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Abstract

Higher-order topological knots in non-Hermitian lattices
By Ivan Wang

In two dimensions, Hermitian lattices with non-zero Chern numbers and non-Hermitian
lattices with a higher-order skin e<ect (HOSE) bypass the constraints of the Nielsen—Ninomiya
“no-go” theorem at their one-dimensional boundaries. This allows the realization of
topologically-protected one-dimensional edges with nonreciprocal dynamics. However,
unlike the edge states of Chern insulators, the nonreciprocal edges of HOSE phases

exist only at certain edges of the two-dimensional lattice, not all, leading to corner localized
states. In this work, we investigate the topological connections between

these two systems and uncover novel non-Hermitian topological phases possessing
“higher-order topological knots” (HOTKSs). These phases arise from multiband topology
protected by crystalline symmetries and host point-gap-protected nonreciprocal edge

states that circulate the entire boundary of the two-dimensional lattice. We show that

phase transitions typically separate HOTK phases from “Complex Chern insulator”

phases —non-Hermitian lattices with nonzero Chern numbers protected by imaginary

line gaps in the presence of time-reversal symmetry.
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Chapter 1

Introduction

Some contents of this thesis have been submitted for publication, available as Yifan
Wang and Wladimir Benalcazar “Higher-order topological knots in non-Hermitian

lattices”, arXiv:2412.05809, 2024 (Ref.[85]).

1.1 Symmetry, topology, and condensed matter
physics

One of the ultimate goals of condensed matter physics is to understand and classify
different quantum systems. The discovery of integer quantum Hall effect (IQHE),
for example, for the first time linked topology to quantum systems. Through years
of development, the physical intuition behind IQHE results in a whole new class of
quantum systems, called topological insulators and topological superconductors. In
this section, we aim to provide a general review of the Hermitian topological insulator
and topological superconductors to provide a better context for the main results of
the paper.

In 1980, Klaus von Klitzing discovered that, under a strong magnetic field, the bulk

of MOSFET (metal-oxide-semiconductor field-effect transistor) remains an insulator,



while its edge becomes a conductor. Surprisingly, the conductance is quantized to the
value o,, = %C’, where C'is an integer Z [37]. This phenomenon is later referred to
as the integer quantum hall effect.

In 1982, Thouless, Kohmoto, Nightingale, and den Nijs identified C' as the Chern
number, linking the integer quantum Hall effect to topology [81]. Notably, the existence
of non-trivial Chern number in the system requires the breakdown of time-reversal
symmetry. In the case of IQHE, this was realized by adding a magnetic field. Another
relevant discovery in the 80s is the quantum anomalous Hall effect (QAHE) proposed
by Duncan Haldane [19]. In contrast to IQHE which requires a strong magnetic
field, QAHE does not require a magnetic field. The breakdown of the time-reversal
symmetry originated from the complex next-nearest-neighbor hopping in Haldane’s
model. Toy models that realize QAHE are generally referred to as Chern insulators.
In 2001, Alexei Kitaev proposed a 1D p-wave superconducting chain, which hosts
unpaired Majorana zero modes at the ends of the chain [35]. The Kitaev chain contains
an Zs invariant that identifies the existence of Majorana zero modes. The existence of
such an invariant depends on the particle-hole symmetry of the system. This results
in the so-called topological superconductors. Around 2005, building on top of IQHE,
the discovery of the quantum spin Hall effect (QSHE) once again linked topology
and condensed matter physics [30, 31, 38]. Similarly to IQHE, QSHE also exhibits
edge-conducting states. But instead of the Chern number, the existence of QSHE
edge states is identified through a Z, invariant, which is sometimes referred to as
Kane-Mele Z, invariant [31]. The existence of Kane-Mele Z, invariant also depends
on the existence of TRS.

After these discoveries, a surge of linking symmetry, topology, and condensed
matter physics occurs, forming the so-called topological insulators (T1I) and topological
superconductors (TSC) [18, 49, 17, 25]. In the following, to limit our scope, we will

only mention TIs.



The connection between non-trivial topological invariants in the bulk and the
existence of edge states formed the bulk-boundary correspondence. Importantly, the
bulk-boundary correspondence of TIs and TSCs also linked mathematical concepts
(topological invariants) to physical phenomena (edge states). The topological edge
states for a 2D crystal lattice, such as those of IQHE and QSHE mentioned previously,
are of particular importance because they circumvent Nielsen and Ninomiya (NN)
theorem [56, 54, 55]. NN theorem states that in a translational invariant, local,
Hermitian lattice system, the system cannot have a single chiral fermion in the
Brillouin zone. Therefore, by the constraints of the NN theorem, all chiral fermions
must come in pairs of opposite chirality, a phenomenon called fermion doubling. IQHE
forms a chiral fermion at one edge by compensating the chiral fermion with opposite
chirality at the opposite edge. In this way, a circulation current can be formed at
the boundary of the systems carried by chiral fermions with the same chirality. The
edge states of QSHE consist of two counter-propagating edge modes of opposite spin
and chirality. Time-reversal symmetry prevents back-scattering between the two edge
states. Thus, the edge of QSH systems can carry two currents traveling in the opposite
direction. The promising physical phenomena of TIs drive the physicist to understand
them in a systematic way, that is, to classify them.

Trying to understand TIs and TSCs systematically, the condensed matter commu-
nity begins the classification of Hamiltonians around 2010. Since the classification
methods relate symmetries and topological invariants, which is essential to our results
in this paper, in the following, we briefly recount the classification methods.

The starting points for analyzing most condensed matter systems begin by taking
two considerations: (1) periodic boundary conditions (PBC) of the crystal, reflecting
the translational symmetry of the crystal lattice, and (2) the tight-binding approx-
imation, which models electrons as being localized to atoms with hopping between

neighboring sites. The periodic boundary conditions allow us to define the concept



of unit cell: the smallest repeating unit of the lattice i.e. by repetitively translating
unit cell, we can reproduce the whole lattice. Thus, the Hamiltonian that describes
the crystal lattice should have the same periodicity as the unit cell. Translational
invariance also makes the lattice momentum k a good quantum number, allowing
us to use k to label eigenstates. The tight-binding approximation discretizes the
Hamiltonian, which greatly benefits numerical calculations.

Due to the above two conditions, the effective Hamiltonian in real space can be
exactly Fourier transformed into k£ space. The resulting Hamiltonian is called the Bloch
Hamiltonian h(k). The translational symmetry in the real space implies translational
symmetry in the k space. We call the lattice in the £ space the reciprocal lattice. The
unit cell will also transform into the k space, forming the Brilloiun zone (BZ): the
smallest repeating unit of the reciprocal lattice. In 1D, the k space periodicity implies
h(k + 27 /a) = h(k), where we set the lattice constant a = 1 throughout the paper.
The BZ is given by k € [0,27). The topological invariants mentioned previously,
such as the Chern number or the Kane-Mele Z, invariant, are all defined in the BZ
i.e. under PBC. More concretely, non-trivial topological invariants in the BZ tell
us the existence of edge states when the boundary is open, which is the meaning of
bulk-boundary correspondence. Thinking in a more abstract sense, we consider BZ as
a parameter space given by a circle S*. More generally, in n-dimension, BZ is given by
the n-torus T™. The Bloch Hamiltonian can thus be considered as a mapping of the T"
torus to some matrix space. The classification problems of condensed matter system
Hamiltonians thus become a problem of classification of matrices and mappings in
mathematics.

The heart of the classification relies on three symmetries: particle-hole symmetry
(PHS)

Ph(k)P~' = —h(-k),P* = £1, (1.1)

which comes from adopting the mean-field approximation of TSC [65]; time-reversal



symmetry (TRS)
Thk)T ' = h(-k), T? = 41, (1.2)

the existence of which depends on the existence of magnetic field or complex hoppings;
chiral symmetry (CS)
Ch(k)C™' = —h(k),C* =1, (1.3)

which comes from the combination of PHS and TRS. As mentioned previously, we
can consider the classification of Hamiltonians as equivalent mappings from 7™ torus
to matrix space. The matrix space is constrained by the above three symmetries.
The classification of equivalent mappings belongs to homotopy theory, which is well
studied in mathematics [24]. This results in the ten-fold classification of TIs and
TSCs [1, 12, 36, 80, 64, 67, 78], which accounts for all possible combinations and
exhaust “strong” topological invariants in all possible dimensions. Notably, none
of these three symmetries originates from the geometry of the lattice. Thus, PHS,
TRS, and CS are called internal symmetries: Lattice deformation and distortion will
not break these symmetries. The topological invariants based on the classification
of internal symmetries are called strong invariants: their existence is robust against
disorder. The robustness of topological invariants also means that edge states, and
thus the current carried by edge states, is robust. Indeed, it is known that lattice
defects will not hinder current transportation at the boundary of TIs.

Having been convinced by great promises of TIs, physicists began to search
for more exotic topological phenomenon, even by breaking down one of the main
assumptions of quantum mechanics: Hermiticity. We review the physical motivations

and consequences of breaking Hermiticity of lattice systems in the next section.



Figure 1.1: Lattice of the Hatano-Nelsen model 1.5 and its spectrum (plotted at ¢t = 1,
g = 0.5) on the complex plane. The spectrum is colored according to the value of k in
BZ.

1.2 Rise of non-Hermiticity and topology

One of the most fundamental assumptions of quantum mechanics is that observables
must be described by Hermitian operators. Hamiltonian, for example, is imposed
to be Hermitian such that its eigenvalues, which is energy, must be real. However,
complex energy also has a physical meaning. The imaginary part of the eigen-energy
reflects the exponential decay or growth of the corresponding eigenstates. Indeed, the
non-Hermitian (NH) Hamiltonian was known in the 1960s to describe the effective
edge Hamiltonian of an open quantum system [13]. Due to the exchange of energy
between the system and the environment, the complex energy from the effective
Hamiltonian is useful for understanding finite-life-time particles on a phenomenological
level. However, a systematical understanding of non-Hermitian Hamiltonian and their
possible application was still lacking until recently.

