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Abstract 
 

Defining the clinical and biological relevance of leader and follower cell mutations in collective 
cancer invasion 

 
By Brian Aram Pedro 

 
 
Cancer metastasis, the direct cause of 90% of cancer-related deaths, remains a poorly-understood 
process. Metastatic carcinomas often utilize collective invasion, whereby cohesive packs of cells travel 
through the microenvironment. Furthermore, in vitro studies of lung cancer collective invasion have 
revealed that specialized leader and follower cells cooperate to facilitate the emergence of invasive 
chains, and that follower cells cannot invade in the absence of leaders. However, the biology 
underlying these phenotypes, including the role of gene mutations, has not been fully explored. We 
discovered novel leader-specific and follower-specific gene mutations, including, notably, a leader-
specific mutation in ARP3. Introduction of this mutation into follower cells conferred leader-like 
behavior, including the ability to lead invasive chains, suggesting it could play an important role in 
driving leader cell emergence and behavior.  
 
There is currently a lack of predictive biomarkers for determining high-risk patients in a number of 
cancer types, including lung cancer. Even among patients diagnosed with localized disease, over 40% 
are not expected to survive beyond five years. We thus investigated whether high-risk patients could 
be identified by the presence of mutations within a leader-cell derived cluster of genes on chromosome 
16q. Using cohorts of lung squamous cell carcinoma and lung adenocarcinoma patients from The 
Cancer Genome Atlas, we found poorer survival for 16qMC+ patients; furthermore, this correlation 
was observed among two cohorts of hepatocellular carcinoma patients, another cancer type with high 
rates of metastasis and disease recurrence. 
 
Finally, we combined SaGA with single-cell RNA-sequencing to further dissect the biology of leader 
and follower cells during active collective invasion. We discovered that leader and follower mutational 
profiles are mutually exclusive on the single cell level. These mutations also correlate strongly with 
leader and follower expression markers including MYO10 and IL13RA2, indicating that these 
mutations could be utilized as precise genomic markers for individual leaders and followers. We 
further discovered that leader cells harbor cancer stem cell-like gene expression, and that TGFβ 
signaling may facilitate leader-follower cooperation. Ultimately, these data demonstrate that leader- 
and follower-specific mutations can both elucidate the mechanisms of collective invasion and help to 
better stratifying high-risk cancer patients.    
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Chapter 1: Introduction 

 

1.1. Overview of cancer metastasis 

 

1.1.1. Statistics and clinical implications of cancer metastasis 

Cancer encompasses a diverse array of diseases with different drivers, pathological characteristics and 

clinical courses, but one common thread is the role of metastasis in driving mortality. Metastatic 

disease – defined by the presence of cancer cells that have broken off from the primary tumor, traveled 

to a distant site, and ultimately colonized a secondary tumor – is a hallmark of cancer (4) and is 

responsible for the vast majority of patient deaths across all cancer types. Furthermore, despite its 

crucial role in cancer mortality, the mechanisms of this complex, multi-step process are still poorly 

understood. It is clear, however, that when patients present with metastatic disease, treatment becomes 

increasingly challenging, and overall prognosis drops precipitously (5) (Fig. 1.1).  

 

This is especially evident in lung cancer, which is the second leading most common cancer among 

men and women in the United States, and is responsible for more cancer deaths than colon, breast, 

and prostate cancers combined (5). This is driven by the large proportion (over 50%) of patients who 

already have metastatic disease at the time of diagnosis; among these patients, five-year relative survival 

is a dismal 4.7%, compared with 56% for patients diagnosed with only localized disease (Fig. 1.1). 

Similarly, among patients with liver cancer, for the 18% who are diagnosed with metastatic disease, 

five-year relative survival is just 2.4%, compared with 32.6% for those with localized disease (2). 

 

Even among patients who are diagnosed with earlier stage cancer that has yet to metastasize, those 

with certain cancers including lung and liver cancer remain at high risk for subsequently developing  
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Figure 1.1. Lung cancer survival statistics. Percentages of lung cancer cases by stage at 
diagnosis, and % five-year survival for each group. Adapted from data from the National Cancer 
Institute Surveillance, Epidemiology and End Results (SEER) program (2).  
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metastatic disease. For lung cancer, five-year survival for patients with localized disease is 57.4%, 

indicating significant mortality among this group (Fig. 1.1). This suggests that certain patients are at 

higher risk for disease progression and metastasis; however, there remain few options for identifying 

those higher-risk patient groups at the time of diagnosis. For patients with non-small cell lung cancer 

(NSCLC), of which squamous cell carcinoma (LUSC) and adenocarcinoma (LUAD) are the major 

subtypes, those diagnosed at stage I (i.e. localized disease) are typically treated with surgery, and if 

removal is deemed complete, are moved onto an every-six-month screening regimen without further 

treatment (6). There are no clinically actionable biomarkers to indicate which early-stage patients are 

at higher risk for disease recurrence and should therefore be treated with adjuvant chemotherapy, 

targeted therapy, or radiotherapy in addition to surgical removal (6). Thus, in order to develop markers 

that could better stratify high-risk patients, deeper knowledge of the mechanisms of metastasis is 

essential. 
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1.1.2. Steps of the metastatic cascade 

For cancer cells to metastasize, they must carry out a complex series of events, each of which presents 

unique challenges (Fig. 1.2). Following invasion away from the primary tumor site, cancer cells must 

intravasate into either the bloodstream (hematogenous route) or the lymphatic system (7). Cells 

disseminating via the hematogenous route then extravasate out of the bloodstream at a secondary 

organ site, and must survive and ultimately proliferate there to form a secondary tumor (7). Tumor 

cells in the lymphatic system can form secondary tumors within lymph nodes and subsequently 

metastasize to distant organs. Through either route, there are substantial obstacles that must be 

overcome for cancer cells to metastasize successfully. In order to invade, cells must be able to break 

away from the primary tumor, break down the surrounding extracellular matrix, and migrate through 

it. This shift to a more motile phenotype has been well-characterized in the context of epithelial-to-

mesenchymal transition (EMT), in which epithelial-derived cancer cells alter the expression of certain 

genes, including downregulation of E-cadherin and upregulation of N-cadherin, vimentin, and 

fibronectin (8, 9). To survive after intravasation into the bloodstream, cancer cells must be resistant 

to anoikis, or detachment-induced apoptosis observed in normal cells (7). After extravasation at the 

secondary site, cells must survive and subsequently proliferate to form a secondary tumor. Because of 

the complexity and inefficiency of this process, the vast minority (less than 1%, perhaps as low as 

0.02%) of cells successfully form metastases after entering the bloodstream (7). The capacity to survive 

in low numbers and initiate a secondary tumor is often considered a stem cell-like property that would 

only be present in a small subset of the tumor population.  

 

1.1.3. Single and collective cell migration and invasion 

The majority of research into cancer cell migration and invasion has focused on single-cell 

mechanisms. In the traditional EMT model, a single call can transition from a non-motile epithelial  
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   Figure 1.2. Steps of the metastatic cascade. Taken from (1). Schematic of the metastatic cascade 

from primary tumor to secondary site, with cells of different phenotypes and genotypes 
cooperating to carry out different individual steps.  
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phenotype to a mesenchymal morphology with the ability to invade and travel through the 

microenvironment (8, 9). This is accomplished by downregulation of E-cadherin, resulting in 

dissolution of cell-cell junctions, and increased expression of proteins such as N-cadherin that allow 

for enhanced cell-matrix interactions (8, 9). Upon reaching the secondary site, cells can undergo the 

reverse process, or mesenchymal to epithelial transition (MET), to shift back to a proliferative 

phenotype. Alternatively, single cells can take on an amoeboid morphology, which also lacks cell-cell 

junctions but is more reliant on actomyosin dynamics for movement rather than cell-matrix 

interactions (10).  However, recent research has focused on the importance of heterogeneous packs 

of collectively invading and migrating cancer cells, which could cooperate and confer distinct 

advantages at each point throughout the process (11-13). Furthermore, studies have shown that 

groups of multiple cells are more successful in ultimately forming metastases than cells that travel 

alone, further highlighting the clinical importance of collective invasion (14). 

 

Although only recently linked to cancer invasion, the concept of leader and follower cells in collective 

migration is well-described in human biology, including during development, wound healing, and 

sprouting angiogenesis (15). During angiogenesis, tip cells travel ahead and signal to stalk cells that 

travel behind during the formation of new blood vessels. Tip cells typically express VEGFR2 and 

respond to gradients of VEGFA during angiogenesis, maintaining their phenotype and leading to 

secretion of the Notch ligands DLL4 and JAG1; stalk cells, which express Notch, receive these signals 

from tip cells, thus stabilizing their stalk cell phenotype (15). Maintenance of these roles is crucial for 

successful angiogenic sprouting, as tip cells are uniquely able to interact with the extracellular matrix 

(ECM) while stalk cells are needed to form a new basement membrane (15). Similarly, during 

embryonic development, neural crest cells migrate together in cellular streams, ultimately giving rise 

to skull bone, facial muscles and nervous tissue, among other structures (16). Much like invasive cancer 



 
 

 

7 

cells, induction of neural crest collective migration depends upon signaling pathway associated with 

EMT, resulting in decreased cell-cell adhesion and increased motility (16). In cancer, these signaling 

pathways that govern these fundamental biological processes are often “hijacked,” allowing cancer 

cells to become motile to escape pressures such as hypoxia and lack of nutrients. For example, VEGF 

and Notch have been implicated in lung cancer collective invasion (3), leading to distinct leader and 

follower phenotypes that cooperate similarly to tip cells and stalk cells during angiogenesis. 

 

Further bolstering the evidence for collective invasion as a major mode of cancer metastasis are studies 

showing that metastatic tumors in mice arise from multicellular seeds, rather than seeding of single 

cells, and that cells aggregated into clusters more successfully form metastatic tumors than a single-

cell suspension (14, 17). This is important, because it underlines the importance of understanding and 

ultimately therapeutically targeting collective invasion; although some cancer cells may indeed invade 

as single cells, they are less likely to succeed in seeding secondary tumors. Collective packs of cells, 

while more rarely found in the circulation than single circulating tumor cells (CTCs), may more readily 

result in metastatic tumor formation, and should thus be preferentially targeted when considering anti-

metastatic therapy (14, 17). 
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1.2. Overview of tumor heterogeneity 

 

1.2.1. Clonal evolution of tumor subpopulations 

The concept that individual tumors could be genetically distinct from one another originated decades 

ago (18), and with continued advancement in sequencing technologies, it has become evident that 

there is heterogeneity between cancer types, within cancer types, and even within subpopulations of 

individual tumors (19). This heterogeneity is driven by differential epigenetic regulation, gene 

expression, and most notably, somatic gene mutations. In a Darwinian evolution model, one of the 

earliest and most common hypotheses for tumor clonal development (20), internal and external 

selection pressures result in the clonal expansion of tumor cells that have gained certain advantages 

through spontaneous somatic mutations. These internal pressures can include hypoxia or immune 

system targeting, while external pressures include cytotoxic chemotherapy, and more recently, targeted 

therapies or immunotherapies. Cells that have become altered, likely through gene mutations, to 

acquire survival advantages in the face of these pressures are ultimately able to proliferate while other 

cells are killed or undergo apoptosis. 

 

Tumors with increased genomic instability are more prone to spontaneous mutations, including 

chromosomal duplications, deletions, and fusions, as well as point mutations (19). In certain cancer 

types, including lung, greater genomic instability results in larger somatic mutational burdens (21); this 

presents unique problems for targeted therapy and treatment resistance, as cells in these tumors are 

more readily able to acquire resistance-conferring mutations and thus recur as a tumor that is more 

difficult to target. This is evident in EGFR-targeted therapies, which have recently become widely 

used in non-small cell lung cancer (22). EGFR activating mutations are among the most common 

drivers in NSCLC, and EGFR-tyrosine kinase inhibitors (TKIs) have become first-line treatment for 
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these patients (6, 22, 23). However, resistance to these therapies can be acquired when cells gain 

additional EGFR mutations, including T790M which occurs in 50% of patients with disease 

progression after EGFR-TKI therapy (22, 23). Patients can be treated with a third-generation EGFR-

TKI, osimertinib, that selectively targets EGFR-T790M; however, resistance to osimertinib can also 

arise through alternative EGFR mutations or activation of additional TKIs (23). Thus, while improved 

sequencing technology has helped to illuminate the extent of genetic heterogeneity within tumor 

populations, and has allowed for the development of novel targeted therapies, it has also become clear 

that the mutational mechanisms leading to this heterogeneity also present a unique challenge to the 

success of targeted therapy. 

 

1.2.2. Phenotypic heterogeneity in cancer and the SaGA platform 

Tumor heterogeneity is most commonly described in terms of genetic differences between and within 

tumors. However, it is equally as important to consider the varying phenotypes that result from these 

genetic alterations, especially in the context of the metastatic cascade. Acquiring the ability to invade 

and metastasize is a well-characterized hallmark of cancer (4), and recent studies have shown that cells 

with different specialized phenotypes can work together to carry out this complex, multi-step process 

(3, 11, 24). This includes collective invasion, the major mode of invasion displayed by carcinomas, 

which has been shown to include phenotypically distinct leader and follower cells (3, 11, 24).  

 

In order to isolate and further study these cells, we previously developed the SaGA (Spatiotemporal 

Genomic and Cellular Analysis) platform (3) (Fig. 1.3). Through photoconversion of the Dendra2 

protein from green to red fluorescence, SaGA enables precise optical highlighting of any single cell, 

or group of cells, which can then be isolated via fluorescence-activated cell sorting (FACS). This 

platform is particularly useful for the isolation of phenotypically rare cells within a population, as they  
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Figure 1.3. Overview of the SaGA platform. Taken from (3). Spheroids comprised of 
approximately 3,000 Dendra2-expressing cells are embedded in Matrigel and allowed to invade for 
24 hours. Dendra2 is selectively photoconverted to red fluorescence in user-defined leader or 
follower cells via 405nm laser, followed by matrix degradation and separation of photoconverted 
cells via FACS.  
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can be selected and expanded to produce purified populations. This allows for detailed 

experimentation and characterization of these rare cells that would otherwise not be feasible. We 

previously used SaGA to isolate, culture and analyze leader and follower cells from collectively 

invading H1299 NSCLC cells (Fig. 1.3). This analysis demonstrated that leader cells maintain a highly 

invasive phenotype with the unique ability to pioneer invasive chains away from a primary tumor (or 

spheroid) and through the microenvironment; meanwhile, the bulk of these collective chains are 

comprised of follower cells, which are poorly invasive unless leader cells are present (3). Thus, while 

invasion and metastasis may be hallmarks of cancer, it seems that there are subpopulations of cells 

that acquire the ability to carry out different components of this process. This is likely due to the 

differing selection pressures that arise throughout the metastatic cascade (Fig. 1.2); as previously 

discussed, metastatic cancer cells must be able to invade and migrate through the tissue 

microenvironment, intravasate to enter the bloodstream or lymphatic system, resist anoikis, eventually 

extravasate at a secondary site, and ultimately colonize a metastatic tumor (7, 25). These requirements 

specifically select for cells that have acquired abnormal phenotypes, either through mutations or other 

means such as epigenetic modifications; thus, the phenotypic heterogeneity that exists within a tumor 

population increases the chances of success at each step along the process (26) (Fig. 1.2). 

