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Abstract

Data-Driven Fine-Grained Epidemic Modeling via Graph Neural Networks
By Muran Qin

Fine-grained epidemic modeling is crucial for controlling the spread of diseases such
as COVID-19. While many graph-based deep learning frameworks for pandemic fore-
casting achieved powerful performance, seldom use other relevant data sources besides
the disease case surveillance data. This paper presents a framework for using the
publicly available Social Connectedness Index (SCI) and Social Vulnerability Index
(SVI) to enhance the baseline model. These datasets provide valuable insights into
the social interactions and socioeconomic status of each location, both potentially sig-
nificant factors for epidemic spreading dynamics. Experiments were conducted on the
U.S. county-level granularity over three datasets with different time frames and geo-
graphical scales. We found that SCI and SVI both improve the performance over the
original model on some prediction horizons while having comparative performance on
other prediction horizons, demonstrating the promising effectiveness of using social-
related data sources on pandemic forecasting. Finally, we suggested potential future
research directions on data-driven pandemic forecasting.
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Chapter 1

Introduction

Over the past three years, the COVID-19 pandemic has had a significant, if not

devastating, impact on the world, causing widespread illness, death, and economic

disruption. Scientists have made an extensive effort in the area of disease spread

modeling to accurately forecast the spread of the virus, which could guide the com-

munities to react, and is crucial for the policy-makers to make well-informed decisions

on how to develop effective interventions and marshal limited healthcare resources to

minimize the destruction brought by the disease. Even though COVID-19 is fading

away, studies in relevant fields could help society to cope better and respond faster

in future epidemics.

Traditional epidemic modeling models are compartmental based and estimate dis-

ease transmission dynamics at the population level [21, 37]. However, they make

strong assumptions with respect to a stationary process and barely consider the spa-

tial dependencies between locations, which is extremely important in epidemic mod-

eling. More recent works consider both the spatial and temporal dependencies of the

disease by learning simultaneously on multiple locations [24, 29]. Graph Neural Net-

works (GNNs) [41] are extremely good at capturing the spatial influences each location

has on another location due to the message-passing mechanism where each location is
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represented as a node in the graph. As a result, most recent works use a GNN-based

framework and achieve better performance on epidemic forecasting [7, 10, 13, 30].

We noticed that most effort for better performance is directed to building a more

powerful model, but not much has been done to explore the effect of using additional

data sources in the GNN-based models besides the epidemic cases time series. There

are plenty of data sources available providing information on mobility patterns, social

interactions, and socioeconomic status of the locations.

Although many previous works argued that additional data sources are hard to

collect, the data sources we used in this study – Social Connectedness Index (SCI)

and Social Vulnerability Index (SVI) – are both publicly available. As their names

suggest, these datasets provide valuable insight into the social connection between

locations and the location’s vulnerability to an epidemic, respectively. Our goal is to

find a suitable baseline model and incorporate these data sources into the model to

improve its U.S. county-level COVID-19 forecasting performance.

Our key contributions can be summarized as follows:

• We summarize the most relevant state-of-the-art graph-neural-network-based

COVID-19 forecasting models and provide both a quantitative comparison and

a qualitative comparison between the models on the U.S.-county level case pre-

diction.

• We identify two social data sources – SCI and SVI – that provide information

regarding the social connections between counties and the social conditions of

the counties. With these datasets, we study the effect of using social connections

and socioeconomic data in GNN-based epidemic modeling.

• We provide a framework for incorporating SCI and SVI data into a state-of-the-

art graph neural network model, Cola-GNN, and evaluated the performance.

We enhance Cola-GNN’s performance over a longer prediction horizon of 2 to
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4 weeks by using SVI-aware attention. We also summarize the implications of

using each data.

The rest of this paper is organized as follows: Section 2 summarizes the related

works on GNNs and epidemic forecasting. Section 3 introduces the formulation of the

research problem and the common data structures used. Section 4 provides a com-

parative study between four state-of-the-art models. Section 5 incorporates SCI and

SVI into Cola-GNN and evaluates their performances and implications. Finally, Sec-

tion 6 concludes the key findings in the paper and discusses potential future research

direction.
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Chapter 2

Related Work

2.1 Graph Neural Networks

A graph is a ubiquitous data structure that describes objects and their relations. It

is useful in many scenarios such as modeling molecule and protein structures, social

networks, traffic networks, etc [4, 11, 12, 23, 25, 32, 40]. Hence, tremendous efforts

have been made in this area, aiming to learn from the graphical relationships in the

data. Graph neural networks (GNNs) are neural models that capture the dependence

of graphs via message passing between the nodes of graphs [41]. The message-passing

operation in a GNN is typically defined using a graph convolutional operation, which

is similar to a convolutional operation used in image processing. The convolutional

operation is applied to the feature vectors of each node and its neighboring nodes,

allowing each node to incorporate information about its neighbors into its own feature

vector.

Some state-of-the-art GNN layers include Chebyshev Convolutional Network (Cheb-

Net) [9] that uses Chebyshev polynomials to perform spectral convolution on graph-

structured data; Graph Convolution Network (GCN) [16] consists of multiple layers

that aggregate information from neighboring nodes and update the node embedding;
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Graph Attention Network (GAT) [27] uses attention mechanisms to weigh the impor-

tance of neighboring nodes during message passing. Other variants such as Graph Iso-

morphism Network (GIN) [36] and Graph Convolutional Recurrent Network (GCRN)

[22] also achieve powerful performance and are applied to different tasks.