It is worth noticing that, as mentioned in the previous section, one of the assump-
tions of NN theorem is the Hermiticity of Hamiltonian. Non-Hermitian Hamiltonian
is a natural platform for bypassing the NN theorem and realizing transportation
properties that are otherwise impossible in Hermitian systems. It is known that
robust and nonreciprocal transportation similar to that of the edge of Chern insulator
is impossible to realize in 1D Hermitian systems. However, this limitation can be
easily bypassed in non-Hermitian systems. A famous example is the Hatano-Nelson

(HN) model [22, 23, 21]. HN model considered a 1D tight-binding Hamiltonian with



in-equivalent hopping strength in left and right direction
H= Z tc}lﬂcn + gcl cpin, (1.4)
n
which has the form in & space
han (k) = tel® + ge*. (1.5)

The imbalance in hopping strength will create a preferable hopping direction for the
electrons, that is, towards the direction with stronger hopping. This can be reflected
in the complex spectrum of hy (k) in Fig. 1.1. The right mover (located at k = )
has the largest imaginary energy, while the left mover (located at k = 0) has the
smallest imaginary energy. Under time evolution, this leads to the exponential growth
of the right mover, which will eventually dominate the movement of wave packet. On
the other hand, the left mover will evanescent exponentially. This is how HN model
explicitly realizes unidirectional propagation, and thus, bypassing NN theorem in 1D.
But the properties HN model hold are not fully understood until it meets with the
insight from TTs.

The HN model was revisited after 20 years of discovery in the context of topological
phases. Ref [92] discovered the non-Hermitian skin effect within the HN model ':
upon the boundary condition changes from periodic boundary condition to open
boundary conditions, the eigenstates of the models are exponentially localized at the
boundary. This phenomenon is protected by an integer topological invariant called
the spectral winding number (see Eq. 2.8 in Chapter 2). Ref [92] also provides a
new insight into the definition of “gaps,” which is referred to as the point gap for

the HN model spectrum in Fig. 1.1 (See Chapter 2 for more discussion regarding

1Strictly speaking, Ref [92] considered the non-Hermitian Su-Schreiffer-Heeger model instead of
the HN model. But two models have essentially the same properties.



point gaps). Notably, non-trivial spectral winding number also necessarily leads to an
unequal number of left and right movers [11]. Therefore, the two phenomena can be
understood uniformly through a single topological invariant.

Even for an extremely simple non-Hermitian lattice such as the HN model 1.5, it
already exhibits both nonreciprocal transportation and localization properties that are
impossible to realize for Hermitian lattices. Following these discoveries, classification
effort for non-Hermitian Hamiltonian is called for. The topological classification of
NH Hamiltonians is largely expanded from the 10-fold classification of Hermitian
Hamiltonians [1, 12, 36, 80, 64, 67, 78]. This expansion arises because the three
basic symmetries — time-reversal (7), particle-hole (P), and chiral (C) — split into
two distinct versions. Since the majority of models appearing in this paper obey
time-reversal symmetry, we focus on the classification of Hamiltonians that obey TRS
only in the following. Under non-Hermiticity, TRS bifurcates into the conventional

TRS, under which a Bloch Hamiltonian h(k) satisfies

Thk)T ' = h(-k), (1.6)

and an additional “pseudo-TRS”, denoted here as TRST,

Thk)T ' = h(-Kk)', (1.7)

where k is the crystal momentum, 7 = UK is the time reversal operator, U is
a unitary matrix and K denotes complex conjugation. Taking into account the
ramification of TRS, particle-hole symmetry, and chiral symmetry, as well as the
additional property of pseudo-Hermiticty, nh(k)n~' = h(k)!, where 7 is unitary, the
10-fold classification of Hermitian Hamiltonians expands into a 38-fold classification
for NH Hamiltonians [32, 100, 7].

In the absence of pseudo-Hermiticity, a NH Hamiltonian necessarily breaks either



Gap 1D 2D
Point gap Z 0
Real line 0 0

Imaginary line Z, Z

Table 1.1: Topological classification in class Al of the 38-fold classification of NH
Hamiltonians in 1D and 2D lattices.

TRS or TRS'. Systems exhibiting a skin effect can satisfy (1.6), but they must break
pseudo-TRS (1.7) (Appendix A.1). Here, we focus on 2D lattices belonging to class
AT in the 38-fold classification. Class Al encompasses Hamiltonians that obey TRS
(1.6) with 72 = 1.

The topological classification for class Al is indicated in Table 1.1. In 1D, NH
Hamiltonians with a point gap are topologically classified by a Z invariant, which
is the winding number mentioned earlier. Systems with a real line gap are always
trivial, whereas those with an imaginary line gap possess a Zs classification, where
the topological invariant is the Berry phase, constrained to take values of 0 or =«
(Appendix A.2). In 2D, there are nontrivial classes only in the presence of an
imaginary line gap. The corresponding invariant is the Chern number, which protects
“complex Chern bands”, bands in the complex energy plane possess nonzero Chern
numbers and support edge states that traverse either a real line gap [Fig. 2.2(a)] or
an imaginary line gap [Fig. 2.2(b)].

The classification presented in Table 1.1 pertains only to first-order topological
phases. In the presence of additional crystalline symmetries, the classification is
further expanded to account for the protection of higher-order topological phases.
This protection is weaker, however, as crystalline symmetries are not local, and
disorder in the lattice can disrupt them. Nonetheless, the topological properties of
the disordered system persist as long as the energy gap remains open.

Inspired by the similarity between the Chern insulator and the HN model in

terms of nonreciprocal transportation, we aim to find novel phases that support such
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Figure 1.2: Energy spectra under PBC along x and OBC along y of (a) a Chern
insulator and (b) a HOSE phase. Bulk bands are depicted in black, while red and blue
represent states localized at opposite boundaries. In (b), the brightness of the red and
blue colors indicates the value of the crystal momentum k,. As indicated in the color
bar, the colors are brightest at k, = 0, and gradually fade as k, approaches 27. The
red and blue spectra in (b) are degenerate; they have been slightly offset for clarity.

phenomena that are only realizable in non-Hermitian lattices. Therefore, we ask if
nonreciprocal transportation of the HN model can be realized at the boundary of a 2D
NH lattice. In fact, this question is already being partially answered. 2D NH lattices
with a higher-order skin effect (HOSE) display edges with unidirectional propagation,
albeit not along all edges [33, 58, 47, 45].

In both cases of Chern insulator and HOSE, a bulk-boundary correspondence
connects the nontrivial topological properties of bulk states to unconventional spectral
characteristics of edge states across the Brillouin zone.

As mentioned previously, for Chern insulators, the bulk invariant is the Chern
number, which ensures that edge states connect with bulk states in certain regions
of the spectrum [Fig. 1.2(a)]. For HOSE phases, the precise bulk invariant has not
been completely elucidated [33, 69]. Furthermore, the edge states in HOSE phases
are completely separated from the bulk states by a gap, and their topological nature
can be determined by the winding number of the edge complex spectrum across the
Brillouin zone alone [Fig. 1.2(b)].

The nonreciprocal nature of the edge states of Chern insulators and (some of)

the edges of HOSE phases motivates us to look into their topological connections.
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Specifically, what is the minimal sequence of phase transitions that separate these two
phases, and how do the edge states of a Chern insulator spectrally separate from its
bulk bands as it transitions into a HOSE phase? Moreover, can this process provide
insights into the bulk-boundary correspondence in HOSE phases?

In this paper, we address these questions. We begin by demonstrating how
the minimal model of a Chern insulator deforms into a HOSE phase. During this
deformation, the edge states of the Chern insulator detach from the bulk, evolving into
the non-Hermitian (NH) edge states with nontrivial spectral winding characteristic of
the HOSE phase. However, this detachment occurs only along one pair of opposite
edges; at the other pair, the states merge into the bulk at the transition. Under full
OBC, the nontrivial winding of the detached edge states manifests as a skin effect,
collapsing these states into the O(L) corner-localized states that characterize this
phase.

Next, we propose new NH topological phases, which we term “higher-order topo-
logical knot” (HOTK) phases. These phases are characterized by bulk states with
a line gap and edge states with point gaps and nontrivial windings along all edges.
Unlike the edge states of HOSE phases, the edge states in HOTK phases under OBC
circulate along the entire perimeter of the sample. We show that the minimal HOTK
phase can be generated from lattices with “complex Chern bands” via topological
phase transitions that close a real-line gap.

We consider NH Hamiltonians obeying C,, symmetry,

Fuh(K)Po ' = h(R,K), (1.8)

n

where 7, is the rotation operator satisfying 7 = 1 (or 77 = —1 due to the presence of
magnetic fields threading the lattice), and R,, is the matrix that rotates the crystal

momentum k by 27 /n rad.



12

We will see that HOTK phases exhibit bands in the complex energy plane with line
gaps, yet they undergo phase transitions characterized by point gaps. These “critical
point gaps” bifurcate the topological edge states with point gaps and nontrivial winding
as the system transitions from a trivial to a HOTK phase. In the bulk, the HOTK
topology is diagnosed by symmetry indicator invariants under C,, symmetry, for which
we build the complete classification. The analysis of the symmetry indicator invariants
revealed that HOTK phases result from multiband topology, which is possible in NH
systems due to the simultaneous presence of multiple line gaps in the complex energy
plane.

The structure of the paper is as follows. In Chapter 2, we review previous results
and important concepts that would benefit later discussion. More specifically, we
define complex Chern insulators in the presence of TRS; we also provide an overview
of the higher-order skin effect; Finally, we draw connections between Chern insulators
and HOSE phases to motivate our study. Chapter 3 and 4 present our main findings.
In Chapter 3, we classify the NH Hamiltonians according to C,, symmetry; Chapter 4
introduces models with HOTK phases, one for each of the Cy 3 4 ¢ symmetries. Finally,

in Chapter 5 we conclude with a discussion and outlook of our work.



Chapter 2

Background

In this chapter, we review the Chern insulator under time-reversal symmetry, higher-
order skin effect, and the connection between higher-order skin effect and Chern

insulator.

2.1 Complex Chern insulators under time-reversal
symmetry

The Chern number of a Hermitian system vanishes under TRS (1.6). However, this is
not always the case for NH systems. Consider a NH Bloch Hamiltonian h(k). The

right and left eigenstates obey

hk) |ui) = en(k) [ug)

Wt (k) lvi) = €, (k) o) | (2.1)

respectively. They can be made to obey (up'|vg) = 6my and > |up) (v = 1. A NH

Hamiltonian in class AT obeys (1.6). Applying h(—k)T on a right eigenstate of h(k)

13
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Figure 2.1: Schematic of the energy spectrum of a generic NH Hamiltonian in class
Al Energy bands that map into one another by the action of time-reversal are labeled
in pairs —n, n.

we have

W=I)T [u) = Th(k) Jug) = €, (k)T |ug) - (2.2)

Hence, T |uy) is an eigenstate of h(—k) with the eigenvalue € (k) and, as such,
is proportional to |u",), which has energy ¢,(—k). Thus, under TRS (1.6), the
eigenvalues come in pairs {e,(—k), €:(k)}. This allows us to label the energy bands
using the following notation: let 1,2, -, N denote energy bands above ImE = 0 and
—1,-2,--- ,—N denote the corresponding bands below ImFE = 0, such that bands
i and —n are related by TRS. If a band [ lies on the real energy line, we say that
[ = —I. This notation is schematically represented in Fig. 2.1.