 

Given the cooperation between phenotypically and genetically distinct cells during metastasis, it is 

inherently difficult to develop a single targeted anti-metastatic therapy. As there is no single cell type 

or genetic marker solely responsible for carrying out metastasis, any successful therapeutic would have 

to cover multiple targets at once. Further taking into account inter-tumor heterogeneity, with countless 

genetic events likely producing similar phenotypes in different tumors, highlights the necessity of 

personalized, precision medicine approaches to identify targetable markers for individual patients. 

SaGA enables precise correlation between cells’ metastatic phenotypes and genomic profile, thus 
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providing a potential avenue toward development of personalized, anti-metastatic therapeutics (Fig. 

1.3).  
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1.2.3. Leader-follower dynamics in cancer cell invasion 

SaGA, in addition to enabling analysis of isolated leader and follower cell populations, has also 

elucidated the deep complexity of leader-follower interactions during collective invasion and 

confirmed the difficulty of therapeutically targeting leader cells. Genomic profiling of leader and 

follower populations has revealed vastly different gene expression profiles as well as epigenetic profiles 

between the two populations; leader-follower cooperative signaling appears to function at least in part 

through modified vascular signaling, and the leader cell phenotype is driven by a combination of 

hypermethylation and upregulation of certain metastasis-promoting genes such as MYO10 and JAG1 

(3, 27). Given the particular importance of leaders in the formation of invasive chains (3), therapeutic 

inhibition of collective invasion would ideally be targeted to leader cells. However, lung cancer leader 

cells have also been shown to be highly resistant when treated with established chemotherapeutics and 

other small molecule inhibitors (28), meaning new strategies for targeting leader cells are needed. To 

accomplish this, it is crucial to establish the biological drivers for leader cell behavior, including 

invasion, motility, and communication with followers.  

 

Numerous drivers, across multiple cancer types, have been implicated in leader cell motility. Reported 

leader cell driver genes include keratin-14, a basal epithelial gene, in breast and ovarian cancer (11, 14, 

29); cathepsin B, a matrix protease, in salivary carcinoma (30), and VEGFA in non-small cell lung 

cancer (3). However, there are currently no consensus leader cell drivers identified between or even 

within cancer types. Thus, in order to develop targeted therapeutics for patients, it may be necessary 

to use technology that can rapidly isolate and genomically profile leader cells from an individual tumor. 

While this type of rapid precision medicine is not likely achievable with current techniques, it is 

important to continue expanding technologies such as the SaGA platform, both to refine the 



 
 

 

14 

techniques as well as continue building a database of leader and follower cell drivers from different 

cancer types and cell lines. 

 

It remains to be determined whether leader and follower cells have important roles in the metastatic 

process subsequent to collective invasion, including secondary tumor formation. As some of the 

pathways expressed in leader cells are also implicated in cancer stem cells (CSCs), including 

JAG1/Notch and VEGF signaling (31), it is possible that leader cells could also include a CSC-like 

population that ultimately gives rise to eventual metastatic tumors. Expression of another CSC marker, 

CD44, has been shown to induce leader cell emergence in breast cancer (32), but leader cells have not 

been widely implicated as CSCs in lung cancer or other cancer types.  
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1.3. Dissertation goals 

The work described in this dissertation is a multi-layered exploration into the ways that phenotype-

specific gene mutations can broaden our understanding of leader and follower cell biology in collective 

invasion. Prior to this dissertation work, the SaGA platform provided a novel method for isolating 

leader and follower cells, and initial genetic and phenotypic studies had been performed on the two 

populations. However, these initial studies also made clear that the biological drivers behind these cell 

types were complex and would require further analysis to tease apart. Thus, the studies described here 

began with an intriguing discovery – leader and follower cell populations, both derived from the 

H1299 non-small cell lung cancer cell line, each harbored certain gene mutations that were present in 

one population but not the other. This was surprising, as it is typically assumed that cells from a single 

cell line would represent a clonal population with the same mutation profile. However, given this 

finding, subsequent studies sought to determine how these mutations could give new insights into the 

mechanisms of leader and follower cell behavior.  

 

Chapter one focuses on determining whether these mutations could be directly involved in driving 

the invasive leader cell phenotype, by introducing one of the leader-specific mutations, ARP3 K240R, 

into follower cells and measuring whether it results in leader-like behavior. In chapter two, the clinical 

utility of these leader-specific mutations is explored, using publicly available lung and liver cancer 

patient cohorts from The Cancer Genome Atlas (TCGA) to measure whether patients with a certain 

subset of leader-specific mutations, interestingly all located on a single chromosome arm, experienced 

poorer survival. Given the high rates of recurrence and metastasis, and poor survival rates of these 

two cancer types, this work aims to identify a new strategy for identifying higher-risk patients. Finally, 

chapter 3 combines the SaGA platform with single-cell RNA-sequencing (scRNA-seq) to dissect 

H1299 leader and follower cell biology on the single-cell level. Utilizing the previously-identified 
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leader- and follower-specific mutations as precise genomic markers for each single cell allows for 

robust characterization of these cell types, revealing new insights including TGFβ crosstalk and a 

potential role for leaders as a tumor-initiating population.  

 

Taken together, these data aim to deepen our understanding of leader and follower cell cooperation 

during collective invasion, by leveraging the finding of novel leader- and follower-specific mutations 

to 1) manipulate leader and follower cell phenotypes, 2) develop a clinical tool for identifying higher-

risk lung and liver cancer patients, and 3) create precise genomic markers for leaders and followers 

that enable detailed single-cell analysis of their underlying biology. 
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Chapter 2: Genetic heterogeneity within collective invasion packs drives leader and follower 
cell phenotypes 
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Abstract 

Collective invasion, the coordinated movement of cohesive packs of cells, has become recognized as 

a major mode of metastasis for solid tumors. These packs are phenotypically heterogeneous and 

include specialized cells that lead the invasive pack and others that follow behind. To better understand 

how these unique cell types cooperate to facilitate collective invasion, we analyzed transcriptomic 

sequence variation between leader and follower populations isolated from the H1299 non-small cell 

lung cancer cell line using an image-guided selection technique. We now identify 14 expressed 

mutations that are selectively enriched in leader or follower cells, suggesting a novel link between 

genomic and phenotypic heterogeneity within a collectively invading tumor cell population. Functional 

characterization of a leader-specific candidate mutation showed that ARP3 enhances collective 

invasion by promoting the leader cell phenotype. These results demonstrate an important role for 

distinct genetic variants in establishing leader and follower phenotypes. 
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2.1. Introduction 

Metastatic disease is the cause of 90% of deaths among cancer patients (33). In non-small cell lung 

cancer (NSCLC), which comprises 80-85% of all lung cancer diagnoses, metastases are commonly 

observed in the bones, lungs, brain, liver, and adrenal glands. Patients presenting with metastatic 

disease have significantly worse prognoses than those with early-stage disease; for example, the 5-year 

survival rate for stage I NSCLC is 55%, while stage IV disease (in which distant metastases are present) 

carries a mere 4% five-year survival rate (5). Successful colonization of distant sites requires that cells 

from the primary tumor gain the capacity to invade through the surrounding basement membrane, 

travel through the bloodstream or lymphatic system, and ultimately expand to establish colonies at the 

metastatic site (26, 34). 

 

Cells migrate through the microenvironment via multiple mechanisms. A classic example is the 

epithelial-to-mesenchymal transition, where cells lose expression of epithelial features such as E-

cadherin and gain expression of mesenchymal proteins including vimentin and N-cadherin. This shift 

is thought to promote cellular detachment and enable cancer cells to undergo single-cell invasion. In 

contrast, collective cell migration refers to the coordinated movement of a group of cohesive cells 

(15). This phenomenon is well-described in embryonic development and wound healing, and 

histological evidence from primary patient tumor samples (11, 24, 35-37), mouse models of metastasis 

(12, 13), and 3-D cultures (3, 11, 38-41) suggest that cells from solid tumors often migrate and invade 

in cohesive packs as well. These collective invasion packs and streams vary in width, shape, and cell 

number, as well as in the mechanisms guiding their movement (42-48). 

 

Understanding the mechanisms that underlie the outgrowth of metastatic clones is further 

complicated by the heterogeneous mix of cell populations within each tumor. This intratumor 
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heterogeneity arises from cell-to-cell variation in the genetic background each expanding to create a 

unique subclonal population (19). Superimposed upon this subclonal genomic heterogeneity is the 

potential for epigenetic heterogeneity reflected in variations in gene expression even among genetically 

identical cells. Recently, multiregional sequencing of primary lung tumors characterized the intratumor 

heterogeneity of NSCLC and showed that upwards of 24% to 30% of mutations went undetected in 

at least one sampling region, demonstrating that almost a third of mutations are occurring in spatially 

distinct subclonal populations and may have been missed in broad scale data based on single sampling, 

such as those analyzed as part of the TCGA project (49, 50). These unique subpopulations may be 

endowed with properties that enhance attributes beneficial to tumor cells, such as resistance to drug 

therapy or the ability to invade and metastasize (51-54).  For instance, the clonal profile of metastatic 

disease often does not reflect the profile of the primary tumor, but instead includes one or just a few 

subpopulations from the primary site (14, 53, 55, 56). 

 

One example of phenotypic heterogeneity associated with invasive behavior includes rare, specialized 

leader cells that lead collective invasive packs, and follower cells that adhere to and follow behind the 

leaders, both of which cooperate to achieve collective invasion (3, 11, 24, 48, 57). We developed a 

novel platform (Spatiotemporal Genomic and Cellular Analysis, or SaGA) to isolate specific leader 

and follower cell populations from collectively invading NSCLC cells (3). Characterization of these 

cell types revealed that isolated follower cells are highly proliferative but poorly invasive, while isolated 

leader cells are highly invasive, but poorly proliferative (3). These cellular sub-types cooperate through 

an atypical angiogenic signaling pathway that is dependent upon VEGF. Previous data suggest a 

symbiotic relationship, in which both leader and follower cells are necessary for collective invasion to 

proceed successfully; however, key questions remain as to what drives the biology and emergence of 

leader and follower cells from a tumor cell population.  
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In this study, we aimed to elucidate the role of genetic heterogeneity on collective invasion. We 

analyzed invading leader and follower populations arising from a common H1299 parental NSCLC 

cell line grown as 3-D spheroids. Strikingly, this revealed mutational landscapes that differ significantly 

between leader and follower cells, including several expressed mutations that were found exclusively 

in one cell type or the other. To our knowledge this is the first identification of leader- and follower-

specific gene mutations within the same collectively invading tumor cell population.  
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2.2. Materials and Methods 

 

Cell lines and transfections: 

Leader and follower cells isolated via the SaGA technique from the H1299 human NSCLC cell line 

(3), as well as the parental H1299 cell line (ATCC, Manassas, VA), were cultured in RPMI-1640 media 

supplemented with 10% fetal bovine serum and 100 units mL-1 of penicillin/streptomycin and 

maintained at 37°C and 5% CO2. H1299 cells were mycoplasma tested and authenticated using single 

nucleotide polymorphism analysis through the Emory Genomics Core as previously described (3). 

H1299 cells had been transfected with the Dendra2 as previously described (3). 293T cells were 

maintained in Dulbecco’s Modified Eagle’s Media (DMEM) supplemented with 10% fetal bovine 

serum and 100 units mL-1 of penicillin/streptomycin at 37C and 5% CO2. 

 

For ARP3 lines, lentivirus was prepared by seeding 2x106 HEK293T cells in a 100 cm dish and co-

transfecting with 5 µg transfer vector, 0.5 µg pMD2.G (Plasmid #12259, Addgene), 5 µg psPAX2 

(Plasmid #12260, Addgene), and 1 µg of lentiviral vector. After 24 hours, media was replaced with 5 

mL fresh complete media, then virus-containing media was collected after 24 hours. Media was 

centrifuged for 3 minutes at 1000 rpm, 4°C, and then supernatant was filtered through a 0.45 µm low 

protein-binding filter. Target cells were seeded at 70% confluence in a 6-well plate one day prior to 

lentivirus collection. After virus collection, target cell media was replaced with 1 mL complete media 

plus 340 µL virus stock and 1.34 µL polybrene (10 mg mL-1 stock), added dropwise. After 24 hours, 

media was replaced with 2 mL complete media. Selection antibiotics (shRNA: puromycin; ARP3 

expression vectors: hygromycin) were added 48 hours after viral infection. 
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shACTR3 constructs were obtained from Millipore Sigma TRCN0000029383 and TRCN0000380403. 

mCherry-ARP3 lentiviral constructs were created by cloning ARP3-pmCherryC1 (a gift from Christien 

Merrifield; Addgene plasmid # 27682 (Taylor et al., 2011)) into the pCDH-UBC-MCS-EF1 Hygro 

backbone. The UBC promoter was subsequently exchanged for a CMV promoter. The ARP3 K240R 

mutation was created using site-directed mutagenesis. 

 

RNA-sequencing and variant calling: 

RNA-sequencing was performed in triplicate on H1299 parental, leader and follower cells. For 

parental cells, three different passages were used. For follower cells, three separately-isolated 

populations were used. For leader cells, two separately-isolated populations were used: one passage of 

one population, and two passages of the other. RNA library preparation and sequencing were carried 

out by the Emory Integrated Genomics core and Omega Bio-Tek, Inc. using the TruSeq Stranded 

mRNA kit, followed by quantification using a Quantus Fluoremeter (Promega, Madison, WI, USA) 

and integrity assessment using an Agilent 2200 Tapestation instrument. Sequencing was performed 

using a HiSeq2500 instrument (Illumina, Inc., San Diego, CA, USA), with 50M total sequencing reads 

generated per sample using the PE100 run format.  