2.2 Multivariate Time Series Forecasting

A multivariate time series (MTS) is a collection of time-dependent variables, where

each variable is dependent on the values of other variables in the collection. MTS fore-

casting has many applications in areas such as traffic forecasting, electrocardiogram

forecasting, and stock price prediction [2, 6, 7, 34]. The majority of the early methods

follow a statistical approach. The autoregressive integrated moving average (ARIMA)

captures both the autocorrelation (auto-regressive) and moving average patterns of

a time series, while also taking into account any trends or seasonality in the data by

differencing (integrated) the series. The vector autoregressive model (VAR) extends

the autoregressive (AR) by capturing the linear interdependencies among the series.

Despite the popularity of statistical models due to their simplicity and interpretabil-

ity, they make strong assumptions with respect to a stationary process and are not

easily scalable to multivariate time series data. Deep models are more effective to

capture non-linearity in the data. Many deep MTS forecasting models employ convo-

lutional neural networks to capture the inter-series correlations and recurrent neural

networks to capture the intra-series temporal correlations [17, 33, 35].

In the recent literature, graph-based models are increasingly popular for MTS

forecasting tasks because the relationship between series can be effectively modeled

as graphs [15, 18, 28]. ST-GCN provides a framework for traffic prediction which

integrate graph convolution and gated temporal convolution through spatio-temporal

convolution blocks [38]. StemGNN [7] combines Graph Fourier Transform (GFT) and
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Discrete Fourier Transform (DFT) to capture inter and intra-series dependencies on

the spectral domain.

2.3 Epidemic Modeling

Compartmental models in epidemiology including SIR, SEIR, and SIRD divide a

population into compartments such as susceptible (S), exposed (E), infected (I), re-

covered (R), and death (D) and model the transmission dynamics as a parameterized

systems of equations. SuEIR [42] and modified SEIR [37] both extend on SEIR. The

former takes into account the untested/unreported cases, while the latter accounts

for the mobility of individuals. However, these compartmental models suffer from the

assumption that all individuals within a compartment are homogeneous and cannot

account for spatial dynamics. Deep models are generally more expressive and could

more accurately model complicated epidemic dynamics. Epidemic forecasting can

be viewed as an MTS forecasting problem where each node is a geographical region

(State, county, etc) associated with its daily cases. While most general MTS forecast-

ing models mentioned earlier can be applied, many models are designed specifically

for epidemic forecasting. Cola-GNN [10] learns time-series embedding for long-term

influenza-like illness (ILI) prediction by combining graph structures and time-series

features in a dynamic propagation process. STAN [13] and CausalGNN [30] are both

hybrid models that combine the graph input features with epidemiological context

to predict the number of COVID-19 cases. By incorporating disease transmission

dynamics into graph neural networks, the forecasts are regularized and achieve better

performance.
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Chapter 3

Problem Definition

We formulate the COVID forecasting problem as a multivariate time series predic-

tion problem where the time series are the newly infected cases every day. X =

[X1, . . . , XT ] ∈ RN×T denotes the multivariate time series input and N is the number

of time series or locations. Xt denotes the observed value for every node at timestamp

t. Each row of X represents a location and contains the corresponding univariate time

series values. Given the historical timestamps, the objective is to predict XT+h where

h refers to the prediction horizon, or leadtime of the prediction.

Since there are strong spatio-temporal dependencies in epidemic propagation, all

the models in this study model the input as either a static or dynamic graph, where

each node represents a location. The static graphs are denoted as GStatic(V , E), where

V is the set of N nodes, E ⊆ V ×V is the set of edges. The graph GStatic is associated

with a feature matrix C ∈ RN×T and a weighted adjacency matrix A ∈ RN×N . C is

usually the same as X. The dynamic graphs are denoted as GDynamic(V , E , T ), where

T is the set of T timestamps. GDynamic = {G1(V1, E1) . . .GT (VT , ET )}, where each Gt

represents a different static graph at timestamp t. At every timestamp, the graph Gt

is associated with a feature matrix Ct ∈ RN×C where C is the feature number and an

weighted adjacency matrix At ∈ RN×N .
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Chapter 4

Comparative Study

In this section, four state-of-the-art graph-based COVID-forecasting models including

StemGNN, Cola-GNN, STAN, and CausalGNN are introduced at a high level from

the earliest to the most recent1. We then compared the models on both a qualitative

and quantitative basis. The goal for the comparative study is to select the most

suitable base model for the enhancement study in Section 5.

4.1 Background

4.1.1 StemGNN

Spectral Temporal Graph Neural Network (StemGNN) [7] improves the accuracy

of MTS forecasting by capturing inter-series correlations and temporal dependen-

cies jointly in the spectral domain using Graph Fourier Transform (GFT) [1, 9] and

Discrete Fourier Transforms (DFT), respectively. StemGNN consists of a latent cor-

relation layer that automatically learns the inter-series correlation through a gated

recurrent unit (GRU) [8] encoding and a self-attention mechanism [26], two StemGNN

blocks with residual connections where each block carries out the Spectral Graph Con-

1All the mathematical details and code for each of the models can be found in the original paper
(except the code for CausalGNN)
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volution [16], and an output layer. The StemGNN network uses both a forecast loss

and a backcast loss during the training process.