At a given k, let the pair of indices n € n and —n € —n denote two states on
opposite sides of the imaginary line gap. Choosing a gauge in which the sewing
matrix V. """ = (v 2| T |ug) is diagonal, we have T |uj) = |u_}); that is, 7 takes an
eigenstate at k and relates it to its time-reversal partner eigenstate at —k across the

imaginary gap.
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Now consider the biorthogonal Berry curvature [68] for band 7,

[QSL(k)]nlyTLQ =i (<akxu£1 ‘akyvﬁ2> _ <8kyuﬁl ‘8kxvl’f{b2>) , (2.3)

where the superscript RL labels the order of the biorthogonal basis. States ny,ny € n.
Then

2

a (KM = ((Or, | Ok, v ) — (Ok,uic| Ok, v ))
({00, 05 |0, w3 ) — (Oh, 075 Oh, 03 ))

i ((Ok, TV O, Tue) — (O, TV Ok, Tu))

i ((O, v | O™ ) = (O, ™[O, 0™ ))

= —[QL (k)] (2.4)

where in the first step we used <(9kwu7j1k|(9kyvfi> = <8kyv |(9k u”1*> and similarly for
the second term. We see that —QM(—k) = QR (k). These two versions of Berry
connections, QM and OQRL| result in the same Chern number [68]. Accordingly, the
Chern number for bands across an imaginary line gap related to one another by TRS

obey

Cr= /Tr [Q" (k)] d*k

=—— /Tr [QY%(—k)] &’k = —C_;. (2.5)

The Chern number only must vanish for energy bands lying on the real energy
axis, such that 7 = —n. For a minimal model with two bands, 1 and —1, related
by TRS (1.6), we have C; = —C_;. When such a system is in contact with the
vacuum, edge states must close the imaginary line gap that separates bands 1 and

—1 [Fig. 2.2(a)]. A less intuitive example occurs for a NH Hamiltonian with 4 bands
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Figure 2.2: Energies of time-reversal symmetric NH Hamiltonians with “complex
Chern bands” in the presence of an imaginary line gap. Both spectra are calculated
under OBC along z and PBC along y. Black bands represent bulk bands, while
blue and red lines denote edge states at opposite edges. In (a), the edge states cross
an imaginary line gap for Hamiltonian (2.6) with m = 0.5, and in (b), they cross a
real line gap for Hamiltonian (2.7) with ¢ = 1.2. Both systems belong to class Al.
Time-reversal symmetry relates the energy bands across the imaginary gap.

separated by both real and imaginary line gaps, all having nontrivial Chern numbers;
in this case, the edge states can close the real line gap instead [Fig. 2.2(b)]. In both
cases, the imaginary line gap closes for a Hermitian system, leading only to trivial
phases.

As examples of these phases, first consider the Bloch Hamiltonian

hiés(k) = —io, sink, +i0, sin k,

+ ioy(cos ky + cos ky +m), (2.6)

where k = (k,, k,) is the crystal momentum, o, . are the Pauli matrices, and m sets
the Chern number C, with C' =1 (C=—-1)for0<m <2 (-2<m<0)or C=0
else. This model obeys TRS (1.6) with 7 = K. A plot of its energy bands is shown in

Fig. 2.2(a) for m = 0.5.
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Next, consider the Bloch Hamiltonian

hie (k) =(cosk, +t/2)o,7, + (cosk, +t/2)0.7,
— sin ko7, — sin k007,

+1i(t/2)(opmy — 0.7y), (2.7)

where ¢ is the 2 x 2 identity matrix. This model obeys TRS (1.6) with 7 = K.
When 0 < t < 1, edge states cross the imaginary line gap, as in Hamiltonian (2.6). At
t =1, all edge bands touch. When 1 < ¢ < 2, topological edge states close the real
line gap instead. For ¢ > 2, this model enters the trivial phase, where no edge states
exist. Figure 2.2(b) shows the energy bands of Hamiltonian (2.7) for t = 1.2. Note
that there are two copies of Chern insulators with opposite Chern numbers above
and below the imaginary line gap. This is the key feature of a real-line-gap Chern
insulators under TRS (1.6). The Hamiltonian (2.7) obeys Cy symmetry. Appendix
A.7 describes a model on a Cg-symmetric hexagonal lattice in class Al with a real-line

gap Chern insulator phase.

2.2 Higher-order skin effect

In addition to bands separated by line gaps, NH systems also exhibit point gaps.
In 1D, systems with a point gap exhibit the NH skin effect (NHSE), by which all
eigenstates in a crystal with OBC exponentially localize at one of its edges [68, 92, 88,
76, 60, 97, 96, 91, 93, 29, 8].

This effect is associated with a bulk topological invariant, the winding number
W € Z of the complex energy spectrum with respect to a constant reference point

E, inside the point gap. For a translation invariant system with PBC, the winding
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number is defined by

W = i/ Tr (H'(k)~'dH'(k))

- 27
L dkilogdet H'(k) (2.8)
27T1 BZ dk ’

where H'(k) = H(k) — E, and E, is any energy inside the point gap. Since the BZ
is periodic, the complex spectra of NH Hamiltonians with point gaps form knots (or
loops) in (ReE, ImFE, k) space. When more than one energy band wind, the winding
is associated with the braid group By, where N is the number of separable energy
bands [41, 63, 46, 87, 90, 27, 26]. The braid group classifies topologically inequivalent
knots or loops. Such classification of 1D NH crystals was developed in Ref. [26]. In
this and the next section, we focus on the windings and brading configurations at
the 1D boundary of 2D NH lattices for systems with PBC along one direction and
OBC along the other, so that, for example, edge states localized at edges x = 1 or
x = L can still be parametrized by the crystal momentum £, along y. As shown in
Fig. 1.2(b), there are NH lattices in which edge states spectrally disconnect from the
2D bulk bands. Remarkably, while the bulk bands present a line gap, the disconnected
edge states present a point gap and carry nontrivial windings [Fig. 1.2(b)]. Now,
consider the case in which edge windings occur for PBC along x and OBC along v,
but not vice versa. In that case, under full OBC (i.e., OBC along both z and y) only
one pair of edges manifests a 1D skin effect, collapsing its edge states to a pair of
opposite corners of the 2D crystal. Since for a crystal of L x L unit cells, O(L?) states
remain distributed across the bulk, and only O(L) states localize at a corner, such
phases have been referred to as possessing a “higher-order skin effect” [33, 45, 47, 58|,
in analogy with the existence of O(1) corner states in 2D second-order topological

phases [4, 5, 43, 77, 89, 28, 16].
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A minimal model of a HOSE phase is given by the Bloch Hamiltonian

huose(k) = — i(y + cos k. )og + sin k.0,

+ (v + cosky)oy, + sin ko, (2.9)

proposed in Ref. [33]. The Hamiltonian (2.9) can be obtained from the quadrupole
topological insulator (QTI) [4], which is chiral symmetric and can be written as
Hqrr = ((0, haose), (hliosg, 0)) ' Physically, the Bloch Hamiltonian (2.9) represents
1D horizontal Hatano-Nelson chains with alternating winding numbers stacked along
the vertical direction. The chains are coupled via alternating vertical hopping terms
with amplitudes 1 and 7. The phases of Hamiltonian (2.9) are controlled by the single
parameter v. When 0 < v < 1, there is a HOSE phase with O(L) corner states at
the top-left and bottom-right corners of a square lattice. A phase transition occurs
at v = 1. For v > 1, the Hamiltonian (2.9) enters the trivial phase where the HOSE

vanishes.

2.3 Deforming Chern insulators into HOSE phases

Both the edge states of Chern insulators and some of the edges in HOSE phases
circumvent the no-go theorem by Nielsen and Ninomiya (NN), which forbids the
existence of a net chirality in the states of crystals with noninteracting Hermitian
Hamiltonians. The NN theorem stems from a topological consideration; in 1D, it
is impossible to make a real spectrum periodic in the BZ without having an equal
number of right- and left-moving states.

Chern insulators circumvent the limitations of the NN theorem by a topological

bulk-boundary connection, by which edge states must merge into the bulk for part of

LAn extra term —iyoo will appear in this derivation, but this term only shifts the spectrum of the
Hamiltonian (2.9) in the complex energy plane, with no consequences for its topological phase, and
can therefore be discarded.
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the spectrum, as in the region around k, = 0 in Fig. 1.2(a). There is thus a topological
obstruction to spectrally “peeling off” the chiral edge states of a Hermitian Chern
insulator. At most, a bulk phase transition will eliminate the chiral states altogether.

Phases exhibiting the skin effect circumvent the limitations of the NN theorem by
breaking Hermiticity. As a result, their energy spectra are complex, and can be made
periodic in the complex energy plane as the crystal momentum traverses the 1D BZ
while preserving a chirality. Since this nontrivial topology exists in a 1D manifold,
1D systems with a point gap topology do not need a bulk of a higher dimension to
sustain it, nor a bulk-boundary correspondence. In HOSE phases, the edge states with
point-gap topology are spectrally separated from the bulk bands. Yet, the existence
of these edge states themselves is a manifestation of a (weak) nontrivial topological
configuration of the 2D bulk bands.

The inequivalent ways in which the spectra of a periodic system connect across
the BZ — some of which circumvent the NN theorem and lead to nonreciprocity —
correspond to different topological classes, and thus, crystals that implement them
correspond to distinct topological phases of matter, separated by bulk phase transitions.
In particular, we are concerned with the relation between Chern insulators and HOSE
phases, both of which have chiral edge states. Specifically, we ask whether the edge
states of a Chern insulator can be peeled off its bulk if we promote its energy spectrum
to the complex plane, in a similar way as the 1D edge states of the HOSE phase do.
Such a connection would allow us to establish a relationship between Chern insulators
and the HOSE, and consider these different systems on equal footing.