 

Data processing and statistical analyses were performed by the Emory Biostatistics and Bioinformatics 

Shared Resource. Raw paired-end fastq reads were assessed for quality and contamination using 

FastQC (Andrews, 2010) and trimmed with Trimmomatic v0.32 (58). Quality filtered reads were 

mapped against human reference genome hg19 using STAR aligner v2.3.0 (59). Picard tools v1.111 

(http://broadinstitute.github.io/picard) was used to assess post-alignment QC and to remove PCR 

duplicates. With an average yield of 30M post-filtered reads, 88% of the reads mapped uniquely with 

78% of reads covered in the coding and UTR region. Genomic variants from RNA-seq were called 
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using SamTools v0.1.19 mpileup (60) with Varscan v2.3.6 (61) and functionally annotated using 

ANNOVAR (62). A filtering criterion was applied requiring that reported variant had ≥ 6X read depth 

coverage, ≥2X supporting alternate reads in all samples. Variants associated with intronic, intergenic 

or synonymous changes, pseudo genes, non-coding RNAs, or sex chromosomes were excluded. 

Variants were filtered if they were known in dbSNP but not present in COSMIC database. This 

resulted in a total of 6240 variants. A pairwise two-sided independent t-test was done to compare cell 

populations mean variant allele frequencies between the groups. 

 

Western blotting: 

Total cellular protein expression was assessed via Western blotting as previously described (63).  

 

Reagents and antibodies: 

Primary antibodies for Western blot: ARP3 antibody (Santa Cruz, cat. no. sc-48344 – immunogen: 

residues 1-110 of human ARP3) was used at 1:1000. GAPDH antibody (Cell Signaling, cat. no. 2118) 

was used at 1:30,000. Beta-tubulin antibody was used (Sigma, cat. no. T4026) at 1:5000. Horseradish 

peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch) were used at 1:10,000 for 

Western blot. 

 

3-D invasion assays, spheroid microscopy and image analysis: 

Spheroids were generated as previously described (63) and embedded in 2 mg mL-1 Matrigel (BD 

Biosciences) diluted in complete media. Images were taken at 0, 24, and in some cases 48 hours post-

embedding at 4x using either an Olympus IX51 or CKX41 microscope.  
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For mixed spheroid experiments, cells were plated together in low-adhesion wells in the indicated 

ratios with 3000 total cells per spheroid and embedded as previously described. After 24 hours, 

spheroids were imaged using a Leica SP8 inverted confocal microscope. Invasive area and spheroid 

circularity were measured using ImageJ as previously described (3). 

 

Target validation: 

DNA and RNA were isolated from H1299 parental, leader and follower cells using DNeasy Blood & 

Tissue Kit and the RNeasy Mini Kit (Qiagen Sciences, Germantown, MD, USA), respectively. 

Isolation of samples occurred in two independent biological replicates. RNA was reverse transcribed 

with M-MLV Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) top generate cDNA. Primers 

were designed and used to amplify regions surrounding each locus of interest subject to Sanger 

sequencing at GENEWIZ (South Plainfield, NJ, USA). Primer sequences are listed in Table S2.1.  

PCR products were cloned into the pCR4-TOPO TA vector by TOPO-TA cloning (ThermoFisher 

Scientific 450071, Carlsbad, CA, USA) and transformed into bacteria. Fifty individual colonies for 

each gene in each cell type were and re-streaked on a new ampicillin plate, and twenty colonies each 

sent to GENEWIZ for Sanger sequencing.  

 

Cell proliferation assay: 

H1299 cells expressing constructs for either overexpression or knockdown of ARP3 were seeded at 

1x103 cells per well in six wells each of a 96 well plate. After 24-120hr growth, cells were fixed with 

100µL per well cold 10% trichloroacetic acid for 1 hr at 4°C, washed three times in water, and air 

dried. Cells were then stained with 100µL 0.4% sulforhodamine B in 1% acetic acid for 30 minutes, 

washed three times in 1% acetic acid, and dried. Dye was reconstituted in 200 µL 10 mM Tris base 
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(pH 10.5) for 30 min. Optical density (OD) at 510 nm was measured, and the fold-change in OD 

determined as: (ODX hours) / (OD24 hours).  

 

Targeted deep resequencing and analysis: 

Targeted region of KDM5B surrounding exon 15 was PCR amplified using primer sequences listed 

in Table S1. Amplified products were purified by SPRI beads (KAPA Biosystems, Cape Town, South 

Africa). Libraries were then created with custom TruSeq compatible adapters and KAPA Hyper Prep 

Kit (KAPA Biosystems, Cape Town, South Africa). Quality for each library was checked using an 

Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Libraries were sequence on an 

Illumina HiSeq 4000 (Illumina, Inc., San Diego, CA, USA) using 150 bp paired-end sequencing at 

NYU Genome Technology Center. Quality trimmed reads were mapped to the human genome 

(GRCh37) using Bowtie 2 (64). Variant allele frequencies for the KDM5B SNP (rs1141108) and the 

linked KDM5B L685W mutation were quantified as the fraction of reads (average depth= 348,327 

reads per line) exhibiting the A or G allele at position chr1: 202715284 or the A or C variant at position 

chr1:202715414 using R packages Rsamtools, ShortRead, GenomicAlignments, and 

BSgenome.Hsapiens.UCSC.hg19 (65-69). Differences in KDM5B variant allele frequencies were 

based on analysis of variance with Tukey’s post-hoc correction using the R functions ‘aov’ and 

‘TukeyHSD’, respectively.  

 

Statistical analysis: 

Two-tailed, unpaired Student’s t-test was used to assess statistical significance between any two 

conditions. Ordinary one-way ANOVA with Tukey’s multiple comparisons test was used for 

experiments in which three or more conditions were being compared. Confidence intervals of 

proportions in the mixed spheroid experiments were calculated via the Wilson/Brown method. 
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Fisher’s exact test was used to test the association of the identified mutations and the phenotypes (e.g. 

mutant vs. wild-type, leader versus follower) in TOPO-TA cloning experiments.  
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2.3. Results 

 

Leader and follower cell populations contain distinct mutational profiles. 

We previously developed the SaGA technique for isolation of leader and follower cells from 

collectively invading packs of human NSCLC cancer cells (3). Briefly, cells expressing Dendra2 green-

to-red photoconvertible fluorescent protein are formed into multicellular spheroids, embedded in 

Matrigel and allowed to invade for 24 hours. Leader or follower cells are then selected based upon 

physical positioning within invasive chains, optically highlighted by photoconversion using a 405nm 

laser, and separated by fluorescence-activated cell sorting (FACS) (Fig. 2.1A). Using this approach, we 

isolated three follower populations and two leader populations from H1299 parental cells. Following 

expansion of each population in 2-D culture, RNA-seq was performed in triplicate, using three 

separate passages of parental H1299 cells, the three separately isolated populations of follower cells, 

and the two separately isolated populations of leader cells (including two passages of one of the leader 

populations). Sequence variants were determined for each population (leader, follower, parental) 

independently by mapping the RNA-seq profiles to human reference genome Hg19 (GRCh37), 

resulting in a total of 6240 filtered variants combined in the three populations (see Methods for 

details). Notably, when comparing variant allele frequencies (VAF) via pairwise t-test analysis, a 

number of variants were disproportionately present in the leader versus follower populations. We 

therefore further filtered for those variants that exhibited >20% VAF in either leaders or the followers 

and <1% in the other (VAF student’s t-test p-value <0.01 between leaders and followers). For the 

purposes of this study, we further excluded those located in 5’ or 3’ UTRs and known SNPs. 

Application of these criteria identified fourteen missense mutations – six leader-specific and eight 

follower-specific (Table 2.1). This represents the first identification of leader- and follower-specific 

mutations within the collective invasion pack. 



 
 

 

30 

Table 2.1. RNA-seq reveals leader- and follower-specific gene mutations 

 Gene 
symbol Full name Protein 

Function 
Variant locus 

(GRCh37) 
VAF (%) 

Parental Leaders Followers 
Leader–
enriched ACTR3 

Actin-related 
protein 3 
(ARP3) 

Major 
component of 
Arp2/3 
complex 

chr2:114699797; 
A:G 8.76 23.4 0.08 

MCM5 

Minichromos
ome 
maintenance 
complex 
component 5 

Pre-
replication 
complex 
during DNA 
replication 

chr22:35809920; 
G:A 7.59 26.9 0.14 

MIPEP 
Mitochondrial 
intermediate 
peptidase 

Oxidative 
phosphorylati
on protein 
maturation 

chr13:24413837; 
A:C 7.75 37.2 0.98 

NAE1 

NEDD8 
activating 
enzyme E1 
subunit 1 

Activation of 
neddylation 
pathway 

chr16:66852492; 
T:C 26.2 58.9 0.13 

NUP93 Nucleoporin 
93 

Component 
of nuclear 
pore complex 

chr16:56868312; 
G:A 25.9 57.8 0.29 

ZNF302 Zinc finger 
protein 302 

Function has 
yet to be 
determined 

chr19:35175335; 
G:C 4.71 34.6 0.47 

Follower–
enriched CLEC11

A 

C-type lectin 
domain family 
11, member A 

Growth factor 
for 
hematopoietic 
progenitor 
cells 

chr19:51228679; 
C:G 8.42 0 22.4 

KDM5B 
Lysine 
Demethylase 
5B 

Demethylates 
lysine 4 of 
histone H3 

chr1:202715414; 
A:C 17.5 0.74 28.1 

NDUFS1 

NADH:Ubiqu
inone 
oxidoreductas
e core subunit 
S1 

Core subunit 
of electron 
transport 
chain 
Complex I 

chr2:207012514; 
C:A 10.4 0.28 22.8 

RERE 

Arginine-
glutamate 
dipeptide 
repeats 

Possible role 
in controlling 
cell survival 

chr1:8416225; 
G:C 38.7 0 65.4 

RNF115 Ring finger 
protein 115 

E3 ubiquitin 
ligase 

chr1:145686997; 
T:C 14.7 0.27 21.9 

SKA1 

Spindle and 
kinetochore 
associated 
complex 
subunit 1 

Chromosome 
segregation 
during mitosis 

chr18:47902232; 
C:G 13.0 0 21.6 

TBP 
TATA-Box 
binding 
protein 

Involved in 
transcription 
initiation by 
RNA pol. II 

chr6:170871308; 
G:T 12.4 0.36 21.7 
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Figure 2.1. ARP3 K240R is a validated mutation in H1299 leader and follower cells. (A) 
Schematic of the SaGA protocol used to isolate leader and follower cell populations. (B) 
Variant allele frequencies for ACTR3 from RNA-sequencing of H1299 parental (P), leader 
(L) and follower (F) cells. n=3 separate populations per group. (C) TOPO-TA cloning and 
subsequent Sanger sequencing confirms the presence of ACTR3 K240R mutation in both 
cDNA and genomic DNA (gDNA) from parental, leader and follower cells, respectively. 
n=20 colonies (parental, follower gDNA and parental, leader cDNA); 19 colonies (leader 
gDNA); 18 colonies (follower cDNA) (association between the genotype and cell phenotype 
was determined by Fisher’s exact test as follows: mutant vs. wild-type, leader versus follower 
ARP3 gDNA p=0.008, ARP3 cDNA p=0.11. (D) Relative mRNA expression (via RNA-seq; 
normalized to parental average) and (E) protein levels (via Western blot) of ACTR3 in H1299 
parental, leader, and follower populations. *p<0.05 by one-way ANOVA with Tukey’s post-
test. 
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Given the cell type specificity, we hypothesized that these mutations could be key contributors to the 

emergence of leader vs. follower phenotypes from the parental population. To test this, we chose a 

leader-enriched candidate mutation for further study, ACTR3 chr2:114699797 A to G, which results 

in a mutation in ARP3 at lysine 240 (ARP3 K240R) (Fig. 2.1B). We first confirmed this mutation by 

Sanger sequencing of genomic DNA and cDNA from the parental H1299 population as well as the 

isolated leader and follower populations (Fig. S2.1). The variant was detectable at subclonal levels in 

genomic DNA, indicating that it was unlikely to have arisen de novo during transcription, but 

represented a subpopulation of genomic alleles in the parental population. Moreover, the selectivity 

for the leader population observed at the RNA levels was preserved at the genomic DNA level (Fig. 

S2.1; Fig. 2.1C). Analysis of ARP3 expression in H1299 parental, leader and follower cells showed that 

ARP3 mRNA and protein levels were comparable between the populations (Fig. 2.1D,E). While there 

was some variation in the frequency of the mutation in the parental population between methods and 

DNA/RNA samples isolated at different times, there was little variation in the allelic balance in leader 

and follower populations, which maintained a consistent frequency of their respective mutations at 

both DNA and RNA level, suggesting that there is no allelic bias in the expression of the mutant 

version in either case. Thus, our selection of leader and follower cells based on phenotypic criteria 

also selected for subpopulations with distinct allelic balance of expressed mutations. 

 

Predicted functional impact of the leader-enriched ARP3 K240R mutation. 

