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Abstract 

Higher-order topological knots in non-Hermitian lattices 
By Ivan Wang 

In two dimensions, Hermitian lattices with non-zero Chern numbers and non-Hermitian 

lattices with a higher-order skin e↵ect (HOSE) bypass the constraints of the Nielsen–Ninomiya 

“no-go” theorem at their one-dimensional boundaries. This allows the realization of 

topologically-protected one-dimensional edges with nonreciprocal dynamics. However, 

unlike the edge states of Chern insulators, the nonreciprocal edges of HOSE phases 

exist only at certain edges of the two-dimensional lattice, not all, leading to corner localized 

states. In this work, we investigate the topological connections between 

these two systems and uncover novel non-Hermitian topological phases possessing 

“higher-order topological knots” (HOTKs). These phases arise from multiband topology 

protected by crystalline symmetries and host point-gap-protected nonreciprocal edge 

states that circulate the entire boundary of the two-dimensional lattice. We show that 

phase transitions typically separate HOTK phases from “Complex Chern insulator” 

phases –non-Hermitian lattices with nonzero Chern numbers protected by imaginary 

line gaps in the presence of time-reversal symmetry.
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Chapter 1

Introduction

Some contents of this thesis have been submitted for publication, available as Yifan

Wang and Wladimir Benalcazar “Higher-order topological knots in non-Hermitian

lattices”, arXiv:2412.05809, 2024 (Ref.[85]).

1.1 Symmetry, topology, and condensed matter

physics

One of the ultimate goals of condensed matter physics is to understand and classify

di↵erent quantum systems. The discovery of integer quantum Hall e↵ect (IQHE),

for example, for the first time linked topology to quantum systems. Through years

of development, the physical intuition behind IQHE results in a whole new class of

quantum systems, called topological insulators and topological superconductors. In

this section, we aim to provide a general review of the Hermitian topological insulator

and topological superconductors to provide a better context for the main results of

the paper.

In 1980, Klaus von Klitzing discovered that, under a strong magnetic field, the bulk

of MOSFET (metal-oxide-semiconductor field-e↵ect transistor) remains an insulator,

1
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while its edge becomes a conductor. Surprisingly, the conductance is quantized to the

value �x,y =
e
2

h
C, where C is an integer Z [37]. This phenomenon is later referred to

as the integer quantum hall e↵ect.

In 1982, Thouless, Kohmoto, Nightingale, and den Nijs identified C as the Chern

number, linking the integer quantum Hall e↵ect to topology [81]. Notably, the existence

of non-trivial Chern number in the system requires the breakdown of time-reversal

symmetry. In the case of IQHE, this was realized by adding a magnetic field. Another

relevant discovery in the 80s is the quantum anomalous Hall e↵ect (QAHE) proposed

by Duncan Haldane [19]. In contrast to IQHE which requires a strong magnetic

field, QAHE does not require a magnetic field. The breakdown of the time-reversal

symmetry originated from the complex next-nearest-neighbor hopping in Haldane’s

model. Toy models that realize QAHE are generally referred to as Chern insulators.

In 2001, Alexei Kitaev proposed a 1D p-wave superconducting chain, which hosts

unpaired Majorana zero modes at the ends of the chain [35]. The Kitaev chain contains

an Z2 invariant that identifies the existence of Majorana zero modes. The existence of

such an invariant depends on the particle-hole symmetry of the system. This results

in the so-called topological superconductors. Around 2005, building on top of IQHE,

the discovery of the quantum spin Hall e↵ect (QSHE) once again linked topology

and condensed matter physics [30, 31, 38]. Similarly to IQHE, QSHE also exhibits

edge-conducting states. But instead of the Chern number, the existence of QSHE

edge states is identified through a Z2 invariant, which is sometimes referred to as

Kane-Mele Z2 invariant [31]. The existence of Kane-Mele Z2 invariant also depends

on the existence of TRS.

After these discoveries, a surge of linking symmetry, topology, and condensed

matter physics occurs, forming the so-called topological insulators (TI) and topological

superconductors (TSC) [18, 49, 17, 25]. In the following, to limit our scope, we will

only mention TIs.
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The connection between non-trivial topological invariants in the bulk and the

existence of edge states formed the bulk-boundary correspondence. Importantly, the

bulk-boundary correspondence of TIs and TSCs also linked mathematical concepts

(topological invariants) to physical phenomena (edge states). The topological edge

states for a 2D crystal lattice, such as those of IQHE and QSHE mentioned previously,

are of particular importance because they circumvent Nielsen and Ninomiya (NN)

theorem [56, 54, 55]. NN theorem states that in a translational invariant, local,

Hermitian lattice system, the system cannot have a single chiral fermion in the

Brillouin zone. Therefore, by the constraints of the NN theorem, all chiral fermions

must come in pairs of opposite chirality, a phenomenon called fermion doubling. IQHE

forms a chiral fermion at one edge by compensating the chiral fermion with opposite

chirality at the opposite edge. In this way, a circulation current can be formed at

the boundary of the systems carried by chiral fermions with the same chirality. The

edge states of QSHE consist of two counter-propagating edge modes of opposite spin

and chirality. Time-reversal symmetry prevents back-scattering between the two edge

states. Thus, the edge of QSH systems can carry two currents traveling in the opposite

direction. The promising physical phenomena of TIs drive the physicist to understand

them in a systematic way, that is, to classify them.

Trying to understand TIs and TSCs systematically, the condensed matter commu-

nity begins the classification of Hamiltonians around 2010. Since the classification

methods relate symmetries and topological invariants, which is essential to our results

in this paper, in the following, we briefly recount the classification methods.

The starting points for analyzing most condensed matter systems begin by taking

two considerations: (1) periodic boundary conditions (PBC) of the crystal, reflecting

the translational symmetry of the crystal lattice, and (2) the tight-binding approx-

imation, which models electrons as being localized to atoms with hopping between

neighboring sites. The periodic boundary conditions allow us to define the concept
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of unit cell: the smallest repeating unit of the lattice i.e. by repetitively translating

unit cell, we can reproduce the whole lattice. Thus, the Hamiltonian that describes

the crystal lattice should have the same periodicity as the unit cell. Translational

invariance also makes the lattice momentum k a good quantum number, allowing

us to use k to label eigenstates. The tight-binding approximation discretizes the

Hamiltonian, which greatly benefits numerical calculations.

Due to the above two conditions, the e↵ective Hamiltonian in real space can be

exactly Fourier transformed into k space. The resulting Hamiltonian is called the Bloch

Hamiltonian h(k). The translational symmetry in the real space implies translational

symmetry in the k space. We call the lattice in the k space the reciprocal lattice. The

unit cell will also transform into the k space, forming the Brilloiun zone (BZ): the

smallest repeating unit of the reciprocal lattice. In 1D, the k space periodicity implies

h(k + 2⇡/a) = h(k), where we set the lattice constant a = 1 throughout the paper.

The BZ is given by k 2 [0, 2⇡). The topological invariants mentioned previously,

such as the Chern number or the Kane-Mele Z2 invariant, are all defined in the BZ

i.e. under PBC. More concretely, non-trivial topological invariants in the BZ tell

us the existence of edge states when the boundary is open, which is the meaning of

bulk-boundary correspondence. Thinking in a more abstract sense, we consider BZ as

a parameter space given by a circle S1. More generally, in n-dimension, BZ is given by

the n-torus T n. The Bloch Hamiltonian can thus be considered as a mapping of the T n

torus to some matrix space. The classification problems of condensed matter system

Hamiltonians thus become a problem of classification of matrices and mappings in

mathematics.

The heart of the classification relies on three symmetries: particle-hole symmetry

(PHS)

Ph(k)P�1 = �h(�k),P2 = ±1, (1.1)

which comes from adopting the mean-field approximation of TSC [65]; time-reversal
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symmetry (TRS)

T h(k)T �1 = h(�k), T 2 = ±1, (1.2)

the existence of which depends on the existence of magnetic field or complex hoppings;

chiral symmetry (CS)

Ch(k)C�1 = �h(k), C2 = 1, (1.3)

which comes from the combination of PHS and TRS. As mentioned previously, we

can consider the classification of Hamiltonians as equivalent mappings from T n torus

to matrix space. The matrix space is constrained by the above three symmetries.

The classification of equivalent mappings belongs to homotopy theory, which is well

studied in mathematics [24]. This results in the ten-fold classification of TIs and

TSCs [1, 12, 36, 80, 64, 67, 78], which accounts for all possible combinations and

exhaust “strong” topological invariants in all possible dimensions. Notably, none

of these three symmetries originates from the geometry of the lattice. Thus, PHS,

TRS, and CS are called internal symmetries: Lattice deformation and distortion will

not break these symmetries. The topological invariants based on the classification

of internal symmetries are called strong invariants: their existence is robust against

disorder. The robustness of topological invariants also means that edge states, and

thus the current carried by edge states, is robust. Indeed, it is known that lattice

defects will not hinder current transportation at the boundary of TIs.

Having been convinced by great promises of TIs, physicists began to search

for more exotic topological phenomenon, even by breaking down one of the main

assumptions of quantum mechanics: Hermiticity. We review the physical motivations

and consequences of breaking Hermiticity of lattice systems in the next section.
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... ...

Figure 1.1: Lattice of the Hatano-Nelsen model 1.5 and its spectrum (plotted at t = 1,
g = 0.5) on the complex plane. The spectrum is colored according to the value of k in
BZ.

1.2 Rise of non-Hermiticity and topology

One of the most fundamental assumptions of quantum mechanics is that observables

must be described by Hermitian operators. Hamiltonian, for example, is imposed

to be Hermitian such that its eigenvalues, which is energy, must be real. However,

complex energy also has a physical meaning. The imaginary part of the eigen-energy

reflects the exponential decay or growth of the corresponding eigenstates. Indeed, the

non-Hermitian (NH) Hamiltonian was known in the 1960s to describe the e↵ective

edge Hamiltonian of an open quantum system [13]. Due to the exchange of energy

between the system and the environment, the complex energy from the e↵ective

Hamiltonian is useful for understanding finite-life-time particles on a phenomenological

level. However, a systematical understanding of non-Hermitian Hamiltonian and their

possible application was still lacking until recently.

It is worth noticing that, as mentioned in the previous section, one of the assump-

tions of NN theorem is the Hermiticity of Hamiltonian. Non-Hermitian Hamiltonian

is a natural platform for bypassing the NN theorem and realizing transportation

properties that are otherwise impossible in Hermitian systems. It is known that

robust and nonreciprocal transportation similar to that of the edge of Chern insulator

is impossible to realize in 1D Hermitian systems. However, this limitation can be

easily bypassed in non-Hermitian systems. A famous example is the Hatano-Nelson

(HN) model [22, 23, 21]. HN model considered a 1D tight-binding Hamiltonian with
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in-equivalent hopping strength in left and right direction

H =
X

n

tc†
n+1cn + gc†

n
cn+1, (1.4)

which has the form in k space

hHN(k) = teik + ge�ik. (1.5)

The imbalance in hopping strength will create a preferable hopping direction for the

electrons, that is, towards the direction with stronger hopping. This can be reflected

in the complex spectrum of hHN(k) in Fig. 1.1. The right mover (located at k = ⇡)

has the largest imaginary energy, while the left mover (located at k = 0) has the

smallest imaginary energy. Under time evolution, this leads to the exponential growth

of the right mover, which will eventually dominate the movement of wave packet. On

the other hand, the left mover will evanescent exponentially. This is how HN model

explicitly realizes unidirectional propagation, and thus, bypassing NN theorem in 1D.

But the properties HN model hold are not fully understood until it meets with the

insight from TIs.

The HN model was revisited after 20 years of discovery in the context of topological

phases. Ref [92] discovered the non-Hermitian skin e↵ect within the HN model 1:

upon the boundary condition changes from periodic boundary condition to open

boundary conditions, the eigenstates of the models are exponentially localized at the

boundary. This phenomenon is protected by an integer topological invariant called

the spectral winding number (see Eq. 2.8 in Chapter 2). Ref [92] also provides a

new insight into the definition of “gaps,” which is referred to as the point gap for

the HN model spectrum in Fig. 1.1 (See Chapter 2 for more discussion regarding

1
Strictly speaking, Ref [92] considered the non-Hermitian Su-Schrei↵er-Heeger model instead of

the HN model. But two models have essentially the same properties.
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point gaps). Notably, non-trivial spectral winding number also necessarily leads to an

unequal number of left and right movers [11]. Therefore, the two phenomena can be

understood uniformly through a single topological invariant.

