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Abstract  
 
Ultra-Massive Transfusion: Can a Machine Learning Model Predict Outcomes and Survivability 
in Adult Trauma Patients? 
 
By: Courtney H. Meyer  
 
Background: Despite the widespread use of ultra-massive transfusion (UMT) in the 
resuscitation of trauma patients, mortality remain high. There is scarce evidence determining the 
clinical and physiologic parameters in which this intervention is most effective. Simultaneously, 
the US faces a critical blood product shortage and appropriate allocation of resources remains an 
important public health issue. Therefore, this study sought to investigate the efficacy of UMT for 
trauma patients at a single institution and utilize machine learning modeling to predict outcomes 
and survivability. 
 
Methods: A retrospective cohort study of adult trauma patients undergoing UMT (defined 
as  ≥20 units of red cell products within 24 hours) was conducted at a Level I trauma center from 
May 2018-Nov 2021. Data was triangulated from the blood bank, electronic medical record, and 
institutional trauma registry. The outcome of interest was mortality at 24 hours and discharge. 
Demographics, injury characteristics, clinical presentation, and total products transfused were 
compared between those who survived and those who died. A statistical analysis and hour-by-
hour time series analysis were conducted and machine learning (ML) predictive models were 
generated and validated using R (version 4.1.1).  
 
Results: There were 1,164 patients with MTP activations and 193 (16.6%) were adult trauma 
patients meeting criteria for UMT. The in-hospital mortality rate was 38.8% at 24 hours and 54% 
at discharge. Those who died were more hemodynamically unstable and in a more advanced 
state of shock at the time of presentation. The deceased cohort received more total blood 
products at each time interval studied, with significantly higher rates of packed red blood cell 
and fresh frozen plasma transfusion. Ten distinct ML models were generated successfully 
identified clinical and physiologic parameters most strongly associated with mortality.  
 
Conclusions: This study demonstrates that mortality rates for UMT remain high and increased 
blood product transfusion is not associated with improved outcomes. Analysis of physiologic and 
clinical parameters further supports that early hemorrhage control and achievement of 
hemodynamic stability are critical to survivability. With blood as a limited resource, it is 
imperative to continue research in this field in order to identify which patients will benefit most 
from this aggressive therapy.  
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Chapter 1: Introduction  
 
1.1 Overview & Significance 

Hemorrhage is the leading cause of preventable death in trauma (Park et al, 2016). It 

accounts for over one-third of trauma mortality within the first 24 hours of injury, making early 

hemorrhage control and adequate resuscitation critical (Park et al, 2016; Rossaint et al, 2016). 

Over the last 30 years, damage control resuscitation (DCR), or blood-based resuscitation, has 

become the gold standard for trauma patients with hemorrhagic shock (Holcomb et al, 2013; 

Holcomb et al, 2015; McQuilten et al, 2021; Thompson, 2020). DCR has been shown to improve 

morbidity and mortality and decrease the incidence of traumatic coagulopathy, acidosis and 

hypothermia (Thompson, 2020).  

With the rise of DCR as a leading resuscitation strategy for trauma patients has come the 

development of the principles of massive transfusion protocols (MTP) and ultra-massive 

transfusion (UMT). UMT, specifically, describes the administration of 20 or more red blood cell 

products within 24 hours of admission (Dzik et al, 2016; Matthay et al, 2021). 

Despite the widespread use of UMT in the resuscitation of trauma patients with 

hemorrhagic shock, the mortality rate for this intervention remains quite high. Studies have 

estimated mortality rates ranging from 50-80% for this patient population (Dzik et al, 2016; 

Johnson et al, 2016; Matthay et al, 2021, Velmahos, 1998; Yu, 2018). However, to date, there is 

scarce literature determining the physiologic and clinical parameters in which this intervention is 

most effective.  

Simultaneously, the United States continues to face a critical blood product shortage and 

appropriate allocation of medical resources remains an important public health issue (American 

Red Cross, 2022). The American Red Cross (ARC) estimates that 16 million blood product 
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transfusions are required, annually, but that demand outweighs supply (American Red Cross, 

2022). Amidst the existing donation shortage, ARC report an additional 10% decrease, 

nationally, in donation rates during the most recent Omicron surge of the COVID-19 pandemic 

in January 2022 (American Red Cross, 2022; Comenzo, 2022). Furthermore, McQuilten et al. 

estimate that approximately 10% of all in-hospital blood transfusions are related to massive 

transfusion and trauma patients (McQuilten, 2021).   

 

1.2 Purpose Statement  

The purpose of this project is to investigate the efficacy of UMT for adult trauma patients 

with hemorrhagic shock at a single high volume trauma center and utilize machine learning 

modeling to predict outcomes and survivability.  

 

1.3 Specific Aims 

• Aim 1: To perform a retrospective review of adult trauma patients undergoing ultra-

massive transfusion at a single institution by triangulating data from three institutional 

databases – trauma registry, blood bank and electronic medical records  

• Aim 2: To determine the institutional efficacy of ultra-massive transfusion for adult 

trauma patients at a single institution and identify factors associated with outcomes and 

survivability  

• Aim 3: To design and test a machine learning model to predict outcomes and 

survivability for adult trauma patients undergoing ultra-massive transfusion  
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1.4 Definition of Terms 

• Damage control resuscitation: the use of early blood product transfusions and 

temporization of ongoing hemorrhage in trauma resuscitation  

• Exploratory laparotomy: a systematic and thorough exploration of the abdominal cavity 

in the setting of traumatic injury to control hemorrhage, control contamination from the 

gastrointestinal tract and identify all injuries followed by definitive repair or damage 

control 

• Machine learning: the use and development of computer systems that are able to learn 

and adapt without following explicit instructions, by using algorithms and statistical 

models to analyze and draw inferences from patterns in data 

• Massive transfusion: transfusion of 10 or more red blood cell products over a 24-hour 

period  

• Massive transfusion protocol: rapid administration of large amounts of blood products 

(at least 6 units) in fixed ratios for the management of hemorrhagic shock  

• Resuscitative thoracotomy: thoracotomy performed in emergency department intended 

to temporize wounds and stabilize a patient via direct control of intrathoracic injuries, 

decompression of pericardial tamponade, and control of the aorta to prevent 

exsanguination  

• Ultra-massive transfusion: transfusion of 20 or more red blood cell products over a 24-

hour period  
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1.5 Abbreviations  

• ARDS: acute respiratory distress syndrome  

• ATLS American Trauma Life Support 

• CPR: cardiopulmonary resuscitation  

• Cryo: cryoprecipitate  

• FFP: fresh frozen plasma 

• GSW gunshot wound(s) 

• ICU: intensive care unit  

• ISS: injury severity score  

• LOS: length of stay 

• MARS: multivariate adaptive regression splines 

• MT: massive transfusion 

• MTP: massive transfusion protocol  

• OR: operating room  

• pRBC: packed red blood cells 

• UMT: ultra-massive transfusion  

• WB: whole blood  

• XGBoost: extreme gradient boosting  
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Chapter 2: Comprehensive Review of the Literature 
 
 
2.1 History of trauma resuscitation  

 
Traumatic injury is an epidemic in the United States affecting individuals of all 

demographic backgrounds (CDC, 2021). It accounts for over 41 million emergency department 

visits, 2.3 million hospital admissions and over 200,000 deaths, annually (CDC, 2021). 

Hemorrhage is the leading cause of preventable death following traumatic injury (Park et al, 

2016). It constitutes over one-third of all trauma mortality in the first 24 hours, making early 

hemorrhage control and adequate resuscitation critical in the management of this patient 

populations (Park et al, 2016; Rossaint et al, 2016)..   

The principle of resuscitation in trauma dates back to the 1600s, with English physician 

Dr. William Harvey’s discovery of the circulatory system (Thompson, 2020). This understanding 

that blood existed in systemic circulation set the stage for the concept of being able to control 

excessive bleeding (Thompson, 2020). Two centuries later, Dr. John Henry Leacock proved that 

blood was species-specific and in 1818, Dr. James Blundell performed the first human to human 

blood transfusion (Thompson, 2020). The first documented use of transfusion for resuscitation 

was done for women with postpartum hemorrhage and published in The Lancet in 1829 

(Thompson, 2020). 

Much of our subsequent understanding of resuscitation in trauma has been from combat 

medicine and military fieldwork and research. For centuries, wounded soldiers have provided an 

unparalleled patient population in which to study and test the most ground breaking strategies for 

hemorrhage control and resuscitation.  

During World War I, the concept of blood types and cross matching was refined and 

strategies to prevent transfusion reactions were developed (Loughlin, 2020; Thompson, 2020). 
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The demand for whole blood during the war also led to significant strides in blood storage, 

banking and donation. During World War II, the technology to separate plasma into its 

constitutes was developed and component therapy became a key area of experimental research 

(Loughlin, 2020; Thompson, 2020). Recognizing the importance of early intervention and whole 

blood as a limited resource, resuscitation with crystalloid fluids prior to blood transfusion 

became a leading strategy during the Vietnam War (Thompson, 2020). 