We next sought to characterize the potential impact of the leader-enriched ACTR3 mutation, which 

results in a K to R shift in ARP3 (K240R). ARP3 is a key component of the Arp2/3 complex that 

helps facilitate cellular migration by promoting lamellipodia protrusion (70). Overexpression of ARP3 

has been correlated with invasion, metastasis, and poor survival in multiple cancer types, including 

gastric, colorectal, liver, and gallbladder (71-74). Furthermore, multiple mass spectrometry studies 
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indicate ARP3 K240 as a post-translational modification (PTM) site, with evidence of both 

ubiquitylation and acetylation (75-77) (Fig. 2.2A, inset). To evaluate the functional impact of the 

K240R mutation on the ARP3 protein, we used SAPH-ire (Structural Analysis of PTM Hotspots) 

(78), which predicts the functional potential of PTMs in protein families that have existing 

experimental and 3D structure data. SAPH-ire calculates a Function Probability Score (FPS) using a 

neural network model trained with an array of protein sequence and PTM-specific features extracted 

from PTMs with established functional impact. Consistent with these data, K240 had among the 

highest FPS values of all known modified residues within the ARP3 protein family and was among 

the top 90% of PTMs with well-established functional significance (i.e. 4 or more publications) across 

all protein families (Fig. 2.2A). SAPH-ire also revealed six experimental ubiquitylation sites in the 

ARP3 protein family between residues alignment positions 1298 – 1315, four of which correspond to 

ubiquitylation of ARP3 specifically (K240, K244, K251, and K254). Of these, K240 had the highest 

mean solvent accessible surface area (SASA) and was also proximal to a protein interaction interface 

(Fig. 2.2B). The high solvent accessibility, proximity to a protein-protein interface, and predicted 

functional impact of the ARP3 K240 site suggest that this mutation could indeed be altering the 

activity of ARP3 in leader cells. 
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Fig. 2.2. PTM hotspot analysis of ARP3 K240 suggests functional impact of the K240R 
mutation. (A) Plot of SAPH-ire probability score by rank for all modified alignment positions 
in the ARP protein family IPR004000. The ARP3 K240 ubiquitylation site is highly ranked 
along with other MAPs that contain PTMs with well-established function (4 or more supporting 
references), as indicated by known function source count (KFSC) quantiles. (Inset) Table of 
ARP3 K240 PTMs identified by mass spectrometry of human and mouse tissues, including 
literature sources. (B) Local PTM topology of the ARP3 family near ARP3 K240. PTM sites 
plotted by solvent accessible surface area (SASA) and proximity to the interface of a protein-
protein interaction. Human ARP3 PTMs are labeled, revealing multiple ubiquitylation sites 
between K240-K254. (Left) Structure of Arp2/3 complex (PDB 4XF2) indicating ARP3 K240 
(spheres) within the K240-K254 region of ARP3 (red). (C) Western blot showing exogenous 
(upper band) versus endogenous (lower band) ARP3 expression in unmodified followers, and 
shACTR3-followers rescued with either empty vector (EV), wild-type ARP3, or ARP3 K240R. 
Rescue constructs were mCherry-tagged to allow for visualization within invasive chains. (D) 
Images of invasion in Matrigel at 24hrs of spheroids comprised of unmodified follower cells, 
or shACTR3 followers transfected with either empty vector, wild-type ARP3, or ARP3 K240R 
constructs. (E) Quantification of spheroid invasive area (mean±s.d., n=17, 15, 16, and 17 
spheroids per group, respectively, across N=3 experiments. **p<0.01, ***p<0.001, 
****p<0.0001 by one-way ANOVA with Tukey’s post-test). Scale bar: 100 µm. 
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ARP3 K240R promotes invasion and leader cell behavior. 

We sought to determine the impact of ARP3 K240R by introducing this mutation into follower cells 

and testing for leader cell behavior. Given the relatively low VAF (23.4%) of mutant ACTR3 in leader 

cell DNA/RNA, we sought to replicate the leader cell ACTR3 allelic balance by employing a rescue 

approach. ARP3 levels were first stably knocked down using two separate short hairpin RNAs (Fig. 

S2.2A,B), including one (shACTR3 #2) targeted to the 5’ UTR of endogenous ACTR3. Knockdown 

of ARP3 significantly reduced 3-D invasion in H1299 parental, leader and follower cells compared to 

pLKO.1 controls (Fig. S2.2C,D). Using a sulforhodamine B (SRB) assay to measure cell growth, we 

found little difference upon ARP3 knockdown until 96 hours in the leader and follower populations, 

and 120 hours in the parental population, when proliferation was decreased (Fig. S2.2E).  

 

To test the functional consequences of ARP3 mutation, follower cells expressing shACTR3 #2 were 

then ‘rescued’ by stably expressing empty vector, mCherry-tagged wild-type ARP3, or mCherry-tagged 

ARP3 K240R, under the control of the moderate activity UBC promoter (79). Higher expression was 

achieved for ARP3 K240R compared to wild-type ARP3 (Fig. 2.2C, upper bands), suggesting that 

ARP3 K240R may be more stable than the wild-type protein. When grown as a spheroid, embedded 

in a Matrigel matrix, and allowed to invade for 24 hours (Fig. 2.2D), ARP3 knockdown follower cells 

reconstituted with ARP3 K240R, and to a lesser extent those reconstituted with wild-type ARP3, 

exhibited significantly higher invasive area compared with unmodified followers or those reconstituted 

with empty vector (Fig. 2.2E). This indicates that ARP3 expression, and especially ARP3 K240R 

expression, can increase invasive capacity even in normally poorly-invasive follower cells.  

 

Next, we sought to examine whether ARP3 K240R could specifically promote leader cell behavior 

(i.e. facilitate collective invasion and travel at the front of invasive chains) in a heterogeneous  
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Figure 2.3. Spheroid mixing experimental setup. Spheroids were comprised of either 100% 
unmodified followers, or 90% unmodified followers plus 10% of shACTR3 followers rescued with 
either empty vector, wild-type ARP3, or ARP3 K240R.  
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population. We created 3-D spheroids comprised of 90% unmodified H1299 followers and 10% 

ARP3 depleted followers rescued with either empty vector, wild-type ARP3, or ARP3 K240R (Fig. 

2.3). After 24 hours embedded in Matrigel, we observed a significant increase in invasive area and 

average number of chains per spheroid, and decreased circularity (indicating more chain-like and less 

sheet-like invasion) in the mixed spheroids containing 10% ARP3 K240R-rescued followers, as 

compared with the other three conditions (Fig. 2.4A,B). To determine whether the ARP3 K240R-

rescued followers were in fact leading these invasive chains, we used confocal fluorescence imaging 

to quantify the fraction of chains that exhibited mCherry-ARP3 K240R-rescued followers in the leader 

position. In spheroids containing 10% wild-type ARP3-rescued followers, we found rescued cells in 

the leader position in 53.8% of those chains (95% confidence interval 29.1% to 76.8%; Fig. 2.4C). By 

contrast, in spheroids containing 10% ARP3 K240R-rescued followers, rescue cells were found in the 

leader position in 87.2% of chains (95% confidence interval 78.0% to 92.9%; Fig. 2.4C). Thus, while 

both wild-type ARP3-rescued and ARP3 K240R-rescued cells led chains at a higher frequency than 

expected by random chance, the ARP3 K240R-rescued cells were more efficient in this regard. 

Together these data indicate that ARP3 K240R confers key leader-like behaviors onto follower cells, 

including increased invasive capacity, increased numbers of invasive chains, and a greater ability to 

lead those chains.   

 

As noted above, the K240R-reconstituted ARP3 knockdown cells express higher levels of ARP3 than 

those reconstituted with the wildtype ARP3. To distinguish the impact of ARP3 dosage from that of 

ARP3 K240R mutation, we re-created the same rescue cell lines using a CMV promoter (Fig. 2.5A) 

and repeated the above experiments creating mixed spheroids with 10% rescued cells (Fig. 2.5B). At 

this higher protein expression level, there was no significant difference in invasive area between the  
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Figure 2.4. ARP3 K240R confers leader-like properties when expressed at low levels. (A) 
Invasion of mixed spheroids in Matrigel after 24 hr. Rescue constructs were expressed under 
control of the UBC promoter. Representative images shown for each condition. (B) Quantification 
of invasive area, circularity, and average number of chains per spheroid for each condition 
(mean±s.d., n=14, 11, 18, and 16 spheroids for unmodified followers, EV rescue, wildtype ARP3 
rescue, and ARP3 K240R rescue, respectively, across N=3 experiments. *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 by one-way ANOVA with Tukey’s post-test). (C) Confocal 
fluorescence imaging of mixed spheroids, with unmodified followers shown in green and mCherry-
ARP3 K240R-rescued cells or mCherry-wild-type ARP3-rescued cells shown in magenta. Black 
arrows indicate invasive chains being led by experimental rescue cells. Graphs show percentage of 
chains (mean +/- 95% confidence intervals) led by wild-type ARP3-rescued and ARP3 K240R-
rescued followers. Dotted line denotes 10% of chains led, corresponding to the proportion of 
ARP3 rescued cells in the mixed spheroids. Scale bar: 100 µm. 
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  Figure 2.5. Wild-type ARP3 and ARP3 K240R both confer leader-like properties when 
expressed at high levels. (A) Western blot showing protein expression levels of ARP3 in 
followers after knockdown of endogenous ARP3 and rescue with empty vector, wild-type ARP3, 
or ARP3 K240R. Rescue constructs were expressed under control of the CMV promoter. (B-C) 
24 hr invasion of mixed spheroids in Matrigel. Representative images (B) and quantification (C) of 
invasive area, circularity, and average numbers of chains per spheroid shown for each condition 
(mean±s.d., n=12, 12, 12, and 11 spheroids per group, respectively, across N=2 experiments. 
*p<0.05, **p<0.01, ***p<0.001, by one-way ANOVA with Tukey’s post-test). Scale bars: 100 µm. 
(D) Confocal fluorescence imaging of mixed spheroids, with unmodified followers shown in green 
and mCherry-wild-type ARP3-rescued cells or mCherry-ARP3 K240R-rescued cells shown in 
magenta. Black arrows indicate invasive chains being led by experimental rescue cells. Graphs show 
the percentage of chains (mean +/- 95% confidence intervals) led by mCherry-empty vector-
rescued, wild-type ARP3-rescued and ARP3 K240R-rescued followers. Dotted line denotes the 
proportion of ARP3 rescued cells in the mixed spheroids thus the 10% of chains expected to be 
led based on random chance.  
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groups (Fig. 2.5C). Additionally, while chain number increased and circularity decreased in spheroids 

containing either wild-type ARP3-rescued or ARP3 K240R-rescued followers (Fig. 2.5C), there was 

no significant difference between the two, suggesting that the functional difference between ARP3 

K240R and wild-type ARP3 is mitigated at higher expression levels. Furthermore, both wild-type 

ARP3-rescued followers (81.5% of chains led; 95% confidence interval 63.3% to 91.8%) and ARP3 

K240R-rescued followers (84.2% of chains led; 95% confidence interval 62.4% to 94.5%) promoted 

leader cell behavior when mixed with 90% unmodified followers (Fig. 2.5D). The specificity of the 

effect was further confirmed by mixing experiments with mCherry-empty vector-rescued follower 

cells, which led only 17.7% of chains (95% confidence interval 6.19% to 41.0%; Fig. 2.5D), suggesting 

that the enhanced leader ability of the ARP3 K240R cells was not simply due to the different cell types 

segregating within the spheroid. Based upon these findings, it appears that increased dosage of ARP3 

is sufficient to promote leader-like behavior, and that the selective ability of ARP3 K240R to lead 

invasive chains and drive collective invasion at lower expression levels may arise, in part, from 

increased effective dose of ARP3 protein. 

 

SNP analysis suggests distinct leader and follower cell lineages. 

If high expression of wild-type KDM5B enforces the leader phenotype and/or suppresses the 

emergence of an alternate phenotype (e.g. followers), and this has an impact on collective behavior 

(data not shown), then one might predict that there would be a selection against the expression of 

KDM5B L685W in leader cells and selection for KDM5B L685W in follower cells independently 

captured from H1299 spheroids relative to the parental population. Fortuitously, a common SNP 

(rs1141108, chr1: 202715284, G>A) is located within the same exon as the KDM5B mutation, and 

the H1299 cell line was determined to be heterozygous for this SNP in our initial sequence analysis. 

Targeted deep resequencing of an amplicon including the region containing both the mutation  
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(chr1:202715414) and the SNP (chr1: 202715284) in genomic DNA thus enabled us to trace the 

relationship between allelic balance and the frequency of the KDM5B L685W mutation in each cell 

population (average depth= 348,327 reads).  

 

We first found that approximately one third of alleles in each population carried the A variant and 

two thirds carry the G variant at rs1141108, leading us to conclude that there are 3 copies of KDM5B 

and/or chromosome 1 in our strain of H1299 cells and that this ploidy is maintained across the three 

populations. The ACTR3 mutation that gives rise to ARP3 K240R on chromosome 2 also occurs in 

approximately one third of reads from genomic DNA in leader cells (Fig. 2.1B). Focal copy number 

alterations in the genomic regions surrounding ACTR3 and KDM5B have not been detected in H1299 

cells by SNP copy number analyses (COSMIC Cell Lines Project: 

https://cancer.sanger.ac.uk/cell_lines). These data suggest that our strain of H1299 cells are 

functionally triploid. We further ascertained that the KDM5B variant (chr1:202715414: A>C) giving 

rise to the L685W mutation resides exclusively in cis with the SNP rs1141108 G allele (99.7% 

concordance across 267,414 total reads containing the mutation). The analysis further confirmed the 

proportions of KDM5B wild-type vs. mutant alleles shown in Fig. 2.1, including the more variable 

mutation frequency observed among different isolates of the parental population, the complete 

absence of the KDM5B L685W mutation (<0.00001%) in the leader cells and the very consistent 

~30% in the follower cells (Fig. 2.6A). Additionally, the relative proportions of the wild-type and 

variant expressed at the mRNA level were largely reflective of the proportion at the genomic DNA 

level across all three populations, again suggesting that there was no allelic bias in expression of the 

wild-type versus mutant forms of KDM5B (Fig. 2.6A).   
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Figure 2.6. Leader and follower cells are derived from two separate populations defined by 
mutational profile. (A) Deep targeted resequencing across KDM5B exon 15 in genomic DNA (top) 
and RNA (bottom) isolated from parental, leader, and follower populations (N=2 independent 
isolates of DNA/RNA at separate passages of cells derived from a single phenotypic isolation. 
Average depth= 348,327 reads per sample). (B) Pie charts depicting proportions of KDM5B 
genotypes across parental, leader, and follower populations as determined from the deep amplicon 
sequencing shown in panel A. (C) Model of the potential history of leader and follower populations 
from parental cell population as inferred from the genetic profiles of KDM5B and ARP3. 
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The finding that the KDM5B L685W mutation was exclusive to the G allele while the A allele was 

exclusively wild-type allowed us to trace the relative proportions of the three genotypes (WT/A, 

WT/G, mutant/G) across the parental, leader, and follower populations. These data showed that 

whereas 4-12% of the parental population carries the KDM5B mutant/G allele, this allele was 

excluded from the leader population, which exhibited essentially none of the KDM5B mutant/G 

alleles (Fig. 2.6B), but was nearly 2-fold enriched in the isolated followers (30%) (p=0.008; ANOVA 

plus Tukey’s post-hoc correction) and approached the expected frequency (if each allele is 

independently sorted). Taken together these data suggest that whereas the parental population varies 

in the fraction of cells containing the mutant/SNP G allele, growth in 3-D culture, SaGA-based 

capture and subsequent expansion of leader cells selectively enriches for cells expressing only wild-

type KDM5B, whereas that of followers selects for a population in which nearly every cell contains 

(and expresses) one copy of the mutant KDM5B L685W allele (Fig. 2.6C). 
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2.4. Discussion 

 

The greatest threat to cancer patient mortality is the metastatic spread of tumor cells from the primary 

site (33). Collective migration and invasion are major contributors to the dispersion of metastatic 

cancer cells (15, 57, 80, 81). Collective invasion is typified by the coordinated movement of a group 

of cohesive cells, often including multiple heterogeneous cell populations with specialized functions. 