For this purpose, consider the two-band Bloch Hamiltonian

his (k) =sin ko, + sin k,o,
+ (m + tcosk, + cosky)o,

+icosk,(1 — g)oo. (2.10)
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Figure 2.3: Deforming a real-line-gap Chern insulator into a HOSE phase in the
tight-binding model with Bloch Hamiltonian (2.10). The deformation path chosen in
parameter space is (g,t) = (1,1) — 6(1,1), for 6 : 0 — 1. Panels (a)-(d) correspond
to 8 = 0,0.2,0.5,1, respectively. (a) A Hermitian Chern insulator phase. (b) A
real-line-gap complex Chern insulator phase. (c¢) Bulk phase transition between the
Chern insulator phase and the HOSE phase. (d) HOSE phase. In all panels, left
column: OBC along x, PBC along y; middle column: OBC along y, PBC along x; right
column: band projections of the plots on the middle column onto the complex energy

plane. Black represents bulk states, while blue and red represent states localized at
opposite edges.
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When g =1 and ¢ = 1, this model is the Qi-Wu-Zhang (QWZ) Hamiltonian [62, 2], a
minimal model for a Chern insulator, with Chern number C' =1 for 0 < m < 2 or
C' = 0 otherwise. We fix the mass to m = 0.5. Its spectrum is shown in Fig. 2.3(a).
To deform model (2.10) from the Chern insulator phase to the HOSE phase, we
continuously vary the parameters g and t according to (g,t) = 6(1,1) for 6 : 1 — 0.

Note that ¢ # 1 makes (2.10) non-Hermitian, promoting its spectrum to the
complex plane. At 6 = 0.2, the model is in a NH Chern insulator phase [Fig. 2.3(b)],
smoothly connected to the QWZ model in Fig. 2.3(a). As the deformation continues,
a bulk phase transition at § = 0.5 changes the Chern number from C'=1to C' =0
[Fig. 2.3(c)]. However, not all the chiral edge states merge and disappear into the bulk;
instead, along one direction [middle panel in Fig. 2.3(c)], the edge states nontrivially
reconnect, changing their topology to now wind in the complex plane. This is evident
on the other side of the phase transition, as shown in Fig. 2.3(d) for § = 1. In
Appendix A.3, we present complementary plots to those in Fig. 2.3.

During this deformation, the nontrivial topology in the bulk of the Chern insulator
phase that gives rise to the chiral edge states is transferred to a nontrivial topological
winding of the edge states themselves, leaving the bulk topologically trivial (from the
point of view of strong topology). Since this skin effect occurs only at one pair of
edges, a system in this phase with full OBC will necessarily manifest O(L) corner
states, i.e., it will manifest a HOSE. In fact, at the end of deformation process,
(g9,t) = (0,0), the Hamiltonian (2.10) is smoothly deformable to Hamiltonian (2.9) up
to a transformation o, — o, Oy —> Oz, 0, — Oy.

A similar deformation can connect the complex Chern insulator with an imaginary
line gap (2.6) into a HOSE phase, (2.9). In this case, the entire deformation process

is within class AI, obeying TRS (1.6). This process is shown in Appendix A.3.



Chapter 3

Approach

In this chapter, we introduce the classification of C),-symmetric NH Hamiltonians in
class Al in 2D. As we will see in chapter 4, this classification method can also help
us classify higher-order topological knot phases. This chapter only describes general

results. More detailed derivation can be found in Appendix A.4.

3.1 Classification of Higher-order topological knots

Since not all the edges in HOSE phases exhibit nonreciprocal transport, these phases
possess O(L) states exponentially localized at corners where edges with trivial and
nontrivial winding intersect. In contrast, Chern insulators exhibit chiral edge states
that extend continuously around the sample, enabling nonreciprocal propagation even
in the presence of defects or corners [10, 86]. Thus, even though the edges in Chern
insulators and some of the edges in HOSE phases circumvent the NN theorem, there
are important differences among them, resulting in distinct densities of states and
associated transport phenomena. These differences raise a question: can NH lattices
sustain nontrivial windings along all edges of a sample, as Chern insulators do, rather
than only along some edges, as in HOSE phases? In the following, we explore lattices

with these properties. Specifically, we consider NH bulk-boundary correspondence

23
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mechanisms that generate edge states with uniform nontrivial winding across all edges.
This approach eliminates the O(L) corner-localized states characteristic of HOSE
phases, provided the protecting symmetries remain intact. To this effect, we first

construct the topological classification of NH phases with €}, symmetries.

3.1.1 Classification of C),-symmetric NH Hamiltonians in class

Al

The presence of crystalline symmetries enriches the classification of topological
phases [40, 74, 50, 79, 3, 70, 71, 72, 6, 95, 61, 9, 82]. In 2D NH Hamiltonians, HOSE
phases have been understood by drawing a correspondence between the NH Hamil-
tonian in question Ayxy and an associated chiral-symmetric Hermitian Hamiltonian
h = [0, haw; Py, 0] [51, 52], both of which carry identical topological information [33].
This correspondence then makes use of existing crystalline topological classifications
of hy to diagnose topological phenomena in hxg [69, 15, 83, 59, 44, 99, 84].

Here, we consider the crystalline classification of hyy itself, i.e., without appealing
to its corresponding hy. The utility of such a classification was recently presented in
Ref. [99] for a Cs-symmetric NH Hamiltonian, and here we extend this classification
to all C), symmetries. Specifically, consider NH Hamiltonians obeying TRS (1.6) and

C,, symmetry,

uh(K)io ! = h(R.k), (3.1)

n
where 7, is the rotation operator acting on the unit cell degrees of freedom, obeying
7] = 1 or [7,]" = —1 (the latter case due to, e.g., a magnetic flux threading the
lattice), and R, is the n-fold rotation matrix acting on the crystal momentum k. The
high symmetry points (HSPs) in the BZ zone, II,,, for m < n, are crystal momenta

that remain invariant under the little-group C,, rotation (modulo a reciprocal lattice
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vector G), i.e., IT,, = R, I1,, (mod G). For example, setting the length of the unit
cell to unity, in Cy symmetric lattices, X = (7,0), Y = (0,7), and M = (7w, 7)
are all invariant under Cs rotations, while in C; symmetric lattices, X = (7, 0) and
X' = (0,7) are Cy invariant and M = (7, ) is Cy invariant. Also, notice that trivially,
I' = (0,0) is invariant under the full group of a C,, symmetric lattice. Appendix A.4
describes the HSPs for all C),-symmetric lattices.

At the HSPs, Eq. (3.1) implies that [r,, h(IL,,)] = 0 and thus 7, and h(II,,) have
simultaneous eigenstates; the Bloch eigenstates of energy band [, ]ulnm), which obey

h(IL,) |uty ) = (IL,) |ufy ), simultaneously obey

P |upy,,) =, Ju,) (3-2)

where ri—lm is the rotation eigenvalue associated with energy band [ at HSP II,,, which

can take the values

e2mile=/m — for [p,]" =1
mim = (3.3)

p
627ri(p—1/2)/m, for [f.n]n - 1

for p = 1,2,...m. Extending previous studies on the classification of crystalline
topological phases [79, 3, 6, 66, 82], we define the symmetry indicator invariants for
energy band [ as

M) = A — T 3.0

p

where #lﬂz(,m) is the number of eigenstates in the band [ with rotation eigenvalue Hj(om)
at HSP IT,,. The set of symmetry indicator invariants (3.4) across all HSPs of the BZ,
along with the Chern number, provide a topological classification for the energy band
l. However, some of these invariants are related to one another by symmetry, and
thus there is redundancy in the topological information (Appendix A.4). We collect

the set of non-redundant indicators in a vector index y™ that uniquely identifies
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the topological class of complex energy bands in C,-symmetric lattices (Appendix
A.4 contains the complete derivation of the x™ indices for all C,,-symmetric Bloch

Hamiltonians). These x™ indices are

x® = (€[x], ], (M)
X@ = (©X7], (), (M), (MY
P = (KDL K] KDL 15,7)

X© = (€M), K], [KS)). (3.5)

NonHermitian C,-symmetric Hamiltonians in class Al with different x™ indices
belong to different topological phases, as they cannot be deformed into one another
without closing the bulk energy gaps or breaking the symmetry.

The x™ indices obey an algebraic structure. If two bands a and b in classes X((In)

and X,()n) are combined, the resulting Hamiltonian is in class Xfﬁb = XEJ‘) + )(,(]n). As a

consequence, if two bands have complementary topological indices, i.e., if Xg") = —x(()”),

such that Xfﬁb = 0, boundary states will exist in the gap between them under OBC.

As an example, consider the Bloch Hamiltonian hyogr(k) of Eq. (2.9) for the
minimal model of a HOSE phase. While hyosg(k) does not obey TRS (1.6), ihposg (k)
does, with 7 = KC. Additionally, ihgosg(k) obeys Cy symmetry, with rotation operator
o = 0,. The x? indices for its two bulk energy bands are shown in Appendix A.5.
The two indices trivialize in pairs, leading to boundary states in the gap between these
two bands under OBC. These are the skin effect modes of the HOSE phase.

This pairwise trivialization of bands is the simplest case of a more general topolog-
ical connectivity between bands. In particular, there are cases in which no pairwise
trivialization occurs; instead, bands trivialize only in groups of three or four. As we

will see, these cases can undergo unusual phase transitions in which the line gaps close,

generating a point gap, from which edge-localized states with nontrivial windings
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emerge. These are the novel phases we refer to as “higher-order topological knot”

(HOTK) phases, for reasons to become apparent in the next chapter.



Chapter 4

Analysis

In this chapter, we give explicit lattice models and Hamiltonians for complex-Chern

(n

insulator and higher-order topological knots phases. We classify them using x™ index

introduced in the previous chapter.

4.1 Model Hamiltonians with HOTK phases

Higher-order topological knot phases are NH topological phases with bulk line gaps
and nontrivial weak topology that generate edge states with edge point gaps with
nontrivial windings along all edges. Note that similar characteristics are exhibited
by HOSE phases. However, in HOSE phases, nontrivial edge states exist only at
certain edges. In Section 2.3, we showed that a two-band model with a line gap and
nonzero Chern numbers can only transition into a HOSE phase because, while the
chiral edge states deform into a pair of edge states with a nontrivial winding number in
the complex energy plane, the other pair of chiral edges merge into the bulk, resulting
in no topological states in the HOSE phase. This suggests that the minimal model
that generates topological edge states along all edges requires more than two line-gap
energy bands.

