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Abstract

Novel Statistical and Machine Learning Methods with Application to

Brain Imaging Data

By

Yikai Wang

Brain imaging has been a breakthrough technique for understanding the func-
tionality and organization of the human brain, serving as the fundamental basis for
neuroscientific research. My dissertation is focusing on developing statistical and
machine learning methods for brain imaging data.

For the first topic, we propose a novel hierarchical independent component model-
ing framework for longitudinal fMRI study (L-ICA). Existing ICA methods are only
applicable for cross-sectional study. In this topic, we provide the first formal sta-
tistical modeling framework extending ICA to longitudinal study. By incorporating
subject-specific random effects and visit-specific covariate effects, L-ICA is able to
provide more accurate estimates for brain networks and borrow information across
repeated scans to increase statistical power in detecting the covariate effects. We
develop a fully traceable EM algorithm and a subspace-based approximate EM al-
gorithm which greatly reduce the computation time while retaining high accuracy.
Simulation and real data results demonstrate the advantages of L-ICA.

For the second topic, we propose a novel blind signal separation (BSS) model for
decomposing brain connectivity matrices. Existing BSS methods are mainly focus-
ing on decomposing neural activity signals, instead of brain connectivities. In this
topic, we propose a low-rank decomposition method with uniform sparsity (LOCUS)
for brain network measures. LOCUS adopts a low-rank factorization in each latent
signal for robust recovery, and also incorporates a novel penalization approach for
sparsity control on latent sources. We propose a highly efficient algorithm for param-
eter estimation. Simulation and real data results show that LOCUS provides highly
reproducible findings than existing approaches.

For the third topic, we propose a novel deep learning (DL) framework for brain
network data. DL methods are often criticized for low interpretability and insta-
bility. By incorporating the existing brain subnetwork structure, we propose a DL
framework with adaptively shaped graph convolutional layer (DLconv) for brain net-
work. Specifically, the shape of convolutional filter is driven by brain subnetwork, and
subnetwork-level features are propagated separately until the final layer. With the
inherent structure in DLconv, we propose a robust training procedure by updating
the subnetwork-specific parameters in parallel. Real data studies demonstrate the
advantages of DLconv.
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Chapter 1

Introduction



2

1.1 Introduction

Brain imaging analyses have shown great promise for understanding the functional-

ity and organization of the human brain (Bullmore and Sporns, 2009; Deco et al.,

2011; Satterthwaite, Wolf, Roalf, Ruparel, Erus, Vandekar, Gennatas, Elliott, Smith,

Hakonarson et al., 2014; Bowman, 2014; Lee et al., 2013). Recent findings from the

brain imaging studies provide great insights into the underlying mechanism of neu-

rodevelopment, neural processing, mental disorders and neurological diseases. More-

over, brain imaging can also serve as the biomarker for doctors and researchers to

make clinical decision or assist in drug development (Johnson et al., 2013; Poil et al.,

2013; Lee et al., 2013). Currently, there are several commonly used brain imaging

modalities in the neuroscientific field, such as functional magnetic resonance imaging

(fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET) and

electroencephalography (EEG). These imaging modalities are all from different per-

spectives which captures certain neuro-characteristics reflecting brain functional or

structural properties. However, these data modalities are usually high-dimensional,

has complicated spatial or temporal structure and has relatively low signal-to-noise

ratio (Bowman, 2014; Shi, 2016). These properties make it very challenging to analyze

the brain imaging data for scientific discoveries and also limits our ability to interpret

the findings from brain imaging study. Therefore, the goal of this dissertation is to

develop novel statistical machine learning methods to facilitate the analysis of brain

imaging data.

Currently, blind signal separation (BSS) techniques are widely used in brain imag-

ing study (Calhoun et al., 2003, 2009). BSS is a class of unsupervised machine learning

methods aiming at recovering the latent signals from the observed data. Specifically,

one of the most famous BSS methods for brain imaging application is independent

component analysis (ICA) which can decompose the multivariate signal into inde-



3

pendent non-Gaussian latent sources (Guo and Tang, 2013; Wang and Guo, 2019).

ICA has achieved great success for brain imaging analysis especially for fMRI data

decomposition (Calhoun, Adali, Pearlson and Pekar, 2001; Beckmann and Smith,

2004). Specifically, fMRI measures the brain blood oxygen level for anatomically

distinct brain regions across temporal domain and is commonly used to study the

brain functional properties. ICA can decompose the observed fMRI signals into lin-

ear combinations of latent spatial sources signals that are statistically as independent

as possible, and these decomposed spatial latent sources are corresponding to brain

functional networks (BFN). As a BSS approach, ICA has many advantages. First, it

requires no prior information about the human brain and can automatically cluster

whole brain voxels into functionally related brain regions. In the meanwhile, ICA

learns the weights of each latent signals which is the temporal loadings of each BFN

and are widely used for subsequential analysis which significantly reduces the dimen-

sionality and has better interpretability for brain imaging study. Moreover, unlike

other second-order methods like PCA, ICA utilizes higher-order statistics and the

spatial independence and non-Gaussianity assumptions are well supported by the

nature of fMRI activation patterns (Guo and Pagnoni, 2008).

Initially, ICA was proposed for single fMRI data decomposition task (Mckeown

et al., 1998). To deal with the group level fMRI data decomposition problem, multi-

ple group ICA methods are proposed (Beckmann and Smith, 2004; Calhoun, Adali,

Pearlson and Pekar, 2001; Guo and Tang, 2013; Shi and Guo, 2016). One commonly

used group ICA method is the temporal concatenation group ICA (TC-GICA) which

stacks all fMRI data across the temporal domain and then decompose the concate-

nated group level data via ICA method. Another powerful group ICA framework

is the hierarchical ICA model which adopts a hierarchical modeling framework in

ICA decomposition and models the subject-level variability simultaneously in decom-

position (Shi and Guo, 2016). However, these existing group ICA methods are all
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focusing on cross-sectional study and are not suitable for longitudinal fMRI data

analysis. In recent years, longitudinal studies have become increasingly popular in

the neuroscience community. In such studies, the imaging data from same subject

can be measured for multiple times across visits which provides great insights into

the effects and causal relationships in investigating changes in brain networks re-

lated to disease progression, treatment or neurodevelopment (Wang and Guo, 2019).

Therefore, in the first topic, I will be working on a novel longitudinal-ICA (L-ICA)

framework for jointly decomposing the fMRI data from a longitudinal imaging study.

L-ICA is a hierarchical model where the first-level of L-ICA decomposes a subject’s

fMRI data obtained at a visit into a linear mixture of subject/visit-specific spatial

source signals or ICs, and these ICs are then modeled at the second-level of L-ICA

in terms of population-level baseline source signals, visit effects, covariate effects,

subject-specific random effects and subject/visit-specific random variability. L-ICA

is able to account for within-subject correlations among repeated scans, provide more

accurate estimates of changes in brain functional networks on both the population

and individual-level, and increase statistical power in detecting covariate effects on

networks. Furthermore, L-ICA provides model-based prediction for changes in brain

networks related to disease progression, treatment or neurodevelopment.

Nowadays, the whole brain network analysis becomes very popular in the neuro-

science community (Bullmore and Sporns, 2009; Kemmer et al., 2015; Wang et al.,

2016; Kemmer et al., 2018). With the advancement in imaging techniques, researchers

can study the whole human brain network structure from functional and structural

perspectives (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). Functional

brain network studies the functional dependence among anatomically separated brain

regions to construct the brain functional connection (Greicius et al., 2003). Various

methods have been proposed to estimate the functional connectivity (FC) from dif-

ferent perspectives. One commonly used FC measure in neuroscience is Pearson’s
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correlation among brain regions based on fMRI time series (Kemmer et al., 2015).

The structural brain network refers to the white matter fiber bundles connecting

neurons from spatially remote brain regions (Hagmann et al., 2003). The structural

connectivity is usually measured through the probabilities tractography of DTI data

which orientates axonal tracts between regions in the brain (Gong et al., 2008). These

two types of brain network provide two different perspective for studying the human

brain. However, as we discussed, the brain connectivity data is also very challenging

to analyze because of its dimensionality and specially structure. The undirected net-

work connectivity data is usually stored as a symmetric matrix. Moreover, given the

fact that self-connection is not of interest for network science, the diagonal elements

for these connectivity data are usually not defined. This increases the difficulties for

existing decomposition methods to be applied for brain connectivity data. Amico

et al. (2017) proposed a connectivity independence component analysis (connICA)

framework for decomposing brain functional connectivity data where they vector-

ized the upper-triangle part of the subject-specific connectivity matrix and treated

each edge as independent features for existing ICA method. Their work ignores the

topological structure in the network and cannot ensure sparsity for selecting the sig-

nificantly edges in decomposed network. Therefore, in the second topic, I will be

working on a novel signal decomposition framework specifically designed for brain

connectivity data signal separation problem. We propose to decompose the brain

connectivity data into the product of a latent source signal matrix that characterizes

underlying network traits and a mixing matrix that contains subject-specific loadings

on the source signals. Specifically, in our model, we specify each latent source with

a low-rank structure to save the number of parameters for a more robust estimation,

and we further propose a novel penalization approach to ensure uniform sparsity in

the extracted latent sources to only select biologically meaningful subnetwork con-

nections.
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Recently, there is trending evidence in Neuroimaging society supporting the us-

age of subjects’ brain network as individual fingerprint to drive clinical decisions or

provide early diagnosis of mental issues, (Kiefer et al., 2015; Wu et al., 2015; Liu

et al., 2017). However, brain network based prediction is still facing many chal-

lenges in real applications. Due to the large feature space and limited sample size

in brain network data, brain network based prediction methods can be highly un-

stable and lack of interpretability (Chung, 2018). More importantly, human brain

network is an extremely complicated system which consists of multiple underlying

brain neuro-circuits reflecting different levels of brain subnetwork structure (Amico

et al., 2017; Smith et al., 2009; Amico and Goñi, 2018b). Different subnetworks can

exhibit distinct neuro-patterns controlling specific functionalities in neuro-processing.

This makes the brain network a non-standard, non-linear system to analyze, which

further increases the difficulty of using traditional statistical or machine learning

methods in brain network prediction tasks. Nowadays, deep learning methods are

very popular in many fields because of its high predictive power in terms of deal-

ing with non-linear problems, where deep learning methods usually refer to a class

of machine learning methods by stacking multiple layers of neural network models.

However, these deep learning methods are usually criticized for the low interpretabil-

ity and often referred as black box methods (Heaven, 2019). These drawbacks become

a very serious problem in brain network analysis especially for clinical usage. There-

fore, in the third topic, I will be proposing a novel deep learning framework (DLconv)

with interpretable parameters for brain network analysis by incorporating existing

brain subnetwork information. Specifically, to deal with the brain network data, we

propose to extend the standard convolutional filter by defining an adaptively shaped

graph convolutional layer (Mconv) by customizing the filter’s shape based on existing

subnetwork’s masks. Compared with a fully connected layer with same number of

outputs, this specification - Mconv - saves a large number of parameters and can



7

flexibly capture the subnetwork information across the whole brain network. More

importantly, the adaptively shaped filter can be mapped back to the brain network

for interpretation. Furthermore, we propose to constrain the information flow within

each subnetwork and only combine them at the final output layer, which is essen-

tially an ensemble learning model across multiple brain subnetworks. Therefore, the

proposed deep learning framework can achieve great interpretability and by making

use of existing brain subnetwork structure, it can potentially achieve more robust

performance than traditional deep learning methods.

1.2 Overview

Topic 1 is summarized in Chapter 2. Section 2.1 discuss the background and mo-

tivation for Chapter 2. Section 2.2 introduces the L-ICA framwork including data

preprocessing, model specification, EM algorithm, the approximate EM algorithm

and the inference procedure. Section 2.3 presents the simulation study and Section

2.4 includes the real data application of L-ICA framework for a longitudinal fMRI

study. Topic 2 is summarized in Chapter 3. Section 3.1 is the introduction for Chatper

3. Section 3.2 introduces the proposed signal separation model including model spec-

ification and the novel penalization approach, model training algorithm and model’s

property. Section 3.3 presents the simulation study and section 3.4 presents the real

data application for the Topic 2. Topic 3 is summarized in Chapter 4. Section 4.1

introduces the background and the motivation of Topic 3. Section 4.2 includes the

model specification and model training strategies. Section 4.3 shows the real data

experiments for Topic 3.
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Chapter 2

Group-level fMRI data

decomposition for longitudinal

imaging study
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2.1 Introduction

Brain functional network analysis has been widely used in neuroimaging studies to

reveal organization architectures of human brain. In functional imaging studies, neu-

ral activity is often captured by a series of 3-D fMRI brain images where the observed

data represent the combinations of signals generated from various brain functional

networks. One of the major objectives of fMRI-based network analysis is to decom-

pose the observed series of brain images to identify underlying networks and charac-

terize their spatial patterns and temporal dynamics. Independent component analysis

(ICA) is one of the most commonly used tools for this purpose. As a special case of

blind source separation, ICA decomposes observed fMRI signals into linear combina-

tions of latent spatial source signals that are statistically as independent as possible.

These latent independent components correspond to various functional networks. The

popularity of the ICA method is mainly due to the following reasons. As a multi-

variate approach, ICA can jointly model the relationships among multiple voxels and

hence provide a tool for investigating whole brain connectivity. Unlike second-order

statistical methods such as PCA, ICA takes into account higher-order statistics, and

the spatial statistical independence assumption of ICA is well-supported by the sparse

nature in typical fMRI activation patterns (Calhoun, Adali, Pearlson and Pekar, 2001;

Beckmann and Smith, 2004). Furthermore, ICA is a fully data-driven approach that

does not require a priori temporal or spatial models. This makes ICA an impor-

tant tool for analyzing resting-state fMRI where there is no experimental paradigm

(Beckmann et al., 2005).

The classical ICA model was first applied to neuroimaging studies for single sub-

ject fMRI data decomposition (Mckeown et al., 1998). Some extensions referred as

group ICA (Calhoun, Adali, Pearlson and Pekar, 2001) have been proposed to de-

compose the multiple-subject fMRI data. One commonly used group ICA framework
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is the temporal concatenation group ICA (TC-GICA) which stacks subjects’ fMRI

data in the temporal domain and then decompose the concatenated group data via

ICA (Beckmann and Smith, 2005; Calhoun, Adali, Pearlson and Pekar, 2001; Guo

and Pagnoni, 2008). The main limitation of TC-GICA is the assumption of the ho-

mogeneity in spatial distribution of the networks across subjects while studies have

shown that functional networks can vary considerably due to subjects’ clinical, biolog-

ical and demographic characteristics (Zhao et al., 2007; Greicius et al., 2004, among

others). To address this limitation, a hierarchical ICA framework has been proposed

to directly account for between-subject differences in group ICA decomposition and

further allows for modeling subjects’ covariate effects in ICA (Guo and Tang, 2013;

Shi and Guo, 2016; Lukemire et al., 2018). All the aforementioned ICA methods are

developed for cross-sectional imaging studies where subjects are only scanned once

during the study.

In recent years, longitudinal studies have become increasingly popular in the neu-

roscience community. In such studies, brain imaging such as fMRI scans from the

same individual are acquired repeatedly at multiple time points including the base-

line as well as follow-up visit times. Within-subject changes in brain images across

different time points provides great insights into effects and causal relationships in

investigating changes in brain networks related to disease progression, treatment or

neurodevelopment. By taking the advantage of using each subject as his/her own

control, longitudinal studies are well-known to have the potentials to provide more

reliable and significant scientific findings than cross-sectional studies. Existing longi-

tudinal imaging analysis often focus on modeling fMRI brain activation or structural

MRI volumetric measures across time (Calhoun, Adali, McGinty, Pekar, Watson and

Pearlson, 2001; Dettwiler et al., 2014; Lee et al., 2015). There has also been some

work on longitudinal analysis of brain connectivity, which mainly involve modeling

pairwise connectivity measures or network summary measures from a per-specified
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network structure (Dai et al., 2017; Wu, Taki, Sato, Qi, Kawashima and Fukuda,

2013; Li et al., 2009). However, methods are lacking for conducting longitudinal ICA

that jointly decompose the subjects’ repeatedly measured fMRI data, extract the

underlying brain functional networks and studying the longitudinal effects on brain

networks.

Existing group ICA methods are not suitable for modeling repeated measured

images in longitudinal studies. There are only a couple of ad-hoc strategies for longi-

tudinal ICA decomposition. The first approach is to conduct ICA separately at each

time point and then take the ICs extracted from different time points for secondary

longitudinal analysis. This separate analysis approach has limited capacity to evalu-

ate changes in functional networks across time because 1) independent components do

not have a natural order, it is difficult to identify matching components across different

time points, especially in resting-state fMRI. 2) ICA algorithms usually have random

elements in that they may find different local minima across different runs (Him-

berg et al., 2004). This reduces the comparability of the ICs extracted separately at

each visit. Another major drawback of the approach is that it ignores within-subject

correlations among repeatedly measured data, which results in considerable loss of

statistical power in testing covariate effects. The second ad-hoc approach is to adopt

the TC-GICA framework by stacking all subjects’ repeatedly measured images into

a single group data matrix and performing ICA decomposition to extract common

group spatial source signals. Then, subject/visit-specific IC maps are reconstructed

via post-ICA analysis such as the dual regression. The longitudinal effects are then

evaluated based on the reconstructed subject/visit-specific ICs. The limitations of

the TC-GICA approach are that it ignores the between-subject variability in the ICA

decomposition, does not take into account the random variabilities introduced in re-

constructing subject/visit-specific IC maps and does not account for within-subject

correlations among repeated scans in ICA decomposition. These limitations lead to
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loss of accuracy and efficiency in estimating and testing covariate effects on brain

networks in longitudinal studies.

In this topic, we propose a longitudinal ICA (L-ICA) model that incorporates

subject-level random effects and the time-dependent covariate effects in ICA decom-

position to investigate temporal changes in brain networks and their associations

with subjects clinical or demographic covariates. The L-ICA is a hierarchical model

where the first-level of L-ICA decomposes a subject’s fMRI data obtained at a visit

into a linear mixture of subject/visit-specific spatial source signals or ICs, and these

ICs are then modeled at the second-level of L-ICA in terms of population-level base-

line source signals, visit effects, covariate effects, subject-specific random effects and

subject/visit-specific random variability. To the best of our knowledge, L-ICA is

the first model-based extension of ICA for longitudinal imaging analysis. L-ICA is

able to account for within-subject correlations among repeated scans, provide more

accurate estimates of changes in brain functional networks on both the population-

and individual-level, and increase statistical power in detecting covariate effects on

networks. Furthermore, L-ICA provides model-based prediction for changes in brain

networks related to disease progression, treatment or neurodevelopment.

For model estimation, we propose an exact EM algorithm which is fully traceable

and simultaneously provides the estimation on population-level spatial maps and

subject/visit-specific ICs. Furthermore, we propose a subspace-based approximate

EM algorithm to provide more efficient computation. Results from the simulation

studies and real data analysis show that the approximate EM algorithm significantly

reduces the computation time while maintaining high estimation accuracy compa-

rable to the exact EM. Moreover, we develop a statistical inference procedure for

testing covariate effects in L-ICA, which demonstrates lower type I error and higher

statistical power than the existing testing method based on TC-GICA. We apply

the L-ICA method to investigating changes in functional networks in ADNI2 longi-
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tudinal rs-fMRI study. Results from L-ICA showed differential temporal changing

patterns between Alzheimer and control groups in relevant brain networks, which is

not revealed by existing ICA methods.

This chapter is organized as follows. The methodology of L-ICA is presented in

the section 2.2 which includes the L-ICA model specification, estimation via the exact

EM algorithm and the approximate EM algorithm, and the inference procedure. In

the section 2.3, results from the simulation study are presented. Section 2.4 is the

real data application of ANDI2 study. Conclusion and discussion are in section 2.5.

(A) First level L-ICA

(B) Second level L-ICA

Figure 2.1: Schematic illustration of the hierarchical modeling framework of L-
ICA. (A) the first level model of L-ICA with N subjects and K visits where each
subject/visit-specific fMRI data is decomposed into q subject/visit-specific ICs, here
q = 2 for illustration purpose. (B) the second level model of L-ICA for one specific IC
where the subject/visit-specific ICs are modelled in terms of population-level source
signals, subject specific random effects, visit effects and visit-specific covariate effects.
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2.2 Methods

This section introduces the L-ICA framework, which includes the model specification,

EM algorithms and the inference procedure. To set the notation, suppose that in a

longitudinal fMRI study, there are N subjects and each of them has K visits during

the study. At each visit, a series of T fMRI scans are acquired where each scan

represents a 3D brain image containing V voxels. Let Ỹij = [ỹij(1), ..., ỹij(V )] be

the T × V fMRI data matrix for subject i (i = 1, . . . , N) at visit j (j = 1, . . . , K)

where ỹij(v) ∈ RT represents the centered blood-oxygen-level dependent (BOLD)

signal series at voxel v (v = 1, . . . , V ). Prior to ICA, some preprocessing steps such

as centering, dimension reduction and whitening of the observed data are usually

performed to facilitate the subsequent ICA decomposition (Hyvärinen et al., 2001).

