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Abstract

Application of Global Optimization to Image Registration

By Huiying Zhu

Given two images, image registration aims to transform an image into

a given reference image so that the two images look alike. This technique

is vital in many applications, such as medical imaging and astronomy.

Finding the best transformation can be phrased as solving a mathematical

optimization problem. Due to the non-convexity of the objective function,

commonly employed optimization techniques often generate local mini-

mizers, limiting the accuracy of the registration. This thesis evaluates the

applicability of a global optimization method, called DDNCID, for image

registration. Direct application of DDNCID in image registration could

cause minimizers to be infeasible. Thus, a focus of this thesis is to add a

bound constraint by imposing a barrier function into the objective function

to extend DDNCID.
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Chapter 1

Introduction

Given two images, image registration aims to transform one of the two images into the

other image so that the two images look alike [1]. Image registration has a large number of

applications, ranging across astronomy, biology, chemistry, criminology or any area involving

imaging techniques [2]. In medical imaging, registration is widely used to align images to

compare data from different modalities such as computer tomography (CT), magnetic resonance

imaging (MRI) and positron emission tomography (PET), before data can be compared or

combined [3].

Many fields view image registration as a useful tool. In particular, it could be applied

in radiology to foster processing as we continue to improve and rely on imaging techniques.

Significant emphasis has been put into research activity to align images from the same or

different subjects to correct scanner-induced geometric distortion [4]. Though required accuracy

varies between applications, it is good to ensure acceptable accuracy. Thus, we are looking for

a registration technique that provides good indication of errors and requires minimal manual

input.

When interpreted mathematically, image registration is phrased as a non-convex optimiza-

tion and ill-posed problem [2, 5]. The notion of well-posedness is defined as the problem has

a solution, the solution is unique and depends continuously on the data [5]. Therefore, ex-

istence of multiple local minima is common in such problems. To determine if a solution is

the global minimum without visual assessment is challenging in image registration, as various

image registration models are available and we know little about expected accuracy [4]. Due

to the vast application of image registration and the variety of registration purposes, such as

intensity based and geometric features, no general theory has been established [1]. The foci of

a particular applications can be different and can range from computing time, image features,

memory to accuracy of a model [4].

1



Introduction 2

1.1 Motivation

The motivation for this thesis is to explore the global optimal transformation of a given

image, called a template image, that is most similar to the given reference image. As different

transformation techniques are developed for different purposes, to establish a standard method

for image registration can be difficult. Furthermore, registration problem can be complex due

to the existence of multiple local minima. Even though attempts have been made to reduce the

chance of being trapped by local minima such as omitting image details [2], current optimization

techniques applied to image registration are still not perfect in solving optimization problems. In

this thesis, the goal is to apply global optimization to improve the accuracy of image registration.

Particularly, this thesis aims to extend the current method to avoid finding a local minimum

instead of a global solution. To explore the best transformation, we implement and extend the

method named Double Descent and Color Intermittent Diffusion (DDNCID) [6]. We aim to

modify the process of the DDNCID [6] in order to apply it to image registration.

(a) Reference Image
and regular grid (green)

(b) Template Image (c) Template Image
and Transformed Grid

(green)

(d) Transformed
Template

Figure 1.1: A 2D Hand Example solved by local optimization (Gauss-Newton) [1]

For example, in Figure 1.1, we are given a reference image and a template image. The

solution found by the Gauss-Newton method as a numerical optimizer is only a local minimizer

[1]. This is a typical example that illustrates the limitation of some numerical solvers dependent

on initial guesses.

1.2 Related Work

Due to the vast applications of image registration and different features of template and

reference images, transformation models have been discussed to determine correspondence be-

tween point features [3]. Examples of transformation functions are rigid transformation, affine

transformation, thin-plate spline (TPS) transformation and multiquadric transformation [1, 3].
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As image registration is interpreted mathematically as an optimization problem, the objec-

tive function often involves a cost function D(w) to measure similarity, a regularization S(y) and

penalty functions P (w) to avoid undesirable transformations [2]: J(y) = D(y) + S(y) + P (y),

subject to y ∈M , where M is a set of transformations.

It is true that Point-Landmark registration has an understood error propagation [4], but

it also requires more effort to manually align points of the reference image with the points

of the corresponding template image. For approaches other than landmark registration, less

information is given about their of accuracy [4].

In Flexible Algorithm for Image Registration (FAIR) [1], we often use a Gauss-Newton

scheme as numerical optimization method in parameterized transformation. Although practical

applications of regularizers have been used to make the registration well-posed [5], results of

optimizing the objective function will depend on the starting point, the algorithm and imple-

mentation [1].

When put into practice, the Gauss-Newton scheme with line search [1] will find a minimum

dependent on a starting guess. As image registration is a non-convex problem, the Gauss-

Newton scheme can only provide a local search in the descending direction of the starting guess.

In Figure 1.1, given a reference image and a template image, the Gauss-Newton method only

yields a local but not a global minimum when minimizing the objective function.