In what follows, we will first present a four-band model for a Cy-symmetric lattice

28
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that exists in either a complex Chern insulator phase or in a HOTK phase. We will
then describe HOTK models obeying C5 and Cj crystalline symmetries. Figure 4.1
illustrates the lattices we consider. The Hamiltonians for these lattices are written
in a “maximally nonreciprocal limit”, where each of the arrows in Fig. 4.1 represent
hoppings only along their directions. We do this to provide the simplest, minimal
realizations of these phases; however, more generally, the arrows can represent an
imbalance in the amplitude of hoppings along their direction vs their opposite direction.

The lines with no arrow represent reciprocal hoppings.

Protected by C, symmetry

Consider the following Bloch Hamiltonian, which hosts both a complex Chern insulator

phase and a HOTK phase,

(0, —ioy)[T, cos(gk,) — iy sin(gk,)], (4.1)

where both o; and 7;, for i = x,y, z, are Pauli matrices and o and 7y are the 2 x 2
identity matrix. This model is parametrized by ¢ € R™, the amplitude of reciprocal
hoppings within the unit cell, and g € Z*, the nonreciprocal hopping distance between
unit cells. We first consider the case g = 1, which corresponds to nearest-neighbor
inter-cell hopping. The lattice of this model is shown in Fig. 4.1(a) and carries a
7w flux per plaquette, which is accounted for by a —1 sign in the hopping terms
corresponding to dotted lines in Fig. 4.1(a). This model resembles the quadrupole
topological insulator model of Ref. [5], but with the crucial distinction that its inter-cell

hopping terms are nonreciprocal. It obeys TRS (1.6) with 7 = K and C4 symmetry
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Figure 4.1: Tight-binding lattices that support various NH topological phases. Arrows
indicate the direction of nonreciprocal hopping. (a) The Cy-symmetric lattice with the
Bloch Hamiltonian given in Eq. (4.1) hosts both a HOTK phase and an imaginary-
line-gap complex Chern insulator phase. The hopping terms corresponding to dotted
lines carry a —1 sign, a gauge choice to account for a m flux per plaquette. (b,c)
The Cs-symmetric (Cg-symmetric) lattice with the Bloch Hamiltonian in Eq. (4.2)
[Eq. (4.3)], which hosts a HOTK phase. The Cs-symmetric model also supports an
imaginary-line-gap complex Chern insulator phase. (d) The Cg-symmetric lattice with
the Bloch Hamiltonian in Eq. (A.51), which supports a real-line-gap complex Chern
insulator phase.
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Figure 4.2: Energy spectra of Hamiltonian (4.1) in the (ReE,ImFE, k) space under
OBC along z and PBC along y with (a) t =1, (b) ¢t = 0.5, and (c¢) t = 0.3. Due to
C, symmetry, the energy spectra under OBC along y and PBC along x are identical
to these plots. Black indicates bulk states; red and blue indicate states localized at
opposite edges. The lower panels show projections of the 3D plots into 2D planes to
aid visualization. The diagram at the top left corner of (c¢) indicates the braid group
of each of the edge states across the BZ.

(3.1) with rotation operator

00 0 1
10 0 0

7;4 - }
01 0 0
00 —1 0

which obeys 7§ = —1.

The Hamiltonian (4.1) has four bands, each occupying a quadrant on the complex
plane. These four bands are labeled according to the rule introduced in Sec. 2.1 as
shown in Fig. 4.2(a).

When ¢ > 0.5, the Hamiltonian (4.1) is in a complex Chern insulator phase. The

() indices of each of the four bands in this phase are given in Table 4.1. Note that
bands 1 and 2 have complementary topologies to those of bands —1 and -2, respectively.
Consequently, the topological edge states cross the imaginary line gap [Fig. 4.2(a)].

A transition to a trivial phase would close the imaginary line gap to connect band



Phase Band C [XP] [M®] (M) (MY
1 -1 1 0 -1 1

-1 1 -1 0 1 -1

Complex Chern 5 1 1 1 0 0
-2 -1 1 1 0 0

1 0 1 0 -1 0

-1 0 -1 1 0 -1

HOTK 2 0 -1 -1 0 1
—2 0 1 0 1 0

Table 4.1: ¥ indices for the energy bands of Hamiltonian (4.1)
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. Bands are labeled as

indicated in Fig. 4.2(a). The Complex Chern insulator and HOTK phases correspond

tot > 0.5 and t < 0.5, respectively.

Phase Band C [XP] v?] [MP)]
1 -1 1 1 1

-1 1 -1 -1 -1

lex Ch -

Complex Chern 5 1 1 1 1
-2 -1 1 1 1

1 0 1 1 0

-1 0 -1 -1 0

HOTK 2 0 -1 -1 0
—2 0 1 1 0

Table 4.2: x® indices for the energy bands of Hamiltonian (4.1).

Phase Band C [K] [KP] [KP) (K"
1 0 0 -1 1 -1

HOTK -1 0 1 0 0 1
2 0 1 1 -1 0

1 2 0 1 0 -1

i 2 0 1 0 1

Complex Chern 5 0 0 0 0

Table 4.3: x® indices for Hamiltonian (4.2). The HOTK and Complex Chern insulator
phases correspond to 0 < t < 0.57 and 0.57 < t < 1, respectively.
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Phase Band C [M?] [K®] [KP)
1 0 -1 0 -1
2 0 1 1 -1
HOTK 3 0 0 -2 1
-1 0 1 1 1
-2 0 -1 0

Table 4.4: x(® indices for Hamiltonian (4.3) in the HOTK phase, which corresponds
to 0 <t <0.5.

1 with band -1, and band 2 with band -2, so that on the other side of the transition,
@ = 0 for all four bands, causing the edge states to disappear. However, a different
phase transition occurs in this model when ¢t = 0.5. This transition closes the real
line gap instead, and connects band 1 with band 2 and band —1 with band -2. Along
with these bulk gap closings, the edge states also close the real-line gap [Fig. 4.2(b)].

When t < 0.5, that is, on the other side of the nontrivial transition, the Hamil-
tonian (4.1) is in a HOTK phase [Fig. 4.2(c)]. The four bulk energy bands present
real and imaginary line gaps, as before the transition. However, now separated from
the bulk bands, edge states braid across the BZ in the complex energy plane around
E, = 0. Since there are two edge bands for each edge, the corresponding braid group
is By. The braid structure for one of the edge states is schematically illustrated at
the top left corner of Fig. 4.2(c). Due to the periodicity of the BZ, the braid is also a
knot, and for this phase, the knot has periodicity 47 /a, where a is the unit cell length,
i.e., it takes going around the BZ twice to get back to the original point in the edge
spectrum. The plots of energy bands for OBC along y and PBC along x (not shown)
are identical to those in Fig. 4.2, by Cy symmetry. Thus, topological edges exist along
the entire 1D boundary of the HOTK phase in Hamiltonian (4.1).

A plot of the density of edge states under full OBC for the HOTK phase is shown
in Fig 4.3(a). Notably, the states have support along all edges. This is significantly

different from the phenomenon of HOSE, in which eigenstates decay exponentially
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from corners [33]. In the bulk bands, the nontrivial topology manifests in the nonzero
x¥ indices shown in Table 4.1. Note that none of these bands can be trivialized in
pairs; only the x* index for the ensemble of all four bands is trivial. This indicates
that all four bands participate in the nontrivial topology of the HOTK phase.

The boundary states essentially constitute a boundary-localized 1D chain with PBC
and an associated non-zero winding number protected by a point gap at E, = 0, and
thus, it lies in the same topological class as the 1D Hatano-Nelson model [22, 23, 21].
As such, the HOTK phase protects the nonreciprocal transport of wave packets along

its 1D boundary, with unidirectional acceleration and amplification [48, 75, 98, 34].

Breaking Cy symmetry and robustness of edge states — The complex Chern insu-
lator phase of Hamiltonian (4.1) does not require crystalline symmetries; even in the
absence of xY® indices, the nonzero Chern numbers C' = +1 persists as long as the
imaginary line gap is maintained. However, that is not the case for the HOTK phase,
where all the bands have C' = 0. It may be tempting to think that C; symmetry is
crucial for protecting the topological phase. However, the nontrivial ¥ indices of
the HOTK phase are sufficient, but not necessary, for the protection of the phase.
Boundary states will persist as long as the bulk line gaps and the gap between bulk
and boundary states remain open. In the absence of )y symmetry, however, the
localization of boundary states may significantly change.

To examine the fate of the edge states in the HOTK phase, we break C; symmetry
in three ways: (i) by making the hopping amplitude along y different than that along
x, (ii) by adding onsite energy perturbations ediag(1,—1,1,—1) at each unit cell, and
(iii) by adding a local onsite energy defect at an arbitrary point along the edge. While
(i) and (ii) reduce Cy symmetry to Cy symmetry, (iii) breaks all global crystalline sym-
metries. The edge states for some of these cases are shown in Fig. 4.3. In case (i), the

edge states do not extend along the edges anymore and instead exponentially localize



35

at corners, as shown in Fig. 4.3(b). In case (ii), although C; symmetry is broken, the
resulting distribution of edge states is similar to that of Fig. 4.3(a). In case (iii), as
shown in Fig. 4.3(c), the defect does affect the distribution of edge states, localizing
some of them, but leaving most of them distributed along the entire boundary. This
shows that HOTK phases are robust against disorders: while the distribution of the
boundary modes may change, they generally exist across all boundaries. Under only
Cy symmetry, the ¥ indices of the bulk bands are shown in Table 4.2. Note that the
bands can now be trivialized in pairs across either the real line gap or the imaginary
line gap; thus, transitions that close either of the two line gaps could unwind the edge

states or make them disappear.