Following a PPCA-based preprocessing procedure similar to that used in previous

work (Beckmann and Smith, 2004; Shi and Guo, 2016; Guo and Tang, 2013), we

perform the dimension reduction and whitening procedure on Ỹij to obtain a q ×

V preprocessed data matrix Yij for subject i at visit j, where q is the number of

independent components. Throughout the rest of this chapter, we will present the

L-ICA model and methodologies based on the preprocessed data.

2.2.1 Longitudinal ICA model (L-ICA)

In this section, we propose a longitudinal ICA (L-ICA) model to jointly decompose

repeated measured fMRI data acquired across multiple visits. The L-ICA is developed

under a hierarchical modeling framework. We present a schematic illustration of the

L-ICA in Figure 2.1. The first level of L-ICA decomposes the subject/visit-specific

fMRI data into a product of subject/visit-specific spatial source signals and temporal

mixing matrix. This allows capturing the variabilities of the functional networks

across subjects and across visits. We also include a noise term in the first level ICA
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model to account for residual variabilities in the fMRI data that are not explained by

the extracted ICs, which is known as probabilistic ICA (Beckmann and Smith, 2004).

Specifically, the first level of L-ICA is as follows,

Level 1: yij(v) = Aijsij(v) + eij(v), (2.1)

where sij(v) = [s
(1)
ij (v), ..., s

(q)
ij (v)]′ is a q × 1 vector with s

(`)
ij (v) (` = 1, . . . , q) rep-

resenting the spatial source signal of the `th IC (i.e., brain functional network) at

voxel v for subject i at visit j, Aij is the q × q mixing matrix for subject i at visit j,

which is commonly assumed to be orthogonal given that yij(v) is whitened (Hyväri-

nen and Oja, 2000). eij(v) is a q× 1 vector that represents the noise in the subject’s

data and eij(v) ∼ N(0,Ev) for v = 1, ..., V . Prior to ICA, preliminary analysis such

as prewhitening (Beckmann and Smith, 2004) can be performed to remove correla-

tions in the noise term and to standardize the variability across voxels (More details

about prewhitening can be found in Appendix A). Therefore, following previous work

(Hyvärinen et al., 2001; Beckmann and Smith, 2004, 2005; Guo and Pagnoni, 2008;

Guo, 2011), we assume that the covariance for the noise term is isotropic across voxels,

i.e. Ev = σ2
0Iq.

At the second-level of L-ICA, we further model subject/visit-specific spatial source

signals sij(v) as a combination of the population-level source signals, subject-specific

random effects, visit-specific covariate effects and subject/visit-specific random vari-

ations. That is,

Level 2: sij(v) = s0(v) + bi(v) +αj(v) + βj(v)′xi + γij(v), (2.2)

where s0(v) = [s01(v), ..., s0q(v)]′ is the population-level spatial source signals. The

q elements of s0(v) are assumed to be independent and non-Gaussian. bi(v) is

the q × 1 subject-specific random effects for q ICs where bi(v) ∼ N(0,D) with
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D = diag(ν2
1 , ..., ν

2
q ). The subject-specific random effects help capture the within-

subject correlations among the scans repeated acquired on the same subject at dif-

ferent visits, (Verbeke, 1997; Cheng et al., 2014; Gao, Ombao and Gillen, 2017).

αj(v) is a q × 1 visit effects parameter representing the population-level changes in

spatial source signals from baseline to the jth visit. xi = [xi1, ..., xip]
′ is the p × 1

subject-specific covariate vector which may contain a subject’s clinical and demo-

graphic information such as disease group, gender, age, etc. βj(v) is a p× q parame-

ters matrix reflecting how subjects’ covariates xi modulate the subject/visit-specific

brain networks. Finally, γij(v) is a q × 1 zero-mean Gaussian random vector, i.e.

γi(v)
iid∼ N(0, τ 2Iq), capturing the residual random variability among subject/visit-

specific brain networks after adjusting for the other effects in the model. In the Level

2 model, by including the subject-specific random effects, L-ICA is able to borrow

information among the multiple visits within the same subject to obtain more accu-

rate estimate of unique patterns in brain networks specific to the individual. L-ICA

incorporates the visit-specific covariate effects to allow flexibly modeling time-varying

covariate effects on subjects’ brain networks in a longitudinal study .

2.2.2 Source signal distribution model

We specify mixtures of Gaussians (MoG) as our source distribution model for the

population-level spatial source signals, s0(v). MoG has been selected as the distri-

bution for independent components in quite a few ICA analysis (Attias, 2000; Guo,

2011; Guo and Tang, 2013; Shi and Guo, 2016) because it has several desirable prop-

erties for modeling fMRI signals. Within each brain functional network, only a small

percentage of locations in the brain are activated or deactivated whereas most brain

areas exhibit background fluctuations (Biswal and Ulmer, 1999). MoG are well suited

to model such mixed patterns. Furthermore, MoG can capture various types of non-

Gaussian signals (Xu et al., 1997; Gao, Shahbaba and Ombao, 2017; Kostantinos,
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2000; Gao et al., 2018) and also offer tractable likelihood-based estimation (McLach-

lan and Peel, 2004).

Specifically, for ` = 1, . . . , q we assume that the spatial source signal s0`(v) follows

a MoG distribution, i.e.

s0`(v) ∼ MoG(π`,µ`,σ
2
` ), (2.3)

where π` = [π`,1, ..., π`,m]′ with
∑m

j=1 π`,j = 1 is the weight parameters in MoG,

µ` = [µ`,1, ..., µ`,m]′ and σ2
` = [σ2

`,1, ..., σ
2
`,m]′ are the mean and variance parameters

of the Gaussian component distributions in the MoG; m is the number of Gaus-

sian components in MoG. The probability density function of MoG(π`,µ`,σ
2
` ) is∑m

j=1 π`,jg(s0`(v);µ`,j, σ
2
`,j) where g(·) is the pdf of the Gaussian distribution. In

fMRI applications, mixtures of two to three Gaussian components can be used to

capture the distribution of fMRI spatial signals, with the different Gaussian com-

ponents representing the background fluctuation and the negative or positive fMRI

BOLD effects respectively (Beckmann and Smith, 2004; Guo and Pagnoni, 2008;

Guo, 2011; Wang et al., 2013; Guo and Tang, 2013). Without loss of generality,

we denote the first Gaussian component, i.e. j = 1, to be the background fluctu-

ation state throughout the rest of this chapter. To facilitate derivations with the

MoG model, we introduce a voxel-specific latent state variable z`(v) which repre-

sents which Gaussian component in MoG that voxel v belongs to. Specifically, z`(v)

takes a value in {1, . . . ,m} with probability p[z`(v) = j] = π`,j (j = 1, ..,m). When

z`(v) = j, the vth voxel follows the jth Gaussian component distribution in MoG, i.e.

p(s0`(v)|z`(v) = j) = g(s0`(v);µ`,j, σ
2
`,j).

2.2.3 Maximum likelihood estimation and the EM algorithm

The parameters in L-ICA model is estimated via maximum likelihood (ML) approach.

Based on the hierarchical models in (2.1) and assuming the independence among
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voxels, (2.2) and (2.3), the complete data log-likelihood for L-ICA model is,

l(Θ;Y ,X ,S,B,Z) =
V∑
v=1

lv(Θ;Y ,X ,S,B,Z), (2.4)

where Y = {yij(v) : i = 1, ..., N ; j = 1, ..., K; v = 1, . . . , V } are the preprocessed

longitudinal fMRI data across subjects, X = {xi : i = 1, ..., N} are subjects’ co-

variates, S = {s0(v), sij(v) : i = 1, ..., N ; j = 1, ..., T ; v = 1, ..., V } are the latent

independent component spatial source signals, B = {bi(v) : i = 1, ..., N ; v = 1, ..., V }

are the subject-specific random effects and Z = {z(v) : v = 1, ..., V } are the latent

states for MoG source distribution model; the parameters in L-ICA are denoted by

Θ = {{αj(v)}, {βj(v)}, {Aij},E,D, τ, {π`}, {µ`}, {σ2
`} : i = 1, ..., N, j = 1, ..., K,

v = 1, ..., V, ` = 1, ...,m}.

Since our likelihood function involves unobserved latent variables, we consider

the expectation-maximization (EM) framework (Dempster et al., 1977) for finding

the maximum likelihood estimates of parameters. The EM algorithm is an iterative

algorithm that alternates between performing an expectation step (E-step) and a

maximization step (M-step). In the E-step, we compute an expectation of the log-

likelihood conditioning on the distribution of latent variables given the observed data

Y and the current parameter estimates Θ̂(k). At the M-step, the updated maximum

likelihood estimates of the parameters is computed by maximizing the expected log-

likelihood found on the E-step. The parameter estimates found on the M-step are then

used to begin another E-step, and the process is iterated until convergence, i.e. until

the parameter estimates Θ̂(k) and Θ̂(k+1) in two consecutive iterations are considered

sufficiently close. In the following, we present two EM algorithms for solving the

L-ICA model. The first is an exact EM method that provides exact evaluation of

the conditional expectation in the E-step. We then propose an approximation EM

algorithm is computationally more efficient especially with large number of ICs.
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2.2.3.1 The exact EM algorithm

We first develop an exact EM which has an explicit E-step and M-step to obtain ML

estimates for the parameters in L-ICA.

E-step: In the E-step, given the estimated parameter Θ̂(k) from the last step, we

evaluate the conditional expectation of the complete data log-likelihood as follows,

Q(Θ|Θ̂(k)) =
V∑
v=1

EL(v)|y(v),Θ̂(k) [l(Θ;Y ,X ,S,B,Z)] , (2.5)

where L(v) = [b1(v)′, ..., bN(v)′, s0(v)′, s11(v)′, ..., sNK(v)′]′ are the latent variables in

L-ICA model which include the latent source signals on both the population and

individual level and the subject-specific random effects. To calculate the conditional

expectation, we need to derive the conditional distribution of L(v) given the observed

data y(v), i.e. p(L(v) | y(v), Θ̂(k)). To facilitate this derivation, we take the following

steps. First, we derive the distribution of L(v) given both the observed data y(v)

and the latent states z(v), i.e. p(L(v) | y(v), z(v), Θ̂(k)), which can be shown to be

a multivariate Gaussian distribution. Next, we derive the conditional distribution of

the latent states given the observed data, i.e. p[z(v) | y(v), Θ̂(k)], by applying the

Bayes’ Theorem. Finally, we obtain the conditional distribution of L(v) given y(v)

by integrating out z(v), i.e.

p(L(v) | y(v), Θ̂(k)) =
∑

z(v)∈R

p(L(v) | y(v), z(v), Θ̂(k))p[z(v) | y(v); Θ̂(k)],

where R represents the set of all possible values of z(v), i.e., R = {zr}mq

r=1 where

zr = [zr1, ..., z
r
q ]
′ and zr` ∈ {1, ...,m} for ` = 1, ...q.

Following this procedure, we can derive explicit form for the conditional distri-

bution for the latent variables and subsequently deriving the conditional expectation

Q(Θ|Θ̂(k)) in (2.5).
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M-step: In the M-step, the updated estimates are obtained by maximizing the

expected log-likelihood function computed in the E-step, i.e.,

Θ̂(k+1) = argmax
Θ

Q(Θ|Θ̂(k)). (2.6)

We have derived explicit solutions for all parameter updates (please see Appendix A

for details).

The steps of the exact EM algorithm is summarized in Algorithm 1. The detailed

derivations are presented in the Appendix A.

Algorithm 1 The Exact EM Algorithm

Initial values: Obtain an initial values Θ̂(0) based on existing group ICA software.
repeat

E-step:
1. Evaluate the conditional distribution of the latent variables p(L(v) | y(v), Θ̂(k))
using the proposed three-step approach:

1.a Evaluate the multivariate Gaussian p[L(v) | y(v), z(v), Θ̂(k)];
1.b Evaluate p[z(v) | y(v); Θ̂(k)] via Bayes’ Theorem
1.c integrate out the latent states z(v)

p(L(v) | y(v), Θ̂(k)) =
∑

z(v)∈R

p(L(v) | y(v), z(v), Θ̂(k))p[z(v) | y(v); Θ̂(k)]

2. Estimate conditional expectation Q(Θ|Θ̂(k)) based on p(L(v) | y(v), Θ̂(k)).
M-step:
Update parameters estimates

Θ̂(k+1) = argmax
Θ

Q(Θ|Θ̂(k)).

until convergence, i.e. ‖Θ̂
(k+1)−Θ̂(k)‖
‖Θ̂(k)‖ < ε

After obtaining the ML estimates Θ̂, we estimate the baseline population- and

subject/visit-specific source signals as well as their variability based on the mean

and variance of their conditional distributions, i.e., [s0(v) | y(v); Θ̂] and [sij(v) |

y(v); Θ̂]. These conditional moments are directly obtainable from the E-step of our

algorithm upon convergence and no separate post-ICA steps are required. Based on
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the estimated covariate effects {β̂(v)}, we can investigate how subjects’ clinical and

demographic characteristics affects their brain functional networks and their changes

across visits. Furthermore, the L-ICA also provides model-based prediction of the

brain functional networks for specific sub-populations at a given visit. For example,

for a sub-population characterized by a covariates pattern x∗, the predicted brain

functional networks at the jth visit can be derived by plugging the ML parameter

estimates into Level 2 of L-ICA, i.e.

ŝj(v) = ŝ0(v) + α̂j(v) + β̂j(v)′x∗, (2.7)

2.2.4 Subspace approximate EM algorithm

The exact EM algorithm requires O(mq) operations at each voxel which is an ex-

ponential increase with regard to the number of the ICs extracted in L-ICA, which

will be time consuming when q is large. The reason for needing O(mq) operations is

that, the exact EM evaluates the conditional distribution of the latent states z(v),

i.e. p[z(v) | y(v)], across the whole sample space R of z(v), which has a cardinality

of mq. To reduce the computation load, we develop a subspace-based approximate

EM for L-ICA model. The motivation of the subspace EM is based on the obser-

vation from fMRI analysis that the density of p[z(v) | y(v)] is mostly concentrated

on a subspace Rs = {zr ∈ R, s.t.
∑

` I(zr` 6= 1) ≤ 1}. To help understand this sub-

space, recall that the latent state zr` takes values in (1, . . . ,m) with the first state, i.e.

zr` = 1, corresponding to the background fluctuation while other states, i.e. zr` 6= 1,

corresponding to either positive or negative signals at a voxel. Therefore, the sub-

space Rs corresponds to that a voxel has active signals in at most one of the q ICs.

This approximation is reasonable when the source signals are sparse across ICs, i.e.

p(z` 6= 1) ≈ 0 for ` = 1, . . . , q. Because given the statistical independence of the ICs,

p(z`∗ 6= 1|z` 6= 1) = p(z`∗ 6= 1) ≈ 0. That is given a voxel is activated in the `th IC,
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the probability for it to be also activated in another IC `∗ is close to zero. In Shi and

Guo (2016), we have provided theoretical proof that the density of the conditional

distribution of the latent states is mostly concentrated in the subspace Rs when the

source signals are sparse in each IC, which is the case with the fMRI spatial source

signals which have been shown to be sparse across the brain for each network (Mcke-

own et al., 1998; Daubechies et al., 2009). It is noteworthy to mention that there are

some network hubs in the brain that are active in multiple networks. The proposed

subspace EM is still able to recover overlapping spatial signals across the ICs, hence

capable of identifying brain regions that are involved in multiple functional networks

(Shi and Guo, 2016). The subspace approximation only results in small attenuation

on the estimated source signals in the overlapping region .

In the subspace EM algorithm, we follow the similar steps as in the exact EM

algorithm presented in Algorithm 1. The main difference is that when evaluating

and summing across the latent states z(v) in the E-step and M-step, we replace the

whole sample space R with the proposed subspace Rs which only has carnality of

(m− 1)q + 1. This means the subspace EM only requires O(mq) operations at each

voxel which scales linearly with the number of ICs and is significantly faster than the

exponential growth of the exact EM algorithm.

2.2.5 Statistical inference for testing covariate effects in L-

ICA

In this session, we propose a statistical inference procedure for testing covariate ef-

fects in L-ICA to investigate whether the covariates have significant effects on brain

functional networks and their changes across visits. Typically, statistical inference in

maximum likelihood estimation is conducted by inverting the information matrix to

estimate the variance-covariance matrix of ML estimates of the parameters. However,

this standard approach is not feasible when modeling fMRI data with L-ICA because
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the high dimensionality of the parameter space makes extremely challenge to obtain

a reliable inversion of information matrix. To address this issue, we develop a compu-

tational efficient statistical inference procedure based on the connection between the

L-ICA and multivariate linear models. The proposed inference procedure provides

an efficient approach to estimate the variance-covariance matrix of the time-specific

covariate effects at each voxel by directly using the output from our EM algorithms.

Specifically, let yi(v) be the ith subjects longitudinal fMRI data which is a qK×1

vector obtained by stacking his/her data across visits, i.e. yi(v) = [yi1(v)′, ...,yiK(v)′]′.

By collapsing the hierarchical models, we rewrite the L-ICA model in a non-hierarchical

form which is similar to classical multivariate linear model, i.e.,

y∗i (v) = X∗iC
∗(v) + ζi(v), (2.8)

where y∗i (v) = A′iyi(v) is the response vector, X∗i is the design matrix which includes

the visit time and the covariates in L-ICA, C∗(v) is the parameter matrix which

includes the effects parameters in L-ICA such as the visit effects α and covariate

effects β, ζi(v) is the zero-mean Gaussian random variation term which includes the

subject-specific random effects and noise terms in L-ICA. Please see the Appendix A

for details.

The model in (2.8) can be viewed a multivariate linear model. Based on linear

model theory, a variance estimator for parameter estimates Ĉ∗(v) can be derived as

follows,

Var[Ĉ∗(v)] =

(
N∑
i=1

X∗,Ti W (v)−1X∗i

)−1

. (2.9)

where W (v) = Var(ζi(v)) and can be estimated by plugging ML estimates obtained

from the EM algorithm.

After deriving the variance estimator for the ML estimates of the parameters
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in L-ICA, We can then conduct hypothesis testing on the covariate effects the brain

networks and their changes across visits. Specifically, we first formulate the hypothesis

in terms of linear combinations of the parameters in the L-ICA model, i.e. H0 :

l′C∗(v) = 0 vs. H1 : l′C∗(v) 6= 0 where l is a vector of constant coefficients specified

based on the hypothesis that we are testing on. We can then construct the test

statistic as,

z(v) =
l′Ĉ∗(v)√
l′V̂ar[Ĉ∗(v)]l

, (2.10)

the test statistic z(v) will then be compared against its null distribution to derive

the p-value for testing the significance of the covariate effects at voxel v. Standard

multiple testing correction procedures can be applied to control for family wise error

rate (FWER) or the false discovery rate (FDR) when testing the covariate effects

across voxels, (Genovese et al., 2002; Chumbley and Friston, 2009; Storey, 2011;

Wang, Wu and Yu, 2017).

2.3 Simulation Study

We conducted three types of simulation studies to 1) evaluate the performance of

the proposed L-ICA model as compared with the approach based on the existing TC-

GICA framework, 2) to evaluate the performance of the proposed inference method for

testing covariate effects on brain networks, and 3) to evaluate the performance of the

proposed subspace-based EM algorithm as compared with the exact EM algorithm.

2.3.1 Simulation study I: performance of the L-ICA v.s. TC-

GICA-based longitudinal analysis

In this simulation study, we evaluate the performance of the proposed L-ICA model

versus the TC-GICA based approach for analyzing longitudinal fMRI. In the simula-

tion, we considered three different sample sizes N = 10, 20, 60 and each subject has
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three visits: baseline, visit 1 and visit 2 (K = 3). The simulated fMRI data were

generated from 3 underlying ICs or source signals, i.e., q = 3, (see Figure 2.2 (A)).

For each IC, we generated the source signals {s0(v)} as a 3D spatial map with the

dimension of 53× 63× 3, which was based on three selected slices from a real fMRI

imaging data. The source intensity at the activated region in the IC maps was gen-

erated from a Gaussian distribution with the mean of 4. The visit specific intercepts,

i.e., α2(v) and α3(v), are set to be 2 and 3 respectively for the voxels within the

activated IC regions and 0 for other voxels. We then generated a binary covariate for

each subject as xi
iid∼ Bernoulli(0.5). The covariate effects at the jth visit, βj(v), were

specified using a 2D Gaussian process within the IC regions where the mean level of

the covariate effects increased across the 3 visits. Additionally, we generated subject-

specific random effects, i.e., bi(v), from a zero-mean Gaussian distribution with the

covariance matrix of D = diag(1.02, 1.12, 1.22). For the residual subject/visit-specific

variability, i.e., γi(v), we considered two levels of variability: low (τ 2 = 0.5) and high

(τ 2 = 4). The time series associated with each IC was generated from real fMRI time

courses with the length of T = 200 and hence represented realistic fMRI temporal dy-

namics. We generated subject/visit-specific time sources that had similar frequency

features but different phase patterns (Guo, 2011; Shi and Guo, 2016), which mimic

temporal dynamics in resting-state fMRI. After simulating the spatial source signal

and the temporal mixing matrices for the ICs, Gaussian background noise with a

standard deviation of 1 (i.e. E = Iq) were added to generate observed fMRI data.