(a) Reference Image
and regular grid (green)

(b) Template Image (c) Template Image
and Transformed Grid

(green)

(d) Transformed
Template

Figure 1.2: Affine Registration Problem solved by Global Optimization

1.3 Contribution

In this thesis, we test an available global optimization method on image registration. A

global optimization should theoretically be able to find global minima regardless of the starting

guess. We implement the DDNCID method for global optimization on image registration [6].
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As the current version of DDNCID does not cover bounded problems, we control the feasibility

of solutions by adding a barrier function into the objective function.

As we test on different starting guesses on Rigid and Affine transformations, with the global

solution already known to us, DDNCID is a good approach to find the global solutions. Solving

exactly the same problem as in 1.1, DDNCID with log barrier constraint is able to find the

global minimizer that maps our template image back to the reference image.

When compared to other optimization methods such as the Gauss-Newton scheme, the

advantage of DDNCID with log barrier constraint is that it does not rely on the starting guess.

Even starting with a distorted guess, our global optimization method is able to find the optimal

transformation. The goal of global optimization is to increase the accuracy of the optimization

process and guarantee the solution to be global and feasible.

Further considerations such as optimizing the algorithms and imposing direct calculation

of the Hessian are expected to be done to increase the efficiency and accuracy of current work.

1.4 Outline

In Chapter 2, we discuss the current method of optimization including global search and

local optimization built in FAIR [1]. Then in Chapter 3, we extend the current method of

DDNCID with the addition of a log barrier constraint. Several numerical experiments based on

different image transformation models are shown in Chapter 4. Chapter 5 includes a conclusion

and future directions.



Chapter 2

Optimization in Image Registration

2.1 Image Registration

As mentioned in Chapter 1, image registration is a spatial transformation from a template

image to a reference image so that two images look alike. A successful transformation guarantees

the relationship between the position of a feature in one image or coordinate space and the

position of the corresponding feature in another image or coordinate space [4]. Additionally,

transformation helps to compare data such as intensity and average in a region of interest.

Geometrically, a transformation is defined as a mapping of corresponding points from one

image to another image. As multiple imaging modalities exist and geometrical distortions of

objects vary, various transformation models are constructed for convenience and different appli-

cations. The transformation problem can be solved by optimizing the cost function (objective

function), which sums the similarity of the transformed template image and reference image,

and regularization, which prevents undesirable and extreme transformations [2].

2.1.1 Grids

For data given on a spatial dimension d, we define a spatial domain Ω ⊂ Rd as the region

of the coordinate system where the template image is placed and a grid as a partitioning of

the domain into a number of congruent cells [1]. For a data set of size n, in the following,

x = [x1
1; · · · ;x1

n; · · · ;xd1; · · · ; xdn] ∈ Rnd, is a vector representing the coordinates of the centers

of the cells xj = [x1
j , · · · , xdj ], for j = 1, · · · , n. In parameterized image registration, we need

to evaluate the value of each transformed point y(w) in order to calculate the similarity of the

transformed template image and the reference image.

5
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2.1.2 Template and Reference

Using a template image and a reference image, we define dataT ∈ Rn and dataR ∈ Rn as

discrete data on a regular grid, where n is the number of centered cells. Then T is defined as the

mapping of template image and R as the mapping of the reference image from domain Ω ⊂ Rd

into R. For any point xj ∈ Ω ⊂ Rd to the set of real numbers R, T and R are interpolation

functions that satisfy,

T (xj) = dataT(j); (2.1)

R(xj) = dataR(j), (2.2)

for j = 1, 2, ..., n, where n is the number of cells.

For example, 2D images have spatial dimension d = 2. For any point on the grid, the

mapped value represents the corresponding grey scale value of that point. The purpose of the

interpolation function is to transform the data from discrete points into a continuous function

and approximate the data on undefined points.

In our thesis, we use cubic B-spline interpolation to ensure the grid points are differentiable.

Thus, for 2D data with discretization size m = [m1m2], the interpolation function can be

expanded as [1]:

T (x) = T Spline(x) =
m2∑
j2=1

m1∑
j1=1

cj1,j2 b
j1(x1)bj

2
(x2) (2.3)

b (x) =



(x+ 2)3 −2 ≤ x < −1

−x3 − 2(x+ 1)3 + 6(x+ 1) −1 ≤ x < −1

x3 + 2(x− 1)3 − 6(x− 1) 0 ≤ x < −1

(2− x)3 1 ≤ x < 2

0 else

2.1.3 Rigid and Affine Transformations

In this thesis, our experiments are based on parameterized image registration (PIR) based

on FAIR [1]. Though numerous transformation models are available, this thesis only applies rigid

transformation and affine transformation. Other transformation models such as the spline-based

transformation in higher dimensions and addition of regularization are expected to be tested
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for future work. These transformation models are also important since rigid registration is in

general very limited and generally the search space might be explicitly given [2].