One well-studied example of collective invasion is that of chain-like invasion, in which specialized 

leader cells lead groups of cells termed follower cells, out of the tumor (3, 57, 81), with both 

populations playing important roles in the process of invasion. Until now, studies of the distinct 

populations within invasive chains have been limited by the inability to separate these populations. 

Development of the SaGA technique (3), enabled us to independently analyze leader and follower 

cells with different phenotypes to gain insight into population dynamics and the emergence of 

populations that differ in cell behavior. Our results identify a set of expressed mutations that define 

leader and follower cells, representing, to our knowledge, the first known instance of distinct 

mutations as contributors to the leader/follower phenotypes within collectively invading packs. 

 

We confirmed the importance of the leader cell-enriched mutation ARP3 K240R to the invasive leader 

cell phenotype by introducing it into a population of non-invasive H1299 follower cells. Both in pure 

spheroids and when mixed with 90% unmodified followers, ARP3 K240R-expressing followers 

displayed increased ability to invade and lead collective chains at both lower and higher protein 

expression levels. Rescue with wild-type ARP3 also conferred leader cell behavior, but only when 

expressed at supra-physiologic levels. One potential explanation is that ARP3 K240R increases the 

effective dosage of ARP3 protein, essentially recapitulating ARP3 overexpression even at low 

expression. Indeed, ARP3 K240R accumulated to higher levels than wild-type ARP3 when 
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exogenously expressed from the same vector. The K240R mutation might interfere with ubiquitylation 

at K240, resulting in either decreased ARP3 turnover, or enhanced ARP3 activity. Ubiquitylation at 

K240 has previously been observed by mass spectroscopy in multiple human cell lines as well as mouse 

tissue, and K240R was predicted by SAPH-ire to have a high likelihood of functional consequence. 

Further experiments will be necessary to determine whether ARP3 K240R is indeed resistant to 

ubiquitylation, and whether this impacts the activity of ARP3 in leader cells. ARP3 is a key subunit of 

the Arp2/3 complex that regulates intracellular actin dynamics in a number of processes, including 

lamellipodia protrusion during cell motility (70). Indeed, we observed significantly reduced invasion 

in parental, leader, and follower cells upon ARP3 knockdown, supporting its importance for cell 

migration and invasion. Overexpression of Arp2/3 complex subunits including ARP2, ARP3, ARPC2, 

and ARPC5 has been shown to promote invasion in multiple cancer types including lung, colorectal, 

glioblastoma, and others (71-74, 82-84). Our results now further indicate a role for ARP3 as 

contributing to tumor collective invasion by promoting the leader cell phenotype.  

 

Emerging research regarding how followers cooperate with leaders to promote their invasive 

capabilities center on concepts such as contact inhibition of locomotion (CIL) and movement along 

a chemical gradient (81, 85). CIL occurs when a migrating cell contacts another cell and begins forming 

protrusions opposite the site of contact to move in the opposite direction (86-88). In this case, follower 

cells contact leader cells, forcing them to polarize and move in a forward direction. Follower cells also 

regulate signaling to leader cells, often through creation of chemical gradients that motivate leader 

cells to move in a particular direction (81, 89-93). Indeed, we previously discovered that follower and 

leader cells engage in a symbiotic relationship, in which follower cells promote the survival and 

proliferation of leader cells, which in turn secrete VEGFA to promote the motility of follower cells 

(3).  
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Our sequencing data and the ability to discern the clonality of the distinct leader and follower 

subpopulations relative to that of the parental population from which they were derived allows us to 

construct a model of the population origins. In a population of tumor cells which are already 

functionally triploid, ACTR3 and KDM5B undergo mutation, each in separate cells. These mutational 

events are the beginning of the divergent paths that will develop two separate but cooperative 

subpopulations. Cells containing mutant ACTR3 go on to form the highly invasive, slow proliferating 

leader cells while cells containing the KDM5B mutation ultimately become the follower population of 

invasion-deficient, rapidly proliferating cells. Expressing the leader specific ACTR3 mutation in 

follower cells increases chain-like invasion. Likewise, expressing the follower specific KDM5B 

mutation in leader cells increases chain-like invasion (data not shown). Our phenotypic data adds to 

this model the necessity for cells exhibiting both the leader phenotype and a follower phenotype to 

the cooperative behavior demonstrated in collective invasion.  

 

The approach used herein, while innovative, does have certain limitations. First, the work focuses on 

the characterization of leader and followers isolated from a single NSCLC-derived cell line. How 

universal the identified mutations/genes might be in contributing to leader/follower behavior in other 

cell lines or cancer types is currently unknown. In addition, while our functional characterization 

supports a potential role for ACTR3, this was only one of the phenotype-selective mutations 

identified. It is possible that no single alteration in isolation is sufficient to fully drive either phenotype, 

but rather the combinatorial effects of multiple genetic and epigenetic alterations contribute to 

collective behavior. Studies aimed at similar analyses of multiple cell lines, or collective invasion 

models and across cancer types may converge on critical “drivers” or pathways. Ultimately the 

identification of such key alterations may help in clinical decision-making by identifying predictive 
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biomarkers or new therapeutic targets. Indeed, a recently discovered Arp2/3 inhibitor CK-666 (94) 

has been shown to inhibit cell motility in vivo (95). An alternative approach would be targeting other 

components of the Arp2/3 pathway. One such target, PLK4, has been implicated as a driver of cancer 

invasion and metastasis in part through its interaction with Arp2/3 subunits (96), and PLK4 inhibitors 

are currently under clinical investigation for patients with advanced solid tumors. Our identification 

of a panel of mutations delineating leader and follower cell phenotypes in a non-small cell lung cancer 

tumor population is an initial step toward elucidation of how heterogeneous genetic mutations 

contribute to cancer metastasis and how these vulnerabilities can be exploited to circumvent the 

development of metastasis. 
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Supplementary Information 

 
  Figure S2.1. Confirmation of leader- and follower-enriched mutations. Sanger sequencing 

confirming leader-enriched ACTR3 mutation in cDNA (shown) and genomic DNA isolated from 
H1299 parental, leader and follower populations. Black arrows indicate the bases of interest. Only 
the wild-type A peak is seen in the parental and follower populations, while the leader population 
contains both A and G peaks. 
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Figure S2.2. ARP3 knockdown inhibits 3-D invasion. (A) Western blot showing ARP3 protein 
levels in H1299 parental, leader and follower cells upon expression of empty pLKO.1 vector, ARP3 
shRNA #1 (Millipore Sigma TRCN0000029383), or ARP3 shRNA #2 (Millipore Sigma 
TRCN0000380403). (B) Western blot densitometry quantification, indicating 70-90% knockdown of 
ARP3 protein using either shRNA #1 or shRNA #2. (C) Representative images of 24-hour invasion 
of H1299 parental, leader, and follower spheroids expressing either empty pLKO.1 or shACTR3 #2. 
Scale bar = 100µm.(D) Quantification of relative 24-hour invasive area, normalized to pLKO.1 
control for each group. (mean±s.d., n=5, 11, and 5 spheroids for parental, leader and follower lines, 
respectively. ***p<0.001, ****p<0.0001 by two-way ANOVA with Sidak correction). (E) Growth 
rate of parental, leader, and follower lines expressing either empty pLKO.1 or shACTR3 #2. 
(mean+s.d., n=5 replicates per time point. *p<0.05, ***p<0.001, ****p<0.0001 by two-way 
ANOVA with Šidák correction).
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Table S2.1. PCR primers for ACTR3 
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Abstract 

Background: Intra-tumoral heterogeneity is defined by subpopulations with varying genotypes and 

phenotypes. Specialized, highly invasive leader cells and less invasive follower cells are phenotypically 

distinct subpopulations that cooperate during collective cancer invasion. Since leader cells are a rare 

subpopulation that would be missed by bulk sequencing, a novel image-guided genomics platform 

was employed to precisely select this subpopulation. We identified a novel leader cell mutation 

signature and tested its ability to predict prognosis in non-small cell lung cancer (NSCLC) patient 

cohorts. 

 

Methods: SaGA was used to isolate and perform RNA-sequencing on leader and follower populations 

from the H1299 NSCLC cell line, revealing a leader-specific mutation cluster on chromosome 16q. 

Genomic data from lung squamous cell carcinoma (LUSC, n=475) and lung adenocarcinoma (LUAD, 

n=501) patients from The Cancer Genome Atlas (TCGA) were stratified by 16q mutation cluster 

status (16qMC+ vs. 16qMC-) and compared for overall survival, progression-free survival, and gene 

set enrichment analysis (GSEA). 

 

Results: Poorer overall survival and/or progression-free survival was found across all stages and 

among early-stage patients with 16qMC+ tumors within LUSC and LUAD cohorts. GSEA revealed 

16qMC+ tumors to be enriched for expression of metastasis- and survival-associated gene sets. 

 

Conclusion: This represents the first leader cell mutation signature identified in patients and has the 

potential to better stratify high-risk NSCLC and ultimately improve patient outcomes. 
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3.1 Introduction 

 

Intra-tumoral heterogeneity stems from internal and external selection pressures (52, 56, 97-100), 

leading to cellular subpopulations with varying genomes and phenotypes. This heterogeneity is a key 

contributor to treatment resistance and cancer progression (19, 49, 56, 99-102); however, this 

heterogeneity may be missed due to bulk sequencing of only a portion of the tumor. Consequently, 

the complex genetic and phenotypic landscape from the tumor is not fully captured. 

  

Evidence from in vitro studies and primary solid tumors suggests that rare cells unwittingly missed 

from bulk sequencing are important for tumor progression and metastasis (3, 103). Using a 3-D in vitro 

model of lung cancer invasion, we showed that collectively invading packs of tumor cells are 

heterogeneous, and include rare, specialized leader cells that pioneer invasive chains, and follower cells 

that adhere to and invade behind leaders (3). Collective invasion is widely observed in carcinomas and 

increases the overall success of metastasis (12-14). Leader cells promote collective invasion when 

mixed with poorly invasive follower cells, even when comprising as little as 1 percent of the 

population.(3) In addition, leader cells are genetically distinct from followers, harboring unique gene 

expression profiles that may help to facilitate collective invasion (3).  

 

Rare subpopulations such as leader cells could be important for cancer metastasis, yet 

underrepresented by standard tumor sequencing. We therefore sought to use our imaging-guided 

genomics platform (Spatiotemporal Genomic and Cellular Analysis, or SaGA) (3) to identify unique 

leader cell gene mutations and define higher-risk patient groups in non-small cell lung cancer 

(NSCLC), which includes squamous cell carcinoma (LUSC) and adenocarcinoma (LUAD). Using a 

novel, leader cell-specific cluster of mutated genes on chromosome 16q, we found that LUSC and 
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LUAD patients with 1 or more mutation(s) within this cluster have poorer overall and progression-

free survival, even among early-stage patients. This represents the first leader cell mutation signature 

identified in patients and has the potential to better stratify high-risk NSCLC and ultimately improve 

patient outcomes. 
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3.2 Methods 

 
Identification of leader- and follower-enriched variants 

Isolation via SaGA, RNA-sequencing expression, and variant calling for leader and follower cells from 

the H1299 cell line were performed as previously described (3, 104). RNA-sequencing data are 

deposited in the NCBI SRA database under accession number PRJNA542374. 

 

Patient selection and stratification 

For TCGA cohorts in cBioPortal, only patients with available mutation data were included. Patients 

with at least one non-synonymous mutation in at least one 16qMC gene were categorized as 

“16qMC+”. Lollipop plots depicting locations of 16q cluster point mutations in each cohort were 

constructed using MutationMapper through cBioPortal (105, 106). Patient clinical data were 

downloaded from cBioPortal. 

 

Enrichment analysis 

For GSEA, previously processed versions of TCGA LUAD, LUSC, and LIHC (HCC) RNA-seq data 

based on human genome build hg19 were downloaded for the included subsets of patients from the 

GDC legacy archive (https://portal.gdc.cancer.gov/legacy-archive/search/). Raw RSEM expression 

counts were filtered for lowly expressed genes (average CPM<1.0) and normalized by the TMM 

method using edgeR (107, 108). Differential expression between 16qMC+ and 16qMC- was calculated 

for all genes with limma R package (108). Genes were ranked according to -log10(P value) multiplied 

by direction of fold change. GSEAPreranked was performed on the ranked gene list with classic 

enrichment statistics under default settings and C2 curated gene sets (4762 gene sets) from MSigDB 

6.2 release using GSEA Desktop v3.0 (109, 110). 
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Statistical analysis 

Statistical analysis was conducted using SAS Version 9.4 and GraphPad Prism Version 8.2. Ordinary 

one-way ANOVA with Sidak’s multiple comparisons test was used when three or more conditions 

were being compared. Confidence intervals of percentages were calculated using the Wilson/Brown 

method. Patient characteristics were reported as counts with percentages for categorical variables and 

median with range for numeric variables. A chi-square or Fisher’s exact test, as appropriate, was 

conducted to identify associations between categorical demographic characteristics and 16qMC status, 

and an ANOVA or a Kruskal-Wallis test, as appropriate, was conducted to identify associations 

between continuous demographic factors and 16qMC status.  

