 = 1
p2

(see Lemma 4.5.6). In this case, after a change of variables, we may

assume (4.5.5) is of the form y ≡ c3x
3 (mod p), i.e. c0, c1, c2 ∈ pZp. The probability of Cf

having a Qp-point in this case is precisely α. Thus we have

β = 1− 1

p2
+
α

p2
. (4.5.6)

We now assume c0, c1, c2 ∈ pZp, and we are looking to lift solutions of y3 ≡ c3x
3 (mod p),

whose only Fp-solution is the (singular) point (0, 0) by our assumption on c3. Thus p | x, y

is necessary, so looking modulo p2, we see that p2 | c0 is also a necessary condition, which

occurs with probability 1
p as c0 runs through pZp.

Assuming p2 | c0, we perform a change of variables by replacing x and y by px and py.
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Dividing by p2, the equation for Cf is now

0 ≡ c1

p
x+

c0

p2
(mod p).

If vp(c1) = 1, then this is merely a linear equation, so for any choice of y ∈ Zp, we can find

an Fp solution that lifts to a Qp-one. This occurs with probability 1− 1
p , so with probability

1
p we have p2 | c1.

Assuming p2 | c1, we again find it is necessary for p3 | c0. Dividing the equation for Cf

by p3 instead of p2 as above, we obtain

y3 ≡ c3x
3 +

c2

p
x2 +

c1

p2
x+

c0

p3
(mod p),

which puts us back in the case of β, where c0, c1, c2 ∈ Zp. That is, we have shown

α =
1

p

(
1− 1

p
+
β

p2

)
=

1

p
+

1

p2
+
β

p3
. (4.5.7)

Combining (4.5.6) and (4.5.7) and solving simultaneously, we obtain the claimed values.

The strategy employed in the proof of Lemma 4.5.11 — making successive reductions

until we reach a case we know and solving a system of equations to determine desired

probabilities — will be used repeatedly. For results with longer proofs, it is convenient to

organize the argument with a table. We illustrate this below with the computation for α.

v(c6) v(c5) v(c4) v(c3) v(c2) v(c1) v(c0)

α = αa = 1
pαb ≥ 1 ≥ 1 ≥ 1 = 0 ≥ 1 ≥ 1 ≥ 1

αb = 1− 1
p + 1

pαc ≥ 1 ≥ 1 ≥ 1 = 0 ≥ 1 ≥ 1 ≥ 2

αc = 1
pαd ≥ 1 ≥ 1 ≥ 1 = 0 ≥ 1 ≥ 2 ≥ 2

αd = αe ≥ 1 ≥ 1 ≥ 1 = 0 ≥ 1 ≥ 2 ≥ 3

αe = β ≥ 4 ≥ 3 ≥ 2 = 0 ≥ 0 ≥ 0 ≥ 0

The first step in the table above was recognizing that p2 | c0 is necessary for a solution

to lift. In the second step, we assume v(c0) ≥ 2 and compute the probability of a liftable
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solution when v(c1) = 1, moving to the next line if p2 | c1, and so on. One sees that

combining the steps in the table, we achieve the same formula for α in terms of β as (4.5.7).

Repeating the argument of the proof of Lemma 4.5.11, we obtain similar results when c3

is fixed of valuation 1 or 2. We will use all of these later as well. Note that the probabilities

depend on the conjugacy class of p modulo 3, owing to the fact that the probability of a

nonzero element of Fp being a cubic residue differs in each case.

Lemma 4.5.12. Suppose c3, c4, c5, c6 ∈ Zp are fixed with p-adic valuation given below. Let

α′, β′, α′′, β′′ denote the probabilities that Cf has a Qp-point of the form [x : y : 1] as c0, c1, c2

vary over Zp with the specified valuation(s).

v(c6) v(c5) v(c4) v(c3) v(c2) v(c1) v(c0)

≥ 2 ≥ 2 ≥ 2 = 1 ≥ 1 ≥ 1 ≥ 1 α′ =



2p3+2p2+3
3(p3+p2+p+1) = 5

8 , p = 3

2p4+2p3+3p+1
3(p4+p3+p2+p+1) , p ≡ 1 (mod 3)

2p4+2p3+3p+3
3(p4+p3+p2+p+1) , p ≡ 2 (mod 3)

(4.5.8)

≥ 2 ≥ 2 ≥ 2 = 1 ≥ 1 ≥ 0 ≥ 0 β′ =



3p3+2p2+2p
3(p3+p2+p+1) = 7

8 , p = 3

3p4+p3+2p2+2p
3(p4+p3+p2+p+1) , p ≡ 1 (mod 3)

3p4+3p3+2p2+2p
3(p4+p3+p2+p+1) , p ≡ 2 (mod 3)

(4.5.9)

≥ 3 ≥ 3 ≥ 3 = 2 ≥ 2 ≥ 2 ≥ 2 α′′ =



2p3+2p2+3p
3(p3+p2+p+1) = 27

40 , p = 3

2p4+2p3+p2+3p
3(p4+p3+p2+p+1) , p ≡ 1 (mod 3)

2p4+2p3+3p2+3p
3(p4+p3+p2+p+1) , p ≡ 2 (mod 3)

(4.5.10)

≥ 3 ≥ 3 ≥ 3 = 2 ≥ 3 ≥ 3 ≥ 3 β′′ =



3p3+2p+2
3(p3+p2+p+1) = 89

120 , p = 3

p4+3p3+2p+2
3(p4+p3+p2+p+1) , p ≡ 1 (mod 3)

3p4+3p3+2p+2
3(p4+p3+p2+p+1) , p ≡ 2 (mod 3)

(4.5.11)
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Proof. Starting with α′, in order for there to be a liftable Fp-point of the form [x : y : 1],

we need y ≡ 0 (mod p), and a root of the polynomial 1
p(c3x

3 + c2x
2 + c1x + c0) (mod p).

There is an η′3,1 = 2
3(1 − 1

p2
) chance of the existence of a simple root, an η′3,0 = 1

3(1 − 1
p2

)

chance of no roots, and an η′3,2 = 1
p2

chance of a triple root (see Lemma 4.5.6). If we have

a triple root, we may assume it is at x ≡ 0 (mod p) after a change of variables, allowing us

to assume v(c2), v(c1), v(c0) ≥ 2.

Considering the resulting polynomial mod p3, we have that x is a root if and only if

p3 | c0, which occurs with probability 1
p . Changing variables by replacing x, y by px, py and

dividing by p3 gives us that c6, c5, c4 ∈ p2Zp (though their valuations may increase), and

v(c0), v(c1) ≥ 0, while v(c2) ≥ 1 and c3 remains unchanged. This is precisely the case of β′,

giving us

α′ = η′3,1 +
β′

p3
=

2

3

(
1− 1

p2

)
+
β′

p3
,

regardless of the choice of prime p.

Now we compute β′. If v(c1) = 0 then we can always find a smooth solution to c1x+c0 ≡

0 (mod p), as a linear polynomial always has a simple root. If v(c1) ≥ 1 then mod p we

have F (x, y, 1) ≡ y3 − c0. Suppose v(c0) = 0, for if not we are in the case of α′. If p ≡ 1

(mod 3) this has a liftable solution with probability 1/3, as 1/3 of the residue classes in F×p

are cubic residues. If p ≡ 2 (mod 3), this probability is 1, since every nonzero residue is a

cube. If p = 3, then the change of variables y 7→ y+ a, where a ≡ c0 (mod p) gives the new

equation

F (x, y, 1) = y3 − c3x
3 − c2x

2 − c1x− c0 + a3,

and since c0 ≡ a3 (mod p) we have that p | c0 after a change of variables. Hence, we have

β′ =


(1− 1

p) + 1
p(1

3(1− 1
p) + 1

pα
′), p ≡ 1 (mod 3)

(1− 1
p) + 1

p((1− 1
p) + 1

pα
′), p ≡ 2 (mod 3)

(1− 1
p) + 1

pα
′, p = 3.

Solving these equations for α′ and β′ gives the values in the tables.

To compute α′′, we proceed as in the calculation for α′. We can compute the probability
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that 1
p2

(c3x
3 + c2x

2 + c1x+ c0) has a simple root or triple root, and notice that if there is

a triple root, it can be moved to x ≡ 0 (mod p), putting us in the case of β′′. Thus

α′′ = η′3,1 +
β′′

p2
=

2

3

(
1− 1

p2

)
+
β′′

p2
.

For β′′, we immediately make the change of variables x 7→ px, y 7→ py and divide by

p3. This doesn’t change c3, but puts the valuations of c2, c1, c2 at at least 2, 1, and 0

respectively. If p 6= 3 and v(c0) = 0, then we can compute the probability that y3 = c0

has a solution depending on the residue class of p. If p | c0 then we look mod p2, where

our polynomial becomes linear. If v(c1) ≥ 2 then we must have p2 | c0 in order to have a

solution, putting us back in the case of α′′.

If p = 3 then we can take the same approach as for β′. After changing variables in y,

we may assume that p | c0, and then follow the same argument as p 6= 3. Thus the values

of β′′ in terms of α′′ become

β′′ =



1
3(1− 1

p) + 1
p((1− 1

p) + 1
p2
α′′), p ≡ 1 (mod 3)

1− 1
p + 1

p((1− 1
p) + 1

p2
α′′), p ≡ 2 (mod 3)

1− 1
p + 1

p2
α′′, p = 3.

Solving the equations for α′′ and β′′ gives the values stated in the table.

Remark 4.5.13. The probabilities in Lemmas 4.5.11 and 4.5.12 are independent of c4, c5,

and c6, even though they may be changed in the second parts of the proofs. This is key,

and also noted in the proof of [BCF21, Lemma 2.8].

We conclude this subsection with another result which will be used repeatedly in what

follows. While it is independent from the later results, we will make reference in the proof

to quantities which will be defined and determined in §4.5.5, in an effort to keep the paper

compact.

Lemma 4.5.14. Fix a prime p > 31, or p > 2 satisfying p ≡ 2 (mod 3). Suppose c4, c5, c6

are fixed with c5, c6 ∈ p3Zp (resp. p2Zp) and vp(c4) = 2 (resp. vp(c4) = 1). Let µ (resp. µ′)
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denote the proportion of f for which Cf has a Qp-point of the form [x : y : 1] as c0, c1, c2, c3

vary over p2Zp (resp. pZp). Then

µ =


45p11−6p10+5p9−30p8+69p7−29p6−39p5+81p4−120p3+60p2+108p−72

72p11
, p ≡ 1 (mod 3)

(5p10−3p9+2p7+3p6−16p5+25p4−16p3−8p2+20p−8)(p+1)

8p11
, p ≡ 2 (mod 3)

(4.5.12)

µ′ = (4.8.6).

Proof. Consider first µ, so let v(c4) = 2, c5, c6 ∈ p3Zp, and c0, c1, c2, c3 vary in p2Zp. A nec-

essary condition for [x : y : 1] to satisfy F = 0 is p | y, hence 1
p2

(
c3x

3 + c2x
2 + c1x+ c0

)
≡ 0

(mod p). Thus the probability depends on how this quartic factors modulo p, the propor-

tions of which are given by η′4,i from Lemma 4.5.6.

If 1
p2

(
c3x

3 + c2x
2 + c1x+ c0

)
has no roots modulo p, then there can necessarily be no

liftable solution. If it has a root of multiplicity 1, then we can lift it to a Qp-solution. If it

has a double root, then after composing with an automorphism of P1, we may assume the

root occurs at [x : z] = [0 : 1], i.e. we have v(c0), v(c1) ≥ 3 while v(c2) = 2. Thus we are

precisely in the case of θ2, to be defined in §4.5.5 and computed in Lemma 4.5.21. Similarly,

if the quartic has two double roots, the probability of at least one lifting is given by θ3. If it

has a quadruple root, the probability of it lifting is given by θ7, which is valid for all primes

p > 31 or p > 2 if p ≡ 2 (mod 3). Thus we have

µ = η′4,1 + η′4,2θ2 + η′4,3θ3 + η′4,4θ7 (4.5.13)

which gives the value stated in (4.5.12).

For µ′, a similar analysis shows that

µ′ = η′4,1 + η′4,2τ2 + η′4,3τ3 + η′4,4τ7 (4.5.14)

where again the τi are to be defined in §4.5.5 and computed in Lemma 4.5.19. This gives

the value of µ′ which given in (4.8.6). We comment that while none of the τi use µ′ as
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defined here, the value of µ is used in the computation of τ7, so this rational function for

µ′ is valid for all primes p > 31 or p > 2 if p ≡ 2 (mod 3).

4.5.4 Three conjugate factors: computing σ4

By Lemma 4.5.2 and Corollary 4.5.3, this type only occurs when p ≡ 1 (mod 3), so we

assume this for the remainder of §4.5.4. If F has three distinct conjugate factors, none of

which are defined over Fp, then the proof of Lemma 4.5.2 shows that

F (x, y, z) = y3 − ah0(x, z)3,

where a /∈ (F×p )3 is nonzero and h0(x, z) is a binary quadratic form defined over Fp up to

scaling. Note also that (∗) is satisfied whenever h above is monic.

It is thus clear that F has no Fp-solutions for which h0(x, z) 6= 0. However, if h0(x0, z0) =

0, the point (x0, 0, z0) is not a smooth point of F . After considering the possible factorization

types of h0(x, z) we obtain the following value for σ4 when p is sufficiently large.

Proposition 4.5.15. Suppose Cf is given by (4.5.1) and F has factorization type 4 modulo

p for a prime p > 43. Then the proportions of f and f satisfying (∗) for which Cf (Qp) 6= ∅

are

σ4 = (4.8.3)

σ∗4 = (4.8.4).

The proof is given in §4.5.4, after studying the factorization types of the binary quadratic

form h0(x, z) individually.

h0(x, z) has no roots in Fp.

If this is the case, then there are no Qp-points, because there are no Fp solutions to h0(x, z) =

0, which is necessary by the above argument.

The probability of h0(x, z) having no roots is η2,0 = p(p−1)2

2(p3−1)
. If F satisfies (∗), then we

may as well assume h0(x, z) is monic, and the probability of it having no roots is η′2,0 = p−1
2p .
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h0(x, z) has distinct roots in Fp.

The probability of this occurring is η2,1 = p(p2−1)
2(p3−1)

, and η′2,1 = p−1
2p in the case of condition (∗).

After composing with an automorphism of P1, we may assume the roots of h0 are located at

[x : z] = [1 : 0] and [0 : 1], so we have h0(x, z) = xz. Thus we have F (x, y, z) = y3 − ax3z3,

where a ∈ F×p − (F×p )3. We now need to compute the probabilities that [0 : 0 : 1] and

[1 : 0 : 0] lift to Qp-points. This is analogous to [BCF21, §2.3.2], and follows from Lemma

4.5.11 applied to each root.

Corollary 4.5.16. Suppose F has factorization type 4, with h0(x, z) having distinct linear

factors mod p. Then the probability that F has a Qp-solution is given by

1− (1− α)2 =
(p3 + p+ 1)(2p4 + p3 + 2p2 + p+ 1)

(p4 + p3 + p2 + p+ 1)2

where α is as defined in Lemma 4.5.11.

Proof. Suppose F (x, y, z) ≡ y3 − ah0(x, z)3 (mod p), where a /∈ F3
p, such that h0(x, z)

has distinct linear factors mod p. After a change of coordinates, we may assume that

h0(x, z) = xz, giving us

F (x, y, z) = y3 − ax3z3.

The only Fp-points of F ≡ 0 are at [1 : 0 : 0] and [0 : 0 : 1], both of which are singular.

Since c0, c1, c2, c4, c5, c6 ∈ pZp and c3 ≡ a /∈ F3
p, for the point [0 : 0 : 1] we are in the case

of Lemma 4.5.11. The probability that [0 : 0 : 1] lifts to a Qp-point is thus α. Note that by

Remark 4.5.13, this only depends on the choices of c0, c1, c2. Similarly, but with the roles of

x and z reversed, the probability that [1 : 0 : 0] lifts is also α, and only depends on c4, c5, c6.

Thus the two probabilities are independent, allowing us to compute the probability that at

least one of the points lifts by 1− (1− α)2.

h0(x, z) has a double root

We now need to carry out the analysis for when h0(x, z) has a double root. This occurs

with probability η2,2 = p2−1
p3−1

and in the case of (∗), η′2,2 = 1
p . This case requires more work,

which we organize into the following lemma.
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Lemma 4.5.17. Assume p > 3 and suppose F has factorization type 4, with h0(x, z) having

a double root modulo p. Then the probability that F has a Qp-solution is given by λ, where

λ =
1

p15
ρ∗(p) + (p− 1)

(
72p25 + 72p23 + 72p22 + 24p21 − 24p20 + 36p19 − 84p18 + 72p17

− 27p16 + 18p15 − 13p14 − 12p13 − 36p12 + 25p11 − 55p10 + 12p9 − 115p8

+ 105p7 − 178p6 + 73p5 − 35p4 + 67p3 − 93p2 + 36p− 12
)/(

72p22(p5 − 1)
)
.

(4.5.15)

Proof. After a change of variables, we may assume h0(x, z) = x2, so we have F (x, y, z) =

y3 − ax6, where a /∈ F3
p. That is, we have c6 ∈ Zp such that c6 ≡ a (mod p) and c0, ..., c5 ∈

pZp. The only Fp-point of F is the singular point at [0 : 0 : 1] since a /∈ F3
p. Thus λ is the

probability that this point lifts.

The table below lists the valuations of the coefficients of f . For each line, we compute

the probability that the singular point lifts or not, and then move on to the next line.

The probability for moving to the next line will always be 1
p . This will give rise to a linear

relation between λ and ρ∗, the probability that F has a Qp-point when its leading coefficient

is not a cube mod p.
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c6 c5 c4 c3 c2 c1 c0

λ = λa = 1
p
λb = 0 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1

λb =
(

1 − 1
p

)
+ 1

p
λc = 0 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 2

λc = 1
p
λd = 0 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 2 ≥ 2

λd =
(

1 − 1
p

)
+ 1

p
λe = 3 ≥ 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0 ≥ 0

λe =
(

1 − 1
p

)
+ 1

p
λf = 3 ≥ 3 ≥ 2 ≥ 1 ≥ 1 ≥ 0 ≥ 0

λf = Φ(p) + 1
p
λg = 3 ≥ 3 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 0

λg =
(

1 − 1
p

)
α′ + 1

p
λh = 3 ≥ 3 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1

λh =
(

1 − 1
p

)(
p−1
2p

+ 1
p2

)
+ 1

p
λi = 3 ≥ 3 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1

λi =
(

1 − 1
p

)
+ 1

p
λj = 3 ≥ 3 ≥ 2 ≥ 2 ≥ 2 ≥ 1 ≥ 1

λj = 1
p
λk = 3 ≥ 3 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 1

λk =
(

1 − 1
p

)
µ+ 1

p
λ` = 3 ≥ 3 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2

λ` =
(

1 − 1
p

)
α′′ + 1

p
λm = 3 ≥ 3 ≥ 3 ≥ 2 ≥ 2 ≥ 2 ≥ 2

λm =
(

1 − 1
p

)(
p−1
2p

+ (p+2)(2p2−3p+3)

6p3

)
+ 1

p
λn = 3 ≥ 3 ≥ 3 ≥ 3 ≥ 2 ≥ 2 ≥ 2

λn =
(

1 − 1
p

)
+ 1

p
λo = 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 2 ≥ 2

λo = 1
p
λp = 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 2

λp = ρ∗ = 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

Putting together the steps above gives (4.5.15). Each step is justified below.

(a) The only possible point reduces to [0 : 0 : 1], so p | x, y. Reducing F (x, y, z) mod p2

reveals that v(c0) ≥ 2 is necessary.

(b) If v(c1) = 1, which occurs with probability 1− 1
p then we can fix y ∈ pZp and look for

solutions to F (x, y, 1) as a function of x. While it is clear p | x is necessary, we have

v(F ′(x, y, 1)) = 1, so we need to look for solutions mod p3. Looking modulo p3, we

have the linear equation c1x+c0 ≡ 0 (mod p3), which we can solve, finding something

that lifts. If v(c1) = 2 then we move to the next line.

(c) Again we have p | x, y, so we reduce mod p3 and find that it is necessary to have

p3 | c0. This occurs with probability 1
p . Before moving to the next line we replace

both x and y with px and py, then divide by p3.

(d) With probability 1− 1
p we have v(c2) = 0, in which case Cf is isomorphic to

y3 ≡ c2x
2z + c1xz

2 + c0z
3 (mod p)
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and its normalization has geometric genus at most 1. Since f 6= ah3 for a ∈ Fp and

h ∈ Fp[x, z], we apply the Hasse–Weil bound (see the proof of Proposition 4.3.2) to

find

#Cf
sm

(Fp) ≥ p+ 1− 2
√
p > 1,

where the rightmost inequality holds for all primes p > 4. Cf has only the point

[1 : 0 : 0] above infinity, so there must exist some smooth Fp-point [x : y : 1] which

lifts to a Qp-point of Cf . If v(c2) ≥ 1 we move to the next line.

(e) With probability 1 − 1
p we have v(c1) = 0 and the reduced equation is F (x, y, 1) =

y3 − c1x − c0, which is linear in x and thus has a solution with y ∈ pZp. With

probability 1
p we have v(c1) ≥ 1 and move to the next line.