4.1.2 Cola-GNN

Cross-location Attention based Graph Neural Networks (Cola-GNN) [10] learns time

series embeddings for long-term influenza-like illness (ILI). It models the impact of one

location on another location dynamically using a location-aware attention mechanism

[3] and extracts important features from each time series using a multi-scale dilated

convolutional module [39, 20]. The cross-location attentions and the local temporal

features are then passed through a flu propagation model which consists of graph

message-passing layers. The final representation for each location combines the graph

node embedding and the last Recurrent Neural Network (RNN) hidden state of the

original time series. An output layer consisting of a fully-conneced layer and an

activation function is used for the downstream prediction task.

4.1.3 STAN

Spatio-temporal Attention Netork (STAN) [13] takes in a dynamic graph without

edge weights as input where the node feature at each timestamp consists of the latest

values from historical data within a sliding window. First, graph attention network

[27] is applied to the graph at each timestamp to capture the spatio-temporal trends

of the pandemic dynamics. Then a GRU [8] for each location takes in the embedding

of the corresponding node at each timestamp to learn the temporal dependencies.

The final GRU hidden state for each location is used to predict the number of cases

in the future. In addition to the traditional forecast loss, a dynamics-based loss term

based on the SIR model was added to enhance long-term predictions.
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4.1.4 CausalGNN

Causal-Based Graph Neural Networks (CausalGNN) [30] learns spatio-temporal em-

bedding where graph input features and epidemiological context are combined via a

mutual learning mechanism using graph-based non-linear transformations. The trans-

formations include a feature encoding that encodes the input at each timestamp, a

temporal encoding that learns the temporal dependencies, and an attention-based

dynamic GNN layer (AGCN) used to capture the spatio-temporal disease dynamics.

On top of the GNN framework, a causal module including causal encoding, causal de-

coding, and susceptible(S)-infected(I)- recovered(R)-deceased(D) (SIRD) simulation

[19] is added to provide epidemiological context for the time series embedding for

each location.

4.2 Qualitative Comparison

Besides StemGNN, which learns on the spectral domain, all other models learn on

the graph domain through message passing between nodes. For capturing temporal

dependencies, StemGNN, Cola-GNN, and STAN all used an RNN. On top of RNN,

StemGNN used DFT, and Cola-GNN used multi-scaled dilated convolution. Causal-

GNN uses a temporal encoding consisting of affine transformations at each timestamp

to learn the temporal dependencies.

Since the eventual goal of the comparative study is directed at learning the poten-

tial incorporation of additional data sources. Therefore, the rest of the comparison

is going to focus on the type of input, the type of graph, and the graph construction

method of each model along with a discussion of the extensibility of each model.

Table 4.1 summarized the most relevant comparisons between the models. All

the models use most of their input as the node features. StemGNN and Cola-GNN

only use the original MTS as the node features. On top of the original MTS, STAN
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and CausalGNN incorporate other information such as the latitude, longitude, and

population into the node features along with recovered and death time series that are

also used for the SIR/SIRD simulation.

Model Node Features Edge Weight Graph Type

StemGNN Confirmed cases Self Attention using
GRU embedded fea-
tures

Static

Cola-GNN Confirmed cases Additive Attention us-
ing RNN embedded
features & geographi-
cal adjacency matrix

Static

STAN Latitude, longitude, pop-
ulation density, popula-
tion size, active cases,
total cases, number of
hospitalizations and ICU
stays

Graph Attention Net-
work

Dynamic

CausalGNN Confirmed cases, recov-
ered, death, population
density, latitude, longi-
tude

Additive Attention Dynamic

Table 4.1: Comparison of the node features, edge weights, and type of graph used in
StemGNN, Cola-GNN, STAN, and CausalGNN.

More on edge weight learning, all the models use some variation of the attention

mechanism to learn the correlation between locations, while Cola-GNN uses geo-

graphical adjacency as an additional input source to compute the edge weights. The

most significant difference in terms of the graphs is the graph type each model con-

structed. A dynamic graph, as defined in Section 3 is a graph that changes during

each timestamp, whereas a static graph does not. StemGNN and Cola-GNN both

construct a static graph. The edge weights are computed before graph convolution

and do not change later. On the other hand, STAN and CausalGNN both implicitly

construct a dynamic graph. At each timestamp, the model encodes the node features
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at time t Ct ∈ RN×C . While the node features at each timestamp are encoded for

each location, the temporal module of the models learns the temporal dependencies.

Overall, all the model has powerful learning ability because they all jointly learn

both spatial and temporal patterns. However, since StemGNN operates on the spec-

tral domain, it is more difficult to incorporate additional input sources into the model.

Cola-GNN is more extensible because it operates on the original graph domains. Data

regarding each location can be added as node features to the graph and data regard-

ing the relationship between each location can be used to manipulate edge weights.

If the data is dynamic, such as temperature and mobility data which changes with

respect to time, they can be incorporated into STAN and CausalGNN because of

their use of a dynamic graph. The additional data at each timestamp could be added

to the graph at each corresponding timestamp.