Increasing the braiding of edge states — The braiding structure of the edge states
across the BZ in the HOTK phase of Hamiltonian (4.1) is modified with increasing
hopping distance g. For g = 2, the lattice has only next-nearest neighbor hoppings
between unit cells. The spectra for the complex Chern insulator phase and the HOTK
phase are shown in Fig. 4.4(a) and 4.4(b), respectively. Each of the bands in the
Complex Chern insulator phase has C' = 44, and each edge state in Fig. 4.4(a) is
two-fold degenerate. At each edge in the HOTK phase, the edge states braid forming
a Hopf link, as shown in Fig. 4.4(c) for only one edge. Similarly, setting g = 3 fixes
the Chern number of each band in the Complex Chern insulator phase to C' = £9,
with each edge state in Fig. 4.4(d) being threefold degenerate. At each edge of the
HOTK phase, the edge states braid forming a Trefoil knot, as shown in Fig. 4.4(f) for

one of the edges.
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)

Figure 4.3: Local density of edge states p in the HOTK phase of Hamiltonian (4.1)
under full OBC (30 x 30 unit cells) for three scenarios: (a) when Cy symmetry is
preserved, (b) when only Cy symmetry is preserved by reducing hopping amplitudes
along the y direction, and (¢) when a defect is added to one edge. In (b), the C,
symmetry of Hamiltonian (4.1) has been reduced to only Cy symmetry by setting the
inter-cell hopping along = to be 1 and the one along y to be 0.7, while setting the
intra-cell hopping to ¢t = 0.3. Panel (d) shows the spectrum corresponding to case (c)
where the defect is present. In both the plots of the energy spectrum and local density
of states, edge states are indicated in blue, while defect states are highlighted in red.
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Figure 4.4: Energy spectra of Hamiltonian (4.1) under OBC along x and PBC along y
for g = 2 (first row) and g = 3 (second row). First column: Complex Chern insulator
phases with ¢t = 1. Each bulk band has a Chern number of magnitude g2, specifically,
C =44 in (a) and C = 49 in (d). The edge states in (a) and (d) are twofold and
threefold degenerate, respectively. Second column: HOTK phases, with ¢ = 0.3. Third
column: braid structure of the edge states at each edge of the HOTK phases.
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Protected by (5 symmetry

We now consider the NH Kagome lattice shown in Fig. 4.1(b). It has Bloch Hamiltonian

0 t t+ e ikas
MO(k) = | ¢4 eika 0 t , (4.2)
t t 4 el 0

where a; = (1,0),ay = (1/2,v/3/2),a3 = (1/2, —/3/2). This model obeys TRS (1.6)

with 7 = K and C3 symmetry with rotation operator

0 01
Ty = 1 00
010

For 0 <t < 0.57, this model is in a HOTK phase. Its spectrum at ¢t = 0.3 is shown in
Fig. 4.5(a). The x® index in this phase is shown in Table 4.3, where we have labeled
the bands as indicated in Fig. 4.5(a). Note that no pairs of bands lead to a trivial
index; a trivial y® index is obtained only for the set of all three bands, as expected
for a HOTK phase. Under full OBC, a crystal that preserves C3 symmetry, such as
the triangular crystal shown in Fig. 4.1(b), hosts point-gapped edge states along all
edges, as shown in Fig. 4.5(c). These edges are then associated with nonreciprocal
propagation.

When a crystal under full OBC breaks (5 symmetry, the edge states can collapse
into corners. This phenomenon was recently presented in Ref. [99] as the realization
of a HOSE phase in the Kagome lattice. The exponential localization of states to a
corner is similar to what we found in the HOTK phase of Hamiltonian (4.1) when
Cy symmetry is reduced to Cy symmetry [Fig. 4.3(b)]. However, the corner states

in the configuration of Fig. 4.5(d) were demonstrated to have a correspondence with
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Figure 4.5: Energy spectra under OBC along y and PBC along x (a,b) and edge
density of states under full OBC (c,d) of Hamiltonian (4.2). (a,c,d) are in the HOTK
phase, with t = 0.3. (b) is in the complex Chern insulator phase, with ¢ = 0.7. The
insets in (c¢) and (d) schematically indicate the shape of the lattice.

the zero energy corner states of a chiral symmetric hermitian higher-order topological
insulator, predicted and demonstrated experimentally in Ref. [57].

For 0.57 < t < 1, the Hamiltonian (4.2) is in a complex Chern insulator phase
with the v indices shown in Table 4.3. As expected, the x® indices of bands —1
and 1 are complementary in this phase, which necessarily leads to a trivial Y® index
for band 2. The energy spectrum for ¢ = 0.7 is shown in Fig. 4.5(b). The chiral edge
states cross the imaginary line gap between bands —1 and 1. Although no direct line
gap exists between —1 and 1, these two bands are indeed separated everywhere in the

BZ (Appendix A.6).
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Protected by (s symmetry

Finally, we consider the NH Hamiltonian for the hexagonal lattice in Fig. 4.1(c),

described by the Hamiltonian

0 t 0 0 e ikas t
t 0 t 0 0 e~ kal
e~ kaz t 0 t 0 0
1O (k) = (4.3)
0 eikas ¢ 0 t 0
0 0 eka ¢ 0 t
t 0 0 eka t 0

This model obeys TRS (1.6) and Cg symmetry with a rotation operator 7¢ that
permutes the sites within the unit cells of the lattice in Fig. 4.1(c) upon rotation by
27 /6 about the center of the unit cell.

In the range 0 < ¢t < 0.5, the Hamiltonian (4.3) is in a HOTK phase. A phase
transition happens at ¢ = 0.5. At 0.5 < ¢ < 1, Eq. (4.3) enters a gapless phase in which
edge states merge into the bulk. A real line gap will re-open at ¢ > 1. However, all
t > 1 phases are trivial. The x(® indices for the HOTK phase are shown in Table 4.4
[we labeled each band according to Fig. 4.6(a)].

Figure 4.6(a) shows the energy spectrum of Hamiltonian (4.3) in the HOTK phase,
at a value of t = 0.2. Once again, none of the x(® indices for each band can be
trivialized in pairs or in any combination other than the one involving all bands. Under
full OBC that preserves Cg symmetry, such as the hexagon shown in Fig. 4.1(c), edge
states with point gaps and nontrivial winding exist at along all edges [Fig. 4.6(b)]. In
fact, these states perdure even in lattices that preserve only Cj symmetry [Fig. 4.6(c)]
or Cy symmetry [Fig. 4.6(d)]. We show a more detailed spectrum of Hamiltonian (4.3)

in Appendix A.6.
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@ o (b)

Figure 4.6: Energy spectra under PBC along x and OBC along y with a zig-zag edge
(a) and edge density of states under full OBC (b-d) of Hamiltonian (4.3) in the HOTK
phase with ¢t = 0.2.



Chapter 5

Conclusion

We have introduced and characterized new topological phases, which we term “higher-
order topological knot” (HOTK) phases. These are NH phases defined by bulk bands
with line gaps that support edge states with point gaps and nontrivial winding numbers.
While these spectral characteristics are present in HOSE phases, there are two crucial
distinctions: (i) in HOSE phases, the point-gap boundary states are always localized
at corners; and (ii) these corner-localized states are skin states arising from nontrivial
point-gap topology present only at certain edges of the lattice. In contrast, HOTK
phases present boundary point-gap states extended across all edges, with no skin
effect.

In this work, we focused on HOTK phases protected by C,, symmetries. As markers
of their topology, we identified symmetry indicator invariants for class Al under C),
symmetry. Specifically, HOTK phases are characterized by bands with nonzero x ™
indices that cannot be trivialized in pairs, indicating that these phases arise from
multi-band topology involving three or more bands, all separated by bulk line gaps.
This topological connectivity is unique to NH systems, as multiple line band gaps are
required to support it.

In a specific example, we have shown how, once the phase has been established

42
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under a pristine C,, symmetry, disorder that breaks the symmetry will not disrupt the
existence of the topological states (unless disorder is strong enough to induce a bulk
phase transition). We have also shown how breaking the protecting symmetries of a
HOTK phase can result in O(L) corner states, similar to those in HOSE phases. In this
regard, it is worth distinguishing two cases: First, in Hamiltonian (4.1), reducing C,
symmetry to Cy symmetry results in O(L) corner states that do not have corresponding
zero-energy corner states in its counterpart chiral-symmetric Hermitian Hamiltonian.
These states are, to the best of our knowledge, novel, and the mechanism behind their
localization remains an open question for future work. Second, in Hamiltonian (4.2),
modifying the lattice geometry to break C3 symmetry — by shifting from a triangular
to a parallelogram shape — transforms the extended edge states into O(L) corner states,
localized exclusively at one of the two 27/3 rad corners. In this second case, the O(L)
states do correspond to zero-energy corner states in its counterpart chiral-symmetric
Hermitian Hamiltonian, as recently identified in Ref. [99]. We point out, however,
that Hamiltonian (4.2) possesses edge point gaps along all edges under partial PBC,
which contrasts with the paradigmatic HOSE phase of Ref. [33], where the corner
states owe their localization to the absence of point-gap topology at one of the two
pairs of opposite edges.

In 1D NH Hamiltonians, point-gap topology is naturally characterized by the braid
group By, which captures the winding of energy bands around each other in the
complex energy plane as the BZ is traversed [26]. The periodicity of the BZ allows
these braids to be identified with knots. By analogy with higher-order topological
insulators in Hermitian systems, where edge-state topology is determined by 2D bulk
bands [5], we named our phases “higher-order topological knot” phases, reflecting the
fact that the point-gap knot topology of the 1D edge states is governed by the 2D bulk
bands of the Hamiltonian. In this work, the HOTK phases we have presented produced

the edge braids and knots listed in Table 5.1. A key task for future research is to
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Name Unlink Hopf link Trefoil knot  (3,2)Torus knot
J J <
PR S B =

Braids ( f ¢
BWs o1 a% O'i)’ 01020107

® B
)
Knots Q @ O T
Models (4.1) [g=1] (4.1)[g=2], (4.2) (4.1) [g = 3] (4.3)

Table 5.1: Braids, braid words (BWs), and corresponding knots of the edge states in
the HOTK phases described in Section 3.1.

understand how different classes of edge knots influence the nonreciprocal dynamics
in these systems.

Overall, we have shown that the interplay of crystalline symmetries and internal
symmetries results in novel topological phases in non-Hermitian systems. Another
recent discovery of breaking the NN theorem in a non-Hermitian setting is in Ref [42].
This paper shows that by introducing non-symmorphic symmetry to non-Hermitian
system, the Hamiltonian can hold an odd number of exceptional points (EPs), which
directly bypassed NN theorem. These examples show great potential in the field of
non-Hermiticity and topological phases of matters in general. There is a large amount of
novel phenomenon that has yet to be discovered that can break the NN theorem in one
way or another.

Besides bypassing the NN theorem, the application of non-Hermiticity is diverse.
For example, through the understanding of the non-Hermitian Hamiltonian, it is
possible to revisit the effective edge Hamiltonian of open quantum system [20]; gain
new insights into the Hermitian topological phenomenon, such as Wannierizability of
electron wave function [53, 73]; application to interacting systems [14, 39]. All of these
directions have immense potential that could broaden our horizon of physics

phenomenon.



