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Abstract 

 
An Application of Bayesian Additive Regression Trees (BART) to Estimate Daily 

Concentrations of PM2.5 Components in California 
 

By Tianyu Zhang 
 
 

Background: Fine particulate matter (PM2.5), defined as particles that have an 
aerodynamic diameter of less than 2.5 micrometers, represents a complex mixture of 
solids and liquids that are small enough to pass through the upper respiratory system and 
penetrate deep into the lungs. Studies have found associations between adverse health 
outcomes and specific PM2.5 species, such as sulfate, nitrate and carbon-containing 
species. It’s important to accurately measure the concentration of PM2.5 and its 
component to support additional epidemiological studies and perform health impact 
analyses. 
 
Methods: In this work, we examine the use of Bayesian Additive Regression Tree 
(BART) for predicting concentrations of 4 major components of PM2.5: elemental carbon 
(EC), organic carbon (OC), nitrate (NO3), and sulfate (SO4).  BART employs a sum-of-
trees model and the prediction is based on the average of a set of decision trees. 
Meteorological variables, population size, land use variables, numerical model 
simulations (CMAQ), and satellite-derived fractional aerosol optical depth (AOD) in 
California during the period 2005 to 2014 were used as predictors for PM2.5 species 
concentrations. We evaluated the importance of PM2.5, numerical model simulations and 
AODs by leaving or keeping them in the model. 
 
Results: After tuning parameters in the model to achieve a prediction coverage 
probability of about 95%, our model consistently results in a R2 between 0.64 and 0.83 in 
5-fold ordinary and spatial leave-on-monitor-out cross-validation (CV) experiments for 
four species of interest when PM2.5 itself is a predictor. When PM2.5 is not a predictor, the 
models achieved a smaller R2 from 0.52 to 0.72. In spatial CV experiments, including 
AOD parameters or CMAQ simulations can improve R2, especially when total PM2.5 
mass is not included as a predictor. The relative importance of different AOD parameters 
varies across PM2.5 components. AOD3 and AOD2 are most important for NO3 and OC 
respectively. For SO4, many AOD parameters show moderate importance. 
 
Conclusions:  Collocated PM2.5, fractional AOD and CMAQ simulations are important 
predictors for daily concentrations of PM2.5 component EC, OC, NO3 and SO4. The 
ensemble learning method BART provides good prediction accuracy, as well as 
uncertainty measures that can be utilized in subsequent analyses. 
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1. Introduction 

Understanding the spatial and temporal distribution of ambient air pollution is an active 

research area due to its harmful health effects. Exposures to air pollution have been 

associated with the development and exacerbation of various chronic heart and lung 

diseases, as well as premature deaths (Fann et al. 2019; Thurston et al. 2016; Janssen et 

al. 2013). Fine particulate matter (PM2.5), defined as particles that have an aerodynamic 

diameter of less than 2.5 micrometers, is regulated worldwide by government agencies. 

PM2.5 represents a complex mixture of solids and liquids that are small enough to pass 

through the upper respiratory system and penetrate deep into the lungs. Various studies 

have found associations between adverse health outcomes and specific PM2.5 species, 

particularly sulfate, nitrate, and carbon-containing species (Schlesinger 2007; Rohr and 

Wyzga 2012). Hence, it’s important to accurately measure the concentration of PM2.5 and 

its component to support additional epidemiological studies and perform health impact 

analyses (Grahame 2014). However, due to resource constraints, the availability of PM2.5 

components measurements is more limited than to other air pollutants. Therefore, it is 

important to develop methods to estimate concentrations of PM2.5 components at 

locations and at time points without monitoring data. 

 

Various models have been proposed to tackle this problem. On one hand, there are 

traditional geostatistical models, including national spatial models for annual average 

concentrations of PM2.5 species (Bergen et al. 2013), generalized additive models using 

principal components of predictors (Li et al. 2017), and models based on chemical 

transport modeling that utilizes information on anthropogenic emissions of primary PM2.5 
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and PM2.5 precursors (Kelly, Reff, and Gantt 2017). On the other hand, applications of 

machine learning methods also have demonstrated excellent prediction accuracy. For 

example, random forest was used by Meng et al. to estimate the PM2.5 specific 

concentration in the United States (Meng et al. 2018). While machine learning methods 

have been widely applied to estimate total PM2.5 mass (Hu et al. 2017; Lary, Lary, and 

Sattler 2015; Niu et al. 2017), their applications to PM2.5 species have been more limited.   