Even for an extremely simple non-Hermitian lattice such as the HN model 1.5, it

already exhibits both nonreciprocal transportation and localization properties that are

impossible to realize for Hermitian lattices. Following these discoveries, classification

e↵ort for non-Hermitian Hamiltonian is called for. The topological classification of

NH Hamiltonians is largely expanded from the 10-fold classification of Hermitian

Hamiltonians [1, 12, 36, 80, 64, 67, 78]. This expansion arises because the three

basic symmetries – time-reversal (T ), particle-hole (P), and chiral (C) – split into

two distinct versions. Since the majority of models appearing in this paper obey

time-reversal symmetry, we focus on the classification of Hamiltonians that obey TRS

only in the following. Under non-Hermiticity, TRS bifurcates into the conventional

TRS, under which a Bloch Hamiltonian h(k) satisfies

T h(k)T �1 = h(�k), (1.6)

and an additional “pseudo-TRS”, denoted here as TRS†,

T h(k)T �1 = h(�k)†, (1.7)

where k is the crystal momentum, T = UK is the time reversal operator, U is

a unitary matrix and K denotes complex conjugation. Taking into account the

ramification of TRS, particle-hole symmetry, and chiral symmetry, as well as the

additional property of pseudo-Hermiticty, ⌘h(k)⌘�1 = h(k)†, where ⌘ is unitary, the

10-fold classification of Hermitian Hamiltonians expands into a 38-fold classification

for NH Hamiltonians [32, 100, 7].

In the absence of pseudo-Hermiticity, a NH Hamiltonian necessarily breaks either
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Gap 1D 2D

Point gap Z 0
Real line 0 0
Imaginary line Z2 Z

Table 1.1: Topological classification in class AI of the 38-fold classification of NH
Hamiltonians in 1D and 2D lattices.

TRS or TRS†. Systems exhibiting a skin e↵ect can satisfy (1.6), but they must break

pseudo-TRS (1.7) (Appendix A.1). Here, we focus on 2D lattices belonging to class

AI in the 38-fold classification. Class AI encompasses Hamiltonians that obey TRS

(1.6) with T 2 = 1.

The topological classification for class AI is indicated in Table 1.1. In 1D, NH

Hamiltonians with a point gap are topologically classified by a Z invariant, which

is the winding number mentioned earlier. Systems with a real line gap are always

trivial, whereas those with an imaginary line gap possess a Z2 classification, where

the topological invariant is the Berry phase, constrained to take values of 0 or ⇡

(Appendix A.2). In 2D, there are nontrivial classes only in the presence of an

imaginary line gap. The corresponding invariant is the Chern number, which protects

“complex Chern bands”, bands in the complex energy plane possess nonzero Chern

numbers and support edge states that traverse either a real line gap [Fig. 2.2(a)] or

an imaginary line gap [Fig. 2.2(b)].

The classification presented in Table 1.1 pertains only to first-order topological

phases. In the presence of additional crystalline symmetries, the classification is

further expanded to account for the protection of higher-order topological phases.

This protection is weaker, however, as crystalline symmetries are not local, and

disorder in the lattice can disrupt them. Nonetheless, the topological properties of

the disordered system persist as long as the energy gap remains open.

Inspired by the similarity between the Chern insulator and the HN model in

terms of nonreciprocal transportation, we aim to find novel phases that support such
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Figure 1.2: Energy spectra under PBC along x and OBC along y of (a) a Chern
insulator and (b) a HOSE phase. Bulk bands are depicted in black, while red and blue
represent states localized at opposite boundaries. In (b), the brightness of the red and
blue colors indicates the value of the crystal momentum kx. As indicated in the color
bar, the colors are brightest at kx = 0, and gradually fade as kx approaches 2⇡. The
red and blue spectra in (b) are degenerate; they have been slightly o↵set for clarity.

phenomena that are only realizable in non-Hermitian lattices. Therefore, we ask if

nonreciprocal transportation of the HN model can be realized at the boundary of a 2D

NH lattice. In fact, this question is already being partially answered. 2D NH lattices

with a higher-order skin e↵ect (HOSE) display edges with unidirectional propagation,

albeit not along all edges [33, 58, 47, 45].

In both cases of Chern insulator and HOSE, a bulk-boundary correspondence

connects the nontrivial topological properties of bulk states to unconventional spectral

characteristics of edge states across the Brillouin zone.

As mentioned previously, for Chern insulators, the bulk invariant is the Chern

number, which ensures that edge states connect with bulk states in certain regions

of the spectrum [Fig. 1.2(a)]. For HOSE phases, the precise bulk invariant has not

been completely elucidated [33, 69]. Furthermore, the edge states in HOSE phases

are completely separated from the bulk states by a gap, and their topological nature

can be determined by the winding number of the edge complex spectrum across the

Brillouin zone alone [Fig. 1.2(b)].

The nonreciprocal nature of the edge states of Chern insulators and (some of)

the edges of HOSE phases motivates us to look into their topological connections.
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Specifically, what is the minimal sequence of phase transitions that separate these two

phases, and how do the edge states of a Chern insulator spectrally separate from its

bulk bands as it transitions into a HOSE phase? Moreover, can this process provide

insights into the bulk-boundary correspondence in HOSE phases?

In this paper, we address these questions. We begin by demonstrating how

the minimal model of a Chern insulator deforms into a HOSE phase. During this

deformation, the edge states of the Chern insulator detach from the bulk, evolving into

the non-Hermitian (NH) edge states with nontrivial spectral winding characteristic of

the HOSE phase. However, this detachment occurs only along one pair of opposite

edges; at the other pair, the states merge into the bulk at the transition. Under full

OBC, the nontrivial winding of the detached edge states manifests as a skin e↵ect,

collapsing these states into the O(L) corner-localized states that characterize this

phase.

Next, we propose new NH topological phases, which we term “higher-order topo-

logical knot” (HOTK) phases. These phases are characterized by bulk states with

a line gap and edge states with point gaps and nontrivial windings along all edges.

Unlike the edge states of HOSE phases, the edge states in HOTK phases under OBC

circulate along the entire perimeter of the sample. We show that the minimal HOTK

phase can be generated from lattices with “complex Chern bands” via topological

phase transitions that close a real-line gap.

We consider NH Hamiltonians obeying Cn symmetry,

r̂nh(k)r̂
�1
n

= h(Rnk), (1.8)

where r̂n is the rotation operator satisfying r̂n
n
= 1 (or r̂n

n
= �1 due to the presence of

magnetic fields threading the lattice), and Rn is the matrix that rotates the crystal

momentum k by 2⇡/n rad.
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We will see that HOTK phases exhibit bands in the complex energy plane with line

gaps, yet they undergo phase transitions characterized by point gaps. These “critical

point gaps” bifurcate the topological edge states with point gaps and nontrivial winding

as the system transitions from a trivial to a HOTK phase. In the bulk, the HOTK

topology is diagnosed by symmetry indicator invariants under Cn symmetry, for which

we build the complete classification. The analysis of the symmetry indicator invariants

revealed that HOTK phases result from multiband topology, which is possible in NH

systems due to the simultaneous presence of multiple line gaps in the complex energy

plane.

The structure of the paper is as follows. In Chapter 2, we review previous results

and important concepts that would benefit later discussion. More specifically, we

define complex Chern insulators in the presence of TRS; we also provide an overview

of the higher-order skin e↵ect; Finally, we draw connections between Chern insulators

and HOSE phases to motivate our study. Chapter 3 and 4 present our main findings.

In Chapter 3, we classify the NH Hamiltonians according to Cn symmetry; Chapter 4

introduces models with HOTK phases, one for each of the C2,3,4,6 symmetries. Finally,

in Chapter 5 we conclude with a discussion and outlook of our work.



Chapter 2

Background

In this chapter, we review the Chern insulator under time-reversal symmetry, higher-

order skin e↵ect, and the connection between higher-order skin e↵ect and Chern

insulator.

2.1 Complex Chern insulators under time-reversal

symmetry

The Chern number of a Hermitian system vanishes under TRS (1.6). However, this is

not always the case for NH systems. Consider a NH Bloch Hamiltonian h(k). The

right and left eigenstates obey

h(k) |un

ki = ✏n(k) |un

ki

h†(k) |vnki = ✏⇤
n
(k) |vnki , (2.1)

respectively. They can be made to obey hum

k |vnki = �mn and
P

|um

k i hvmk | = 1. A NH

Hamiltonian in class AI obeys (1.6). Applying h(�k)T on a right eigenstate of h(k)

13
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...

...

Im E

Re E

Figure 2.1: Schematic of the energy spectrum of a generic NH Hamiltonian in class
AI. Energy bands that map into one another by the action of time-reversal are labeled
in pairs �ñ, ñ.

we have

h(�k)T |un

ki = T h(k) |un

ki = ✏⇤
n
(k)T |un

ki . (2.2)

Hence, T |un

ki is an eigenstate of h(�k) with the eigenvalue ✏⇤
n
(k) and, as such,

is proportional to |un

�ki, which has energy ✏n(�k). Thus, under TRS (1.6), the

eigenvalues come in pairs {✏n(�k), ✏⇤
n
(k)}. This allows us to label the energy bands

using the following notation: let 1̃, 2̃, · · · , Ñ denote energy bands above ImE = 0 and

�1̃,�2̃, · · · ,�Ñ denote the corresponding bands below ImE = 0, such that bands

ñ and �ñ are related by TRS. If a band l̃ lies on the real energy line, we say that

l̃ = �l̃. This notation is schematically represented in Fig. 2.1.

At a given k, let the pair of indices n 2 ñ and �n 2 �ñ denote two states on

opposite sides of the imaginary line gap. Choosing a gauge in which the sewing

matrix V �n,nk = hv�n�k| T |un

ki is diagonal, we have T |un

ki = |u�n�ki; that is, T takes an

eigenstate at k and relates it to its time-reversal partner eigenstate at �k across the

imaginary gap.
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Now consider the biorthogonal Berry curvature [68] for band ñ,

[⌦RL
ñ

(k)]n1,n2 = i
�⌦
@kxu

n1
k

��@kyvn2
k

↵
�
⌦
@kyu

n1
k

��@kxvn2
k

↵�
, (2.3)

where the superscript RL labels the order of the biorthogonal basis. States n1, n2 2 ñ.

Then

[⌦RL
ñ

(�k)]n1,n2 = i
�⌦
@kxu

n1
�k

��@kyvn2
�k

↵
�
⌦
@kyu

n1
�k

��@kxvn2
�k

↵�

= i
�⌦
@kyv

n2⇤
�k

��@kxun1⇤
�k

↵
�

⌦
@kxv

n2⇤
�k

��@kyun1⇤
�k

↵�

= i
�⌦
@kyT vn2

�k
��@kxT un1

�k
↵
�

⌦
@kxT vn2

�k
��@kyT un1

�k
↵�

= i
�⌦
@kyv

�n2
k

��@kxu�n1
k

↵
�

⌦
@kxv

�n2
k

��@kyu�n1
k

↵�

= �[⌦LR
�ñ(k)]

�n2,�n1 , (2.4)

where in the first step we used
⌦
@kxu

n1
�k

��@kyvn2
�k

↵
=

⌦
@kyv

n2⇤
�k

��@kxun1⇤
�k

↵
and similarly for

the second term. We see that �⌦LR
�ñ(�k) = ⌦RL

ñ
(k). These two versions of Berry

connections, ⌦LR and ⌦RL, result in the same Chern number [68]. Accordingly, the

Chern number for bands across an imaginary line gap related to one another by TRS

obey

Cñ =
1

2⇡

Z
Tr

⇥
⌦RL

ñ
(k)

⇤
d2k

= � 1

2⇡

Z
Tr

⇥
⌦LR
�ñ(�k)

⇤
d2k = �C�ñ. (2.5)

The Chern number only must vanish for energy bands lying on the real energy

axis, such that ñ = �ñ. For a minimal model with two bands, 1̃ and �1̃, related

by TRS (1.6), we have C1̃ = �C�1̃. When such a system is in contact with the

vacuum, edge states must close the imaginary line gap that separates bands 1̃ and

�1̃ [Fig. 2.2(a)]. A less intuitive example occurs for a NH Hamiltonian with 4 bands
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Figure 2.2: Energies of time-reversal symmetric NH Hamiltonians with “complex
Chern bands” in the presence of an imaginary line gap. Both spectra are calculated
under OBC along x and PBC along y. Black bands represent bulk bands, while
blue and red lines denote edge states at opposite edges. In (a), the edge states cross
an imaginary line gap for Hamiltonian (2.6) with m = 0.5, and in (b), they cross a
real line gap for Hamiltonian (2.7) with t = 1.2. Both systems belong to class AI.
Time-reversal symmetry relates the energy bands across the imaginary gap.

separated by both real and imaginary line gaps, all having nontrivial Chern numbers;

in this case, the edge states can close the real line gap instead [Fig. 2.2(b)]. In both

cases, the imaginary line gap closes for a Hermitian system, leading only to trivial

phases.