 

OS and PFS were calculated by the Kaplan-Meier method, with P values calculated by the log-rank 

(Mantel-Cox) test. A univariable cox proportional hazards regression analysis was performed to 

determine any significant association of the demographic factors and OS/PFS. Variables significant 

at an alpha of 0.2 were used for model selection. A multivariable cox regression analysis using a 

backward elimination approach was used to select covariates, with removal of covariates of alpha >0.2.  

 

For subgroup survival analysis based on early/late stage or mutation count categories, KM curves 

were created based upon 16qMC status for both OS and PFS. To account for the small number of 

events in the strata, Firth’s penalized regression approach was used within each subgroup. The 

multivariable analysis was conducted as described above. Similar subgroup analysis was performed for 

early-stage (I and II) and late stage (III and IV) patients. For the four-group survival analysis by 16qMC 

status and TP53 mutation status, KM curves for each OS and PFS endpoint were created and log-

rank P values were obtained. Pairwise log-rank P values were adjusted using Tukey-Kramer's 

method for multiple comparisons. 
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Random sampling analysis 

To assess the statistical significance of the 16qMC genes in separating patients by OS and PFS versus 

a randomly-defined set of genes, a bootstrap approach was used for the TCGA LUSC, LUAD, and 

HCC cohorts. Specifically, M = 1,000 random samples were taken, with “positive” patients defined 

by those having any mutations within 8, 9, and 9 genes from 20502, 20502, 20503 total genes in the 

TCGA LUSC, LUAD, and HCC cohorts, respectively. For each re-sampling, KM plots were 

constructed for each outcome, and a log-rank test was performed. A Monte Carlo P value was defined 

by comparing the P value obtained from the log-rank test analysis of 16qMC+ vs. 16qMC- samples 

to the distribution of P values obtained based on the groups formed using randomly-sampled gene 

mutations.   
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3.3 Results 

 

Development of leader cell-specific 16q mutation cluster 

We utilized leader and follower cell lines previously derived from the H1299 NSCLC cell line using 

the SaGA platform (described in (3); schematic in Fig. 3.1A). As leader cells are crucial for collective 

invasion in 3-D assays (3), we hypothesized that NSCLC patients with genetic evidence of leader cells 

within the primary tumor could be at higher risk for disease progression and recurrence. Our previous 

data show that H1299 leader and follower cells contain distinct mutational profiles (104). Additional 

inclusion of known variants from the dbSNP database (111) resulted in 17 leader-specific and 18 

follower-specific mutations (Fig. 3.1B; Table S3.1). Notably, 7 leader-specific mutations were found 

on chromosome 16q (Table S3.2; Fig. 3.1C, solid lines). We hypothesized that these mutations could 

help detect leader cell subpopulations; therefore, after confirming comparable mRNA levels of each 

gene in the leader and follower populations (Fig. S3.1), we used these genes to define a leader cell 

mutation signature. 

 

Identification of 16q mutation cluster-positive tumors in NSCLC patient cohorts 

Gene expression data and clinical outcomes information for LUSC patients (n=475) and LUAD 

patients (n=501) were extracted from The Cancer Genome Atlas (TCGA) (112). Importantly, 37 of 

475 (7.8%) LUSC patients and 30 of 501 (6.2%) LUAD patients had one or more mutations among 

the seven 16q mutation cluster genes (LUSC: Figs. 3.1D, 3.2A; LUAD: Figs. 3.1D, 3.2D). NQO1 was 

mutated in one patient and was excluded from subsequent analyses. Nearly all of the identified point 

mutations occurred at different loci, suggesting that they could result from a hyper-mutational process 

rather than being selected due to altered protein function. Among genes directly adjacent to the six 

leader-derived 16q genes (Fig. 3.1C, dashed lines), the same pattern of randomly-distributed  
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Figure 3.1. Identification of a leader cell-derived mutation cluster on chromosome 16q. (A) 
Schematic of the SaGA technique for photoconversion, isolation, and downstream analysis of H1299 
leader and follower cells. Adapted from (3). (B) Variant allele frequency values from RNA-sequencing 
of H1299 leader and follower populations for 17 genes identified as containing leader-specific point 
mutations, and 18 genes identified as containing follower-specific point mutations. (C) Map of 
chromosome 16q annotated with locations of genes containing leader-specific mutations (solid lines) 
and adjacent genes subsequently included in the 16q mutation cluster (dotted lines). (D) Percentages 
of TCGA LUSC and LUAD cases with mutations in each of eight (LUSC) or nine (LUAD) 16q 
cluster genes. 



 
 

 

62 

Table 3.1: Patient characteristics for LUSC and LUAD TCGA cohort 

 

  

 
a P-values calculated by ANOVA for numerical covariates and chi-square or Fisher’s exact test for categorical covariates. 
b P-values calculated by Kruskal-Wallis test for numerical covariates. 
c High/low mutation count was defined by a cutoff of 192 mutations, based upon previous mutational burden analysis of TCGA 
cohorts (113).  

   LUSC LUAD 

Covariate Statistic Group 16q cluster status P 
valueab 

16q cluster status P value 
   

16qMC+ 
(N=51) 

16qMC- 
(N=424) 

 
16qMC+ 
(N=58) 

16qMC- 
(N=443) 

 

Gender N (%) Female 13 
(25.49) 

112 
(26.54) 

0.872 28 
(48.28) 

240 
(54.18) 

0.397 
 

N (%) Male 38 
(74.51) 

310 
(73.46) 

 
30 

(51.72) 
203 

(45.82) 

 

         

Pathologic 
stage 

N (%) Stage I & II 41 
(80.39) 

343 
(81.47) 

0.852 46 
(79.31) 

346 
(78.46) 

0.882 
 

N (%) Stage III & IV 10 
(19.61) 

78 (18.53) 
 

12 
(20.69) 

95 
(21.54) 

 

         

Smoking 
history 

N (%) Current/reformed 
smoker 

49 (98) 399 
(96.14) 

1 55 
(96.49) 

362 
(84.19) 

0.009 
 

N (%) Nonsmoker 1 (2) 16 (3.86) 
 

2 (3.51) 68 
(15.81) 

 

         

Mutation 
countc 

N (%) High mut. count 43 
(84.31) 

235 
(57.46) 

<0.001 49 
(84.48) 

202 
(46.12) 

<0.001 
 

N (%) Low mut. count 8 (15.69) 174 
(42.54) 

 
9 

(15.52) 
236 

(53.88) 

 

         

Age at 
diagnosis 

Median 
(min-max) 

 
67 (44-

83) 
68 (39-90) 0.363 65 (40-

88) 
66 (38-

87) 
0.494 
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mutations was observed in SLC12A3 and ZNF778 in the LUSC cohort (Fig. 3.2A), and SLC12A3, 

NFAT5 and SPG7 in the LUAD cohort (Fig. 3.2D). Taken together, 10.7% of LUSC patients and 

11.6% of LUAD patients had at least one mutation within the respective  8- or 9-gene 16q clusters 

(Fig. 3.1D); these patients were defined as 16q mutation cluster-positive (16qMC+). The majority of 

16qMC+ patients – 94.1% of LUSC and 86.2% of LUAD – had mutations in only one 16q cluster 

gene (Fig. S3.2). Most mutations were found at variant allele frequencies (VAF) of less than 50%, 

which likely indicates sub-clonal mutations barring any chromosomal alterations at that locus (Fig. 

S3.2). Additionally, 16qMC+ tumors had significantly higher mutation counts (Table 3.1). Within the 

LUAD cohort, the 16qMC+ group contained significantly more smokers (96.5% vs. 84.2%, P=0.009; 

Table 3.1), TP53 mutations (77.6% vs. 48.6%, P=0.0005; Table S3.3), and patients who received 

radiation therapy prior to resection (20.7% vs. 11.0%, P=0.024; Table S3.4).  

 

Prognostic validation of 16qMC in TCGA cohorts 

We found that 16qMC+ patients had poorer overall survival (OS) (HR 1.79, 95% CI 1.19-2.71; log-

rank P=0.005) and progression-free survival (PFS) (HR 1.78, 95% CI 1.06-3.01; log-rank P=0.028) 

among all-stage LUSC (Fig. 3.2B; Table 3.2). Notably, early-stage 16qMC+ LUSC patients had poorer 

OS (HR 2.08, 95% CI 1.27-3.24; log-rank P=0.003) (Fig. 3.2C; Table S3.5). In the LUAD cohort, all-

stage 16qMC+ patients experienced poorer OS (HR 1.84, 95% CI 1.73-2.74; log-rank P=0.002; Fig. 

2E; Table 3.3) as did early-stage patients (HR 2.06, 95% CI 1.26-3.23; log-rank P=0.003; Fig. 2F; Table 

S3.6). Multivariable Cox regression analysis indicated 16qMC+ status as a significant predictor of OS 

(HR 1.71, 95% CI 1.13-2.58; P=0.011) and PFS (HR 1.73, 95% CI 1.00-2.97; P=0.049) among all-

stage LUSC patients (Table 3.2), and of OS among all-stage LUAD patients (HR 1.95, 95% CI 1.31-

2.91; P=0.001) (Table 3.3). In multivariable analysis among early-stage patients, 16qMC+ status 
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  Figure 3.2. 16qMC predicts poor prognosis in non small cell lung cancer cohorts. (A) Lollipop 
plots illustrating locations of point mutations in 16q cluster genes in TCGA LUSC patients. Black 
dots depict truncations; gray dots depict missense mutations; red outlines depict driver mutations 
indicated by OncoKB and/or Cancer Hotspots. (B) Kaplan Meier (KM) curves for OS and PFS of 
16qMC+ and 16qMC- TCGA LUSC patients. Median OS: 5.0 years (16qMC-) vs. 2.6 years 
(16qMC+); median PFS: 8.0 years (16qMC-) vs. 2.7 years (16qMC+). (C) KM curves for OS and PFS 
of 16qMC+ and 16qMC- stage I and II TCGA LUSC patients. Median OS: 5.4 years (16qMC-) vs. 
2.6 years (16qMC+); median PFS: 8.4 years (16qMC-) vs. 6.3 years (16qMC+). (D) Lollipop plots 
illustrating locations of point mutations in 16q cluster genes in TCGA LUAD patients. Black dots 
depict truncation mutations; gray dots depict missense mutations; red outlines depict driver mutations 
indicated by OncoKB and/or Cancer Hotspots. (E) KM curves for OS and PFS of 16qMC+ and 
16qMC- TCGA LUAD patients. Median OS: 4.2 years (16qMC-) vs. 2.6 years (16qMC+); median 
PFS: 3.1 years (16qMC-) vs. 2.4 years (16qMC+). (F) KM curves for OS and PFS of 16qMC+ and 
16qMC- stage I and II TCGA LUAD patients. Median OS: 5.6 years (16qMC-) vs. 3.2 years 
(16qMC+); median PFS: 3.4 years (16qMC-) vs. 4.0 years (16qMC+). P values calculated by log-rank 
test. 
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Table 3.2. Cox regression analysis for all-stage LUSC TCGA patients 

 
 
  

 Univariable analysis Multivariable analysis 

 Overall survival Progression-free survival Overall survival Progression-free survival 

Covariate Hazard ratio (95% 
CI) P value Hazard ratio 

(95% CI) P value Hazard ratio (95% 
CI) P value Hazard ratio 

(95% CI) P value 

16q cluster status 
(16qMC+ vs. -) 1.79 (1.19-2.71) 0.006 1.78 (1.06-3.01) 0.030 1.71 (1.13-2.58) 0.011 1.73 (1.00-2.97) 0.049 

         

Gender 
(Female vs. Male) 0.83 (0.60-1.16) 0.277 0.89 (0.60-1.32) 0.564     

         

Pathologic stage 
(I/II vs. III/IV) 0.61 (0.44-0.84) 0.003 0.50 (0.34-0.73) <0.001 0.61 (0.44-0.85) 0.004 0.49 (0.33-0.73) <0.001 

         
Smoking history 
(Smoker vs. non) 0.63 (0.26-1.53) 0.305 0.36 (0.16-0.83) 0.016   0.34 (0.15-0.78) 0.011 

         

Mutation count (High 
vs. low) 1.04 (0.78-1.39) 0.765 0.92 (0.65-1.30) 0.625     

         

Age at diagnosis 1.02 (1.00-1.03) 0.059 1.00 (0.98-1.02) 0.988 1.02 (1.00-1.04) 0.038   
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Table 3.3. Cox regression analysis for all-stage LUAD TCGA patients 
 

 

 Univariable analysis Multivariable analysis 

 Overall survival Progression-free survival Overall survival Progression-free survival 

Covariate Hazard ratio (95% 
CI) P value Hazard ratio 

(95% CI) P value Hazard ratio (95% 
CI) P value Hazard ratio 

(95% CI) P value 

16q cluster status 
(16qMC+ vs. -) 1.84 (1.23-2.74) 0.003 1.30 (0.86-1.96) 0.214 1.95 (1.31-2.91) 0.001 1.30 (0.86-1.97) 0.207 

         

Gender 
(Female vs. Male) 0.95 (0.71-1.27) 0.713 0.95 (0.72-1.26) 0.730     

         

Pathologic stage 
(I/II vs. III/IV) 0.37 (0.27-0.51) <0.001 0.62 (0.45-0.86) 0.004 0.36 (0.27-0.50) <0.001 0.62 (0.45-0.86) 0.004 

         
Smoking history 
(Smoker vs. non) 0.91 (0.60-1.39) 0.676 0.96 (0.65-1.44) 0.859     

         

Mutation count (High 
vs. low) 0.98 (0.73-1.31) 0.893 0.94 (0.71-1.24) 0.669     

         

Age at diagnosis 1.01 (0.99-1.02) 0.349 1.00 (0.98-1.01) 0.695     
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remained predictive of poorer OS for LUSC (HR 1.94, 95% CI 1.21-3.12; P=0.006; Table S3.5) and 

LUAD patients (HR 2.02, 95% CI 1.25-3.27; P=0.004; Table S3.6). 

 

16qMC+ tumors in both cohorts had increased mutation counts (Fig. 3.3A, B) and 16qMC+ LUSC 

tumors had more copy number alterations (Fig. 3.3C). To determine whether mutation count was 

driving the poorer survival among 16qMC+ patients, we stratified by low (<192) or high (>192) 

mutation count as previously described for TCGA cohorts (113). We found that 16qMC+ status still 

correlated with poorer OS among highly-mutated LUSC (Fig. 3.3D), OS and PFS among lowly-

mutated LUAD, and OS among highly-mutated LUAD (Fig. 3.3E). Given the higher proportion of 

TP53 mutations among 16qMC+ LUAD tumors, we also examined survival by both TP53 and 16qMC 

status; although mutated TP53 was associated with poorer OS, 16qMC+ status further differentiated 

survival among TP53 wild-type patients (Fig. S3.3). These data indicate that 16qMC+ status could 

help identify patients who are at higher risk for disease progression.  