Following previous work (Beckmann and Smith, 2005; Guo and Pagnoni, 2008;

Guo, 2011), we evaluate the performance of each method based on the correla-

tions between the true ICs and estimated ICs in both temporal and spatial do-

mains. We report the estimation accuracy for both the population-level as well as

the subject/visit-specific source signals. To compare the performance in estimat-

ing the covariate effects, we report the mean square errors (MSEs) of β̂(v) defined
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by 1
KV

∑K
j=1

∑V
v=1

∥∥∥β̂j(v)− βj(v)
∥∥∥2

F
averaged across simulation runs. Here ‖ · ‖F is

the Frobenius norm for a matrix. Since ICA recovery is permutation invariant, the

estimated ICs were matched to the true IC with which it has the highest spatial cor-

relation. We present the simulation results in Table 2.1. The results show that L-ICA

provides more accurate estimates for the source signals on both the population- and

subject/visit-level, by demonstrating higher correlation with the true source signals.

L-ICA also provides more accurate estimation of the covariate effects with smaller

mean square errors (MSE). Moreover, compared with the TC-GICA, the L-ICA es-

timates of the source signals and covariate effects are more stable with consistently

smaller standard deviations (SD) across simulation runs.

We also display the estimated population-level IC maps at baseline and the last

visit , i.e. visit 2, based on both methods in Figure 2.2. The L-ICA shows better

accuracy in recovering the true activation patterns in the ICs at both visits. The

intensity of the source signals in the activated regions in each IC increases from base-

line to the last visit in true IC maps. This increase in intensity is well captured by

the L-ICA estimated IC maps but not obvious in the TC-GICA estimated IC maps.

Furthermore, the estimated IC maps from the TC-GICA approach show “cross-talk”

between the ICs. In Figure 2.2, we also present the true and estimated longitudinal

trends of source signals for activated voxels in an IC. The L-ICA shows better per-

formance than the TC-GICA approach in recovering the temporal changing patterns

across voxels.

2.3.2 Simulation study II: performance of the proposed in-

ference procedure for testing covariate effects

In this simulation study, we evaluate the performance of the methods in testing co-

variates effects on ICs. We simulated fMRI datasets with two source signals (q = 2),

two visits (K = 2), one binary covariate and the sample size of N = 40. Since
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(A) Truth

(B) L-ICA

(C) TC-GICA

(i) Baseline (ii) Last Visit (iii) Longitudinal Trends

Figure 2.2: Comparison between the proposed L-ICA and the TC-GICA based approach
for estimating the population-level IC maps at baseline and the last visit (N=20, low
subject/visit-specific random variability): (A) truth, (B) L-ICA estimates and (C) esti-
mates from TC-GICA. Column (i) represents the IC maps at baseline ; Column (ii) repre-
sents the IC maps at last visit; Column (iii) represents the longitudinal trends for activated
voxels (where each line represents a voxel) in the first IC (IC1). Results show that L-ICA
provides more accurate estimates than TC-GICA at each visit and more precisely captures
the voxel-specific longitudinal trend.
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Table 2.1: Simulation results for comparing L-ICA method against TC-GICA-based
method with 100 simulation runs. Values presented are mean and standard devia-
tion of correlations between the true and estimated: population-level spatial maps,
subject/visit-specific spatial maps and subject/visit-specific time courses. The mean
and standard deviation of the MSE of the covariate effects estimates are also provided.

Subj-Visit Population-level spatial maps Subject/Vist-specific spatial maps
Var Corr.(SD) Corr.(SD)

L-ICA TC-GICA L-ICA TC-GICA
Low
N=10 0.929 (0.021) 0.853 (0.116) 0.979 (0.016) 0.942 (0.095)
N=20 0.959 (0.015) 0.889 (0.113) 0.981 (0.012) 0.937 (0.093)
N=60 0.984 (0.008) 0.940 (0.109) 0.999 (0.007) 0.951 (0.085)

High
N=10 0.886 (0.053) 0.621 (0.213) 0.960 (0.044) 0.845 (0.152)
N=20 0.899 (0.042) 0.691 (0.187) 0.962 (0.034) 0.854 (0.141)
N=60 0.958 (0.011) 0.856 (0.162) 0.991 (0.019) 0.900 (0.099)

Subj-Visit Subject/Vist-specific time courses Covariate Effects
Var. Corr.(SD) MSE(SD)

L-ICA TC-GICA L-ICA TC-GICA
Low
N=10 0.997 (0.004) 0.941 (0.076) 0.152 (0.009) 0.159 (0.068)
N=20 0.998 (0.003) 0.942 (0.075) 0.093 (0.006) 0.153 (0.063)
N=60 1.000 (0.001) 0.957 (0.063) 0.040 (0.000) 0.128 (0.039)

High
N=10 0.987 (0.019) 0.884 (0.092) 0.253 (0.015) 0.273 (0.101)
N=20 0.990 (0.014) 0.885 (0.093) 0.187 (0.011) 0.239 (0.086)
N=60 0.992 (0.007) 0.910 (0.077) 0.098 (0.004) 0.192 (0.083)

we need a large number of simulation runs to estimate the type I error and power

in the test, we generated source signal images with the dimension of 20 × 20 to

facilitate computation. The covariate effects at baseline β1(v) are set to be 0 repre-

senting no difference at baseline and visit-specific covariate effects β2(v) took values

in {0, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1.125, 1.25} for the IC region and are set to 0 for

background region.

We applied L-ICA method and TC-GICA method to the simulated datasets and
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tested for covariate effects using both methods. We considered two type of hypoth-

esis tests. The first one aims to test whether the covariate has an effect on the

network source signals at a given visit, where the hypotheses are H0 : β2(v) = 0

versus H1 : β2(v) 6= 0 for the given IC. In the second test, we assess the whether

the covariate’s effect on the network vary across visits, or equivalently whether the

covariate affect the longitudinal changes in the network across visits, where the hy-

potheses are H0 : β1(v) = β2(v) versus H0 : β1(v) 6= β2(v). These two type of tests

are the most commonly conducted in longitudinal studies. For L-ICA, hypothesis

tests were conducted using the test proposed in section 2.2.5. For TC-GICA based

approach, covariate effects were tested by performing post-ICA longitudinal analysis

of the dual-regression reconstructed subject/visit-specific IC maps. We estimated the

Type-I error rate with the empirical probabilities of not rejecting H0 at voxels where

H0 is true. We estimated the power of the tests with the empirical probabilities of

rejecting H0 at voxels where H1 is true.

We report the Type-I error rates and the statistical power for detecting covariate

effects based on 1000 simulation runs in Figure 2.3. The panel (A) in Figure 2.3

presents the Type I error rates where the diagonal line represents the nominal level

for the type I error corresponding to various significance levels. The proposed L-ICA

test demonstrates lower type-I error rates which are closer to the nominal level as

compared with the TC-GICA method. For the power analysis presented in panel

(B), the L-ICA have much higher statistical power in detecting covariate effects than

the TC-GICA method. Overall, these results indicate that L-ICA provides more

reliable and powerful statistical tests for assessing covariate effects on the functional

networks.
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(A) Type I error analysis
H0 : β2(v) = 0 vs H1 : β2(v) 6= 0 H0 : β1(v) = β2(v) vs H1 : β1(v) 6= β2(v)
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(B) Power analysis
H0 : β2(v) = 0 vs H1 : β2(v) 6= 0 H0 : β1(v) = β2(v) vs H1 : β1(v) 6= β2(v)

P
ow

er

|β2(v)| |β1(v)− β2(v)|

Figure 2.3: Simulation results for testing covariate effects based on 1000 runs with sample
sizeN = 40 using the proposed L-ICA method (red) and the TC-GICA (blue) based method.
We considered two types of hypothesis tests: testing the time-specific covariate effect at a
given visit (the 2nd visit), i.e. H0 : β2(v) = 0 (the left column), and testing the time-varying
longitudinal covariate effects between the 1st and 2nd visit, i.e. H0 : β1(v) = β2(v) (the
right column). Panel (A) and (B) presents the type I error rates and the statistical power,
respectively. The results show that the L-ICA method demonstrates lower type I error and
higher statistical power as compared with the TC-GICA based method.
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2.3.3 Simulation study III: performance of the subspace EM

algorithm for LICA

In this section, we examined the performance of the subspace approximate EM algo-

rithm as compared with the exact EM algorithm for the L-ICA model. We simulated

data for ten subjects and considered three different number of ICs: q = 3, 5, 10. We

summarize the results based on the two EM algorithms in Table 2.2. Results show

that the accuracy of the subspace EM is comparable to that of the exact EM. The

major advantage of the subspace EM is that it was much faster than the exact EM.

This advantage becomes more clear with the increase of the number of ICs. For

q = 10, the subspace-based EM only uses about 2% computation time of the exact

EM.

Table 2.2: Simulation results for comparing subspace EM against exact EM based
on 50 simulation runs. Values presented are mean and standard deviation of the
computational/iteration time (in second), the mean and standard deviation of corre-
lations between the true and estimated: baseline population-level spatial maps and
subject/visit-specific time courses, the mean and standard deviation of the MSE of
the covariates estimates. The stopping criteria is based on the correlation between
true and estimated subject/visit-specific spatial maps to reach 0.99 for q = 3, 5 and
0.90 for q = 10.

Iteration time Baseline population-level spatial maps
(SD) Corr.(SD)

# of IC Exact EM Subspace EM Exact EM Subspace EM
q=3 98.77(2.53) 55.26(0.85) 0.963(0.001) 0.962(0.001)
q=5 387.08 (5.61) 89.42(4.51) 0.962(0.005) 0.961(0.004)
q=10 11254.67(9.01) 187.82(6.31) 0.913(0.010) 0.907(0.009)

Subject/Visit-specific time courses Covariate Effects
Corr.(SD) MSE(SD)

# of IC Exact EM Subspace EM Exact EM Subspace EM
q=3 0.998(0.003) 0.998(0.003) 0.083(0.009) 0.081(0.009)
q=5 0.996(0.004) 0.995(0.003) 0.083(0.011) 0.085(0.010)
q=10 0.989(0.010) 0.986(0.007) 0.097(0.023) 0.102(0.021)
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2.4 Application to longitudindal rs-fMRI data from

ADNI2 study

2.4.1 Rs-fMRI acquisition and description

We applied the proposed L-ICA method to the longitudinal rsfMRI data from the

Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2) study. One of the main pur-

poses of the ADNI2 project is to examine changes in neuroimaging with the progres-

sion of mild cognitive impairment (MCI) and Alzheimer’s Disease(AD). Data used

in our analysis were downloaded from ADNI website (http://www.adni.loni.usc.edu)

and included longitudinal rs-fMRI images that were collected at baseline screening,

1 year and 2 year for four disease groups, i.e. Alzheimer’s Disease (AD), late mild

cognition impairment (LMCI), early mild cognition impairment (EMCI) and control

(CN). A T1-weighted high-resolution anatomical image (MPRAGE) and a series of

resting state functional images were acquired with 3.0 Tesla MRI scanner (Philips Sys-

tems) during longitudinal visits. The rs-fMRI scans were acquired with 140 volumnes,

TR/TE = 3000/30 ms, flip angle of 80 and effective voxel resolution of 3.3x3.3x3.3

mm. More details can be found at ADNI website (http://www.adni.loni.usc.edu).

Quality control was performed on the fMRI images both by following the Mayo clinic

quality control documentation (version 02-02-2015) and by visual examination. After

the quality control, 51 subjects were included for the following ICA analysis. Among

these subjects, 6 are diagnosed with AD, 17 are diagnosed with EMCI, 12 are diag-

nosed with LMCI and 16 are normal controls (CN) at baseline. For gender, there are

2 (33.3%) males for AD, 10 (58.8%) males for EMCI, 7 (58.3%) males for LMCI and

8 (50.0%) males for CN. The mean (SD) of age for each group is 80.3 (4.5) for AD,

72.8 (6.2) for EMCI, 70.0 (7.1) for LMCI and 74.8 (4.7) for CN. Based on F tests,

there is no significant between-group difference in gender (p-value = 0.734) but signif-

http://www.adni.loni.usc.edu
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icant difference in age across the groups (p-value = 0.008). We included both gender

and age as covariates in the following L-ICA modeling to control for any potential

confounding effects.

2.4.2 Rs-fMRI preprocessing

Skull stripping was conducted on the T1 images to remove extra-cranial material.

The first 4 volumes of the fMRI were removed to stablize the signal, leaving 136

volumes for subsequent prepossessing. We registered each subject’s anatomical image

to the 8th volume of the slice-time-corrected functional image and then the subjects’

images were normalized to MNI standard brain space. Spatial smoothing with a 6mm

FWHM Gaussian kernel and motion corrections were applied to the function images.

A validated confound regression approach (Satterthwaite, Wolf, Roalf, Ruparel, Erus,

Vandekar, Gennatas, Elliott, Smith, Hakonarson et al., 2014; Wang et al., 2016;

Kemmer et al., 2015) was performed on each subject’s rs-fMRI time series data to

remove the potential confounding factors including motion parameters, global effects,

white matter (WM) and cerebrospinal fluid (CSF) signals. Furthermore, motion-

related spike regressors were included to bound the observed displacement and the

functional time series data were band-pass filtered to retain frequencies between 0.01

and 0.1 Hz which is the relevant range for rs-fMRI. Lastly, we performed the prior-

ICA preprocessing steps including centering, dimension reduction and whitening as

described in section 2.2.

2.4.3 L-ICA model specification for ADNI2 study

We applied the L-ICA for modeling the preprocessed baseline, 1 year and 2 year rs-

fMRI data from ADNI2 study to examine the longitudinal pattern in brain networks

among AD, LMCI, EMCI and CN subjects. We decomposed data into 14 ICs. The

first level of L-ICA decompose subjects’ longitudinal fMRI data as the product of
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subject/visit-specific mixing matrix and spatial source signals as specified in equation

(2.1). In the second level model of the L-ICA, we included three binary indicators

representing subjects’ membership in the four disease groups (with the CN as the

reference group) as our primary covariates of interest. We also included subjects’

gender and baseline age as covariates to adjust for any potential confounding effects.

Specifically, The second level for lth IC was specified as

s
(l)
ij (v) = s

(l)
0 (v) + b

(l)
i (v) + α

(l)
j (v) +

(
β

(l)
j1 (v), ..., β

(l)
j5 (v)

)


xADi

xLMCI
i

xEMCI
i

xAgei

xGenderi


+ γ

(l)
ij (v),

where xADi = 1 if subject i is in the AD group and 0 otherwise, and xLMCI
i and xEMCI

i

are defined similarly. β
(l)
j1 (v), β

(l)
j2 (v) and β

(l)
j3 (v) represent the contrast between AD,

LMCI and EMCI vs. CN, respectively, at the jth visit. We estimated the parameters

in the L-ICA model using the subspace-based EM algorithm implemented by in-house

MATLAB programs. To ensure the validity of the results from EM, we initialized the

EM algorithm with 20 different initial values and the results were highly consistent.

2.4.4 Longitudinal changes in brain networks for ADNI2 study

based on L-ICA

Among the extracted ICs from L-ICA, we identified components that correspond

to well-established brain functional networks (Smith et al., 2009) such as the default

mode network (DMN), medial visual network, occipital visual network and frontopari-

etal left network, which are visualized in Figures 2.4, 2.5, 2.6, 2.7. In Figure 2.4, we

present the L-ICA model-based estimates of the DMN for the four disease groups

at the three visits. The subpopulation maps were estimated at the mean baseline
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age (73.7 year old) and averaged between the two genders to control for confounding

effects. They were thresholded based on the estimated intensity of the source signals.

To provide better visualization of the changing patterns across voxels in the DMN,

we also present in Figures 2.8 the model-based estimates of longitudinal trends of

source signals for voxels in the two subregions of DMN, i.e. the posterior cingulate

cortex (PCC) and the lateral parietal cortex (LPC). Figure 2.4 and Figure 2.8 shows

that the four disease groups demonstrated different temporal changing patterns in

the DMN source signals across the visits. Results show that the AD and LMCI pa-

tients generally have more significant changes in the DMN network across the 3 visits

as compared with the EMCI and CN subjects. We also found that the longitudinal

changes in the network may not necessarily follow a linear pattern and are different

between the PCC and LPC regions of the DMN. Another finding from Figure 2.8 is

that the AD group demonstrate larger variations across voxels within the network as

compared with the other groups.

We also present the estimated subpopulation IC maps and the voxel-level longi-

tudinal trends for other networks of interest (Figures 2.5, 2.6, 2.7, 2.9). Similar as

the DMN, we found that the AD and LMCI patients generally have more significant

changes in these networks across the 3 visits as compared with the EMCI and CN

subjects, the longitudinal changes are not necessarily linear across time, and that the

AD group demonstrates the larger within-network heterogeneity as compared with

the other groups.

We then applied the proposed inference procedure to formally test the between-

group differences at each visit while controlling for potential confounding effects from

age and gender. We considered the differences between AD and CN group to demon-

strate network changes in clinically diagnosed Alzheimer patients as compared with

normal controls. We also considered the differences between the two MCI groups

to investigate the heterogeneity between the early and late MCI stages. We then
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conducted tests to examine longitudinal changes from baseline to year 2 within dis-

ease group. For comparison, we applied the TC-GICA based method to examine the

group differences and longitudinal differences. We illustrate results for the DMN for

demonstration purpose. First, we note subject-level variance for DMN is 0.128 and

the second level variance is 0.762 which gives a within-subject correlation at 0.144 for

DMN.

Figure 2.10 and Figure 2.11 present the between-group test results for AD vs. CN

and LMCI vs. EMCI, respectively. The proposed L-ICA detected significant between-

group differences at each visit. Furthermore, the test results from L-ICA indicate that

the between-group differences tend to increase across time with group differences ob-

served at increasingly more spatial locations in the network. In comparison, the

TC-GICA based approach identified few differences between the groups. Figure 2.12

represents the differences between baseline and following visits based on L-ICA. It

shows that AD has more longitudinal changes compared with other groups. Specifi-

cally, Figure 2.13 presents the results for testing the changes from baseline screening

to year 2 for AD group. Results from L-ICA show that the AD group demonstrated

noticeable longitudinal changes in DMN, which are consistent with findings reported

in previous work (Dai et al., 2017). In comparison, the TC-GICA approach identified

very little longitudinal changes in DMN among the AD patients. As in the simu-

lation studies, the results from the real data analysis show that the L-ICA method

has higher statistical power in detecting group differences and longitudinal changes.

Based on a reviewer’s suggestion, we also conduct additional analyses to evaluate

the robustness of the between-group test results based on the L-ICA. Our findings

indicate the test results from L-ICA are fairly robust (Please refer to Appendix A for

details).
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2.5 Discussion

In this chapter, we proposed a longitudinal ICA model (L-ICA) to formally quantify

time-evolving patterns in brain function networks. In the L-ICA model, we incor-

porated subject-specific random effects to capture the varbilities across subjects and

also borrow information across visits within the same subject to improve the model

efficiency. Furthermore, to capture the possible non-linear changing effects in brain

functional networks, L-ICA incorporates visit-specific covariate effects which can flex-

ibly capture time-varying effects from subjects’ demographic, clinical and biological

variables. The proposed L-ICA has demonstrated lower type I error and higher statis-

tical power in detecting covariate effects on brain networks and their changes across

time.

We develop a maximum likelihood estimation method via EM algorithms for L-

ICA model. Based on results from the EM, L-ICA model can simultaneously estimate

population and subject/visit-specific brain functional networks. We show that L-

ICA’s model-based estimates of brain functional networks are more accurate on both

population- and individual level. Furthermore, we proposed a computationally effi-

cient subspace based EM algorithm. Simulation study showed that the approximate

EM dramatically improves computational efficiency while achieving similar accuracy

in model estimation. Matlab functions for implementing the L-ICA model will be

added to an Matlab toolbox “HINT: Hierarchical Independent Component Analysis

Toolbox” (Lukemire et al., 2018) which is publicly available and updated on NITRC

(NeuroImaging Tools and Resources Collaboratory) and the website of Center for

Biomedical Imaging Statistics (CBIS) at Emory University.

Some potential extensions to L-ICA is to incorporate more general model spec-

ification such as functional data analysis for more flexible modeling of longitudinal

effects. Another potential extension to L-ICA is to incorporate spatial dependence in
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modeling the covariate effects in the ICA which can help improve the accuracy and

efficiency in effects estimation. Furthermore, as a reviewer points out, given the com-

putational cost of the MoG source distribution, one may consider alternative source

distributions such as fixed or binary prior densities (Hyvärinen et al., 2001), which is

worth investigating in future work.
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Figure 2.4: L-ICA estimates of subpopulation spatial source signal maps for the DMN
for the four disease group across the visits, with the mean baseline age (73.7 year old)
and are averaged between genders. All IC maps are thresholded based on the source
signal intensity level.
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Figure 2.5: L-ICA estimates of subpopulation spatial source signal maps for the
medial visual network for the four disease group across the visits, with the mean
baseline age (73.7 year old) and are averaged between genders. All IC maps are
thresholded based on the source signal intensity level.
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Figure 2.6: L-ICA estimates of subpopulation spatial source signal maps for the
occipital visual network for the four disease group across the visits, with the mean
baseline age (73.7 year old) and are averaged between genders. All IC maps are
thresholded based on the source signal intensity level.
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Figure 2.7: L-ICA estimates of subpopulation spatial source signal maps for the FPL
for the four disease group across the visits, with the mean baseline age (73.7 year old)
and are averaged between genders. All IC maps are thresholded based on the source
signal intensity level.
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Visit

Figure 2.8: L-ICA estimates of longitudinal trends for voxels in the DMN network
for each disease group in ADNI2 study. Results show that AD and late MCI (LMCI)
patients generally have more changes across visits and that AD group has higher
within-network variations than the other disease groups at each visit.
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Figure 2.9: L-ICA estimates of longitudinal trends for voxels in FPL and visual
networks for each disease group in ADNI2 study. Results show that AD and LMCI
patients generally have more changes across visits and that AD group has higher
within-network variations than the other disease groups at each visit.
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Figure 2.10: p-values for testing group differences in DMN between AD and CN
subjects at each visit. The first row shows the test results based on L-ICA and the
second row shows the results from the TC-GICA based approach.
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Figure 2.11: p-values, thresholded at 0.05, for testing group differences in DMN be-
tween EMCI and LMCI subjects at each visit. L-ICA finds between-group differences
in DMN at each visit while TC-GICA detects little group differences.