As examples of these phases, first consider the Bloch Hamiltonian

hIm
CC(k) =� i�z sin kx + i�x sin ky

+ i�y(cos ky + cos kx +m), (2.6)

where k = (kx, ky) is the crystal momentum, �x,y,z are the Pauli matrices, and m sets

the Chern number C, with C = 1 (C = �1) for 0 < m < 2 (�2 < m < 0) or C = 0

else. This model obeys TRS (1.6) with T = K. A plot of its energy bands is shown in

Fig. 2.2(a) for m = 0.5.
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Next, consider the Bloch Hamiltonian

hRe
CC(k) =(cos kx + t/2)�x⌧x + (cos ky + t/2)�z⌧x

� sin kx�y⌧x � sin ky�0⌧y

+ i(t/2)(�x⌧y � �z⌧y), (2.7)

where �0 is the 2 ⇥ 2 identity matrix. This model obeys TRS (1.6) with T = K.

When 0 < t < 1, edge states cross the imaginary line gap, as in Hamiltonian (2.6). At

t = 1, all edge bands touch. When 1 < t < 2, topological edge states close the real

line gap instead. For t > 2, this model enters the trivial phase, where no edge states

exist. Figure 2.2(b) shows the energy bands of Hamiltonian (2.7) for t = 1.2. Note

that there are two copies of Chern insulators with opposite Chern numbers above

and below the imaginary line gap. This is the key feature of a real-line-gap Chern

insulators under TRS (1.6). The Hamiltonian (2.7) obeys C4 symmetry. Appendix

A.7 describes a model on a C6-symmetric hexagonal lattice in class AI with a real-line

gap Chern insulator phase.

2.2 Higher-order skin e↵ect

In addition to bands separated by line gaps, NH systems also exhibit point gaps.

In 1D, systems with a point gap exhibit the NH skin e↵ect (NHSE), by which all

eigenstates in a crystal with OBC exponentially localize at one of its edges [68, 92, 88,

76, 60, 97, 96, 91, 93, 29, 8].

This e↵ect is associated with a bulk topological invariant, the winding number

W 2 Z of the complex energy spectrum with respect to a constant reference point

Ep inside the point gap. For a translation invariant system with PBC, the winding
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number is defined by

W =
1

2⇡i

Z

BZ

Tr
�
H 0(k)�1dH 0(k)

�

=
1

2⇡i

Z

BZ

dk
d

dk
log detH 0(k), (2.8)

where H 0(k) = H(k)� Ep and Ep is any energy inside the point gap. Since the BZ

is periodic, the complex spectra of NH Hamiltonians with point gaps form knots (or

loops) in (ReE, ImE, k) space. When more than one energy band wind, the winding

is associated with the braid group BN , where N is the number of separable energy

bands [41, 63, 46, 87, 90, 27, 26]. The braid group classifies topologically inequivalent

knots or loops. Such classification of 1D NH crystals was developed in Ref. [26]. In

this and the next section, we focus on the windings and brading configurations at

the 1D boundary of 2D NH lattices for systems with PBC along one direction and

OBC along the other, so that, for example, edge states localized at edges x = 1 or

x = L can still be parametrized by the crystal momentum ky along y. As shown in

Fig. 1.2(b), there are NH lattices in which edge states spectrally disconnect from the

2D bulk bands. Remarkably, while the bulk bands present a line gap, the disconnected

edge states present a point gap and carry nontrivial windings [Fig. 1.2(b)]. Now,

consider the case in which edge windings occur for PBC along x and OBC along y,

but not vice versa. In that case, under full OBC (i.e., OBC along both x and y) only

one pair of edges manifests a 1D skin e↵ect, collapsing its edge states to a pair of

opposite corners of the 2D crystal. Since for a crystal of L⇥L unit cells, O(L2) states

remain distributed across the bulk, and only O(L) states localize at a corner, such

phases have been referred to as possessing a “higher-order skin e↵ect” [33, 45, 47, 58],

in analogy with the existence of O(1) corner states in 2D second-order topological

phases [4, 5, 43, 77, 89, 28, 16].
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A minimal model of a HOSE phase is given by the Bloch Hamiltonian

hHOSE(k) =� i(� + cos kx)�0 + sin kx�z

+ (� + cos ky)�y + sin ky�x, (2.9)

proposed in Ref. [33]. The Hamiltonian (2.9) can be obtained from the quadrupole

topological insulator (QTI) [4], which is chiral symmetric and can be written as

HQTI = ((0, hHOSE), (h
†
HOSE, 0))

1. Physically, the Bloch Hamiltonian (2.9) represents

1D horizontal Hatano-Nelson chains with alternating winding numbers stacked along

the vertical direction. The chains are coupled via alternating vertical hopping terms

with amplitudes 1 and �. The phases of Hamiltonian (2.9) are controlled by the single

parameter �. When 0 < � < 1, there is a HOSE phase with O(L) corner states at

the top-left and bottom-right corners of a square lattice. A phase transition occurs

at � = 1. For � > 1, the Hamiltonian (2.9) enters the trivial phase where the HOSE

vanishes.

2.3 Deforming Chern insulators into HOSE phases

Both the edge states of Chern insulators and some of the edges in HOSE phases

circumvent the no-go theorem by Nielsen and Ninomiya (NN), which forbids the

existence of a net chirality in the states of crystals with noninteracting Hermitian

Hamiltonians. The NN theorem stems from a topological consideration; in 1D, it

is impossible to make a real spectrum periodic in the BZ without having an equal

number of right- and left-moving states.

Chern insulators circumvent the limitations of the NN theorem by a topological

bulk-boundary connection, by which edge states must merge into the bulk for part of

1
An extra term �i��0 will appear in this derivation, but this term only shifts the spectrum of the

Hamiltonian (2.9) in the complex energy plane, with no consequences for its topological phase, and

can therefore be discarded.



20

the spectrum, as in the region around kx = 0 in Fig. 1.2(a). There is thus a topological

obstruction to spectrally “peeling o↵” the chiral edge states of a Hermitian Chern

insulator. At most, a bulk phase transition will eliminate the chiral states altogether.

Phases exhibiting the skin e↵ect circumvent the limitations of the NN theorem by

breaking Hermiticity. As a result, their energy spectra are complex, and can be made

periodic in the complex energy plane as the crystal momentum traverses the 1D BZ

while preserving a chirality. Since this nontrivial topology exists in a 1D manifold,

1D systems with a point gap topology do not need a bulk of a higher dimension to

sustain it, nor a bulk-boundary correspondence. In HOSE phases, the edge states with

point-gap topology are spectrally separated from the bulk bands. Yet, the existence

of these edge states themselves is a manifestation of a (weak) nontrivial topological

configuration of the 2D bulk bands.

The inequivalent ways in which the spectra of a periodic system connect across

the BZ – some of which circumvent the NN theorem and lead to nonreciprocity –

correspond to di↵erent topological classes, and thus, crystals that implement them

correspond to distinct topological phases of matter, separated by bulk phase transitions.

In particular, we are concerned with the relation between Chern insulators and HOSE

phases, both of which have chiral edge states. Specifically, we ask whether the edge

states of a Chern insulator can be peeled o↵ its bulk if we promote its energy spectrum

to the complex plane, in a similar way as the 1D edge states of the HOSE phase do.

Such a connection would allow us to establish a relationship between Chern insulators

and the HOSE, and consider these di↵erent systems on equal footing.

For this purpose, consider the two-band Bloch Hamiltonian

hRe
def(k) = sin kx�x + sin ky�y

+ (m+ t cos kx + cos ky)�z

+ i cos kx(1� g)�0. (2.10)
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Figure 2.3: Deforming a real-line-gap Chern insulator into a HOSE phase in the
tight-binding model with Bloch Hamiltonian (2.10). The deformation path chosen in
parameter space is (g, t) = (1, 1)� ✓(1, 1), for ✓ : 0 ! 1. Panels (a)-(d) correspond
to ✓ = 0, 0.2, 0.5, 1, respectively. (a) A Hermitian Chern insulator phase. (b) A
real-line-gap complex Chern insulator phase. (c) Bulk phase transition between the
Chern insulator phase and the HOSE phase. (d) HOSE phase. In all panels, left
column: OBC along x, PBC along y; middle column: OBC along y, PBC along x; right
column: band projections of the plots on the middle column onto the complex energy
plane. Black represents bulk states, while blue and red represent states localized at
opposite edges.
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When g = 1 and t = 1, this model is the Qi-Wu-Zhang (QWZ) Hamiltonian [62, 2], a

minimal model for a Chern insulator, with Chern number C = 1 for 0 < m < 2 or

C = 0 otherwise. We fix the mass to m = 0.5. Its spectrum is shown in Fig. 2.3(a).

To deform model (2.10) from the Chern insulator phase to the HOSE phase, we

continuously vary the parameters g and t according to (g, t) = ✓(1, 1) for ✓ : 1 ! 0.

Note that g 6= 1 makes (2.10) non-Hermitian, promoting its spectrum to the

complex plane. At ✓ = 0.2, the model is in a NH Chern insulator phase [Fig. 2.3(b)],

smoothly connected to the QWZ model in Fig. 2.3(a). As the deformation continues,

a bulk phase transition at ✓ = 0.5 changes the Chern number from C = 1 to C = 0

[Fig. 2.3(c)]. However, not all the chiral edge states merge and disappear into the bulk;

instead, along one direction [middle panel in Fig. 2.3(c)], the edge states nontrivially

reconnect, changing their topology to now wind in the complex plane. This is evident

on the other side of the phase transition, as shown in Fig. 2.3(d) for ✓ = 1. In

Appendix A.3, we present complementary plots to those in Fig. 2.3.

During this deformation, the nontrivial topology in the bulk of the Chern insulator

phase that gives rise to the chiral edge states is transferred to a nontrivial topological

winding of the edge states themselves, leaving the bulk topologically trivial (from the

point of view of strong topology). Since this skin e↵ect occurs only at one pair of

edges, a system in this phase with full OBC will necessarily manifest O(L) corner

states, i.e., it will manifest a HOSE. In fact, at the end of deformation process,

(g, t) = (0, 0), the Hamiltonian (2.10) is smoothly deformable to Hamiltonian (2.9) up

to a transformation �x ! �z, �y ! �x, �z ! �y.

A similar deformation can connect the complex Chern insulator with an imaginary

line gap (2.6) into a HOSE phase, (2.9). In this case, the entire deformation process

is within class AI, obeying TRS (1.6). This process is shown in Appendix A.3.



Chapter 3

Approach

In this chapter, we introduce the classification of Cn-symmetric NH Hamiltonians in

class AI in 2D. As we will see in chapter 4, this classification method can also help

us classify higher-order topological knot phases. This chapter only describes general

results. More detailed derivation can be found in Appendix A.4.