 

In this work, we examine the use of Bayesian Additive Regression Tree (BART) 

(Chipman, George, and McCulloch 2012) for predicting concentrations of 4 major 

components of PM2.5: elemental carbon (EC), organic carbon (OC),  nitrate (NO3), and 

sulfate (SO4)  BART employs a sum-of-trees model, meaning that the prediction is based 

on the average of a set of trees where each decision tree contributions a small proportion 

of the prediction. This form of ensemble learning has been shown to improve prediction 

accuracy in many applications (Weyuker, Ostrand, and Bell 2010; Linero 2017; Hern et 

al. 2015). More importantly, BART is a probabilistic model-based learning method that 

provides straight-forward uncertainty quantification for predictions (e.g. via prediction 

standard error and prediction intervals).  

 

We applied BART to PM2.5 species data from California during the period 2005 to 2014, 

as used in a previous study by Franklin et al. paper (Franklin, Kalashnikova, and Garay 

2017). We also utilized meteorological variables, population size, land use variables, 

numerical model simulations, and satellite-derived fractional aerosol optical depth 

(AOD). We demonstrated that multiple BART parameters can be tuned to achieve a 
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balance between coverage probability of prediction intervals and prediction accuracy. 

Understanding how different predictors influence and contribute to PM2.5 prediction is a 

well-known challenge for machine learning methods (Huang et al. 2018). Hence, we also 

examined the variable importance (measured by the times a variable is used in the BART 

model across trees) to investigate the usefulness of AODs, numerical model simulations 

and total PM2.5 mass in predicting the concentration of the components. Our results 

confirmed that satellite-derived fractional AOD and numerical model simulations play a 

heavy role in predicting the components, especially when collocated PM2.5 level is 

unavailable.  

 

2. Methods 

2.1 Data 

Data in the state of California and the surrounding area from the year 2005 to 2014 were 

used. The daily concentration of PM2.5 species: elemental carbon (EC), organic carbon 

(OC), nitrate (NO3), and sulfate (SO4) are our objectives. The predictors include 

Community Multiscale Air Quality (CMAQ) simulation, satellite-derived fractional 

aerosol optical depth (AOD), meteorological and geographical data. We used the same 

dataset compiled in Geng et al. (2020) and detailed information about data and data 

processing steps can be found in the Appendix.  
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2.2 Modeling 

The BART methodology is based on a sum-of-trees regression model and regularization 

priors on the parameters. Let 𝑌! be the 𝑖th observation and 𝑥! = (𝑥!", … , 𝑥!#)	be the 

corresponding vector of p-many predictors. A BART model with m-many trees can be 

described as: 

𝑌! =*𝑔,𝑥!; 𝑇$ , 𝑀$0 + 𝜖! ,																							𝜖! ∼ 𝑁(0, 𝜎%)
&

$'"

 

where 𝑇$ 	represents the 𝑗th tree that consists of a set of internal nodes of decision rules 

and a set of b-many terminal nodes 𝑀$ = {𝜇"$ , 𝜇%$ , … , 𝜇($}  . The component 

𝜖! 	represents independent mean-zero Normal error with variance 𝜎%. The decision rules 

for each tree are all binary and in the form 𝑥! ≤ 𝑐 or 𝑥! > 𝑐 for a continuous 𝑥!. Each 

unique combination of values in 𝑥! is associated with a terminal node according to the 

sequence of decision rules of that tree. This process of assigning each 𝑥! value at one 

terminal node and assigning it the value 𝜇!$ is represented by function 𝑔(𝑥; 𝑇$ , 𝑀$). Thus 

𝑌 represents the sum of 𝑚 such binary trees. Furthermore, prior distributions over all the 

parameters, (𝑇", 𝑀"), . . . , (𝑇&, 𝑀&), 𝜎 is imposed on the model to allow for parameter 

regularization. We assume the priors of ,𝑇$ , 𝑀$0 are independent of each other and of that 

of 𝜎. The priors of 𝑀$ given 𝑇$ are independent of each other. A commonly used variable 

importance measure in BART is represented by how often a variable is used in all trees. 

The BART model can be fitted in the package BART in R.  

 

We used this model to predict PM2.5 concentrations of elemental carbon (EC), organic 

carbon (OC), sulfate (SO4) and nitrate (NO3). Tuning parameters that control for the 
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number of trees and the depth of the trees are adjusted to achieve the correct coverage 

probability of the 95% posterior prediction intervals for in-sample data. 5-fold cross-

validation and spatial cross-validation are conducted. We are interested in the importance 

of three types of predictors: total PM2.5 mass, CMAQ simulated PM2.5 components, and 

fractional AODs. Models with different set of the above three types of predictors were 

constructed to test the importance of each of them. The analysis of prediction 

performance with and without PM2.5 data is of particular interest because of the potential 

to leverage the larger PM2.5 monitoring network for estimating PM2.5 species. 