Rigid transformation is a parameterized transformation that only allows shifting and

rotations. For d = 2, parameter w = [w1;w2;w3] ∈ R3 and each center of the grids x = [x1;x2] ∈
R2, let us define the transformation y(w) ∈ R2 as follows

y1(w) = cos(w1)x1 − sin(w1)x2 + w2 (2.4)

y2(w) = cos(w1)x1 + sin(w1)x2 + w3. (2.5)

(a) Reference Image (b) Template Image (c) Template with transformed
grid

Figure 2.1: 2D rigid transformation example: data from a histological serial section provided in
FAIR [1]

Affine transformation is a transformation more flexible than rigid transformation. It

allows rotation, shearing and individual scaling [1]. An affine linear transformation y(w) ∈ R2

is defined as

y(w) =

[
x1 x2 1 0 0 0

0 0 0 x1 x2 1

]
w, (2.6)

where w = [w1;w2; · · · ;w6] ∈ R6.

2.1.4 Objective Function

The objective function J to be optimized is defined as

J(w) = D(w) + S(w),
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(a) Reference Image (b) Template Image (c) Transformed
Template with grid

(d) Transformed
Template with grid

Figure 2.2: 2D affine transformation example: 2D hand data provided in [1]

where D(w) measures the difference between each corresponding point in the transformed tem-

plate image and reference image and S(w) is the regularizer that penalizes undesirable transfor-

mation. In this thesis, we use Sum of Squared Difference (SSD) as the D(w) [1]. SSD is defined

as the sum of absolute differences on all the points on the transformed grid:

D(w) =
1

2

∫
Ω

(T (y (w, x))−R (x))2 dx.

Instead of calculating the integral analytically, we use a midpoint quadrature rule to nu-

merically approximate the integral [1]:

D(w) =
1

2

∫
Ω

(T (y (w, x))−R (x))2 dx ≈ 1

2
h ‖(T (y(w,x))−R(x))‖2,

with h = h1 h2 · · ·hd, T (y) = [T (yj)]
n
j=1 = [T (y(w, xj))]

n
j=1 and R(x) = [R(xj)]

n
j=1, where

y(w,x) is the transformed grid from the regular grid x and h1, h2, · · · , hn are the widths of

the cell centered grid. As we already discussed in the Chapter 1, image registration has many

solutions. Thus, we could add some additional conditions to rule out undesirable solutions

by introducing a regularizer [1]. To simplify our registration problem, we set the regularizer

S(w) = 0.

Therefore, our optimization problem becomes

min
w

J(w) =
1

2
h ‖(T (y(w,x))−R(x))‖2.

FAIR [1] provides optimization methods such as the Gauss-Newton method and the Steepest

Descent (Gradient Descent) method as numerical optimization schemes to minimize objective

function and a multi-level strategy to reduce computation time and omit some cases of local

minima. However, the success of the Gauss-Newton scheme is dependent on the initial starting

guess. In FAIR, Gauss-Newton is achieved by transforming our distance measure (SSD) into
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the following [1]:

J(w) = ψ(r(w)),

where r = T (y (w,x)−R(x) and ψ = 1
2 r

T r. It optimizes a quadratic function

Ĵ(w + dw) = J + dJ dw +
1

2
dwT H dw ≈ J(w + dw),

where the approximate Hessian is H = drTd2ψ dr. The descent direction is found by solving

the linear system [7]

H dw = −∇J.

When dw is small, we have a good approximation of our original function. However, when dw is

large, the quadratic function Ĵ cannot guarantee a good approximation of our original problem.

(a) Reference Image (b) Template Image (c) Transformed Template
Image

Figure 2.3: Given template image and reference image, Gauss-Newton with initial guess w=0
finds a solution that is a local minimum.

Here, we offer the simplest example in a 1D rotation transformation model so that we are

able to plot the objective function and determine the global minimum. If the starting guess is

close to a local but not global minimum, Gauss-Newton is likely to fail. In Figure 2.3, from the

starting guess w = 0, Gauss-Newton would return a local minimum of the objective function in

Figure 2.4.

2.2 Double Descent and Color Intermittent Diffusion

In this thesis, we apply a global optimization method called Double Descent and Color

Intermittent Diffusion (DDNCID) [6], developed by L.Deici, M. Manetta and H.Zhou, to the

image registration problem. As Figure 2.3 and Figure 2.4 show, the success of Gauss-Newton

is dependent on the choice of the initial guess. Thus we take the uncertainty of Gauss-Newton

scheme as a motivation to explore a global optimization technique in our problem.
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Figure 2.4: graph of SSD and result of Gauss-Newton with initial guessing w=0

2.2.1 Mathematical Background of DDNCID

Given the objective function J(w) : Rp → R, where p is the dimension of our transformation

parameters, DDNCID [6] divides exploration of minima into two steps: local search and escape

from basins of attraction. Let G(w) = 1
2(∇J(w))T (∇J(w)) be an auxiliary function. Before we

discuss DDNCID in detail, we provide some important concepts.