Figure 2.12: Longitudinal changes from baseline and later visits in DMN within
AD, LMCI, EMCI and CN groups. The first column shows the comparison between
year 1 versus baseline and the second column shows the comparison between year
2 versus baseline, where the value represents the longitudinal differences in source
signal intensity for DMN voxels, i.e. ŝj(v)− ŝ0(v).
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Figure 2.13: p-values, thresholded at 0.05, for longitudinal changes between baseline
and year 2 for the default mode network (DMN) among the AD group. L-ICA finds
longitudinal changes in major regions of DMN among AD patients while TC-GICA
detects little changes in DMN among these patients.
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Chapter 3

Novel signal decomposition

method for brain connectivity data
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3.1 Introduction

In this paper, we present a blind source separation method for decomposing network

measures to identify underlying source signals characterizing independent network

traits. Our work is motivated by brain network research in neuroimaging studies. In

recent years, network-oriented analyses have become an important research field in

neuroscience for understanding brain organization and its involvement in neurodevel-

opment and mental disorders (Bullmore and Sporns, 2009; Deco et al., 2011; Satterth-

waite, Wolf, Roalf, Ruparel, Erus, Vandekar, Gennatas, Elliott, Smith, Hakonarson

et al., 2014; Kemmer et al., 2015; Wang et al., 2016; Wang and Guo, 2019). In neu-

roimaging studies, network measures are derived from functional or structural brain

imaging to reflect functional or structural connections among a set of nodes or brain

regions. The network measures are typically encoded as symmetric matrices where

the entries represent brain connectivity between pairs of nodes or regions in the brain.

For example, derived from functional magnetic resonance imaging (fMRI) or EEG,

functional connectivity (FC) measures the dependence between temporal dynamics

in neural processing of spatially disjoint brain regions (Biswal et al., 1995; Lang et al.,

2012; Kemmer et al., 2018). The commonly used FC measures include the Pearson

correlation matrix or partial correlation matrix (Smith et al., 2011; Church et al.,

2008; Seeley et al., 2009; Wang et al., 2016). These connectivity measures contain

important information about the structure of brain organizations and could poten-

tially serve as the individual neural fingerprint that guides important clinical decisions

(Finn et al., 2015; Amico and Goñi, 2018b).

There are several major challenges in network analysis in neuroimaging studies.

First, to fully capture the whole brain organization, connectivity matrices are usually

high dimensional (Chung, 2018). For example, the voxel-level brain network based

on fMRI data contains tens of thousands of nodes and nearly half a billion edges.
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More commonly, atlas-based brain networks are constructed based on a brain atlas

or node system such as the automated anatomical labeling (AAL) atlas (Tzourio-

Mazoyer et al., 2002) and the more recent Power’s node system (Power et al., 2011)

and Glassier’s atlas (Glasser et al., 2013). Although the number of nodes are reduced

dramatically in these atlas-based networks, there are still hundreds of nodes and hun-

dreds of thousands of edges for each single subject (Chung, 2018; Solo et al., 2018;

Wu, Stramaglia, Chen, Liao and Marinazzo, 2013; Wang et al., 2016). This ultra-high

dimensionality makes it challenging to analyze the brain network for scientific discov-

eries. Secondly, brain connectome is a complex organization encompassing a range of

underlying subnetwork structures (i.e. default mode network). The observed connec-

tivity matrices, measuring the overall connectivity patterns across the brain, repre-

sent aggregated information from various underlying connectivity systems or network

structures. This makes it hard to interpret the findings from whole brain network

analysis. Thirdly, given the large number of edges present in the brain networks,

there is a high possibility of spurious findings across the network in neuroscientific

research.

3.1.1 Our Proposal

In this paper, we propose a novel low-rank structure with uniform sparsity (LOCUS)

method as a fully data-driven source separation method to decompose the network

measures. LOCUS decomposes subjects’ connectivity matrices into the product of a

latent source signal matrix that characterizes underlying network traits and a mixing

matrix that contains subject-specific loadings on the source signals. To achieve more

efficient and accurate source separation for connectivity matrices, LOCUS adopts a

low rank factorization structure for each of the latent source signals. This low rank

structure results in a dramatic decrease in the number of parameters and hence leads

to more robust recovery of underlying connectivity traits. Furthermore, we propose a
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novel penalization approach to achieve sparsity in the extracted latent sources. This

novel sparsity regularization method help remove false positive connections when

extracting the connectivity traits.

3.1.2 Related Works and Our Contributions

Currently, the most popular blind source separation (BSS) methods for decompos-

ing neuroimaging data is independent component analysis (ICA). In neuroscientific

research, ICA is widely used to decompose the brain imaging data to reduce the

dimensionality, increase signal to noise ratio and facilitate the process of data anal-

ysis, which has achieved great success in many applications (Beckmann and Smith,

2004; Guo and Tang, 2013; Wang and Guo, 2019; Guo, 2011; Contreras et al., 2017).

However, existing ICA applications have mainly focused on decomposing observed

neural activity signals such as the blood oxygen level-dependent (BOLD) series from

fMRI or the electrodes signal series from EEG. As for the brain network data, the

diagonal element of a connectivity matrix is undefined meaning that the connectivity

data for each subject is actually stored as a lower triangle matrix without diagonal

part (Amico et al., 2017). Therefore, traditional matrix decomposition approaches

such as ICA are not well defined for this problem.

Currently, existing methods for decomposing the high-dimensional connectivity

matrices usually follow two strategies. The first strategy is that instead of directly

analyzing the functional connectivity matrix, researchers built models based on the

intermediate step. For example, many existing works focus on modeling subject-

level covariance matrix instead of Pearson’s correlation or modeling precision matrix

instead of partial correlation. In this case, the diagonal part is well defined and

statistical models can be built based on existing standard matrix distribution, (Franks

and Hoff, 2016; Cook and Forzani, 2008; Xia and Li, 2017; Virta et al., 2017). The

second widely used strategy is based on vectorization which first converts the upper-
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triangle part of subject-level FC matrices into a vector and stacks these vectors across

subjects to form a group-level FC matrix for decomposition (Amico et al., 2017;

Amico and Goñi, 2018a,b). Specifically, Amico et al. (2017) proposed a connectivity

independent component analysis framework (connICA) which treated all subject-

specific connectivities as independent features and utilized existing ICA algorithm

to decompose the group-level FC matrix into group-level independent non-Gaussian

sources and subject-specific loadings.

There is very limited development of ICA for decomposing connectivity mea-

sures derived from imaging. The only existing method connICA (Amico et al., 2017)

directly applies an existing ICA algorithm on vectorized functional connectivity ma-

trices without taking into account the special structures of connectivity matrices or

sparisity control, potentially leading to inaccurate and noisy estimates. The proposed

LOCUS is one of the first statistically principled BSS methods for brain connectivity

measures and has several major innovative contributions: 1) LOCUS achieves more

efficient and accurate source separation for connectivity matrices by assuming a low

rank factorization structure for the extracted latent connectivity components/traits.

This approach is well motivated by the observation that the brain connectivity ma-

trices often has structures such as block-diagonal or banded structure (Amico et al.,

2017) that can be efficiently captured with a low rank factorization (Zhou et al.,

2013). The low rank structure results in a dramatic decrease in the number of pa-

rameters and hence leads to more accurate recovery of underlying connectivity traits.

2) LOCUS uses a novel sparsity regularization method to help remove false posi-

tive connections when extracting the connectivity traits, thus alleviating the issue of

searching for optimal threshold in the existing connICA method. 3) Compared to

the vectorization approach such as connICA, the low-rank structure provides another

major advantage for LOCUS by generating results directly interpretable regarding

the underlying network structures
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To demonstrate the advantage of LOCUS over existing methods, we presents some

findings based on the real data. Figure 3.1 shows the averaged covariance and corre-

lation matrices across 515 healthy subjects in PNC study (more details about PNC

study is in section 3.4). The high variability of each node, i.e. diagonal part in

covariance matrix, limits our ability to investigate the between-node connectivities.

Moreover, the varibility level for each brain node can also be altered significantly due

to the image acquisition techniques or different preprocessing approaches. Therefore,

the first strategy, discussed above, is usually not desirable for brain network analysis.

Furthermore, Figure 3.2 shows 4 estimated latent sources based on connICA frame-

work (with threshold). Because connICA cannot ensure sparsity, we further applied

a threshold to remove weak signals. One important finding is that the underlying

sources for FC matrices have a very clear low-rank structure. It also shows that the

nearby edges, i.e. edges connected to the same node or edges within same functional

module, tend to have high similarity within each sources. These findings motivates a

novel decomposition method taking advantage of these properties of FC matrices.

Although connICA provides many important findings, the underlying ICA algo-

rithm has relatively poor performance based on previous studies (Guo, 2011; Guo and

Tang, 2013) and cannot ensure sparsity for the latent source signals. Moreover, it

follows the vectorization strategy and treats each edge independently which ignores

the similarity for the nearby edges. Furthermore, the latent sources of the real data

tend to have a low-rank property indicating that treating each edge separately can

be over-parameterized which could lead to noisy estimates and further limit model’s

reproducibility.

In the existing literature, the most popular class of modeling network-value data

is mainly focusing on adjacency matrix and is trying to learn a latent space represen-

tation for each node (Hoff et al., 2002; Hoff, 2008; Wang, Durante, Jung and Dunson,

2017; Durante et al., 2017). In the most recent work, Durante et al. (2017) proposed
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(A) Covariance (B) Correlation

Figure 3.1: Preliminary findings based on PNC Study: (A) and (B) represents the averaged
covariance matrix and Pearson correlation matrix across 515 healthy subjects in PNC study.

Figure 3.2: Four estimated latent sources based on connICA and PNC study, where each
source is further threshold to ensure sparsity.
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a nonparameteric Bayesian mixture model (BMM) for adjacency matrix of brain net-

work, where a network is modeled from a mixture of Bernoulli random varaibles, and

in each Bernoulli component all the nodes are mapped into a component-specific co-

ordinate system with the common intercept term. The probability of being connected

between two nodes in each component term is represented as the similarity between

the two corresponding node coordinates, and the dimension of the coordinate space

in each component controls the low-rankness for the latent source and as well as the

number of parameters in the model. As demonstrated by Figure 3.2, brain latent

sources (sub-network) are also of low-rank structures, which are well-supported by

the latent space methods like BMM. Therefore, in LOCUS, we consider a similar

specification for each latent sources with a source-specific scale-free node coordinate

system. Modeling each node as coordinate vector provides a way to share the infor-

mation across different edges connected to the same node and also can significantly

save the number of parameters in the model.

But different from BMM and other existing works, LOCUS directly analyzes brain

connectivity measures instead of binary edges. Most importantly, instead of modeling

the whole brain network, LOCUS decomposes a brain network into the loadings of

different latent sources and models each latent source simultaneously using a sym-

metric low-rank structure, which in nature is a BSS model and has distinct goal and

application. Here we want to further point out that the latent source in LOCUS is dis-

tinctively different from latent component in BMM from Durante et al. (2017). First,

latent sources in LOCUS are shared across all subjects while latent component in

BMM is subject-specific. Second, different component share the same variables (i.e.

intercept) across different components, which is different from LOCUS where each

source are required to have distinct latent coordinate system to ensure independence.

Third, in the scale-free coordinate system of LOCUS, the weights for each source not

only control the importance for each coordinate, but can also contain both positive or
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negative values, which is also different from the all-positive setting in Durante et al.

(2017). We note that our setting can further increase the flexibility for each latent

source to capture more complicated hidden patterns.

Currently, there are two major approaches of penalization for low rank factor-

izations (Raskutti and Yuan, 2015): element-wise penalty on each latent coordinate

(Zhou et al., 2013; Sun and Li, 2017; Li et al., 2018) and rank-based penalty on entire

latent source (Chen et al., 2013; Rabusseau and Kadri, 2016; Fan et al., 2017). As

pointed out in Sun and Li (2017), rank-based penalty cannot ensure the sparsity and

hence is not the ideal approach for our model. For the element-wise penalty, although

it can ensure the sparsity for each latent coordinate, the latent sources constructed

from these latent coordinates may not achieve the desired sparse pattern. As shown

in the previous studies and our simulation study, element-wise penalty tends to give

the structured noise which can be hardly identified from the true signals (Zhou et al.,

2013; Zhou and Li, 2014). Moreover, since the fundamental objective of incorporating

penalty is to ensure an uniform sparseness for constructed latent sources to facilitate

the finding of true signal, we provide a much more intuitive way of penalization to

achieve this goal compared with all these existing approaches. Specifically, instead of

penalizing on each node coordinate or the rank, we directly penalize the inner product

between node vectors and the weights to ensure the global sparsity for constructed

sources. We point out that this is same as angle-based penalization if we focus on one

node coordinates and condition all others, which in nature is trying to increase the

orthogonality between each pair of the node coordinates adjusted by weights. This

novel way of penalization provides a better way of controlling the sparsity globally

and therefore we named it as uniform penalization approach.

As a summary, in this paper, we proposed a novel connectivity matrix decomposi-

tion method using symmetric low-rank structure with uniform sparsity (LOCUS). To

the best of our knowledge, this is the first formal signal separation approach specifi-
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cally designed for decomposing brain connectivity matrices, and the proposed penalty

approach is at a different perspective from the existing methods. We also developed

an efficient node-moving algorithm for estimating the unknown parameters in the

proposed model with penalty, and we further conducted extensive simulation studies

to evaluate the performance of the proposed model and node-moving algorithm. We

also shown that our algorithm can break down the original non-convex optimization

problem into a series of sub-convex problems which can be solved easily. We applied

our proposed method to real data and found biologically meaningful results.

The overall structure of the paper is organized as follows. Section 3.2 introduces

the methodology including model specification, the underlying Bayesian model, algo-

rithm for estimation. Section 3.3 is for the simulation study. Section 3.4 is the real

data application. Section 3.5 is the discussion and conclusion.

3.2 Methodology

3.2.1 Notation and Problem Statement

For h > 1, we define vector norm ‖x‖h = (
∑

i |xi|h)
1
h , and we denote the Frobenius

norm of a matrix by ‖X‖F = (
∑

ij X
2
ij)

1/2. We also denote L to be a map from

a square matrix to it’s upper-trianlge part, i.e. L(A) = [A(1, 2), A(1, 3), ..., A(V −

1, V )]′ ∈ Rp for any A ∈ RV×V , where p = V (V − 1)/2

Since self-relationship in the network is not of interest, for the undirected network

all the information of a connectivity matrix are stored in its upper-triangle part.

Therefore, we denote LV (R) = {W = {W (u, v)}1≤v<u≤V ,W (u, v) ∈ R} to be the

space of all connectivity matrices for undirected network with V nodes. Assume that

we have N observed connectivity matrices Y1,...,YN ∈ LV (R). Denote p = V (V −1)/2

to be the number of pairs of nodes in each Yi. For simplicity, we treat each Yi as a

column vector of length p and denote Y ∈ RN×p to be the big data matrix containing



59

all connectivity matrices with Y = [Y1, ...,YN ]T .

The goal of signal separation is to decompose Y into a product of sources and

loading, i.e. Y = AS + E, where S = [S1, ...,Sq]
T ∈ Rq×p is the source matrix /

basis matrix, A = {ail} ∈ RN×q is the loading matrix with ith row representing the

loading for ith subject, and q ≤ min(p,N). For example, based on S and A, Yi can

be approximated by ai1S1 + ...+ aiqSq. Moreover, existing signal separation methods

all follow this framework but have different assumptions or constraints on S or A:

• ICA has constraints on sources but leave loading matrix unconstrained, where

it assumes that Sl’s are independent and non-Gaussian distributed;

• Dictionary learning puts sparsity constraints on loading matrix A to achieve

a sparse representation of the data but usually leave the basis matrix uncon-

strained.

As discussed in the introduction, the number of parameters, i.e. edges in the network,

is massively larger than the sample size N even when number of nodes V is small.

For power’s node system, V = 264 which has 264*263/2 = 34716 edges, and the

commonly used number of latent sources is around 30 which further gives 30*34716

parameters in the latent source matrix. It is clearly that the sample size for existing

Neuroimaging studies cannot handle this many unknown parameters. Therefore,

model with appropriate dimension reduction technique will be necessary, and the

model also need to be flexible enough to capture the inherent network properties

and topological structures varied across different latent sources. It is clear now that

existing methods, such as connICA, which failed to consider these issues, are expected

to have poor performance in connectivity matrices decomposition problem. In fact,

the difference between network data and unstructured data is that the nearby edges in

the network can share common properties driven by network configuration. Moreover,

for the model robustness and interpretability, sparsity constraints is necessary and
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also requires careful specification to keep the network properties.

In the next section, we will present our model which adopts a highly flexible di-

mension reduction approach to capture the source-specific network properties by bor-

rowing information across nearby edges in the network. We will also propose a novel

but intuitive sparsity constraints specifically designed for our decomposition model

which can precisely control the sparsity level while preserve the network properties.

3.2.2 Locus - Proposed Method

3.2.2.1 Low-rank Decomposition Method

In this section, we will introduce the LOCUS framework for decomposing the connec-

tivity matrices. Motivated by the findings of real data and the discussion above, we

consider to model each latent sources based on a source-specific low-rank structure

which can reduce the parameter space while preserves the network property. The first

level model is same as existing framework as

Yi = ai1S1 + ...+ aiqSq + ei, (3.1)

where ei is the noise term with mean as zero and ail is the loading scalar for subject

i at source l. Each latent sources Sl belongs to the same space as Yi in LV (R),

where the diagonal is undefined and all information is stored in lower-triangle part.

To flexibly model each latent source and reduce the dimension appropriately while

preserving the network property, we link each Sl with a latent symmetric low-rank

decomposition via L transformation:

Sl = L(XlDlX
′
l), (3.2)
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where Xl = [Xl(1), ..,Xl(V )]T ∈ RV×Rl with Xl(v) representing the latent coordi-

nates of dimension Rl for node v in lth latent source, and Dl = diag(λl,1, .., λl,Rl
)

is a diagonal matrix containing the weight (both magnitude and direction) for each

coordinate, and Rl is the dimension of the latent node-level coordinate system for lth

latent source. Specifically, λl,r ∈ R can be either positive or negative making the con-

structed source matrix (before L transformation) can be either positive semi-definite

or not.

Actually, this specification has an appealing interpretation. The weighted dot

product setting in (3.2) is to learn a source-specific latent coordinate system for

all nodes, where the similarity between each pair of nodes is used to represent the

connectivity level in the latent source. In our case, the similarity between node v

and u for lth source is defined as Sl(u, v) = Xl(u)′DlXl(v) =
∑Rl

r=1 λl,rXl,r(u)Xl,r(v),

which is a linear kernel adjusted by the source-specific weight. Here, λl,r controls the

importance of r coordinate, where the closer is λl,r to zero, the lower the contribution

of pathway r to Sl. The coordinate Xl,r(v) might represent the activity of node v

within pathway r. For example, for the pathway with λl,r > 0, nodes with coordinates

in the same direction, i.e. both positive or negative, will have stronger connectivity

in Sl. In summary, model settings in (3.2) are learning q latent coordinate spaces for

each latent source.

We note that the factorization (3.2) utilized a similar dot product characterization

of edge connectivity for a single network (Hoff et al., 2002; Hoff, 2008; Wang, Durante,

Jung and Dunson, 2017; Durante et al., 2017). As shown in Durante et al. (2017), for

modeling a single newtork, the representation (3.2) provides a more general charac-

terization of interconnection structures and network properties than stochastic block

model (Airoldi et al., 2008; Nowicki and Snijders, 2001) and latent distance model

(Hoff et al., 2002). Durante et al. (2017) proposed a mixture model for populations of

network adjacency matrices where they utilized multiple components to capture the
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heterogeneity in network data. Specifically, their model specified the same low-rank

structure for each component while forcing all weights to be positive and all com-

ponents sharing the same dimension, which is more restrictive compared with our

setting.

As shown in Figure 3.2, the network property and topological structures can vary

substantially across different latent sources. Therefore, we allow the dimension Rl to

be different across each latent source which controls the maximum information one

latent source can hold, and by allowing the source-specific weights λl,r to contain both

positive and negative values, the latent symmetric low-rank structure can be more

representative and flexible. Since the scale of the decomposition is not identifiable,

for computational robustness, we constrain that each column of Xl has a L2 norm of

1.