 

3. Results 

Table 1 presents the prediction performance of BART in 5-fold ordinary and spatial 

leave-one-monitor-out CV experiments.  For all PM2.5 species, prediction performance is 

poorer for spatial CV compared to 5-fold CV. Based on R2 and RMSE, PM2.5 total mass 

is an important variable for predicting PM2.5 components. By including PM2.5, in both 5-

fold and spatial CV experiments, we see the largest improvement in prediction associated 

with OC and the smallest improvement with SO4. When PM2.5 is included as a predictor, 

5-fold CV R2 decreases in the order of OC, SO4, EC, and NO3; this is likely because both 

OC and SO4 are major constituents of PM2.5 mass. In spatial CV, R2 decreases in the 

order of SO4, OC, NO3, and EC, which can be explained by the higher spatial 

heterogeneity associated with NO3 and EC concentrations.  
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Table 1. 5-fold ordinary and leave-one-monitor-out spatial cross-validation (CV) results 

for evaluating BART prediction performance using tuned parameters, with and without 

PM2.5 total mass in the predictor set.   

1root mean-square prediction error 

2empirical coverage probability of the 95% prediction interval 

 

RMSE and R2 for using default BART settings are given in Supplementary Table S1. We 

found when using the default setting with prior distributions and 200 trees, the models 

showed evidence of overfitting as the 95% prediction intervals have lower coverage 

probability than desired. This under-coverage is likely due to an under-estimation of the 

true residual variability in the model. However, when we reduce the number of trees and 

decrease the depth of trees, we can achieve a better 95% coverage probability, sacrificing 

little R2. In some cases, R2 improves further with tuning, especially in predicting at 

locations without monitors (e.g. spatial CV for NO3). 

 

Figure 1 shows the usefulness of including AOD parameters or CMAQ simulations in the 

set of predictors. In spatial CV, including AOD parameters or CMAQ simulations can 

improve R2, especially when PM2.5 is not included as a predictor. However, including 
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PM2.5 as a predictor results in greater R2 improvement compared to including AOD 

and/or CMAQ. AOD parameters are most useful for predicting NO3 and OC when PM2.5 

is not included as a predictor. Prediction performance for SO4 and EC depend less on the 

inclusion of PM2.5, AOD, and CMAQ compared to other species. Similar observations 

are found for RMSE (Supplementary Figure S2), 5-fold CV experiments (Supplementary 

Figure S3), and BART fitted with default settings. We tuned BART to have the desired 

95% interval coverage for 5-fold CV. The resulting spatial CV predictions all have 

coverage above 90% regardless of the set of predictors used (CMAQ or AOD). However, 

the default BART predictions result in poorer coverage sometimes under 80% 

(Supplementary Figure S4). 

 

 

Figure 1.  R2 of leave-one-monitor-out spatial cross-validation (CV) results comparing 

the inclusion of AOD-only, CMAQ-only, AOD and CMAQ in addition to other 

meteorological and land use variables.  
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Figure 2 describes the importance for AOD parameters in different BART models with 

and without the presence of other predictors. Here variable importance is measured by 

calculating the number of times a variable is used for splitting nodes across MCMC 

iterations. The pattern of variable importance is robust in models with only AOD (red), 

with AOD and CMAQ (green), or with AOD and PM2.5 (blue). However, the relative 

importance of different AOD parameters varies across PM2.5 components. For predicting 

NO3, AOD3 is highly important, followed by MISR total AOD, spherical, and non-

spherical AOD. But for OC, AOD2 is the most important. For SO4, many AOD 

parameters show moderate importance. For EC, none of the AOD parameter shows high 

importance. We note that our AOD predictors are not independent. For example, AOD3 is 

part of total AOD and part of non-spherical AOD. BART is able to handle highly 

correlated predictors because of the sum-of-tree approach. Specifically, the estimation of 

each individual decision tree is based on the model residuals accounting all other trees.  

Hence highly correlated predictors may be less likely to appear across trees.  
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Figure 2. Variable importance of individual AOD fractional components for BART with 

tuned parameters under different predictor sets (with AOD, with AOD and CMAQ, with 

AOD and PM2.5 total mass). All models include meteorology and land use predictors. 

 

Figure 3 describes the importance for CMAQ simulations in different BART models with 

and without the presence of other predictors. Similar to AOD, the pattern of variable 

importance for CMAQ is robust across models. All PM2.5 components depend on CMAQ 

heavily, specifically on the corresponding pollutant (i.e. CMAQ simulation for EC has 
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highest importance for predicting EC concentration).  CMAQNH4 is also predictive of SO4 

and NO3 because ammonium nitrate and ammonium sulfate are major components of 

PM2.5. Generally, including PM2.5 reduces the importance of CMAQ simulations.  