This notion was further supported by research in the early 1970s, which acknowledged 

the need to not only replace intravascular volume with blood, but to also replete the extracellular 

fluid deficit (Holcomb et al, 2007; Krausz, 2006; Thompson, 2020). This led to the development 

of the “3 to 1” dogma, a resuscitation strategy adopted by the American Trauma Life Support 

(ATLS) guidelines recommending 3mL crystalloid for every 1mL of blood loss (Holcomb et al, 

2007; Krausz, 2006; Thompson, 2020). This was later revised in the 1980s to rapid infusion of 

2L crystalloid fluid followed by blood product transfusion if bleeding persisted (Thompson, 

2020)..   

However, these tactics led to the overuse of crystalloid fluids and a myriad of 

complications for patients with hemorrhagic shock (Cotton et al, 2020; Holcomb et al, 2007; 

Krausz, 2006; Thompson, 2020). Studies demonstrated that aggressive resuscitation with 

crystalloid fluids causes increased inflammation and vascular permeability, leading to increased 

incidence of tissue damage, reperfusion injury, abdominal compartment syndrome, multi-organ 

failure, acute respiratory distress syndrome (ARDS) and mortality (Cotton et al, 2020; Holcomb 

et al, 2007; Krausz, 2006; Thompson, 2020).  

Therefore, over the last 30 years, there has been a paradigm shift back to the use of 

damage control resuscitation (DCR) or blood-based resuscitation (Holcomb et al, 2013; Holcomb 
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et al, 2015; McQuilten et al, 2021; Thompson, 2020). This strategy is rooted in concepts 

developed during World War II and has since been refined during the conflicts in Somalia, 

Afghanistan and Iraq in recent years (Thompson, 2020). It has become the gold standard of care 

in the current trauma literature, demonstrating improved morbidity and mortality and decreased 

incidence of traumatic coagulopathy, acidosis and hypothermia, the deadly triad of 

pathophysiologic changes that occur after trauma (Cotton et al, 2020; Holcomb et al, 2013; 

Holcomb et al; 2015; Thompson, 2020). 

 

2.2 Blood products and principles of balanced transfusion  

Damage control resuscitation (DCR) is defined as the use of early blood product 

transfusions and temporization of ongoing hemorrhage in trauma resuscitation (Leibner, et al, 

2020). It does not, however, specify which blood products and in which order. Therefore, 

optimizing the sequence and ratio of products transfused has become a key area of research.  

The blood products available for transfusion include; whole blood (WB), packed red 

blood cells (pRBC), fresh frozen plasma (FFP), platelets and cryoprecipitate (Cryo). WB is 

composed of red blood cells, white blood cells and platelets, all suspended in plasma, which 

contains proteins and clotting factors. PRBCs, FFP and platelets, respectively, contain their 

individual constituents. Cryo is plasma that has been centrifuged and re-suspended in a smaller 

volume of plasma to contain concentrated doses of key clotting factors and proteins.   

In 2013, Holcomb et al conducted the PROMMTT (Prospective, Observational, 

Multicenter, Trauma Transfusion) Study, a landmark, multi-center trial investigating transfusion 

ratios (Holcomb et al, 2013). They found that in the first 6 hours, 1:1 transfusion ratios of either 
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plasma: pRBC or platelets: pRBC compared 1:2 transfusion ratios had a survival benefit 

(Holcomb et al, 2013). 

In 2015, Holcomb et al expanded on these findings with the PROPPR (Transfusion of 

Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients with 

Severe Trauma) Randomized Clinical Trial (Holcomb et al, 2015). This study found no 

difference in 24 hour or 30-day mortality, but did find significantly lower rates of exsanguination 

and earlier achievement of hemostasis in the group receiving 1:1:1 transfusion ratios (Holcomb 

et al, 2013). This work established component therapy with 1:1:1 transfusion ratios of pRBC: 

plasma: platelets as the gold standard in the current trauma literature (Holcomb et al, 2013). 

In recent years, there has also been a resurgence on the importance of whole blood in 

civilian resuscitation (Cotton et al, 2020; Crowe et al, 2020; Leibner et al, 2020; Thompson, 

2020). Rapid and early transfusion of whole blood has been used in combat for centuries and has 

proven efficacious and safe in that setting. However, the challenge of adapting such into the 

practice of resuscitation for civilian trauma patients has been the logistics of ABO compatibility 

and potential for hemolytic transfusion reactions as well as Rh alloimmunization in females of 

child bearing age (Cotton et al, 2020). While Rh-low-titer group 0 whole blood can mitigate 

these issues, it remains in limited supply. Current research is focused on streamlining access to 

this product and integration of whole blood into our trauma resuscitation standards of care, in 

particular in the prehospital phase (Crowe et al, 2020; Leibner et al, 2020).  

 

2.3 Principles of massive transfusion and ultra-massive transfusion 

With the rise of DCR as a leading resuscitation strategy for has come the development of 

the principles of massive transfusion protocols (MTP), massive transfusion (MT) and ultra-
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massive transfusion (UMT). MTP refers to the rapid administration of large amounts of blood 

products (at least 6 units of pRBC) in fixed ratios for the management of hemorrhagic shock. 

Most modern day trauma centers are equipped with the processes and resources to rapidly 

activate MTP and begin transfusion of products for an acutely injured patient. 

In the current literature, MT has been defined as 10 or more red cell units within 24 

hours, 6 or more units in 6 hours or 5 or more units in 4 hours (Mitra et al, 2011). A consensus 

definition for UMT has not been well established in the literature. However, the definition most 

commonly used and the one employed for this research defines UMT as 20 or more units of red 

blood cell products within 24 hours of admission (Dzik et al, 2016; Matthay et al, 2021) 

 

2.4 Current state of ultra-massive transfusion in trauma  

Despite the widespread use of UMT in the resuscitation of trauma patients with 

hemorrhagic shock, the mortality rate for this intervention remains quite high. Studies have 

estimated in-hospital mortality rates ranging from 50-80% for this patient population (Dzik et al, 

2016;Matthay et al, 2021; Velmahos, 1998; Yu, 2018). However, to date, there is scarce 

literature determining the patient and injury characteristics in which this intervention is most 

beneficial.   

For example, Dzik et al in 2015 and Johnson et al in 2016 found correlational evidence to 

support increasing mortality with increasing transfusion requirements (Dzik  et al, 2016; Johnson 

et al, 2016). In 2020, Morris et al demonstrated that transfusion “ceilings” were dependent on 

age and mortality rates were higher in older patients who received more pRBCs (Morris et al, 

2020). In 2021, Matthay et al published one of the first studies investigating the interplay of 

these factors (Matthay et al, 2021). Using regression analysis, they determined older age, lower 
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GCS, thrombocytopenia and the presence of resuscitative thoracotomy were associated with 

lower survival in trauma patients undergoing UMT (Matthay et al, 2021). 

While these studies all provide important advances in the literature, there is still a need 

for consensus guidelines regarding the physiologic and clinical parameters in which this 

aggressive and resource-demanding therapy is most effective.  

 

2.5 Current state of national blood shortage  

Blood products are a limited resource and the United States continues to face a critical 

shortage (American Red Cross, 2022). The American Red Cross estimates that 16 million blood 

product transfusions are required, annually, but that demand greatly outweighs the supply 

(American Red Cross, 2022). This public health crisis has been exacerbated by the ongoing 

COVID-19 pandemic. In January 2022, during the most recent Omicron surge, donation rates 

deceased an additional 10%, nationally (American Red Cross, 2022; McQuilten et al, 2021).  

In a 2021 study, McQuilten et al. estimated that approximately 10% of all in-hospital 

blood transfusions are related to massive transfusion and trauma patients (McQuilten et al, 

2022). With a mortality rate of 50-80%, establishing which patients may benefit from this 

resource-demanding therapy is an important area of public health research (Dzik et al, 2016; 

Johnson et al, 2016; Matthay et al, 2021, Velmahos, 1998; Yu, 2018).  
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Chapter 3: Manuscript  
 
*Note: This abstract has been accepted for presentation at the 81st Annual Meeting of the AAST 
(American Association for the Surgery of Trauma) and Clinical Congress for Acute Care 
Surgery. September, 2022. This manuscript has been submitted for peer review publication to the 
Journal of Trauma. July, 2022.  
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3.2 Abstract  

Background: Despite the widespread use of ultra-massive transfusion (UMT) in the 

resuscitation of trauma patients, mortality remains high. A recent published multicenter trial 

revealed unbalanced ratios contributes to these rates.  Still, there is scarce evidence regarding the 

clinical and physiologic parameters in which this resource-demanding intervention is most 

effective. This study investigated our institutional efficacy of UMT and identified specific 

factors, beyond blood product ratios, associated with outcomes and survivability. 

 

Methods: A retrospective cohort study of adult trauma patients undergoing UMT (defined as  ≥ 

 20 units of red cell products within 24 hours) was conducted at a Level I trauma center from 

May 2018-Nov 2021. Data was triangulated from the blood bank, electronic medical records, and 

institutional trauma registry. The outcome of interest was mortality at 24 hours and discharge. 

Demographics, injury characteristics, clinical presentation, operative interventions and total 

products transfused were compared between survivors and deceased. 

 

Results: There were 1,164 patients with MTP activations and 193 (16.6%) were adult trauma 

patients meeting criteria for UMT. The mortality rate was 38.8% at 24 hours and 54% at 

discharge. Those who died were more hemodynamically unstable and in a more advanced state 

of shock at the time of presentation. The deceased cohort received more total blood products, 

with significantly higher rates of pRBC (39 [26-53] vs 24 [19-32], p<0.001) and FFP (32 [18-47] 

vs 18 [14-26], p<0.001) transfusion. In multivariate analysis, independent predictors of mortality 

included a lower heart rate (OR=1.02 [95%CI 1.01,1.03], p<0.001) and lower GCS (OR=1.16 
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[95%CI 1.08,1.25], p<0.001) at the time of admission as well a higher total number of blood 

products transfused (OR=0.98 [95%CI 0.96-0.99], p<0.001). 