A point w∗ is called a local minimum of J over domain U if there exists r > 0 for which

J(w∗) ≤ J(w) for any w ∈ U ∩ B(w∗, r). If J(w∗) < J(w) for any w∗ 6= w ∈ U ∩ B(x∗, r), w∗

is a strict local minimum [8].

A point w∗ is called a local maximum of J over domain U if there exists r > 0 for which

J(w∗) ≥ J(w) for any w ∈ U ∩B(w∗, r). If J(w∗) > J(w) for any w∗ 6= w ∈ U ∩B(w∗, r), w∗

is a strict local maximum [8].

In optimization, a point w∗ in the domain Ω of a function J(w), which is differentiable over

some neighborhood of w∗, is a critical point of J(w) if ∇J(w∗) = 0 [8]. Here, the condition is

equivalent to G(w∗) = 0.

After finding a critical point w∗, we could use sufficient second order optimality conditions

to classify whether the point is a maximum or a minimum.

1. If ∇2J(w∗) > 0, then w∗ is a strict local minimum of J over Ω.
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2. If ∇2J(w∗) < 0, then w∗ is a strict local maximum of J over Ω.

We identify each critical point by finding the largest λbig and smallest eigenvalue λsmall

of the Hessian matrix ∇2 J . If both λbig and λsmall are positive, which means the matrix is

positive definite, the critical point is a minimizer. If the signs of λbig and λsmall are different,

we categorize the point to be a saddle point. If both λbig and λsmall are negative, which means

the Hessian is negative definite, the critical point is considered as a maximizer [6, 8].

The escape process consists of perturbing points in the neighborhood of the critical point

found to escape from “its basins of attraction” [6]. When the new iterant has a different signature

of the Hessian compared to the Hessian of the last initial point, we say the new iterant escapes

from the basin of attraction of that critical point.

1. With a random initial guess w0, the optimization starts by searching for a minimum using

double descent by decreasing both J and G. Then the new point is stored in an array

Wcri.

2. A random point is selected from Wcri. According to the identification of this point

(maximizer, minimizer or saddle point), the algorithm adds colored diffusion to the critical

point in order to exit its basin of attraction. Then a local search begins for the next critical

point, which is then stored in the array of critical points mentioned above.

3. Step 2 is repeated by randomly selecting another critical point in the array Wcri. We

continue the basin escaping and local search until the number of iterations reaches the

maximum iteration allowance.

2.2.2 Local Search and Basins Escape

During local search of minimizers, DDNCID uses double descent to decrease both J and

G. At the beginning of each iteration, a random critical point w0 is selected from Wcri and the

algorithm performs the following method to get to another critical point depending on whether

the critical point is a minimizer, maximizer or saddle point:

1. If w0 ∈ Rn is a minimum:

(a) We find the eigenvalues of the Hessian H(w0) in descending order: λ1 ≥ λ2 ≥ · · · ≥
λn. First, we perturb w0:

w1 = w0 + ασ
√
hW, (2.7)

where α is a scalar, W ∈ N(0, 1)p is a vector with normally distributed random

numbers, σ = v1v
T
1 with v1 the eigenvector associated with λ1 and h is a step size
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which is 1 by default. Here, we choose the eigenvector related to the largest positive

eigenvalue of the Hessian so that the diffusion step (escape) can be as quick as

possible.

(b) Using QR factorization to find H†(wk)∇g(wk), where H†(wk) is the pseudo-inverse

of the Hessian H(wk), we find the step size h with |G(xk−h(H†(wk))| < |G(xk)| and

update wk+1:

wk+1 = wk − h(H†(wk)∇g(wk)) + ασ
√
hW. (2.8)

The choice of the pseudoinverse is dictated by the possibility of having a singular

Hessian.

(c) We iterate the previous step until we find some w∗ such that H(w∗) is no longer

symmetric positive definite. This means that we escape from the basin of attraction

of the local minimum. Then we use (damped) Newton with the aim of reaching a

saddle point. In this case, h and v are chosen by only imposing a decreasing condition

on G.

(d) We store the new critical point in the array. Then we randomly select a critical point

and iterate 1.(a), 1.(b) and 1.(c), if the critical point is a minimum.

2. If w0 ∈ Rn is a saddle point:

(a) The goal is to get out of the neighborhood of the saddle point. As for a local

minimizer, we first perturb w0:

w1 = w0 + ασ
√
hW.

where α is a scalar, W ∈ N(0, 1)p is a random vector, σ = vnv
T
n and vn is the

eigenvector associated with λn. The purpose of choosing the eigenvector related to

the smallest eigenvalue is to move away from the saddle point as quickly as possible

and decrease J .