Appendix A

Appendix

A.1 Winding number under TRS and TRS'

In this section, we demonstrate that in 1D, the winding number vanishes under TRS'
(1.7), while it does not under TRS (1.6). To simplify our notation, we use 7, (7) for
the TRS' (TRS) operator in this section.

First consider an 1D Hamiltonian that obeys TRST,

h(=k)' = Toh(k) T,

= U,h(k)* U], (A1)

where we used 7, = U,K. Then, taking complex conjugate in both sides in the above
equation, we have

h(—k)" = Uh(k)UT. (A.2)

Then note that for the determinant, we have det h(k) = det U*h(k)UI = det h(—k)T =

45



46

det h(—k). We can see that the winding number of h(k) obeys

| d
— — [ arZrogdet h(k
W Qm/BZ gy, 108 det h(k)
|

d
- 29 —k
omi ), dkdk ogdet h(—k)

1 d
= —— dk—logdet h(k) = —W A.
21 Jg, dk og det (k) ’ (A-3)

and thus, W = 0.

Next, consider the constraint due to TRS,
B(—k) = Toh(k)T; . (A.4)
Using T, = U,KC, we arrive at
h(—k)* = U h(k)U; . (A.5)

Then, the determinant of h(k) obeys det h(k) = det h(—k)*. We can see that the

winding number obeys

1
W = —/ dkilogdet h(—k)*
B

2w Jp,  dk
1 d
= —— dk— logdet h(k)* = W* =W, A.6

where in the last step, we used the fact that the winding number is a real number.

Therefore, W does not vanish under TRS (1.6).

A.2 7, quantization of the Berry phase under TRS

In this section, we prove that the Z, invariant in Table 1.1 is the Berry phase quantized

to 0 or m. The constraints of TRS for a generic Hamiltonian are discussed in Sec. 2.1
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and Appendix A.4. Now consider a 1D NH Bloch Hamiltonian h(k). As discussed in
Sec. 2.1, TRS forces the eigenvalues of a Hamiltonian h(k) come in {¢,(—k),€:(k)}
pairs. In the presence of an imaginary line gap, this allows us to label bands of h(k)

in pairs {n, —n} for bands above and below the imaginary line gap, respectively.

Let us now consider the biorthogonal Wilson line defined by

I _ n n
+,kf<—k5i - Gk}f*Aka72A e

-G AGE, (A.7)

where the biorthogonal Wilson line element is defined as [G}]™" = (u}, A‘U?>. The
superscript 7 labels the band or group of bands over which the Wilson line is calculated,
so that m,n € n. A is the spacing between adjacent Wilson line elements in k space.
The sign of A determines the direction in which the Wilson line is calculated. In this
section, we choose A > 0, which corresponds to the subscript + on the left-hand side
of (A.7).

Let us now consider the case in which the Wilson line traverses the entire BZ, i.e.

k¢ = k; 4 2m; this constitutes the biorthogonal Wilson loop

A R 7
Tk = k-aGhon

Z—&-AGZ? (A8>

which is gauge-invariant. Furthermore, the eigenvalues of the biothogonal Wilson
loop are independent of the starting point &k [94]. Since we are interested only on the
Wilson loop spectrum, we will drop the subscript k& in the Wilson loop. Wilson loops

calculated by advancing k in opposite directions obey

Wi =Wt (A.9)
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In the Hermitian case, the Wilson loop is unitary, and thus its eigenvalues take the
form exp(i), where v € R is the Berry phase. In the NH case, the Wilson loop is
no longer unitary, leading to complex values of . However, in this section, we will
only consider real v to simplify our argument. Under that consideration, Eq. (A.9)
becomes

Wi = Wt (A.10)

When 7 is real, the order in which we choose the biorthogonal basis in the definition
of the Wilson loop will not affect the result Berry phases, i.e., using <u2”+A|v,?> or
(v A|u};> for the Wilson line elements will result in the same value of « for the
eigenvalues of the Wilson loop.

Now we insert 72 = 1 into the Wilson line elements G7 and apply Eq. (2.2)

Gh = (uifal T 1)
= D VAT (uirs
—n,—meE—mn

= 3 W) s o) [V (A.11)

—n,—meE—mn

vy [Vk_nm]*

where we defined the sewing matrix Vi.™" = (v2!| T |up). We see that (u=}" 5|vZ})
is a Wilson line element for the bands in —n and in the opposite direction. This
allows us to exploit the property (A.10). Applying Eq. (A.8) and using the fact that
(V. """ =1, we get

WI = VIW. . (A.12)

This implies that the Berry phases 75 for bands in 72 obey {e7} = {¢""-7}. Consider

now a system with only two bands. The two Berry phases obey

Vi = V-n- (A.13)
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For such systems, there is the additional constraint that the Wilson loop for the

combined bands n and —n is trivial, such that
Y +7-7 =0 mod 27. (A.14)

Eq. (A.13) and Eq. (A.14) lead to two possible values for the Berry phase, v; = 0 or
7. This is the Z, invariant in 38-fold classification table for 1D in class Al or Table
1.1 in this paper. In the case of systems with multiple bands, it is straightforward

to generalize our findings and show that the quantized index is the polarization,

p = 5= logdet(W).

A.3 Details on the deformation of complex Chern
insulators into HOSE phases

In this section, we consider a model that connects the HOSE phase [Eq. (2.9)] with the
imaginary-line-gap Chern insulator [Eq. (2.6)]. Consider a lattice with the two-band

Bloch Hamiltonian

hi%(k) = —io, sin k, + i0, sin k,
+ioy(cos ky + tcosk, +m)

+ og cos k(1 — g). (A.15)

This model obeys TRS (1.6) with 7 = K. Just as in the deformation of the real-
line-gap Chern insulator to a HOSE phase described in Section 2.3, we set m = 0.5
throughout the entire deformation. The main difference between the deformation in
the main text and this one is that this one is in class AI. We first set the parameters

to (g,t) = (1,1), which puts Hamiltonian (A.15) in the imaginary-line-gap Chern
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insulator phase [Fig. 2.2(b)]. We then deform Hamiltonian (A.15) according to
(g,t): (1,1) — 6(1,1) for 6 € [0, 1].

We first continuously evolve 8 from 0 to 0.2. The spectrum at 6 = 0.2 is shown in
Fig. A.1(b). Next, we evolve 6 from 0.2 to 0.5. A phase transition occurs at § = 0.5
as shown in Fig. A.1(c). Finally, we vary 6 from 0.5 to 1. As shown in Fig. A.1(d),
this model is in a HOSE phase.

Figures A.2 and A.3 show the spectrum for some points during the deformations
in (2.10) and (A.15) that complement those shown in Figs. 2.3 and A.1. As we can
confirm from (b) in both Fig. A.2 and A.3, the deformation is not smooth since line

gaps close, causing a phase transition.

A.4 Construction of the topological classification
of C,-symmetric NH Hamiltonians in class Al

In this section, we build the topological indices of Eq. (3.5) that classify the energy
bands of C,-symmetric NH lattices in class Al of the 38-fold way. Due to non-
Hermiticity, the classification is, in general, different from the one obtained for
Hermitian systems. However, for “real” energy bands, additional constraints result
in indices (A.48), which coincide with the indices of Hermitian energy bands [6]. We
start by discussing the implications of TRS and C), rotation symmetry on the energy
bands and build the symmetry indicator invariants. Then, we discuss the constraints
that these two symmetries impose on these indicators. These two steps then allow the

construction of the x™ indices in Eq. (3.5) and (A.48).
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Figure A.4: (a)-(d) HSPs in the BZ of Cy 2 3 ¢-symmetric lattices, respectively. Colored
dots are the HSPs defined in Eq. (A.27). (e)-(h) Eigenvalues of the rotation operators
T4, T2, '3, and 7'g, respectively. In (e)-(h), we consider only operators obeying [7,]" = 1.
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A.4.1 Time-Reversal symmetry

In Sec. 2.1, we saw that TRS enforces the relation

W=K)T |uy) = Th(k) [u) = & (K)T |uy) (A.16)

Hence, T |ul) is an eigenstate of h(—k) with energy €; (k). To prove the constraint of
TRS on the energy eigenvalues more rigorously, we project the state at [ € [ into the

space spanned by states at band —1.

Tla) = Y [l (Il Tluid = Y Vi D) (A.17)
—le—i —le—l
where we have defined sewing matrix Vi, "' = (v=L| T [ul).

From Eq. (A.16), it follows that
W(=K)T |uy) = & (KT [uge) = e (k) D _ Vi [uTy) . (A.18)
-
On the other hand, we have

W—1)T i) = h(=k) Y Vi [uTy)

= ea(=R)V M uy) - (A.19)
Therefore, by subtracting these two equations, we have

Z Vie " uZi) (6 (k) — e(=k)) = 0 (A.20)
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for every I € I. Applying (vj{| to the above expression, we get
Vi (et () — 4(~K)) = 0 (A.21)

for every | € [ and —I € —I, which implies that the sewing matrix has elements

V"' # 0 only for bands obeying €} (k) = e_;(—k).

A.4.2 Rotation symmetry

Rotation symmetry is expressed as
Foh(K)PL = h(R.k), (A.22)

where 7, is the n-fold rotation operator, which obeys [r,,|" = +1 and R, is the n-fold
rotation matrix acting on the crystal momentum k. Let Eq. (A.22) act on the energy

eigenstate of band [ € [. We have
W(R )7y |uye) = (k) [uie) = e (k) Juy) - (A.23)

Thus 7, [ul) is an eigenstate of h(R,k) with eigenvalue ¢/(k). We can make the

expansion

Fulti) = Y b 1) Bie (A.24)

qel

where the sewing matrix of the rotation operator is defined as

By = (Wl 7 i) (A.25)
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High-symemtry points (HSPs) IT,, remain invariant under the-little group C,, rotation

modulo a reciprocal lattice vector G (for m < n), i.e., they obey

R, IL, =1L, (mod G). (A.26)

The HSPs in the BZ of C,-symmetric lattices are

Cy: X={m0}LY={0,7},M={m, 7}

Cy: X={m0}L, X" ={0,7},M = {n, 7}
27r 2m 27T 2m

27 27T 27 27T
Ce: K= { 3 \/—} { 3 \/—}
27 S - T
M = {0, ﬁ}vM ={-m, \/§}>M {m, \/3}7 (A.27)

and I' = {0,0} for all cases. These HSPs are indicated in Fig. A.4(a)-(d). In Cs-
symmetric lattices, X, Y, M are invariant under C5 rotations; in Cy-symmetric lattices,
M is invariant under C; while X and X’ are invariant under Cy; in Cs-symmetric
lattices, K and K’ are invariant under C3; and in Cg-symmetric lattices, K and K’
are invariant under C3 while M, M’, and M” are invariant under C,. Finally, T is
invariant under the full group C), rotation for all C), symmetric lattices.