(f) The reduced equation is now F = y3 − c0. The probability that c0 is a nonzero cubic

residue is Φ(p) = 1
3

(
1− 1

p

)
(see Proposition 4.3.6 for the definition). If p - c0 is not a

cubic residue, then no point lifts. With probability 1
p we have v(c0) = 1 and we move

to the next line.

(g) With probability 1 − 1
p we have v(c3) = 1 and we are in the case of α′. See (4.5.8)

from Lemma 4.5.12. With probability 1
p we move to the next line.

(h) With probability 1 − 1
p we have v(c2) = 1. It is clear that for any solution, we must

have p | y and 1
p(c2x

2 +c1x+c0) ≡ 0 (mod p). The quadratic 1
p(c2x

2 +c1x+c0) has no

roots with probability η′2,0 = 1
2

(p−1)
p and distinct roots with probability η′2,1 = 1

2
(p−1)
p .

In the case of distinct roots, one can check that either root lifts to the x-coordinate

of a Qp-point with y ∈ pZp. A double root occurs with probability η′2,2 = 1
p , and the

probability of a solution lifting is equal to τ2, to be defined later shown to be τ2 = 1
p

in Lemma 4.5.19. Thus we have

λh =

(
1− 1

p

)(
η′2,1 + η′2,2τ2

)
+

1

p
λi =

(
1− 1

p

)(
p− 1

2p
+

1

p2

)
+

1

p
λi.

(i) Reducing mod p we see that any solution must have p | y. If v(c1) = 1 then 1
p(c1x+c0)

is linear in x and has a solution modulo p. A straightforward check shows that an
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x-value solving this equation modulo p lifts to a solution of F (x, y, 1) ≡ 0 (mod p3)

with p | y, and hence to a Qp-solution by Hensel’s lemma. With probability 1
p we

move to the next line.

(j) Reducing mod p2, we have c0 ∈ p2Zp is necessary to obtain a Qp-solution. This occurs

with probability 1
p , and we move to the next line.

(k) With probability 1 − 1
p we have v(c4) = 2 and we are in the case of µ from Lemma

4.5.14. With probability 1
p we move to the next line.

(`) With probability 1 − 1
p we have v(c3) = 2 and we are in the case of α′′. See (4.5.10)

from Lemma 4.5.12. With probability 1
p we move to the next line.

(m) With probability 1− 1
p we have v(c2) = 2. It is clear that for any solution, we must have

p | y and 1
p2

(c2x
2 + c1x+ c0) ≡ 0 (mod p). The quadratic 1

p2
(c2x

2 + c1x+ c0) has no

roots with probability η′2,0 = 1
2

(p−1)
p and distinct roots with probability η′2,1 = 1

2
(p−1)
p .

In the case of distinct roots, one can check that either root lifts to the x-coordinate

of a Qp-point with y ∈ pZp. A double root occurs with probability η′2,2 = 1
p , and

the probability of a solution lifting is equal to θ2, to be defined later shown to be

θ2 = (p+2)(2p2−3p+3)
6p2

in Lemma 4.5.21. Thus we have

λm =
(

1− 1
p

) (
η′2,1 + η′2,2θ2

)
+ 1

pλn =
(

1− 1
p

)(
p−1
2p + (p+2)(2p2−3p+3)

6p3

)
+ 1

pλn.

(n) If v(c1) = 2 then we can lift a root of 1
p2

(c1x+ c0) ≡ 0 (mod p) to a solution. If not,

we move to the next line.

(o) We have p | y, so reducing modulo p3 shows that c0 ∈ p3Zp is necessary, which occurs

with probability 1
p . Replacing y by py and dividing by p3 moves us to the next line.

(p) Recalling that c6 is not congruent to a cubic residue mod p, we are in the case of ρ∗,

because we have assumed no conditions on the coefficients except the (∗) condition.
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Completing the proof of Proposition 4.5.15

Proof of Proposition 4.5.15. Lemma 4.5.17 gives us a linear relation between ρ∗(p) and λ.

Here we give another such relation, and solve the system for ρ∗(p) and λ. Recall

ρ∗(p) = ξ∗1 + ξ∗4σ
∗
4

since σ∗1 = 1 when p > 43. We have given the values of ξ∗i in Corollary 4.5.3. We break

σ∗4 down into the cases where h0(x, z) has no roots, distinct simple roots, or a double root,

giving us

σ∗4 = η′2,1(1− (1− α)2) + η′2,2λ

=

(
p− 1

2p

)(
1− (1− α)2

)
+

1

p
λ

by Corollary 4.5.16. Combining these, we have the relation

ρ∗(p) = ξ∗1 + ξ∗4

((
p− 1

2p

)(
1− (1− α)2

)
+

1

p
λ

)
.

We also write σ4 as

σ4 = η2,1(1− (1− α)2) + η2,2λ

=

(
1

2

p(p2 − 1)

p3 − 1

)(
1− (1− α)2

)
+

(
p2 − 1

p3 − 1

)
λ.

Using the above relations and (4.5.15) from Lemma 4.5.17, we have four equations relating

σ4, σ
∗
4, ρ
∗, λ, which may be solved using computer algebra software to produce (4.8.2) –

(4.8.7). For an implementation using Sage [Sag21], see the GitHub repository associated to

this paper [BK21b, SEC_rho36_23Aug21.ipynb].

4.5.5 Triple factors: computing σ5

Suppose p 6= 3. Then if F has factorization type 5, we have F ≡ y3 (mod p), so the

coefficients of f(x, z) are all divisible by p.

https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
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For any solution, that is, for any [x0 : y0 : z0] such that F (x0, y0, z0) = 0, we have that

y3
0 = f(x0, z0). Since we are assuming that [x0 : y0 : z0] is a solution, we also have that

0 = y3
0 − f(x0, z0) = y3

0 (mod p), and thus p | y3
0 so we have that p3 | y3

0. Since we have

y3
0 = f(x0, z0), then p3 | f(x0, z0).

Writing f1 = 1
pf , we see that each solution [x0 : y0 : z0] satisfies f1(x0, z0) ≡ y0 ≡ 0

(mod p). Thus we will consider the different possible factorizations of f1(x, z) modulo p. If

f1(x, z) ≡ 0 (mod p) then all the coefficients of f are divisible by p2 and so we can write

f2 = 1
p2
f . Now each solution [x0 : y0 : z0] must satisfy f2(x0, z0) ≡ y0 ≡ 0 (mod p) and so

we consider the different possible factorizations of f2(x, z) modulo p.

Now if f2(x, z) ≡ 0 (mod p), then all of the coefficients of f(x, z) are divisible by p3.

In this case we can replace y by py and divide through by p3 and obtain another arbitrary

superelliptic curve with m = 3 and d = 6, namely, y3 = 1
pf2(x, z) with coefficients in Zp in

which case, the probability of solubility is ρ. This occurs with probability 1
p14

.

For i = 0, . . . , 9, we denote by η6,i the probability of each possible factorization type

for a binary sextic modulo p (see Lemma 4.5.6), and we denote by τi (respectively θi) the

probability of solubility of f1 (respectively f2) with factorization type i modulo p. Thus we

have:

σ5 =
1

p14
ρ+

(
1− 1

p7

) 9∑
i=0

η6,iτi +

(
p7 − 1

p14

) 9∑
i=0

η6,iθi.

In order to compute the τi and θi, we make the following definitions. Let σ′5 be the

probability that F (x, y, z) has a Qp-solution when v(c6) = 1 and v(ci) ≥ 1 for 0 ≤ i ≤ 5.

Take σ′′5 to be the probability that F (x, y, z) has a Qp-solution when v(c6) = 2 and v(ci) ≥ 2

for 0 ≤ i ≤ 5.

Proposition 4.5.18. Suppose Cf is given by (4.5.1) and F has factorization type 5 modulo

p for a prime p > 43 or p > 2 with p ≡ 2 (mod 3). Then the proportion of f for which

Cf (Qp) 6= ∅ is a rational function in p given explicitly by

σ5 = (4.8.5).
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The proportions σ′5 and σ′′5 defined above are also rational functions in p,

σ′5 = (4.8.8),

σ′′5 = (4.8.9).

The proofs of these equalities are spread across the remainder of this section. σ′5 is

computed in the proof Lemma 4.5.19, along with the values of τi. σ
′′
5 is computed in the

proof of Lemma 4.5.21, along with the θi values. The proof is completed in §4.5.5 with the

computation of σ5, along with ρ3,6.

Lemma 4.5.19. The τi values are tabulated below. These hold for all primes p > 31, and

for p > 3 if p ≡ 2 (mod 3).

τ0 = 0 τ5 =


3p3+p2+2p+2

3(p4+p3+p2+p+1)
, p ≡ 1 (mod 3)

(3p2+2)(p+1)

3(p4+p3+p2+p+1)
, p ≡ 2 (mod 3)

τ1 = 1 τ6 = 1− (1− τ5)2 = (4.8.10)

τ2 =
1

p
τ7 = (4.8.11)

τ3 = 1− (1− τ2)2 =
2p− 1

p2
τ8 = 1− (1− τ2)(1− τ7) = (4.8.12)

τ4 = 1− (1− τ2)3 =
3p2 − 3p+ 1

p3
τ9 = (4.8.13)

Proof. Recall that f1 = 1
pf and assume f1 6≡ 0 (mod p). We consider the possible factor-

ization types of f1 as a binary sextic form, given by the index i in the d = 6 row of Lemma

4.5.6, and compute the probabilities τi of a root f1(x, z) ≡ 0 lifting to a Qp-point of Cf .

No roots: τ0

If f1(x, z) ≡ 0 (mod p) has no roots in Fp, then f(x, z) ≡ 0 (mod p2) has no solutions and

thus f(x, z) ≡ 0 (mod p3) has no solutions, so τ0 = 0.
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Simple roots: τ1

If f1(x, z) ≡ 0 (mod p) has a simple root in Fp, it lifts to a Qp-point on Cf of the form

[x0 : y0 : z0] with p | y0 (see also λi in the proof of Lemma 4.5.17), so τ1 = 1.

Double roots: τ2, τ3, and τ4

If f1(x, z) ≡ 0 (mod p) has a double root in Fp, we can assume this root occurs at [0 : 1]

and the valuations of the coefficients are as in the first line of the following table.

c6 c5 c4 c3 c2 c1 c0

τ2 = τ2a = 1
pτ2b ≥ 1 ≥ 1 ≥ 1 ≥ 1 = 1 ≥ 2 ≥ 2

τ2b = 1 ≥ 4 ≥ 3 ≥ 2 ≥ 1 = 0 ≥ 0 ≥ 0

(a) Since p | x, reducing modulo p3 reveals that p | c0 is necessary, which occurs with

probability 1
p . Before moving to the next line, we replace x, y by px, py and divide by

p3.

(b) The justification is identical to that of λd.

Thus we have τ2 = 1
p .

If f1(x, z) has two double roots in Fp, then after composing with an automorphism

of P1, they occur at [0 : 1] and [1 : 0], and we have v(c0), v(c1), v(c5), v(c6) ≥ 2 and

v(c2) = v(c4) = 1. The probability, τ2, that the root at [0 : 1] lifts to a Qp-point depends

only on c0; the same argument with c6 shows that τ2 is the probability [1 : 0] lifts and thus

the two are independent. This allows us to write

τ3 = 1− (1− τ2)2 =
2p− 1

p2
.

If f1(x, z) has three double roots in Fp, then after composing with an automorphism of

P1, we may assume they occur at [0 : 1], [1 : 1], and [1 : 0]. To extend the independence

argument above to these three roots, we need to argue that the probability of [1 : 1] lifting

is still τ2, even if we assume the points at [0 : 1] and [1 : 0] do not lift. To see this, we

recognize that f(1, 1) =
∑d

i=0 ci, and our assumption that f1 has a double root at [1 : 1]
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is equivalent to requiring v
(∑d

i=0 ci

)
≥ 2. Running through the proof of τ2 shows that

we need only for v
(∑d

i=0 ci

)
≥ 3, which occurs with probability 1

p , independent of the

valuations of c0, c1, c5, c6 (i.e. independent of the lifting behavior at [0 : 1] and [1 : 0]).

Therefore

τ4 = 1− (1− τ2)3 =
3p2 − 3p+ 1

p3
.

Triple roots: τ5 and τ6

If f1(x, z) ≡ 0 (mod p) has a triple root in Fp we can assume the valuations of the coefficients

are as in line 1 of the following table.

c6 c5 c4 c3 c2 c1 c0

τ5 = τ5a = 1
pτ5b ≥ 1 ≥ 1 ≥ 1 = 1 ≥ 2 ≥ 2 ≥ 2

τ5b = β′ ≥ 4 ≥ 3 ≥ 2 = 1 ≥ 1 ≥ 0 ≥ 0

(a) Since p | x, reducing modulo p3 reveals that p | c0 is necessary, which occurs with

probability 1
p . Before moving to the next line, we replace x, y by px, py and divide by

p3.

(b) We are in the situation of β′ = (4.5.9); see Lemma 4.5.12.

In the case of τ5, f(x, z) has one triple root and no other roots, therefore any Qp point

must come from lifting the triple root which happens with probability 1
pβ
′, thus giving

τ5 = 1
pβ
′, which is equal to the stated expression.

In the case of τ6, f(x, z) has two triple roots. We assumed that one triple root was

at [x : z] = [0 : 1] and we could similarly assume the other triple root is at [1 : 0]. The

probabilities of these lifting are independent because the computation of the former involves

coefficients c2, c1, c0 and the second involves coefficients c4, c5, c6. Thus each point lifts to a

Qp point with probability 1
pβ
′, and hence

τ6 = 1− (1− τ5)2 = (4.8.10).
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Quadruple roots τ7 and τ8

If f1(x, z) ≡ 0 (mod p) has a quadruple root in Fp, we can assume the the root occurs at

[0 : 1] and the coefficients have valuations as listed in the first line of the following table.

c6 c5 c4 c3 c2 c1 c0

τ7 = τ7a = 1
pτ7b ≥ 1 ≥ 1 = 1 ≥ 2 ≥ 2 ≥ 2 ≥ 2

τ7b =
(

1− 1
p

)
+ 1

pτ7c ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 1 ≥ 0 ≥ 0

τ7c = Φ(p) + 1
pτ7d ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 1 ≥ 1 ≥ 0

τ7d =
(

1− 1
p

)(
p−1
2p + 1

p2

)
+ 1

pτ7e ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1

τ7e =
(

1− 1
p

)
+ 1

pτ7f ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 2 ≥ 1 ≥ 1

τ7f = 1
pτ7g ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 2 ≥ 2 ≥ 1

τ7g = µ ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2

(a) Since p | x, reducing modulo p3 reveals that p | c0 is necessary, which occurs with

probability 1
p . Before moving to the next line, we replace x, y by px, py and divide by

p3.

(b) With probability 1 − 1
p we have v(c1) = 0 and the reduced equation is F (x, y, 1) =

y3 − c1x − c0, which is linear in x and thus has a solution with y ∈ pZp. With

probability 1
p we have v(c1) ≥ 1 and move to the next line.

(c) The reduced equation is now F = y3 − c0. The probability that c0 is a nonzero cubic

residue is

Φ(p) =


1
3

(
1− 1

p

)
, p ≡ 1 (mod 3)

1− 1
p , p ≡ 2 (mod 3)

(see Proposition 4.3.6 for the definition of Φ(p)). If p - c0 is not a cubic residue, then

no point lifts. With probability 1
p we have v(c0) = 1 and we move to the next line.

(d) With probability 1 − 1
p we have v(c2) = 1. It is clear that for any solution, we must

have p | y and 1
p(c2x

2 +c1x+c0) ≡ 0 (mod p). The quadratic 1
p(c2x

2 +c1x+c0) has no

roots with probability η′2,0 = 1
2

(p−1)
p and distinct roots with probability η′2,1 = 1

2
(p−1)
p .

In the case of distinct roots, one can check that either root lifts to the x-coordinate
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of a Qp-point with y ∈ pZp. A double root occurs with probability η′2,2 = 1
p , and the

probability of a solution lifting is equal to τ2 = 1
p . Thus we have

τ7d =

(
1− 1

p

)(
η′2,1 + η′2,2τ2

)
+

1

p
τ7e =

(
1− 1

p

)(
p− 1

2p
+

1

p2

)
+

1

p
τ7e.

(e) Modulo p2 we have 1
p(c1x+c0), so if vp(c1) = 1, which happens with probability 1− 1

p ,

then there is a solution that lifts to Qp.

(f) Reducing modulo p2, we see that p2 | c0 is necessary to get a Qp solution. This

happens with probability 1
p and so we move to the next line.

(g) We are now in the case of µ = (4.5.12) from Lemma 4.5.14.

In the case of τ7 there is only a quadruple root so any Qp-point must come from lifting

a quadruple root which happens with probability τ7, computed to be (4.8.11).

In the case of τ8, there is a quadruple root and a double root. We can make the usual

argument about independence of these lifting based on which coefficients were used for the

argument. Then

τ8 = 1− (1− τ7)(1− τ2) = (4.8.12).

Sextuple roots: τ9 and σ′5

If f1(x, z) ≡ 0 (mod p) has a sextuple root in Fp, we can assume this root occurs at [0 : 1]

and the valuations of the coefficients are as in the first line of the following table.
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c6 c5 c4 c3 c2 c1 c0

τ9 = τ9a = 1
p
τ9b = 1 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2

τ9b =
(

1 − 1
p

)
+ 1

p
τ9c = 4 ≥ 4 ≥ 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0

τ9c = Φ(p) + 1
p
τ9d = 4 ≥ 4 ≥ 3 ≥ 2 ≥ 1 ≥ 1 ≥ 0

τ9d =
(

1 − 1
p

)(
p−1
2p

+ 1
p2

)
+ 1

p
τ9e = 4 ≥ 4 ≥ 3 ≥ 2 ≥ 1 ≥ 1 ≥ 1

τ9e =
(

1 − 1
p

)
+ 1

p
τ9f = 4 ≥ 4 ≥ 3 ≥ 2 ≥ 2 ≥ 1 ≥ 1

τ9f = 1
p
τ9g = 4 ≥ 4 ≥ 3 ≥ 2 ≥ 2 ≥ 2 ≥ 1

τ9g =
(

1 − 1
p

)
α′′ + 1

p
τ9h = 4 ≥ 4 ≥ 3 ≥ 2 ≥ 2 ≥ 2 ≥ 2

τ9h =
(

1 − 1
p

)(
p−1
2p

+ θ2
p

)
+ 1

p
τ9i = 4 ≥ 4 ≥ 3 ≥ 3 ≥ 2 ≥ 2 ≥ 2

τ9i =
(

1 − 1
p

)
+ 1

p
τ9j = 4 ≥ 4 ≥ 3 ≥ 3 ≥ 3 ≥ 2 ≥ 2

τ9j = 1
p
τ9k = 4 ≥ 4 ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 2

τ9k =
(

1 − 1
p

)
+ 1

p
τ9` = 1 ≥ 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

τ9` = Φ(p) +
(

1 − Φ(p) − 1
p

)
β + 1

p
τ9m = 1 ≥ 1 ≥ 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0

τ9m =
(

1 − 1
p

)
+ 1

p
τ9n = 1 ≥ 1 ≥ 1 ≥ 1 ≥ 0 ≥ 0 ≥ 0

τ9n =
(

1 − 1
p

)
+ 1

p
τ9o = 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 0 ≥ 0

τ9o = Φ(p) + 1
p
τ9p = 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 0

τ9p = σ′5 = 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1

(a) Since p | x, reducing modulo p3 reveals that p3 | c0 is necessary, which occurs with

probability 1
p . Before moving to the next line, we replace x, y by px, py and divide by

p3.

(b) With probability 1 − 1
p we have v(c1) = 0 and the reduced equation is F (x, y, 1) =

y3 − c1x − c0, which is linear in x and thus has a solution with y ∈ pZp. With

probability 1
p we have v(c1) ≥ 1 and move to the next line.

(c) The reduced equation is now F = y3 − c0. The probability that c0 is a nonzero cubic

residue is Φ(p). If p - c0 is not a cubic residue, then no point lifts. With probability

1
p we have v(c0) = 1 and we move to the next line.

(d) The justification is identical to τ7d, producing

τ9d =

(
1− 1

p

)(
η′2,1 + η′2,2τ2

)
+

1

p
τ9e =

(
1− 1

p

)(
p− 1

2p
+

1

p2

)
+

1

p
τ9e.

(e) Modulo p2 we have 1
p(c1x+c0), so if vp(c1) = 1, which happens with probability 1− 1

p ,

then there is a solution that lifts to Qp.
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(f) Reducing modulo p2, we see that p2 | c0 is necessary to get a Qp solution. This

happens with probability 1
p and so we move to the next line.

(g) If v(c3) = 2, then we are in the situation of α′′ = (4.5.10) from Lemma 4.5.12. This

happens with probability 1 − 1/p, so with probability 1/p we have v(c3) ≥ 3 and we

move to the next line.

(h) With probability 1− 1
p we have v(c2) = 2. It is clear that for any solution, we must have

p | y and 1
p2

(c2x
2 + c1x+ c0) ≡ 0 (mod p). The quadratic 1

p2
(c2x

2 + c1x+ c0) has no

roots with probability η′2,0 = 1
2

(p−1)
p and distinct roots with probability η′2,1 = 1

2
(p−1)
p .