4.3 Quantitative Comparison

For the quantitative comparison, we only compared StemGNN and Cola-GNN. Since

STAN and CausalGNN both use a significant amount of additional data sources in

the epidemiological simulation component such as the recovered and death cases etc,

it is unfair to compare their performance. Although the original Cola-GNN uses

geographical adjacency data, it is not a crucial part of the model and does not have

a significant impact on the performance. Moreover, the goal of this study is to

investigate the incorporation and effectiveness of additional data sources, it is better

to use a simpler model that only takes the daily cases time series as the input node

features.
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4.3.1 Dataset

US-County data are collected from New York Times’ COVID-19 data repository2.

The data consist of the daily cumulative counts of COVID-19 cases in each U.S.

counties. The raw data is preprocessed into three datasets of different lengths and

scales. Using a varying time range allows us to study how the model performs for

different disease trends. The description for each dataset is shown in Table 4.2. More

details are recorded in Appendix A. Instead of predicting the cumulative count, we

computed the daily newly infected counts and predict the change in COVID-19 cases.

Dataset Begin Date End Date Days #Locations

California 4/7/2020 10/6/2021 548 48

US-Long 4/7/2020 10/6/2021 548 753

US-Short 4/7/2020 4/6/2021 365 753

Table 4.2: Time range and the dimension of each COVID-19 cases time series datasets.

4.3.2 Setup

We used the original implementation and the default model parameters for both

StemGNN3 and ColaGNN4. Both implementations are in Pytorch. The experiments

are run using Python 3.7 and PyTorch 1.13 with CUDA 11.7 on a Linux server with

an Nvidia GeForce RTX 3090 GPU.

The time series data is smoothed using a 6-day moving average and normalized

using the maximum and minimum value of the training set. The prediction is de-

normalized for evaluation. A 70%-15%-15% train-valid-test split along the time di-

mension was used. The splits are done chronologically so the model is only evaluated

2https://github.com/nytimes/covid-19-data
3https://github.com/microsoft/StemGNN
4https://github.com/amy-deng/colagnn

https://github.com/nytimes/covid-19-data
https://github.com/microsoft/StemGNN
https://github.com/amy-deng/colagnn
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on future values. A 28-day input window is used for the predictions. All the seeds

are set to 42 for a reproducible result.

4.3.3 Evaluation Metric

In the experiments, we denote the prediction to be {ŷ1, . . . , ŷn} and the ground truth

to be {y1, . . . , yn}. For evaluation, locations are not distinguished during evaluation

and the following metrics are adopted.

Root Mean Squared Error (RMSE) measures the difference between the

prediction and the ground truth. The squared term penalizes larger errors more

severely:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

Mean Absolute Error (MAE) measures the average magnitude of errors in

the prediction:

MAE =
1

n

n∑
i=1

|ŷi − yi|

Preason’s Correlation (PCC) measures the strength of linear dependence be-

tween two variables and is scale invariant. The value ranges between −1 to 1 with 1

meaning a total positive linear correlation (the higher the better performance in our

setting):

PCC =

∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷi − ¯̂y)2
∑n

i=1(yi − ȳ)2

The above evaluation metrics are reported with varying Leadtime, which is the

same as the prediction horizon, it is the number of timestamps that the model predicts

in advance. For example, given XN,T as the input and a leadtime of 5, the ground
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truth value for the prediction is XN,T+5.

4.3.4 Results

We evaluate StemGNN and Cola-GNN on a leadtime of 2, 5, 7, 14, and 28 days. A

leadtime equal to 1 is ignored because the symptom monitoring data is usually de-

layed. 14 and 28-day (2-week and 4-week) horizon is common for evaluating COVID-

19 forecasting models. Table 4.3 summarized the result for different leadtimes on all

three datasets. The result for each dataset spans 5 columns. The top half shows the

RMSE and the bottom half shows the PCC. The first row on each half is the leadtime

in days.

California US-Long US-Short

RMSE (↓) 2 5 7 14 28 2 5 7 14 28 2 5 7 14 28

StemGNN 118 378 266 253 258 83 334 110 272 225 302 100 128 250 307

Cola-GNN 78 206 227 368 441 70 89 79 138 177 26 145 99 334 728

PCC (↑) 2 5 7 14 28 2 5 7 14 28 2 5 7 14 28

StemGNN 0.967 0.891 0.887 0.887 0.887 0.931 0.666 0.875 0.639 0.475 0.630 0.844 0.736 0.619 0.732

Cola-GNN 0.983 0.908 0.903 0.799 0.676 0.951 0.917 0.935 0.808 0.663 0.978 0.766 0.693 0.708 -0.109

Table 4.3: RMSE and PCC performance for StemGNN and Cola-GNN on different
leadtimes and different datasets using a 28-day input. Models trained and tested
using a 70%-15%-15% train-valid-test data split.

On the California dataset, Cola-GNN has better performance than StemGNN

when the leadtime is shorter, while StemGNN has better performance for a leadtime

of 2 and 4 weeks. On the US-Long dataset, Cola-GNN outperforms StemGNN

over all leadtimes. Finally, on the US-Short dataset, StemGNN is having trouble

predicting over a 2-day leadtime and Cola-GNN fails to make a decent prediction over

a 28-day leadtime.