 

As collective invasion is observed in numerous carcinomas (36), we analyzed additional TCGA 

cohorts to test the prognostic value of leader-cell derived 16qMC in other cancer types. Notably, 

16qMC+ patients within a TCGA hepatocellular carcinoma (HCC) cohort (114) also had significantly 

increased mutation counts, and poorer survival among all-stage and early-stage disease (Tables S3.7-

S3.9; Fig. S3.4). As HCC carries poor prognosis and high rates of recurrence, HCC patients could also 

potentially benefit from 16qMC+ screening.  

 

Given the scattered distribution of mutations in 16qMC+ patients (Figs. 3.2A, 3.2D, S3.4), we 

determined the prognostic power of the 16qMC genes compared with 1,000 randomly-selected  
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Figure 3.3. 16qMC+ tumors have increased overall mutational burden. (A) Total mutation 
count for TCGA LUAD and LUSC cohorts. Total mutation count defined as total detected number 
of non-synonymous mutations. **P<0.01, ****P<0.0001 by ordinary one-way ANOVA with Sidak’s 
multiple comparisons test. Bars show mean+standard deviation. (B) Percentage (with 95% 
confidence intervals) of tumors with high mutation count (defined as >192 total mutations) among 
16qMC- and 16qMC+ patients. Confidence intervals calculated by the Wilson/Brown method. (C) 
Total fraction of genome altered (FGA), calculated as the percentage of the genome with copy 
number gains and/or losses, between 16qMC- and 16qMC+ tumors. *P<0.05 by ordinary one-way 
ANOVA. Bars show mean+standard deviation. (D-F) KM curves for OS and PFS of 16qMC- and 
16qMC+ TCGA LUSC patients (D) and TCGA LUAD patients (E) with either high (>192) or low 
(<192) mutation counts. Median OS for 16qMC- vs. 16qMC+ LUSC patients: 4.8 vs. 3.9 years (low  
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mut. count); 5.0 vs. 1.5 years (high mut. count). Median PFS for 16qMC- vs. 16qMC+ LUSC patients: 
6.0 vs. 2.7 years (low mut. count). Median OS for 16qMC- vs. 16qMC+ LUAD patients: 4.2 vs. 2.6 
years (low mut. count); 6.0 vs. 2.7 years (high mut. count). Median PFS for 16qMC- vs. 16qMC+ 
LUAD patients: 3.0 vs. 2.2 years (low mut. count); 3.1 vs. 2.4 years (high mut. count). P values 
calculated by log-rank test. 
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clusters of 8 (LUSC) or 9 (LUAD, HCC) genes. The 16q mutation cluster outperformed the random 

gene sets in differentiating survival for LUSC (OS: P=0.007; PFS: P=0.025), LUAD (OS: P=0.001), 

and HCC (OS: P=0.006; PFS: P=0.0290). 

 

Gene set enrichment analysis of 16qMC+ tumors 

Next, differentially expressed genes between 16qMC+ and 16qMC- tumors were determined 

from RNA-sequencing data for the LUSC and LUAD TCGA patient cohorts, and subjected to gene 

set enrichment analysis (GSEA) (109, 115). Several gene sets related to metastasis, recurrence, relapse, 

prognosis, or survival were significantly associated with 16qMC+ status (false discovery rate <0.05) 

(Fig. 4A). In both cohorts, among the most positively-enriched gene sets for 16qMC+ patients was 

“SHEDDEN LUNG CANCER POOR SURVIVAL A6,” a gene set predictive of OS in lung 

adenocarcinoma patients (116) (LUSC normalized enrichment score (NES)=6.81, LUAD 

NES=13.75; Fig. 3.4B-D). Conversely, “SHEDDEN LUNG CANCER GOOD SURVIVAL A4,” a 

gene set highly expressed in patients with better survival (116), was depleted in 16qMC+ LUSC 

(NES=-3.46) and LUAD (NES=-6.47) (Fig. 3.4B, C). Also identified were positive enrichment for 

“WINNEPENNINCKX_MELANOMA_METASTASIS_UP” in 16qMC+ LUSC (NES=4.87; Fig. 

4B) and LUAD (NES=8.11), negative enrichment of “CHANDRAN_METASTASIS_DN” in 

16qMC+ LUSC (NES=-3.59) and LUAD (NES=-5.48), and positive enrichment of 

“BIDUS_METASTASIS_UP” in 16qMC+ LUSC (NES=4.86) and LUAD (NES=5.51) (Fig. 3.4B, 

C). Together, these results show that the 16q mutation cluster identifies patients with a similar high-

risk expression profile as previously established prognostic gene sets, and that 16qMC+ tumors are 

consistent with more advanced disease, increased likelihood of recurrence, and poorer patient 

outcomes. 
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Figure 3.4. Metastasis- and prognosis-related gene sets are enriched in 16qMC+ tumors. (A) 
Gene sets related to metastasis, recurrence, relapse, prognosis, or survival that were significantly 
positively- or negatively-enriched (FDR < 0.05) in GSEA of 16qMC+ tumors vs. 16qMC- tumors 
within the TCGA LUSC and TCGA LUAD cohorts. NES = normalized enrichment score. Dot size 
indicates the number of core enriched genes, while dot color indicates the proportion of total genes 
in the given gene set that are enriched in the 16qMC+ population. (B-D) GSEA plots of selected 
gene sets in LUSC (D) and LUAD (E) cohorts.  
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3.4 Discussion 

Current methods for molecular characterization may not sufficiently capture the full genomic and 

phenotypic landscape of a tumor population (56, 117), since rare, yet treatment-resistant and invasive 

cell populations would be missed (1, 3). Our previous work begins to address this problem through 

the SaGA platform, which was used to isolate specialized, highly invasive leader cells from a larger 

population of collectively invading packs of NSCLC cells (3). 

 

We identified a novel, leader cell-derived, ten-gene mutation cluster on chromosome 16q. Although 

16q deletions have been found in breast, prostate, and other cancers (118-120), 16q alterations in lung 

cancer have not been widely studied, and co-occurrence of point mutations on 16q have not been 

reported in any cancer type. In separate cohorts of LUSC and LUAD patients, patients with at least 

one non-synonymous mutation in any of 8 (LUSC) or 9 (LUAD) of these 16q genes were found to 

have experienced significantly poorer overall and progression-free survival. These survival differences 

are maintained in early-stage patients, highlighting the potential clinical utility of this mutation cluster.  

 

The mechanism by which 16qMC+ status differentiates survival requires further study. Although we 

identified 17 leader-specific mutated genes, only mutations on 16q could differentiate survival, 

whereas including all 17 genes showed no survival differences in LUSC and LUAD (Log-rank P=0.504 

and 0.380, respectively). The majority of 16qMC+ tumors contained only one 16qMC mutation, with 

no observed effects on expression for the majority of genes (Fig. S3.2). Although this was initially 

surprising, it is important to consider that the 16qMC was derived from rare and invasive leader cells; 

therefore the majority of early stage tumors with these mutations may not yet have a detectable effect 

on genome-wide expression. As the tumor progresses and metastasis occurs, we would predict that 

the downstream expression consequences of leader specific mutations would become more apparent. 
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Furthermore, point mutations could impact protein function without affecting gene expression. For 

example, we previously showed that a leader-specific mutation in ARP3, while not affecting mRNA 

expression in leader cells, conferred leader cell behavior when introduced into follower cells (104). 

 

Interestingly, in addition to LUSC and LUAD, 16qMC+ tumors also contained significantly elevated 

mutation counts in TCGA HCC, breast, colorectal, stomach, melanoma, and endometrial cancer 

cohorts (Fig. S3.4). This indicates that 16qMC+ status could result from a hyper-mutational state, such 

as microsatellite instability (MSI), in which the 16qMC genes are particularly susceptible to somatic 

mutations. MSI is observed in lung cancer (121, 122) albeit less frequently than other cancer types 

such as colorectal. However, our data show that 16qMC+ status correlates with survival even after 

stratifying patients by high and low mutation counts (Fig. 3.3), and thus additional work is needed to 

determine whether mutation count is contributing to the poorer survival among 16qMC+ patients. 

 

Using GSEA, genes differentially expressed between 16qMC+ and 16qMC- tumors are enriched in 

gene sets associated with metastasis and patient prognosis (116, 123-125). These data show that the 

16q mutation cluster can stratify high-risk patients through identification of a single point mutation 

among ten genes. By comparison, other larger-scale, expression-based gene sets, are not as easily 

translatable to patient care. Targeted sequencing of these ten 16q genes could represent a new strategy 

for preventing disease recurrence and improving survival in NSCLC, and potentially in HCC as well. 

Future studies will focus on prospective cohort analysis of early-stage NSCLC patients to better 

determine how reproducibly 16qMC+ status can differentiate survival. These results are observed 

across multiple NSCLC cohorts and extend to HCC; however, to better determine the potential 

clinical utility of 16qMC+ screening, next steps include prospective analyses in additional NSCLC 

cohorts using primary patient tissue. Additionally, the issue persists that a biopsy could miss rarer 
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subpopulations of cells (56, 117). Thus, sequencing of circulating tumor DNA through  liquid biopsies 

could provide a more complete picture of the tumor genome (126-128). By using SaGA to identify, 

isolate, and analyze rare leader cells to discover novel biomarkers, we have laid out an approach that 

could lead to more effective prognostic strategies.  
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Supplementary Information 

 

 

Figure S3.1. Comparison of mRNA levels of genes found to harbor leader- and follower-
enriched mutations. mRNA levels shown as log2(normalized counts+1). Expression of all 
seventeen genes with leader-enriched mutations, and all 18 genes with follower-enriched mutations, 
was found in both the leader and follower populations. 
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Figure S3.2. Variant allele frequency of 16qMC mutations and mRNA expression of 16qMC genes 
in TCGA cohorts. (A) Graph of percentages of samples with mutations in 1, 2, or 3 16q cluster genes. 
LUSC: n1 mutation = 48 (94.1%), n2 mutations = 3 (5.9%). LUAD: n1 mutation = 50 (86.2%), n2 mutations = 6 
(10.3%), n3 mutations = 2 (3.4%). (B-D) Variant allele frequency (VAF) of each identified 16q cluster 
mutation in patients from TCGA LUSC (B) and LUAD (C) cohorts. VAF defined as [# variant 
reads]/[#total reads] at a given locus. Bars show mean + standard deviation. Colors indicate copy-
number (diploid, shallow deletion, deep deletion, low-level gain, or amplification) at each mutation 
locus as reported by cBioPortal. (D-E) mRNA expression of 16qMC genes in 16qMC- and 16qMC+ 
tumors among LUSC (D) and LUAD (E) TCGA cohorts. ****P<0.0001 by one-way ANOVA with 
Sidak's multiple comparisons test. 
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Figure S3.3. Survival analysis by 16qMC+/- and TP53 mutation status in LUAD TCGA 
patients. (A) KM curves for OS and PFS of patients with TP53 mutant or TP53 wild-type (WT) 
tumors. Median OS for TP53 mut. vs. TP53 WT: 3.5 vs. 4.5 years. Median PFS for TP53 mut. vs. 
TP53 WT: 2.6 vs. 3.7 years. P values calculated by log-rank test. (B) KM curves for OS and PFS of 
patients stratified by both 16qMC+/- and TP53 mutant/WT status. Median OS for each group 
(years): 16qMC-/TP53 WT: 4.9; 16qMC+/TP53 WT: 3.0; 16qMC-/TP53 mut.: 4.0; 16qMC+/TP53 
mut.: 2.6. Median PFS for each group (years): 16qMC-/TP53 WT: 3.8; 16qMC+/TP53 WT: 1.4; 
16qMC-/TP53 mut.: 2.6; 16qMC+/TP53 mut.: 2.4. P values calculated by log-rank test with Tukey-
Kramer adjustment for multiple comparisons. NS = not significant. 
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  Figure S4. 16qMC+ status is associated with poorer survival in HCC and increased 
mutational burden in multiple cancer types. (A) Lollipop plots illustrating locations of point 
mutations in 16q cluster genes in TCGA HCC patients. Black dots depict truncations; gray dots depict 
missense mutations; red outlines depict driver mutations indicated by OncoKB and/or Cancer 
Hotspots. (B) KM curves for OS and PFS of 16qMC+ and 16qMC- TCGA HCC patients. Median 
OS: 5.1 years (16qMC-) vs. 2.1 years (16qMC+); median PFS: 3.4 years (16qMC-) vs. 0.4 years 
(16qMC+). (C) KM curves for OS and PFS of 16qMC+ and 16qMC- stage I and II TCGA HCC 
patients. Median OS: 6.9 years (16qMC-) vs. 2.9 years (16qMC+); median PFS: 3.0 years (16qMC-) 
vs. 1.4 years (16qMC+). (D) Quantification of total mutation count for TCGA  HCC cohort. Total 
mutation count defined as total detected number of non-synonymous mutations. ****P<0.0001 by 
two-tailed, unpaired Student's t-test. Bars show mean+standard deviation. (E) KM curves for OS and 
PFS of 16qMC- and 16qMC+  TCGA HCC patients with either high (>192) or low (<192) mutation 
counts. Median OS for 16qMC- vs. 16qMC+ HCC TCGA patients: 5.8 vs. 1.7 years (low mut. count); 
N/A vs. 2.6 years (high mut. count). Median PFS for 16qMC- vs. 16qMC+ HCC TCGA patients: 
1.8 vs. 1.3 years (low mut. count); 3.9 vs. 0.4 years (high mut. count). P values calculated by log-rank 
test. (F) Gene sets related to metastasis, recurrence, relapse, prognosis, or survival that were 
significantly positively- or negatively-enriched (FDR < 0.05) in GSEA of 16qMC+ tumors vs. 
16qMC- tumors within the TCGA HCC cohort. NES = normalized enrichment score. Dot size 
indicates the number of core enriched genes, while dot color indicates the proportion of total genes 
in the given gene set that are enriched in the 16qMC+ population. (G) Quantification of total 
mutation counts for TCGA  breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), 
stomach adenocarcinoma (STAD), skin cutaneous melanoma (SKCM), and uterine corpus 
endometrial carcinoma (UCEC) cohorts. *P<0.05, ****P<0.0001 by one-way ANOVA with Sidak's 
multiple comparisons test. Bars show mean+standard deviation. 
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Table S3.1. Leader- and follower-enriched gene mutations identified from H1299 cell line 