 

Conclusions: This study demonstrates that mortality rates for UMT remain high and increased 

blood product transfusion is not associated with improved outcomes. Analysis of physiologic and 

clinical parameters further supports that early hemorrhage control and achievement of 

hemodynamic stability are critical to survivability. 

 

Level of Evidence: III 

 

3.3 Background 

Hemorrhage is the leading cause of preventable death in trauma [1]. It accounts for over 

one-third of trauma mortality within the first 24 hours, making early hemorrhage control and 

adequate resuscitation critical [1, 2]. Over the last 30 years, damage control resuscitation (DCR) 

has become the gold standard for resuscitation of trauma patients with hemorrhagic shock [3-6]. 

DCR has been shown to improve morbidity and mortality and decrease the incidence of 

traumatic coagulopathy, acidosis and hypothermia. Specifically, the use of empiric 1:1:1 ratios of 

packed red blood cells (pRBCs), fresh frozen plasma (FFP) and platelets (PLT) has been shown 

to significantly decrease rates of exsanguination within the first 24 hours [5]. 

With the rise of DCR as a leading resuscitation strategy for trauma patients has come the 

development of the principles of massive transfusion protocols (MTP) and ultra-massive 

transfusion (UMT). UMT, specifically, describes the administration of 20 or more red blood cell 

products within 24 hours of admission [7, 8]. 
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Despite the widespread use of UMT in the resuscitation of trauma patients with hemorrhagic 

shock, the mortality rate for this intervention remains quite high. Studies have estimated 

mortality rates ranging from 50-80% for this patient population [7-10]. A number of recent 

studies have provided correlational evidence between increasing blood product requirements and 

increasing mortality rates  [7,8,10,11]. Furthermore, a 2021 multicenter study investigated the 

impact of transfusion ratios physiologic and laboratory characteristics of patients undergoing 

UMT as well as the impact of transfusion ratios on mortality [8]. Their findings demonstrated 

that pRBC/FFP and pRBC/platelet ratios greater than 1.5:1 were significantly and independently 

associated with increased mortality [8].  

While all of these studies have contributed significantly to our current understanding of 

best practices for UMT in trauma resuscitation, there is still scarce literature determining the 

physiologic and clinical parameters in which this resource-demanding intervention is most 

effective. 

With UMT as an aggressive  therapy and blood in limited supply, this is a critical area for 

further research. Therefore, this study sought to investigate our own institutional efficacy of 

UMT for adult trauma patients with hemorrhagic shock and identify factors associated with 

improved outcomes and survivability.  

 

3.4 Methods  

Study Design & Inclusion Criteria  

A retrospective cohort study was conducted at a large, academic, ACS verified Level I 

trauma center in Atlanta, GA. Data was obtained from May 2018-November 2021 (42 months) 
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and triangulated from the blood bank registry, electronic medical record (EMR) and institutional 

trauma registry.  

 First, the institutional blood bank registry was reviewed for all patients with a massive 

transfusion protocol (MTP) activation. This included all patients, hospital-wide, with an order 

placed by a physician or mid-level provider for MTP. This data was then cross referenced with 

the electronic medical record to determine if the patients were (1) adults over 18 years of age, (2) 

had a traumatic mechanism of injury and (3) met criteria for ultra-massive transfusion (UMT). 

UMT was defined as 20 or greater units of red cell products (packed red blood cells and/or whole 

blood) within the first 24 hours of admission. Data on the number of blood products transfused 

within 24hrs from admission was reported in the blood bank registry and cross referenced with 

the EMR charting and operative reports.  

 For those patients meeting inclusion criteria for the study, data pertaining to 

demographics, clinical presentation, injury classification, hospital course and outcomes was then 

obtained from the institutional trauma registry. The institutional trauma registry includes all 

hospitalized trauma patients.   

 

Variables of Interest 

 The exposure of interest was UMT and the primary outcome of interest was in-hospital 

mortality at 24 hours and discharge. Secondary outcomes of interest included total number of 

units of all products transfusion, pRBC:FFP transfusion ratios, operative interventions, intensive 

care unit and hospital lengths of stay and complications. The blood products analyzed in this 

study included pRBC, FFP, platelets and cryoprecipitate. Transfusion ratios were analyzed as 

rates of pRBC: FFP within the first 24 hours of admission. Injuries were classified as blunt or 



 16 
 
 

penetrating and then the mechanisms of injury (MOI) were grouped into the following 

categories; gunshot wounds (GSWs), motor vehicle collisions (MVCs), motorcycle collisions 

(MCC), pedestrian vs auto (peds vs auto), other blunt, and other penetrating.  

 

Statistical Analysis  

We compared all of the above metrics in patients who survived their UMT and those who 

did not using Chi-square (Fisher exact test) and two-sample t-tests. A subgroup analysis was also 

performed in the deceased cohort of patients between those who survived beyond 24 hours and 

those who did not.  

Multivariate analysis was also conducted to determine independent risk factors for 

mortality and for total blood products transfused in adult trauma patients undergoing ultra-

massive transfusion. All statistical analyses were performed using R version 4.1.1 (R Foundation 

for Statistical Computing).  Significance was set at α=0.05. IRB approval was obtained for this 

study.  

 

3.5 Results 

Over the study period, there were 1,164 patients with MTP activations and 193 (16.6%) 

were adult trauma patients meeting criteria for UMT. The overall in-hospital mortality rate for 

trauma patients undergoing UMT was 38.8% (n = 75) at 24 hours and 54% (n= 105) at 

discharge.  
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Demographics  

The study population was comprised of predominately black (n = 156, 81%) males 

(n=150, 78%) with a median age of 29 years [IQR 24,-44]. There were no significant differences 

in demographic factors between those who survived UMT and those who did not (Table 1).  

 

Injury Classification  

The cohort of UMT patients who died presented with equal proportions of blunt to 

penetrating injury (50% blunt, 50% penetrating) while the surviving group had a slightly higher 

incidence of penetrating injury (39% blunt, 61% penetrating, p = 0.13). There were no significant 

differences in MOI, with both the deceased and surviving cohort presenting with predominantly 

GSWs, followed by MVCs and then peds vs auto. The median Injury Severity Score for the 

deceased cohort was 38 [IQR 26-50] compared to 34 [IQR 25-49] in those who survived (p = 

0.21) (Table 1). 

 

Clinical Presentation  

On presentation to the ED, the group who did not survive had a lower median systolic (80 

[IQR 58-116] vs. 90 [IQR 71-114], p = 0.076) and diastolic blood pressure (40 [IQR 0-78] vs 57 

[IQR 0-80] p = 0.15). The deceased cohort also had a significantly lower heart rate (89 [IQR 39-

128] vs 124 [IQR 103-140], p < 0.001), respiratory rate (0 [IQR 0-24] vs 22 [IQR 14-29], p < 

0.001) and Glasgow Coma Score (3 [IQR 3-9] vs 14 [IQR 6-15], p < 0.001) at the time of 

admission (Table 2).   

On initial trauma labs, both groups had similar median hematocrits while those who did 

not survive had a greater base deficit (-13 [IQR -21 to -9] vs -7 [IQR -13 to -2], p < 0.001). A 
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greater proportion of the deceased cohort required CPR in the ED (17% vs 2.3%, p < 0.001) and 

38% (n= 40) underwent an ED thoracotomy compared to 2.3% (n = 2) in the surviving cohort (p 

< 0.001) (Table 2).  

 

Blood Products Transfused 

The median number of blood products transfused for the entire study population of 

patients undergoing UMT was 59 [IRQ 43-97]. The deceased cohort received more blood 

product overall, with a with a median of 80 units [IQR 50-110] compared to 50 units [IQR 39-

62] in the surviving cohort (p < 0.001). This trend was consistent for the total numbers of pRBC, 

FFP and platelets transfused (Table 3).  

Overall, less than 1/3 of the cohort received pRBC: FFP transfusion ratios greater than 

1.5:1. The median ratio for the deceased cohort was 1.2 compared to 1.3 in the surviving cohort 

but this was not significant.  

 In a subgroup analysis of the deceased cohort, those who survived beyond the 24 hour 

period had a median pRBC to FFP ratio of 1.1 compared to 1.2 in the group who prior to that 

mark (p = 0.010). The deceased within 24 hours cohort had 31% of patients receiving greater 

than 1.5:1 pRBC: FFP transfusion ratios compared to 20% in the cohort that survived beyond 24 

hours (Table 4). 

 

Operative Intervention  

Nearly the entire study population (98%) went immediately to the operating room (OR) 

from the ED. Both the surviving and deceased groups underwent similar rates of exploratory 

laparotomies and thoracotomies, for those who had not undergone one in the ED. Intra-
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operatively, both cohorts also had similar rates of solid organ and vascular injury. Vascular 

injury included those intra-thoracic, intra-abdominal or extremity (Table 5).  