From Eq. (A.26) and (A.22) it follows that [h(I1,,), 7] = 0. Thus, at HSPs, we
also have

P |up,,) =, Ju,) (A.28)

where r{-lm is the rotation eigenvalue associated with energy band [ at HSP IL,,, which
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can take the values

e2mi=1/m — for [, =1

Iim = (A.29)

p
627ri(p—1/2)/m7 for [Tﬁn]n - _1

for p=1,2,...m. We now define the symmetry indicator invariants

[Ty = I — 410, (A.30)

p

where #Zﬂﬁ,m) is the number of energy bands in the band group { with eigenvalue Hl(,m).

Note that if there is an equal number of bands of a given rotation representation of 7,
at both IT,, and I" = (0,0), the symmetry indicator invariants are zero. Hence, these
symmetry indicator invariants signal an imbalance in the number of representations
across a generic HSP and those at I' at energy bands [. Not all these invariants are
independent. In a Cy symmetric crystal, rotation symmetry forces the representation at
X and X' to be equal [Fig. A.4(a)]. Similarly, Cs symmetry forces equal representations
at M, M/, and M”, as well as at K and K’ [Fig. A.4(d)]. We will demonstrate this in

the following sections.

A.4.3 Constraints due to rotation

Consider a crystal with C),, symmetry with operator 7,. C,, symmetry relates some
of the HSPs (A.27) that are invariant under little group C,,, where m < n. We are
interested in the eigenvalues of the C,, rotation operator at II,, and R,II,,. We
now demonstrate that the symmetry indicator invariants for C,, of a band group [ at
m-fold HSPs are identical due to C,,.

Since R,II,, is invariant under R,,, we have

U, 11,,) (A.31)

~ l l
P |[UR,11,.) = TR,
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for band [ € [. Since R,II,, and I1,, are related by C,, symmetry, we can make the

expansion
. !
Folum,) = Y [ufm,) Biy,,. (A.32)
q€l
where Bﬁm = (v} 1, | |ufy,,) is the sewing matrix of rotation at HSP II,. By

applying 7, to the above expression and using the fact that [r,,,7,] = 0, we have
(rh m, — ri—lm)qu-im =0 (A.33)

for all ¢,1 € . Thus the rotation eigenvalues of the little group at R,II,, and IL,, are

equal at any given band groups I,

{rhom ) Z {rh )i (A.34)

More explicitly,

{ri} & {ri)
{ric & {rfc}

() € {rhe ) € (rhe ), (A.35)
This implies that the invariants (A.30) obey

Cy !
X 2 X,

p

[M}g2)] Cs [M;(Q)] % [M“(z)] (A.36)

p

in the same band group {. This conclusion applies for both (7] = £1 cases.
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A.4.4 Constraints due to TRS

TRS will add another constraint to the rotation invariants (A.30) [H]E,m)]. The TRS

operator and rotation operator in general commute
[T, #m] = 0. (A.37)

Thus, we have

T (P i) = T )l 1) BE

qel

— Z [u"% ) VR B, (A.38)

fqele,qei

Here, BY' = (v} |7 |ul) is the sewing matrix of #,, from the little group C;,. On

the other hand, we have

= Y |ulf 0BTV (A.39)
Therefore, by subtracting these two equations and acting (v_% | on the left, we have

Y VRkBET - BTV =0, (A.40)

qei,flefi

At HSPs II,,,, we choose the gauge in which Blr’lqm = iy 014 is diagonal, we have
V' (riy, —r74,) = 0. (A.41)

Hence, TRS imposes the constraint
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TRS [ _is
{ri, } = {rim Yo (A.42)

For the symmetry indicator invariants, this constraint implies the following relations:

For [r,|" =1,

(K], 20 (K (A.43)

(K], = (K (A.44)

For the rest of the symmetry indicator invariants, i.e., those corresponding to real-

valued rotation eigenvalues, the constraint is
P (A.45)

for both [r,]" = +1.
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A.4.5 " indices for C,-symmetric NH crystals

Since the number of bands within each band group [ is constant across the BZ, we

have the constraint

> @y =o. (A.46)

p

The three boxed equations above give the full set of constraints on the symmetry
indicator invariants {[Hl(,m)]}. The only difference between the non-Hermitian and the
Hermitian cases lies in Eq. (A.42) for “non-real bands”, i.e., when l~7é —l~, in which
case TRS relates energy eigenstates across the imaginary line gap. If | = —I, i.e., if the
energy band groups are real, the classification is exactly the same as in the Hermitian
case. Based on the above discussion, we can now generalize the ™ indices introduced

in Ref. [6] to NH systems:

Case [ # —1

The full classification is given by

X? = (€[ xP), [v{?), (M)
@ = (©X7], (), (M), [P
X = (KL K] KDL 15,7)

XO = (©M?), [k, [K), (A.47)

where, for a set of non-redundant invariants, it suffices to determine the x(™ only for

energy band groups I such that Imlej] > 0.

Case [ = —[

For real-energy bands, i.e., those for which I = —I, some of the symmetry indicator

invariants are redundant, i.e., they can be obtained from other symmetry indica-
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Figure A.5: NH Breathing honeycomb lattice described by Eq. (A.51). (a), (b), (c)
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tor invariants at the same HSP. Specifically, while for real bands with [7,]” = 1,
(7] = 20" = Y] o (P G = (P =80 = [57)) in
x®), and [Kég)] = —[Kl(g)]/Q in x©; for real bands with [#,]” = —1, all two-fold
rotation symmetry indicator invariants are 0, [M§4)] = [M2(4)], [M2(4)] = [Ml(4)] in
KO (LG = (1Y) = (K] [57) iy @, and [157] = —[K77]/2 in
x'9. Dropping redundant indicators, and noting that C' = 0 for these bands, the

classification for real-energy bands with [7,]” = 1 is reduced to

X2 = (0x P, v, P
XD = (01X P, (), )
X = (0][KP), [KP))

X = (0[MP], [KP)), (A.48)
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which coincides with the classification of Hermitian Hamiltonians [6]. For real-energy

bands with [7,]" = —1, the classification is reduced to

Xy = (0[0)

Xto = (0][2Y])
X = (0|[K), [KS))
Xt = (OI[K1”]). (A.49)

The subscript Real indicates these invariants are calculated for energy bands on the

real energy line, i.e., those obeying [=—1.

A.5 Y% index of the minimal model for a HOSE
phase

As mentioned in the Main Text, the crystal with Hamiltonian hgosg(k) in (2.9) obeys
Cy symmetry with operator 7o = o,,. However, it does not obey TRS (1.6), and thus
it does not belong to class Al. The Hamiltonian ihgosg(k), on the other hand, obeys
TRS (1.6), with 7 = K. This Hamiltonian is

1hHOSE(k> = COS ]ﬁmO'O + isin ]{3330'2

+i(y + cos ky)o, + isin kyoy, (A.50)

where the —iyog, present in Eq. (2.9), has been removed, with no consequence for the
Hamiltonian’s topological phase. ihpoge(k) also possesses Cy symmetry with 75 = oy,
Multiplying hyosg by i rotates its energy spectrum in the complex energy plane by 90
degrees counter-clockwise. Therefore, ihposg(k) has the same topological properties

as hpose (k). The Hamiltonian ihposg(k) is equivalent to Hamiltonian (A.15) at the
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end of deformation process (i.e. at g =t = 0) by identifying v in Eq. (A.50) with m

in Eq. (A.15).
Phase Band C [Xl(Z)] [Yl(z)] [Ml(Q)]
w14 3 1
Trivial _% 8 8 8 8

Table A.1: x® index for Hamiltonian (A.50) in the HOSE phase (0 < v < 1) and
trivial phase (y > 1).

The spectrum of ihgose(k) under OBC along = and PBC along y is shown in
Fig. A.1(d) for v = 0.5. We label the top (bottom) energy band in the complex plane
with 1 (—1).

For 0 < v < 1, the model is in a HOSE phase. For v > 1, it is in a trivial phase.

The x® indices for this model are shown in Table A.1 for both phases.

A.6 Spectra of HOTK phases with (5 and C5 sym-
metries

This section contains Fig. A.6 and Fig. A.7 with plots of the energy bands of Hamilto-
nians (4.2) and (4.3).

A.7 A (Cg-symmetric real-line-gap Chern insulator

In this section, we provide a (s symmetric lattice Hamiltonian that realizes a real-
line-gap complex Chern insulator [a minimal, 4-band model for this phase is shown in

Eq. (2.7)]. Consider the NH breathing honeycomb lattice of Fig. 4.1(d). It has Bloch
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Figure A.7: Energy spectrum of Eq. (4.3). (a) PBC along x, OBC along y, for t = 0.2
with zig-zag edge. (b) Braid structure of edge states.

Hamiltonian
0 0 0 0 t eik-al
0 0 0 eTik-as 0 t
0 0 0 t e ik-as 0
heu(k) = ' . (A.51)

t eik-a 0 0 0 0
0 t eik-as 0 0 0

e—tkal 0 t 0 0 0

Hamiltonian (A.51) obeys TRS (1.6) with 7 = K and Cy symmetry with a rotation
operator 7 represented by the matrix that permutes the sites within the unit cells in

the lattice in Fig. 4.1(d) upon rotation by 27/6 about the center of the unit cell.
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Phase Band C [MP] [KP] K
2 2 1 0 1
3 -2 -1 0 -1
1 0 0 0 0

Complex Ch 1

omplex ern i o 0 0 0
-2 2 1 0 -1
-3 2 -1 0 1

Table A.2: x(® indices for Hamiltonian (A.51) in the real-line-gap complex Chern
insulator phase, for ¢ < 2. The bands are labeled as indicated in Fig. A.5(a). For
t > 2, all the bands are trivial, with x(® = 0.

For 0 < t < 2, the Hamiltonian (A.51) is in the topological phase, with energy
bands across the real line gap having non-trivial (¢ indices that come in opposite
pairs [Table A.2]. As a result, topological edge states cross the line gaps that separate

6) indices.

the energy bands with opposite x
For t > 2, the system enters the trivial phase, with x(®) = 0 for all bands and with

no edge states between them.
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