3.1 Classification of Higher-order topological knots

Since not all the edges in HOSE phases exhibit nonreciprocal transport, these phases

possess O(L) states exponentially localized at corners where edges with trivial and

nontrivial winding intersect. In contrast, Chern insulators exhibit chiral edge states

that extend continuously around the sample, enabling nonreciprocal propagation even

in the presence of defects or corners [10, 86]. Thus, even though the edges in Chern

insulators and some of the edges in HOSE phases circumvent the NN theorem, there

are important di↵erences among them, resulting in distinct densities of states and

associated transport phenomena. These di↵erences raise a question: can NH lattices

sustain nontrivial windings along all edges of a sample, as Chern insulators do, rather

than only along some edges, as in HOSE phases? In the following, we explore lattices

with these properties. Specifically, we consider NH bulk-boundary correspondence

23
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mechanisms that generate edge states with uniform nontrivial winding across all edges.

This approach eliminates the O(L) corner-localized states characteristic of HOSE

phases, provided the protecting symmetries remain intact. To this e↵ect, we first

construct the topological classification of NH phases with Cn symmetries.

3.1.1 Classification of Cn-symmetric NH Hamiltonians in class

AI

The presence of crystalline symmetries enriches the classification of topological

phases [40, 74, 50, 79, 3, 70, 71, 72, 6, 95, 61, 9, 82]. In 2D NH Hamiltonians, HOSE

phases have been understood by drawing a correspondence between the NH Hamil-

tonian in question hNH and an associated chiral-symmetric Hermitian Hamiltonian

hH = [0, hNH;h
†
NH, 0] [51, 52], both of which carry identical topological information [33].

This correspondence then makes use of existing crystalline topological classifications

of hH to diagnose topological phenomena in hNH [69, 15, 83, 59, 44, 99, 84].

Here, we consider the crystalline classification of hNH itself, i.e., without appealing

to its corresponding hH . The utility of such a classification was recently presented in

Ref. [99] for a C3-symmetric NH Hamiltonian, and here we extend this classification

to all Cn symmetries. Specifically, consider NH Hamiltonians obeying TRS (1.6) and

Cn symmetry,

r̂nh(k)r̂
�1
n

= h(Rnk), (3.1)

where r̂n is the rotation operator acting on the unit cell degrees of freedom, obeying

[r̂n]n = 1 or [r̂n]n = �1 (the latter case due to, e.g., a magnetic flux threading the

lattice), and Rn is the n-fold rotation matrix acting on the crystal momentum k. The

high symmetry points (HSPs) in the BZ zone, ⇧m, for m  n, are crystal momenta

that remain invariant under the little-group Cm rotation (modulo a reciprocal lattice
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vector G), i.e., ⇧m = Rm⇧m (mod G). For example, setting the length of the unit

cell to unity, in C2 symmetric lattices, X = (⇡, 0), Y = (0, ⇡), and M = (⇡, ⇡)

are all invariant under C2 rotations, while in C4 symmetric lattices, X = (⇡, 0) and

X0 = (0, ⇡) are C2 invariant and M = (⇡, ⇡) is C4 invariant. Also, notice that trivially,

� = (0, 0) is invariant under the full group of a Cn symmetric lattice. Appendix A.4

describes the HSPs for all Cn-symmetric lattices.

At the HSPs, Eq. (3.1) implies that [r̂m, h(⇧m)] = 0 and thus r̂m and h(⇧m) have

simultaneous eigenstates; the Bloch eigenstates of energy band l, |ul

⇧m
i, which obey

h(⇧m) |ul

⇧m
i = ✏l(⇧m) |ul

⇧m
i, simultaneously obey

r̂m |ul

⇧m
i = rl⇧m

|ul

⇧m
i , (3.2)

where rl⇧m
is the rotation eigenvalue associated with energy band l at HSP ⇧m, which

can take the values

⇧(m)
p

=

8
>><

>>:

e2⇡i(p�1)/m, for [r̂n]n = 1

e2⇡i(p�1/2)/m, for [r̂n]n = �1

(3.3)

for p = 1, 2, . . .m. Extending previous studies on the classification of crystalline

topological phases [79, 3, 6, 66, 82], we define the symmetry indicator invariants for

energy band l as

[⇧(m)
p

] = #l⇧
(m)
p

�#l�
(m)
p

, (3.4)

where #l⇧
(m)
p is the number of eigenstates in the band l with rotation eigenvalue ⇧(m)

p

at HSP ⇧m. The set of symmetry indicator invariants (3.4) across all HSPs of the BZ,

along with the Chern number, provide a topological classification for the energy band

l. However, some of these invariants are related to one another by symmetry, and

thus there is redundancy in the topological information (Appendix A.4). We collect

the set of non-redundant indicators in a vector index �(n) that uniquely identifies
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the topological class of complex energy bands in Cn-symmetric lattices (Appendix

A.4 contains the complete derivation of the �(n) indices for all Cn-symmetric Bloch

Hamiltonians). These �(n) indices are

�(2) = (C|[X(2)
1 ], [Y (2)

1 ], [M (2)
1 ])

�(4) = (C|[X(2)
1 ], [M (4)

1 ], [M (4)
2 ], [M (4)

3 ])

�(3) = (C|[K(3)
1 ], [K(3)

2 ], [K
0(3)
1 ], [K

0(3)
2 ])

�(6) = (C|[M (2)
1 ], [K(3)

1 ], [K(3)
2 ]). (3.5)

NonHermitian Cn-symmetric Hamiltonians in class AI with di↵erent �(n) indices

belong to di↵erent topological phases, as they cannot be deformed into one another

without closing the bulk energy gaps or breaking the symmetry.

The �(n) indices obey an algebraic structure. If two bands a and b in classes �(n)
a

and �(n)
b

are combined, the resulting Hamiltonian is in class �(n)
a[b = �(n)

a + �(n)
b

. As a

consequence, if two bands have complementary topological indices, i.e., if �(n)
a = ��(n)

b
,

such that �(n)
a[b = 0, boundary states will exist in the gap between them under OBC.

As an example, consider the Bloch Hamiltonian hHOSE(k) of Eq. (2.9) for the

minimal model of a HOSE phase. While hHOSE(k) does not obey TRS (1.6), ihHOSE(k)

does, with T = K. Additionally, ihHOSE(k) obeys C2 symmetry, with rotation operator

r̂2 = �y. The �(2) indices for its two bulk energy bands are shown in Appendix A.5.

The two indices trivialize in pairs, leading to boundary states in the gap between these

two bands under OBC. These are the skin e↵ect modes of the HOSE phase.

This pairwise trivialization of bands is the simplest case of a more general topolog-

ical connectivity between bands. In particular, there are cases in which no pairwise

trivialization occurs; instead, bands trivialize only in groups of three or four. As we

will see, these cases can undergo unusual phase transitions in which the line gaps close,

generating a point gap, from which edge-localized states with nontrivial windings
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emerge. These are the novel phases we refer to as “higher-order topological knot”

(HOTK) phases, for reasons to become apparent in the next chapter.



Chapter 4

Analysis

In this chapter, we give explicit lattice models and Hamiltonians for complex-Chern

insulator and higher-order topological knots phases. We classify them using �(n) index

introduced in the previous chapter.

4.1 Model Hamiltonians with HOTK phases

Higher-order topological knot phases are NH topological phases with bulk line gaps

and nontrivial weak topology that generate edge states with edge point gaps with

nontrivial windings along all edges. Note that similar characteristics are exhibited

by HOSE phases. However, in HOSE phases, nontrivial edge states exist only at

certain edges. In Section 2.3, we showed that a two-band model with a line gap and

nonzero Chern numbers can only transition into a HOSE phase because, while the

chiral edge states deform into a pair of edge states with a nontrivial winding number in

the complex energy plane, the other pair of chiral edges merge into the bulk, resulting

in no topological states in the HOSE phase. This suggests that the minimal model

that generates topological edge states along all edges requires more than two line-gap

energy bands.

In what follows, we will first present a four-band model for a C4-symmetric lattice

28
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that exists in either a complex Chern insulator phase or in a HOTK phase. We will

then describe HOTK models obeying C3 and C6 crystalline symmetries. Figure 4.1

illustrates the lattices we consider. The Hamiltonians for these lattices are written

in a “maximally nonreciprocal limit”, where each of the arrows in Fig. 4.1 represent

hoppings only along their directions. We do this to provide the simplest, minimal

realizations of these phases; however, more generally, the arrows can represent an

imbalance in the amplitude of hoppings along their direction vs their opposite direction.

The lines with no arrow represent reciprocal hoppings.

Protected by C4 symmetry

Consider the following Bloch Hamiltonian, which hosts both a complex Chern insulator

phase and a HOTK phase,

h(4)(k) =t�x(⌧x + ⌧z)

+
1

2
(�x + i�y)[⌧x cos(gkx)� ⌧y sin(gkx)]

+
1

2
(�x � i�y)[⌧z cos(gky)� i⌧0 sin(gky)], (4.1)

where both �i and ⌧i, for i = x, y, z, are Pauli matrices and �0 and ⌧0 are the 2⇥ 2

identity matrix. This model is parametrized by t 2 R+, the amplitude of reciprocal

hoppings within the unit cell, and g 2 Z+, the nonreciprocal hopping distance between

unit cells. We first consider the case g = 1, which corresponds to nearest-neighbor

inter-cell hopping. The lattice of this model is shown in Fig. 4.1(a) and carries a

⇡ flux per plaquette, which is accounted for by a �1 sign in the hopping terms

corresponding to dotted lines in Fig. 4.1(a). This model resembles the quadrupole

topological insulator model of Ref. [5], but with the crucial distinction that its inter-cell

hopping terms are nonreciprocal. It obeys TRS (1.6) with T = K and C4 symmetry
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Figure 4.1: Tight-binding lattices that support various NH topological phases. Arrows
indicate the direction of nonreciprocal hopping. (a) The C4-symmetric lattice with the
Bloch Hamiltonian given in Eq. (4.1) hosts both a HOTK phase and an imaginary-
line-gap complex Chern insulator phase. The hopping terms corresponding to dotted
lines carry a �1 sign, a gauge choice to account for a ⇡ flux per plaquette. (b,c)
The C3-symmetric (C6-symmetric) lattice with the Bloch Hamiltonian in Eq. (4.2)
[Eq. (4.3)], which hosts a HOTK phase. The C3-symmetric model also supports an
imaginary-line-gap complex Chern insulator phase. (d) The C6-symmetric lattice with
the Bloch Hamiltonian in Eq. (A.51), which supports a real-line-gap complex Chern
insulator phase.
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Figure 4.2: Energy spectra of Hamiltonian (4.1) in the (ReE, ImE, k) space under
OBC along x and PBC along y with (a) t = 1, (b) t = 0.5, and (c) t = 0.3. Due to
C4 symmetry, the energy spectra under OBC along y and PBC along x are identical
to these plots. Black indicates bulk states; red and blue indicate states localized at
opposite edges. The lower panels show projections of the 3D plots into 2D planes to
aid visualization. The diagram at the top left corner of (c) indicates the braid group
of each of the edge states across the BZ.

(3.1) with rotation operator

r̂4 =

0

BBBBBBB@

0 0 0 1

1 0 0 0

0 1 0 0

0 0 �1 0

1

CCCCCCCA

,

which obeys r̂44 = �1.

The Hamiltonian (4.1) has four bands, each occupying a quadrant on the complex

plane. These four bands are labeled according to the rule introduced in Sec. 2.1 as

shown in Fig. 4.2(a).

When t > 0.5, the Hamiltonian (4.1) is in a complex Chern insulator phase. The

�(4) indices of each of the four bands in this phase are given in Table 4.1. Note that

bands 1̃ and 2̃ have complementary topologies to those of bands �1̃ and -2̃, respectively.

Consequently, the topological edge states cross the imaginary line gap [Fig. 4.2(a)].