In the case of distinct roots, one can check that either root lifts to the x-coordinate

of a Qp-point with y ∈ pZp. A double root occurs with probability η′2,2 = 1
p , and the

probability of a solution lifting is equal to θ2, given in Lemma 4.5.21. Thus we have

τ9h =

(
1− 1

p

)(
η′2,1 + η′2,2θ2

)
+

1

p
τ9i =

(
1− 1

p

)(
p− 1

2p
+
θ2

p

)
+

1

p
τ9i.

(i) Modulo p3 we have 1
p2

(c1x + c0), so if vp(c1) = 2, which happens with probability

1− 1
p , then there is a solution that lifts to Qp.

(j) Reducing modulo p3 reveals that p3 | c0 is necessary, which occurs with probability

1
p . Before moving to the next line, we replace y by py and divide by p3.

(k) With probability 1 − 1
p we have v(c4) = 0, in which case the normalization of Cf is

seen to have geometric genus at most 3. Since f 6= ah3 for a ∈ Fp and h ∈ Fp[x, z],

we apply the Hasse–Weil bound (see the proof of Proposition 4.3.2) to find

#Cf
sm

(Fp) ≥ p+ 1− 6
√
p > 1,

where the rightmost inequality holds for all primes p > 31. Cf has only the point

[1 : 0 : 0] above infinity, so there must exist some smooth Fp-point [x : y : 1] which

lifts to a Qp-point of Cf . If p ≡ 2 (mod 3), it suffices to take p > 2 (see the proof of

Proposition 4.3.4). If v(c4) ≥ 1 we move to the next line.
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(`) With probability 1 − 1
p we have v(c3) = 0, in which case the normalization of Cf is

seen to have geometric genus at most 1. If p ≡ 1 (mod 3) and c3 ∈
(
F×p
)3

is a nonzero

cubic residue, then whenever f 6= c3(x−αz) for α ∈ Fp[x, z], we apply the Hasse–Weil

bound (see the proof of Proposition 4.3.2) to find

#Cf
sm

(Fp) ≥ p+ 1− 2
√
p > 3,

where the rightmost inequality holds for all primes p > 7. In this case, Cf must

possess a smooth Fp-point [x : y : 1] which then lifts to a Qp-point of Cf . On the

other hand, if f = c3(x−αz) then the fact that c3 is a cubic residue produces a liftable

solution. If c3 is not a cubic residue, the probability of solution is given by β. If p ≡ 2

(mod 3), it suffices to take p > 2 (see the proof of Proposition 4.3.2). In either case,

we have

τ9` = Φ(p) +

(
1− Φ(p)− 1

p

)
β +

1

p
τ9m,

which is well defined when p ≡ 2 (mod 3) even though β is not, since 1−Φ(p)− 1
p = 0.

(m) The justification is identical to that of λd.

(n) The justification is identical to that of line (b).

(o) The justification is identical to that of line (c).

(p) This is the definition of σ′5.

The table above gives us a relation between τ9 and σ′5, while the definition of σ′5 gives

another:

σ′5 =

9∑
i=0

η′6,iτi.

Solving the two simultaneously give the values of τ9 = (4.8.13) and σ′5 = (4.8.8).

Remark 4.5.20. The independence argument used in the computation of τ4 in terms of

τ2 makes use of the 3-transitivity of AutP1. This argument breaks down if attempting to

lift more than three such roots independently, suggesting that more care may be needed to

compute ρm,d(p) exactly when d ≥ 8.
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Lemma 4.5.21. The θi values are tabulated below. These hold for all primes p > 31, and

for p > 3 if p ≡ 2 (mod 3).

θ0 = 0 θ5 =


p4+3p3+2p+2

3(p4+p3+p2+p+1)
, p ≡ 1 (mod 3)

(3p3+2)(p+1)

3(p4+p3+p2+p+1)
, p ≡ 2 (mod 3)

θ1 = 1 θ6 = (4.8.16)

θ2 =


(2p2−3p+3)(p+2)

6p3
, p ≡ 1 (mod 3)

(2p2−3p+2)(p+1)

2p3
, p ≡ 2 (mod 3)

θ7 = (4.8.17)

θ3 = 1− (1− θ2)2 = (4.8.14) θ8 = (4.8.18)

θ4 = 1− (1− θ2)3 = (4.8.15) θ9 = (4.8.19)

Proof. Recall that f2 = 1
p2
f and assume f2 6≡ 0 (mod p). We consider the possible factor-

ization types of f2 as a binary sextic form, given by the index i in the d = 6 row of Lemma

4.5.6, and compute the probabilities θi of a root f2(x, z) ≡ 0 lifting to a Qp-point of Cf .

No roots: θ0

If f2(x, z) ≡ 0 (mod p) has no roots in Fp, then f(x, z) ≡ 0 (mod p3) has no solutions, so

θ0 = 0.

Simple roots: θ1

If f2(x, z) ≡ 0 (mod p) has a simple root in Fp, it lifts to a Qp-point on Cf of the form

[x0 : y0 : z0] with p | y0, so θ1 = 1.

Double roots: θ2, θ3, and θ4

If f2(x, z) (mod p) has a double root in Fp, after composition with an automorphism of P1,

we can assume the root occurs at [0 : 1]. Replacing x, y by px, py and dividing by p3 we

obtain the valuations of the coefficients listed in the first line of the following table.
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c6 c5 c4 c3 c2 c1 c0

θ2 = θ2a = Φ(p) + 1
pθ2b ≥ 5 ≥ 4 ≥ 3 ≥ 2 = 1 ≥ 1 ≥ 0

θ2b = 1
2

(
1− 1

p

)
+ 1

pθ2c ≥ 5 ≥ 4 ≥ 3 ≥ 2 = 1 ≥ 1 ≥ 1

θ2c = 1
pθ2d ≥ 5 ≥ 4 ≥ 3 ≥ 2 = 1 ≥ 2 ≥ 2

θ2d = 1 ≥ 8 ≥ 6 ≥ 4 ≥ 2 = 0 ≥ 0 ≥ 0

(a) After the change of variables, reduced equation is F = y3 − c0. The probability that

c0 is a nonzero cubic residue is Φ(p). If p - c0 is not a cubic residue, then no point

lifts. With probability 1
p we have v(c0) = 1 and we move to the next line.

(b) In this case, we consider the quadratic 1
p(c2x

2 + c1x + c0) over Fp. If it has a simple

root, which happens with probability η′2,1 = 1
2

(
1− 1

p

)
, these lift to Qp points with

y ∈ pZp. If it has no roots, the equation is insoluble, and if the quadratic has a double

root, which happens with probability η′2,2 = 1
p , we can shift it to [0 : 1], giving the

valuations in the next line.

(c) Reducing modulo p3 reveals that p3 | c0 is necessary, which occurs with probability

1
p . Before moving to the next line, we replace x, y by px, py and divide by p3.

(d) The justification is identical to that of λd.

This gives the expression for θ2 in the statement. The same independence arguments as

for τ2 and τ3 in the proof of Lemma 4.5.19 apply here to give

θ3 = 1− (1− θ2)2 = (4.8.14).

For θ4, we need to modify the argument from τ4 slightly. We observe that for p > 2 if

c1, . . . , c6 are fixed (satisfying the conditions above) then as c0 varies, the probability of a

lift is precisely θ2. This is already clear for steps θ2a and θ2c above. To see why this holds

for θ2b, we consider the quadratic

x2 +
c1

c2
x+

c0

c2
,
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whose discriminant
c21
c22
− 4 c0c2 determines its factorization type. This discriminant is linear

in c0, so for fixed c1, c2, as c0 runs through pZp, it will take quadratic residue/nonresidue

values with probability p−1
2p , and be divisible by p with probability 1

p .

Hence, we see that for p 6= 2, we can view θ2 as depending only on the value of c0. Thus,

as in the determination of τ4 in the proof of Lemma 4.5.19, we see that after moving the

roots to [0 : 1], [1 : 1], and [1 : 0], the lifting behavior at [1 : 1] is independent of the other

points, making

θ4 = 1− (1− θ2)3 = (4.8.15).

In the case of p = 2 — which will be needed in §4.5.6 — we observe that the proof of

θ2 above shows that lifting [0 : 1] depends only on c0, c1, and the valuation of c2. thus the

lifting behavior of [1 : 0] depends only on c5, c6, and the valuation of c4. For θ4, the other

double root is located at [1 : 1], and the lifting argument depends on

f(1, 1) =
6∑
i=0

ci and f ′(1, 1) =
6∑
i=0

ici.

The latter can be controlled by c3, while the former may be controlled by writing c2 = 4+8c′2

for some c′2 ∈ Z2 and letting c′2 vary. This is independent of c0, c1, c5, c6, and so we have

that θ4 = 1− (1− θ2)3 = (4.8.15) for p = 2 as well.

Triple roots: θ5 and θ6

If f2(x, z) (mod p) has a triple root in Fp, after composition with an automorphism of P1,

we can assume the root occurs at [0 : 1]. Replacing x, y by px, py and dividing by p3 we

obtain the valuations of the coefficients listed in the first line of the following table.

c6 c5 c4 c3 c2 c1 c0

θ5 = θ5a = Φ(p) + 1
pθ5b ≥ 5 ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 1 ≥ 0

θ5b =
(

1− 1
p

)
+ 1

pθ5c ≥ 5 ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 1 ≥ 1

θ5c = 1
pθ5d ≥ 5 ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 2 ≥ 1

θ5d = α′′ ≥ 5 ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 2 ≥ 2

(a) After the change of variables, reduced equation is F = y3 − c0. The probability that
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c0 is a nonzero cubic residue is Φ(p). If p - c0 is not a cubic residue, then no point

lifts. With probability 1
p we have v(c0) = 1 and we move to the next line.

(b) Modulo p2 we have 1
p(c1x+c0), so if vp(c1) = 1, which happens with probability 1− 1

p ,

then there is a solution that lifts to Qp.

(c) Reducing modulo p2 reveals that p2 | c0 is necessary, which occurs with probability

1
p , and we move to the next line.

(d) We are in the situation of α′′ = (4.5.10) from Lemma 4.5.12.

This gives the expression for θ5 in the statement. The same independence argument as

for τ5 and τ6 in the proof of Lemma 4.5.19 apply to give

θ6 = 1− (1− θ5)2 = (4.8.16).

Quadruple roots: θ7 and θ8

If f2(x, z) (mod p) has a quadruple root in Fp, after composition with an automorphism of

P1, we can assume the root occurs at [0 : 1]. Replacing x, y by px, py and dividing by p3 we

obtain the valuations of the coefficients listed in the first line of the following table.

c6 c5 c4 c3 c2 c1 c0

θ7 = θ7a = Φ(p) + 1
p
θ7b ≥ 5 ≥ 4 = 3 ≥ 3 ≥ 2 ≥ 1 ≥ 0

θ7b =
(

1 − 1
p

)
+ 1

p
θ7c ≥ 5 ≥ 4 = 3 ≥ 3 ≥ 2 ≥ 1 ≥ 1

θ7c = 1
p
θ7d ≥ 5 ≥ 4 = 3 ≥ 3 ≥ 2 ≥ 2 ≥ 1

θ7d =
(

1 − 1
p

)(
1
2

(
1 − 1

p

)
+ 1

p
θ2
)

+ 1
p
θ7e ≥ 5 ≥ 4 = 3 ≥ 3 ≥ 2 ≥ 2 ≥ 2

θ7e =
(

1 − 1
p

)
+ 1

p
θ7f ≥ 5 ≥ 4 = 3 ≥ 3 ≥ 3 ≥ 2 ≥ 2

θ7f = 1
p
θ7g ≥ 5 ≥ 4 = 3 ≥ 3 ≥ 3 ≥ 3 ≥ 2

θ7g = 1 ≥ 2 ≥ 1 = 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

(a) The reduced equation is F = y3 − c0. The probability that c0 is a nonzero cubic

residue is Φ(p). If p - c0 is not a cubic residue, then no point lifts. With probability

1
p we have v(c0) = 1 and we move to the next line.

(b) Modulo p2 we have 1
p(c1x+c0), so if vp(c1) = 1, which happens with probability 1− 1

p ,

then there is a solution that lifts to Qp.
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(c) Reducing modulo p2 reveals that p2 | c0 is necessary, which occurs with probability

1
p , and we move to the next line.

(d) With probability 1− 1
p we have v(c2) = 2. It is clear that for any solution, we must have

p | y and 1
p2

(c2x
2 + c1x+ c0) ≡ 0 (mod p). The quadratic 1

p2
(c2x

2 + c1x+ c0) has no

roots with probability η′2,0 = 1
2

(p−1)
p and distinct roots with probability η′2,1 = 1

2
(p−1)
p .

In the case of distinct roots, one can check that either root lifts to the x-coordinate

of a Qp-point with y ∈ pZp. A double root occurs with probability η′2,2 = 1
p , and the

probability of a solution lifting is equal to θ2. Thus we have

θ7d =

(
1− 1

p

)(
η′2,1 + η′2,2θ2

)
+

1

p
θ7e =

(
1− 1

p

)(
p− 1

2p
+
θ2

p

)
+

1

p
θ7e.

(e) Modulo p3 we have (c1x+ c0), so if vp(c1) = 2, which happens with probability 1− 1
p ,

then there is a solution that lifts to Qp.

(f) Reducing modulo p3 reveals that p3 | c0 is necessary, which occurs with probability

1
p . Before moving to the next line, we replace y by py and divide by p3.

(g) The justification is identical to that of τ9k.

This gives the expression for θ7 in (4.8.17). The same argument as for τ7 and τ8 in the

proof of Lemma 4.5.19 applies here to give

θ8 = 1− (1− θ7)(1− θ2) = (4.8.18).

Sextuple roots: θ9

If f2(x, z) (mod p) has a sextuple root in Fp, after composition with an automorphism of

P1, we can assume the root occurs at [0 : 1]. Replacing x, y by px, py and dividing by p3 we

obtain the valuations of the coefficients listed in the first line of the following table.
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c6 c5 c4 c3 c2 c1 c0

θ9 = θ9a = Φ(p) + 1
p
θ9b = 5 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1 ≥ 0

θ9b =
(

1 − 1
p

)
+ 1

p
θ9c = 5 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 1 ≥ 1

θ9c = 1
p
θ9d = 5 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 2 ≥ 1

θ9d =
(

1 − 1
p

)(
1
2

(
1 − 1

p

)
+ 1

p
θ2
)

+ 1
p
θ9e = 5 ≥ 5 ≥ 4 ≥ 3 ≥ 2 ≥ 2 ≥ 2

θ9e =
(

1 − 1
p

)
+ 1

p
θ9f = 5 ≥ 5 ≥ 4 ≥ 3 ≥ 3 ≥ 2 ≥ 2

θ9f = 1
p
θ9g = 5 ≥ 5 ≥ 4 ≥ 3 ≥ 3 ≥ 3 ≥ 2

θ9g = Φ(p) +
(

1 − Φ(p) − 1
p

)
β + 1

p
θ9h = 2 ≥ 2 ≥ 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0

θ9h =
(

1 − 1
p

)
+ 1

p
θ9i = 2 ≥ 2 ≥ 1 ≥ 1 ≥ 0 ≥ 0 ≥ 0

θ9i =
(

1 − 1
p

)
+ 1

p
θ9j = 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 0 ≥ 0

θ9j = Φ(p) + 1
p
θ9k = 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 0

θ9k =
(

1 − 1
p

)
µ′ + 1

p
θ9` = 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1

θ9` =
(

1 − 1
p

)
α′ + 1

p
θ9m = 2 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1

θ9m =
(

1 − 1
p

)(
p−1
2p

+ 1
p2

)
+ 1

p
θ9n = 2 ≥ 2 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1

θ9n =
(

1 − 1
p

)
+ 1

p
θ9o = 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 1 ≥ 1

θ9o = 1
p
θ9p = 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 1

θ9p = σ′′5 = 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2

(a) The reduced equation is now F = y3 − c0. The probability that c0 is a nonzero cubic

residue is Φ(p). If p - c0 is not a cubic residue, then no point lifts. With probability

1
p we have v(c0) = 1 and we move to the next line.

(b) Modulo p2 we have 1
p(c1x+c0), so if vp(c1) = 1, which happens with probability 1− 1

p ,

then there is a solution that lifts to Qp.

(c) Reducing modulo p2, we see that p2 | c0 is necessary to get a Qp solution. This

happens with probability 1
p and so we move to the next line.

(d) The justification is identical to θ7d, producing

θ9d =

(
1− 1

p

)(
η′2,1 + η′2,2θ2

)
+

1

p
θ9e =

(
1− 1

p

)(
p− 1

2p
+
θ2

p

)
+

1

p
θ9e.

(e) Modulo p3 we have 1
p2

(c1x + c0), so if vp(c1) = 2, which happens with probability

1− 1
p , then there is a solution that lifts to Qp.

(f) Reducing modulo p3, we see that p3 | c0 is necessary to get a Qp solution. This
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happens with probability 1
p . Before moving to the next line, we replace y by py and

divide by p3.

(g) The justification is identical to that of τ9`.

(h) The justification is identical to that of λd.

(i) With probability 1 − 1
p we have v(c1) = 0 and the reduced equation is F (x, y, 1) =

y3 − c1x − c0, which is linear in x and thus has a solution with y ∈ pZp. With

probability 1
p we have v(c1) ≥ 1 and move to the next line.

(j) The reduced equation is now F = y3 − c0. The probability that c0 is a nonzero cubic

residue is Φ(p). If p - c0 is not a cubic residue, then no point lifts. With probability

1
p we have v(c0) = 1 and we move to the next line.

(k) If v(c4) = 1 we are in the situation of µ′ = (4.8.6) from Lemma 4.5.14. This happens

with probability 1 − 1
p , so with probability 1

p we have v(c4) ≥ 2 and we move to the

next line.

(`) If v(c3) = 1, then we are in the situation of α′ = (4.5.10) from Lemma 4.5.12. This

happens with probability 1− 1
p , so with probability 1

p we have v(c3) ≥ 2 and we move

to the next line.

(m) The justification is identical to τ9d of Lemma 4.5.19, producing

θ9m =

(
1− 1

p

)(
η′2,1 + η′2,2τ2

)
+

1

p
θ9n =

(
1− 1

p

)(
p− 1

2p
+

1

p2

)
+

1

p
θ9n.

(n) The justification is identical to that of line (b).

(o) The justification is identical to that of line (c).

(p) This is the definition of σ′′5 .

The table above gives us a relation between θ9 and σ′′5 , while the definition of σ′′5 gives

another:

σ′′5 =

9∑
i=0

η′6,iθi.
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Solving the two simultaneously give the values of θ9 = (4.8.19) and σ′′5 = (4.8.9).

Completing the proofs of Proposition 4.5.18 and Theorem 4.1.5

To complete the proof of Proposition 4.5.18, we must compute σ5. In doing so, we will also

compute the exact value of ρ, thereby completing the proof of part of Theorem 4.1.5 as

well.

Proof of Proposition 4.5.18. Recall that σ′5 = (4.8.8) and σ′′5 = (4.8.9) were computed in

the proofs of Lemmas 4.5.19 and 4.5.21, respectively. Thus all that remains is to compute

σ5.

Recall that σ5 is related to ρ by

σ5 =
1

p14
ρ+

(
1− 1

p7

) 9∑
i=0

η6,iτi +

(
p7 − 1

p14

) 9∑
i=0

η6,iθi,

where the values of η6i , τi, θi are given in Lemmas 4.5.6, 4.5.19, and 4.5.21, respectively. On

the other hand, we have

ρ =
5∑
i=1

ξiσi,

with ξi given in Corollary 4.5.3 and σi for 1 ≤ i ≤ 4 given in Propositions 4.5.7, 4.5.8, 4.5.9,

4.5.15, respectively. We can thus solve the two equations above for σ5 and ρ as rational

functions in p,

ρ = (4.8.1),

σ5 = (4.8.5),

thereby completing the proof of Proposition 4.5.18. For an implementation in Sage [Sag21],

see the GitHub repository associated to this paper [BK21b, SEC_rho36_23Aug21.ipynb].

Thus we have verified that for i = 1, 2, we have ρ(p) = Ri(p) for an explicit rational

function Ri(t) and all sufficiently large primes p ≡ i (mod 3) as stated in Theorem 4.1.5.

It remains to observe the asymptotic behavior, i.e. that when p ≡ 1 (mod 3), this explicit

https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
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function satisfies

1− ρ(p) ∼ 2

3
p−4,

and if p ≡ 2 (mod 3) then

1− ρ(p) ∼ 53

144
p−7.

4.5.6 Small primes

All that remains to prove Theorem 4.1.5 is to compute ρ(p) for the remaining eight primes

p, not handled directly by Propositions 4.5.7, 4.5.8, 4.5.9, 4.5.15, and 4.5.18, namely p =

2, 3, 7, 13, 19, 31, 37, 43. We handle the cases of p = 2 and p = 3 separately from the six

remaining primes p ≡ 1 (mod 3) and conclude this section with the the exact calculation

of ρ3,6 ≈ 96.94%.

The case of p = 2

Suppose p = 2. By the proof of Proposition 4.3.4, for all binary sextic forms f(x, z) such

that f 6= 0, x2(x+ z)2z2, we can lift a point on the reduction Cf to a Q2-point of Cf . Thus

we first restrict our attention to lifting F2-points of

y3 = x2(x+ z)2z2.