 

When BART is not tuned, variance importance is less distinct across different AOD 

parameters (Supplementary Figure S5) and different CMAQ simulations (Supplementary 

Figure S6), demonstrating that turning BART also results in more interpretable models. 

Finally, supplementary Figure S7 shows the variable importance of all variables in a 

BART model without PM2.5. We observe different meteorological and land use variable 

importance for different PM2.5 constituents. For example, specific humidity is an 

important predictor for SO4 and NO3, while impervious surface is an important predictor 

for EC and OC.  
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Figure 3. Variable importance of individual CMAQ variables for BART with tuned 

parameters under different predictor sets (with CMAQ, with AOD and CMAQ, with 

CMAQ and PM2.5 total mass). All models include meteorology and land use predictors. 

 

4. Discussion 

In this paper, we demonstrate the usefulness of BART for predicting PM2.5 components. 

A national spatial exposure model with partial least squares and universal kriging for 

predicting annual average concentrations of PM2.5 elemental carbon, organic carbon, 
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silicon and sulfur achieved R2 ranging from 0.62 to 0.95 (Bergen et al. 2013). Though 

comparison between national and regional models is challenging. This is because a 

national analysis usually has greater variability in the predictor values, resulting in better 

model. A Random forest model reached a spatial R2 0.62, 0.62, 0.54 and 0.58 for PM2.5 

species sulfate, nitrate, OC and elemental carbon (EC) concentrations using the same 

predictors in spatial CV (Geng et al. 2020). A hybrid prediction model using a chemical 

transport model as well as land use regression at 1 km × 1 km grid cell showed a ten-fold 

CV and leave-one-day-out CV prediction R2 results around 0.70–0.80 for PM2.5 

components sulfate, nitrate, organic carbon, elemental carbon, ammonium, sea salt and 

dust (Di, Koutrakis, and Schwartz 2016).  However, the above methods do not provide 

uncertainty measures that can be subsequently used in health impact and health effect 

analyses. Furthermore, unlike Di et al. (2016), we did not include observed PM2.5 

component as spatial or lagged predictors. While this can result in improved R2 when 

conducting cross-validation analysis, the actual prediction performance will likely depend 

on the spatial location and availability of monitoring data.  

 

One disadvantage of BART is that it is not designed specifically for spatially correlated 

data such as ambient air pollution levels. Although geographic information such as 

latitude and longitude were used as predictors in our model, BART may not capture 

small-scale spatial dependence in the outcome. Hence, it would be interesting to 

incorporate spatially correlated residual into BART and examine the potential 

improvement in its performance. Thus, our future work includes adding spatial extension 

to BART as follows. We allow the residual of model to have two components, a spatially 
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correlated residual that depends solely on the spatial coordinates and an independent 

residual. Let s denote the spatial location of the outcome, our extended BART is shown 

below: 

𝑌!,* =*𝑔,𝑥!; 𝑇$ , 𝑀$0 + 𝜖* + 𝜖! ,																		𝜖! ∼ 𝑁(0, 𝜎%)
&

$'"

 

where ∑ 𝑔,𝑥!; 𝑇$ , 𝑀$0&
$'"  is the same mean structure as in ordinary BART, 𝜖! is the 

independent mean-zero Gaussian residual error that independently and identically follows 

𝑁(0, 𝜎%), and the spatial residual part 𝜖* is a mean-zero Gaussian process with stationary 

and isotropic covariance function Σ. Element Σ+, is determined by a parametric covariance 

function 𝐶(𝑑; 𝜃) where 𝑑 is the Euclidean distance between the locations of observations 

𝑖 and 𝑗. The covariance function 𝐶(𝑑; 𝜃) could be the commonly used squared 

exponential covariance function, the exponential covariance function, or the more general 

Matérn covariance function which has two parameters that include the other two as 

special cases. Estimation can be achieved by modifying the existing MCMC implement 

of BART in C++. Specifically, in each step of the MCMC iteration, we first subtract the 

observed 𝑦! by the spatial residual estimated at that location and then input that into the 

BART model. Model develop and application are currently in progress. 