A transition to a trivial phase would close the imaginary line gap to connect band
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Phase Band C [X(2)
1 ] [M (4)

1 ] [M (4)
2 ] [M (4)

3 ]

Complex Chern

1̃ -1 1 0 -1 1
�1̃ 1 -1 0 1 -1
2̃ 1 -1 -1 0 0

�2̃ -1 1 1 0 0

HOTK

1̃ 0 1 0 -1 0
�1̃ 0 -1 1 0 -1
2̃ 0 -1 -1 0 1

�2̃ 0 1 0 1 0

Table 4.1: �(4) indices for the energy bands of Hamiltonian (4.1). Bands are labeled as
indicated in Fig. 4.2(a). The Complex Chern insulator and HOTK phases correspond
to t > 0.5 and t < 0.5, respectively.

Phase Band C [X(2)
1 ] [Y (2)

1 ] [M (2)
1 ]

Complex Chern

1̃ -1 1 1 1
�1̃ 1 -1 -1 -1
2̃ 1 -1 -1 -1

�2̃ -1 1 1 1

HOTK

1̃ 0 1 1 0
�1̃ 0 -1 -1 0
2̃ 0 -1 -1 0

�2̃ 0 1 1 0

Table 4.2: �(2) indices for the energy bands of Hamiltonian (4.1).

Phase Band C [K(3)
1 ] [K(3)

2 ] [K
0(3)
1 ] [K

0(3)
2 ]

HOTK
1̃ 0 0 -1 1 -1

�1̃ 0 1 0 0 1
2̃ 0 -1 1 -1 0

Complex Chern

1̃ 2 0 -1 0 -1
�1̃ -2 0 1 0 1
2̃ 0 0 0 0 0

Table 4.3: �(3) indices for Hamiltonian (4.2). The HOTK and Complex Chern insulator
phases correspond to 0 < t < 0.57 and 0.57 < t < 1, respectively.
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Phase Band C [M (2)
1 ] [K(3)

1 ] [K(3)
2 ]

HOTK

1̃ 0 -1 0 -1
2̃ 0 1 1 -1
3̃ 0 0 -2 1

�1̃ 0 1 1 1
�2̃ 0 -1 0 0

Table 4.4: �(6) indices for Hamiltonian (4.3) in the HOTK phase, which corresponds
to 0 < t < 0.5.

1̃ with band -1̃, and band 2̃ with band -2̃, so that on the other side of the transition,

�(4) = 0 for all four bands, causing the edge states to disappear. However, a di↵erent

phase transition occurs in this model when t = 0.5. This transition closes the real

line gap instead, and connects band 1̃ with band 2̃ and band �1̃ with band -2̃. Along

with these bulk gap closings, the edge states also close the real-line gap [Fig. 4.2(b)].

When t < 0.5, that is, on the other side of the nontrivial transition, the Hamil-

tonian (4.1) is in a HOTK phase [Fig. 4.2(c)]. The four bulk energy bands present

real and imaginary line gaps, as before the transition. However, now separated from

the bulk bands, edge states braid across the BZ in the complex energy plane around

Ep = 0. Since there are two edge bands for each edge, the corresponding braid group

is B2. The braid structure for one of the edge states is schematically illustrated at

the top left corner of Fig. 4.2(c). Due to the periodicity of the BZ, the braid is also a

knot, and for this phase, the knot has periodicity 4⇡/a, where a is the unit cell length,

i.e., it takes going around the BZ twice to get back to the original point in the edge

spectrum. The plots of energy bands for OBC along y and PBC along x (not shown)

are identical to those in Fig. 4.2, by C4 symmetry. Thus, topological edges exist along

the entire 1D boundary of the HOTK phase in Hamiltonian (4.1).

A plot of the density of edge states under full OBC for the HOTK phase is shown

in Fig 4.3(a). Notably, the states have support along all edges. This is significantly

di↵erent from the phenomenon of HOSE, in which eigenstates decay exponentially
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from corners [33]. In the bulk bands, the nontrivial topology manifests in the nonzero

�(4) indices shown in Table 4.1. Note that none of these bands can be trivialized in

pairs; only the �(4) index for the ensemble of all four bands is trivial. This indicates

that all four bands participate in the nontrivial topology of the HOTK phase.

The boundary states essentially constitute a boundary-localized 1D chain with PBC

and an associated non-zero winding number protected by a point gap at Ep = 0, and

thus, it lies in the same topological class as the 1D Hatano-Nelson model [22, 23, 21].

As such, the HOTK phase protects the nonreciprocal transport of wave packets along

its 1D boundary, with unidirectional acceleration and amplification [48, 75, 98, 34].

Breaking C4 symmetry and robustness of edge states – The complex Chern insu-

lator phase of Hamiltonian (4.1) does not require crystalline symmetries; even in the

absence of �(4) indices, the nonzero Chern numbers C = ±1 persists as long as the

imaginary line gap is maintained. However, that is not the case for the HOTK phase,

where all the bands have C = 0. It may be tempting to think that C4 symmetry is

crucial for protecting the topological phase. However, the nontrivial �(4) indices of

the HOTK phase are su�cient, but not necessary, for the protection of the phase.

Boundary states will persist as long as the bulk line gaps and the gap between bulk

and boundary states remain open. In the absence of C4 symmetry, however, the

localization of boundary states may significantly change.

To examine the fate of the edge states in the HOTK phase, we break C4 symmetry

in three ways: (i) by making the hopping amplitude along y di↵erent than that along

x, (ii) by adding onsite energy perturbations ✏diag(1,�1, 1,�1) at each unit cell, and

(iii) by adding a local onsite energy defect at an arbitrary point along the edge. While

(i) and (ii) reduce C4 symmetry to C2 symmetry, (iii) breaks all global crystalline sym-

metries. The edge states for some of these cases are shown in Fig. 4.3. In case (i), the

edge states do not extend along the edges anymore and instead exponentially localize
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at corners, as shown in Fig. 4.3(b). In case (ii), although C4 symmetry is broken, the

resulting distribution of edge states is similar to that of Fig. 4.3(a). In case (iii), as

shown in Fig. 4.3(c), the defect does a↵ect the distribution of edge states, localizing

some of them, but leaving most of them distributed along the entire boundary. This

shows that HOTK phases are robust against disorders: while the distribution of the

boundary modes may change, they generally exist across all boundaries. Under only

C2 symmetry, the �(2) indices of the bulk bands are shown in Table 4.2. Note that the

bands can now be trivialized in pairs across either the real line gap or the imaginary

line gap; thus, transitions that close either of the two line gaps could unwind the edge

states or make them disappear.

Increasing the braiding of edge states – The braiding structure of the edge states

across the BZ in the HOTK phase of Hamiltonian (4.1) is modified with increasing

hopping distance g. For g = 2, the lattice has only next-nearest neighbor hoppings

between unit cells. The spectra for the complex Chern insulator phase and the HOTK

phase are shown in Fig. 4.4(a) and 4.4(b), respectively. Each of the bands in the

Complex Chern insulator phase has C = ±4, and each edge state in Fig. 4.4(a) is

two-fold degenerate. At each edge in the HOTK phase, the edge states braid forming

a Hopf link, as shown in Fig. 4.4(c) for only one edge. Similarly, setting g = 3 fixes

the Chern number of each band in the Complex Chern insulator phase to C = ±9,

with each edge state in Fig. 4.4(d) being threefold degenerate. At each edge of the

HOTK phase, the edge states braid forming a Trefoil knot, as shown in Fig. 4.4(f) for

one of the edges.
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Figure 4.3: Local density of edge states ⇢ in the HOTK phase of Hamiltonian (4.1)
under full OBC (30 ⇥ 30 unit cells) for three scenarios: (a) when C4 symmetry is
preserved, (b) when only C2 symmetry is preserved by reducing hopping amplitudes
along the y direction, and (c) when a defect is added to one edge. In (b), the C4

symmetry of Hamiltonian (4.1) has been reduced to only C2 symmetry by setting the
inter-cell hopping along x to be 1 and the one along y to be 0.7, while setting the
intra-cell hopping to t = 0.3. Panel (d) shows the spectrum corresponding to case (c)
where the defect is present. In both the plots of the energy spectrum and local density
of states, edge states are indicated in blue, while defect states are highlighted in red.
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Figure 4.4: Energy spectra of Hamiltonian (4.1) under OBC along x and PBC along y
for g = 2 (first row) and g = 3 (second row). First column: Complex Chern insulator
phases with t = 1. Each bulk band has a Chern number of magnitude g2, specifically,
C = ±4 in (a) and C = ±9 in (d). The edge states in (a) and (d) are twofold and
threefold degenerate, respectively. Second column: HOTK phases, with t = 0.3. Third
column: braid structure of the edge states at each edge of the HOTK phases.
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Protected by C3 symmetry

We now consider the NH Kagome lattice shown in Fig. 4.1(b). It has Bloch Hamiltonian

h(3)(k) =

0

BBBB@

0 t t+ e�ik·a3

t+ e�ik·a2 0 t

t t+ eik·a1 0

1

CCCCA
, (4.2)

where a1 = (1, 0), a2 = (1/2,
p
3/2), a3 = (1/2,�

p
3/2). This model obeys TRS (1.6)

with T = K and C3 symmetry with rotation operator

r̂3 =

0

BBBB@

0 0 1

1 0 0

0 1 0

1

CCCCA
.

For 0 < t < 0.57, this model is in a HOTK phase. Its spectrum at t = 0.3 is shown in

Fig. 4.5(a). The �(3) index in this phase is shown in Table 4.3, where we have labeled

the bands as indicated in Fig. 4.5(a). Note that no pairs of bands lead to a trivial

index; a trivial �(3) index is obtained only for the set of all three bands, as expected

for a HOTK phase. Under full OBC, a crystal that preserves C3 symmetry, such as

the triangular crystal shown in Fig. 4.1(b), hosts point-gapped edge states along all

edges, as shown in Fig. 4.5(c). These edges are then associated with nonreciprocal

propagation.

When a crystal under full OBC breaks C3 symmetry, the edge states can collapse

into corners. This phenomenon was recently presented in Ref. [99] as the realization

of a HOSE phase in the Kagome lattice. The exponential localization of states to a

corner is similar to what we found in the HOTK phase of Hamiltonian (4.1) when

C4 symmetry is reduced to C2 symmetry [Fig. 4.3(b)]. However, the corner states

in the configuration of Fig. 4.5(d) were demonstrated to have a correspondence with
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Figure 4.5: Energy spectra under OBC along y and PBC along x (a,b) and edge
density of states under full OBC (c,d) of Hamiltonian (4.2). (a,c,d) are in the HOTK
phase, with t = 0.3. (b) is in the complex Chern insulator phase, with t = 0.7. The
insets in (c) and (d) schematically indicate the shape of the lattice.

the zero energy corner states of a chiral symmetric hermitian higher-order topological

insulator, predicted and demonstrated experimentally in Ref. [57].

For 0.57 < t < 1, the Hamiltonian (4.2) is in a complex Chern insulator phase

with the �(3) indices shown in Table 4.3. As expected, the �(3) indices of bands �1̃

and 1̃ are complementary in this phase, which necessarily leads to a trivial �(3) index

for band 2̃. The energy spectrum for t = 0.7 is shown in Fig. 4.5(b). The chiral edge

states cross the imaginary line gap between bands �1̃ and 1̃. Although no direct line

gap exists between �1̃ and 1̃, these two bands are indeed separated everywhere in the

BZ (Appendix A.6).
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Protected by C6 symmetry

Finally, we consider the NH Hamiltonian for the hexagonal lattice in Fig. 4.1(c),

described by the Hamiltonian

h(6)(k) =

0

BBBBBBBBBBBBBB@

0 t 0 0 e�ik·a3 t

t 0 t 0 0 e�ik·a1

e�ik·a2 t 0 t 0 0

0 eik·a3 t 0 t 0

0 0 eik·a1 t 0 t

t 0 0 eik·a2 t 0

1

CCCCCCCCCCCCCCA

. (4.3)

This model obeys TRS (1.6) and C6 symmetry with a rotation operator r̂6 that

permutes the sites within the unit cells of the lattice in Fig. 4.1(c) upon rotation by

2⇡/6 about the center of the unit cell.

In the range 0 < t < 0.5, the Hamiltonian (4.3) is in a HOTK phase. A phase

transition happens at t = 0.5. At 0.5 < t < 1, Eq. (4.3) enters a gapless phase in which

edge states merge into the bulk. A real line gap will re-open at t > 1. However, all

t > 1 phases are trivial. The �(6) indices for the HOTK phase are shown in Table 4.4

[we labeled each band according to Fig. 4.6(a)].