So far, compared with connICA approach, our setting has two advantages. First,

the symmetric low-rank structure can considerably reduce the dimensionality from

qV (V − 1)/2 to V
∑

lRl parameters, which can significantly improve the model ro-

bustness and reproducibility. Second, different from modeling each edge separately,

through the latent coordinate system, different edges connecting from the same node

v can share information through Xl(v). For example, the connections from a cen-

tral node v, which has stronger global connectivities across the network, share the

same Xl(v) with relatively higher scale in equation (3.2) and hence can have larger

connectivities.

In summary, the objective function of LOCUS for connectivity matrix decompo-

sition problem without any penalty turns into:

min
N∑
i−1

‖Yi −
q∑
l=1

ailL(XlDlX
′
l)‖2

2. (3.3)
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3.2.2.2 Uniform Sparseness

Following our previous work, we do not force any constraint on loading matrix (Guo,

2011; Guo and Tang, 2013). For each latent source Sl, existing tensor decomposition

framework usually has two types of penalties: low-rank constraint and element-wise

sparsity constraint (Raskutti and Yuan, 2015). Low-rank constraints such as nuclear

norm are penalizing on the rank, i.e. ‖Dl‖1 which cannot guarantee the sparsity

on latent sources and hence is not suitable for selecting the connections in each la-

tent source for interpretation (Fan et al., 2016, 2017). The element-wise sparsity

constraints are based on adding additional penalty terms on Xl, which we refer as

coordinate-based penalty (Zhou et al., 2013; Li et al., 2018; Fan and Li, 2001; Zhang

et al., 2010). This approach only focuses on adding constraints on Xl but in fact the

component we need to be sparse is the constructed Sl from the dot product between

Xl and Dl through (3.2). Therefore, the class of element-wise penalization methods

might not provide desired sparsity level for our model. Moreover, as we discussed

above, each latent coordinate, i.e. Xl,r(v), could represent the pathway-specific ac-

tivity level for brain node v, which can have substantially different expression level

across the brain and latent sources. In this case, the element-wise approach need to

specify a large number of coordinate-specific or node-specific penalization terms to

adjust to the heterogeneity among Xl,r(v)’s, which is not realistic.

In fact, the goal is to ensure sparsity on Sl for selecting the important brain

connections in each latent source, which is the key component of primary interest.

Therefore, instead of coordinate-based penalty, we propose a more intuitive approach

to directly penalize onXlDlX
′
1 for the desired property on constructed latent sources,

min
N∑
i=1

‖Yi −
q∑
l=1

ailL(XlDlX
′
l)‖2

2 + φ

q∑
l=1

∑
u<v

|Xl(u)′DlXl(v)|, (3.4)

where φ is the weight for penalty term. The penalty term in (3.4) is to penalize the
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off-diagonal part of constructed latent source, i.e. ‖L(X1DlX
′
l)‖1, which is the same

as L1 penalty on Sl. We refer this as L1-based uniform sparsity, and other extensions

with L2, SCAD or MCP can also be easily applied.

We note that for each latent source, penalization term in (3.4) is actually an

angle-based penalization. For example, in lth latent source, if we focus on node v

and condition on others nodes, minimizing the penalty term with respect to Xl(v) is

equivalent as finding the direction to be as orthogonal as other nodes with weights

Dl. From a geometric perspective, this approach is trying to penalize the angle

of node vectors given the weights instead of the magnitude which is fundamentally

different from element-wise penalty. Moreover, by directly penalizing on XlDlX
′
1,

we can precisely control desired sparsity level on the constructed latent source and

this approach is named as uniform sparsity.

In the next section, we will further illustrate the property of uniform sparseness

from a statistical perspective.

3.2.3 The Underlying Bayesian Model for Locus

Section 3.2.2 introduced the matrix decomposition procedure of Locus. In this sec-

tion, we will present the underlying Bayesian model for Locus and show that the

uniform sparsity penalty actually corresponds to a joint prior specification on Xl and

Dl. It will further demonstrate the advantage of the uniform sparsity penalty over

the existing penalty techniques. Moreover, we will show that solving the objective

functions of (3.4) is same as using the maximum a posteriori, a.k.a MAP, estimators

for the underlying Bayesian model.

For each connectivity measure Yi(u, v) of subject i, the first level model decom-

poses it onto the space expanded by q components with component-specific loading:

Yi(u, v) = ai1S1(u, v) + ...+ aiqSq(u, v) + ei(u, v), (3.5)
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where ei represents the first-level residual of decomposition and is assumed to be i.i.d

N(0, σ2). Clearly, this is the same as (3.1). Based on equation (3.2), Sl(u, v) is fully

determined by the joint distribution of Xl(u), Xl(v) and Dl, and we can see that

the dependence between different edges connected to the same node is captured by

this structure. For example, in lth latent source, two edges connected to node v are

Sl(u1, v) = Xl(u1)′DlXl(v) and Sl(u2, v) = Xl(u2)′DlXl(v) which share the same

component Xl(v) to borrow information from each other. Therefore, such low-rank

representation not only save the number of parameters in the model but also allow

information to be shared across ’near-by’ edges (edges from the same node). Next,

following the our previous work (Guo, 2011; Wang and Guo, 2019), we assume each

latent sources are independent, f(X1, ..,Xq,D1, ..,Dq) =
∏q

l=1 f(Xl,Dl). Finally,

different from existing works with separate priors on Dl and Xl (Park and Casella,

2008; Goh et al., 2017), the L1-based uniform sparsity is equivalent as forcing a joint

prior on Dl and Xl:

f(Xl,Dl) ∝
∏
u<v

exp(−τ |
∑
r

λl,rXl,r(u)Xl,r(v)|). (3.6)

To show the equivalence between this Bayesian model with Locus in (3.4), we see that

the posterior distribution of [A,X1,D1, ...,Xq,Dq|Y ] is proportional to
∏

i g(Yi;aiS, σ
2Ip)∏

l f(Xl,Dl), where g(·) denotes the pdf of multivariate Gaussian distribution, S ≡

[L(X1D1X
′
1) ,..., L(XqDqX

′
q)] and ai has non-informative prior.

Therefore, the objective function for MAP of this Bayesian model is

∑
i

− 1

σ2
‖Yi − aiS‖2

2 − τ
q∑
l=1

∑
v<u

|Xl(v)′DlXl(u)|+ C, (3.7)

where C is the constant only involving σ and τ . Maximizing (3.7) is equivalent as

minimizing (3.4) with properly selected tuning parameter. Therefore, we can see that

one unique point of uniform sparsity penalization method is that it jointly models
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all elements in Xl and Dl to quantify the interactions among them, rather than

modeling each term independently like Bayesian lasso (Park and Casella, 2008) or

Bayesian reduced-rank model (Goh et al., 2017).

3.2.4 Estimation

In this section, we will introduce the algorithm for solving the optimization problem

(3.4) of Locus. First we want to point out that (3.4) is a non-convex optimization (as

shown in appendix B). The key to solve this optimization problem is to explore the

block multi-convex structure in the problem (Sun and Li, 2017).

First, we will introduce the data preprocessing step prior to LOCUS which is

commonly used in ICA literature and can significantly simplify the complexity. After

that, we will introduce the algorithm based on the block multi-convex property, and

at last we will discuss about how to select the tuning parameter for Locus.

3.2.4.1 Preprocessing Step

Preprocessing steps such as centering, dimension reduction and whitening are com-

monly used prior to decomposition algorithm for facilitating the subsequent problem

(Hyvärinen et al., 2001). Prior to Locus, we follow our previous preprocessing pro-

cedure to facilitate the decomposition algorithm (Guo and Tang, 2013; Wang and

Guo, 2019; Shi and Guo, 2016; Guo, 2011; Guo and Pagnoni, 2008). First, for con-

nectivity data decomposition, the mean connectivity pattern across subjects is not

of interest. Therefore, we first center all columns of Y . Next, we reduce the di-

mension and whiten the data with Ỹ = HY , where H = (Λq − σ̃2
qI)−1/2V ′q . Vq

and Λq contains the first q eigenvectors and eigenvalues based on singular value de-

composition of Y . The residual variance, σ̃2
q , is the average of the smallest N − q

eigenvalues that are not included in Λq, representing the variability in Y that is

not accounted by the first q components. The parameter q, which is the number of
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sources, can be determined using the Laplace approximation method (Minka, 2000).

Here Ỹ = [ỹ(1, 2), ỹ(1, 3), ..., ỹ(V − 1, V )] is of dimension q×V (V − 1)/2 where each

column represents one connection. The problem (3.4) for the preprocessed data turns

into

min

q∑
i=1

‖Ỹi −
q∑
l=1

ãilL(XlDlX
′
l)‖2

2 + φ

q∑
l=1

∑
u<v

|Xl(u)′DlXl(v)|. (3.8)

Here we denote Ã = {ãil} ∈ Rq×q which is HA, also known as mixing matrix in

the literature, and is commonly assumed as orthogonal to facilitate the algorithm

(Hyvärinen and Oja, 2000; Beckmann and Smith, 2004; Wang and Guo, 2019).

3.2.4.2 Algorithm for Solving Locus

In this section, we will present the algorithm to solve (3.8), which is to estimate the

unknown parameters Θ = {Ã,X1, ..,Xq,D1, ..,D1}. We note that the problem has

a block multi-convex structure in it where the problem is convex in Xl(v) when we

condition on all other parameters. Based on this property we propose the following

updating algorithm.

Overall, at tth iteration, the algorithm contains two major steps on latent sources

and loading matrix:

• Update latent coordinate and weights [Xl,Dl] for each basis l = 1, ..., q given

Ã:

[X̂
(t)
l , D̂

(t)
l ] = argminXl,Dl

∥∥∥Ã(t−1)
l

′Ỹ − L(XlDlX
′
l)
′
∥∥∥2

2
+ φ

∑
u<v

|Xl(u)′DlXl(v)|,

(3.9)

where Ã
(t−1)
l is the estimated vector at (t− 1)th iteration for lth column of Ã.

• Update Ã with Ã(t) = H
(
Ỹ Ŝ(t)′(Ŝ(t)Ŝ(t)′)−1

)
where H is the orthogonal trans-

formation and Ŝ(t) = [L(X̂
(t)
1 D̂

(t)
1 X̂

(t)
1
′), ...,L(X̂

(t)
q D̂

(t)
q X̂

(t)
q
′)]′.
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We note that (3.9) holds because of the orthogonality on Ã, where ‖Ỹ (u, v) −

ÃS(u, v)‖2
2 = ‖Ã′Ỹ (u, v)−S(u, v)‖2

2 when Ã is orthogonal ( S(u, v) = [X1(u)′DlX1(v),

...,Xq(u)′DqXq(v)]′ ). Therefore, (3.9) separates the latent sources out and updates

each latent source one by one. However, (3.9) is still non-convex and solving it is

not trivial. In the following subsection, we will propose a node-moving algorithm to

solve (3.9) which takes advantage of the block multi-convex property in the problem

by breaking down the original problem into multiple convex sub-problems.

Node-Moving Algorithm:

Although directly solving [Xl,Dl] in (3.9) is challenging, when we narrow down

to a single node coordinate across all pathway Xl(v) and condition on the weights

Dl and other node coordinates Xl(−v), the node-v-specific sub-problem turns to be

convex:

X̂
(t)
l (v) = argminx∈RRl

∥∥∥Ỹ (−v, v)′Ã
(t−1)
l − X̂(t−1)

l (−v)D̂
(t−1)
l x

∥∥∥2

2
+

φ
V∑

u=1,u 6=v

|X̂l

(t−1)
(u)′D̂l

(t−1)
x|, (3.10)

where Ỹ (−v, v) = [ỹ(1, v), ..., ỹ(v − 1, v), ỹ(v, v + 1), ..., ỹ(v, V )] is of dimension q ×

(V − 1) which is the sub-matrix of Ỹ with only the columns having edges connected

to node v, and Xl(−v) is Xl with vth row removed. One way to understand this is

that to update the coordinates for node v, we need all connections to node v which

is Ỹ (−v, v). A detailed derivation between (3.9) and (3.10) is shown in Appendix

B. Based on (3.10), we see that after narrowing into only one node and conditioning

on others, the loss function is free of tensor product operator and L function. The

first part of (3.10) is same as a standard regression-based least square problem and

is easy to solve. The penalty part in (3.10) turns to be a group-wise penalization

with V − 1 terms of weights Xl(u)Dl, which is same as the adaptive-weighting for

different pathway. Geometrically, after we fixed the latent node coordinates for other
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Latent Source 1

Latent Source 2

Latent Source 3

Figure 3.3: Illustration of the Node Moving algorithm until the 10th iteration for Locus
method based on a simulated dataset from the setting 1 with middle level variance and 100
samples. The algorithm starts with a noisy estimate which can hardly show the pattern, and
after 10 iterations Xl(v)’s are grouped into several clusters and those clusters are becoming
orthogonal with each other, resulting in a sparse and low-rank latent sources.
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nodes, we are actually moving node coordinate Xl(v) to be as orthogonal as others

adjusted by the weights Dl. We do this movement for all node coordinates one by

one. This is the reason why this is named Node-Moving algorithm. Figure 3.3 shows

a simulated example about how Xl(v)’s are being grouped into several clusters and

those clusters are becoming more and more orthogonal with each other reflecting a

sparse and low-rank latent source. We note that (3.10) can be easily solved based on

existing numerical optimization tools. But, in the case that the rank of Xl(−v) is Rl,

(3.10) can be further decomposed into

S̃
(t)
l (−v, v) = argminS∈RV−1

∥∥∥Ỹ (−v, v)′Â
(t−1)
l − S

∥∥∥2

2
+ φ

V−1∑
i=1

|Si|, (3.11)

X̂
(t)
l (v) = D̂l

−1
(X̂l(−v)′X̂l(−v))−1X̂l(−v)′S̃

(t)
l (−v, v). (3.12)

Here, (3.11) estimates the V − 1 edges connected to node v with desired sparseness

property, which is equivalent to model each edges separately. (3.12) maps S̃
(t)
l (−v, v)

back to low-rank space expanded by the row space of Xl(−v) and further reshaped

by directional matrix D−1
l . (3.11) has an explicit solution as shown in Fan and Li

(2001). After looping across all nodes, we need to scale each column X
(t)
l to have L2

norm as 1.

The last step is to update Dl for l = 1, ..., q. Conditioned on X
(t)
l and Â

(t−1)
l , the

optimization problem for Dl turns into:

diag(D̂
(t)
l ) = argminx∈RRl

∥∥∥Ỹ ′Â(t−1)
l −Z(t)

l x
∥∥∥2

2
+ φ

∑
u<v

|Z(t)
l (u, v)x|, (3.13)

where Z
(t)
l is of dimension p × Rl, the rth column of Z

(t)
l is L(X

(t)
l,rX

(t)
l,r
′) with X

(t)
l,r

to be the rth column of X
(t)
l , and Z

(t)
l (u, v) = [X

(t)
l,1 (v)X

(t)
l,1 (u), ..., X

(t)
l,Rl

(v)X
(t)
l,Rl

(u)].

In fact,
∑

u<v |Z
(t)
l (u, v)x| = ‖Z(t)

l x‖1. It is clear that, this problem has the same

formation as (3.10) which can be solved similarly. Now, we have finished the Node-
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Moving algorithm.

The detailed algorithm for learning Locus is summarized in Algorithm 2. The

stopping criteria is based on Ã and S instead of Xl and D1 in our model. After the

algorithm converges, we can estimate the loading matrix based on Â = Y Ŝ′(Ŝ′Ŝ)−1,

which finished estimating all components in Locus. We also note that selection of low-

rank dimensions for each basis requires many hyper-parameters to tune, R1, ..., Rq.

In the next section, we will discuss an approach to automatically select Rl for each

basis.

Algorithm 2 Node-Moving Algorithm for Learning LOCUS

Tuning Parameter: Select hyper-parameters q, φ,R1, ..., Rq.

Initial: Preprocess the data Ỹ = HY , and initialize Ã(0),X
(0)
l ,D

(0)
l , for l =

1, ..., q.
repeat

Update [Xl,Dl]:
For all l = 1...q, v = 1...V ,
1. Estimate V − 1 edges in source l connected to node v, S̃

(t)
l (−v, v), via (3.11);

2. Calculate X̂
(t)
l (v) by projecting Ŝ

(t)
l (−v, v) onto low-rank space via (3.12).

For all l = 1...q,
3. Update D

(t)
l based on (3.13);

4. Calculate Ŝ(t) = [L(X̂1D̂
(t)
1 X̂

′
1), ...,L(X̂qD̂

(t)
q X̂ ′q)].

Update Ã:
1. Ã(t) = Ỹ Ŝ(t)′(Ŝ(t)′Ŝ(t))−1

2. Conduct orthogonal transformation on Ã(t).

until ‖W̃
(t)−W̃ (t−1)‖F
‖W̃ (t−1)‖F

< ε1 and ‖Ŝ(t)−Ŝ(t−1)‖F
‖Ŝ(t−1)‖F

< ε2

Finally, We note that the Node-Moving algorithm is based on the orthogonality

assumption on Ã, which can significantly improve the computational complexity. But,

in fact, the original optimization problem in 3.4 still has block multi-convex property

and Node-Moving algorithm can be generalized for the original problem. Therefore,

we summarize and generalize the block multi-convex property of Locus optimization

problem into Theorem 3.2.1 and provide the detailed proof in Appendix B. This

further confirms the property in Locus and justifies the advantage of Node-Moving
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algorithm in efficiency.

Theorem 3.2.1 (Block Multi-Convex). If function f has the form of

f(X1, ...,Xq,D1, ...,Dq,A) =
∥∥∥Y −A


L(X1D1X

′
1)′

...

L(XqDqX
′
q)
′


∥∥∥2

F
+ φ

q∑
l=1

|L(XlDlX
′
l)|1,

where Y and φ are constants, then f is a non-convex but multi-block-convex function.

3.2.4.3 Tuning Parameter Selection

Rl is the number of pathways which controls the maximum information one latent

source can store. Larger Rl always yields better fit to the data but can lead to

over-fitting. With the help of sparse penalty directly on S, one naive way is to

specify a common large rank for all basis and penalize it via uniform sparseness.

However, this can be computationally expensive and the numerical performance can

be very unstable. For example, with a large R1, Xl(−v) could be less than full rank,

and the numerical benefits in (3.11-3.12) will no longer hold. On the other hand, a

common rank for all basis is not realistic based on the real data where different basis

has exhibited quite different properties. On the other hand, smaller Rl limits the

information the basis can store and hence tends to have lower accuracy. To overcome

these issues and simplify the human effort for picking Rl one by one, we proposed the

following approach to automatically select Rl with a similar strategy as in PCA.

Instead of selecting all R1 to Rq separately, we use a single parameter to auto-

matically decide what Rl should be for each latent source. Define ρ ∈ (0, 1) to be

proportion of signal we aim to capture in each latent source for the low-rank decom-

position, which is similar as the way for selecting the number of components in PCA.

Specifically, when updating S, we estimated S̃ which is prior to low-rank mapping.

The difference between Sl and S̃l represents the limits for current Rl. The larger
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Rl, smaller the difference should be. Therefore, we adaptively change Rl to be the

smallest integer such that ‖Sl − S̃l‖/‖S̃l‖ ≤ 1 − ρ. Finally we can select ρ and φ

based on commonly used BIC approach (Zhou et al., 2013; Sun and Li, 2017; Wang

et al., 2016).

3.3 Simulation Study

In this section, we investigate the performance of our model based on simulation study,

and demonstrate its superior performance compared with alternative approaches.

3.3.1 Synthetic Data

Motivated by the findings from real data application as shown in Figure (3.2), we

first simulate the latent source signal with diagonal block shape, crossing shape and

off-diagonal block shape as shown in Figure 3.4 (A). We further point out that these

patterns are commonly existed in the real data (Amico et al., 2017; Amico and Goñi,

2018a) and hence serve as a more realistic setting to brain imaging applications.

Moreover, the patterns in Figure 3.4 (A) are well supported with the low-rank struc-

ture. To fully evaluate the performance of our model, we consider a more challenging

setting for the latent source signal with diagonal triangle shape, off-diagonal circle

shape and long-range hollow square shape shown in in Figure 3.4 (B). In general,

this is a more difficult pattern for the model with low-rank structure as shown in

Zhou et al. (2013) which usually needs a larger number of pathway to approximate

the shape. In both settings, we have V = 50 and q = 3. We consider two sample

sizes, N = 50, 100. To generate the loading matrix, we sampled without replacement

from the estimated loading matrix based on InfoMax ICA and PNC study with 515

subjects. At last, we add Gaussian noise to the data with 3 levels: low variance = 1,

mid variance = 32 and high variance = 62. We note that based on the real data,

after controlling on the loading and source matrices to have the same signal levels,
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the variance for the noise is close to 3.24 which is covered within our settings. In

total, we have 2 × 2 × 3 settings being considered and for each setting we generate

100 simulation runs to quantify the uncertainty level.