Looking at Table 4.3 row-wise, Cola-GNN’s performance gets steadily worse as the

leadtime increases, which is intuitive. It is hard to predict the future that is further

ahead. However, it is not the same trend for StemGNN. The performance fluctuates

as leadtime increases. For example, on the California dataset, StemGNN performed
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the worst on a 5-day leadtime, while having about the same performance for 7, 14,

and 28-day leadtime.

4.4 Analysis

The overall performance of Cola-GNN is slightly better than StemGNN. Cola-GNN’s

performance is also more stable. This is somewhat expected as Cola-GNN is de-

signed to forecast influenza influenza-like illness (ILI). ILI and COVID-19 are both

contagious repository diseases and have similar spreading dynamics. On the other

hand, StemGNN is designed as a general MTS forecasting model. StemGNN works

especially well on tasks such as electrocardiogram forecasting and traffic forecasting

where the data, unlike the available COVID-19 data, is more periodic and has a

shorter period.

Qualitatively, since Cola-GNN learns on the original graph domain instead of the

spectral domain, it is more interpretable and extensible than StemGNN. The graph

message-passing module in Cola-GNN explicitly models the pandemic by considering

both the spread from neighboring locations and the dynamics of similar locations.

Although STAN and CausalGNN are also very extensible COVID-19 forecasting

models that use epidemiological context, they are not considered in the quantitative

comparison in this study because they all require a significant amount of data sources

besides the daily case data. Nonetheless, it would be interesting to compare STAN

and CausalGNN in a future study.

Recall that the goal for this Section is to select the most suitable base model for the

enhancement study in Section 5. Due to Cola-GNN’s performance, interpretability,

and extensibility over StemGNN, we are choosing Cola-GNN as the baseline method.
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Chapter 5

Enhancement Study

In this Section, we introduce the geographical adjacency data used in the original

Cola-GNN and the two additional social-related data sources that could be mean-

ingful to the epidemic dynamics and incorporate them into Cola-GNN to study the

significance of each data source.

5.1 Dataset

5.1.1 Geographical Adjacency

County Adjacency1 data are collected from the National Bureau of Economic Re-

search (NBER). The dataset contains the geographical adjacency information of all

the U.S. counties.

5.1.2 Social Connectedness Index

Facebook’s social connectedness index (SCI)2 [5] uses Facebook friendship ties

to measures the strength of social connections between two geographic regions. As-

suming a large portion of friends on Facebook is also friends in the physical world, SCI

1https://www.nber.org/research/data/county-adjacency
2https://data.humdata.org/dataset/social-connectedness-index

https://www.nber.org/research/data/county-adjacency
https://data.humdata.org/dataset/social-connectedness-index
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can be an indicator of real-world mobility, which is highly correlated to the disease

spreads.

The SCI uses an anonymized snapshot of active users on Facebook and assigns

them to locations based on their information and activity on Facebook. Formally, the

SCI between two regions i and j is defined as:

SCIi,j =
FB Connectionssi,j

FB Usersi × FB Usersj

Where FB Usersi and FB Usersj are the number of Facebook users in the region i

and j, and FB Connectionssi,j is the total number of friendship connections between

users from the two locations. The SCI essentially measures the relative probability

of a Facebook friendship link between a user in location i and a user in location j.

The public release version of the data scaled SCI values between 1 to 1,000,000,000.

A small amount of random noise is added to the values before rounding to the nearest

integer to ensure the privacy of the data. The data are collected on October 2021.

5.1.3 Social Vulnerability Index

CDC/ATSDR social vulnerability index (SVI)3 is created by Centers for Dis-

ease Control and Prevention (CDC) and Agency for Toxic Substances and Disease

Registry (ATSDR) to help public health officials and emergency response planners

identify and map the communities that will most likely need support before, during,

and after a hazardous event.

SVI describes the resilience of a community to disasters such as an earthquake or

pandemic like COVID-19. The vulnerability depends on the degree to which a com-

munity exhibits certain social conditions, including high poverty, low percentage of

vehicle access, or crowded houses. The SVI dataset contains 16 social factors includ-

ing unemployment, racial and ethnic minority status, and disability, many collected

3https://www.atsdr.cdc.gov/placeandhealth/svi/data documentation download.html

https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html


19

from the U.S. Census data. SVI also assigns each region an overall ranking.

In this study, we use the 2020 county-level SVI dataset. Instead of using the

overall ranking, we selected a subset of features because we are interested in the

similarity between each county in terms of demographics and social determinants.

There are a total of 18 features, including estimated total population, estimated

population density which is computed by dividing the estimated total population by

the area in square miles, and estimated percentage of: people below 150% poverty,

unemployment, housing cost burdened occupied housing units, people with no high

school diploma (age 25+), uninsured, people ages 65 and older, people ages 17 and

younger, disability, single-parent households with children under 18, people (age 5+)

who speak English ”less than well,” minority, housing in structures with 10 or more

units, mobile homes, occupied housing units with more people than rooms, households

with no vehicle available, and people in group quarters. The estimated percentage

are on a scale of 0 to 100.