(b) The second step consists of perturbing w1 by using means of colored diffusion and a

descent direction (either double descent (v = H†(wk)∇g(wk)) or gradient descent(v =

−∇g(wk))). The diffusion step is repeated as follows until the Hessian is symmetric

positive definite.

i. Double Descent: Find step size h such that |G(ŵk+1)| < |G(wk)| and |g(ŵk+1)| <
|g(wk)|, where ŵk+1 = wk + hv and update

wk+1 = wk + hv + ασ
√
hW.

ii. Gradient Descent: Find step size h such that |g(ŵk+1)| < |g(wk)| and update

wk+1 = wk + hv + ασ
√
hW.
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Once the point leaves the basins of attraction or reaches the maximum number of

iterations, DDNCID uses Double Descent again to find direction v and step size h to

decrease both g and G. Then we store the final result in the array and continue with

another randomly selected critical point.

3. If w0 ∈ Rn is a maximum:

(a) We find the eigenvalues of the Hessian H(w0) in descending order: λ1 ≥ λ2 ≥ · · · ≥
λn. First, we perturb w0 so that

w1 = w0 + ασ
√
hW,

where α is a scalar, W ∈ N(0, 1)p is a random vector, σ = vnv
T
n and vn is the eigen-

vector associated with λn. Here, we choose the eigenvector related to the smallest

eigenvalue (negative) so that the diffusion step can be as quick as possible.

(b) Evaluating H†(wk)∇g(wk), we find h with |G(x̂k+1)| < |G(xk)| and update wk+1

wk+1 = wk − h(H†(wk)∇g(wk)) + ασ
√
hW

(c) We continue the previous step until for some w∗, H(w∗) is not symmetric positive

definite. This means that we escape from the basin of attraction of the local mini-

mum. Then we assure the decrease of G, so that G(wk +hv) < G(x), using Newton’s

direction v.

(d) We store the new critical point in the array Wcri and continue the new iteration by

randomly selecting a critical point in it.

(a) Graph of the Shubert function (b) Contour of the Shubert function

Figure 2.5: Shubert Function
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Here, we test the algorithm with the Shubert function [6], which is given by:

g(x, y) =
( 5∑

i=1

i cos [(i+ 1)x+ i ]
)( 5∑

i=1

i cos [(i+ 1) y + i ]
)
. (2.9)

From Figure 2.5, in the domain [−6, 6] × [−6, 6] this function contains multiple global minima

and critical points. By starting at a random point and setting the number of iterations to be

500, DDNCID finds at least a global minimum in the array of minimizers.

As we can see in Figure 2.5, the Shubert function not only has many critical points (minima,

maxima and saddle points), but also it shows multiple global minima. DDNCID is able to explore

the landscape of the function and find the global minima, in particular.

2.2.3 Challenge of Implementation of DDNCID in Image Registration

During the initial implementation, DDNCID provides many critical points which shift the

template far away from the domain Ω. This is because DDNCID, as presented in [6], does

not consider constrained optimization. Though image registration is not initially defined as

a constraint optimization problem, extreme shifting or rotation away from the image frame

is considered now as an infeasible solution. In our implementation, DDNCID can generate

undesirable solutions as it gradually moves the iterant away from the domain. Therefore, we set

a boundary for each image registration model and propose a method to avoid the image being

moved away from the boundary.

In terms of the Hessian, DDNCID uses finite difference to approximate the matrix H. If the

rate of change is huge regarding to the default difference, the approximation could potentially

lead the classification of the Hessian to be misleading. As the iteration and termination of

the escape process depend on the identity of the Hessian, it is essential for us to have a good

approximation of it.

The cost of local search using double descent is expensive and we may consider other local

optimization methods that are more efficient than double descent. We replace double descent

by Gauss-Newton for the local search and will discuss this in detail in the next chapter.



Chapter 3

Global Optimization with Log

Barrier Constraint

In Chapter 2, we see that in some transformation models, DDNCID [6] can possibly gen-

erate undesired shifting of the template image away from the defined domain Ω. To avoid the

transformation being shifted away from the boundary, we set some constraints wup and/or wlow

to control the parameters wi that are related to shifting.

3.1 Logarithmic Barrier Method

The current method of DDNCID is not designed for constrained optimization problems.

Numerical experiments show that unconstrained global optimization can possibly update the

transformation to be infeasible (away from Ω). Therefore, we are seeking an alternative, simple

approach to translate a constrained optimization problem into a non-constrained problem. Since

DDNCID [6] relies heavily on the gradient and the Hessian, a good approximation of these terms

is crucial to the success of application of DDNCID [6] to image registration problems.

The idea of a log barrier constraint is similar to regularization. We add a term P (w), which

allows us to add information of constraints into the objective function J(w) : R p → R, where p

is the number of unknowns in our transformation parameter w.