By the same argument as that for θ4 in the proof of Lemma 4.5.21, the probability of

[0 : 0 : 1], [1 : 0 : 1], or [1 : 0 : 0] lifting to a Q2-point are equal and independent. Thus it

suffices to determine how often [0 : 0 : 1] lifts. In fact, we will need the following lemma for

all primes p 6= 3.

Lemma 4.5.22. Let p 6= 3 be a prime. Fix c2 such that v(c2) = 0 and c3, c4, c5, c6 ∈ Zp.

As c0, c1 range over pZp, let ν denote the probability that the Fp-solution [0 : 0 : 1] to
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F (x, y, z) = 0 lifts to a Qp-solution to F (x, y, z) = 0. We have

ν =
1

p

(
η′2,1 + η′2,2θ2

)
=


3p4−p3+p2−3p+6

6p5
p ≡ 1 (mod 3),

p4+p3−p2−p+2
2p5

p ≡ 2 (mod 3).

Proof. Let [x : y : z] ≡ [0 : 0 : 1] (mod p). We observe that v(c2x
2z4 + c1xz

5) ≥ 2, so

if v(c0) = 1, the equation is seen to be insoluble modulo p2. With probability 1
p we have

c0 ∈ p2Zp.

Replacing x by px, our equation becomes

y3 =

6∑
i=0

picix
i.

Rewriting ci as pici, we have the valuations (in descending order) are given by

≥ 6 ≥ 5 ≥ 4 ≥ 3 = 2 ≥ 2 ≥ 2.

Thus it is necessary for p3 | (c2x
2 + c1x+ c0), so with probability η′2,0 = p−1

2p , the equation is

insoluble. With probability η′2,1 = p−1
2p , we have a lift, and with probability η′2,2 = 1

p , we are

in the situation of θ2 of Lemma 4.5.21, and the proof is seen to be valid for all p. Putting

this together yields the giving probability that [0 : 0 : 1] lifts to a Qp-solution.

Corollary 4.5.23. Let f(x, z) be a binary sextic form with f(x, z) = x2(x+z)2z2 (mod 2).

The probability that Cf has a Q2-point is

1− (1− ν)3 =
2675

4096
.

The probability that Cf has an affine Q2-point of the form [x : y : 1] is

1− (1− ν)2 =
135

256
.

Proof. The two statements follow from applying Lemma 4.5.22 to the two affine and three
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total F2-points of Cf independently (see the argument for θ4 in the proof of Lemma 4.5.21).

At this point, we have

ρ3,6(2) = 1− 1

26
+

1

27

(
2675

4096
+ σ5

)
, (4.5.16)

where σ5 is the probability of solubility when f(x, z) = 0.

To compute σ5, we can follow the proofs of Proposition 4.5.18. For 0 ≤ i ≤ 6, the values

of τi and θi from Lemmas 4.5.19 and 4.5.21 hold for p = 2. Corollary 4.5.23 can be used

to compute θ7, µ, τ7, and µ′, in that order. We catalog these values below and highlight the

modified steps.

θ7 =
13575

16384

(
use θ7g =

135

256

)
,

θ8 =
62727

65536
(use updated θ7),

µ =
90887

131072
(use updated θ7 in (4.5.13)),

τ7 =
3760903

8388608
(use τ7g = µ),

τ8 =
12149511

16777216
(use updated τ8),

µ′ =
40461063

67108864
(use updated τ7 in (4.5.14)).

We then solve the following equations, using the values above and Corollary 4.5.23
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appropriately in the calculation of τ9,

τ9 =
1

32768
σ′5 +

7283817

16252928

(
use τ9k =

1

2
· 136

256
+

1

2
τ9`

)
,

σ′5 =
9∑
i=0

η′6,iτi (use updated τ7, τ8) ,

θ9 =
1

32768
σ′′5 +

3559852801497

4260607557632

(
use updated µ′ in θ9k

)
,

σ′′5 =
9∑
i=0

η′6,iθi (use updated θ7, θ8) ,

σ5 =
1

214
ρ+

(
1− 1

27

) 9∑
i=0

η6,iτi +

(
27 − 1

214

) 9∑
i=0

η6,iθi,

ρ = 1− 1

26
+

1

27

(
2675

4096
+ σ5

)
(see (4.5.16)).

This yields

ρ3,6(2) =
45948977725819217081

46164832540903014400
≈ 0.99532, (4.5.17)

a considerable improvement over 1− 1
26

.

The case of small primes p ≡ 1 (mod 3)

Suppose p is one of p = 7, 13, 19, 31, 37, 43. Here we are not able to conclude that when

F (x, y, z) is absolutely irreducible, that Cf has a Qp-point, i.e. that σ1 = 1. At various

other junctures, including the calculations of τi and θi in Lemmas 4.5.19 and 4.5.21, we

use assumptions about the size of p to conclude that certain equations over Fp always

possess a liftable point. To circumvent this and fix the necessary calculations, we need a

few intermediate results.

Consider equations of the form

y3 = c3x
3 + c2x

2 + c1x+ c0 (4.5.18)

and denote by ρaff
3,3(p) the probability that (4.5.18) has an affine Qp-point as c0, c1, c2, c3

vary in Zp with v(c3) = 0.
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Lemma 4.5.24. Let p ≡ 1 (mod 3). When p > 7 we have

ρaff
3,3(p) =

1

3
+

2

3
β =

3p4 + 3p3 + p2 + 3p+ 1

3(p4 + p3 + p2 + p+ 1)
.

In the case of p = 7,

ρaff
3,3(7) =

1

2058
(2002 + 28α) =

401245

411747
.

Proof. Note that the justification when p > 7 is essentially that of τ9` or θ9g. Whenever

c3 ∈
(
F×p
)3

we have a solution, as the Hasse bound (4.3.2) applies to the normalization of

the reduction of (4.5.18) whenever p > 7, and if the right hand side factors as c3(x − a)3,

we can lift [a+ 1 : y : 1] using Hensel’s lemma. If c3 /∈
(
F×p
)3

, then we are in the situation

of β, giving the first statement.

When p = 7, a computer search shows that of the 2058 equations (4.5.18) over F7 with

v(c3) = 0, 2002 can be lifted via Hensel’s lemma, 28 are insoluble, and 28 are of the form

y3 = c3(x − a)3, where c3 /∈
(
F×p
)3

. See the procedure count_cubic_forms(p), contained

in the file CountForms.m, found in the GitHub repository associated to this paper [BK21b],

for an implementation in Magma [BCP97]. The probability of lifting in this case is given

by α, proving the second statement.

The following lemma complements Lemma 4.5.22, in that it provides the probability

that a triple root modulo p lifts to a Qp-point.

Lemma 4.5.25. Let p ≡ 1 (mod 3) and fix c4, c5, c6 ∈ Zp. As c0, c1, c2, c3 vary in Zp with

v(c3) = 0, the Fp-solution [0 : 0 : 1] to F (x, y, z) = 0 lifts to a Qp-solution to F (x, y, z) = 0

with probability

π =
1

p
− 1

p2
+

1

p3
ρaff

3,3 =


17694619
141229221 p = 7,

3p6+3p4+3p3+p2+1
3(p4+p3+p2+p+1)p3

p > 7.

Proof. The proof follows techniques similar to ones we have already seen.

https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/f492b080352291c758e10fe9f82a49618e7e095b/CountForms.m
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c6 c5 c4 c3 c2 c1 c0

π = πa = 1
pπb ≥ 0 ≥ 0 ≥ 0 = 0 ≥ 1 ≥ 1 ≥ 1

πb =
(

1− 1
p

)
+ 1

pπc ≥ 6 ≥ 5 ≥ 4 = 3 ≥ 3 ≥ 2 ≥ 2

πc = 1
pπd ≥ 6 ≥ 5 ≥ 4 = 3 ≥ 3 ≥ 3 ≥ 2

πd = ρaff
3,3 ≥ 3 ≥ 2 ≥ 1 = 0 ≥ 0 ≥ 0 ≥ 0

(a) We observe that v(c3x
3 +c2x

2 +c1x) ≥ 2, so it is necessary for v(c0) ≥ 2, which occurs

with probability 1
p . At this point, we replace x by px and ci by pici and move to the

next line.

(b) The justification is identical to that of θ9e.

(c) The justification is identical to that of θ9f .

(d) The probability of finding a solution of the form [x : y : 1] is precisely ρaff
3,3(p) by

definition.

Putting these steps together, along with the value of ρaff
3,3 from Lemma 4.5.24 yields the

given formula.

Consider now equations of the form

y3 = c4x
4 + c3x

3 + c2x
2 + c1x+ c0 (4.5.19)

with v(c3) = 0. Let the proportion of equations (4.5.19) over Zp possessing an affine Qp-

point be denoted ρaff
3,4(p). This quantity came up in computing θ7 and τ9, (see in particular

θ7g, τ9k), and hence also the quantities derived from them, including µ, µ′, τ7, τ8, θ8, and θ9.

When p > 31, an application of the Hasse–Weil bound (4.3.2) is sufficient to guarantee the

existence of a Qp-point; for p ≤ 31, we have the following.
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Lemma 4.5.26. Let p ≡ 1 (mod 3). For p ≥ 31 we have ρaff
3,4 = 1. For p < 31, we have

ρaff
3,4(7) =

93877018682

96889010407
≈ 0.96891,

ρaff
3,4(13) =

813159544

815730721
≈ 0.99684,

ρaff
3,4(19) =

6856

6859
≈ 0.99956.

Proof. For p > 31 this is a consequence of the Hasse–Weil bound (4.3.2). For the four

primes p ≤ 31, the proof proceeds by enumeration of all binary quartic forms f(x, z) over

Fp with c4 6≡ 0 (mod p). If for any [x : 1] we have f(x, 1) ∈
(
F×p
)3

or f(x, 1) = 0 is a root of

multiplicity 1, then Hensel’s lemma allows us to lift to a Qp-point. Of course, if y3 = f(x, z)

is insoluble modulo p, then there exist no Qp-points.

The only other possibility is that f(x, z) has one or two double roots. In either case,

the probability that such a root lifts to a Qp-point is ν, by Lemma 4.5.22. By enumerating

all such f(x, z) and determining their value sets and factorizations, we computed ρaff
3,4(p) as

listed above, finding in particular that ρaff
3,4(31) = 1.

This enumeration procedure was implemented in Magma [BCP97]. The relevant proce-

dure, count_quartic_forms(p), is contained in the file CountForms.m and can be found

in the GitHub repository associated to this paper [BK21b].

With a similar approach as that of Lemmas 4.5.24 and 4.5.26, we can determine σ1 and

σ∗1 exactly for p = 7, 13, 19, 31, 37, 43.

Proposition 4.5.27. For the primes p ≡ 1 (mod 3) with p ≤ 43, the values of σ1 and σ∗1

are given below.

σ1(7) =
577619497568784534247

586438262710350126300
≈ 0.98496 σ∗1(7) =

653206973052553734217

670215157383257287200
≈ 0.97462

σ1(13) =
5931415654903952

5941011706232655
≈ 0.99838 σ∗1(13) =

455813699762383

457000900479435
≈ 0.99740

σ1(19) =
1294027438921

1294326278072
≈ 0.99976 σ∗1(19) =

43009044017

43024696224
≈ 0.99963

σ1(31) =
3697903

3697928
≈ 0.999993 σ∗1(31) =

477147

477152
≈ 0.999989

σ1(37) =
937764

937765
≈ 0.999998 σ∗1(37) =

608279

608280
≈ 0.999998

σ1(43) =
41047793

41047800
≈ 0.9999998 σ∗1(43) =

3818399

3818400
≈ 0.9999997

https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/f492b080352291c758e10fe9f82a49618e7e095b/CountForms.m
https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/f492b080352291c758e10fe9f82a49618e7e095b/CountForms.m
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Proof. We proceed by enumerating binary sextic forms f(x, z) and checking for liftable

points in Magma [BCP97]; see §4.6 for a description, including optimizations necessary to

shorten the runtime of these calculations, and [BK21b] for the code.

Let f(x, z) be a binary sextic form over Fp which is not equal to h(x, z)3 for any binary

quadratic form h(x, z) (resp. also satisfying condition (∗)). If f(x, z) ∈
(
F×p
)3

or f(x, z) = 0

is a root of multiplicity 1, then by Hensel’s lemma it lifts to a Qp-point of Cf .

If no such [x : z] exist, then the equation is either insoluble, in which case Cf (Qp) = ∅,

or the only Fp-points come from multiple roots of f(x, z). These could be up to three double

roots, or a triple root (note that two triple roots or a sextic root are ruled out by being in

factorization case 1). By Lemma 4.5.22, each double root lifts (independently, by the same

arguments as those for θ4 in the proof of Lemma 4.5.21) to a Qp-point with probability ν,

while a triple root lifts with probability π by Lemma 4.5.25.

Summing up the number of forms and weighting by the appropriate probability yields

the given values of σ1 (resp. σ∗1). See (4.6.1) for the case of p = 13 as an example.

At this point, we can repeat the calculations of §4.5.4, 4.5.5 — namely those of σ4 and σ5

— using the modifications above as appropriate. These modifications are described below;

for the full implementation, see [BK21b, SEC_rho36_23Aug21.ipynb].

• θ7g = ρaff
3,4 in the proof of Lemma 4.5.21. This is used to compute θ7, which is then

used to compute µ, τ7, and µ′ in succession, and these values are used throughout.

• In the proof of Proposition 4.5.15, the correct σ∗1 value from Proposition 4.5.27 must

be used in (4.5.4).

• In the calculation of τ9 in Lemma 4.5.19, we use

τ9k =

(
1− 1

p

)
ρaff

3,4(p) +
1

p
τ9` and

τ9` =

(
1− 1

p

)
ρaff

3,3(p) +
1

p
τ9m,

where ρaff
3,3(p) and ρaff

3,4(p) are given in Lemmas 4.5.24 and 4.5.26, respectively.
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• In the calculation of θ9 in Lemma 4.5.21, we use

θ9g =

(
1− 1

p

)
ρaff

3,3(p) +
1

p
θ9h.

• In the final calculation of ρ, we use the correct σ1 value from Proposition 4.5.27 in

(4.5.3).

The exact values of ρ3,6(p) are recorded in (4.8.20) – (4.8.25).

The case of p = 3

Suppose now that p = 3. This case breaks from the others in that when f(x, z) 6≡ 0 (mod 3),

one cannot determine whether there exists a Q3-solution to y3 = f(x, z) from information

modulo p alone. Instead, one needs to know information modulo 33 = 27.

In Z/27Z, the nonzero cubic residue classes are precisely

(
Z/27Z×

)3
= {1, 8, 10, 17, 19, 26} .

For a ∈ Z3 with v(a) = 0, there exists y ∈ Z3 satisfying y3 = a if and only if a ∈ (Z/27Z×)
3
.

This is seen by applying Hensel’s lemma, in the form of (4.3.1), with respect to y. Note also

that for any a ∈ Z3, we have that its residue a ∈ (Z/27Z×)
3

if and only if a+9 ∈ (Z/27Z×)
3
;

this will be used later.

Our approach mirrors that of the other primes p in this section; we first establish some

technical results, then use them to adapt our general strategy to work for p = 3, yielding a

value for ρ3,6(3). We begin with the following lemma, which effectively takes the place of

Φ in the proofs of various lifting results.

Lemma 4.5.28. Consider the probability of F (x, y, 1) = 0 having a Q3-solution under the

following conditions.

(a) Fix c3, c4, c5, c6 ∈ 3Z3 and vary c0 ∈ Z3 − 3Z3 and c1, c2 ∈ 3Z3. The probability that

F (x, y, 1) = 0 has a Q3-solution is 19
27 .
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(b) Fix c3, c4, c5, c6 ∈ 9Z3 and vary c0 ∈ Z3 − 3Z3, c1 ∈ 3Z3, and c2 ∈ 3Z3 − 9Z3. The

probability that F (x, y, 1) = 0 has a Q3-solution is 2
3 .

(c) Fix c2, c3, c4, c5, c6 ∈ 9Z3 and vary c0 ∈ Z3 − 3Z3 and c1 ∈ 3Z3. The probability that

F (x, y, 1) = 0 has a Q3-solution is 7
9 .

Proof. The restrictions on the ci guarantee that for any (x, y) ∈ Z2
3, we have v (F (x, y, 1)) =

0. Thus it suffices to work modulo 33 = 27 and determine if f(x, 1) takes a value in

(Z/27Z×)
3
. By our earlier observation that nonzero cubic residues modulo 27 are invariant

under addition by multiples of 9, we have that f(x, 1) ∈ (Z/27Z×)
3

if and only if f(x+3, 1) ∈

(Z/27Z×)
3
, and hence it suffices to check at

f(0, 1) = c0,

f(1, 1) =
6∑
i=0

ci, and

f(−1, 1) =
6∑
i=0

(−1)ici.

We have that c0 ∈ (Z/27Z×)
3

with probability 1
3 . If not, then we may check at the other

values.

Consider first (a). If c0 is not in (Z/27Z×)
3

then let c ≡ c0 + c3 + c4 + c5 + c6 (mod 27).

Exactly one of c, c + 3, and c − 3 are in (Z/27Z×)
3
, and as c1, c2 varying in 3Z3, we have

that c1 + c2 ≡ 0, 3,−3 (mod 9) each with equal probability of 1/3. If
∑
ci /∈ (Z/27Z×)

3
,

then we verify by direct enumeration that the probability of −c1 + c2 satisfying
∑

(−1)ici ∈

(Z/27Z×)
3

is also 1/3. Hence we have the probability in (a) is given by

1

3
+

2

3

(
1

3
+

2

3

(
1

3

))
=

19

27
.

For (b) and (c), we are in a similar situation, except we can ignore c3, . . . , c6 entirely

as their values will not affect whether f(x, 1) takes a value in (Z/27Z×)
3
. To compute (b),

we note that if c0 is not in (Z/27Z×)
3
, then c0 + c2 is with probability 1

2 , since 9 - c2.

If this is the case, there is a 1
3 chance that 9 | c1 and we have f(1, 1) ∈ (Z/27Z×)

3
. If

c0 + c2 /∈ (Z/27Z×)
3
, then there is a 2

3 chance that one of f(±1, 1) ∈ (Z/27Z×)
3
. This
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comes out to the probability

1

3
+

2

3

(
1

2

)
=

2

3
.

For (c) we follow a similar approach, observing that if c0 is not in (Z/27Z×)
3
, we have a

2
3 chance that one of c0 ± c1 is, as only when 9 | c1 is the sum not a cube modulo 27. Thus

we obtain

1

3
+

2

3

(
2

3

)
=

7

9
.

We now compute the probability of lifting a point [x : 0 : z] on y3 = f(x, z) when

f(x, z) has a double root modulo 3; after a change of coordinates, we may consider the

point [0 : 0 : 1]. We call this probability ν as in Lemma 4.5.22.

Lemma 4.5.29. Fix c2, c3, c4, c5, c6 ∈ Z3 and suppose v(c2) = 0. As c0, c1 vary in 3Z3, the

F3-solution [0 : 0 : 1] to F (x, y, z) = 0 lifts to a Q3-solution to F (x, y, z) = 0 with probability

ν =
43

243
.

Proof. Following the proof of Lemma 4.5.22, we have

ν =
1

p

(
η′2,1 + η′2,2θ2

)
.

To compute θ2, we follow the proof of Lemma 4.5.21, except that in the first step we take

θ2a =
2

3
·
(

2

3

)
+

1

3
θ2b,

justifying as follows. With probability 2
3 we have v(c0) = 0, putting us in the case of Lemma

4.5.28(c), in which case a lift exists with probability 2
3 , giving the left-hand term. With

probability 1
3 we have 3 | c0, and we continue with the computation of θ2 as in the proof of

Lemma 4.5.21.

Note that in the last step, we may take θ2d = 1 as usual, since the partial derivative of

the quadratic c2x
2 + c1x+ c0 can only vanish modulo 3 for at most one value of x. Hence
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one of the other x values may always be used to lift to a Q3-solution. This results in

θ2 =
16

27
and ν =

43

243
.

Next, we consider σ1. The values of ρaff
3,3 and ρaff

3,4 will follow from similar reasoning. Of

the 2160 (see Lemma 4.5.2) binary sextic forms f(x, z) modulo 3 with F absolutely irre-

ducible, all but 54 have at least one [x : z] such that the partial derivative of F with respect

to x (or z) is nonvanishing modulo 3, and hence liftable via Hensel’s lemma (see Proposition

4.3.9). The remaining 54 may be enumerated and are seen to have the factorization types

as follows:

• 24 have one double root (i.e. f(x, z) has factorization type 124 or 1222) modulo 3,

• 12 have two double roots (i.e. f has type 12122) modulo 3,

• 8 have three double roots (i.e. f has type 121212) modulo 3, and

• 10 have no roots modulo 3.

This leads to our determination of σ1, as well as ρaff
3,3 and ρaff

3,4.

Proposition 4.5.30. When p = 3, we have

σ1 =
5780143846

5811307335
≈ 0.99463,

ρaff
3,3 =

2103

2183
≈ 0.96335,

ρaff
3,4 =

4585681

4782969
≈ 0.95875.