5.2 Cola-GNN: A Closer Look

Although Cola-GNN is introduced briefly in Section 4.1.2, it is necessary to review

some details of the Cola-GNN model before incorporating the new data sources. The

Cola-GNN framework diagram from the original paper [10] is shown in 5.1. It has four

parts: 1) Directed Spatial Influence Learning; 2) Multi-scale Dialated Convolution;

3) Graph Message Passing – Propagation; 4) Output Layer – Prediction. In the

following paragraphs, we are going to introduce the relevant mathematical detail of

each part.
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Figure 5.1: The overview of the proposed framework. The original time series for each
location are copied to two components: (1) an RNN model (bottom) for learning
directed spatial influence; and (2) a dilated convolution model (top) for learning
multi-level temporal features. Figure from Cola-GNN: Cross-location Attention based
Graph Neural Networks for Long-term ILI Prediction by Deng, et al [10].

5.2.1 Directed Spatial Influence Learning

Cola-GNN uses both the additive attention and the geographical adjacency matrix to

dynamically model the impact of one location on other locations. This step is essen-

tially learning the edge weights of the graph. Given the input data X = [X1, . . . , XT ],

a global Recurrent Neural Network (RNN) [31] is used to capture the temporal de-

pendencies of all locations. At each timestamp, RNN updates its hidden state. Let

hi ∈ RD denote the last hidden state for each node i where D is the RNN hidden

dimension. The last hidden states are used to learn the attention coefficient ai,j with

an additive attention mechanism [3]:

ai,j = vTg(W shi + W thj + bs) + bv (5.1)

where g is an activation function, W s,W t ∈ Rda×D, v ∈ Rd
a, b

s ∈ Rd
a, and bv ∈ R

are trainable parameters. da is a hyperparameter controlling the hidden dimensions of

the attention. Given all pairs of ai,j, an attention coefficient matrix AAtt is obtained

where each row indicated the degree of impact by other nodes on the current node.
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AAtt is then normalized row-wise.

Cola-GNN also considers the geographical proximity between nodes as closer nodes

are likely to have a higher impact on each other due to population mobility. In the

final step of learning edge weight, the geographical adjacency matrix AGeo where

aGeo
i,j = 1 if node i and j are neighbors is combined with AAtt by an element-wise gate

M adapted from the feature fusion gate [14]:

ÃGeo = D−1/2AGeoD−1/2 (5.2)

M = σ(WmAAtt + bm1N1T
N) (5.3)

Â = M ⊙ ÃGeo + (1N1T
N −M) ⊙ AAtt (5.4)

where D is the degree matrix defined as dii =
∑N

j=1 aij, W
m ∈ RN×N , and bm ∈ R

are trainable parameters. Eq. 5.2 normalizes AGeo, Eq. 5.3 learns the feature fusion

gate M from AAtt, Eq. 5.4 computes the final edge weights Â by using a weighted

average between the normalized AGeo and AAtt with weights from M .

5.2.2 Multi-Scale Dilated Convolution

Before the graph message passing, Cola-GNN embeds the time series of each location

using a multi-scaled dilated convolution [20], to capture temporal dependencies at

different levels of granularity:

ds[i] =
L∑
l=1

xs[i + k × l] × c[l] (5.5)

where xs is the time series of each location or the sth row of the input X, ds is the

output feature vector, c is the convolutional filter of length L, and k is the dilation

rate. To capture both short-term and long-term patterns, K filters with dilation rate

ks and kl (kl > ks) were used. The convolution is applied to each location. The final
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convolution output for each location is obtained by concatenating the output feature

vector from all the filters.

5.2.3 Graph Message Passing – Propagation

After learning the cross-location attentions and the local temporal features, graph

message passing is used to model the pandemic propagation among all locations.

Each location corresponds to a node in the graph where the initial node features

are the convolution output and the adjacency matrix is equal to Â. In each graph

message passing layer, the node features are updated as follows:

h
(l)
i = g

(∑
j∈N

âi,jW
(l−1)h

(l−1)
j + b(l−1)

)
(5.6)

where g denotes a nonlinear activation function, W (l−1) ∈ RF (l)×F (l−1)
is the weight

matrix for hidden layer l with a dimension of F (L), and b(l−1) ∈ RF (l)
is the bias. N

is the set of neighbors of node i. hl
i ∈ RF (l)

is the embedded node feature at the lth

layer with a dimension of F (l). After l message passing layers, the final embedding

h
(l)
i is obtained for all the locations.

5.2.4 Output Layer – Prediction

The final prediction ŷi for each location is computed using both the RNN features

and graph message passing features:

ŷi = ϕ(θT [hi,T ;h
(l)
i ] + bθ) (5.7)

where hi,T ∈ RD is the RNN final hidden state used to compute the attentions

in Section 5.2.1, hl
i ∈ RF (l)

is the final node embedding from Section 5.2.3. ϕ is an

activation function and θ ∈ RD+F (l), bθ ∈ R are trainable parameters.
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5.2.5 Optimization

The model is trained by optimizing the l1-norm loss (MAE) via gradient descent:

L =
N∑
i=1

ni∑
m=1

|yi,m − ŷi,m| (5.8)

where ni is the number of samples for location i and is the same across all locations,

yi,m is the ground truth value for location i in sample m, ŷi,m is the corresponding

predicted value.