3.3.2 Simulation Specification

We compared the performance of Locus with the commonly used connICA approach

based on FastICA and InfoMax. To understand the performance of symmetric low-

rank decomposition, we further compare it with the dictionary learning (DL) method

with L1 penalty. Moreover, to better understand the effectiveness of uniform sparsity,

we further compare it with the two commonly used penalization approach: element-

wise penalty and low-rankness:

min
N∑
i=1

‖Yi −
q∑
l=1

ailL(XlDlX
′
l)‖2

2 + φ

q∑
l=1

‖Xl‖1, (3.14)

minSl∈RV×V ,Sl=S′l

N∑
i=1

‖Yi −
q∑
l=1

ailL(Sl)‖2
2 + φ

q∑
l=1

‖Sl‖∗, (3.15)

where ‖ · ‖∗ is the nuclear norm, and in the following sections we denote (3.14) as

Loc-L1 and (3.15) as Loc-Nuclear. In simulation, BIC is used to select the tuning

parameter for the methods with hyper-parameter.

3.3.2.1 Evaluating Metrics

Following our previous work, we used Pearson correlation as the metric to evaluate

methods’ signal recovery ability. Specifically, we first conduct a source-matching pro-

cedure and then calculate the Pearson correlation between the truth and the model-

based estimates on latent sources and loading matrices (Beckmann and Smith, 2004;

Wang and Guo, 2019). We further calculate the standard deviation of these correla-

tions across 100 simulation runs to evaluate the robustness. Results are summarized

in Tables 3.1 and 3.2. Figures 3.6, 3.7 visualize the averaged correlation and its
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standard deviation across 100 runs on latent sources for setting 1 and 2.

More importantly, we evaluated methods’ reproducibility on latent sources based

on 2 adjusted summary statistics with Pearson correlation and Jaccard Index. Specif-

ically, the reproducibility on lth latent source is defined as:

rl =

1
B
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, (3.16)

where B = 100 is the number of simulation runs, Sl is the true lth latent source, S
(b)
i

is the ith latent source for bth simulation run, h(·) is the measure of similarity which

is set to be Pearson correlation or Jaccard Index. We note (3.16) is related to Cohen’s

kappa coefficient where we adjust the measure based on baseline effect. Figures 3.8,

3.9 visualize the averaged reproducibility across all latent sources for setting 1 and 2.

Finally, to better understand the methods’ performance on latent sources, we ran-

domly selected 4 simulated datasets with mid level variance for visualization. Specif-

ically, for these selected runs, the estimated latent sources are visualized in Figures

3.5,3.10.

3.3.3 Simulation Results

Locus: First, based on the results in Tables 3.1 and 3.2, our method provides more

accurate estimates for latent sources and subject-specific loadings compared with

other methods in both settings. Moreover, based on Figures 3.8 and 3.9, Locus

provides more reproducible results on latent sources compared with other methods

in both settings. Figures 3.5 and 3.10 visualized the estimated latent sources from

4 randomly selected simulation runs. These figures showed that Locus can more

accurately identified the connections that are activated in latent sources. Moreover,

another impressive results of Locus is that it can accurately penalize the connectivity

out of activated region to zero as shown in Figures 3.5 and 3.10 which is a very helpful
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property for selecting the connectivities of interest. On the other hand, Locus has

much smaller variability across simulation runs which indicates that Locus is more

stable and can potential have better reproducibility for application.

ConnICA: Based on our simulation study, both FastICA and InfoMax have lower

performance compared with Locus in terms of correlation on latent sources and load-

ing matrix. Specifically, FastICA performs poorly when latent sources follow the

low-rank block-shape structure motivated by the real brain data, and InfoMax has a

lower performance than FastICA when latent sources have the non-square shape as

in setting 2. We also found that InfoMax has a smaller SD than FastICA, indicating

that InfoMax could have a more robust estimation. As shown in Figures 3.5, 3.10 (B,

C), the results from connICA methods are all very noisy, and their estimated latent

sources are mixed up with each other. Moreover, as clearly shown by the intensity

level plot in Figures 3.5, 3.10 (B, C), it is hard to select appropriate threshold for the

results of connICA in most cases when signals are mixed together.

Effects of Penalty: First, as we expected and discussed above, Loc-Nuclear can-

not ensure sparsity where the results are noisy compared with Locus. Moreover, for

the second latent source setting, Loc-Nuclear failed to recover the third latent source

as shown in Figure 3.10 (F), which indicate that low-rankness might not be sufficient

enough for recovering more complicated latent sources. On the other hand, the per-

formance of Loc-L1 is even worse. As shown in Figure 3.5 and 3.10 (E), although

Loc-L1 can provide sparse estimation, the estimated latent sources contain structured

noise. For the first block-shape setting, the estimated latent sources from Loc-L1 con-

tain block-shape noises. As shown in Figure 3.5 (E), such structured noise can be

hardly distinguished from the real underlying pattern. In the second latent source

setting, the problem is even more serious where the estimated latent sources contains

weird low-rank structure which are more clear in the intensity plots Figure 3.10 (E).

These results reveals the weakness for element-wise penalty - the penalization on each
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Table 3.1: Simulation results for comparing Locus with other methods with 100 sim-
ulation runs for the first setting. Values presented are mean and standard deviation
of correlations between true and estimated: latent sources and loading matrices for
the first setting.

coordinate cannot guarantee the desired property on constructed latent sources. This

further confirms the superiority of our proposed penalization method in decomposing

the connectivity matrices. Finally, as for DL, although the estimated latent sources

for setting 1 have good alignment with the truth, in the setting 2 the estimated latent

sources are still mixed with each other. Moreover, as shown in Figures 3.5, 3.10 (D),

the estimated latent sources of DL are noisy even with L1 penalty. This is partially

caused by the selection of tuning parameter which favors the BIC criteria, and an-

other reason might be that only the L1 penalty without low-rank structure tends to

over-parameterize the model and hence produce noisy results.
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Table 3.2: Simulation results for comparing Locus with other methods with 100
simulation runs for the second setting. Values presented are mean and standard
deviation of correlations between true and estimated: latent sources and loading
matrices for the second setting.
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3.4 Application to rs-fMRI data from the Philadel-

phia Neurodevelopmental Cohort (PNC)

3.4.1 PNC Study and Data Description

The PNC is a collaborative project from the Brain Behavior Laboratory at the Uni-

versity of Pennsylvania and the Children’s Hospital of Philadelphia (CHOP), funded

by NIMH through the American Recovery and Reinvestment Act of 2009 (Satterth-

waite, Elliott, Ruparel, Loughead, Prabhakaran, Calkins, Hopson, Jackson, Keefe,

Riley et al., 2014; Satterthwaite, Wolf, Roalf, Ruparel, Erus, Vandekar, Gennatas,

Elliott, Smith, Hakonarson et al., 2014). In this paper, we conducted the same rs-

fMRI preprocessing procedure as in Wang et al. (2016), including skull stripping,

signal stabilization, standard image registration, time series band filtering, spatial

smoothing, motion correction and a validated confound regression procedure, where

the preprocessing script is released from the 1000 Functional Connectomes Project.

We further conducted a quality control based on displacement analysis in the same

manner as Satterthwaite, Wolf, Roalf, Ruparel, Erus, Vandekar, Gennatas, Elliott,

Smith, Hakonarson et al. (2014); Wang et al. (2016). The preprocessed rs-fMRI

data were further mapped to the Power’s node system (Power et al., 2011) including

264 nodes. To facilitate the understanding of the functional roles of the nodes, we

assigned them to 10 functional networks corresponding to the major resting state

networks (RSNs) described by Smith et al. (2009). 32 of the 264 nodes were not

strongly associated with any RSN maps, and were therefore not included. At last,

we constructed the brain connectivity matrix by calculating the Pearson’s correlation

of each pair of time series among the remaining 232 nodes. We further conducted

a fisher z transformation to have the final functional connectivity matrices for 515

subjects of 26796 edges.
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3.4.2 Connectivity Analysis for PNC Study

We applied our proposed model Locus and InfoMax-based connICA to the prepro-

cessed functional connectivity data from PNC study. In the model, we set the number

of latent sources to be 30 for both Locus and connICA. To compare the results from

these 2 methods, we matched the estimated latent sources from Locus and connICA

based on correlation. With a matching criteria at 0.6, we have 18 matched latent

sources sources, parts of which are visualized in Figure 3.11. As expected, the es-

timated latent sources from Locus are much sparser and cleaner than those from

connICA.

First, we studied the reproducibility of the results from Locus and compare with

connICA. To evaluate whether the finding is reproducible, we randomly bootstrapped

the subjects for 200 times and ran Locus and connICA for these bootstrapped sam-

ples. We used the reproducibility measures in (3.16) and also consider the same two

adjusted summary statistics - Pearson correlation and Jaccard Index - to measure

the reproducibility on latent sources. Specifically, B = 200 is the number of boot-

strap, S
(b)
i is the ith latent source for bth bootstrap sample. Figure 3.12 shows the

reproducibility from the 18 matched latent sources from connICA and our proposed

method. Our method has significantly higher reproducibility compared with connICA

in both Pearson correlation and Jaccard Index (p = 0.005 for Pearson, p = 0.010 for

jaccard).

Moreover, among the 18 matched latent sources with connICA, 6 of them have

a correlation-based reproducibility higher than 0.7 for Locus which are visualized in

Figure 3.11. Figure 3.13 further shows the intensity level for these 6 high-reproducible

latent sources across all edges. As shown by this Figure, these matched latent sources

share similar patterns but the Locus provides much stronger signal to noise ratio

where the intensity profile from connICA are much more noisy. Finally, we visualized
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the top 1% edges for these 6 latent sources from Locus based on BrainNetViewer in

Figure 3.14.

To further examine the difference between connICA and Locus, Figure 3.15 com-

pared the difference between connICA and Locus for the 3 most correlated latent

sources: Latent Source (LS) 1, 3 and 4. We also note that although LS3 from con-

nICA and Locus are highly correlated (r = 0.703), the corresponding loading vectors

are quite different in terms of its association with age. We found that the loading

vector for LS3 of Locus is significantly associated with age (p = 0.027) while the

loading vector for LS3 of connICA is not (p = 0.952). As shown in Figure 3.11, the

activated regions for LS3 are within-cerebellum connections and the connections from

cerebellum to rest of the brain. Given the limited number of nodes in cerebellum,

the signals are relatively weaker where Locus showed its ability to remove the global

noise while connICA cannot. As further shown in Figure 3.15, we threshold the la-

tent source from Locus and connICA at 0.08, and examine the connectivities which

are preserved by connICA but penalized by Locus (blue dots in the first row). We

found that those connectivities for LS3 do not contain a clear pattern and also are

not associated with cerebellum. Similar for LS1 and LS4. This further justifies that

it is easier for Locus to remove the unrelated connectivity pattern. For connICA, to

achieve the same sparsity, it will remove more informative connections.

On the other side, Figure 3.16 shows two latent sources estimated from Locus

which has relatively high reproducibility based on Pearson correlation (LS7: 0.64;

LS8: 0.55) but cannot be matched from connICA. Figure 3.17 visualized the top

1% edges of these 2 latent sources. These two latent sources contains some global

connectivity patterns: LS7 contains the with-Lat Vis connections and the connections

between Lat Vis and EC, FPL and DMN, which is significantly associated with gender

(p = 0.005); LS8 contains the within-EC connections and the connections between

EC and SM, Op Vis, Aud, which is significantly associated with age (p < 0.001).
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3.5 Discussion

In this paper, we proposed a novel signal separation framework - Locus - specifically

designed for decomposing the brain connectivity matrices. The proposed method si-

multaneously specified the low-rank structure for all underlying brain subnetworks,

which saves a large number of parameters as well as allows the information to be

shared for edges connected to the same node. Moreover, we proposed a novel spar-

sity penalization method for the proposed decomposition framework which not only

ensures the desired sparsity on constructed latent sources and also gives analytic

solution in the estimation algorithm. We point out that the proposed penalization

approach is different from existing methods and is much more intuitive and achieved

better numerical performance than low-rank penalty or element-wise penalty. Fur-

thermore, we showed that the optimization problem of Locus is non-convex but exists

the block multi-convex property via conditioning. By taking advantage of these nice

properties, we proposed an efficient Node-Moving algorithm to estimate the unknown

parameters in the model which provides analytic solutions at each step. Finally, we

proposed a highly practical procedure to select the number of pathways in low-rank

decomposition across all sub-networks, which significantly simplifies the workload

for hyper-parameter tuning and provides a nice and intuitive interpretation of the

selection procedure.

We evaluated the performance of the proposed method based on extensive simula-

tion studies and compared it with the commonly used connICA framework based on

InfoMax and FastICA in neuroscientific field. We also examined the performance of

the proposed penalization approach with low-rank penalty and element-wise penalty

based on simulation. Results show that our approach can recover the true underlying

signal by penalizing the noise to nearly zero which cannot be achieved by existing

methods. Based on our study, we found that the low-rank penalty cannot ensure spar-
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sity while element-wise penalty gives biased estimation on the signal with structured

noise.

The next step is to further evaluate method’s reproducibility in different settings,

such as the reproducibility based on different imaging acquisition approaches. We also

point out that even though the proposed penalty utilized the L1 norm, other types

of norms like L2, MCP, SCAD can also be directly applied. Moreover, the proposed

Node-Moving algorithm can also provide analytic solution for those specifications.

Furthermore, the proposed framework can be applied to any types of connectivity data

with upper-triangular structure like structural connecitivty data from DTI or other

functional connectivity measure such as mutual information or casuality measures.

As for the proposed penaltization approach, it can also be extended to a more general

tensor-decomposition task to ensure the sparisty on constructed tensor or signal from

low-rank structure. For example, a regression setting with connectivity data can be

directly explored. We will release the R package - Locus - to CRAN soon to include

the current setting as well as other type of norms like SCAD and L2.
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Setting 1

Setting 2

1st Signal 2nd Signal 3rd Signal

Figure 3.4: Generated underlying true source signals of 2 settings in the simulation study
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(A) Locus

(B) InfoMax

(C) FastICA

(D) DL

(E) Loc-L1

(F) Loc-Nuclear

1st Signal 2nd Signal 3rd Signal

Figure 3.5: Estimated latent signals of 4 randomly selected simulation runs in setting 1
across all methods. The first row of each panel is a direct visualization of estimated latent
signal, and the second row of each panel is the trace plot of the estimated latent signal.
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Figure 3.6: Simulation results of latent sources for comparing Locus with other meth-
ods across 100 simulation runs based on the first setting. The first row represents
the averaged Pearson correlation between true and estimated latent sources. The sec-
ond row represents the standard deviation of Pearson correlation between true and
estimated latent sources in log scale.
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Figure 3.7: Simulation results of latent sources for comparing Locus with other meth-
ods across 100 simulation runs based on the second setting. The first row represents
the averaged Pearson correlation between true and estimated latent sources. The sec-
ond row represents the standard deviation of Pearson correlation between true and
estimated latent sources in log scale.
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Figure 3.8: Simulation results of methods’ reproducibility on latent sources for com-
paring Locus with other methods across 100 simulation runs based on the first setting.
The first row represents the averaged adjusted Pearson correlation between true and
estimated latent sources. The second row represents the averaged adjusted jaccard
index between true and estimated latent sources.
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Figure 3.9: Simulation results of methods’ reproducibility on latent sources for com-
paring Locus with other methods across 100 simulation runs based on the second
setting. The first row represents the averaged adjusted Pearson correlation between
true and estimated latent sources. The second row represents the averaged adjusted
jaccard index between true and estimated latent sources.
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(A) Locus

(B) InfoMax

(C) FastICA

(D) DL

(E) Loc-L1

(F) Loc-Nuclear

1st Signal 2nd Signal 3rd Signal

Figure 3.10: Estimated latent signals of 4 randomly selected simulation runs in setting 2
across all methods. The first row of each panel is a direct visualization of estimated latent
signal, and the second row of each panel is the trace plot of the estimated latent signal.
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Figure 3.11: Heatmap of six matched latent sources between Locus and connICA with high
reproducibility, where these six latent sources estimated from Locus have a Pearson-based
reproducibility higher than 0.7.
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Pearson’s Correlation Jaccard Index

Figure 3.12: Reproducibility analysis for 18 matched latent sources from Locus and
connICA. Left is based on Pearson’s correlation and right is for Jaccard Index. It is
shown that for the matched latent sources Locus tends to have higher reproducibility
compareed to connICA approach.
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Figure 3.13: Intensity plot of six matched latent sources between Locus and connICA with
high reproducibility, where these six latent sources estimated from Locus have a Pearson-
based reproducibility higher than 0.7.
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Latent Source 1

Latent Source 2

Latent Source 3

Latent Source 4

Latent Source 5

Latent Source 6

Figure 3.14: Visualizing the top 1% brain connectivities of the 6 matched latent signals
based on Locus using BrainNetViewer.
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Latent Source 1 Latent Source 3 Latent Source 4

Figure 3.15: Comparison between Locus and connICA. We selected the three most cor-
related latent sources from the 2 methods, and show the difference between them. First
row shows the scatter plot of the intensities from Locus and connICA with a threshold at
0.08, where blue dots represent the edges only significant in connICA but not in Locus.
In the second row, those blue dots are visualized in the heatmap which are the edges only
significant in connICA but not for Locus.

Latent Source 7 Latent Source 8

Figure 3.16: Two estimated latent sources based on Locus which are not identified by
connICA. These 2 latent sources have relatively high reproducibility and are significantly
associated with subjects’ clinical outcomes, i.e. gender and age,
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Latent Source 7

Latent Source 8

Figure 3.17: Visualizing the top 1% brain connectivities of the 2 estimated latent signals
from Locus which are not identified by connICA
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Chapter 4

A deep learning framework for

brain network analysis with brain

subnetwork structure
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4.1 Introduction

In recent years, brain network oriented analysis has caused great attention in neu-

roscientific field. Serving as human’s neuro-fingerprint, brain network based studies

provide great insights into many fundamental questions in neuroscience research, such

as neurodevelopment, neuroanatomy, neural basis of cognition, functional brain imag-

ing, mental disorders and electrophysiology (Bullmore and Sporns, 2009; Deco et al.,

2011; Satterthwaite, Wolf, Roalf, Ruparel, Erus, Vandekar, Gennatas, Elliott, Smith,

Hakonarson et al., 2014; Wang and Guo, 2019; Finn et al., 2015). In neuroimaging

studies, brain network measures are derived from either functional or structural brain

imaging to reflect the functional or structural connections among spatially distinct

locations across the brain (Bullmore and Sporns, 2009). For example, functional

connectivity, usually derived from functional magnetic resonance imaging (fMRI),

measures the temporal dynamics in neural processing of spatially disjoint brain areas

(Wang et al., 2016), and structural (or anatomical) connectivity measures the exis-

tence and structural integrity of tracts connecting different brain areas (i.e. white

matter tracts connecting cortical areas/nuclei) (Qiu et al., 2015). They both reflects

brain network structure from a different perspectives. Recently, researchers found

that brain network provides a new perspective to explore the underlying mechanism

of many important clinical outcomes, such as mental disorder, human’s intelligence,

depression, dementia and other cognitive issues (Finn et al., 2015; Amico and Goñi,

2018b; Satterthwaite, Wolf, Roalf, Ruparel, Erus, Vandekar, Gennatas, Elliott, Smith,

Hakonarson et al., 2014; Liu et al., 2017; Wang and Guo, 2019; Hu et al., 2016; Wada

et al., 2019). Many existing evidence supports to use brain network as a modern

biomarker to drive clinical decisions (Kiefer et al., 2015; Wu et al., 2015; Liu et al.,

2017). For example, Liu et al. (2017) summarized and demonstrated the usage of

brain network as a new guidance for early diagnosis and treatment of brain disorders.
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Table 4.1: A summary of discussed deep learning works in brain network study.

Kawahara et al. (2017) used structural connectivity to predict neurodevelopmental

outcomes in preterm infants. Craddock et al. (2009) developed a machine learning

model based on functional connectivity to predict depression state.

Although researchers have demonstrated the potential of using brain network as

predictor in many applications, brain network based prediction is still facing several

major challenges. First of all, brain network data is a complex system which is usually

high dimensional (Chung, 2018) and encompasses a range of underlying subnetwork

structures (i.e. default mode network) (Smith et al., 2009; Amico and Goñi, 2018b)

shown in Figure 4.1. This makes it hard to extract or analyze the information within

brain network data, leading to a high possibility of spurious findings in neuroscientific

research (Button et al., 2013). As a result, traditional multivariate statistical methods

or machine leaning models cannot fully explore the information in brain network data.

Figure 4.1: Visualizing some highly reproducible brain functional subnetworks derived
from PNC study based on BrainNetViewer from Chapter 3.

Nowadays, deep learning (DL) methods are getting really popular in the field,
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Figure 4.2: Heatmap of some highly reproducible binary brain functional subnetwork
masks derived from PNC study from Chapter 3.

and DL based brain network analysis has also caused great attention in Neuroimag-

ing society (Marblestone et al., 2016). Deep learning model denotes a class of machine

learning models that uses multiple layers to progressively extract higher level features

from the raw input, which is a generalized concept of neural network (Goodfellow

et al., 2016). DL models are well-known for its high predictive power in various ap-

plications, which can handle complex data structures and learn non-linear patterns

from the data by stacking various neural network layers appropriately. However,

neuroimaging data are usually expensive and neuroimaging studies usually have lim-

ited sample size, which ranges from dozens to hundreds (Button et al., 2013). In

contrast, deep learning methods usually have thousands to millions of parameters

to train, which is a typical n << p problem. Furthermore, DL based models are

usually criticized for the low interpretability and often referred as black box methods

(Heaven, 2019). This becomes a very serious limitation in neuroscientific research,

where understanding the underlying brain mechanism is preferred over classification

performance. Finally, DL models are usually complex, difficult to train and does not

have appropriate model diagnostics, which makes it hard to be trusted in driving

clinical decisions.