 

Multivariate Analysis  

 In multivariate analysis, independent predictors of increased mortality included a lower 

heart rate (OR = 1.02 [95% CI  1.01,1.03], p < 0.001) and lower GCS (OR = 1.16 [95% CI 

1.08,1.25], p <0.001) at the time of admission as well a higher total number of blood products 

transfused (OR = 0.98 [95% CI 0.96-0.99], p < 0.001) (Table 6). 

 In an additional multivariate analysis, a lower heart rate (OR = -0.17 [95% CI -0.33,-

0.02], p = 0.030 ) and lower base deficit (OR = -0.73 [95% CI -1.5, -0.01], p < 0.049) at the time 

of presentation were independent predictors of requiring greater total blood products (Table 7).  

 

3.6 Discussion 

It is well established that UMT is a potentially lifesaving intervention for adult trauma 

patients with hemorrhagic shock. However, given the associated high mortality rate and 

resource-demanding nature of UMT, it is critical to determine which patients will benefit most 

from this therapy. To the best of our knowledge, alongside the recent multicenter study, this is 

one of the first to investigate specific physiologic and clinical parameters which may be 

associated with mortality. It is critical to understand the specific details that contribute to 

survivability in order to develop decision-making tools that aid in the management of these 

complex patients requiring UMT. Therefore, the authors have some key findings from this study 

to discuss.  
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 First, increased blood product transfusion was not associated with increased survival. 

Conversely, we found the deceased cohort received an average of 30 more total blood product 

units than the surviving cohort with higher rates of individual pRBC, FFP and platelet 

transfusion. This was also supported by our multivariate analysis, which found total blood 

products transfused to be an independent predictor of mortality. The authors interpret this trend 

not as a correlation between lower transfusion rate and survival, but rather as a proxy for delayed 

or inadequate hemorrhage control. While 98% of the study population did go for emergent 

operative intervention, it is reasonable to speculate that those requiring more blood product 

transfusions likely had more complex or challenging injuries to temporize.  

 Further contributing to demise of the deceased cohort was the fact that they presented 

with more hemodynamic instability and in a advanced state of hemorrhagic shock. Upon arrival 

to the ED, those who did not survive had similar blood pressures to the survivors but a lower 

median heart rate and greater base deficit. These findings represent progression into stage IV 

shock at the start of their resuscitation. While it is logical that those who presented sicker are 

more likely to die, identification of these clinical parameters early in resuscitation efforts may 

serve as a target for more aggressive intervention.  

 With the PROPPR trial in 2015, Holcomb et al established component therapy with 1:1:1 

transfusion ratios as the gold standard for trauma patients. We found that our institution achieved 

transfusion ratios of pRBC to FFP less than 1.5:1 in 71% of patients. There were no significant 

differences in transfusion ratios between those who survived, those who died within 24 hours 

and those who died prior to discharge. However, it is important to note the small sample size of 

this subgroup analysis and the fact that these ratios were calculated from total blood products 

transfused over 24 hours and do not account for the order of products transfused. Furthermore, 
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our institution did not transfuse platelets at a high enough rate to be included in our ratio 

analysis. This was likely due to their limited supply and significant differences were not noted 

between the surviving and deceased cohorts. 

 Interestingly, our study demonstrated a mortality rate of 54% at discharge, which is at the 

lower end of the 50-80% mortality rate range estimated in the current literature. Another way of 

looking at this, is that 46% of individuals survive trauma requiring ultramassive blood product 

transfusion.  The authors speculate this is due to the high volume of trauma patients we care for 

and our trauma team’s familiarity with initiating and executing our institutional massive 

transfusion protocols. 

 

Limitations 

 There are several limitations to this study the authors would like to acknowledge. First, it 

was retrospective in nature, leading to certain confounding variables that were not controlled for 

in study design. Additionally, UMT is a rare occurrence and while our institutional rates were 

significant, the authors recognize that 193 patients is a small sample size from which to draw 

practice changing conclusions. This study was also performed at a single institution. This may 

lead to internal biases in our practices and may limit the extent to which these results are 

externally valid. 

 

Conclusions and Future Directions 

Overall, this study demonstrates that mortality rates for UMT remain high and that 

increased blood product transfusion is not associated with improved outcomes. Analysis of 

physiologic and clinical parameters further supports that early hemorrhage control and 
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achievement of hemodynamic stability are critical to survivability. However, resuscitation is a 

dynamic process and further research is required to better understand how these factors change in 

real time and impact mortality. Understanding these parameters on a more granular scale may 

help elucidate the time points at which UMT transitions from a necessary and life-saving 

intervention to a resource-consuming and futile one. It will also be important to validate such 

work on a multi-center scale.  
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Chapter 4: Extended Methodology and Results 
 
4.1 Extended methodology 

 

4.1.1 Introduction  

In addition to the data collection and analysis conducted for the manuscript, two 

additional analyses were conducted. The first was the machine learning predictive modeling 

component of this study and the second was an extended data collection and hour-by-hour time 

series analysis.  

 

4.1.2 Machine learning predictive modeling overview  

The machine learning component of this project was done using the institutional UMT 

data set. These data were collected via a retrospective cohort review at a large, academic, ACS 

verified Level I trauma center in Atlanta, GA from May 2018-November 2021 (42 months). Data 

was triangulated from the blood bank registry, electronic medical record (EMR) and institutional 

trauma registry (see section 3.4 for detailed methodology). The analysis was conducted using R 

version 4.1.1. 

Machine learning, broadly, refers to a type of artificial intelligence which allows a 

computer system to learn and adapt algorithms in order to predict outcomes without explicit 

programming. Specifically, supervised learning, a subfield of machine learning, is done by 

introducing a given data set with a series of known inputs and outcomes and allowing the 

computer to “learn” the rule connecting them. In supervised machine learning, the model is 

trained, tested and then validated with different segments of the data set. There are an 

innumerable number of models that can be employed by machine learning models. Determining 
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the appropriateness of models is done based on the size of the data set, components within the 

data set and the outcome or question of interest.  

Machine learning provides a novel context in which to study outcomes and survivability 

in trauma patients undergoing UMT. While traditional statistics allows for analysis of the 

physiologic and clinical factors impacting mortality, machine learning helps us to understand the 

interaction between these entities.  

 

4.1.3 Machine learning predictive modeling methods  

The following 10 models, discussed in detail below, were generated for this analysis; (1) 

Full Logistic Regression, (2) Small Logistic Regression, (3) LASSO, (4) Ridge Regression, (5), 

Elastic Net, (6) Multi-adaptive Regression Spline (MARS), (7) K-Nearest Neighbors, (8) 

Decision Tree, (9) Random Forest, and (10) Extreme Gradient Boosted Trees (XGBoost). For 

models 1 and 3-10, the following variables were used: age, gender, mechanism of injury, ISS, 

SBP, HR, GCS, total blood products and pRBC/FFP ratio. For model 2, an abbreviated list of 

those variables was selected and included: ISS, SBP, HR, GCS, Total Blood Product and 

pRBC/FFP ratio. 

The decision was made to test 10 different models as UMT is a novel research area for 

machine learning. The purpose was to determine which type of model may be most well suited 

for this type of data and research question in the future. The discriminative ability of these 

models to separately predict survival versus mortality were assessed using area under the curve 

(AUC) values on a receiver operator characteristic (ROC) curve (see Table 1 Appendix 7.3.1 and 

Figure 1 Appendix 7.4.1). The calibration of each model, i.e. the model’s ability to generate a 
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predicted risk of survival that agrees with the true observed risk of survival, was assessed as 

well. (see Figure 2 Appendix 7.4.1). 

With large data, a single split of the data into training, validation, and testing sets is 

usually sufficient for both developing a strong predictive model and assessing this model’s 

performance with a large amount of certainty. Due to the smaller size of the UMT data, this same 

exact approach would yield a large amount of uncertainty in the model’s performance. Thus, a 

nested validation procedure, in which every data point is faithfully used in training and testing 

the model, is used to reduce the amount of uncertainty as much as possible. In this framework, 

the data is split into 10 subsets. In one run of this procedure, nine of the 10 subsets of the data are 

used for training/validation with a standard cross-validation procedure to select the best 

hyperparameters of the model of interest and then train this model with these hyperparameters. 

Then, this model makes predictions on the tenth held-out subset of the data. This process is 

repeated for all 10 subsets of the data to obtain predictions for every person in the data. Because 

the same exact hyperparameters of a model may not be used to generate predictions for the 

whole data set, histograms of the selected model hyperparameters in this process are observed to 

ensure that no serious “model drift” has occurred.  

Logistic regression modeling (1 and 2) is equivalent to the multivariate analysis 

generated previously, but now within this nested validation framework, and the models are used 

to generate probability predictions instead of focusing on inference with odds ratios. LASSO and 

Ridge regression (3 and 4) are both types of regression analysis that use regularization to 

generate a more accurate prediction. They use ‘shrinkage’ to shrink data values towards a central 

mean. This is done when significant co-linearity exists in the data set and help avoid overfitting 

the model. LASSO regression will set values to zero while ridge regression will set coefficients 
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to be lower and minimize the impact of irrelevant features but not fully remove them. Elastic net 

(5) is a type of regression model that combines both the LASSO and ridge regression. It uses the 

penalties from both for regularization. MARS (6) is an algorithm that combines a series of 

simple linear regression functions using hinges. It generates multiple candidate models in the 

forward stage and then employs a backwards stage to remove those that do not reduce the overall 

error of the model.  