5.3 Proposed Method

There are two ways to potentially use the additional data sources in Cola-GNN –

to improve the edge weight learning or to improve the node feature learning before

graph message passing. In this study, we incorporate SCI and SVI into the graph

edge weight learning process. Since the goal of the model is to predict the number

of new cases (which are represented as node features), adding SCI and SVI as node

features in the graph message passing or the final embedding before prediction will

likely hurt the performance. We expect the additional data sources to provide deeper

insight into the relationship between nodes and guide the message-passing process.

To do so, we proposed two replacements to the location aware attention module in

the original Cola-GNN as shown in Fig 5.2. The SCI aware attention utilizes SCI

data while the SVI aware attention utilized SVI data. This is achieved by replacing

the geographical adjacency matrix in the location aware attention module with an

SCI matrix and SVI similarity matrix.

For N locations {n1, . . . nN}, we define three types of matrices A ∈ RN×N . First

the geographical adjacency matrix AGeo which is used in the original Cola-GNN. It

is computed as4:

4By default, each node is adjacent to itself
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Figure 5.2: Our modification on the original Cola-GNN framework. The original
location aware attention is replaced by 1) SCI aware attention and 2) SVI aware
attention.

aGeo
i,j =


1 if ni and nj are adjacent

0 otherwise

(5.9)

The SCI matrix ASCI is defined as:

aSCI
i,j = SCIi,j (5.10)

where SCIi,j is the scaled SCI value between ni and nj.

Finally, for the SVI similarity matrix ASV I , each feature is first normalized to the

range of 0 to 1. The SVI feature matrix SV I ∈ RN×18 contains the SVI features for

ni on the ith row, denoted as SV Ii. ASV I is defined as:

aSV I
i,j = 1 − d(SV Ii, SV Ij)

∥SV Ii∥
(5.11)

where d(SV Ii, SV Ij) is the Euclidean distance between the features of ni and nj

and ∥SV Ii∥ is the number of SVI features which is 18 in our study and the same for
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all locations. All the weights are guaranteed to be nonnegative because the distance

is divided by the maximum distance.

Note that all three matrices are symmetric and measure the similarity between

locations using different criteria. AGeo represents the geolocational similarity between

locations, ASCI represents the social connectedness between locations, whereas ASV I

represents the demographical and socioeconomical similarity between locations.

To incorporate ASCI and ASV I , they are first normalized using the same method

as in Eq. 5.2, denoted as ÂSCI and ÂSV I . Then we replace the geographical adjacency

in the original model with ÂSCI and ÂSV I in Eq. 5.4.

5.4 Experiment

The experiment setup for Cola-GNN is the exact same as in Section 4.3.2. The per-

formance of location aware attention, SCI aware attention, and SVI aware attention

are summarized in Table 5.1.

California US-Long US-Short

RMSE (↓) 2 5 7 14 28 2 5 7 14 28 2 5 7 14 28

Original 78 206 227 368 441 70 89 79 138 177 26 145 99 334 728

SCI 85 191 235 456 442 74 92 96 108 173 23 123 57 247 758

SVI 82 215 227 370 426 99 97 87 195 172 23 121 166 210 317

PCC (↑) 2 5 7 14 28 2 5 7 14 28 2 5 7 14 28

Original 0.983 0.908 0.903 0.799 0.676 0.951 0.917 0.935 0.808 0.663 0.978 0.766 0.693 0.708 -0.109

SCI 0.983 0.901 0.914 0.763 0.631 0.943 0.917 0.916 0.881 0.685 0.983 0.829 0.890 -0.048 0.522

SVI 0.983 0.919 0.905 0.823 0.659 0.901 0.904 0.922 0.615 0.679 0.982 0.767 0.791 0.685 0.717

Table 5.1: RMSE and PCC performance for original Cola-GNN, replacing geographi-
cal adjacency with SCI, and SVI on different leadtimes and different datasets using a
28-day input. Models trained and tested using a 70%-15%-15% train-valid-test data
split.

On the California dataset, all three methods achieved similar performance. On

the larger US-Long dataset, SCI aware attention slightly improved the 14 and 28-

day leadtime prediction over the original model, whereas SVI aware attention showed
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comparable performance. Finally, on the US-Short dataset, all methods had a com-

parable performance on shorter horizons (2, 5, and 7 days). However, on longer

horizons (14 and 28-day), SVI aware attention outperforms both SCI aware attention

and the original method. More specifically, the original model had trouble forecasting

for the 28-day leadtime, but SVI aware attention achieved a decent prediction with

both a significantly lower RMSE (reduced by more than a half) and higher PCC.

5.5 Analysis

Although SCI and SVI aware attention slightly improved longer-term forecasting,

we cannot conclude that using SCI or SVI is always better than using geographical

adjacency. More extensive experiments are needed to verify the results. However,

we can conclude that both our new methods have at least comparable results to the

original method. At the end of this section, we are going to qualitatively compare

the matrices used in all three methods.

To compare the difference between each adjacency matrices, we used a heatmap

to visualize the ÂGeo, ÂSCI , and ÂSV I for the California dataset as shown in Fig

5.3, 5.4, and 5.5.