Proof. To compute σ1, we need only determine the probability of lifting for each of the four

values [x : z], and see that they are independent of one another. When f(x, z) 6= 0 (mod 3),

the probability of lifting is 1
3 , exactly the proportion of residues in (Z/27Z)× in the image

of the cube map. The probability of a double root modulo p lifting is ν, as after a change

of coordinates we may assume [x : z] = [0 : 1], putting us in the case of Lemma 4.5.29.
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For the independence, we treat each of the four cases separately, illustrating the argu-

ment in the case that f(x, z) has exactly one double root modulo 3, occurring at [0 : 1].

By Lemma 4.5.29 the probability of lifting is ν, and since this proof relies on Lemma

4.5.28(c), the lifting behavior depends only on the values of c0 and c1. The lifting behavior

at [x : z] = [1 : 1], [−1 : 1], [1 : 0], for which f(x, z) 6≡ 0 (mod 3), does not depend on the

choice of lift of [x : z] to Z/27Z by our earlier discussions. Hence this depends only on, say,

c3, c4, and c6.

Since lifting a double root depends only on f(x, z) and f ′(x, z) modulo 27, lifting a

nonzero value depends only on the value itself in this case, and we have 7 coefficients

varying, the argument above easily extends to the other three cases. This justifies

σ1 =
1

2160
(2106 + 10

(
1−

(
2

3

)4
)

+ 24ν

(
1−

(
2

3

)3
)

+ 12
(
1− (1− ν)2

)(
1−

(
2

3

)2
)

+ 8
(
1− (1− ν)3

)(1

3

))
.

For ρaff
3,4, the story is similar, except we are only interested in lifting affine solutions

[x : 1]. Of the 162 quartics c4x
4 + c3x

3 + c2x
2 + c1x + c0 modulo 3, all but 18 have

nonzero partial derivative, with the cases of no (affine) roots, one (affine) double root,

and two (affine) double roots each appearing 6 times. The same lifting probabilities and

independence arguments above apply, yielding the stated value.

Finally, to compute ρaff
3,3, we note that so long as c1, c2 are not both in 3Z3, the partial

derivative does not vanish and we have a root by Hensel’s lemma. If 3 | c1, c2, then f(x, z) =

c3x
3z3 + c0z

6, and after a change of variables over F3, we may assume f(x, z) = x3z3.

Let f(x, z) ∈ Z3[x, z] be a binary sextic form reducing to f = x3z3. Using the same

techniques as in the proof of Lemma 4.5.28, we have that the probability that [±1 : 1] has

a lift to a Q3-point is 1
3 for each. Note that this can be made independent of the choices of

c4, c5 and c6, which is necessary to use in our calculations of θ9g and τ9`. If neither of these

lift, the probability that [0 : 1] is computed by first replacing x by 3x, giving the valuations

on c3, c2, c1, c0

· · · = 3 ≥ 3 ≥ 2 ≥ 1.
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We compute that we have a lift with probability 2
9 + 1

27ρ
aff
3,3, yielding that

ρaff
3,3 =

8

9
+

1

9

(
5

9
+

4

9

(
2

9
+

1

27
ρaff

3,3

))
,

and solving for ρaff
3,3 gives the stated value.

Taken together, we once again repeat the calculations of §4.5.5 to obtain σ5 and ρ, using

the same modifications we did previously with the primes p ≡ 1 (mod 3) up to p = 43. We

also must replace Φ by the appropriate probability in Lemma 4.5.28 wherever necessary in

the proofs of Lemmas 4.5.19 and 4.5.21. Finally solving

ρ3,6(3) =
2160

2187
σ1 +

1

27
σ5

yields

ρ3,6(3) =
900175334869743731875930997281

908381960435133191895132960000
≈ 0.99096. (4.5.20)

Once again, the implementation may be found in [BK21b, SEC_rho36_23Aug21.ipynb].

Calculating ρ3,6 exactly

We are now ready to complete the proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. We have already seen that ρ(p) = Ri(p) for sufficiently large p ≡ i

(mod 3); see §4.5.5. For the remaining primes, p = 2, 3, 7, 13, 19, 31, 37, 43, we have com-

puted ρ(p) in the preceding sections; see (4.5.17), (4.8.20) – (4.8.25), and (4.5.20). This

yields the exact expression

ρ3,6 =
∏

p=2,3,7,13,19,31,37,43

ρ(p)
∏

p≡1 (mod 3)
p>43

R1(p)
∏

p≡2 (mod 3)
p>2

R2(p).

To obtain a numerical value, we compute the product of ρ(p) for all p ≤ 10000, finding
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∏
p≤10000 ρ(p) ≈ 0.96943. Using the estimates R1(t) ≥ 1− t−4 and R2(t) ≥ 1− t−7, we find

1 ≥
∏

p≡1 (mod 3)
p>10000

R1(p)
∏

p≡2 (mod 3)
p>10000

R2(p) ≥ 1− 1.6856 · 10−14,

which more than suffices to conclude our numerical value is correct to several decimal

places. Once again, these calculations are recorded in the GitHub repository associated to

this paper [BK21b, SEC_rho36_23Aug21.ipynb].

4.6 Bounds for ρm,d(p) via computer search

The lower bounds for ρ3,6 and ρ5,5 produced by Corollary 4.3.10, discussed in Examples

4.3.15 and 4.3.16, were limited by the performance of Proposition 4.3.6 for primes p ≡ 1

(mod m) such that p < 4g2. As noted in Remarks 4.3.7 and 4.3.8, the proof of Proposition

4.3.6 likely leaves out many liftable points, including those given by roots of f(x, z) of

multiplicity 1. Here we discuss how to use a computer search to improve our lower bounds

of ρm,d(p), an implementation in the case of ρ3,6(13), and how this approach is used in the

exact determination of σ1(p) for small primes p in §4.5.6. The relevant code may be found

in the GitHub repository associated to this paper [BK21b], available at the link below:

https://github.com/c-keyes/Density-of-locally-soluble-SECs.

Suppose p - m. Using a computer algebra system it is straightforward to enumerate all

binary degree d forms f(x, z) over Fp and for each such f , determine whether

• there exists a root f(x0, z0) = 0 of multiplicity 1, or

• there exists [x0 : z0] such that f(x0, z0) ∈
(
F×p
)m

.

In either case, for any f(x, z) ∈ Zp[x, z] such that f ≡ f (mod p), Hensel’s lemma (Theorem

4.3.1) ensures Cf (Qp) 6= ∅.

Näıvely, this amounts to enumerating pd+1 polynomials, which quickly becomes pro-

hibitively time consuming. To mitigate this, we first recognize that Cf has a smooth point

if and only if Cumf does for u ∈ F×p . This corresponds to the change of variables y 7→ y
u .

https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
https://github.com/c-keyes/Density-of-locally-soluble-SECs
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Thus we may assume that the leading coefficient, cd, of f(x, z) is either 0 or equal to one

of the representatives of the three cosets in F×p /
(
F×p
)m

. This cuts down the running time

by about a factor of p, as we need only enumerate the coefficients c0, . . . , cd−1.

To further improve the running time by a factor of p, we ran these searches for fixed

values of the constant term c0 in parallel. To avoid having to run p such programs, which

again becomes cumbersome for large p, we observe that for a generator a ∈ F×p , the change

of variables z 7→ az transforms the constant term by a factor of ad, without affecting the

leading term. Thus we may assume c0 to be either 0 or equal to one of the representatives

of the gcd(d, p− 1) cosets in F×p /
(
F×p
)d

. In particular, gcd(d, p− 1) is bounded by d, so the

number of parallel computations needed is bounded as p grows.

We implemented the strategy above in Magma [BCP97] for (m, d) = (3, 6) to obtain

better bounds for ρ3,6(p) for the seven primes p such that p ≡ 1 (mod 3) and p ≤ 61. The

relevant file is [BK21b, CountForms.m]; namely, the procedure count_sextic_forms(p, c0)

counts binary sextic forms f(x, z) which, after the aforementioned changes of variables,

have specified coefficient c0 and such that y3 = f(x, z) has a smooth point. It is convenient

to also keep track of whether or not the forms satisfy condition (∗), whether y3 − f(x, z) is

absolutely irreducible, or both, to give lower bounds for ρ∗, σ1, and σ∗1.

To illustrate this procedure, the output in the p = 13 case is tabulated below in Table

4.6.1. Notice the symmetry present in the table; the c0 and −c0 rows are identical. This is

the result of the facts that 〈2〉 = F×13, and 26 ≡ −1 (mod 13), and our observations above

about the change of variables z 7→ 2z. Considering only the presence of Hensel-liftable

points and insoluble equations, these computations produce the following bounds.

0.99851 ≈ 62655132

62748517
≤ ρ(13) ≤ 4819929

4826809
≈ 0.99857

0.99735 ≈ 740621

742586
≤ ρ∗(13) ≤ 370433

371293
≈ 0.99768

0.99837 ≈ 8605

8619
≤ σ1(13) ≤ 43034

43095
≈ 0.99858

0.99738 ≈ 105803

106080
≤ σ∗1(13) ≤ 26459

26520
≈ 0.99769

To verify the data in Table 4.3.1, we repeat these computations considering only the
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Table 4.6.1: Counts of binary sextic forms f(x, z) ∈ F13[x, z] with smooth points for specified
constant coefficient, using count_sextic_forms(13, c0)

c0 Hensel insoluble total

0 4825604 0 4826809
1 4814593 10608 4826809
2 4820270 5680 4826809
3 4820634 5364 4826809
4 4820619 5364 4826809
5 4813393 12024 4826809
6 4820255 5680 4826809
7 4820255 5680 4826809
8 4813393 12024 4826809
9 4820619 5364 4826809
10 4820634 5364 4826809
11 4820270 5680 4826809
12 4814593 10608 4826809

Totals 62645132 89440 62748517

Hensel–liftable and insoluble equations for the seven primes p ≡ 1 (mod 3) with p ≤ 61.

The resulting lower bounds are recorded in Table 4.6.2 below along with the approximate

runtime of an instance of count_sextic_forms(p, c0) on a server with four Intel Xeon

E5-4627 CPUs, a total of 40 cores, and 1 TB of memory. As one expected, the complexity

is about O(p5). Note in particular that for p = 61, the computation reflects the improved

Hasse–Weil bound (4.3.3), which implied σ1 = σ∗1 = 1 for p = 61 in Proposition 4.5.7.

Table 4.6.2: Lower bounds for ρ, ρ∗, σ1, σ∗1 for p ≡ 1 (mod 3) with p ≤ 61

p ρ ≥ ρ∗ ≥ σ1 ≥ σ∗1 ≥ runtime (s)

7 810658
823543

32731
33614

7237
7350

32731
33600 18

13 62645132
62748517

740621
742586

8605
8619

105803
106080 419

19 893660256
893871739

2475177
2476099

522607
522728

825059
825360 2961

31 27512408250
27512614111

28628820
28629151

3697903
3697928

477147
477152 37161

37 94931742132
94931877133

69343806
69343957

937764
937765

608279
608280 90131

43 271818511748
271818611107

294016723
294016886

41047793
41047800

3818399
3818400 194243

61 3142742684700
3142742836021

13845840
13845841 1 1 1091730

For (m, d) = (5, 5), a similar procedure using the above mentioned parallelization strat-
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egy was used to produce the data for p ≡ 1 (mod 5) with p ≤ 131, tabulated in Table 4.3.2

in Example 4.3.16. For other (m, d), this enumeration strategy could be useful in estimating

ρm,d(p) and offers an improvement on Proposition 4.3.6, at the cost of the time required.

This enumeration strategy was also instrumental in determining the exact values of

σ1 and σ∗1 for small primes p, i.e. the proof of Proposition 4.5.27. After enumerating all

binary sextic forms f(x, z) with Hensel-liftable points, we keep track of the factorization type

modulo p — namely the presence of multiple roots — and determine the lifting probabilities

using ν and π (see Lemmas 4.5.22, 4.5.25).

For example, when determining σ1(13), we find that 62644400 of the 62746320 forms

f(x, z) produce F (x, y, z) with a Hensel-liftable point and 88816 are insoluble. Of the

remaining f(x, z), we find 10920 that have one double root, 2184 having two double roots,

and no other factorization types occur. Thus

σ1(13) =
1

62746320

(
62644400 + 10920ν + 2184(1− (1− ν)2)

)
=

5931415654903952

5941011706232655
,

(4.6.1)

the value given in Proposition 4.5.27. This calculation is repeated for the primes p =

7, 19, 31, 37, 43 and a similar philosophy is used for p = 3 in Proposition 4.5.30.

4.7 Counting binary forms by factorization type

Lemma 4.7.1. For 2 ≤ d ≤ 6 let Nd,i (resp. N ′d,i) denote the number of binary forms

f(x, z) over Fp up to scaling (resp. monic) having the factorization types specified by i in

the second column of the table below. For Nd,i and N ′d,i can be computed in terms of p and

are tabulated below.

d Fact. type Nd,i N ′
d,i

2

0. No roots 1
2

(p− 1)p 1
2

(p− 1)p

1. (1∗) 1
2

(p+ 1)p 1
2

(p− 1)p

2. (12) p+ 1 p

3

0. No roots 1
3

(p+ 1)(p− 1)p 1
3

(p+ 1)(p− 1)p

1. (1∗) 1
3

(2p+ 1)(p+ 1)p 2
3

(p+ 1)(p− 1)p

2. (13) p+ 1 p

4

0. No roots 1
8

(
3p2 + p+ 2

)
(p− 1)p 1

8

(
3p2 + p+ 2

)
(p− 1)p
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d Fact. type Nd,i N ′
d,i

1. (1∗) 1
8

(
5p2 + p+ 2

)
(p+ 1)p 1

8

(
5p2 + 3p+ 2

)
(p− 1)p

2. (122) 1
2

(p+ 1)(p− 1)p 1
2

(p− 1)p2

3. (1212) 1
2

(p+ 1)p 1
2

(p− 1)p

4. (14) p+ 1 p

5

0. No roots 1
30

(
11p2 − 5p+ 6

)
(p+ 1)(p− 1)p 1

30

(
11p2 − 5p+ 6

)
(p+ 1)(p− 1)p

1. (1∗) 1
30

(
19p3 + 6p2 + 4p+ 1

)
(p+ 1)p 1

30

(
19p3 + 14p2 + 4p− 6

)
(p− 1)p

2. (123) 1
3

(p+ 1)2(p− 1)p 1
3

(p+ 1)(p− 1)p2

3. (132) 1
2

(p+ 1)(p− 1)p 1
2

(p− 1)p2

4. (1213) (p+ 1)p (p− 1)p

5. (15) p+ 1 p

6

0. No roots 1
144

(
53p4 + 26p3 + 19p2 − 2p+ 24

)
(p− 1)p 1

144

(
53p4 + 26p3 + 19p2 − 2p+ 24

)
(p− 1)p

1. (1∗) 1
144

(
91p4 + 26p3 + 23p2 + 16p− 12

)
(p+ 1)p 1

144

(
91p3 − 27p2 + 50p− 48

)
(p+ 1)(p− 1)p

2. (124), (1222) 1
8

(
3p2 + p+ 2

)
(p+ 1)(p− 1)p 1

8

(
3p2 + p+ 2

)
(p− 1)p2

3. (12122) 1
4

(p+ 1)(p− 1)p2 1
4

(p− 1)2p2

4. (121212) 1
6

(p+ 1)(p− 1)p 1
6

(p− 1)(p− 2)p

5. (133) 1
3

(p+ 1)2(p− 1)p 1
3

(p+ 1)(p− 1)p2

6. (1313) 1
2

(p+ 1)p 1
2

(p− 1)p

7. (142) 1
2

(p+ 1)(p− 1)p 1
2

(p− 1)p2

8. (1214) (p+ 1)p (p− 1)p

9. (16) p+ 1 p

Proof. This is an elementary computation, as noted in [BCF21, Lemma 2.3], in which each

subsequent row is obtained from the previous one. We give a proof for d = 6 here, assuming

the results in the previous rows of the table. To obtain the result for d < 6 — or indeed

any d value if one is patient — one can use the same idea.

Let f(x, z) be a degree 6 binary form over Fp, up to scaling. We first consider all

cases in which f has a multiple root but no simple root, which are precisely Types 2 – 9

above. Several of these can be calculated via combinatorics alone, beginning with Case 9,

where f has a sextuple root, or factorization type (16). There are exactly p+ 1 such roots,

corresponding to the p+ 1 distinct linear factors up to scaling, so we have p+ 1 forms up to

scaling. Case 8 is similar: to give a form of type (1214) up to scaling, it suffices to identify

a distinct linear factor for each root. Since the multiplicities are different, order matters,

giving (p + 1)p possibilities. Types 4 and 6 ((121212) and (1313) respectively) are similar,

but order does not matter, so there are
(
p+1

3

)
and

(
p+1

2

)
possibilities, respectively.
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To deal with Type 7, (142), we use the d = 2 row in the table to determine how many

binary quadratic forms there are up to scaling, and multiply this by p + 1, the number of

possible 14 factors. Similar arguments work for (133) and (124), using the result for degrees

3 and 4.

The case of (1∗) is the most involved, so we break the calculation down into cases

based on the number of distinct simple roots f has, i.e. the number of 1’s appearing in its

factorization type. If f has 6 distinct simple roots, there are
(
p+1

6

)
possibilities for f . It

is not possible to have exactly 5 simple roots, so we move to the case of 4 distinct simple

roots times a quadratic which has no double roots. There are
(
p+1

4

)
N2,0 possibilities when

the quadratic is irreducible and
(
p
4

)
N2,2 when the quadratic has a double root. Note there is

one fewer linear factor to choose the 4 simple roots from, since they must avoid the double

root of the quadratic factor.

Continuing along this line, we find

N6,1 =

(
p+ 1

6

)
+

(
p+ 1

4

)
N2,0 +

(
p

4

)
N2,2 +

(
p+ 1

3

)
N3,0 +

(
p

3

)
N3,2

+

(
p+ 1

2

)
N4,0 +

(
p

2

)
(N4,2 +N4,4) +

(
p− 1

2

)
N4,3

+ (p+ 1)N5,0 + p(N5,2 +N5,3 +N5,5) + (p− 1)N5,4,

which may be computed via computer algebra software; an implementation is included in

the GitHub repository associated to this paper [BK21b, SEC_rho36_23Aug21.ipynb]. To

conclude, we recognize that Types 1 – 9 are precisely those f possessing a root. Therefore

we have

N6,0 =

(
6∑
i=0

pi

)
−

 d∑
j=1

N6,j

 .

The same strategies work for computing each N ′6,i for the monic case. The only differ-

ences are that there are p choices of linear factors, rather than p + 1, due to the monic-

ity assumption, and that the appropriate monic quantities N ′d,i are used in place of Nd,i

throughout.

Proof of Lemma 4.5.6. Let ηd,i (resp. η′d,i) denote the proportion of binary degree d forms

https://github.com/c-keyes/Density-of-locally-soluble-SECs/blob/bd6a8b39ea8c63bf8e7a847063c70998d01ee8aa/SEC_rho36_23Aug21.ipynb
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f(x, z) over Fp up to scaling by F×p (resp. f(x, z) is monic) having a factorization type

corresponding to i in Lemma 4.7.1. By our earlier observations,

ηd,i =
Nd,i∑d
j=0 p

j
, η′d,i =

N ′d,i
pd

.

These values are precisely those in Lemma 4.5.6.

Remark 4.7.2. There is no serious obstacle to extending Lemma 4.7.1 and thus Lemma

4.5.6 to higher degrees. In fact, one would likely have to do so in order to compute exact

formulas for ρm,d when d > 6.

Remark 4.7.3. Let ηd,1 (resp. η′d,1) denote the proportion of degree d forms f(x, z) ∈

Fp[x, z] which possess at least one simple root. Writing ηd,1 = ηd,1(p) and taking limits as

p, d→∞, we find

lim
d→∞

lim
p→∞

ηd,1(p) = lim
d→∞

lim
p→∞

η′d,1(p) = 1− 1

e
≈ 0.63212.

To see why, consider the case of monic forms; that of forms up to scaling follows from the

same argument. We first observe that as p → ∞, the proportion of forms with a multiple

root goes to 0, so we may safely ignore these when considering the large p limit.

We then count forms with at a root by inclusion-exclusion. There are pd = p · pd−1

choices of f = (x−α)g for g monic of degree d−1, but this double counts those of the form

f = (x− α)(x− β)h for α 6= β and h monic of degree d− 2, of which there are seen to be(
p
2

)
pd−2. Continuing in this manner, we find

lim
p→∞

η′d,1(p) = lim
p→∞

1

pd

d∑
j=1

(−1)j+1

(
p

j

)
pd−j

=

d∑
j=1

(−1)j+1 1

j!
.

Taking the limit as d → ∞, we obtain
∑
j≥1

(−1)j+1 1

j!
= 1 − 1

e
, as seen from the Taylor

expansion of the exponential function.

This is related to the proportion of permutations in Sd possessing at least one fixed



183

point, which is well known to approach 1 − 1
e as d → ∞. For much more, and results on

the density of polynomials with a fixed number of roots, see [BCFG22].