In practice, one commonly used strategy in DL-based brain network studies is to

first extract low-dimensional features from brain network data and then feed these

extracted features to a DL model. For example, Rubinov and Sporns (2010) summa-

rized a list of metrics which can be derived from brain network and is widely used
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in existing brain network oriented studies. Hu et al. (2016); Munsell et al. (2015)

used autoencoder to extract features from brain network data and build subsequent

classifier on it. Another example is from Meng and Xiang (2018) which use word2vec

algorithm to encode the network information into node level embeddings and then

utilized a convolutional neural network (CNN) on it for prediction. Although this

strategy can somehow reduce the burden in terms of less parameters for subsequent

neural network models, the framework is generally less flexible, and it also failed to

take advantage of deep learning’s most powerful ability in automatic feature process-

ing & selection.

The other strategy is to develop non-standard DL models for network-valued data.

One class of models is based on matrix-valued kernel functions (Jie et al., 2014; Zhang

et al., 2015; Dodero et al., 2015). Specifically, brain network data are usually stored

as symmetric connectivity matrix and some well-defined kernels can be used to quan-

tify the similarity among different brain networks so that the existing classification

methods such as kernel regression, support vector machine can be directly applied

here. Although theoretically solid, this class of methods suffers from low predictive

ability and the overall performance is highly sensitive to the selection of the kernel

function. Furthermore, kernel based methods do not have a direct interpretation

and therefore is less preferred. In recent years, graph convolutional neural network

(GCN) is another class of DL models getting really popular in the neural network

literature (Wu et al., 2019) where graph convolution stands for conducting a convo-

lutional operation on a network. Although relevant, most existing GCN works are

from a different perspective than brain network analysis. For example, existing GCN

models are mainly focusing on node level tasks within a network, such as node level

clustering or classification. But in brain network analysis, we are interested at using a

whole brain network for prediction/classifcation across all population (Parisot et al.,

2018).
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Convolutional neural network (CNN) is a very powerful class of DL models specif-

ically designed for processing imaging data (Goodfellow et al., 2016). By convoluting

a rectangle-shaped filter across the image data, CNN can deal with high dimensional

image data efficiently and save a large number of parameters. Although brain con-

nectivity matrices are usually visualized as an image, i.e. heatmap, CNN is not

directly applicable because the standard rectangle filter is not well-defined for net-

work data - the element in a brain connectivity matrix stands for an edge between 2

nodes in the network while the elements covered by the standard CNN filter does not

make any sense (Wada et al., 2019). To resolve such issue, Kawahara et al. (2017)

proposed a novel CNN model, BrainNetCNN, for analyzing brain network data by

defining a cross-shaped filter in convolutional layer. BrainNetCNN assumes that the

neighborhood of an edge (u, v) are all edges either connected to node u or node v,

which is covered by the cross-shaped filter. Although, such specification is appropri-

ate defined and saves a large number of parameters , the BrainNetCNN model is still

facing several challenges in terms of model interpretation and being less flexible for

the complex brain subnetwork structures. Furthermore, from the existing neuroimag-

ing literatures, some robust brain subnetwork structure are available as described in

Chapter 3. Moreover, Incorporating such information as a prior into DL model could

significantly improve model’s reliability. As a summary, we listed all discussed works

from 3 perspectives in Table 4.1: model’s flexibility, interpretability and whether

model has less parameters than a fully connected neural network model. From this

table, none of these methods achieve these 3 properties at same time. Therefore, in

this topic, we are planning to propose a novel deep learning framework to address

these issues by incorporting existing brain subnetwork structure.

In this paper, we propose a novel deep learning framework for brain network anal-

ysis by incorporating existing brain subnetwork information. First of all, we extend

the standard convolutional filter by defining an adaptively shaped graph convolu-
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tional layer (Mconv) by customizing the filter’s shape based on existing subnetwork’s

masks. Compared to traditional CNN model using rectangle filter or BrainNetCNN

model using cross-shaped filter, our filter is highly flexible based on existing subnet-

work information where the nearby neighborhood of an edge is defined based on the

brain subnetwrok structure, which reflects the underlying brain connectivty patterns.

Compared with a fully connected layer with same number of outputs, our model

saves the number of parameters by q times where q denotes the number of subnet-

works being considered. Moreover, the parameters in such subnetwork driven layer

can be mapping back to each brain subnetwork, which makes it easier for visualiza-

tion and interpretation. Following Mconv, we further define a Mask2score layer by

constraining the information only propagating within each subnetwork and only allow

interaction across subnetwork at the final layer. This specification is to further ensure

the interpretability of the model parameters, and it naturally provides an efficient and

robust model training strategy by viewing the model as an ensemble learning across

q subnetworks. Based on the experiment study, we demonstrate the advantage of our

model specification as well as the training strategy. More details will be presented in

following chapters.

This paper is organized as follows: in chapter 4.2 we present the methodology of

the proposed methods and discusses model train strategies; chapter 4.3 contains the

real data application of the proposed method and chapter 4.4 is for discussion and

conclusion.

4.2 Methodology

In this chapter, we will first present the proposed deep learning framework for brain

network data analysis. After that, we will show a novel algorithm to estimate the

unknown parameters in the model.
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Figure 4.3: A visualization of DLconv modeling framework for brain network data
analysis. This DLconv model contains a Mconv layer with 5 filters for each sub-
network, a Mask2Score framework with 1 layer combining the output from Mconv
into subnetwork-specific output, and a final layer combining the information from all
subnetworks into the final output.

4.2.1 Notation

Assume Y ∈ RV×V to be one observed brain connectivity matrix and o ∈ R to be

the outcome. As shown in Figure 4.2, assume we have q binary masks representing

the sub-network structure within the brain, M = {M1, ...,Mq} where Ml is of shape

V ×V and Ml(u, v) ∈ {0, 1} representing the lth latent subnetwork mask of the brain

network. We note that we do not explicitly specify the data structure on o which can

either be categorical or continuous, which only affects the selection of loss function

and activation function in the final layer of a neural network. In this paper, we aim

at proposing a general DL framework for brain network analysis. Different types of o

can be handled within this framework.
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4.2.2 DLconv - Model Specification

Generally, a DLconv model consists of three components: the input component con-

trolling with way to read in the data, information transformation component to pro-

cess the information, and the final output component to link the information with

the output. We will introduce these 3 components in the order here.

Mconv - Input Layer:

We first define a graph convolutional layer based on existing masks (Mconv) to take

brain network data as input. In convolution operator for a network, the fundamental

question is how to define the neighborhood for an edge. Based on the subnetwork

structure stored in mask M , we can flexibly specify the shape of filter in this graph

convolution layer. Specifically, based on M , the Mconv layer with H latent outputs

contains h V × V convolutional filters for each mask, Wl = {Wl1, ...,WlH}, where

Wlj(u, v) is constrained to be zero if Ml(u, v) = 0. The operator of the Mconv layer

is defined as

xlh = σ
(∑

u,v

(Y ◦Wlh)u,v

)
(4.1)

for l = 1, .., q, h = 1, ..., H, where ◦ represents for Hadamard product. Given the

property of Wlh, the operator within σ is same as conducting a global convolution

across the lth mask, i.e.
∑

(u,v) s.t. Ml(u,v)=1 Y (u, v)Wlh(u, v).

Mconv layer has 3 major advantages. First, compared with a fully connected layer

(FullNN) with same number of outputs, Mconv layer aves parameters from qHV 2 to

HV 2. Second, the parametersWl’s can be directly mapping back to the brain network

system. Compared with the cross-shaped filter in BrainNetCNN, this unique prop-

erty makes the estimated filters in Mconv easier for visualization and interpretation.

Thrid, Mconv layer incorporates the existing knowledge about the brain subnetwork

structure which flexibly defines the neighborhood of an edge connection. Different



106

levels of brain subnetwork structure can be used simultaneously.

Mask2Score - Transformation Component:

In this section, we define how the information extracted from Mconv to be prop-

agated in the model before reaching to the final layer. We already know each mask

Ml corresponds to a subnetwork and the output of lth mask as xl = [xl1, ..., xlH ]T

summarizes all the information within such subnetwork. To further ensure the in-

terpretability of our DL model, we specify an one-way information flow for each

subnetwork as in our information transformation component.

Specifically, we propose a Mask2Score framework by forbidding interaction across

subnetworks but only allowing information propagating within each subnetwork:

zl = fk ◦ ... ◦ f1(xl;β1l, ..,βkl), (4.2)

where f1,..,fk denotes k layers in Mask2Score and βl, .., βk are the parameters belong-

ing to these layers, and zl is a single output summarizing all the information of lth

subnetwork.

Last Layer:

In the last layer, we simply do a linear combination of the information across all

subnetworks as our final output, i.e. g(
∑q

l=1 αlzl + α0). The reason of this over-

simplified setting is we want to transform all the subnetwork level information into a

scale based on Mconv and Mask2Score, so that in this last layer the parameters can

be understood easily. For example, by comparing the weight αc and αb, we will have

a direct view of the importance of these 2 subnetworks for the outcome. As a result,

the layer layer is doing a simple generalized linear model on q subnetwork-specific

features without allowing higher order interactions among them. If there is a strong

evidence that higher order interaction between subnetworks, Last Layer can simply

add these second or thrid order interaction terms like a traditional statistical model,
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i.e. zc ∗ zb.

As a summary, the overall framework for DLconv is visualized in Figure 4.3. Based

on this Figure, we can clearly see that our DLconv is essentially an ensemble learning

approach across q separate models for each subnetworks, and parameters at each layer

can be directly interpretable for neuroscientific research.

4.2.3 Estimation

In this section, we will discuss the estimation method for the proposed DLconv model,

and show it can be solved based on standard optimization toolbox. We will also

introduce a updating procedure specifically designed for estimating the parameters

in DLconv in a robust manner.

4.2.3.1 Objective Function for DLconv

To deal with the parameters in DLconv layer, we need to first reformat the net-

work valued data into mask-specific vectors. First, we define a mask2vec operator as

M(Y ,M ) = vec({Y (u, v) if M(u, v) = 1}), which is to extract all elements in data

within the mask. Next, apply M to data and filters, and we have the mask-specific

inputs yl =M(Y ,Ml)and wl = [M(Y ,Wl1), ...,M(Y ,WlH)], of dimension pl ×H,

where pl is the number of edges in Ml. As a result, we can simply show that xlh from

equation (4.1) is same as σ(y′lwl)h. As a result, the final output from DLconv is

ô = g
(
α0 +

q∑
l=1

αlfk ◦ .. ◦ f1

(
σ(y′lwl);β1l, ..,βkl

))
, (4.3)

where αl is the weight for output from lth sub-network representing its importance,

each column of wl can be mapping back to whole-brain network system. From equa-

tion (4.3), we can easily see that DLconv essentially trains q sub-models in an en-

semble manner, which naturally provides an efficient way to do subnetwork-specific

training. Given outcome o, selected loss function L and penalty function p from a
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specific network analysis task, the optimization problem for DLconv model can be

summarized as

argminΘL(o, ô; Θ) + p(Θ), (4.4)

where Θ = {wl,βil, α0, αl; l = 1, .., q; i = 1, .., k}. (4.4) can be optimized using stan-

dard optimization toolbox, such as Tensorflow, via back propagation (BP) algorithm.

In next section, we will discuss the learning algorithm for (4.4) in details.

4.2.3.2 Learning Algorithm

Here we consider 2 strategies to learn the parameters in DLconv.

Strategy 1 - Joint: standard BP algorithm jointly applied to the whole model

using existing DL optimization toolbox.

Although strategy 1 is straightforward, it still faces some challenges. First, al-

though DLconv model has saved a large number of parameters than fully connected

neural network, there is still more parameters than the sample size which could lead

to unstable results. Furthermore, BP algorithm can easily over-emphasize into the

high predictive subnetworks and the gradient for other subnetworks in Mconv layer

can vanish quickly, pausing those parameters’ update. As a result, the estimated pa-

rameters in Mconv would not be accuracy. Therefore, to overcome these limitations,

we propose another strategy for DLconv model estimation.

Strategy 2 - SepIC: making use of the inherent structure of DLconv, we can train

the parameters in each subnetwork’s pathway in parallel, and combine them as our

final classifier:

1. Estimate parameters [βl,wl] in l th pathway by fixing other αi = 0, i 6= l:

β̂l, ŵl,∼= argmin L(o, g
(
α0 + αlfk ◦ ... ◦ f1(σ(y′lwl);β1l, ..,βkl

))
) + p(β1l, ..,βkl,wl);
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2. Conditioned on β̂l, ŵl, l = 1, .., q, update parameters α’s in the Final Layer.

SepIC approach further breaks the original DLconv problem into smaller pieces

which are easier to solve. This naturally relieves the burden to train DLconv with

limited sample size. Furthermore, by training each subnetwork in parallel, DLconv

will not be over-emphasized into a smaller proportion of subnewtorks where each

pathway can be treated equally. Furthermore, along with the training process, SepIC

approach can provide a sub-network specific training/testing performance, which can

be further used to understand the univariate performance on each subnetwork without

being affected by others.

4.3 Experiments

In this chapter, we will evaluate the performance of DLconv based on real brain net-

work data from 3 perspectives. First, we will compare its predictive ability with some

commonly used classification methods based on functional and structural brain con-

nectivity data. Second, we will examine the stability of the proposed methods based

on different initialization. Finally, we will conduct a DLconv-based brain network

analysis to interpret the findings from DLconv and illustrate its power in real data

analysis.

4.3.1 Study Design and Implementation

We used the brain structural (SC) and functional (FC) connectivity data from PNC

study to evaluate DLconv’s performance. Specifically, we have 235 SC matrices and

515 FC matrices, and we will use subject’s gender as outcome and treat FC or SC as

predictors for gender prediction. The SC and FC matrix are both symmetric and of

dimension 232× 232.

As for DLconv, we consider a setting with 5 filters for each mask in Mconv layer,
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1 layer in mask2score and 1 final layer, which is a DL model with 3 hidden layers

in total. We estimated the parameters based on both strategies - Joint and SepIC.

We compare the predictive performance of DLconv with 1: a fully connected neural

network model (Full NN) with same number of hidden layers and nodes, 2: a deep

learning model with the same Mconv layer plus a 2-layer Full NN with same size

as DLconv (Mconv + Full NN), 3: a BrainNetCNN model with the same size as

our DLconv model (same number of parameters), denoted as BrainNetCNNq, 4: the

best BrainNetCNN setting in Kawahara et al. (2017), denoted as BrainNetCNNsml,

5: support vector machine (SVM), 6: logistic regression with L1 penalty and 7: a

random forest (RF) model. We also examined other settings for DLconv which does

not check the predictive performance significantly.

As for implementation, we used sigmoid as the activation function, used ADAM

with learning rate at 0.0001 as optimizer, dropout rate to be 0.2, plus a L2 penalty

with λ = 0.5. The number of epochs is set to be 1500. The key evaluating metric is

set to be area under the curve (AUC) for the receiver operating characteristic (ROC)

curve. We also consider other 4 metrics including classification accuracy, F1 score,

precision and recall. All models are implemented via Tensorflow 1.12.0 in Python

3.6.3.

4.3.2 Results

4.3.2.1 Predictive Performance

We first examine the predictive performance of our proposed DLconv model with

other methods. We used both structural and functional connectivity data to predict

subject’s gender outcome. We used 5 fold cross validation framework and for each

data split we run the same model 3 times with different different model initialization.

The averaged and SD evaluating metrics across all runs are summarized in Table 4.2

for FC and in Table 4.3 for SC. The methods in Table 4.2 and Table 4.3 are ordered
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Table 4.2: Functional connectivity based gender predictive performance for comparing
DLconv with other methods with 5-fold cross validation. Values presented are mean
and standard deviation of the evaluating metrics for testing dataset.

Table 4.3: Structural connectivity based gender predictive performance for comparing
DLconv with other methods with 5-fold cross validation. Values presented are mean
and standard deviation of the evaluating metrics for testing dataset.
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based on the average AUC metric. Based on this study, we can see our method is

always among the top 3 across all methods being considered. Specifically, SepIC

training procedure does improve the predictive performance than the Joint training

for our DLconv model in both SC and FC settings. Moreover, from this study, we do

notice that deep learning based methods tend to have a higher predictive performance

than traditional machine learning approaches. Although SVM has a relatively high

accuracy and F1 score in FC based gender classification, as for SC its predictive

performance is quite limited. Furthermore, the FullNN method with same number

of hidden nodes has a pretty good predictive performance in both cases, which is

very close to DLconv (SepIC). This finding is as expected because the number of

parameters in FullNN is far more than DLconv approach. It is good to see that

DLconv has a comparable or even higher performance than FullNN approach. As for

Mconv + FullNN, its predictive performance for FC is pretty limited compared with

DLconv or FullNN approaches. BrainNetCNN models are around the middle of all

methods in both settings.

4.3.2.2 Stability Analysis on Model Initialization

It is a well-known problem that deep learning models are highly sensitive to the

different initialization. In this session, we investigate the effect of initialization on

DLconv based on FC data. Specifically, we use one data split where 80% data is used

as training and other 20% is for testing. We re-train our model 50 times based on

different weight initialization. We used FullNN and Mconv+FullNN as a comparison

here. The average AUC and loss across epoch is visualized as a solid line in Figure 4.4.

The shadow area is for 95% quantile of AUC or loss across 50 runs. It is clear to see

that DLconv (Joint) provides a much more stable training than other 2 methods. The

testing AUC metric gets stable after 200 epoches while FullNN and Mconv+Full have

very unstable testing AUC. This finding demonstrates the robustness in our model



113

Figure 4.4: Model performance stability analysis across 50 initialization from DL-
conv, FullNN, Mconv + FullNN. Solid line represents the average and shadow area
represents the 95% quantile.

and further indicates that the finding from our DLconv could be more reproducible

than the FullNN approach.

4.3.2.3 Predictive Functional Brain Subnetworks for Gender Effect

In this section, we dig deep into the finding from DLconv model for functional brain

network analysis on gender difference. To validate our finding and avoid uncertainty

in DL trainning, we bootstrap the FC dataset for 50 times and re-run our DLconv

models based on Joint and SepIC methods. First, we visualize the weight for the final

layer, wl, across 50 runs in Figure 4.5 for both methods. We observe a clear difference

on the weights between SepIC and Joint, where the weights from DLconv (Joint)

tend to be more random than DLconv (SepIC). There is a clear order of subnetworks

based on DLconv (SepIC), while for DLconv (Joint) there is no clear pattern. We

also visualize the testing AUC for each subnetwork across 50 runs in Figure 4.6 which

shares a similar pattern with the weight of DLconv (SepIC) in Figure 4.5. In Figure
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Figure 4.5: Boxplot of subnetwork-specific weights on the last Layer of DLconv across
50 bootstrap runs from two training strategies.

Figure 4.6: Boxplot of subnetwork-specific AUC for testing dataset across 50 boot-
strap runs of DLconv model trained by SepIC strategy.
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Figure 4.7: The 5 most predictive functional brain subnetworks for gender difference
based on DLconv trained via SepIC algorithm. Subnetworks are selected based on av-
erage weight or AUC across 50 bootstrap runs and the visualized subnetwork-specific
filters are the ones with largest weight in mask2score layer in the best performed
model across 50 runs.

4.7, we show a scatter plot between weight and test AUC for each subnetwork based

on DLconv (SepIC). The top 5 subnetworks are consistent in both the weight and

test AUC (the five subnetwork having a univariate test AUC ¿ 0.75). We selected

the best performed DLconv model across 50 runs and further selected the filter with

the largest absolute weight in mask2score layer, i.e. W
l,argmax{β(1)

l ,..,β
(5)
l }

. The selected

filters are visualized as heatmap in Figure 4.7. These represents the 5 most differential

patterns between male and female in the brain network.

4.4 Discussion and Conclusion

In this paper, we propose a novel deep learning framework - DLconv - for brain net-

work analysis based on existing brain subnetwork structure. Specifically, we propose

a subnetwork mask driven graph convolutional layer - Mconv - to extract the informa-
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tion within the brain network data, where the neighborhood of any brain connections

is specified by the subnetwork structure to appropriately deal with the unique struc-

ture in brain network. Furthermore, to ensure the interpretability within DLconv, we

propose a mask2score framework to ensure the information only propagating within

the same subnetwork and only combine the whole brain information at the final layer.

Our DLconv not only saves a large number of parameters but also provide highly in-

terpretable structure for neuroscientific research. Moreover, the subnetwork-separate

structure naturally trains an ensemble model within the brain network. This finding

motivates us to propose a more robust estimation procedure - SepIC - for DLconv

model training by using an emsemble learning procedure.

We evaluate the performance of the proposed model based on extensive real data

studies from 3 perspectives. First, based on the gender classification problem with

structural or functional brain network data, DLconv achieves a better predictive per-

formance than existing deep learning works for brain network. Second, we evaluate

model’s reliability across different model initialization and show that DLconv struc-

ture provides a more robust and stable estimation than full connected neural network.