For all three matrices, the diagonal has a relatively high weight. This is desirable

because a location’s future cases should be heavily dependant on itself. ÂSCI has an

outstanding high weight on the diagonal and diminishing weights elsewhere. Social

connections and friendship often indicate real-world friendship, therefore the number

of connections within a node could be significantly higher than connections across the

nodes. ÂSV I has the opposite pattern, although the diagonal entries have relatively

higher weights, it is not very distinguished from other entries. The heatmap of the

ÂSV I looks a lot denser than SCI. This could be due to the computation of the SVI

matrix resulting in the majority of weight before normalization being in a close range
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Figure 5.3: Heatmap for the normalized geographical adjacency matrix of 48 Califor-
nia counties.

so they are not as distinguishable after normalization. Finally, ÂSCI has the highest

range of 0 to 1, ÂGeo ranges from 0 to 0.35, and ÂSV I value are on a smaller magnitude

form 0 to 0.024.

One advantage of SCI and SVI over geographical adjacency is that they can model

more complex relations beyond geographical boundaries. For example, in the U.S.

dataset, non of the counties in New York is connected to California via the geograph-

ical adjacency matrix. But both the SCI matrix and SVI similarity matrix connect

counties that are not geographically adjacent. This is desirable in pandemic modeling

since people travel around and a portion of cases in New York have certainly spread to

California during the COVID-19 pandemic. The remote connections SCI makes can

indicate real-world long-distance friendships and mobility. For distant locations, two

counties with similar SVI features have similar socioeconomic environments which

may indicate similar spread patterns.

Overall, the SCI and SVI aware attention showed promising performance. Fur-

ther study to modify the matrix computation and normalization methods or the
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Figure 5.4: Heatmap for the normalized SCI matrix of 48 California counties.

Figure 5.5: Heatmap for the normalized SVI similarity matrix of 48 California coun-
ties.
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incorporation method could potentially unveil the benefits these social connections

and socioeconomic data sources provide to county-level epidemic forecasting.
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Chapter 6

Conclusion

In this study, we compared four state-of-the-art graph-based epidemic forecasting

frameworks regarding the data they use as input and the way they model epidemic

dynamics among locations as graphs. We further compared the performance of two

of them, StemGNN and Cola-GNN, on the U.S. county-level dataset. Furthermore,

we identified two data sources, SCI and SVI that could provide insights for epidemic

forecasting. We proposed methods for incorporating them into the Cola-GNN frame-

work and conducted an experiment to study the performance. Finally, we analyzed

the insight each data source provides and its advantages. By using SCI and SVI, We

improved the long-term forecasting performance of Cola-GNN. However, the overall

performance improvement is not consistent and further study is needed to verify the

empirical effectiveness of SCI and SVI data.

We also acknowledge some of the improvements that could be built on this study.

For example, a more careful design of the SCI and SVI matrices so they are on the

same scale. We could also try out different combinations of the three similarity matri-

ces using a weighted average so more information is passed into the model. Another

potentially useful improvement is to make the graph less dense by thresholding the

edge weights. A sparser graph could reduce computational complexity and reduce
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over-fitting.

For future works on data-driven epidemic modeling, there are many other data

sources that could be useful for learning the epidemic dynamics. Some of those data

sources include: 1) SafeGraph’s point of interest visit (POI) data1, which provide

detailed real-world mobility information for a sample of the population, 2) USC’s

Understanding America Survey (UAS) data2, which provide a sample of behavior for

people in each location, and 3) New York Times’s mask-use data3 which similarly

provides an indicator for the level of cautiousness for the people in a region. Since

COVID-19 is short compared to influenza and flu data, future studies could also incor-

porate additional data on influenza and flu modeling to further study the importance

of various data sources.

1https://docs.safegraph.com/docs/weekly-patterns#section-weekly-patterns-schema
2https://covid19pulse.usc.edu/
3https://github.com/nytimes/covid-19-data/tree/master/mask-use

https://docs.safegraph.com/docs/weekly-patterns#section-weekly-patterns-schema
https://covid19pulse.usc.edu/
https://github.com/nytimes/covid-19-data/tree/master/mask-use
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Appendix A

Dataset

For all U.S. data, we only included data from the 50 states1. To obtain the dataset

presented in Table 4.2 from the raw cases data, we first computed the daily change

in cases. Then, we filtered out counties with NA values or with a total change in case

less than a threshold during the 548-day period from 4/7/2020 to 10/6/2021.

For the California dataset, we used a threshold of 3,000. The resulting 48 coun-

ties are: Alameda, Amador, Butte, Calaveras, Contra Costa, Del Norte, El Dorado,

Fresno, Glenn, Humboldt, Imperial, Kern, Kings, Lake, Los Angeles, Madera, Marin,

Mendocino, Merced, Monterey, Napa, Nevada, Orange, Placer, Riverside, Sacra-

mento, San Benito, San Bernardino, San Diego, San Francisco, San Joaquin, San

Luis Obispo, San Mateo, Santa Barbara, Santa Clara, Santa Cruz, Shasta, Siskiyou,

Solano, Sonoma, Stanislaus, Sutter, Tehama, Tulare, Tuolumne, Ventura, Yolo, and

Yuba. Their alphabetical order corresponds to the counties visualized in the heatmap

in Fig 5.3, 5.4, and 5.5.

For US-Long and US-Short datasets, we limit the number of counties by using

a higher threshold of 10,000, resulting in 753 counties.

1hrefhttps://state.1keydata.com/https://state.1keydata.com/
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