In conclusion, this study showcases the application of the statistical learning method, 

BART, in modeling ambient air pollution. BART has received increasing attention in 

machine learning because it combines elements of ensemble learning and statistical 

inference. Specifically, BART can provide model-based uncertainties in predictions and 

be flexibly extended to incorporate external information with the use of probabilistic 

distributions on model parameters. Our results also highlight the relative importance of 
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PM2.5, AODs and CMAQ simulations for predicting daily concentrations of PM2.5 

components. 
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Appendix A. Data and Data Processing 

Our study area includes the state of California, as well as an additional 80km buffer as 

shown in Figure S1 (Geng et al. 2020). A 1km x 1km grid was constructed for this region 

for defining various predictors.  

 

 

Figure S1. Locations of PM2.5 monitors. Elevations are shown in the background. This 

figure is produced from Geng et al. (2020). 

 

Daily concentrations of PM2.5 sulfate, nitrate, organic carbon (OC), and EC in the study 

area were obtained from the CSN network (http://aaqsdr1.epa.gov) and the IMPROVE 

network (http://views.cira.colostate.edu/fed) between 2005 and 2014. Overall, there are 

55 PM2.5 monitors in our research region and their locations are shown in Figure 1. 

Following similar data processing steps in Meng et al. (2018), OC and EC measurements 

from CSN were converted to the IMPROVE standards. Each monitor was assigned to a 

1km grid cell. 
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We obtained satellite-derived AOD from Multi-angle Imaging SpectroRadiometer 

(MISR). MISR simultaneously retrieves data from nine different angles, which provides 

data to distinguish the aerosol particles. We downloaded Aerosol Data V23 level 2 for the 

years 2005-2014 from the NASA Earthdata portal (https://search.earthdata.nasa.gov/) 

which contains 74 different aerosol components. In addition, eight tractional AOD 

components (i.e., component 1, 2, 3, 6, 8, 14, 19 and 21) were developed to represent the 

different particle shapes, scattering properties and effective radius for a log-normal 

distribution. We used the following equation to convert any MISR aerosol observation to 

the fractional AOD components: 

AOD i = 
∑ αAODmixture j×Fractioncomponent i in mixture j

74
j=1

Number of successful mixtures  

where AODmixture j is the AOD mixture j; Fractioncomponent i in mixture j is the contribution of 

component i to the AOD for mixture j; if mixture j is retrieved successfully, then α=1, 

otherwise α=0. We also considered different sums of the 8 AOD components for 

absorbing, non-absorbing, spherical and non-spherical particles. The numerical model 

simulations used in this study were based on the Community Multiscale Air Quality 

(CMAQ) model version 2.0.0 which used meteorological conditions from the 

Meteorological Research and Forecast (WRF) model version v3.4. Details of the model 

configuration for WRF and CMAQ can be found in Zhang et al. (2019). The National 

Land Cover Database (NLCD) was used as the input to the WRF model, and the 

Meteorology-Chemistry Interface Processor version 4.1.3 was used to generate the input 

to the atmospheric parameters in CMAQ model. The chemical boundary conditions for 

the CMAQ model were derived from the annual-specific simulation of the global GEOS-
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Chem model. Anthropogenic emissions inputs were based on data from 2005, 2008 and 

2011 National Emissions Inventories.  

 

Daily temperature, wind speed and humidity data for the spatial resolution of 

approximately 13 km were obtained from the North America Land Data Assimilation 

Systems phase 2 (NLDAS-2, http://ldas.gsfc.nasa.gov/nldas/). Meteorological data were 

all averaged between 9:00 am to 12:00 pm and interpolated to the 1km grid cells by 

inverse-distance weighting. Elevation data were based on the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map 

(GDEM) (https://asterweb.jpl.nasa.gov/gdem.asp) version 2. 

 

Data on road networks were obtained from ESRI StreetMap USA (Environmental 

Systems Research Institute, Inc., Redlands, CA). Impervious surface, forest cover, shrub 

cover and cultivated land cover information at 30 m spatial resolution were taken from 

NLCD (https://www.mrlc.gov) for the year 2006 and 2011. Population data at 1 km 

spatial resolution were extracted from the LandScan Global Population Database 

(https://landscan.ornl.gov/). Elevation, impervious surface, forest cover, shrub cover and 

cultivated land cover were averaged while population and road lengths were summed 

within each 1-km grid cell. 
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Appendix B. Supplementary Tables and Figures 

 

 

Table S1. BART performance in default setting 

1root mean-square prediction error 

2empirical coverage probability of the 95% prediction interval 
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Figure S2. RMSE in spatial CV when parameters are tuned 

 

 

Figure S3. R2 in 5fold CV when parameters are tuned 
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Figure S4. 95% coverage probability in spatial CV in default setting 
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Figure S5. AOD component importance in default setting 
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Figure S6. CMAQ component importance in default setting 
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Figure S7. Variable importance when parameters are tuned and PM2.5 is not a predictor 

 

EC