Finally, we illustrate the advantage of using DLconv plus SepIC in real network data

analysis in terms of interpretability and flexiblity. Based on 50 bootstrap runs, we

identified several highly predictive brain functional subnetwork patterns for gender

difference. This finding is of great interest to understand the brain subnetwork dif-

ference between male and female, which provides great insights.

As for the future work, we plan to extend the experiments to other datasets to

further confirm the performance of DLconv in different applications, such as multi-

class prediction or continuous outcome regression. Currently, we only foucs on PNC

study for gender prediction, which relatively limited. As for methodology develop-

ment, there are two potential future directions along with this work. First direction is

motivated by our real data study. We noticed that for some subnetworks filters share
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a strong similarity with each other, while others are not. This finding might indicate

that the same number of filters is not very efficient. We can potentially change the

number of filter for each subnetwork to be it more flexible. One way to do this is

to start with a large number of filters and conduct a PCA on each subnetwork to

select the appropriate number of filters. The second direction is to extend the DL-

conv framework for time-varying brain network data. From a statistical perspective,

DLconv treats each subnetwork data as independent samples but this is not correct in

time-varying brain network analysis. We can build in some sequantial deep learning

layers after Mconv layer to link the information across temporal domain. This ex-

tension is of great interest because time-varying brain network proposes much richer

insights into the problem.
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Appendix A

Appendix for Chapter 2

1. Q-function in E step:

The detailed expression for the complete data log-likelihood function at each voxel v

is:

lv(Θ) =
N∑
i=1

K∑
j=1

[
log g (yij(v);Aijsij(v),E) + log g

(
sij(v); s0(v) + bi(v) +Cj(v)x∗i , τ

2I
) ]

+
N∑
i=1

log g (bi(v); 0,D) + log g
(
s0(v);µz(v),Σz(v)

)
+

q∑
`=1

log πl,zl(v)

where Cj(v) = [αj(v),βj(v)′] of dimension q × (p + 1), x∗i = [1,x′i]
′ and g(x;µ,Σ)

denotes the pdf of multivariate normal distribution for random vector x with mean

µ and covariance Σ.

We derive the Q function in E step as follows,

Q(Θ|Θ̂(k)) = E[l(Θ;Y ,X ,S,B,Z)|Y ]

= Q1(Θ|Θ̂(k)) +Q2(Θ|Θ̂(k)) +Q3(Θ|Θ̂(k)) +Q4(Θ|Θ̂(k)) +Q5(Θ|Θ̂(k)),
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where

Q1(Θ|Θ̂(k)) = −NKV
2

log |E| − 1

2

V∑
v=1

N∑
i=1

K∑
j=1

tr

{[
yij(v)yij(v)′ − 2AijE[sij(v)|y(v); Θ̂(k)]yij(v)′

+AijE[sij(v)sij(v)′|y(v); Θ̂(k)]A′ij

]
E−1

}
,

Q2(Θ|Θ̂(k)) = −NKV q
2

log |τ 2| − 1

2τ 2

V∑
v=1

N∑
i=1

K∑
j=1

tr

{[
E[sij(v)sij(v)′ + s0(v)s0(v)′+

bi(v)bi(v)′|y(v); Θ̂(k)] + 2E[bi(v)s0(v)′|y(v); Θ̂(k)] + 2x∗,Ti Cj(v)′E[s0(v) + bi(v)

− sij(v)|y(v); Θ̂(k)] +Cj(v)x∗ix
∗,T
i Cj(v)′ − 2E[s0(v)sij(v)′ + bi(v)sij(v)′|y(v); Θ̂(k)]

]}
,

Q3(Θ|Θ̂(k)) = −NV
2

log |D| − 1

2

V∑
v=1

N∑
i=1

tr

{
D−1E[bi(v)bi(v)′|y(v); Θ̂(k)]

}
,

Q4(Θ|Θ̂(k)) = −1

2

V∑
v=1

q∑
`=1

m∑
j=1

p[z`(v) = j|y(v); Θ̂(k)]

{
log σ2

`,j +
1

σ2
`,j

[
µ2
`,j

+ E[s
(`)
0 (v)2|z`(v) = j; y(v), Θ̂(k)]− 2µ`,jE[s

(`)
0 (v)|z`(v) = j,y(v); Θ̂(k)]

]}
,

Q5(Θ|Θ̂(k)) =
V∑
v=1

q∑
`=1

m∑
j=1

p[z`(v) = j|y(v); Θ̂(k)] log π`,j,

2. Details about the E step of the exact EM algorithm.

In this section, we provide the details about the derivation in the exact E step. By

collapsing our model across N subjects and K visits, for v = 1, .., V ,
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y(v) = A
(
U (c)µz(v) +U (c)ψ(v) +Hb(v) +C∗(v)X∗ + γ(v)

)
+ e(v), (A.1)

= AU (c)µz(v) +AC∗(v)X∗ +ARrz(v) + e(v),

whereA = blockdiag(A11, ..,ANK), b(v) = [b1(v)′, .., bN(v)′]′, γ(v) = [γ11(v)′, ..,γNK(v)′]′,

e(v) = [e11(v)′, .., eNK(v)′]′, U (c) = 1NK ⊗ Iq, H = (IN ⊗ 1K) ⊗ Iq, C∗(v) = IN ⊗

[C1(v)′, ..,CK(v)′]′,X∗ = [x∗,T1 , ...,x∗,TN ]′R = [H ,U (c), IqNK ], rz(v) = [b(v)′,ψ′z(v),γ(v)′]′.

Conditioned on latent variable z(v), A.1 can be represented as:

y(v)−AU (c)µz(v) −AC∗(v)X∗
∣∣∣rz(v), z(v) ∼ N(ARrz(v),Υv), (A.2)

rz(v)|z(v) ∼ N(0,Γz(v))

where Υv = INK ⊗ Ev, Γz(v) = blockdiag(IN ⊗D,Σz(v), τ
2IqNK). From (A.2), we

can derive the conditional distribution of [rz(v)|y(v), z(v)] through Bayes’ Theorem,

rz(v)

∣∣∣y(v), z(v) ∼ N(µr(v)|y(v),Σr(v)|y(v)),

µr(v)|y(v) = Σr(v)|y(v)R
′A′Υ−1

[
y(v)−AU (c)µz(v) −AC∗(v)X∗

]
,

Σr(v)|y(v) =

(
Γ−1

z(v) +R′A′Υ−1AR

)−1

.

Next, we evaluate the conditional distribution of L(v). Given that L(v) = Prz(v) +

Qz(v), we have L(v)
∣∣∣y(v), z(v) ∼ N(Pµr(v)|y(v) +Qz(v),PΣr(v)|y(v)P

′), where

P =


IqN 0 0

0 Iq 0

H U (c) IqNK

 ,Qz(v) =


0

µz(v)

U (c)µz(v) +C∗(v)X∗

 .
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Based on Bayes’ Theorem, we have

p[z(v) | y(v)] ∝
( q∏
l=1

πl,zl(v)

)
g(AU (c)µz(v) +AC∗(v)X∗,ARΓz(v)R

′A′ + Υv).

By integrating out p[z(v) | y(v)], we obtain the conditional distribution of L(v).

3. Details about the M step of the exact EM

In this section, we provide the M step of the exact EM.

• Update the time-specific covariate effects Cj(v): for j = 1, .., K, v = 1, .., V ,

Ĉj(v)(k+1) =

(
N∑
i=1

x∗ix
∗,T
i

)−1 N∑
i=1

{
x∗i

(
E[sij(v)′ − s0(v)′ − b0(v)′|y(v); Θ̂(k)]

)}
.

• Update the mixing matrices Aij: for i = 1, .., N , j = 1, .., K,

Â
(k+1)
ij =

{
V∑
v=1

yij(v)E[sij(v)′|y(v); Θ̂(k)]

}{
V∑
v=1

E[sij(v)sij(v)′|y(v); Θ̂(k)]

}−1

,

and then update Â
(k+1)
ij = H(Ă

(k+1)
ij ) where H(·) is the orthogonalization trans-

formation.

• Update the first level variance term Ev = σ2
0Iq with:

σ̂
2(k+1)
0 =

1

NKV q

V∑
v=1

N∑
i=1

K∑
j=1

{
yij(v)′yij(v)− 2yij(v)′Â

(k+1)
ij E[sij(v)|y(v); Θ̂(k)]

+ tr
[
Â

(k+1)
ij E[sij(v)sij(v)′|y(v); Θ̂(k)]Â

(k+1)′
ij

]}
.

• Update subject-specific variance term D :

D̂(k+1) =
1

NV

V∑
v=1

N∑
i=1

E[bi(v)bi(v)′|y(v); Θ̂(k)],
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• Update second level variance term τ 2Iq :

τ̂ 2(k+1) =
1

NKV q

V∑
v=1

N∑
i=1

K∑
j=1

tr

{
E[sij(v)sij(v)′ + s0(v)s0(v)′ + bi(v)bi(v)′|y(v); Θ̂(k)]

+ 2E[bi(v)s0(v)′|y(v); Θ̂(k)] + 2x∗,Ti Cj(v)′E[s0(v) + bi(v)− sij(v)|y(v); Θ̂(k)]

+Cj(v)x∗ix
∗,T
i Cj(v)′ − 2E[s0(v)sij(v)′ + bi(v)sij(v)′|y(v); Θ̂(k)]

}
,

• Update π`,j:

π̂
(k+1)
`,j =

1

V

V∑
v=1

p[z`(v) = j|y(v); Θ̂(k)].

• Update µ`,j:

µ̂
(k+1)
`,j =

∑V
v=1 p[z`(v) = j|y(v); Θ̂(k)]E[s0`(v)|z`(v) = j,y(v); Θ̂(k)]

V π̂
(k+1)
`,j

.

• Update σ2
`,j :

σ̂
2(k+1)
`,j =

∑V
v=1 p[z`(v) = j|y(v); Θ̂(k)]E[s0`(v)2|z`(v) = j,y(v); Θ̂(k)]

V π̂
(k+1)
`,j

− [µ̂
(k+1)
`,j ]2.

Here, E[s0`(v) | z`(v) = j,y(v); Θ], E[s0`(v)2 | z`(v) = j,y(v); Θ] and p[z`(v) = j |

y(v); Θ] are the marginal conditional moments and probability related to the `th IC.

They are derived by summing across all the possible states of the other q − 1 ICs as

follows,

E[s0`(v) | z`(v) = j,y(v); Θ] =

∑
z(v)∈R(`,j) p[z(v) | y(v); Θ]E[s0`(v) | y(v), z(v); Θ]

p[z`(v) = j | y(v); Θ]
,

(A.3)

p[z`(v) = j | y(v); Θ] =
∑

z(v)∈R(`,j)

p[z(v) | y(v); Θ].

where R(`,j) is defined as {zr ∈ R : zr` = j} for all ` = 1, .., q, j = 1, ...,m.
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4. Statistical inference for testing covariate effects in L-ICA:

In this section, we present the statistical inference procedure for testing covariate

effects in L-ICA. We first stack the fMRI data from all visits of a subject to have the

subject-specific fMRI data yi(v) of dimension qK × 1 which is [yi1(v)′, ...,yiK(v)′]′,

and a non-hierarchical form of L-ICA is derived by combining equations (2.1),(2.2)

and (2.3),

A′iyi(v) = Uµz(v) +α(v) +Xiβ(v) +Uψz(v) +Ubi(v) + γi(v) +A′iei(v), (A.4)

whereAi = blkdiag(Ai1, ...,AiK), γi(v) = [γi1(v)′, ...,γiK(v)′]′, ei(v) = [ei1(v)′, ..., eiK(v)′]′,

α(v) = [α1(v)′,α2(v)′, ..,αK(v)′]′, β(v) = [vec [β1(v)′]′ , ..., vec [βK(v)′]′]′, U = 1K ⊗

Iq and Xi = IK ⊗ (x′i ⊗ Iq). The model in (A.4) is further re-written as

y∗i (v) = X0α
∗(v) +Xiβ(v) + ζi(v), (A.5)

= X∗iC
∗(v) + ζi(v),

where y∗i (v) = A′iyi(v), X∗i = [X0,Xi], X0 =

 1 0′K−1

1K−1 IK−1

 ⊗ Iq, α∗(v) =

[µ′z(v),α2(v)′, ..,αK(v)′]′, C∗(v) = [α∗(v)′,β(v)′]′ and ζi(v) = Uψz(v) + Ubi(v) +

γi(v) + A′iei(v) ∼ N(0,Wi(v)) is the multivariate zero-mean Gaussian noise term

where Wi(v) = U(Σz(v) +D)U ′+AiEvA
′
i + τ 2IqK , which can be shown as Wi(v) =

W (v) = U(Σz(v) +D)U ′ + (σ2
0 + τ 2)IqNK .

5. Details about the pre-whitening prior to ICA:

Following previous work (Beckmann and Smith, 2004), we perform preliminary anal-

ysis to prewhiten the data so that the noise covariance can be assumed to be isotropic
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across voxels in the probabilistic ICA model. Specifically, if the original covari-

ance of the noise eij(v) is known as σ2
0Ev, we can use the Cholesky decomposition

Ev = KvK
′
v to rewrite model (2.1) as

K−1
v yij(v) = K−1

v Aijsij(v) +K−1
v eij(v), (A.6)

and obtain a new representation,

ȳij(v) = Āijsij(v) + ēij(v), (A.7)

where ēij(v) ∼ N(0, σ2
0I). Therefore, the noise covariance becomes isotropic and

standardized across voxels.

When Ev is unknown, the prewhitening can be achieved by the following iterative

procedure: (1) start with an initial noise covariance E
(0)
v , prewhiten the data as in

(A.6), (2) with voxel-wise prewhitened data, we can readily derive the ML estimates

of ˆ̄Aij,ML, ŝij,ML(v) and σ̂2
0,ML (Beckmann and Smith, 2004), (3) re-estimate the noise

covariance Ev based on the residuals ˆ̄eij(v) from model (A.7), and then repeat steps

(1)-(3). By performing the iterative procedure, we obtain the preprocessed data for

the subsequent ICA modeling.

6. Robustness of between-group test results based on L-ICA

We conduct additional analyses to evaluate the robustness of the between-group com-

parison results in the DMN for the ADNI2 study based on the proposed L-ICA. We

obtain 51 data sets by applying the leave-one-out procedure on the ADNI2 data,

where each data set contains 50 subjects by removing one subject from the original

data. We then run L-ICA and conduct between-group comparisons for each of the

data sets. We evaluate the consistency of the comparison results for each voxels in

the DMN by examining whether the significance of the test result is consistent or
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not with the original data. Specifically, for voxel v, the consistency rate is defined

as 1
51

∑51
k=1 1(sigk(v) = sigorg(v)), where sigorg(v) is a binary indicator that equals 1

if the voxel v showed significant between-group test result in the original data and

equals 0 if otherwise, and sigk(v) is the corresponding binary test significance in-

dicator under the kth leave-one-out dataset. Table A.1 presents the results on the

consistency rate across voxels for each of the group comparisons, including AD vs.

CN at every visit, EMCI vs. LMCI at every visit. We also examine the consistency for

longitudinal changes from baseline to year 2 for the AD group. Specifically, we first

present the average consistent rate across all voxels in the network (1st row in Table

A.1) Then, we present the average consistency rates separately for voxels that are

significant in the original tests (2nd row in A.1) and voxels that are non-significant

in the original tests (3rd row in Table A.1). Results show that the group test re-

sults based on the L-ICA on average have a consistent rate of over 90% across the

DMN and also within both significant voxels and non-significant voxels, indicating the

between-group comparison results based on L-ICA are fairly robust for the ADNI2

study.

Table A.1: Consistency of the group comparisons results based on L-ICA for the
ADNI2 study.

Averaged Consistency AD vs CN LMCI vs EMCI Year2 vs
Rate Baseline Year 1 Year 2 Baseline Year 1 Year 2 Baseline
All voxels in DMN 0.948 0.949 0.945 0.936 0.943 0.926 0.966
Voxels w. diff. 0.960 0.966 0.968 0.959 0.961 0.955 0.922
Voxels w.o. diff. 0.945 0.946 0.937 0.927 0.938 0.912 0.973
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Appendix B

Appendix for Chapter 3

1. Detailed derivation in Node-Moving algorithm:

To see the linkage between (9) and (10), we first transfer (9) into edge-wise form:

∥∥∥Ã′lỸ − L(XlDlX
′
l)
′
∥∥∥2

2
+ φ

∑
u<v

|Xl(u)′DlXl(v)|

=
∑
u<v

(
Ã′lỸ (u, v)−Xl(u)′DlXl(v)

)2

+ φ
∑
u<v

|Xl(u)′DlXl(v)|,

which contains V (V − 1)/2 terms. To update Xl(v) while conditioning on others, we

only take the terms involved with Xl(v) which contains V − 1 terms:

f(Xl(v)) =
V∑

u=1,u6=v

(
Ã′lỸ (u, v)−Xl(u)′DlXl(v)

)2

+ φ

V∑
u=1,u 6=v

|Xl(u)′DlXl(v)|

=
∥∥∥Ã′lỸ (−v, v)−Xl(v)′DlXl(−v)′

∥∥∥2

2
+ φ

V∑
u=1,u6=v

|Xl(u)′D̂lXl(v)|,

which is same as (10). It is clear that f(Xl(v)) is convex since the hessian matrix

has the form

H(Xl(v)) = DlXl(−v)′Xl(−v)Dl
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which is not involved with Xl(v) and is positive semi-definite. Then, it is clear to see

the block multi-convex property in simplified problem.

2. Proof of Theorem 2.1 Block Multi-Convex:

In 2.1, we will first show the non-convexity by proposing a counter example. Then,

we show the block multi-convexity in 2.2.

2.1. Non-convexity in Locus:

We use a toy example to show that problem is not convex. The unknown pa-

rameters here are Θ = {A,X1, ..,Xq,D1, ...,Dq}. Denote f(Θ) =
∑N

i−1 ‖Yi −∑q
l=1 ailL(XlDlX

′
l)‖2

2+φ
∑q

l=1 ‖L(XlDlX
′
l)‖1. WhenN = 2, Y = [0.33,−0.03,−0.02;

0.46, 0.15, 0.06], φ = 0, q = 2, R1 = R2 = 1, we can find Θ1 and Θ2 satisfying

that f(0.5Θ1 + 0.5Θ2) > 0.5f(Θ1) + 0.5f(Θ2). For example, if we set Θ1 = {A =

I2,D1 = 1,D2 = 1,X1 = [−0.35,−0.80,−0.50]′,X2 = [−0.86,−0.20,−0.47]′} and

Θ2 = {A = I2,D1 = 1,D2 = 1,X1 = [0.21, 0.27, 0.94]′,X2 = [−0.06, 0.99,−0.13]′},

we have f(0.5Θ1 + 0.5Θ2) = 0.542 and 0.5f(Θ1) + 0.5f(Θ2) = 0.448. This shows that

f is not convex.

2.2. Block multi-convexity in Locus:

In the paper and Appendix 1, we show that the problem is block multi-convex when

A is orthogonal. In this section, we will release this assumption and show a general

case. Specifically, we will only show the problem is convex on Xl(v) given other

terms.

First, we reformat the function to element version:

f =
N∑
i=1

∑
u<v

(
Yi(u, v)−

q∑
l=1

ailXl(u)DlXl(v)′
)2

+ φ

q∑
l=1

∑
u<v

|Xl(u)DlXl(v)′|

Here we focus on term Xl(v) by treating it as unknown x, and assume other terms
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are given. We have

f =
N∑
i=1

V∑
u=1,u6=v

(
Yi(u, v)− ailXl(u)Dlx−

∑
h6=1

aihXh(u)DhXh(v)′
)2

+ φ
V∑

u=1,u 6=v

|Xl(u)Dlx|+ c

=
N∑
i=1

(
Y

(0)
i (−v, v)− ailXl(−v)Dx

)2

+ φ

V∑
u=1,u6=v

‖Xl(−v)Dlx‖1 + c

, where c is a constant not involved withXl(v). Therefore, we have the hessian matrix

of Xl(v) to be
∑N

i=1 a
2
ilDlXl(−v)′Xl(−v)Dl, which is a positive semi-definite matrix.

This finishes the proof.

3. Analytic Solution for Xl(v)

In this section, we show that when Xl(−v) is full rank, we can have the analytic

solution forXl(v) for (10) based on (11-12). First, we set Sl(−v, v) = Xl(−v)DlXl(v)

and treat Sl(−v, v) as unknown parameter in (10) which will be same as (11). As

shown in Fan and Li (2001), (11) has analytic solution as

Ŝl(−v, v) = diag
(

sgn
(
Ỹ (−v, v)′Ãl

))(
|Ỹ (−v, v)′Ãl| −

φ

2
1V−1

)
+
,

where sgn represents sign function for each element. Next, we map Ŝl(−v, v) to the

column space of Xl(−v)Dl via regression framework and when Xl(−v) and Dl are

full rank we have

X̂l(v) = D−1
l

(
Xl(−v)′Xl(−v)

)−1
Xl(−v)′Ŝl(−v, v)

= D−1
l

(
Xl(−v)′Xl(−v)

)−1
Xl(−v)′diag

(
sgn
(
Ỹ (−v, v)′Ãl

))(
|Ỹ (−v, v)′Ãl| −

φ

2
1V−1

)
+
.

Therefore, the Node-Moving algorithm has analytic solution at each step without

the need of gradient-based numerical approximation and hence is highly efficient and

reliable.
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