4.8 Explicit formulas for rational functions

ρ =



(
1296p

57
+ 3888p

56
+ 9072p

55
+ 16848p

54
+ 27648p

53
+ 39744p

52
+ 53136p

51
+ 66483p

50

+80019p
49

+93141p
48

+107469p
47

+120357p
46

+135567p
45

+148347p
44

+162918p
43

+176004p
42

+ 190278p
41

+ 203459p
40

+ 218272p
39

+ 232083p
38

+ 243639p
37

+ 255267p
36

+ 261719p
35

+ 264925p
34

+ 265302p
33

+ 261540p
32

+ 254790p
31

+ 250736p
30

+ 241384p
29

+ 226503p
28

+214137p
27

+195273p
26

+170793p
25

+151839p
24

+136215p
23

+118998p
22

+105228p
21

+94860p
20

+ 80471p
19

+ 67048p
18

+ 52623p
17

+ 40617p
16

+ 28773p
15

+ 19247p
14

+ 12109p
13

+ 7614p
12

+ 3420p
11

+ 756p
10 − 2248p

9 − 4943p
8 − 6300p

7 − 6894p
6 − 5994p

5 − 2448p
4 − 648p

3
+ 324p

2

+ 1296p + 1296
)/(

1296
(
p
12 − p11 + p

9 − p8 + p
6 − p4 + p

3 − p + 1
)(
p
8 − p6 + p

4 − p2 + 1
)

×
(
p
6
+ p

5
+ p

4
+ p

3
+ p

2
+ p + 1

)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ p + 1

)(
p
2
+ 1

)
p
11
)
,

p ≡ 1 (mod 3)

(
144p

57
+ 432p

56
+ 1008p

55
+ 1872p

54
+ 3168p

53
+ 4608p

52
+ 6336p

51
+ 8011p

50
+ 9803p

49

+ 11357p
48

+ 13061p
47

+ 14525p
46

+ 16295p
45

+ 17875p
44

+ 19654p
43

+ 21212p
42

+ 23030p
41

+ 24563p
40

+ 26320p
39

+ 27771p
38

+ 29711p
37

+ 30859p
36

+ 31135p
35

+ 31525p
34

+ 31510p
33

+ 29436p
32

+ 28502p
31

+ 28616p
30

+ 26856p
29

+ 25087p
28

+ 25057p
27

+ 23041p
26

+ 19921p
25

+ 18119p
24

+ 16287p
23

+ 13798p
22

+ 12140p
21

+ 10844p
20

+ 9191p
19

+ 7480p
18

+ 5839p
17

+ 4265p
16

+ 2909p
15

+ 1943p
14

+ 1109p
13

+ 590p
12

+ 604p
11

+ 372p
10 − 144p

9 − 87p
8 − 84p

7 − 678p
6 − 618p

5 − 144p
4 − 168p

3 − 156p
2
+ 144p

+ 144
)/(

144
(
p
12 − p11 + p

9 − p8 + p
6 − p4 + p

3 − p + 1
)(
p
8 − p6 + p

4 − p2 + 1
)

×
(
p
6
+ p

5
+ p

4
+ p

3
+ p

2
+ p + 1

)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ p + 1

)(
p
2
+ 1

)
p
11
)
,

p ≡ 2 (mod 3)

(4.8.1)

ρ∗ =

(
72p34 + 216p33 + 432p32 + 720p31 + 1008p30 + 1224p29 + 1260p28 + 1296p27

+ 1152p26 + 1080p25 + 1068p24 + 1032p23 + 1104p22 + 1092p21 + 1116p20

+ 1089p19 + 1104p18 + 1088p17 + 1126p16 + 1149p15 + 1017p14 + 906p13 + 830p12

+ 634p11 + 360p10 + 441p9 + 378p8 + 194p7 + 280p6 + 327p5 + 93p4 + 36p3

+ 60p2 − 36p− 72
)/(

72
(
p8 − p6 + p4 − p2 + 1

)(
p4 + p3 + p2 + p+ 1

)3
×
(
p4 − p3 + p2 − p+ 1

)(
p2 + 1

)
(p+ 1)p7

)
(4.8.2)
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σ4 =

(
72p29 + 180p28 + 396p27 + 684p26 + 1044p25 + 1392p24 + 1608p23

+ 1824p22 + 1848p21 + 1872p20 + 1845p19 + 1860p18 + 1844p17 + 1882p16

+ 1905p15 + 1845p14 + 1878p13 + 2018p12 + 2110p11 + 2124p10 + 2349p9

+ 2214p8 + 1850p7 + 1504p6 + 1119p5 + 525p4 + 216p3 + 96p2 − 36p

− 72
)/(

72
(
p8 − p6 + p4 − p2 + 1

)(
p4 + p3 + p2 + p+ 1

)3(
p4 − p3 + p2 − p+ 1

)
×
(
p2 + p+ 1

)(
p2 + 1

)
p2
)

(4.8.3)

σ∗4 =

(
72p29 + 108p28 + 288p27 + 432p26 + 648p25 + 852p24 + 960p23 + 1104p22

+ 1092p21 + 1116p20 + 1089p19 + 1104p18 + 1088p17 + 1126p16

+ 1149p15 + 1089p14 + 1122p13 + 1262p12 + 1354p11 + 1368p10 + 1593p9

+ 1530p8 + 1202p7 + 1000p6 + 759p5 + 309p4 + 108p3 + 60p2 − 36p

− 72
)/(

72
(
p8 − p6 + p4 − p2 + 1

)(
p4 + p3 + p2 + p+ 1

)3(
p4 − p3 + p2 − p+ 1

)
×
(
p2 + 1

)
(p+ 1)p3

)
(4.8.4)

σ5 =



(
819p

50
+2691p

49
+6309p

48
+12573p

47
+21573p

46
+32895p

45
+45387p

44
+59238p

43
+73080p

42

+86742p
41

+100547p
40

+114472p
39

+128439p
38

+141579p
37

+157131p
36

+169247p
35

+184741p
34

+ 203094p
33

+ 219096p
32

+ 237726p
31

+ 261800p
30

+ 276904p
29

+ 283923p
28

+ 291645p
27

+ 286281p
26

+ 267993p
25

+ 254943p
24

+ 240039p
23

+ 222678p
22

+ 208152p
21

+ 198396p
20

+183383p
19

+170848p
18

+156267p
17

+142677p
16

+128205p
15

+115607p
14

+101365p
13

+86670p
12

+73512p
11

+57564p
10

+39824p
9
+25201p

8
+13608p

7
+2430p

6−2106p
5−864p

4−1080p
3−540p

2

+ 1296p + 1296
)/(

1296
(
p
12 − p11 + p

9 − p8 + p
6 − p4 + p

3 − p + 1
)(
p
8 − p6 + p

4 − p2 + 1
)

×
(
p
6
+ p

5
+ p

4
+ p

3
+ p

2
+ p + 1

)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ p + 1

)(
p
2
+ 1

)
p
4
)
,

p ≡ 1 (mod 3)

(
91p

50
+ 299p

49
+ 701p

48
+ 1397p

47
+ 2429p

46
+ 3767p

45
+ 5347p

44
+ 6982p

43
+ 8684p

42

+ 10358p
41

+ 12035p
40

+ 13648p
39

+ 15243p
38

+ 17183p
37

+ 18907p
36

+ 19903p
35

+ 21877p
34

+ 23878p
33

+ 24684p
32

+ 26774p
31

+ 30344p
30

+ 31608p
29

+ 32719p
28

+ 34705p
27

+ 34273p
26

+ 31873p
25

+ 30647p
24

+ 28815p
23

+ 26470p
22

+ 24668p
21

+ 23516p
20

+ 21719p
19

+ 20152p
18

+ 18367p
17

+ 16793p
16

+ 15005p
15

+ 13607p
14

+ 11765p
13

+ 10094p
12

+ 8524p
11

+ 6708p
10

+ 4464p
9
+ 3081p

8
+ 1788p

7
+ 330p

6 − 186p
5 − 168p

3 − 156p
2
+ 144p

+ 144
)/(

144
(
p
12 − p11 + p

9 − p8 + p
6 − p4 + p

3 − p + 1
)(
p
8 − p6 + p

4 − p2 + 1
)

×
(
p
6
+ p

5
+ p

4
+ p

3
+ p

2
+ p + 1

)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ p + 1

)(
p
2
+ 1

)
p
4
)
,

p ≡ 2 (mod 3)

(4.8.5)
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µ′ =



(
45p20 − 18p19 + 27p18 + 18p17 − 36p16 − 12p15 + 12p14

+ 36p12 − 27p11 − 6p10 + 5p9 − 30p8 + 69p7 − 29p6

− 39p5 + 81p4 − 120p3 + 60p2 + 108p− 72
)/

72p20,

p ≡ 1 (mod 3)

(
5p20−2p19 +3p18 +2p17−4p16 +4p15−4p14 +4p12−3p11 +2p10

−3p9+2p8+5p7−13p6+9p5+9p4−24p3+12p2+12p−8
)/

8p20,
p ≡ 2 (mod 3)

(4.8.6)

λ =

(
72p28 + 144p27 + 288p26 + 504p25 + 744p24 + 888p23 + 1068p22

+ 1092p21 + 1116p20 + 1089p19 + 1104p18 + 1088p17 + 1126p16

+ 1149p15 + 1089p14 + 1122p13 + 1262p12 + 1354p11 + 1368p10 + 1665p9

+ 1566p8 + 1346p7 + 1144p6 + 903p5 + 417p4 + 180p3 + 96p2 − 36p

−72
)/(

72
(
p8 − p6 + p4 − p2 + 1

)(
p4 + p3 + p2 + p+ 1

)3(
p4 − p3 + p2 − p+ 1

)
×
(
p2 + 1

)
(p+ 1)p2

)
(4.8.7)

σ′5 =



(
91p

30
+246p

29
+478p

28
+850p

27
+1262p

26
+1680p

25
+1902p

24
+2202p

23
+2242p

22
+2271p

21

+ 2243p
20

+ 2270p
19

+ 2214p
18

+ 2185p
17

+ 2299p
16

+ 2142p
15

+ 2228p
14

+ 2570p
13

+ 2512p
12

+ 2701p
11

+ 3300p
10

+ 2984p
9
+ 2348p

8
+ 2323p

7
+ 1363p

6
+ 288p

5
+ 186p

4
+ 60p

3 − 264p
2

− 72p + 144
)/(

144
(
p
8 − p6 + p

4 − p2 + 1
)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ 1

)
(p + 1)p

3
)
,

p ≡ 1 (mod 3)

(
91p

30
+246p

29
+478p

28
+850p

27
+1294p

26
+1792p

25
+2206p

24
+2410p

23
+2578p

22
+2671p

21

+ 2635p
20

+ 2574p
19

+ 2590p
18

+ 2769p
17

+ 2667p
16

+ 2286p
15

+ 2580p
14

+ 2826p
13

+ 2160p
12

+ 2781p
11

+ 3852p
10

+ 3096p
9
+ 2628p

8
+ 3195p

7
+ 1827p

6
+ 432p

5
+ 522p

4
+ 252p

3 − 360p
2

− 72p + 144
)/(

144
(
p
8 − p6 + p

4 − p2 + 1
)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ 1

)
(p + 1)p

3
)
,

p ≡ 2 (mod 3)

(4.8.8)
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σ′′5 =



(
819p

43
+ 2376p

42
+ 4599p

41
+ 7424p

40
+ 11091p

39
+ 14515p

38
+ 16101p

37
+ 19341p

36

+ 19532p
35

+ 19542p
34

+ 20605p
33

+ 21042p
32

+ 21969p
31

+ 25640p
30

+ 27075p
29

+ 25531p
28

+ 26901p
27

+ 24399p
26

+ 18864p
25

+ 19800p
24

+ 18900p
23

+ 16200p
22

+ 14580p
21

+ 14148p
20

+ 8478p
19

+ 6102p
18

+ 3492p
17

+ 1476p
16

+ 378p
15

+ 378p
14 − 324p

13
+ 468p

12
+ 180p

11

− 864p
10

+ 594p
9
+ 2052p

8
+ 684p

7
+ 3096p

6
+ 4590p

5
+ 1674p

4
+ 648p

3
+ 1080p

2 − 648p

− 1296
)/(

1296
(
p
8 − p6 + p

4 − p2 + 1
)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ 1

)
(p + 1)p

16
)
,

p ≡ 1 (mod 3)

(
91p

43
+ 300p

42
+ 607p

41
+ 1024p

40
+ 1531p

39
+ 1903p

38
+ 2329p

37
+ 2581p

36

+ 2404p
35

+ 2686p
34

+ 2725p
33

+ 2166p
32

+ 2497p
31

+ 3216p
30

+ 2739p
29

+ 2943p
28

+ 3897p
27

+ 3279p
26

+ 2544p
25

+ 2904p
24

+ 2676p
23

+ 1992p
22

+ 1908p
21

+ 1764p
20

+ 1134p
19

+ 630p
18

+ 324p
17

+ 180p
16

+ 90p
15 − 54p

14 − 36p
13

+ 180p
12 − 108p

11

− 288p
10

+ 162p
9
+ 180p

8 − 180p
7
+ 360p

6
+ 558p

5
+ 90p

4
+ 72p

3
+ 216p

2 − 72p

− 144
)/(

144
(
p
8 − p6 + p

4 − p2 + 1
)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ 1

)
(p + 1)p

16
)
,

p ≡ 2 (mod 3)

(4.8.9)

4.8.1 τi values (see Lemma 4.5.19)

τ6 =


(
6p4 + 3p3 + 5p2 + 4p+ 4

)(
3p3 + p2 + 2p+ 2

)/
9
(
p4 + p3 + p2 + p+ 1

)2
, p ≡ 1 (mod 3)

(
6p4 + 3p3 + 3p2 + 4p+ 4

)(
3p2 + 2

)
(p+ 1)

/
9
(
p4 + p3 + p2 + p+ 1

)2
, p ≡ 2 (mod 3)

(4.8.10)

τ7 =



(
72p16 − 48p15 + 12p14 + 36p12 − 27p11 − 6p10 + 5p9 − 30p8

+ 69p7 − 29p6 − 39p5 + 81p4 − 120p3 + 60p2 + 108p− 72
)/

72p17,
p ≡ 1 (mod 3)

(
8p16 − 4p14 + 4p12 − 3p11 + 2p10 − 3p9 + 2p8 + 5p7

− 13p6 + 9p5 + 9p4 − 24p3 + 12p2 + 12p− 8
)/

8p17,
p ≡ 2 (mod 3)

(4.8.11)
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τ8 =



(
144p17 − 120p16 + 60p15 − 12p14 + 36p13 − 63p12

+ 21p11 + 11p10 − 35p9 + 99p8 − 98p7 − 10p6 + 120p5

− 201p4 + 180p3 + 48p2 − 180p+ 72
)/

72p18,

p ≡ 1 (mod 3)

(
16p17 − 8p16 − 4p15 + 4p14 + 4p13 − 7p12 + 5p11 − 5p10

+ 5p9 + 3p8 − 18p7 + 22p6 − 33p4 + 36p3 − 20p+ 8
)/

8p18,
p ≡ 2 (mod 3)

(4.8.12)

τ9 =



(
144p

44
+ 336p

43
+ 600p

42
+ 936p

41
+ 1416p

40
+ 1704p

39
+ 1968p

38
+ 2160p

37
+ 2328p

36

+ 2136p
35

+ 2280p
34

+ 2472p
33

+ 2592p
32

+ 2784p
31

+ 3115p
30

+ 3030p
29

+ 2806p
28

+ 2650p
27

+ 2366p
26

+ 2256p
25

+ 1998p
24

+ 1914p
23

+ 1642p
22

+ 1335p
21

+ 827p
20

+ 566p
19

+ 246p
18

+ 25p
17 − 29p

16
+ 6p

15 − 52p
14

+ 98p
13 − 80p

12 − 83p
11

+ 276p
10

+ 200p
9
+ 20p

8
+ 523p

7
+ 259p

6 − 288p
5 − 54p

4
+ 12p

3 − 264p
2 − 72p

+ 144
)/(

144
(
p
8 − p6 + p

4 − p2 + 1
)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ 1

)
(p + 1)p

18
)
,

p ≡ 1 (mod 3)

(
144p

44
+ 432p

43
+ 792p

42
+ 1224p

41
+ 1800p

40
+ 2184p

39
+ 2352p

38
+ 2640p

37
+ 2712p

36

+ 2424p
35

+ 2472p
34

+ 2664p
33

+ 2592p
32

+ 2880p
31

+ 3403p
30

+ 3414p
29

+ 3286p
28

+ 3226p
27

+ 2878p
26

+ 2656p
25

+ 2494p
24

+ 2122p
23

+ 1786p
22

+ 1447p
21

+ 835p
20

+ 390p
19

+ 238p
18

+ 129p
17 − 45p

16 − 138p
15

+ 108p
14

+ 162p
13 − 432p

12 − 99p
11

+ 540p
10 − 72p

9 − 180p
8
+ 819p

7
+ 243p

6 − 432p
5
+ 90p

4
+ 108p

3 − 360p
2 − 72p

+ 144
)/(

144
(
p
8 − p6 + p

4 − p2 + 1
)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ 1

)
(p + 1)p

18
)
,

p ≡ 2 (mod 3)

(4.8.13)

4.8.2 θi values (see Lemma 4.5.21)

θ3 =


(
10p3 − p2 + 3p− 6

)(
2p2 − 3p+ 3

)
(p+ 2)

/
36p6, p ≡ 1 (mod 3)

(
2p3 + p2 + p− 2

)(
2p2 − 3p+ 2

)
(p+ 1)

/
4p6, p ≡ 2 (mod 3)

(4.8.14)
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θ4 =



(
76p6 − 14p5 + 43p4 − 90p3 + 21p2 − 36p+ 36

)
×
(
2p2 − 3p+ 3

)
(p+ 2)

/
216p9,

p ≡ 1 (mod 3)

(
4p6 + 2p5 + 3p4 − 2p3 − 3p2 − 4p+ 4

)(
2p2 − 3p+ 2

)
(p+ 1)

/
8p9, p ≡ 2 (mod 3)

(4.8.15)

θ6 =


(
5p4 + 3p3 + 6p2 + 4p+ 4

)(
p4 + 3p3 + 2p+ 2

)/
9
(
p4 + p3 + p2 + p+ 1

)2
, p ≡ 1 (mod 3)

(
3p4 + 3p3 + 6p2 + 4p+ 4

)(
3p3 + 2

)
(p+ 1)

/
9
(
p4 + p3 + p2 + p+ 1

)2
, p ≡ 2 (mod 3)

(4.8.16)

θ7 =


(
2p8 + 4p7 − 6p6 + 3p5 + 2p4 − 4p3 + 2p2 + 9p− 6

)/
6p8, p ≡ 1 (mod 3)

(
2p8 − 2p6 + p5 + 2p4 − 4p3 + 2p2 + 3p− 2

)/
2p8, p ≡ 2 (mod 3)

(4.8.17)

θ8 =



(
20p11 + 20p10 − 40p9 + 54p8 − 37p7 + 27p6

+ 10p4 − 3p3 + 21p2 − 72p+ 36
)/

36p11,
p ≡ 1 (mod 3)

(
4p11 − 2p8 − p7 + 7p6 − 4p5 − 6p4 + 13p3 − 3p2 − 8p+ 4

)/
4p11, p ≡ 2 (mod 3)

(4.8.18)

θ9 =



(
432p

37
+ 2160p

36
+ 3888p

35
+ 6264p

34
+ 9720p

33
+ 12528p

32
+ 13392p

31

+ 16848p
30

+ 19440p
29

+ 21168p
28

+ 22842p
27

+ 25920p
26

+ 24948p
25

+ 23004p
24

+ 22356p
23

+ 20907p
22

+ 19548p
21

+ 19179p
20

+ 20276p
19

+ 19569p
18

+ 20185p
17

+ 17433p
16

+ 16929p
15

+ 13646p
14

+ 10200p
13

+ 7753p
12

+ 8118p
11

+ 5301p
10

+ 5336p
9
+ 6501p

8
+ 4741p

7
+ 1665p

6
+ 2547p

5
+ 450p

4 − 882p
3 − 540p

2
+ 108p

− 648
)/(

1296
(
p
8 − p6 + p

4 − p2 + 1
)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ 1

)
(p + 1)p

10
)
,

p ≡ 1 (mod 3)

(
144p

37
+ 432p

36
+ 720p

35
+ 1080p

34
+ 1656p

33
+ 1872p

32
+ 1872p

31
+ 2160p

30
+ 2448p

29

+ 2448p
28

+ 2826p
27

+ 3264p
26

+ 3252p
25

+ 3036p
24

+ 2964p
23

+ 2803p
22

+ 2592p
21

+ 2515p
20

+ 2644p
19

+ 2665p
18

+ 2389p
17

+ 2221p
16

+ 2041p
15

+ 1414p
14

+ 976p
13

+ 817p
12

+ 474p
11

+ 229p
10

+ 480p
9
+ 453p

8
+ 297p

7
+ 453p

6
+ 387p

5
+ 66p

4
+ 30p

3
+ 36p

2 − 84p

− 72
)/(

144
(
p
8 − p6 + p

4 − p2 + 1
)(
p
4
+ p

3
+ p

2
+ p + 1

)3(
p
4 − p3 + p

2 − p + 1
)

×
(
p
2
+ 1

)
(p + 1)p

10
)
,

p ≡ 2 (mod 3)

(4.8.19)
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4.8.3 Small primes p (see §4.5.6)

ρ(7) =
63104494755178622851603292623187277054743730183645677893972

64083174787206696882429945655801281538844149896400159815375
≈ 0.98472

(4.8.20)

ρ(13) =
7877728357244577414025901931296747409682076255666526984515273526822853

7890643570620106747776737292792780623510727026420779539893772399701475
≈ 0.99836

(4.8.21)

ρ(19) =
3122673715489206150449285868243361150392235799365815266879438393279346795671

3123410013311365155035964479837966797560851333614271490136481337080636454180
≈ 0.99976

(4.8.22)

ρ(31) = 9196796457678318869139089936786462146535210039832850454297877482020635073857159758299

9196865061587843544830989041473808798913128587425995645857828572610918436035833907250
≈ 0.999992

(4.8.23)

ρ(37) = 171128647900820194784458101787952920169924464886519055453844647154184805036447476640345735119

171128889636157060536894474187017088464271236509977199491208939449738127658679723715588944500
≈ 0.999998

(4.8.24)

ρ(43) = 84000121343283090388653356431804100707331364779290664490547105768867844862712134447832720508750281

84000151671513555191647712567596101710800846209116830568013729377404991150901973105093039939237500
≈ 0.9999996

(4.8.25)
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Chapter 5

Mertens’ theorem for Chebotarev

sets

5.1 Introduction

The Chebotarev density theorem (c.f. Theorem 2.3.6) is a deep generalization of the prime

number theorem; it contains Dirichlet’s theorem for primes in arithmetic progressions as a

special case. In [Wil74], Williams proved Mertens’ theorem for primes in arithmetic pro-

gressions. Here, adapting Williams’ method, we generalize Mertens’ theorem to Chebotarev

sets of prime ideals in a number field. Given a Galois extension of number fields E/F with

Galois group G := Gal(E/F ), and given a conjugacy class C ⊆ G, we prove

∏
N(P )≤x
FrobP=C

(
1− 1

N(P )

)
∼

(
e−γ(E/F,C)

log x

)#C/#G

, as x→∞, (5.1.1)

where P runs over all primes of F which are unramified in E and with absolute norm

bounded by x. In addition, we provide a power saving error term and a description of the

constant e−γ(E/F,C).