Figure 4.6(a) shows the energy spectrum of Hamiltonian (4.3) in the HOTK phase,

at a value of t = 0.2. Once again, none of the �(6) indices for each band can be

trivialized in pairs or in any combination other than the one involving all bands. Under

full OBC that preserves C6 symmetry, such as the hexagon shown in Fig. 4.1(c), edge

states with point gaps and nontrivial winding exist at along all edges [Fig. 4.6(b)]. In

fact, these states perdure even in lattices that preserve only C3 symmetry [Fig. 4.6(c)]

or C2 symmetry [Fig. 4.6(d)]. We show a more detailed spectrum of Hamiltonian (4.3)

in Appendix A.6.
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Figure 4.6: Energy spectra under PBC along x and OBC along y with a zig-zag edge
(a) and edge density of states under full OBC (b-d) of Hamiltonian (4.3) in the HOTK
phase with t = 0.2.



Chapter 5

Conclusion

We have introduced and characterized new topological phases, which we term “higher-

order topological knot” (HOTK) phases. These are NH phases defined by bulk bands

with line gaps that support edge states with point gaps and nontrivial winding numbers.

While these spectral characteristics are present in HOSE phases, there are two crucial

distinctions: (i) in HOSE phases, the point-gap boundary states are always localized

at corners; and (ii) these corner-localized states are skin states arising from nontrivial

point-gap topology present only at certain edges of the lattice. In contrast, HOTK

phases present boundary point-gap states extended across all edges, with no skin

e↵ect.

In this work, we focused on HOTK phases protected by Cn symmetries. As markers

of their topology, we identified symmetry indicator invariants for class AI under Cn

symmetry. Specifically, HOTK phases are characterized by bands with nonzero �(n)

indices that cannot be trivialized in pairs, indicating that these phases arise from

multi-band topology involving three or more bands, all separated by bulk line gaps.

This topological connectivity is unique to NH systems, as multiple line band gaps are

required to support it.

In a specific example, we have shown how, once the phase has been established

42
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under a pristine Cn symmetry, disorder that breaks the symmetry will not disrupt the

existence of the topological states (unless disorder is strong enough to induce a bulk

phase transition). We have also shown how breaking the protecting symmetries of a

HOTK phase can result in O(L) corner states, similar to those in HOSE phases. In this

regard, it is worth distinguishing two cases: First, in Hamiltonian (4.1), reducing C4

symmetry to C2 symmetry results in O(L) corner states that do not have corresponding

zero-energy corner states in its counterpart chiral-symmetric Hermitian Hamiltonian.

These states are, to the best of our knowledge, novel, and the mechanism behind their

localization remains an open question for future work. Second, in Hamiltonian (4.2),

modifying the lattice geometry to break C3 symmetry – by shifting from a triangular

to a parallelogram shape – transforms the extended edge states into O(L) corner states,

localized exclusively at one of the two 2⇡/3 rad corners. In this second case, the O(L)

states do correspond to zero-energy corner states in its counterpart chiral-symmetric

Hermitian Hamiltonian, as recently identified in Ref. [99]. We point out, however,

that Hamiltonian (4.2) possesses edge point gaps along all edges under partial PBC,

which contrasts with the paradigmatic HOSE phase of Ref. [33], where the corner

states owe their localization to the absence of point-gap topology at one of the two

pairs of opposite edges.

In 1D NH Hamiltonians, point-gap topology is naturally characterized by the braid

group BN , which captures the winding of energy bands around each other in the

complex energy plane as the BZ is traversed [26]. The periodicity of the BZ allows

these braids to be identified with knots. By analogy with higher-order topological

insulators in Hermitian systems, where edge-state topology is determined by 2D bulk

bands [5], we named our phases “higher-order topological knot” phases, reflecting the

fact that the point-gap knot topology of the 1D edge states is governed by the 2D bulk

bands of the Hamiltonian. In this work, the HOTK phases we have presented produced

the edge braids and knots listed in Table 5.1. A key task for future research is to
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Name Unlink Hopf link Trefoil knot (3,2)Torus knot

Braids
BWs �1 �2

1 �3
1 �1�2�1�2

Knots
Models (4.1) [g = 1] (4.1) [g = 2], (4.2) (4.1) [g = 3] (4.3)

Table 5.1: Braids, braid words (BWs), and corresponding knots of the edge states in 
the HOTK phases described in Section 3.1.

understand how di↵erent classes of edge knots influence the nonreciprocal dynamics 

in these systems.

Overall, we have shown that the interplay of crystalline symmetries and internal 

symmetries results in novel topological phases in non-Hermitian systems. Another 

recent discovery of breaking the NN theorem in a non-Hermitian setting is in Ref [42]. 

This paper shows that by introducing non-symmorphic symmetry to non-Hermitian 

system, the Hamiltonian can hold an odd number of exceptional points (EPs), which 

directly bypassed NN theorem. These examples show great potential in the field of 

non-Hermiticity and topological phases of matters in general. There is a large amount of 

novel phenomenon that has yet to be discovered that can break the NN theorem in one 

way or another.

Besides bypassing the NN theorem, the application of non-Hermiticity is diverse. 

For example, through the understanding of the non-Hermitian Hamiltonian, it is 

possible to revisit the e↵ective edge Hamiltonian of open quantum system [20]; gain 

new insights into the Hermitian topological phenomenon, such as Wannierizability of 

electron wave function [53, 73]; application to interacting systems [14, 39]. All of these 

directions have immense potential that could broaden our horizon of physics 

phenomenon.
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Appendix

A.1 Winding number under TRS and TRS†

In this section, we demonstrate that in 1D, the winding number vanishes under TRS†

(1.7), while it does not under TRS (1.6). To simplify our notation, we use Ta (Tb) for

the TRS† (TRS) operator in this section.

First consider an 1D Hamiltonian that obeys TRS†,

h(�k)† = Tah(k)T �1a

= Uah(k)
⇤U †

a
, (A.1)

where we used Ta = UaK. Then, taking complex conjugate in both sides in the above

equation, we have

h(�k)T = U⇤
a
h(k)UT

a
. (A.2)

Then note that for the determinant, we have deth(k) = detU⇤
a
h(k)UT

a
= deth(�k)T =

45
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deth(�k). We can see that the winding number of h(k) obeys

W =
1

2⇡i

Z

BZ

dk
d

dk
log deth(k)

=
1

2⇡i

Z

BZ

dk
d

dk
log deth(�k)

= � 1

2⇡i

Z

BZ

dk
d

dk
log deth(k) = �W, (A.3)

and thus, W = 0.

Next, consider the constraint due to TRS,

h(�k) = Tbh(k)T �1b
. (A.4)

Using Tb = UbK, we arrive at

h(�k)⇤ = U⇤
b
h(k)UT

b
. (A.5)

Then, the determinant of h(k) obeys deth(k) = deth(�k)⇤. We can see that the

winding number obeys

W =
1

2⇡i

Z

BZ

dk
d

dk
log deth(�k)⇤

= � 1

2⇡i

Z

BZ

dk
d

dk
log deth(k)⇤ = W ⇤ = W, (A.6)

where in the last step, we used the fact that the winding number is a real number.

Therefore, W does not vanish under TRS (1.6).

A.2 Z2 quantization of the Berry phase under TRS

In this section, we prove that the Z2 invariant in Table 1.1 is the Berry phase quantized

to 0 or ⇡. The constraints of TRS for a generic Hamiltonian are discussed in Sec. 2.1
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and Appendix A.4. Now consider a 1D NH Bloch Hamiltonian h(k). As discussed in

Sec. 2.1, TRS forces the eigenvalues of a Hamiltonian h(k) come in {✏n(�k), ✏⇤
n
(k)}

pairs. In the presence of an imaginary line gap, this allows us to label bands of h(k)

in pairs {ñ,�ñ} for bands above and below the imaginary line gap, respectively.

Let us now consider the biorthogonal Wilson line defined by

W ñ

+,kf ki
= Gñ

kf��G
ñ

kf�2� · · ·

· · ·Gñ

ki+�G
ñ

ki
, (A.7)

where the biorthogonal Wilson line element is defined as [Gñ

k
]mn =

⌦
um

k+�

��vn
k

↵
. The

superscript ñ labels the band or group of bands over which the Wilson line is calculated,

so that m,n 2 ñ. � is the spacing between adjacent Wilson line elements in k space.

The sign of � determines the direction in which the Wilson line is calculated. In this

section, we choose � > 0, which corresponds to the subscript + on the left-hand side

of (A.7).

Let us now consider the case in which the Wilson line traverses the entire BZ, i.e.

kf = ki + 2⇡; this constitutes the biorthogonal Wilson loop

W ñ

+,k
= Gñ

k��G
ñ

k�2� · · ·

· · ·Gñ

k+�G
ñ

k
, (A.8)

which is gauge-invariant. Furthermore, the eigenvalues of the biothogonal Wilson

loop are independent of the starting point k [94]. Since we are interested only on the

Wilson loop spectrum, we will drop the subscript k in the Wilson loop. Wilson loops

calculated by advancing k in opposite directions obey

W ñ

+ = [W ñ

�]
�1. (A.9)
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In the Hermitian case, the Wilson loop is unitary, and thus its eigenvalues take the

form exp(i), where � 2 R is the Berry phase. In the NH case, the Wilson loop is

no longer unitary, leading to complex values of �. However, in this section, we will

only consider real � to simplify our argument. Under that consideration, Eq. (A.9)

becomes

W ñ

+ = [W ñ

�]
†. (A.10)

When � is real, the order in which we choose the biorthogonal basis in the definition

of the Wilson loop will not a↵ect the result Berry phases, i.e., using
⌦
um

k+�

��vn
k

↵
or

⌦
vm
k+�

��un

k

↵
for the Wilson line elements will result in the same value of � for the

eigenvalues of the Wilson loop.

Now we insert T 2 = 1 into the Wilson line elements Gñ

k
and apply Eq. (2.2)

Gñ

k
= hum⇤

k+�| T 2 |vn⇤
k
i

=
X

�n,�m2�ñ

[V �m,m

k+� ]T
⌦
u�m⇤�k��

��v�n⇤�k
↵
[V �n,n

k
]⇤

=
X

�n,�m2�ñ

[V �m,m

k+� ]T
⌦
u�m⇤�k��

��v�n⇤�k
↵
[V �n,n

k
]⇤, (A.11)

where we defined the sewing matrix V �n,nk = hv�n�k| T |un

ki. We see that
⌦
u�m�k��

��v�n�k
↵

is a Wilson line element for the bands in �ñ and in the opposite direction. This

allows us to exploit the property (A.10). Applying Eq. (A.8) and using the fact that

[V �n,n
k

]†V �n,n
k

= 1, we get

W ñ

+ = V †
k
W�ñ

+ Vk. (A.12)

This implies that the Berry phases �ñ for bands in ñ obey {ei�ñ} = {ei��ñ}. Consider

now a system with only two bands. The two Berry phases obey

�ñ = ��ñ. (A.13)
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For such systems, there is the additional constraint that the Wilson loop for the

combined bands ñ and �ñ is trivial, such that

�ñ + ��ñ = 0 mod 2⇡. (A.14)

Eq. (A.13) and Eq. (A.14) lead to two possible values for the Berry phase, �ñ = 0 or

⇡. This is the Z2 invariant in 38-fold classification table for 1D in class AI or Table

1.1 in this paper. In the case of systems with multiple bands, it is straightforward

to generalize our findings and show that the quantized index is the polarization,

p = 1
2⇡ log det(W).