K-nearest neighbor (7) model uses the assumption that similar data points are near one 

another. It then categorizes data based on a given k value or distance, independent of the actual 

data set entered.  

Decision tree modeling (8) uses a stepwise algorithm which is able to predict the 

classification of a given variable. It does so via a series of stepwise, pragmatic decision at 

decision nodes until the outcome of interest is reached. A random forest (9) model uses a series 

of decision tree algorithms to generate a predictive model. It can help reduce overfitting of the 

model and increase precision.  

XGBoost is a modeling strategy similar to random forest which creates a regression 

modeling using a series of decision trees. However, while random forest plot combines the 

decision trees in parallel, XGBoost allows progressive addition of the decision trees based on the 

weights of different variables. This can help improve accuracy and precision, particularly for 

tabular data, as the trees are added sequentially based on the weighted error of the prior tree.  

 

4.1.4 Hour-by-hour time series analysis methods  

The objective of this extended methodology was to obtain more detailed and granular 

time point data in order to enhance the ongoing analysis. In order to complete this portion of the 
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project, an additional data set was obtained. This dataset was obtained retrospectively via Epic 

(the institutional EMR) over the same time period from May 2018 through November 2021. It 

contained additional data points on the same 193 patients used in the original UMT institutional 

data set.  

The data points included in this dataset were divided into 5 categories; transfusion data, 

lab data, vital signs and ventilator parameters, medications and intra-operative events. Data for 

each category was captured for the entire duration of hospitalization.  

Transfusion data captured all blood products transfused, including matched and 

unmatched pRBCs, FFP, platelets, and cryoprecipitate. It also captured the start and stop time of 

each transfusion. Lab data captured all lab drawn, the time of the lab draw, the resulting value 

and the time of the result. Vital signs and ventilator parameters captured all recorded values of 

the following parameters with time stamps; temperature, blood pressure (manual and invasive), 

pulse, respiratory rate, oxygen saturation, PEEP, respiratory rate, ventilator mode, peak airway 

pressure, plateau pressure, FiO2 and exhaled tidal volume.  

Medications captured all infusions and medications administered with time stamps, doses 

and concentrations. Intra-operative events captured anesthesia start and stop time, intubation, 

extubation, CPR start and stop and transport to ICU. 

This data was inputted to R version 4.1.1 and a univariate and hour-by-hour time series 

analysis was conducted.  
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4.2 Extended results 

 

4.2.1 Machine learning predictive modeling results  

The machine learning analysis generated 10 distinct models for predicting mortality in 

adult trauma patients undergoing UMT. AUC values ranged from 0.702 [95% CI 0.627, 0.778] 

for the decision tree model to 0.792 [95% CI 0.730, 0.855] for the random forest model The 

additional top 3 performing models based on AUC were the MARS model (0.784 [95% CI 

0.720, 0.850], K-nearest neighbor model (0.770 [95% CI 0.703, 0.837] and the small logistic 

regression model (0.767 [95% CI 0.700, 0.833] (see Table 1 Appendix 7.3.1 and Figure 1 

Appendix 7.4.1).  

The calibration plot demonstrates that generally all of the models are calibrated 

moderately well since most of the dots are fairly close to the dividing line (see Figure 2 

Appendix 7.4.1). Focusing on just the three highest performing models, the calibration of the 

MARS model indicates that it slightly underpredicts the probability of survival in the higher risk 

range (0-50% chance of survival), and slightly overpredicts the probability of survival in the low 

risk range (50-100% change of survival), while the exact opposite observations can be made for 

the random forest and K-nearest neighbor models. This indicates that, in practice, if yielding a 

probability prediction of the true risk of a patient is desired, potentially as input for some king of 

sequential clinical decision, averaging the predictions from these individual models may be best.  

Nested variable selection cross-validation was used for each model. As illustrated in 

Figures 3 and 4 in Appendix 7.4.1, this strategy demonstrated consistency in the variables 

selected for each model each time it was run. This consistency ensures that the predictions 

generated from using all of the data for both training and testing in the nested manner are reliable 
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and valid. For the LASSO model variable selection, HR and GCS were selected for each time the 

model was run, while the other variables were also consistently selected at a slightly lower rate. 

Similarly, for the decision tree model, ISS, SBP, HR, GCS, total blood products and pRBC: FFP 

ratio were all selected over 50% of the time. 

 

4.2.2 Hour-by-hour time series analysis results  

Overall, the results of the hour-by-hour analysis support and strengthen the findings of 

the univariate and multivariate analysis in Chapter 3. This data provides a more granular 

illustration of the dynamic patterns of vital signs, lab values and blood products transfusions over 

the first 24 hours for the study population. The following results are stratified by mortality. At 

time point 0, there were 192 total patients, with 104 (54%) in the deceased cohort and 88 (46%) 

in the surviving cohort.  

 

4.2.2.1 Vital signs and laboratory values  

When analyzing systolic blood pressure, both the surviving and deceased  cohorts 

presented with a similar degree of hemodynamic stability (102 [86, 144] vs 98 [81, 111], p = 

0.15). However, by the 4-8 hour window, the surviving cohort had a median systolic blood 

pressure within normal range while the deceased cohort’s remained low [125 [111, 145] vs 110 

[94, 131], p = 0.010). This trend continued in the 8-12 hour and 12-16 hour time periods. In 

hours 16-20 and 20-24, both groups had systolic blood pressures in the 110s with no statistically 

significant differences (see Table 1 Appendix 7.3.2 and Figure 1 Appendix 7.4.2).  

In terms of median heart, both cohorts presented with tachycardia to the 120s. However, 

they began to show statistically significant differences by hours 12-16, where the deceased 
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cohort remained tachycardic at 120 [103, 129] and the surviving cohort had a down-trending 

median HR of 109 [96, 122] (p = 0.014). This pattern continued over the next 8 hours, with the 

deceased cohort remaining tachycardic to 114 [110, 130] at 20- 24 hours compared to the 

survivors who had a lower median HR of 107 [90, 119] by this point (p = 0.006) (see Table 2 

Appendix 7.3.2 and Figure 1 Appendix 7.4.2). 

Lactate, an important marker of severity of shock, showed significant differences 

between the two cohorts at each time point analyzed. In the initial 8 hours, the deceased group 

had a median lactate of 10.4 [8.1, 13.6] compared to 5.4 [3.9, 7.5] in the surviving group (p < 

0.001). This trend persisted with the deceased cohort having a lactate of 8.4 [4.7, 12.1] at 24-48 

hours compared to only 3.0 [2.0, 3.8] (p <0.001) in the surviving cohort (see Table 3 Appendix 

7.3.2 and Figure 1 Appendix 7.4.2). 

 

4.2.2.2 Blood products 

During the initial 24 hours of admission, the deceased cohort received significantly 

higher median rates of total blood product transfusion at each time interval. This difference was 

more pronounced in the 0-1, 1-2, 2-4, 4-6 and 6-10 time intervals (see Table 4 Appendix 7.3.2 

and Figure 2 Appendix 7.4.2). Cumulative median total blood product transfusion rates followed 

a similar trend, with significantly higher rates of product for the deceased cohort at each time 

period (see Table 5 Appendix 7.3.2 and Figure 3 Appendix 7.4.2). 

Furthermore, when analyzed individually, the median units of each blood product 

transfused over time also demonstrated similar findings. In terms of pRBCs, the deceased cohort 

received a median of 12.5 [9.0, 16.8] units during the first hour compared to 10.0 [6.8, 14.0] 

units in the surviving cohort (p = 0.011). Over the next 14 hours, the deceased cohort continued 
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to receive an average of 1.5 to 2 units greater per 2-hour period than the survivors (see Table 6 

Appendix 7.3.2 and Figures 4 and 5 Appendix 7.4.2). Similarly, the deceased received a median 

of 9.0 [5.0, 12.0] units of FFP during the first hour compared to 7.0 [4.0, 10.0] in the survivors (p 

= 0.029). FFP transfusions remained higher in the deceased cohort over the next 14 hours and 

reached a rate of less than 1 unit by the 14 to 24-hour period (see Table 7 Appendix 7.3.2 and 

Figures 4 and 5 Appendix 7.4.2). 

The rate of platelet transfusions was greatest at 0-1 hours and 1-2 hours for each cohort 

and tapered to less than 1 unit per hour for the remaining time intervals (see Table 8 Appendix 

7.3.2 and Figures 4 and 5 Appendix 7.4.2). Cryoprecipitate rates were highest for both groups at 

2.0 units per hour in the 1 to 2-hour time period. The deceased cohort received a significantly 

higher median total units per time period in the 6-10 and 14-24 hour intervals (see Table 9 

Appendix 7.3.2 and Figures 4 and 5 Appendix 7.4.2) 

Lastly, both cohorts received an average of 4 units of whole blood in the first hour (p = 

0.92). There were no significant differences in rates of whole blood transfusion over the 

remaining time periods (see Table 10 Appendix 7.3.2 and Figures 4 and 5 Appendix 7.4.2) 
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Chapter 5: Limitations, Conclusions, Public Health and Ethical 

Implications  

 

5.1 Limitations 

There are a number of limitations the authors of this project would like to acknowledge. 

First, this study was performed retrospectively. This design does not allow for the ability to 

control for certain confounding variables, which is recognized in the subsequent analysis. 