3.1.1 Penalty Function

In our image registration problems, we pick the constraints wlow as the lower bound of w

and wup as the upper bound of w. The choice of boundary is determined by the image model

15
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and the domain Ω of the function. The idea is to control the entries that affect shifting of the

template image. With a “barrier parameter” α [7], the barrier function is generally defined by

P (w,α) = α(− log (w − wlow)− log (wup − w)) (3.1)

= α(−
n∑

i=1

log(wi − (wlow)i)−
n∑

j=1

. log((wup)j − wj)) (3.2)

The logarithmic barrier functions have the following properties [7]:

1. P (w) is differentiable inside the boundary;

2. P (w)→∞ as w → wlow or w → wup.

In MATLAB, we assign infinity to P (wk) when ∀ indices i ≤ n,∃ j such that (wk)j ≤ (wlow)j

or wj ≥ (wup)j .

Figure 3.1: plot of P (w;α) in 1D with wlow = 0 and wup = 4 with α = 2, 1, 0.5

Adding the logarithmic barrier function into the objective function J(w), our new objective

function becomes

J(w;α) = D(w) + P (w;α). (3.3)
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In Figure 3.1, we have a plot of the function with wlow = 0 and wup = 4:

S(w;α ) = α
(
− log(w − wlow)− log(wup − w)

)
.

Assigning a sequence of α’s, the function becomes flatter when α decreases. When the log

barrier constraint is added to the objective function, J(w), P (w) will increase dramatically as

w approaches the boundary. Moreover, when α is small, P (w) does not have significant effect

on J(w) for w that is not around the boundary.

Thus, under certain conditions, the minimizer of J(w; α ), which is denoted by wu∗, ap-

proaches a solution of our original problem min
w
J(w).

3.1.2 Gradient and Hessian of J(w;α)

Now, we have a modified objective function J(w;α) that is differentiable. In order to be

applied to DDNCID [6], it is crucial that we have a good evaluation of the gradient vector

∇J(w; α ) and Hessian matrix H(w; α ).

In DDNCID [6], the algorithm uses a finite difference approach to approximate the Hessian

of a general function as follows:

function [H] = chooseHess(X,fun)

h=sqrt(eps);

n=length(X); %find the dimension of X

Id=eye(n);

[grad]=chooseGrad(X,fun);

for s=1:n

[grad1]=chooseGrad(X+h*Id(:,s),fun);

H(:,s)= (grad1-grad)/h;

end

H=0.5*(H+H');%average to ensure that H is symmetric

Though the finite difference method can provide a good approximation if the function does

not change dramatically, it might not be able to provide a good approximation of Gradient and

Hessian for our logarithmic barrier function.
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Thus, we calculate the gradient ∇P and the Hessian d2P exactly as follows: let Q =
{
i ∈

Z | (wlow)i 6= −∞ or (wup)i 6=∞
}

. Set

∇Pi =

α
(
− 1

wi−(wlow)i
+ 1
−wi+(wup)i

)
, if i ∈ Q

0, if i /∈ Q

and d2P (w;α) =

α
(

1
(wi−(wlow)i)2

+ 1
((wup)i−wi)2

)
, if i ∈ Q

0, if j 6= i or i /∈ Q.

3.2 Improvements of DDNCID in Image Registration

Despite the introduction of the logarithmic barrier function [7], we also modified the al-

gorithms in FAIR [1] and DDNCID [6] by replacing double descent with the Gauss Newton

method existing in FAIR.

In the local search process of DDNCID [6], the search for a descent direction is expensive,

regardless whether the direction is chosen by double descent or gradient descent. Therefore,

we prefer to use the Gauss-Newton scheme provided by FAIR [1] since it is more efficient. We

calculate the Hessian of the objective function J(w;α) by combining finite differences and direct

calculation.

Regarding the term D(w), the gradient ∇D(w) can be evaluated during the call of the

objective function. But FAIR [1] only provides a Gauss-Newton approximation of the Hessian

in the term D(w) in our objective function. It rewrites the objective function as J(w) = ψ(r(w)),

where r = T (y(w,x)− R(x) and ψ = 1
2 r

T r, and optimizes a quadratic function Ĵ(w + dw) =

J + dJ dw + 1
2 dw

T H dw ≈ J(w + dw). The approximation error Ĵ − J is small when dw is

small. Also, the approximate Hessian H = drTd2ψ dr is obviously always symmetric positive

semi-definite.

However, DDNCID [6] needs a negative curvature to perturb the points around saddle

points and maxima and, thus, to escape to another critical point. We also seek a reliable

method of calculating the Hessian of the term for distance measure.

Furthermore, if a point w is close to the boundary, S(w+ ∆w;α) could be infinite, causing

the evaluation of ∇J(w;α) and H(w;α) to be inaccurate.

Thus, we modify the evaluation of Gradient and Hessian of the objective function J(w) as

follows.

1. Use the finite difference to evaluate the Hessian of D(w), which we denote as d2D(w).
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Note: In the case that w + ∆w is out of boundary, we instead evaluate

d2D(w) =
∇D(w + ∆w)−∇D(w)

h
.

2. Calculate the exact gradient ∇P (w;α) and the Hessian ∇P2(w;α) of the barrier function

P (w;α).