A.3 Details on the deformation of complex Chern

insulators into HOSE phases

In this section, we consider a model that connects the HOSE phase [Eq. (2.9)] with the

imaginary-line-gap Chern insulator [Eq. (2.6)]. Consider a lattice with the two-band

Bloch Hamiltonian

hIm
def(k) = �i�z sin kx + i�x sin ky

+ i�y(cos ky + t cos kx +m)

+ �0 cos kx(1� g). (A.15)

This model obeys TRS (1.6) with T = K. Just as in the deformation of the real-

line-gap Chern insulator to a HOSE phase described in Section 2.3, we set m = 0.5

throughout the entire deformation. The main di↵erence between the deformation in

the main text and this one is that this one is in class AI. We first set the parameters

to (g, t) = (1, 1), which puts Hamiltonian (A.15) in the imaginary-line-gap Chern
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insulator phase [Fig. 2.2(b)]. We then deform Hamiltonian (A.15) according to

(g, t) : (1, 1)� ✓(1, 1) for ✓ 2 [0, 1].

We first continuously evolve ✓ from 0 to 0.2. The spectrum at ✓ = 0.2 is shown in

Fig. A.1(b). Next, we evolve ✓ from 0.2 to 0.5. A phase transition occurs at ✓ = 0.5

as shown in Fig. A.1(c). Finally, we vary ✓ from 0.5 to 1. As shown in Fig. A.1(d),

this model is in a HOSE phase.

Figures A.2 and A.3 show the spectrum for some points during the deformations

in (2.10) and (A.15) that complement those shown in Figs. 2.3 and A.1. As we can

confirm from (b) in both Fig. A.2 and A.3, the deformation is not smooth since line

gaps close, causing a phase transition.

A.4 Construction of the topological classification

of Cn-symmetric NH Hamiltonians in class AI

In this section, we build the topological indices of Eq. (3.5) that classify the energy

bands of Cn-symmetric NH lattices in class AI of the 38-fold way. Due to non-

Hermiticity, the classification is, in general, di↵erent from the one obtained for

Hermitian systems. However, for “real” energy bands, additional constraints result

in indices (A.48), which coincide with the indices of Hermitian energy bands [6]. We

start by discussing the implications of TRS and Cn rotation symmetry on the energy

bands and build the symmetry indicator invariants. Then, we discuss the constraints

that these two symmetries impose on these indicators. These two steps then allow the

construction of the �(n) indices in Eq. (3.5) and (A.48).
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Figure A.1: Deforming an imaginary-line-gap complex Chern insulator into a HOSE
phase in the Bloch Hamiltonian (A.15). (a)-(d) correspond to ✓ = 0, 0.2, 0.5, 1,
respectively. (a,b) An imaginary-line-gap complex Chern insulator. (c) Bulk phase
transition between the imaginary-line-gap complex Chern insulator phase and the
HOSE phase. (d) HOSE phase. Left panels: OBC along x and PBC along y; middle
panels: OBC along y and PBC along x; right panels: band projections of the plots on
the second column on the complex energy plane. Black represents bulk states, while
blue and red denote states localized at opposite edges.
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Figure A.2: Spectrum of model with Bloch Hamiltonian (2.10). For all plots, left
(right) three panels are spectra for OBC only along x (y). The deformation path is
(g, t,m) = (1, 1, 0.5)� ✓(1, 1, 0). (a) Chern phase at ✓ = 0.2. (b) Phase transition at
✓ = 0.5. (c) HOSE phase at ✓ = 1.

Figure A.3: Spectrum of model with Bloch Hamiltonian (A.15). For all plots, left(right)
three panels are spectra for OBC only along x (y). The deformation path is (g, t,m) =
(1, 1, 0.5) � ✓(1, 1, 0). (a) Imaginary-line-gap complex Chern phase at ✓ = 0.2. (b)
Phase transition at ✓ = 0.5. (c) HOSE phase at ✓ = 1.
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Figure A.4: (a)-(d) HSPs in the BZ of C4,2,3,6-symmetric lattices, respectively. Colored
dots are the HSPs defined in Eq. (A.27). (e)-(h) Eigenvalues of the rotation operators
r̂4, r̂2, r̂3, and r̂6, respectively. In (e)-(h), we consider only operators obeying [r̂n]n = 1.
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A.4.1 Time-Reversal symmetry

In Sec. 2.1, we saw that TRS enforces the relation

h(�k)T |ul

ki = T h(k) |ul

ki = ✏⇤
l
(k)T |ul

ki . (A.16)

Hence, T |ul

ki is an eigenstate of h(�k) with energy ✏⇤
l
(k). To prove the constraint of

TRS on the energy eigenvalues more rigorously, we project the state at l 2 l̃ into the

space spanned by states at band �l̃.

T |ul

ki =
X

�l2�l̃

|u�l�ki hv
�l
�k| T |ul

ki =
X

�l2�l̃

V �l,lk |u�l�ki , (A.17)

where we have defined sewing matrix V �l,lk = hv�l�k| T |ul

ki.

From Eq. (A.16), it follows that

h(�k)T |ul

ki = ✏⇤
l
(k)T |ul

ki = ✏⇤
l
(k)

X

�l̃

V �l,lk |u�l�ki . (A.18)

On the other hand, we have

h(�k)T |ul

ki = h(�k)
X

�l̃

V �l,lk |u�l�ki

=
X

�l̃

✏�l(�k)V �l,lk |u�l�ki . (A.19)

Therefore, by subtracting these two equations, we have

X

�l̃

V �l,lk |u�l�ki (✏
⇤
l
(k)� ✏�l(�k)) = 0 (A.20)
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for every l 2 l̃. Applying hv�l�k| to the above expression, we get

V �l,lk (✏⇤
l
(k)� ✏�l(�k)) = 0 (A.21)

for every l 2 l̃ and �l 2 �l̃, which implies that the sewing matrix has elements

V �l,lk 6= 0 only for bands obeying ✏⇤
l
(k) = ✏�l(�k).

A.4.2 Rotation symmetry

Rotation symmetry is expressed as

r̂nh(k)r̂
†
n
= h(Rnk), (A.22)

where r̂n is the n-fold rotation operator, which obeys [r̂n]n = ±1 and Rn is the n-fold

rotation matrix acting on the crystal momentum k. Let Eq. (A.22) act on the energy

eigenstate of band l 2 l̃. We have

h(Rnk)r̂n |ul

ki = r̂nh(k) |ul

ki = ✏l(k)r̂n |ul

ki . (A.23)

Thus r̂n |ul

ki is an eigenstate of h(Rnk) with eigenvalue ✏l(k). We can make the

expansion

r̂n |ul

ki =
X

q2l̃

|uq

Rnk
iBql

k (A.24)

where the sewing matrix of the rotation operator is defined as

Bql

k = hvq
Rnk

| r̂n |ul

ki . (A.25)
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High-symemtry points (HSPs) ⇧m remain invariant under the-little group Cm rotation

modulo a reciprocal lattice vector G (for m  n), i.e., they obey

Rm⇧m = ⇧m (mod G). (A.26)

The HSPs in the BZ of Cn-symmetric lattices are

C2 : X = {⇡, 0},Y = {0, ⇡},M = {⇡, ⇡}

C4 : X = {⇡, 0},X0 = {0, ⇡},M = {⇡, ⇡}

C3 : K = {�2⇡

3
,
2⇡p
3
},K0 = {2⇡

3
,
2⇡p
3
}

C6 : K = {�2⇡

3
,
2⇡p
3
},K0 = {2⇡

3
,
2⇡p
3
}

M = {0, 2⇡p
3
},M0 = {�⇡,

⇡p
3
},M00 = {⇡, ⇡p

3
}, (A.27)

and � = {0, 0} for all cases. These HSPs are indicated in Fig. A.4(a)-(d). In C2-

symmetric lattices, X, Y, M are invariant under C2 rotations; in C4-symmetric lattices,

M is invariant under C4 while X and X0 are invariant under C2; in C3-symmetric

lattices, K and K0 are invariant under C3; and in C6-symmetric lattices, K and K0

are invariant under C3 while M, M0, and M00 are invariant under C2. Finally, � is

invariant under the full group Cn rotation for all Cn symmetric lattices.

From Eq. (A.26) and (A.22) it follows that [h(⇧m), r̂m] = 0. Thus, at HSPs, we

also have

r̂m |ul

⇧m
i = rl⇧m

|ul

⇧m
i , (A.28)

where rl⇧m
is the rotation eigenvalue associated with energy band l̃ at HSP ⇧m, which
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can take the values

⇧(m)
p

=

8
>><

>>:

e2⇡i(p�1)/m, for [r̂n]n = 1

e2⇡i(p�1/2)/m, for [r̂n]n = �1

(A.29)

for p = 1, 2, . . .m. We now define the symmetry indicator invariants

[⇧(m)
p

]
l̃
= #

l̃
⇧(m)

p
�#

l̃
�(m)
p

, (A.30)

where #
l̃
⇧(m)

p is the number of energy bands in the band group l̃ with eigenvalue ⇧(m)
p .

Note that if there is an equal number of bands of a given rotation representation of r̂m

at both ⇧m and � = (0, 0), the symmetry indicator invariants are zero. Hence, these

symmetry indicator invariants signal an imbalance in the number of representations

across a generic HSP and those at � at energy bands l̃. Not all these invariants are

independent. In a C4 symmetric crystal, rotation symmetry forces the representation at

X and X0 to be equal [Fig. A.4(a)]. Similarly, C6 symmetry forces equal representations

at M, M0, and M00, as well as at K and K0 [Fig. A.4(d)]. We will demonstrate this in

the following sections.

A.4.3 Constraints due to rotation

Consider a crystal with Cn symmetry with operator r̂n. Cn symmetry relates some

of the HSPs (A.27) that are invariant under little group Cm, where m < n. We are

interested in the eigenvalues of the Cm rotation operator at ⇧m and Rn⇧m. We

now demonstrate that the symmetry indicator invariants for Cm of a band group l̃ at

m-fold HSPs are identical due to Cn.

Since Rn⇧m is invariant under Rm, we have

r̂m |ul

Rn⇧m
i = rl

Rn⇧m
|ul

Rn⇧m
i , (A.31)
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for band l 2 l̃. Since Rn⇧m and ⇧m are related by Cn symmetry, we can make the

expansion

r̂n |ul

⇧m
i =

X

q2l̃

|uq

Rn⇧m
iBql

⇧m
, (A.32)

where Bql

⇧m
= hvq

Rn⇧m
| r̂n |ul

⇧m
i is the sewing matrix of rotation at HSP ⇧m. By

applying r̂m to the above expression and using the fact that [r̂m, r̂n] = 0, we have

(rq
Rn⇧m

� rl⇧m
)Bql

⇧m
= 0 (A.33)

for all q, l 2 l̃. Thus the rotation eigenvalues of the little group at Rn⇧m and ⇧m are

equal at any given band groups l̃,

{rl
Rn⇧m

}
l̃

Cn= {rl⇧m
}
l̃

(A.34)

More explicitly,

{rlX}
C4= {rlX0}

{rlK}
C6= {rlK0}

{rlM} C6= {rlM0} C6= {rlM00}, (A.35)

This implies that the invariants (A.30) obey

[X(2)
p

]
C4= [X

0(2)
p

]

[K(3)
p

]
C6= [K

0(3)
p

]

[M (2)
p

]
C6= [M

0(2)
p

]
C6= [M

00(2)
p

] (A.36)

in the same band group l̃. This conclusion applies for both [r̂n]n = ±1 cases.
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A.4.4 Constraints due to TRS

TRS will add another constraint to the rotation invariants (A.30) [⇧(m)
p ]. The TRS

operator and rotation operator in general commute

[T , r̂m] = 0. (A.37)

Thus, we have

T (r̂m |ul

ki) = T
X

q2l̃

|uq

RmkiB
q,l

k

=
X

�q2�l̃,q2l̃

|u�q�RmkiV
�q,q
RmkB

q,l⇤
k . (A.38)

Here, Bq,l

k = hvq
Rmk| r̂m |ul

ki is the sewing matrix of r̂m from the little group Cm. On

the other hand, we have

r̂m(T |ul

ki) = r̂m
X

�l2�l̃

|u�l�kiV
�l,l
k

=
X

�q,�l2�l̃

|u�q�RmkiB
�q,�l
�k V �l,lk . (A.39)

Therefore, by subtracting these two equations and acting hv�q�Rmk| on the left, we have

X

q2l̃,�l2�l̃

V �q,q
RmkB

q,l⇤
k � B�q,�l�k V �l,lk = 0. (A.40)