Additionally, the authors recognize that even at our large, urban, ACS Verified Level I trauma 

center with some of the highest rates of UMT in the country, it is still a relatively rare event. This 

yielded a small sample size, constricting the generalizability of the study findings. Furthermore, 

this data set was obtained from a single institution. The authors acknowledge this can lead to 

certain internal biases in practice and limit the external validity of the study findings.  

Lastly, machine learning is an imperfect science and cannot replace ‘the art of medicine.’ 

The authors recognize the potential for machine learning to change the way we practice clinical 

medicine is vast, but that the human perspective remains of equal importance. Therefore, any 

conclusions drawn from this project should be used as an adjunct to clinical judgement. 

 

5.2 Conclusions, public health and ethical implications 

It is well established that UMT is a potentially lifesaving intervention for adult trauma 

patients with hemorrhagic shock (Dzik et al, 2016; Johnson et al, 2016; Matthay et al, 2021, 

Velmahos, 1998; Yu, 2018). However, given the associated high mortality rate and resource-

demanding nature of UMT, it is critical to determine which patients will benefit most from this 
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aggressive therapy and patients in which UMT may be futile. To the best of our knowledge, this 

is one of the first studies to investigate specific physiologic and clinical parameters which may 

be associated with survival. The results have important clinical, research, public health and 

ethical implications.  

 From a clinical perspective, all 3 analyses conducted demonstrated that increased blood 

product transfusion was not associated with increased survival. Conversely, the deceased cohort 

received significantly higher blood products at each time interval studied and the total number of 

blood products proved to be an independent predictor of mortality. This trend is interpreted not 

as a correlation between lower transfusion rate and survival, but rather as a proxy for delayed or 

inadequate hemorrhage control. Further contributing to demise of the deceased cohort was the 

fact that they presented with more hemodynamic instability and in a more advanced state of 

hemorrhagic shock. These findings are relevant as identification of these clinical parameters 

early in resuscitation efforts may serve as a target for patients requiring more aggressive 

intervention.  

This leads into the research implications of this work. While the predictive capability of 

the current models is limited by the size of the data set, machine learning provides an exciting 

and novel context with which to study this question. IRB approval has been obtained for the next 

phase of this project, which entails expansion to a multi-center study. This will generate a more 

robust dataset and ability to further train and validate a model with the goal of clinical 

application in the future.  

It is important to continue in this field of research as the public health implications are 

vast. There is a critical blood shortage in the United States and the recent COVID-19 pandemic 

has highlighted the devastating reality that appropriate allocation of medical resources is an area 
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of great importance in public health (American Red Cross, 2022). This project demonstrated that 

a significant proportion of in-hospital blood product stores are utilized by adult trauma patients 

undergoing UMT. However, despite resource consumption, mortality rates for these patients 

remained high. With blood as a limited resource, in demand by many other patient populations, it 

is imperative to determine when use in extraordinary quantities for trauma patients is most 

appropriate and beneficial.   

However, this question does not come without profound ethical considerations. It 

challenges the principles of justice and nonmaleficence in ways our healthcare system has 

struggled with, historically. How do we determine just allocation of a limited medical resource? 

How do we ensure this is done in a manner that does not marginalize certain populations or 

exacerbate existing health care inequities? How do we explain to patients that simply because we 

have the capacity to do something does not mean it is the right thing to do? How do we 

communicate the concept of futility? 

While these questions do not come with a simple answer, they are at the forefront of our 

research on this topic. An overarching objective of utilizing machine learning to determine a 

“transfusion ceiling” and the parameters in which this therapy is most effective is to optimize 

just distribution of a finite resource. Furthermore, it is intended to equip providers with an 

evidence based algorithm of when UMT transitions from a necessary and lifesaving intervention 

to futile so as to maximize non-maleficence.  
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Appendices  

 
7.1 Manuscript tables 
 
Table 1: Demographics and injury classification of adult trauma patients undergoing UMT 

 Overall 
n = 1931 

Deceased 
n = 105 (54%)1 

Alive 
n = 88 (46%)1 

p-value2 

Age (median) 29 [24,44] 30 [25,44] 29 [24,40] 0.40 
Percent male 150 (78%) 79 (75%) 71 (81%) 0.37 
Race/Ethnicity  
   White 
   Black 
   Hispanic/Latino 
   Other/unknown 

 
22 (11%) 
156 (81%) 
3 (1.6%) 

12 (6.2%) 

 
14 (13%) 
83 (79%) 
0 (0%) 

8 (7.6%) 

 
8 (9.1%) 
73 (83%) 
3 (3.4%) 
4 (4.5%) 

0.18 

Injury Type 
   Blunt 
   Penetrating 

 
86 (45%) 
107 (55%) 

 
52 (50%) 
53 (50%) 

 
34 (39%) 
54 (61%) 

0.13 

Mechanism of Injury  
   GSW 
   MVC 
   MCC 
   Peds vs auto 
   Blunt other 
   Penetrating other  

 
103 (53%) 
39 (20%) 
17 (8.8%) 
22 (11%) 
8 (4.1%) 
4 (2.1%) 

 
51 (49%) 
25 (24%) 
9 (8.6%) 
13 (12%) 
5 (4.8%) 
2 (1.9%) 

 
52 (59%) 
14 (16%) 
8 (9.1%) 
9 (10%) 
3 (3.4%) 
2 (2.3%) 

0.71 

Injury Severity Score  34 [25,50] 38 [26,50] 34 [25,49] 0.24 
1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test 
 
Table 2: Clinical presentation data for adult trauma patients undergoing UMT 
 Overall 

n = 1931 
Deceased 

n = 105 (54%)1 
Alive 

n = 88 (46%)1 
p-value2 

Systolic Blood Pressure 84 [60,116] 80 [58,116] 90 [70,114] 0.076 
Diastolic Blood Pressure 45 [0,79] 40 [0,78] 57 [0,80] 0.15 
MAP 59 [0,92] 47 [0,91] 67 [0,92] 0.18 
Heart Rate 112 [71,134] 89 [39,128] 125 [103,140] <0.001* 
Shock Index 1.1 [0.6,1.5] 1.0 [0.0, 1.3] 1.2 [0.9,1.6] <0.001* 
Respiratory Rate 17 [0,26] 0 [0,24] 22 [14,29] <0.001* 
Glasgow Coma Score 7 [3,14] 3 [3,9] 14 [6,15] <0.001* 
Mode of Arrival 
   Ground Ambulance 
   Helicopter 

 
171 (90%) 
19 (10%) 

 
90 (87%) 
13 (13%) 

 
81 (93%) 
6 (6.9%) 

0.19 

Hematocrit  34 [31,40] 35 [28,40] 34 [32,40] 0.34 
INR  1.2 [1.1,1.3] 1.2 [1.1,1.3] 1.1 [1.1,1.3] 0.085 
Base Deficit  -10 [-17, -4] -13 [-21, -9] -7 [-13, -2] <0.001* 
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Time in ED (Minutes) 25 [15,44] 22 [16,38] 31 [13,56] 0.44 
ED CPR 20 (10%) 18 (17%) 2 (2.3%) <0.001* 
ED Thoracotomy 42 (22%) 40 (38%) 2 (2.3%) <0.001* 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test 
 
Table 3: Transfusion data for adult trauma patients undergoing UMT 
 Overall 

n = 1931 
Deceased 

n = 105 (54%)1 
Alive 

n = 88 (46%)1 
p-value2 

Whole Blood 2 [0,4] 2 [0,4] 4 [0,4] 0.41 
pRBC 30 [21,48] 39 [26,53] 24 [19,32] <0.001* 
FFP 23 [15,39] 32 [18,47] 18 [14,26] <0.001* 
Platelets 2 [2,4] 3 [2,4] 2 [2,3] 0.078 
Cryoprecipitate  2 [1,4] 2 [1,6] 2 [0,3] 0.030* 
Total Blood Products 59 [43,97] 80 [50,110] 50 [39,62] <0.001* 
TXA 167 (87%) 92 (88%) 75 (85%) 0.63 
pRBC/FFP Ratio 1.2 [1.1,1.5] 1.2 [1.1,1.5] 1.3 [1.1,1.5] 0.10 
pRBC/FFP Ratio ≥ 1.5:1 56 (29%) 29 (28%) 27 (31%) 0.64 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test 
 
Table 4: Transfusion data for deceased adult trauma patients undergoing UMT 
 Deceased within 24 

hours 
n = 75 (71%)1 

Deceased beyond 24 
hours 

n = 30 (29%)1 

p-value2 

Whole Blood 2 [0,4] 4 [0,5] 0.31 
pRBC 37 [26,51] 42 [26,56] 0.31 
FFP 30 [18,44] 36 [19,50] 0.19 
Platelets 2 [2,4] 4 [2,5] 0.016* 
Cryoprecipitate  2 [0,4] 4 [1,6] 0.27 
Total Blood  74 [50,104] 89 [53,120] 0.21 
pRBC/FFP Ratio 1.2 [1.1,1.6] 1.1 [1.0,1.4] 0.10 
pRBC/FFP Ratio ≥ 1.5:1 23 (31%) 6 (20%) 0.27 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test 
 
Table 5: Operative intervention data for adult trauma patients undergoing UMT 
 Overall 

n = 1931 

 

Deceased 
n = 105 (54%)1 

 