Taking E = F = Q, (5.1.1) specializes to Mertens’ theorem [Mer74]; i.e.,

∏
p≤x

(
1− 1

p

)
∼ e−γ

log x
, as x→∞, (5.1.2)
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where γ is the Euler constant. See, for example, [MV06, Theorem 2.7] for a modern discus-

sion and proof of (5.1.2).

Further, taking a cyclotomic extension E = Q(ζb) ⊃ F = Q, the Galois group is

isomorphic to (Z/bZ)×. Picking the conjugacy class corresponding to some element a ∈

(Z/bZ)×, and letting ϕ(b) := #(Z/bZ)× be the usual totient function, (5.1.1) specializes to

Williams’ theorem [Wil74, Theorem 1]

∏
p≤x

p≡ a mod b

(
1− 1

p

)
∼

(
e−γ(a,b)

log x

)1/ϕ(b)

, as x→∞. (5.1.3)

Our result relies heavily on work of Rosen [Ros99, Theorem 2], who proved the Mertens-

type analog of Landau’s prime ideal theorem. Taking E = F ⊃ Q, (5.1.1) specializes to

Rosen’s result; i.e.,

∏
N(P )≤x

(
1− 1

N(P )

)
∼ e−γE

log x
, as x→∞. (5.1.4)

We summarize these cases, in analogy with the corresponding prime number theorems, in

Table 5.1.1 below.

5.1.1 Notation

We use s to denote a complex variable and write s := σ+ it for its real and imaginary parts.

For an algebraic number field F/Q, let OF be its ring of integers. Given a non-zero

integral ideal I E OF , we use NF (I) := #(OF /I) and ϕF (I) := #(OF /I)× to denote its

absolute norm and totient, respectively. We will take ΣF to be the set of maximal ideals of

OF .

The Dedekind zeta function of F is denoted by ζF (s), and κF will stand for its residue

at the pole s = 1.

Given a subset S ⊆ ΣF and a real number x ≥ 2, we define S(x) := {P ∈ S : NF (P ) ≤

x}. If S has a natural density, it will be denoted by δ(S) as in Definition 2.3.2.
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Table 5.1.1: Prime number theorems vs. Mertens-type theorems

Trivial extension Prime number theorem Mertens’ theorem

E = F = Q
∑
p≤x

1 ∼ x
log x

∏
p≤x

(
1− 1

p

)
∼ e−γ

log x

Cyclotomic extension Dirichlet’s theorem Williams’ theorem

E = Q(ζb), F = Q
∑
p≤x

p≡ a mod b

1 ∼ 1
ϕ(b)

x
log x

∏
p≤x

p≡ a mod b

(
1− 1

p

)
∼
(
e−γ(a,b)

log x

)1/ϕ(b)

Number field Laundau’s theorem Rosen’s theorem

E = F ⊇ Q
∑

N(P )≤x

1 ∼ x
log x

∏
N(P )≤x

(
1− 1

N(P )

)
∼ e−γE

log x

Galois extension Chebotarev’s theorem Equation 5.1.1

E ⊇ F ⊇ Q
∑

N(P )≤x
FrobP=C

1 ∼ #C
#G

x
log x

∏
N(P )≤x
FrobP=C

(
1− 1

N(P )

)
∼
(
e−γ(E/F,C)

log x

)#C/#G

Throughout the chapter, E/F will be a Galois extension of number fields with Galois

group G := Gal(E/F ), and C ⊆ G will be a fixed conjugacy class. The letters Q and P

stand for elements of ΣE and ΣF , respectively. Moreover, Q will always be a prime of E

above P . Their respective residue fields are denoted by FQ and FP .

E Q FQ

F P FP

G=Gal(E/F )

⊃

Gal(FQ/FP )

⊃

As in §2.3, we denote by IQ E DQ ⊆ G the inertia and decomposition groups of a prime

Q above P . Choosing another prime above P , the corresponding inertia and decomposition

groups areG-conjugates of IQ andDQ. Recall from Definition 2.3.5 that a Frobenius element

FrobQ ∈ DQ has image in Gal(FQ/FP ) the cyclic generator. Frobenius elements are only

defined modulo the inertia subgroup. Recall that P ∈ ΣF is unramified in E if and only if

P does not divide the discriminant ideal ∆ := ∆E/F . We will denote the set of unramified

primes by SE/F ⊆ ΣF . For an unramified prime, P , we denote by FrobP the (well defined)

conjugacy class of Frobenius elements at all primes Q above P . Given a conjugacy class
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C ⊆ G, let C be the set of unramified primes in ΣF with Frobenius conjugacy class equal

to C.

Let ρ:G → GLn(C) be a representation of G with underlying vector space V . We will

use χ to denote the trace of ρ. Given any prime P ∈ ΣF , and Q ∈ ΣE above P , let

LP (s, χ, F ) := σ > 1, (5.1.5)

be the Artin Euler factor at P . The Artin L-function of χ is defined for σ > 1 by the

Euler product L(s, χ, F ) :=
∏
P∈ΣF

LP (s, χ, F ). We will use the facts that L(s, χ, F ) has

a meromorphic extension to the complex numbers, and if χ is a nontrivial character then

L(1, χ, F ) 6= 0. When a Galois extension E/F is fixed, we abbreviate L(s, χ, F ) to L(s, χ).

For a comprehensive introduction to the topic of Artin L-functions, see [MM12].

5.1.2 Main result

Now that we have the necessary notation in place, we are ready to state our main result.

Theorem 5.1.1. Let E/F be a Galois extension of number fields, with Galois group G :=

Gal(E/F ), and let C ⊂ G be a conjugacy class. Then,

∏
P∈C(x)

(
1− 1

N(P )

)
=

(
e−γ(E/F,C)

log x

)#C/#G

+O

(
1

(log x)δ(C)+1

)
(5.1.6)

when x→∞, and the implied constant depends on the extension E/F and C. Furthermore,

the constant e−γ(E/F,C) is given by

e−γ(E/F,C) = e−γF
∏
P∈ΣF

(
1− 1

N(P )

)α(E/F,C;P )

(5.1.7)

where γF := γ + logκF , and

α(E/F,C;P ) =


−1, P | ∆,

#G
#C − 1, FrobP = C,

−1, FrobP 6= C.

(5.1.8)
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A result similar to Theorem 5.1.1, of which we became aware after finishing our work,

appears in an unpublished survey article of Bardestani and Freiberg [BF, §8]. The approach

sketched there follows an adaptation of a proof of Mertens’ Theorem due to Hardy, while our

method closely follows the strategy of Williams and obtains both an improved statement

for the error term and a description of the constants involved.

Remark 5.1.2 (Error terms). The error term O
(

1
(log x)δ(C)+1

)
in (5.1.6) agrees with that

given by Williams [Wil74]. In the case of a cyclotomic extension Q(ζb)/Q, the error term

may be improved by studying zero-free regions of Dirichlet L-functions; see [LZ07]. As-

suming the generalized Riemann hypothesis (GRH), one can improve this error term all

the way to O
(

(log x)1−ϕ(b)√
x

)
[LZ07, Theorem 4]. Assuming GRH, one also obtains similarly

sharp error estimates for (5.1.4), Mertens’ theorem over number fields; see [Leb07, Theorem

7]. In order to carry these improvements to the error term in (5.1.6) to the general case, we

need faster convergence of L(1, χ) for irreducible non-trivial χ than what we use in Theorem

5.2.1 (see [Ros99, Theorem 5]). This was studied in a recent paper of Garcia and Lee [GL22,

Theorem B].

5.1.3 Layout

In §5.2, we summarize the work of Williams and Rosen and prove some supporting lemmas.

In §5.3 we prove Theorem 5.1.1. In §5.4 we provide some examples.

Acknowledgments

We would like to thank Robert Lemke Oliver and David Zureick-Brown for helpful con-

versations and Paul Pollack for bringing the work of Languasco and Zaccagnini to our

attention. We also thank Kenneth Williams for suggesting we investigate the case of primes

represented by quadratic forms.
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5.2 Background

5.2.1 Williams’ argument

Consider momentarily the case of a cyclotomic extension. Let b be a positive integer, and

choose 0 < a < b coprime to b. In [Wil74], Williams proved

∏
p≤x

p≡ a mod b

(
1− 1

p

)
=

(
e−γ(a,b)

log x

)1/ϕ(b)

+Ob

(
1

(log x)1/ϕ(b)+1

)
. (5.2.1)

Furthermore, he was able to give a formula for the constant γ(a, b) in terms of

• the Euler constant γ := lims→1+

(
ζ(s)− 1

s−1

)
;

• the ramified primes of the extension Q(ζb)/Q, namely
∏
p|b(1− p−1)−1 = b/ϕ(b);

• the values at s = 1 of the Dirichlet L-functions L(s, χ), for all non-trivial irreducible

characters χ of the Galois group Gal(Q(ζb)/Q) ∼= (Z/bZ)×;

• the values at s = 1 of some auxiliary functions K(s, χ), attached to all non-trivial

irreducible characters χ of the Galois group Gal(Q(ζb)/Q) ∼= (Z/bZ)×.

Explicitly,

e−γ(a,b) := e−γ
b

ϕ(b)

∏
χ 6=χ0

(
K(1, χ)

L(1, χ)

)χ(a)

. (5.2.2)

The crux of the proof is to use the orthogonality relations between irreducible characters

of finite groups to write

∏
p≤x

p≡ a mod b

(
1− 1

p

)ϕ(b)

=
∏
χ

∏
p≤x

(
1− 1

p

)χ(p)
χ(a)

, (5.2.3)

where χ ranges over all the irreducible characters of (Z/bZ)×. Afterward, he defines an

arithmetic function kχ(n) for each χ that allows one to factor out the Euler factors of the

Dirichlet L-function as follows

(
1− 1

p

)χ(p)

=

(
1− χ(p)

p

)(
1− kχ(p)

p

)−1

. (5.2.4)
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Defining

K(s, χ) :=
∏
p

KP (s, χ) :=
∏
p

(
1− kχ(p)

ps

)−1

, for σ > 0, (5.2.5)

the argument then reduces to calculating the asymptotics as x→∞ of the partial products

∏
p≤x

LP (1, χ)−1 and
∏
p≤x

KP (1, χ).

When χ = χ0, the calculation follows from Mertens’ theorem. For non-trivial characters,

the result follows by standard methods. See [Wil74] for additional details.

Back to the general case of an arbitrary Galois extension of number fields E/F , with

Galois group G, and C ⊆ G a fixed conjugacy class, essentially the same argument works

when all the irreducible representations of G are one dimensional (e.g. the case of abelian

extensions). However, for higher dimensional representations, we are led to consider a linear

approximation of Artin’s L-function, which we call M(s, ρ) for alphabetical reasons.

5.2.2 Rosen’s Work

Our goal is now to extend the tools used by Williams to the case of arbitrary Galois

extensions. The following theorems of Rosen in [Ros99] gives estimates of analogues of the

partial products of LP (1, χ) and ζF (s) as above.

Rosen’s generalization of Mertens’ theorem is analogous to the so called prime ideal

theorem, Landau’s generalization of the prime number theorem to prime ideals in number

fields.

Theorem 5.2.1 (Theorem 2 in [Ros99]). Let F/Q be an algebraic number field. Then,

∏
P∈ΣF (x)

(
1− 1

N(P )

)
=
e−γF

log x
+O

(
1

log2 x

)
, (5.2.6)

as x → ∞. Furthermore, γF = γ + logκF , and the implied constant in the error term

depends only on the number field F .

Rosen’s proof of Theorem 5.2.1 extends to a general class of Dirichlet series based on

F (Theorem 4 in [Ros99]). In particular, he proves a Mertens-type theorem for Artin L-
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functions based of F , see [Ros99, Theorem 5]. We reformulate the original statement in the

equivalent case of an irreducible representation.

Theorem 5.2.2. Let E/F be a Galois extension of number fields with Galois group G. Let

χ be a non-trivial irreducible character of G. Then,

∏
P∈ΣF (x)

LP (1, χ)−1 =
1

L(1, χ)
+Oχ, F

(
1

log x

)
. (5.2.7)

Proof. We are specializing [Ros99, Theorem 5] to the case of an irreducible and non trivial

character. In Rosen’s notation, ρ = χ, k = 0, and α = L(1, χ).

5.2.3 The M-function

Let P ∈ ΣF , and let ρ be an Artin representation of G. Let

fχ,P (T ) := det
(
I − ρ(FrobQ)|

V
IQT

)
∈ C[T ] (5.2.8)

be the characteristic polynomial of ρ corresponding to P via any Frobenius element. Denote

the trace of Frobenius at P by

χ(P ) := Tr ρ(FrobQ)|
V
IQ (5.2.9)

for any prime Q ∈ ΣE above P ∈ ΣF . Isolating the linear term, we have

fχ,P (T ) = 1− χ(P )T + gχ,P (T )T 2, (5.2.10)

where gχ,P (T ) ∈ C[T ]. Factoring out the linear term, we may write

fχ,P (T ) = (1− χ(P )T )

(
1 +

gχ,P (T )T 2

1− χ(P )T

)
∈ C(T ). (5.2.11)

Taking the change of variables T = N(P )−s, we obtain

LP (s, χ) =

(
1− χ(P )

N(P )s

)−1(
1 +

gχ,P (N(P )−s)

N(P )s(N(P )s − χ(P ))

)−1

, σ > 1. (5.2.12)
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Since − logN(P )(|T |) = σ, we have 0 < |T |≤ 1
N(P ) ≤

1
2 when σ ≥ 1. Define

ξχ := sup
P∈ΣF

(
sup

T∈[0,1/2]
|gχ,P (T )|

)
(5.2.13)

to give an upper bound gχ,P (T ) ≤ ξχ. This is well defined since gχ,P (T ) depends only on

the class of FrobQ and the set of the gχ,P is finite.

Definition 5.2.3 (M -function). Given P ∈ ΣF and ρ and Artin representation of G with

character χ, define the M -Euler factor at P by

MP (s, χ) :=

(
1− χ(P )

N(P )s

)−1

, for σ > 1. (5.2.14)

We define the M-function as the Euler product M(s, χ) :=
∏
P∈ΣF

MP (s, χ).

Note that M(s, χ) defines an holomorphic function in the half plane σ > 1. When ρ is

one dimensional, the polynomial Rχ,P (T ) is zero, and in particular L(s, χ) = M(s, χ). For

higher dimensional representations, this is certainly not the case. We think of M(s, χ) as a

linear approximation of L(s, χ), at least on the level of local factors.

As a preliminary step in the proof of Theorem 5.1.1, we prove a Mertens-type theorem

for M(s, χ). Though it would be interesting to further explore the analytic properties of

M(s, χ), we restrict ourselves to applications of M(s, χ) to the proof of the main theorem.

When the representation ρ is one dimensional, χ(P ) is always a root of unity. For

higher dimensional representations, χ(P ) is a sum of roots of unity and |χ(P )|≤ χ(1). In

particular, it may be the case that χ(P ) = N(P ). To deal with these technicalities, we

restrict to a cofinite subset S of ΣF over which this inconvenience disappears. Define

S := {P ∈ SE/F : |χ(P )|< N(P ), for every irreducible character χ of G}. (5.2.15)

Lemma 5.2.4. Let E/F be a Galois extension of number fields with Galois group G. Let

χ be a non-trivial irreducible character of G and let S be as in (5.2.15). Then,

∏
P∈S(x)

MP (1, χ)−1 =
RS,χMS,χ
L(1, χ)

+O

(
1

log x

)
, (5.2.16)
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when x → ∞ and the implied constant in the error term depends on the extension E/F .

Furthermore, the constants RS,χ and MS,χ are given by

RS,χ =
∏
P∈S

RP (1, χ)−1 and MS,χ =
∏

P∈ΣF−S
LP (1, χ). (5.2.17)

Proof. Factoring the linear term of the characteristic polynomial of Frobenius

fχ,P (T ) = (1− χ(P )T )

(
1 +

gχ,P (T )T 2

1− χ(P )T

)
, (5.2.18)

and define,

RP (1, χ) :=

(
1 +

gχ,P (N(P )−1)N(P )−2

1− χ(P )N(P )−1

)
=

(
1 +

gχ,P (N(P )−1)

N(P )(N(P )− χ(P ))

)
. (5.2.19)

Combining (5.2.19) with (5.2.12) and (5.2.14) gives us that

LP (1, χ) = MP (1, χ)RP (1, χ)−1. (5.2.20)

Taking a product over P ∈ S(x) of the above expression, we get

∏
P∈S(x)

MP (1, χ)−1 =
∏

P∈S(x)

LP (1, χ)−1
∏

P∈S(x)

RP (1, χ)−1. (5.2.21)

We can use Theorem 5.2.2 to understand the product of LP (1, χ). Doing so, one sees

∏
P∈S(x)

LP (1, χ)−1 =
∏

P∈ΣF (x)

LP (1, χ)−1
∏

P∈ΣF (x)−S(x)

LP (1, χ)

=

 ∏
P∈ΣF (x)−S(x)

LP (1, χ)

( 1

L(1, χ)
+Oχ,F

(
1

log x

))
(5.2.22)

What remains is to understand the product over RP (1, χ)−1, i.e.,

∏
P∈S(x)

RP (1, χ)−1 =
∏

P∈S(x)

(
1 +

gχ,P (N(P )−1)

N(P )(N(P )− χ(P ))

)−1

, (5.2.23)
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and to show the product of RP (1, χ)−1 over all P ∈ S converges, say to

RS,χ :=
∏
P∈S

RP (1, χ)−1.

We have, for large enough x,

∏
P∈S(x)

RP (1, χ)−1 = RS,χ
∏

N(P )>x

RP (1, χ). (5.2.24)

To understand the rightmost term above, take logs and expand via Taylor series as follows,

∣∣∣∣∣∣∣∣log

 ∏
P∈S

N(P )>x

RP (1, χ)


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
P∈S

N(P )>x

log

(
1 +

gχ,P (N(P )−1)

N(P )(N(P )− χ(P ))

)∣∣∣∣∣∣∣∣
≤

∑
N(P )>x

∞∑
j=1

1

j

∣∣∣∣ ξχ
N(P )(N(P )− χ(P ))

∣∣∣∣j

≤
∞∑
j=1

1

j

 ∑
N(P )>x

ξχ
N(P )(N(P )− χ(P ))

j

≤
∞∑
j=1

1

j

 ∑
N(P )>x

O

(
1

N(P )2

)j

=
∞∑
j=1

1

j

(
O

(
1

x

))j
= O

(
1

x

)
.

(5.2.25)

Where the first equality in (5.2.25) follows from the prime ideal theorem and partial sum-

mation. From (5.2.25) and the Taylor series of the exponential, observe exp
(
O
(

1
x

))
=

1 +O
(

1
x

)
. This is sufficient to establish

∏
N(P )>x

RP (1, χ) = 1 +O

(
1

x

)
, (5.2.26)

and further ∏
P∈S(x)

RP (1, χ)−1 = RS,χ +O

(
1

x

)
. (5.2.27)

Finally, starting from (5.2.21) and substituting in both (5.2.22) and (5.2.27) appropri-

ately suffices to prove the lemma.
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5.2.4 The K-function

In this section, we investigate the analog of Williams’ K-function, defined in the case of

cyclotomic extensions by (5.2.4) and (5.2.5).