At HSPs ⇧m, we choose the gauge in which Bl,q

⇧m
= rl⇧m

�l,q is diagonal, we have

V �q,l⇧m
(rl⇤⇧m

� r�l�⇧m
) = 0. (A.41)

Hence, TRS imposes the constraint
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{rl⇧m
}
l̃

TRS
= {r�l⇤�⇧m

}�l̃ (A.42)

For the symmetry indicator invariants, this constraint implies the following relations:

For [r̂n]n = 1,

[M (4)
2 ]±l̃

C4= [M (4)
4 ]⌥l̃

[K(3)
1 ]±l̃

C3.6= [K
0(3)
1 ]⌥l̃

[K(3)
2 ]±l̃

C3,6
= [K

0(3)
3 ]⌥l̃

[K(3)
3 ]±l̃

C3,6
= [K

0(3)
2 ]⌥l̃. (A.43)

For [r̂n]n = �1,

[M (4)
1 ]±l̃

C4= [M (4)
4 ]⌥l̃

[M (4)
2 ]±l̃

C4= [M (4)
3 ]⌥l̃

[X(2)
1 ]±l̃

C2,4
= [X(2)

2 ]⌥l̃

[M (2)
1 ]±l̃

C6= [M (2)
2 ]⌥l̃

[K(3)
1 ]±l̃

C3,6
= [K

0(3)
3 ]⌥l̃

[K(3)
3 ]±l̃

C3,6
= [K

0(3)
1 ]⌥l̃

[K(3)
2 ]±l̃

C3,6
= [K

0(3)
2 ]⌥l̃. (A.44)

For the rest of the symmetry indicator invariants, i.e., those corresponding to real-

valued rotation eigenvalues, the constraint is

[⇧(m)
p

]±l̃

Cn= [⇧(m)
p

]⌥l̃ (A.45)

for both [r̂n]n = ±1.
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A.4.5 �(n) indices for Cn-symmetric NH crystals

Since the number of bands within each band group l̃ is constant across the BZ, we

have the constraint
X

p

[⇧(m)
p

]
l̃
= 0. (A.46)

The three boxed equations above give the full set of constraints on the symmetry

indicator invariants {[⇧(m)
p ]}. The only di↵erence between the non-Hermitian and the

Hermitian cases lies in Eq. (A.42) for “non-real bands”, i.e., when l̃ 6= �l̃, in which

case TRS relates energy eigenstates across the imaginary line gap. If l̃ = �l̃, i.e., if the

energy band groups are real, the classification is exactly the same as in the Hermitian

case. Based on the above discussion, we can now generalize the �(n) indices introduced

in Ref. [6] to NH systems:

Case l̃ 6= �l̃

The full classification is given by

�(2) = (C|[X(2)
1 ], [Y (2)

1 ], [M (2)
1 ])

�(4) = (C|[X(2)
1 ], [M (4)

1 ], [M (4)
2 ], [M (4)

3 ])

�(3) = (C|[K(3)
1 ], [K(3)

2 ], [K
0(3)
1 ], [K

0(3)
2 ])

�(6) = (C|[M (2)
1 ], [K(3)

1 ], [K(3)
2 ]), (A.47)

where, for a set of non-redundant invariants, it su�ces to determine the �(n) only for

energy band groups l̃ such that Im[✏
l̃
] > 0.

Case l̃ = �l̃

For real-energy bands, i.e., those for which l̃ = �l̃, some of the symmetry indicator

invariants are redundant, i.e., they can be obtained from other symmetry indica-
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Figure A.5: NH Breathing honeycomb lattice described by Eq. (A.51). (a), (b), (c)
energy spectra under OBC along y, PBC along x for t = 1 (topological phase), t = 2
(phase transition), t = 2.5 (trivial phase) with zig-zag edge, respectively.

tor invariants at the same HSP. Specifically, while for real bands with [r̂n]n = 1,

[M (4)
3 ] = �2[M (4)

2 ] � [M (4)
1 ] in �(4), ([K

0(3)
1 ], [K

0(3)
2 ]) = ([K(3)

1 ],�[K(3)
1 ] � [K(3)

2 ]) in

�(3), and [K(3)
2 ] = �[K(3)

1 ]/2 in �(6); for real bands with [r̂n]n = �1, all two-fold

rotation symmetry indicator invariants are 0, [M (4)
3 ] = [M (4)

2 ], [M (4)
2 ] = [M (4)

1 ] in

�(4), ([K
0(3)
1 ], [K

0(3)
2 ]) = (�[K(3)

1 ] � [K(3)
2 ], [K(3)

2 ]) in �(3), and [K(3)
2 ] = �[K(3)

1 ]/2 in

�(6). Dropping redundant indicators, and noting that C = 0 for these bands, the

classification for real-energy bands with [r̂n]n = 1 is reduced to

�(2)
Real = (0|[X(2)

1 ], [Y (2)
1 ], [M (2)

1 ])

�(4)
Real = (0|[X(2)

1 ], [M (4)
1 ], [M (4)

2 ])

�(3)
Real = (0|[K(3)

1 ], [K(3)
2 ])

�(6)
Real = (0|[M (2)

1 ], [K(3)
1 ]), (A.48)



63

which coincides with the classification of Hermitian Hamiltonians [6]. For real-energy

bands with [r̂n]n = �1, the classification is reduced to

�(2)
Real = (0|0)

�(4)
Real = (0|[M (4)

1 ])

�(3)
Real = (0|[K(3)

1 ], [K(3)
2 ])

�(6)
Real = (0|[K(3)

1 ]). (A.49)

The subscript Real indicates these invariants are calculated for energy bands on the

real energy line, i.e., those obeying l̃ = �l̃.

A.5 �(2) index of the minimal model for a HOSE

phase

As mentioned in the Main Text, the crystal with Hamiltonian hHOSE(k) in (2.9) obeys

C2 symmetry with operator r̂2 = �y. However, it does not obey TRS (1.6), and thus

it does not belong to class AI. The Hamiltonian ihHOSE(k), on the other hand, obeys

TRS (1.6), with T = K. This Hamiltonian is

ihHOSE(k) = cos kx�0 + i sin kx�z

+ i(� + cos ky)�y + i sin ky�x, (A.50)

where the �i��0, present in Eq. (2.9), has been removed, with no consequence for the

Hamiltonian’s topological phase. ihHOSE(k) also possesses C2 symmetry with r̂2 = �y.

Multiplying hHOSE by i rotates its energy spectrum in the complex energy plane by 90

degrees counter-clockwise. Therefore, ihHOSE(k) has the same topological properties

as hHOSE(k). The Hamiltonian ihHOSE(k) is equivalent to Hamiltonian (A.15) at the
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end of deformation process (i.e. at g = t = 0) by identifying � in Eq. (A.50) with m

in Eq. (A.15).

Phase Band C [X(2)
1 ] [Y (2)

1 ] [M (2)
1 ]

HOSE
1̃ 0 0 -1 -1

�1̃ 0 0 1 1

Trivial
1̃ 0 0 0 0

�1̃ 0 0 0 0

Table A.1: �(2) index for Hamiltonian (A.50) in the HOSE phase (0 < � < 1) and
trivial phase (� > 1).

The spectrum of ihHOSE(k) under OBC along x and PBC along y is shown in

Fig. A.1(d) for � = 0.5. We label the top (bottom) energy band in the complex plane

with 1̃ (�1̃).

For 0 < � < 1, the model is in a HOSE phase. For � > 1, it is in a trivial phase.

The �(2) indices for this model are shown in Table A.1 for both phases.

A.6 Spectra of HOTK phases with C3 and C6 sym-

metries

This section contains Fig. A.6 and Fig. A.7 with plots of the energy bands of Hamilto-

nians (4.2) and (4.3).

A.7 A C6-symmetric real-line-gap Chern insulator

In this section, we provide a C6 symmetric lattice Hamiltonian that realizes a real-

line-gap complex Chern insulator [a minimal, 4-band model for this phase is shown in

Eq. (2.7)]. Consider the NH breathing honeycomb lattice of Fig. 4.1(d). It has Bloch



65

Figure A.6: (a)[(c)] Spectra of Eq. (4.2) plotted under PBC along x, OBC along y
plotted at t = 0.3 [t = 0.7] with zig-zag edge. In (c), band 2̃ is plotted in gray to
facilitate the presentation of edge states. (b) Braid structures for the two-band edge
states.

Figure A.7: Energy spectrum of Eq. (4.3). (a) PBC along x, OBC along y, for t = 0.2
with zig-zag edge. (b) Braid structure of edge states.

Hamiltonian

hBH(k) =

0

BBBBBBBBBBBBBB@

0 0 0 0 t eik·a1

0 0 0 e�ik·a2 0 t

0 0 0 t e�ik·a3 0

t eik·a2 0 0 0 0

0 t eik·a3 0 0 0

e�ik·a1 0 t 0 0 0

1

CCCCCCCCCCCCCCA

. (A.51)

Hamiltonian (A.51) obeys TRS (1.6) with T = K and C6 symmetry with a rotation

operator r̂6 represented by the matrix that permutes the sites within the unit cells in

the lattice in Fig. 4.1(d) upon rotation by 2⇡/6 about the center of the unit cell.
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Phase Band C [M (2)
1 ] [K(3)

1 ] [K(3)
2 ]

Complex Chern

2̃ 2 1 0 1
3̃ -2 -1 0 -1
1̃ 0 0 0 0
4̃ 0 0 0 0

�2̃ -2 1 0 -1
�3̃ 2 -1 0 1

Table A.2: �(6) indices for Hamiltonian (A.51) in the real-line-gap complex Chern
insulator phase, for t < 2. The bands are labeled as indicated in Fig. A.5(a). For
t > 2, all the bands are trivial, with �(6) = 0.

For 0 < t < 2, the Hamiltonian (A.51) is in the topological phase, with energy

bands across the real line gap having non-trivial �(6) indices that come in opposite

pairs [Table A.2]. As a result, topological edge states cross the line gaps that separate

the energy bands with opposite �(6) indices.

For t > 2, the system enters the trivial phase, with �(6) = 0 for all bands and with

no edge states between them.
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on Topological Insulators. Springer International Publishing, 2016. ISBN

9783319256078. doi: 10.1007/978-3-319-25607-8. URL http://dx.doi.org/10.

1007/978-3-319-25607-8.

[3] Wladimir A. Benalcazar, Je↵rey C. Y. Teo, and Taylor L. Hughes. Classification

of two-dimensional topological crystalline superconductors and majorana bound

states at disclinations. Phys. Rev. B, 89(22):224503. doi: 10.1103/PhysRevB.89.

224503. URL https://link.aps.org/doi/10.1103/PhysRevB.89.224503.

[4] Wladimir A. Benalcazar, B. Andrei Bernevig, and Taylor L. Hughes. Electric

multipole moments, topological multipole moment pumping, and chiral hinge

states in crystalline insulators. Phys. Rev. B, 96:245115, Dec 2017. doi: 10.1103/

PhysRevB.96.245115. URL https://link.aps.org/doi/10.1103/PhysRevB.

96.245115.

[5] Wladimir A. Benalcazar, B. Andrei Bernevig, and Taylor L. Hughes. Quantized

67

https://link.aps.org/doi/10.1103/PhysRevB.55.1142
https://link.aps.org/doi/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1007/978-3-319-25607-8
http://dx.doi.org/10.1007/978-3-319-25607-8
https://link.aps.org/doi/10.1103/PhysRevB.89.224503
https://link.aps.org/doi/10.1103/PhysRevB.96.245115
https://link.aps.org/doi/10.1103/PhysRevB.96.245115


68

electric multipole insulators. Science, 357(6346):61–66, Jul 2017. doi: 10.1126/

science.aah6442.

[6] Wladimir A. Benalcazar, Tianhe Li, and Taylor L. Hughes. Quantization of

fractional corner charge in cn-symmetric higher-order topological crystalline

insulators. Phys. Rev. B, 99(24):245151, 2019. doi: 10.1103/PhysRevB.99.245151.

URL https://link.aps.org/doi/10.1103/PhysRevB.99.245151.
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