Alive 
n = 88 (46%)1 

p-value2 

Operative Intervention? 189 (98%) 102 (97%) 87 (99%) 0.63 
Thoracotomy* 37 (25%) 17 (26%) 20 (23%) 0.68 
Clamshell 26 (14%) 13 (12%) 13 (15%) 0.65 
Exploratory Laparotomy  168 (87%) 92 (88%) 76 (86%) 0.80 
Solid Organ Injury 113 (59%) 60 (57%) 53 (60%) 0.66 
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Vascular Injury  157 (81%) 86 (82%) 71 (81%) 0.83 
* Excluding those who had an ED thoracotomy  
1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test 
 
Table 6: Mortality Multivariate Regression  
 Odds Ratio 95% CI p-value 
Age 0.98 (0.95,1.01) 0.2 
Female 0.62 (0.19,1.96) 0.4 
Mechanism of Injury 
   GSW 
   MVC/MCC 
   Peds vs. Auto 
   Other 

 
- 

0.47 
0.38 
0.54 

 
- 

(0.14,1.56) 
(0.08,1.68) 
(0.09,3.22) 

 
 

0.2 
0.2 
0.5 

Injury Severity Score 0.97 (0.94,1.00) 0.084 
Systolic Blood Pressure 0.99 (0.98,1.00) 0.2 
Heart Rate 1.02 (1.10,1.03) 0.003* 
Base Deficit 1.05 (1.00,1.11) 0.051 
Glasgow Coma Score 1.14 (1.04,1.26) 0.006* 
Total Blood Products 0.97 (0.96,0.99) <0.001* 
pRBC/FFP Ratio 1.42 (0.45,4.94) 0.6 

 
Table 7: Total Blood Products Multivariate Regression 
 Odds Ratio 95% CI p-value 
Injury Severity Score -0.04 (-0.43, 0.35) 0.8 
Systolic Blood Pressure 0.13 (-0.03,0.29) 0.12 
Heart Rate -0.17 (-0.33,-0.02) 0.030* 
Base Deficit -0.73 (-1.5, 0.00) 0.049* 
Glasgow Coma Score -0.07 (-1.4, 1.3) > 0.9 
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7.2 Manuscript figures 
 
Figure 1: Clinical presentation of adult trauma patients undergoing UMT stratified by mortality 
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Figure 2: Transfusion data for adult trauma patients undergoing UMT stratified by mortality 

 
 
Figure 3: Kaplan Meir Curve for adult trauma patients undergoing UMT stratified by MOI 

 



 46 
 
 

 
Figure 4: Kaplan Meir Curve for adult trauma patients undergoing UMT stratified by pRBC/FFP 
ratio  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 47 
 
 

 
7.3 Extended results  
 
7.3.1 Machine learning predictive modeling tables 
 
Table 1: Model validation for 10 machine learning models predicting mortality for adult trauma 
patients undergoing UMT 
Model Number  Model Name Area under the Curve, (95% CI) 
1 Full Logistic Regression 0.748 (0.679-0.817) 
2 Small Logistic Regression 0.767 (0.700-0.833) 
3 LASSO 0.737 (0.667-0.807) 

4 Ridge Regression 0.746 (0.677-0.815) 
5 Elastic Net 0.744 (0.675-0.813) 

6 MARS 0.784 (0.720-0.850) 

7 K-Nearest Neighbors 0.770 (0.703-0.837) 
8 Decision Tree 0.702 (0.627-0.778) 
9 Random Forest 0.792 (0.730-0.855) 
10 XGBoost 0.745 (0.676-0.813) 

  
7.3.2 Hour-by-hour time series analysis tables  
 
Table 1: Median systolic blood pressure per hour for adult trauma patients undergoing UMT 
stratified by mortality  

Time Period Overall 
n = 1311 

Deceased 
n = 46 (35%)1 

Alive 
n = 85 (65%)1 

p-value2 

0-4 hours 101 [84, 112] 98 [81, 111] 102 [86, 114] 0.15 
4-8 hours 
   Missing 

122 [106, 140] 
32 

110 [94, 131] 
10 

125 [111, 145] 
22 

0.010* 

8-12 hours 
   Missing 

118 [106, 134] 
23 

108 [102, 128] 
14 

125 [109, 135] 
9 

0.011* 

12-16 hours 
   Missing 

116 [102, 126] 
26 

110 [98, 121]  
19 

117 [104, 129] 
7 

0.021* 

16-20 hours 
   Missing 

114 [104, 124] 
29 

112 [99, 127] 
20 

114 [106, 124] 
9 

0.44 

20-24 hours 
   Missing 

114 [105, 128] 
31 

114 [99, 128] 
24 

114 [116, 128] 
7 

0.58 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test 
 
Table 2: Median heart rate per hour for adult trauma patients undergoing UMT stratified by 
mortality  

Time Period Overall 
n = 1541 

Deceased 
n = 66 (43%)1 

Alive 
n = 88 (57%)1 

p-value2 

0-4 hours 123 [103, 135] 121 [96, 134] 123 [104, 136] 0.86 
4-8 hours 104 [89,119] 101 [91, 118] 104 [85 120] 0.66 
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   Missing 69 31 38 
8-12 hours 
   Missing 

110 [95, 125] 
33 

115 [100, 128] 
23 

109 [95, 122] 
 10 

0.23 

12-16 hours 
   Missing 

111 [100, 125] 
41 

120 [103, 129] 
34 

109 [96, 122] 
7 

0.014* 

16-20 hours 
   Missing 

111 [99, 123] 
47 

116 [108, 132] 
36 

108 [96, 120] 
11 

0.013* 

20-24 hours 
   Missing 

111 [96, 120] 
42 

114 [110, 130] 
37 

107 [90, 119] 
5 

0.006* 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test 
 
Table 3: Median lactate value per hour for adult trauma patients undergoing UMT stratified by 
mortality  

Time Period Overall 
n = 1851 

Deceased 
n = 98 (53%)1 

Alive 
n = 87 (47%)1 

p-value2 

0-8 hours 7.0 [4.4, 10.3] 10.4 [8.1, 13.6] 5.4 [3.9, 7.5] <0.001* 

8-16 hours 
   Missing 

4.8 [3.0, 8.2] 
14 

9.3 [5.7, 13.2] 
7 

3.5 [2.6, 5.5] 
7 

<0.001* 

16-24 hours 
   Missing 

4.5 [3.1, 6.9] 
24 

9.3 [5.7, 13.2] 
11 

3.7 [2.3, 4.6] 
3.8 13 

<0.001* 

24-48 hours 
   Missing 

3.3 [2.1, 6.0] 
22 

8.4 [4.7, 12.1] 
12 

3.0 [2.0, 3.8] 
10 

<0.001* 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test 
 
Table 4: Median total blood product per hour for adult trauma patients undergoing UMT 
stratified by mortality  

Time Period Overall 
n = 1921 

Deceased 
n = 104 (54%)1 

Alive 
n = 88 (46%)1 

p-value2 

0-1 hours  20 [14, 28] 23 [15, 31] 18 [12, 23] 0.010* 
1-2 hours 
   Missing 

14 [8, 21] 
11 

17 [11, 25] 
6 

12 [6, 16] 
5 

<0.001* 

2-4 hours 
   Missing 

6 [3, 12] 
42 

9 [5, 16] 
26 

4 [2, 7] 
16 

<0.001* 

4-6 hours 
   Missing 

3.5 [1.0, 7.6] 
124 

6.0 [2.8, 10.0] 
69 

1.5 [1.0, 3.5] 
55 

<0.001* 

6-10 hours 
   Missing 

1.5 [0.5, 4.5] 
128 

3.2 [1.6, 7.2] 
77 

0.8 [0.2, 2.5] 
51 

<0.001* 

10-14 hours 
   Missing 

0.50 [0.25, 1.44] 
130 

1.00 [0.25, 6.00] 
83 

0.50 [0.25, 1.00] 
47 

0.042* 

14-24 hours 
   Missing 

0.30 [0.20, 0.80] 
126 

0.50 [0.20, 1.10] 
83 

0.30 [0.10, 0.50] 
43 

0.059 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test 
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Table 5: Cumulative median total blood product per hour for adult trauma patients undergoing 
UMT stratified by mortality  