3. Combine the two terms to get the gradient ∇J(w;α) and the Hessian J2(w;α):

∇J(w;α) = ∇D(w) +∇P (w;α), and (3.4)

J2(w;α) = d2D(w) + d2P (w;α). (3.5)

In some test cases, we discover that the first implementation of Gauss-Newton finds the

first critical point next to the boundary. This is undesirable. Since the perturbation is based

on the largest eigenvalues of the Hessian of that critical point, the escape process may add a

color noise that is not feasible. Under such circumstances, we prefer Gradient Descent to find

our first minimum.

We set up log barrier constraints for rigid and affine transformation models to control the

extreme shift when solving the image registration problem. In the future, we will consider more

image models to test the reliability of our new objective function with the logarithmic function.

Also, KKT [8] should be a direction for future work as it is able to find minimizers around the

boundary.



Chapter 4

Numerical Experiments

In this Chapter, some numerical results are presented.

4.1 2D Affine Registration without Boundary Constraints

Let us consider the reference image and the template image as shown in Figure 4.1. In this

experiment, the domain Ω is given by [0, 20] × [0, 25] ∈ R2

(a) Reference Image and
regular grid xc (green)

(b) Template Image

Figure 4.1: Affine Image Registration Problem

In Table 4.1 , we provide an array of Wmin. Each column represents a specific minimum.

Some local minima contain extremely large entries of w3 and w6 when compared to our do-

main. These two entries w3 and w6 correspond to the shifting of the template image in affine

transformation.

To visualize an undesired transformation, we pick the sixth minimum in the array. In

Figure 4.2, we see a possible undesired result obtained by applying the unconstrained version

20
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w1 0.62 0.03 -1.08 0.61 -0.00 1.86 1.46 -3.13 -1.27 2.57

w2 -0.35 -0.13 -6.92 2.92 -0.79 1.03 -0.35 -7.82 -7.52 1.38

w3 4.49 -0.87 31.89 -1.87 -1.26 -18.96 28.05 10.32 35.41 -28.26

w4 0.67 0.02 1.33 -4.11 -0.00 8.81 2.41 0.79 1.00 11.38

w5 0.62 0.04 10.31 -6.58 0.58 1.59 17.17 -3.56 7.79 2.90

w6 3.93 -3.01 -36.72 -0.09 0.93 -84.44 -61.64 0.59 -27.32 -117.55

Table 4.1: An array of minimizers Wmin solved by DDNCID without boundary constraints

of the method. Although we were able to find some minima, they could be far away from our

domain of interest. Figure 4.2 shows our need to introduce boundary constraints on our domain.

(a) Transformed Template (b) Template Image and
Transformed Cell Grids yc

Figure 4.2: Affine Image Registration Problem
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4.2 2D Affine Registration with Boundary Constraints

(a) Reference Image
and regular grid (green)

(b) Template Image (c) Template Image
and Transformed Grid

(green)

(d) Transformed
Template

Figure 4.3: Affine Registration Problem solved by Global Optimization

To test the applicability of affine registration, as we mentioned in Chapter 1, we set up a

problem that is not solved by the Gauss-Newton scheme. Using the new algorithm to solve this

registration problem, we have found 76 critical points and 39 among them are local minimizers.

4.3 2D Rigid Registration

(a) Reference Image (b) Template Image

Figure 4.4: Rigid Registration Problem

In 2D rigid registration, we set up the problem by using the same image for both reference

image and template image. Thus, we know the global solution to be wc = [0; 0; 0], as no

shifting and no rotation are needed to transform an image to itself. We test our DDNCID

with 12 starting guesses. For each initial guess, we start with the Gauss-Newton scheme as the

local optimization method. If the first step minimization results in a minimizer close to our

constraints, we use Gradient Descent instead of Gauss-Newton in our first step to minimize the

initial guess.
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Here, we provide the registration result of DDNCID with the initial starting guess

w0 = [−1.5708;−5.3333; 4.0000].

(a) Initial Guess w0 =
[−1.5708;−5.3333; 4.0000]

(b) Transformed Template

Figure 4.5: Rigid Registration Problem with initial guess w0 = [−1.5708;−5.3333; 4.0000]

In this experiment, we set the maximum number of iteration to be 120. With an additional

initial local minimization process, DDNCID finds 121 critical points, of which 66 points are

local minima. As shown in Figure 4.5, our method is able to find the global minimum.

Figure 4.6: Results of Large Experiment in Rigid Transformations

To enlarge our test cases, we increase the number of starting guesses to 1000. These starting

guesses are equally spaced points in [−π,−8,−8]× [π, 8, 8]. In Figure 4.6, each numbered square
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(from 1 to 10) displays the results of 100 cases. A success of the global optimization method

is marked as a small yellow square in each numbered square, while a failure is represented by

blue. As we can tell from the results, our log barrier constraint provides accurate solutions for

a majority of our initial guesses. Failures of some initial guesses often occur when we start with

a local minimum near the boundary or we need a larger number of iterations.