Definition 5.2.5 (K-function). Given P ∈ ΣF and ρ an Artin representation of G with

character χ, define

kχ(P ) := N(P )

[
1−

(
1− χ(P )

N(P )

)(
1− 1

N(P )

)−χ(P )
]
. (5.2.28)

The K-Euler factor at P is defined by

KP (s, χ) :=

(
1− kχ(P )

N(P )s

)−1

, (5.2.29)

and we define the K-function as the Euler product K(s, χ) :=
∏
P∈ΣF

KP (s, χ).

Note that |χ(P )|< N(P ), so KP (1, χ) is well defined and non-zero for every prime

P ∈ ΣF .

To prove Theorem 5.1.1 it is enough to restrict the Euler product in the definition of K

to the primes in S.

First we show the truncated product
∏
P∈S(x)KP (1, χ) converges to

∏
P∈S KP (1, χ)

quickly, in a precise sense. This is the statement of Lemma 5.2.9. To prove this, we will

need some intermediate lemmas. The following lemma is implicit in [Wil74] and will be

critical to the analysis of kχ(p).

Lemma 5.2.6. Let a, b be complex numbers such that |a/b|< 1 and b ≥ 2. Then,

b

[
1−

(
1− a

b

)(
1− 1

b

)−a]
=
a(a− 1)

b

[
1

2
+
∞∑
n=1

(a+ 1) · · · (a+ n)

bn(n+ 1)!

n+ 1

n+ 2

]
. (5.2.30)

While we omit the details of the proof of Lemma 5.2.6, we comment that it follows from

writing the left hand side as a doubly infinite series. We can then rearrange this series into

a power series in 1
b , then use induction to show that the coefficients take the desired form.

The key application of Lemma 5.2.6 is the following estimate.
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Lemma 5.2.7. Let χ be a d-dimensional irreducible character of G. Then for all P ∈ S,

|kχ(P )| ≤ d(d+ 1)

2

1

N(P )
+

Cd
N(P )2

(5.2.31)

for some constant Cd > 0 depending only on d.

Proof. Fix P ∈ S. The conditions of Lemma 5.2.6 are satisfied for a = χ(P ) and b = N(P ).

Noting that |χ(P )|≤ d, we have

|kχ(P )|=

∣∣∣∣∣χ(P )(χ(P )− 1)

N(P )

[
1

2
+
∞∑
n=1

(χ(P ) + 1) · · · (χ(P ) + n)

N(P )n(n+ 1)!

n+ 1

n+ 2

]∣∣∣∣∣
≤ d(d+ 1)

2

1

N(P )
+
d(d+ 1)

N(P )2

∞∑
n=0

(n− 1 + d)!

d! n!

1

N(P )n

≤ d(d+ 1)

2

1

N(P )
+

(
d(d+ 1)

d!

∞∑
n=0

(n− 1 + d)!

n!

1

2n

)
1

N(P )2
.

The constant Cd is given by the expression inside the big parenthesis in the last inequality,

Cd =
d(d+ 1)

d!

∞∑
n=0

(n− 1 + d)!

n!

1

2n
. (5.2.32)

To determine the convergence of the series, it is enough to notice that (n− 1 + d)! /n! is a

polynomial of degree d− 1 in n.

Combining the estimate of Lemma 5.2.7 with the prime ideal theorem, we have the

following estimate on the tail of the infinite sum of |kχ(P )|/N(P ) over primes P ∈ S.

Lemma 5.2.8. Let x > 0. Then

∑
P∈S

N(P )>x

|kχ(P )|
N(P )

= O

(
1

x

)

where the implied constant depends on the extension E/F .

Proof. Notice that when x is sufficiently large, all primes P with norm N(P ) > x are

contained in S. This allows us to drop the requirement in the summation that P ∈ S.
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By (5.2.31) we have

∑
N(P )>x

|kχ(P )|
N(P )

≤ d2 + d

2

∑
N(P )>x

1

N(P )2
+ Cd

∑
N(P )>x

1

N(P )3

for the constant Cd depending on the dimension of the representation associated to χ

given above in (5.2.32). Of course, 1/N(P )3 < 1/N(P )2, so it suffices to show that∑
N(P )>x

1
N(P )2

= O(1/x). This follows from the same argument as in (5.2.25).

Lemma 5.2.9. Let E/F be a Galois extension of number fields with Galois group G. Let

χ be a non-trivial irreducible character of G, and let S be as defined in (5.2.15). Then

∏
P∈S(x)

KP (1, χ) = KS,χ +O

(
1

x

)
, (5.2.33)

when x → ∞ and the implied constant depends on the extension E/F . Furthermore, the

constant KS,χ is given by

KS,χ :=
∏
P∈S

KP (1, χ). (5.2.34)

Proof. The set S as defined in (5.2.15) provides that |χ(P )|< N(P ), so for all P ∈ S, we

can see by (5.2.28) that kχ(P ) 6= N(P ), and hence by (5.2.29) the local factor KP (1, χ)

is both well defined and nonzero. Our goal is thus to show that the infinite product KS,χ

converges and that the truncation
∏
P∈S(x)KP (1, χ) converges to it with the error term

OF
(

1
x

)
.

Taking logarithms, the limit of

log

 ∏
P∈S(x)

KP (1, χ)

 = −
∑

P∈S(x)

log

(
1− kχ(P )

N(P )

)

converges as x→∞. To see this, and obtain the desired asymptotic, it suffices to estimate

the tail ∣∣∣∣∣∣∣∣
∑
P∈S

N(P )>x

log

(
1− kχ(P )

N(P )

)∣∣∣∣∣∣∣∣ .
For x sufficiently large, all primes of sufficiently large norm are in S, so it suffices to estimate
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this tail for all N(P ) > x. Taking absolute values and using the Taylor series expansion,

which is valid since P ∈ S, we have

∣∣∣∣∣∣
∑

N(P )>x

log

(
1− kχ(P )

N(P )

)∣∣∣∣∣∣ ≤
∑

N(P )>x

∣∣∣∣∣∣
∞∑
j=1

1

j

(
kχ(P )

N(P )

)j∣∣∣∣∣∣
≤

∑
N(P )>x

∞∑
j=1

1

j

(
|kχ(P )|
N(P )

)j

≤
∞∑
j=1

1

j

∑
N(P )>x

(
|kχ(P )|
N(P )

)j

≤
∞∑
j=1

1

j

 ∑
N(P )>x

|kχ(P )|
N(P )

j

=

∞∑
j=1

1

j
OF

(
1

x

)j
.

The last equality follows from Lemma 5.2.8. As in (5.2.25), this suffices to establish∏
N(P )>xKP (1, χ) = 1 +O

(
1
x

)
, completing the proof of (5.2.33).

5.3 Proof of Theorem 5.1.1

In this section we will first prove the content of Theorem 5.1.1 and then show an alternative

determination of the constant following a method shown in [LZ07, §6].

5.3.1 Proof of the main theorem

The starting point of our proof is the same as that of Williams, namely, the orthogonality

relations for irreducible characters of finite groups. Given a fixed conjugacy class C of G,

and an unramified prime P ∈ SE/F , we have

∑
χ

χ(P )χ(C) =


#G
#C , if C = FrobP ,

0, if C 6= FrobP .

(5.3.1)

This leads to the natural generalization of Equation (5.2.3).

∏
P∈SC(x)

(
1− 1

N(P )

)#G/#C

=
∏
χ

 ∏
P∈SE/F (x)

(
1− 1

N(P )

)χ(P )
χ(C)

. (5.3.2)
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When χ = χ0 is the trivial character, Rosen’s theorem (Theorem 5.2.1) yields

∏
P∈SE/F (x)

(
1− 1

N(P )

)
=
N(∆)

ϕ(∆)

e−γF

log x
+OF

(
1

log2 x

)
. (5.3.3)

When χ 6= χ0, we first split the product as follows

∏
P∈SE/F (x)

(
1− 1

N(P )

)χ(P )

=
∏

P∈SE/F (x)−S(x)

(
1− 1

N(P )

)χ(P ) ∏
P∈S(x)

(
1− 1

N(P )

)χ(P )

.

(5.3.4)

Call BS,χ the constant given by the product over the primes P ∈ SE/F −S in the right hand

side of (5.3.4). For every P ∈ S we are able to factor out MP (1, χ) from the expression,

obtaining

∏
P∈S(x)

(
1− 1

N(P )

)χ(P )

=
∏

P∈S(x)

MP (1, χ)−1
∏

P∈S(x)

KP (1, χ) (5.3.5)

=

[
RS,χMS,χ
L(1, χ)

+O

(
1

log x

)][
KS,χ +O

(
1

x

)]
(5.3.6)

=
RS,χMS,χKS,χ

L(1, χ)
+O

(
1

log x

)
. (5.3.7)

The equality in (5.3.6) follows from applying Lemma 5.2.4 and Lemma 5.2.9. Again, the

constants only depend on the extension E/F . Assembling the pieces together, we get the

desired result.

Finally, the constant −γ(E/F,C) is defined by the equality

e−γ(E/F,C) =
N(∆)

ϕ(∆)

∏
χ 6=χ0

(
BS,χRS,χMS,χKS,χ

L(1, χ)

)χ(C)

e−γF . (5.3.8)

Note that the constants BS,χ and MS,χ are easily computed finite products. To obtain a

numerical value for e−γ(E/F,C) for a given, E/F and C ⊂ G, one would need to compute

these along with the infinite products RS,χ, KS,χ, and the L-function L(1, χ) for each

nontrivial character χ of G.
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5.3.2 An alternative determination of the constant

Languasco and Zaccagnini observed in [LZ07] that the orthogonality relations of finite group

characters can also be used to provide a cleaner formula for the constant e−γ(a,b) appearing

in Williams’ theorem. Their method extends to this setting as well, and we record it here

for completeness.

First, note

lim
x→∞

∏
P∈SE/F (x)

(
1− 1

N(P )

)χ(P )

=
K(1, χ)

L(1, χ)
.

Thus, from (5.3.8),

e−γ(E/F,C) = e−γF
N(∆)

ϕ(∆)
lim
x→∞

∏
χ 6=χ0

∏
P∈SE/F (x)

(
1− 1

N(P )

)χ(P )χ(C)

= e−γF
N(∆)

ϕ(∆)
lim
x→∞

∏
P∈SE/F (x)

(
1− 1

N(P )

)∑
χ6=χ0

χ(P )χ(C)

= e−γF lim
x→∞

∏
P∈ΣE/F (x)

(
1− 1

N(P )

)α(E/F,C;P )

(5.3.9)

= e−γF
∏
P∈ΣF

(
1− 1

N(P )

)α(E/F,C;P )

where, using character orthogonality (5.3.1),

α(E/F,C;P ) =


−1, P | ∆,

#G
#C − 1, FrobP = C,

−1, FrobP 6= C.

and (5.3.9) follows from the product formula of the Euler totient function

ϕ(∆)

N(∆)
=
∏
P |∆

(
1− 1

N(P )

)
.

This calculation is sufficient to prove (5.1.7) of Theorem 5.1.1.
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5.4 Examples

5.4.1 Quadratic extensions

Set F = Q and let E = Q(
√
D), with D square-free, be a quadratic extension of Q.

Corollary 5.4.1. Let E/Q be a quadratic extension of discriminant ∆. Then

∏
(
D
p

)
=±1

p≤x

(
1− 1

p

)
=

 ∆

ϕ(∆)

e−γ

log x

∏
p-∆

(
1− 1

p

)±(D
p

)1/2

+O

(
1

(log x)3/2

)
,

where γ = γQ is the usual Euler constant.

In this case, G = Gal(E/Q) ∼= {±1}, so there is one nontrivial conjugacy class {−1} ⊆ G,

consisting of the inert primes in OE , while the trivial class corresponds to the split primes.

Our two characters are the trivial character, χ0, and the nontrivial character

χ1(p) =


1, if p is split,

−1, if p is inert.

This is precisely the quadratic residue symbol, χ1(p) =
(
D
p

)
, which in our notation also

coincides with Frobp.

Following the algorithm implicit in the proof of the main theorem (§5.3.1), we have

|χi(p)| = 1 < p for both i = 0, 1 and all primes p, so S = SE/Q is precisely the set of

unramified primes.

First consider the case where C = {1}. By (5.3.2) and (5.3.3) we have

∏
(
D
p

)
=1

p≤x

(
1− 1

p

)2

=
∆

ϕ(∆)

e−γ

log x

∏
p-∆

(
1− 1

p

)(D
p

)
+O

(
1

log3 x

)
,
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where γ is the usual Euler constant. Taking square roots, we have

∏
(
D
p

)
=1

p≤x

(
1− 1

p

)
=

 ∆

ϕ(∆)

e−γ

log x

∏
p-∆

(
1− 1

p

)(D
p

)1/2

+O

(
1

log3/2 x

)
.

If we took C = {−1}, then we find

∏
(
D
p

)
=−1

p≤x

(
1− 1

p

)
=

 ∆

ϕ(∆)

e−γ

log x

∏
p-∆

(
1− 1

p

)−(D
p

)1/2

+O

(
1

log3/2 x

)
.

Using Theorem 5.1.1 (5.1.7) we obtain the exact same formula for the constant.

5.4.2 Primes represented by quadratic forms

Let

Q(x, y) = ax2 + bxy + cy2 ∈ Z[x, y],

be a binary integral quadratic form. Assume that Q is primitive, irreducible, and positive

definite. That is, a and c are positive integers with gcd(a, b, c) = 1, D = b2 − 4ac is not a

square, and D < 0. An integer n is said to be represented by Q if there exist integers x and

y such that Q(x, y) = n.

Denote by Q the set of rational primes represented by Q.

Corollary 5.4.2. Let Q be a primitive, irreducible, positive definite, and integral binary

quadratic form with discriminant D, and let E be the ring class field of the order of D.

Then,

∏
p∈Q(x)

(
1− 1

p

)
=

(
e−γ(E/Q, C)

log x

) #C
2h(D) ∏

p |∆E
p∈Q

(
1− 1

p

)
+O

(
1

(log x)
1+ #C

2h(D)

)
, (5.4.1)

where C ⊂ Gal(E/Q) is the conjugacy class corresponding to Q via class field theory, and

h(D) is the class number of Q(
√
D).

Proof. By class field theory and the theory of quadratic forms, see for example [Cox13,
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Chapter 9], the class [Q] corresponds to an element σ0 ∈ Gal(E/Q(
√
D)) ⊆ Gal(E/Q).

Therefore, the class C is the Gal(E/Q)-conjugacy class of σ0. The result follows by noting

that Q−C is the finite set of primes ramified in L that are represented by Q. In particular

δ(C) = δ(Q) =


1

2h(D) , if Q is equivalent to its opposite.

1
h(D) , otherwise.

The relation between C and Q is made explicit in the proof of [Cox13, Theorem 9.12] using

the ring class field as described in [Cox13, §9.A].

5.4.3 General abelian extensions

In the special case the Galois group G is abelian, all irreducible representations are one-

dimensional. In particular, the trace of Frobenius is a root of unity, and as such it has

absolute value strictly smaller that the norm of every prime. In our notation, this means

S = SE/F . Moreover, the Artin L-function coincides with the M -function, and we have the

following corollary.

Corollary 5.4.3. Let E/F be an abelian Galois extension of number fields, with Galois

group G, and let g ∈ G be any element. Then,

∏
P∈SE/F (x)

FrobP=g

(
1− 1

N(P )

)
=

(
e−γ(E/F,g)

log x

)1/[E:F ]

+O

(
1

(log x)1+1/[E:F ]

)
(5.4.2)

when x → ∞ and the implied constant depends on the extension E/F . Furthermore, the

constant γ(E/F, g) is given by

e−γ(E/F,g) = e−γF
N(∆)

ϕ(∆)

∏
χ 6=χ0

∏
P -∆

KP (1, χ)

LP (1, χ)

χ(g)

= e−γF
N(∆)

ϕ(∆)

∏
P

FrobP=g

(
1− 1

N(P )

)[E:F ]−1 ∏
P

FrobP 6=g

(
1− 1

N(P )

)−1

.
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5.4.4 Sextic S3-extensions

Finally, we consider the case when E/Q sextic S3-extension. We denote the three conjugacy

classes of G by the identity class C1, the class of transpositions C2, and the class of 3-cycles

C3. The three irreducible characters χ0, χ1, χ2 are given by the character table in Figure

5.4.1.

C1 C2 C3

χ0 1 1 1

χ1 1 -1 1

χ2 2 0 -1

Figure 5.4.1: The character table for S3

It is clear from the table that for all odd primes p, we have |χ(p)|< p, so all odd

unramified primes are contained in S. For the even prime, 2 /∈ S if (i) it is ramified or (ii)

if it is unramified and χ(2) = 2 for some χ. From Figure 5.4.1, (ii) can only occur for χ2 in

the case where Frob2 is the identity class, i.e., precisely when 2 is totally split in E. This

condition does occur, for example it happens with p = 2 in the case where E is the splitting

field of x6− 2x5− 14x3 + 123x2− 208x+ 164 over Q [LMF21, Number field 6.0.80062991.1].

This allows us to compute BS,χ:

BS,χ =
∏

p∈SE/Q−S

(
1− 1

N(P )

)χ(P )

=


1

2χ(2)
, if 2 is unramified and Frob2 = C1,

1, otherwise.

(5.4.3)

Similarly we can compute MS,χ:

MS,χ =
∏

p∈ΣQ−S
Lp(1, χ)

=


L2(1, χ)

∏
p|∆ Lp(1, χ), if 2 is unramified and Frob2 = C1,∏

p|∆ Lp(1, χ), otherwise.

(5.4.4)

https://www.lmfdb.org/NumberField/6.0.80062991.1
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From the definition of kχ(p) in (5.2.28), we have

kχ(p) =


0, if χ(p) = 0 or χ(p) = 1,

1/p, if χ(p) = −1,

p/(p− 1)2, if χ(p) = 2.

This allows us to produce K(1, χ) for χ = χ1, χ2 according to (5.2.29):

K(1, χ1) =
∏

Frobp=C2

(
1− 1

p2

)−1

K(1, χ2) =
∏

Frobp=C1

(
1− 1

(p− 1)2

)−1 ∏
Frobp=C3

(
1− 1

p2

)−1

It remains to describe L and RS,χ. Since χ = χ1 is one dimensional, we have Lp(s, χ) =

Mp(s, χ) and RS,χ1 = 1. On the other hand, χ2 is two dimensional, and as such RS,χ2 is

nontrivial. Thus, if 2 is not totally split E/Q, we may use (5.4.3) and (5.4.4) to give a more

explicit description of e−γ(E/Q,C) given in (5.3.8):

e−γ(E/Q,C1) = e−γ
N(∆)

ϕ(∆)

∏
p -∆

Lp(1, χ1)
∏

Frobp=C2

(
1− 1

p2

)−1
×

RS,χ2

∏
p -∆

Lp(1, χ2)−1
∏

Frobp=C1

(
1− 1

(p− 1)2

)−1 ∏
Frobp=C3

(
1− 1

p2

)−1
2

,

e−γ(E/Q,C2) = e−γ
N(∆)

ϕ(∆)

∏
p -∆

L(1, χ1)
∏

Frobp=C2

(
1− 1

p2

)
,

e−γ(E/Q,C3) = e−γ
N(∆)

ϕ(∆)

∏
p -∆

Lp(1, χ1)−1
∏

Frobp=C2

(
1− 1

p2

)−1
×

∏p -∆ Lp(1, χ2)

RS,χ2

∏
Frobp=C1

(
1− 1

(p− 1)2

) ∏
Frobp=C3

(
1− 1

p2

) .

If 2 is unramified and totally split in E, these can be modified by taking BS,χ and MS,χ

as in (5.4.3) and (5.4.4). One could use Theorem 5.1.1 (5.1.7) for an alternate determination

of the constants e−γ(E/Q,Ci) above.
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5.4.5 Future work

We suspect our methods can be extended to the case of global function fields in a straight-

forward manner. More generally, it would be interesting to consider the case of varieties

over finite fields, by using Lebaque’s [Leb07] generalization of Mertens’ theorem in place of

Rosen’s theorem (Theorem 5.2.1).

Theorem 5.4.4 ([Leb07, Theorem 5]). Let X be a smooth, projective, and geometrically

irreducible variety of dimension d defined over a finite field Fq. Call κX the residue of the

Weil zeta function ζX(s) at s = d. Then

∏
degP ≤N

(
1− 1

N(P )d

)
=
e−γX

N
+O

(
1

N2

)
, (5.4.5)

where the product runs over the closed points P ∈ X and γX = γ + log(κX log q).



213

Bibliography

[ACGH85] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. Geometry of algebraic

curves. Vol. I, volume 267 of Grundlehren der Mathematischen Wissenschaften

[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New

York, 1985.

[AGH+22] Theresa C. Anderson, Ayla Gafni, Kevin Hughes, Robert J. Lemke Oliver,

David Lowry-Duda, Frank Thorne, Jiuya Wang, and Ruixiang Zhang. Im-

proved bounds on number fields of small degree. Preprint available at https:

//arxiv.org/abs/2204.01651, 2022.

[AH91] Dan Abramovich and Joe Harris. Abelian varieties and curves in Wd(C).

Compositio Math., 78(2):227–238, 1991.

[Alb21] Brandon Alberts. Statistics of the first Galois cohomology group: a refinement

of Malle’s conjecture. Algebra Number Theory, 15(10):2513–2569, 2021.
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