Time Period Overall 
n = 1921 

Deceased 
n = 104 (54%)1 

Alive 
n = 88 (46%)1 

p-value2 

0-1 hours  20 [14, 28] 23 [15, 31] 18 [12, 23] 0.01 
1-2 hours 
   Missing 

17 [13, 24] 
11 

20 [15, 26] 
6 

15 [11, 20] 
5 

<0.001* 

2-4 hours 
   Missing 

12 [9, 18] 
42 

16 [11, 19] 
26 

10 [8, 13] 
16 

<0.001* 

4-6 hours 
   Missing 

9.3 [7.0, 14.1] 
124 

12.7 [9.2, 17.2] 
69 

7.0 [5.2, 9.3] 
55 

<0.001* 

6-10 hours 
   Missing 

5.2 [3.4, 8.8] 
128 

8.9 [5.8, 10.6] 
77 

3.8 [3.0, 5.4 
51 

<0.001* 

10-14 hours 
   Missing 

3.96 [2.46, 5.95] 
130 

6.14 [5.07, 8.14] 
83 

3.14 [2.14, 4.14] 
47 

<0.001* 

14-24 hours 
   Missing 

2.56 [1.76, 3.73] 
126 

3.83 [3.29, 5.25] 
83 

1.96 [1.46, 2.67 
43 

<0.001* 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test 
 
Table 6: Median pRBC units per hour for adult trauma patients undergoing UMT stratified by 
mortality  
Time Period Overall 

n = 1911 
Deceased 

n = 104 (54%)1 
Alive 

n = 87 (46%)1 
p-value2 

0-1 hours 
   Missing 

12.0 [9.0, 16.8] 
5 

12.5 [9.0, 16.8] 
2 

10.0 [6.8, 14.0] 
3 

0.011* 

1-2 hours 
   Missing 

7.0 [4.0, 11.0] 
19 

8.5 [5.2, 12.0] 
10 

6.0 [3.0, 8.0] 
9 

<0.001* 

2-4 hours 
   Missing 

3.0 [1.5, 6.0] 
53 

4.0 [2.5, 7.8] 
29 

2.0 [1.0, 3.5] 
24 

<0.001* 

4-6 hours 
   Missing 

2.0 [1.0, 4.25] 
136 

3.5 [1.50, 5.50] 
71 

1.5 [1.0, 2.38] 
65 

0.028* 

6-10 hours 
   Missing 

1.25 [0.56, 2.7] 
145 

2.1 [0.75, 4.25] 
80 

0.88 [0.5, 1.25] 
65 

0.026* 

10-14 hours 
   Missing 

0.50 [0.25, 1.5] 
154 

2.5 [0.5, 3.75] 
91 

0.25 [0.25, 1.0] 
63 

0.001* 

14-24 hours 
   Missing 

0.2 [0.1, 0.55] 
144 

0.5 [0.3, 0.67] 
90 

0.2 [0.1, 0.4] 
54 

0.022* 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test 
 
Table 7: Median FFP units per hour for adult trauma patients undergoing UMT stratified by 
mortality  

Time Period Overall 
n = 1311 

Deceased 
n = 46 (35%)1 

Alive 
n = 85 (65%)1 

p-value2 
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0-1 hours 
   Missing 

8.0 [5.0, 11.0] 
16 

9.0 [5.0, 12.0] 
6 

7.0 [4.0, 10.0] 
10 

0.029* 

1-2 hours 
   Missing 

6.0 [3.0, 10.0]  
19 

6.5 [4.0, 11.0] 
7.0 

5.0 [3.0, 8.0] 
12 

0.042* 

2-4 hours 
   Missing 

3.0 [1.50, 6.0] 
56 

4.0 [2.38, 7.50] 
31 

1.50 [1.0, 3.5] 
25 

<0.001* 
 

4-6 hours 
   Missing 

2.50 [1.0, 4.0] 
139 

3.0 [2.0, 5.0] 
74 

1.0 [0.50, 3.0] 
65 

0.005* 

6-10 hours 
   Missing 

1.0 [0.50, 2.25] 
144 

2.25 [0.81, 4.0] 
81 

0.62 [0.25, 1.25] 
63 

0.001* 

10-14 hours 
   Missing 

1.0 [0.50, 2.25] 
161 

2.62 [0.88, 4.06] 
91 

0.50 [0.25, 1.00] 
70 

0.003* 

14-24 hours 
   Missing 

0.20 [0.20, 0.50] 
149 

0.20 [0.20, 0.52] 
87 

0.30 [0.20, 0.50] 
62 

> 0.99  

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test 
 
Table 8: Median platelet units per hour for adult trauma patients undergoing UMT stratified by 
mortality  

Time Period Overall 
n = 1791 

Deceased 
n = 93 (52%)1 

Alive 
n = 86 (48%)1 

p-value2 

0-1 hours 
   Missing 

1.0 [1.0, 1.0] 
77 

1.0 [1.0, 1.0] 
38 

1.0 [1.0, 1.0] 
39 

0.007* 

1-2 hours 
   Missing 

1.0 [1.0, 1.0] 
90 

1.0 [1.0, 1.0] 
33 

1.0 [1.0, 1.0] 
57 

0.084 

2-4 hours 
   Missing 

0.50 [0.50, 1.0] 
103 

0.50 [0.50, 1.0] 
52 

0.50 [0.5, 0.5] 
51 

0.21 

4-6 hours 
   Missing 

0.50 [0.5, 0.5] 
149 

0.50 [0.5, 0.5] 
75 

0.50 [0.5, 0.5] 
74 

0.33 

6-10 hours 
   Missing 

0.25 [0.25, 0.25] 
146 

0.25 [0.25, 0.5] 
79 

0.25 [0.25, 0.25] 
67 

0.030* 

10-14 hours 
   Missing 

0.25 [0.25, 0.25] 
148 

0.25 [0.25, 0.38] 
82 

0.25 [0.25, 0.25] 
66 

0.088 

14-24 hours 
   Missing 

0.1 [0.1, 0.1] 
143 

0.1 [0.1, 0.1] 
79 

0.1 [0.1, 0.1] 
64 

0.70 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test 
 
Table 9: Median cryoprecipitate units per hour for adult trauma patients undergoing UMT 
stratified by mortality  

Time Period Overall 
n = 1411 

Deceased 
n = 73 (52%)1 

Alive 
n = 68 (48%)1 

p-value2 

0-1 hours 
   Missing 

1.0 [1.0, 2.0] 
117 

1.0 [1.0, 1.75] 
59 

1.5 [1.0, 2.0] 
58 

0.25 

1-2 hours 
   Missing 

2.0 [1.0, 2.0] 
69 

2.0 [1.0, 2.0] 
32 

2.0 [2.0, 2.0] 
37 

0.90 
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2-4 hours 
   Missing 

1.0 [1.0, 1.38] 
75 

1.0 [1.0, 1.5] 
34 

1.0 [0.75, 1.0] 
41 

0.38 

4-6 hours 
   Missing 

1.0 [0.50, 1.0] 
124 

1.0 [1.0, 1.0] 
63 

1.0 [0.5, 1.0] 
61 

0.20 

6-10 hours 
   Missing 

0.25 [0.25, 0.50] 
116  

0.50 [0.25, 1.0] 
59 

0.25 [0.25, 0.38] 
57 

0.027* 

10-14 hours 
   Missing 

0.38 [0.25, 0.50] 
123 

0.38 [0.25, 0.56]  
65 

0.38 [0.25, 0.50] 
58 

0.66 

14-24 hours 
   Missing 

0.15 [0.1, 0.2] 
123 

0.25 [0.2, 0.3] 
67 

0.1 [0.1, 0.2] 
56 

0.016* 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test 
 
Table 10: Median whole blood units per hour for adult trauma patients undergoing UMT 
stratified by mortality  

Time Period Overall 
n = 571 

Deceased 
n = 27 (47%)1 

Alive 
n = 30 (53%)1 

p-value2 

0-1 hours 
   Missing 

4.0 [3.0, 4.0] 
7 

4.0 [3.0, 4.0] 
6 

4.0 [3.0, 4.0] 
1 

0.92 

1-2 hours 
   Missing 

1.0 [1.0, 2.0] 
46 

1.0 [1.0, 1.0] 
22 

1.5 [1.0, 2.0] 
24 

0.59 

2-4 hours 
   Missing 

1.5 [1.0, 2.0] 
52 

2.0 [1.5, 2.25] 
24 

1.0 [0.75, 1.25] 
28 

0.40 

4-6 hours 
   Missing 

1.5 [1.5, 1.5] 
56 

1.5 [1.5, 1.5] 
26 

n/a 
30 

n/a 

6-10 hours 
   Missing 

1.0 [0.81, 1.25] 
53 

1.0 [1.5, 1.5] 
24 

0.25 [0.25, 0.25] 
29 

0.35 

10-14 hours 
   Missing 

1.0 [1.0, 1.0] 
56 

n/a 
27 

1.0 [1.0, 1.0] 
29 

n/a 

14-24 hours 
   Missing 

0.1 [0.1, 0.1] 
56 

0.1 [0.1, 0.1] 
26 

n/a 
30  

n/a 

1 Median [IQR]; n (%) 
2 Wilcoxon rank sum test 
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7.3.3 Machine learning predictive modeling figures  
 
Figure 1: Receiver operating characteristic curves and their respective areas under the curve for 
10 machine learning models predicting mortality for adult trauma patients undergoing UMT 
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Figure 2: Calibration plot for 10 machine learning models predicting mortality for adult trauma 
patients undergoing UMT 

 
 
Figure 3: Nested LASSO variable selection for model (3) predicting mortality for adult trauma 
patients undergoing UMT 
 
 

 
 



 54 
 
 

Figure 4: Nested decision tree splitting variable selection for model (8) predicting mortality for 
adult trauma patients undergoing UMT 
 

 
 
Figure 5: Decision tree model (8) predicting mortality for adult trauma patients undergoing 
UMT 
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7.3.4 Hour-by-hour time series analysis figures 
 
Figure 1: Median 24 hour vital signs (A) and lactate values (B) for adult trauma patients 
undergoing UMT stratified by mortality 
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Figure 2: Median total blood products transfused per hour for adult trauma patients undergoing 
UMT stratified by mortality 

 
 
Figure 3: Cumulative median total blood products transfused per hour for adult trauma patients 
undergoing UMT stratified by mortality 
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Figure 4: Median units of blood products per hour for adult trauma patients undergoing UMT 
stratified by mortality 
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Figure 5: Graph of total product transfusion per hour data for adult trauma patients undergoing 
UMT stratified by mortality 

 
 
 