Chapter 5

Conclusion

In this chapter, we summarize our current work and discuss potential future directions.

5.1 Current Work

In this thesis, we test the applicability of a global optimization method in image registration

problems. To enable the implementation, we extend the current version of DDNCID by adding

barrier constraint into the objective function to avoid undesirable transformations. To avoid

misclassification of critical points, we also modify the evaluation of Hessian, using a combination

of finite difference of the distance measure and direct calculation of the log barrier constraint.

Also, for efficiency purposes, we replace Double Descent with the Gauss-Newton scheme or the

Gradient Descent method.

Our updated DDNCID successfully solves the image registration problem that could not

be achieved by the Gauss-Newton method. Numerical experiments have been tested on both

affine and rigid transformations. With different starting guesses, global optimization can find

several critical points and local minima, which includes the global minimum in most cases.

5.2 Future Directions

In terms of future work, we consider adding the entirely direct calculation of the Hessian

of the objective function. We also look forward to applying the updated DDNCID to higher

dimensional data as well as to transformations with a larger number of unknowns. Additionally,

we expect to optimize the algorithms to foster the efficiency of our method.
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Appendix A

MATLAB Code

A.1 Log Barrier Constraint

function [Sc,logdS,logd2S]=getLogBarrier(uc,omega,m,varargin)

%set up parameter

alpha = 1;

low = -Inf;

high =Inf;

for k=1:2:length(varargin), % overwrites default parameter

eval([varargin{k},'=varargin{',int2str(k+1),'};']);

end;

if all(low==-Inf)&& all(high==Inf)

Sc=0;

logdS=0;

logd2S=0;

return;

end;

if alpha==0

Sc=0;

logdS=0;

logd2S=0;

return;

end

n =numel(uc);

26
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%add penalty to boundary condition

if any(uc<=low) || any(uc>=high)

Sc = Inf;

logdS = Inf;

logd2S = [];

% warning('out of bound\n');

return

end

% allocate output

Sc = 0.0;

logdS = zeros(n,1);

logd2S = zeros(n,1);

% find indices of components bounded above and below

id = (low > -Inf) & (high < Inf);

B = -log(uc( id)-low(id))-log(high(id)-uc(id));

Sc = Sc + sum(B(:));

logdS(id) = -1./(uc(id)-low(id))+1./(high(id)-uc(id));

d2YLow = (uc(id)-low(id)).^2;

d2YHigh = (high(id)-uc(id)).^2;

logd2S(id) = (1./d2YLow)+(1./d2YHigh);

% find indices of components only bounded above

id = (low == -Inf) & (high < Inf);

B = -log(high(id)-uc(id));

Sc = Sc+ sum(B(:));

logdS(id) = 1./(high(id)-uc(id));

d2YHigh = (high(id)-uc(id)).^2;

logd2S(id) = (1./d2YHigh);

% find indices of components only bounded below

id = (low > -Inf) & (high == Inf);

B = -log(uc(id)-low(id));

Sc = Sc + sum(B(:));

logdS(id) = -1./(uc(id)-low(id));

d2YLow = (uc(id)-low(id)).^2;

logd2S(id) = (1./d2YLow);
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Sc = alpha*Sc;

logdS = alpha* logdS';

logd2S=alpha * diag(logd2S);

return;

A.2 Hessian Approximation

function[id,sigma,H,L]=findsigmafull(x,fun)

regularizer('set','c',0);% H1=d2P from log barrier

[~,~,~,H1]=fun(x);

regularizer('set','c',1);

a=regularizer('get','alpha');

regularizer('set','alpha',0);

H2=chooseHess(x,fun);

regularizer('set','alpha',a);% H2=d2J from distance measure

H=H1+H2;

[V,D]=eigs(H,2,'be');

lambdabig=D(2,2); lambdasmall=D(1,1);

vbig=V(:,2); vsmall=V(:,1);

% check id by comparing the eigenvalues

if (sign(lambdasmall)==sign(lambdabig))

if lambdasmall>0

id=1;

else

id=-1;

end

else

id=0;

end

if id==1

sigma=vbig*vbig';

L=lambdabig;

else

sigma=vsmall*vsmall';

L=lambdasmall;

end



Appendix 29

function [H] = chooseHess(X,fun)

h=sqrt(eps);

% % h =10;

n=length(X);

% h = 1e-5;

Id=eye(n);

[grad]=chooseGrad(X,fun);

for s=1:n

if size(X,1)==3 % && s==1

[grad0]=chooseGrad(X+h*Id(:,s),fun);

H(:,s)= (grad0-grad)/h;

else

[grad1]=chooseGrad(X+h*Id(:,s),fun);

if grad1~=Inf

H(:,s)= (grad1-grad)/h;

else

[grad2]=chooseGrad(X-h*Id(:,s),fun);

H(:,s)= (grad2-grad)/h;

end

%point infeasible x-h

end

end

H=0.5*(H+H');

end
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