 
 
 
 
 
 
 
 
 
 
 
Table S3.2. Chromosome 16q mutations enriched in H1299 leader cells 
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Table S3.3. Association of common NSCLC driver mutations with 16q mutation cluster 
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Table S3.4: Tumor subtypes and treatment data for TCGA LUSC and LUAD cohorts 
 

 

 
d P-values calculated by chi-square or Fisher’s exact test. 
e LUSC tumor subtypes 2-4, and LUAD tumor subtypes 3-10, were combined for statistical analysis. 
f NOS: not otherwise specified 

   LUSC LUAD 

Covariate Statistic Group 16q cluster status P 
valued 

16q cluster status P 
value    

16qMC+ 
(N=51) 

16qMC- 
(N=424) 

 
16qMC+ 
(N=58) 

16qMC- 
(N=443) 

 

Tumor 
subtypee 

N (%) Lung Squamous Cell 
Carcinoma (NOS)f  

48 
(25.49) 

410 
(96.7)  

0.461    
  

Lung Basaloid 
Squamous Cell 

Carcinoma 

2  
(3.9) 

11 
(2.6) 

 
   

  
Lung Papillary 
Squamous Cell 

Carcinoma 

1 (2.0) 5 
(1.2) 

 
   

  Lung Small Cell 
Squamous Cell 

Carcinoma 

0 1 
(0.2) 

    

  Lung Adenocarcinoma 
(NOS) 

   43 
(74.1) 

269 
(60.2)  

0.057  

  Lung Adenocarcinoma, 
Mixed Subtype 

    11 
(19.0) 

 96 
(21.5) 

  

  Lung Acinar 
Adenocarcinoma 

    18 
(4.0) 

 

  Lung Bronchioloalveolar 
Carcinoma, Non-

Mucinous 

    1 
(1.7) 

18 
(4.0)  

  

  Mucinous (Colloid) 
Carcinoma 

    10 
(2.2) 

 

  Lung Bronchioloalveolar 
Carcinoma, Mucinous 

    5 
(1.1) 

 

  Lung Micropapillary 
Adenocarcinoma 

   1  
(1.7) 

2 
(0.4)  

  

  Lung Papillary 
Adenocarcinoma 

   1  
(1.7) 

20 
(4.5)  

  

  Lung Solid Pattern 
Predominant 

Adenocarcinoma 

   1  
(1.7) 

 4 
(0.9) 

  

  Lung Clear Cell 
Adenocarcinoma 

    2 
(0.4) 

 

  Lung Mucinous 
Adenocarcinoma 

     2 
(0.4)   

  

  Lung Signet Ring 
Adenocarcinoma 

    1 
(0.2) 

 

Neoadjuvant 
therapy 

N (%) No 51 
(100.0) 

420 
(98.4) 

>0.99 58 
(100.0)  

 444 
(99.3) 

 >0.99 

 
 

Yes 0 5 
(1.2) 

 
 0 3 

(0.7)  
  

Radiation 
therapy 

N (%) No 31  
(60.8) 

331 
(77.5) 

0.127  37 
(63.8) 

360 
(80.5)  

0.024  
  

Yes 8 
(15.7) 

44 
(10.3) 

 
12 

(20.7)  
49 

(11.0)  
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Table S3.5. Cox regression analysis for early-stage LUSC TCGA patients 

 
 
 
 
 
 
 
 
Table S3.6. Cox regression analysis for early-stage LUAD TCGA patients 
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Table S3.7: Patient characteristics for HCC TCGA cohort 

 
aHigh/low mutation count was defined by a cutoff of 192 mutations. 
bP-values calculated by ANOVA for numerical covariates and chi-square or Fisher’s exact test for categorical 
covariates. 
cP-values calculated by Kruskal-Wallis test for numerical covariates 
  

Covariate Statistic Group 16q cluster status P valuebc 
   16qMC+ (N=21) 16qMC- (N=339)  

Gender N (%) Female 5 (23.81) 114 (33.63) 0.353 
 N (%) Male 16 (76.19) 225 (66.37)  

      

Pathologic 
stage N (%) Stage I & II 14 (70) 237 (73.83) 0.706 

 N (%) Stage III & IV 6 (30) 84 (26.17)  

      

Mutation 
counta N (%) High mut. count 5 (23.81) 13 (3.93) <0.001 

 N (%) Low mut. count 16 (76.19) 318 (96.07)  

      

Age at 
diagnosis Median (min-max)  64 

(24-85) 61 (16-90) 0.295 

      

Histologic 
grade N (%) Low Grade (I and II) 14 (66.67) 209 (62.57) 0.707 

 N (%) High Grade (III and IV) 7 (33.33) 125 (37.43)  

      

Histologic 
subtype N (%) HBV or Combination 5 (26.32) 91 (28.26) 0.442 

 N (%) HCV or Combination 4 (21.05) 43 (13.35)  

 N (%) NBNC 3 (15.79) 86 (26.71)  

 N (%) HBV or HCV 1 (5.26) 6 (1.86)  

 N (%) Other 6 (31.58) 96 (29.81)  
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Table S3.8: Cox regression analysis for all-stage HCC TCGA patients 

 
 
 
Table S3.9: Cox regression analysis for early-stage HCC TCGA patients 

 
  

 Univariable analysis Multivariable analysis 

 Overall survival Progression-free 
survival Overall survival Progression-free 

survival 

Covariate Hazard ratio 
(95% CI) 

P 
value 

Hazard ratio 
(95% CI) 

P 
value 

Hazard ratio 
(95% CI) 

P 
value 

Hazard ratio 
(95% CI) 

P 
value 

16q cluster status 
(16qMC+ vs. -) 3.21 (1.45-6.28) 0.002 2.34 (1.07-4.46) 0.019 3.28 (1.10-9.78) 0.033 5.27 (1.57-17.67) 0.007 

         

Gender 
(Female vs. Male) 1.61 (0.99-2.60) 0.053 1.19 (0.79-1.77) 0.392 0.79 (0.34-1.83) 0.588   

         

Mutation count 
(High vs. low) 2.44 (0.90-5.39) 0.049 1.17 (0.39-2.68) 0.749     

         

Age at diagnosis 1.03 (1.01-1.05) 0.019 1.00 (0.98-1.01) 0.637 1.03 (1.00-1.06) 0.024   

         

Histologic grade 
(I/II vs. III/IV) 1.05 (0.64-1.71) 0.836 1.05 (0.70-1.54) 0.816     

 Univariable analysis Multivariable analysis 

 Overall survival Progression-free 
survival Overall survival Progression-free 

survival 

Covariate Hazard ratio 
(95% CI) 

P 
value 

Hazard ratio 
(95% CI) 

P 
value 

Hazard ratio 
(95% CI) 

P 
value 

Hazard ratio 
(95% CI) 

P 
value 

16q cluster status 
(16qMC+ vs. -) 2.50 (1.41-4.46) 0.002 2.07 (1.20-3.59) 0.009 3.35 (0.70-15.97) 0.129 1.97 (1.11-3.49) 0.020 

         

Gender 
(Female vs. Male) 1.25 (0.87-1.78) 0.23 1.08 (0.79-1.48) 0.640 1.15 (0.51-2.60) 0.736   

         

Pathologic stage 
(I/II vs. III/IV) 0.42 (0.29-0.61) <0.001 0.45 (0.32-0.62) <0.001 0.53 (0.26-1.08) 0.079 0.45 (0.33-0.63) <0.001 

         

Mutation count 
(High vs. low) 2.12 (1.03-4.36) 0.042 1.18 (0.55-2.52) 0.668     

         

Age at diagnosis 1.01 (1.00-1.03) 0.054 1.00 (0.98-1.01) 0.419 1.01 (0.99-1.03) 0.405   

         

Histologic grade 
(I/II vs. III/IV) 1.10 (0.77-1.59) 0.598 1.16 (0.85-1.58) 0.337     
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Chapter 4: Single-cell RNA-sequencing of lung cancer leader and follower cells reveals 
distinct mutational profiles and cancer stem cell-like gene expression patterns 

 
Brian Pedro, Manali Rupji, Bhakti Dwivedi, Janna K. Mouw, Jessica Konen, Jeanne Kowalski, Paula 

M. Vertino, Adam I. Marcus 
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4.1 Introduction 

Metastatic disease accounts for the vast majority of cancer-related deaths, and increasing evidence 

suggests that carcinomas – tumors of epithelial origin – rely upon collective invasion to successfully 

metastasize. These collective packs have been demonstrated through in vitro experiments, in vivo 

studies, as well as in human tissue samples, and they can contain specialized, phenotypically and 

genetically distinct leader and follower cells that cooperate to carry out invasion (3, 11, 13, 14). 

Through the SaGA platform, we have previously demonstrated that leader cells isolated from the 

H1299 non-small cell lung cancer (NSCLC) cell line are highly invasive and are able to pioneer invasive 

chains even when present as a rare population among follower cells (3). Furthermore, H1299 leaders 

and followers distinct in their epigenetics and gene expression profiles, and, importantly, we have 

shown that leaders and follower populations contain distinct gene mutations that may contribute to 

their specialized phenotypes (3, 27, 104, 129). Indeed, this phenomenon is not exclusive to the H1299 

cell line, as leader and follower cells have been identified across a variety of cellular processes and 

cancer types including breast, lung, and colorectal (11, 15, 24, 130, 131). 

 

Previous genetic analyses of SaGA-derived leaders and followers were performed via population-

based analyses, including microarrays, bulk RNA-seq, and methylation arrays. However, given the high 

degree of heterogeneity that exists within a single tumor population, these population-based analyses 

may fail to capture the variations between leader and follower cells. Recently, single-cell sequencing 

techniques have provided greater insight into the genetic variation and numerous subpopulations that 

exist within a single parental tumor population. While these studies have provided vast amounts of 

information detailing the complex genomic events that underly tumor formation and progression, 

these techniques are inherently lacking in phenotypic information, as a single cell cannot be further 
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examined subsequent to sequencing. Thus, when performing single-cell analysis on cells undergoing 

collective invasion, a process that is dependent on cooperation between phenotypically distinct cells, 

the ability to correlate each cell’s phenotype with its genetic profile is crucial.  

 

In this study, we present a novel approach to single cell analysis, adapting the SaGA platform to select 

and isolate cells actively undergoing collective invasion and immediately subject them to single-cell 

RNA-sequencing (scRNA-seq). Previously established leader- and follower-specific gene mutations 

(104) were used precisely label each single cell, enabling for the first time the combination of 

phenotypic, gene expression, and mutational analysis of single cells during active collective invasion. 

These analyses found that leader cells display cancer stem cell-like gene expression and tumor initiating 

capacity, and that TGFβ signaling may be important for leader-follower crosstalk, providing crucial 

new insights into the roles of these specialized cells in collective invasion and metastasis.  
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4.2 Materials and Methods 

 

SaGA platform and single-cell RNA-sequencing (scRNA-seq) 

Raw expression count data was filtered for low quality samples and genes using seurat R package (132). 

Samples were filtered by library size (e.g., <0.4M; n=85 and >4M; n=1), number of detected features 

(e.g., samples that do not contain >7000 expressed genes; n=5), and percentage of mitochondrial 

reads (>=20%; n=1). Filtering was also applied to remove lowly expressed genes, i.e., genes that are 

not expressed in all samples (n=10119), and genes that do not have the highest average reads per 

million (n=23093). The minimum average expression among the genes selected ranges from 0.40-

15000 (in RPM). The filtered data was normalized using scran R package (133) with minimum 20 

cluster sizes to identify the rescaling factor. Among the two duplicate genes with same exact gene 

names (MARCH1 and MARCH2), the copy of the gene with lowest fraction of zeroes and/or high 

variance was selected. The final log2 transformed normalized data included 23091 genes and 190 single 

cells. The distribution of the single cell populations included: Control (n = 20), Parental (n=65), 

Leaders (n= 53) and Followers (n= 52). The twenty control cells were excluded from the downstream 

analysis. Mitochondrial genes were regressed out to improve clustering analysis. 

 

Heterogeneity across all phenotypes was assessed using NOJAH’s GWH analysis pipeline (134). The 

top 6% most variable genes (i.e. the core gene set) were selected from the genome-wide data including 

all samples, using a combined variance, median absolute deviation (MAD) and IQR statistic. The 

heatmap of the core gene set was generated using row scaling, maximum distance and ward.D 

clustering. Consensus clustering was performed on the same core gene set using Canberra distance, 

complete clustering with 1000 iterations, 80% sample resampling and 100% gene resampling. Core 

cell set were identified after removing cells with negative silhouette widths based on the silhouette 
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plots for the identified clusters. The heatmap of the core cell set with core gene set was output using 

row based scaling, Canberra distance and ward.D2 clustering. Principle component analysis (PCA) 

and tSNE plots based on the phenotypes and clustering were created using the scater Bioconductor 

R package (135). 

 

Western blotting: 

Total cellular protein and secreted protein expression were assessed via Western blotting as previously 

described (63).  

 

Immunofluorescence: 

After 24-48 hours of spheroid invasion in Matrigel, gels were fixed with 4% paraformaldehyde for 30 

minutes at room temperature, followed by washing with 100mM glycine in PBS. Gels were blocked 

with immunofluorescence (IF) buffer (130mM NaCl, 7mM Na2HPO4, 3.5mM NaH2PO4, 0.2% Triton 

X-100, 0.05% Tween-20) with 5% goat serum for 1 hour at room temperature. Primary and secondary 

antibodies were diluted in IF buffer with 2.5% goat serum. Gels were incubated with primary 

antibodies at 4°C overnight, washed with IF buffer, incubated with secondary antibodies for 1 hour 

at room temperature, washed again with IF buffer, and stored in PBS at room temperature.  

 

 

Reagents and antibodies: 

Primary antibodies for Western blotting: TGF-β1 antibody (Abcam, cat. no. ab92486) was used at 

1:1000. GAPDH antibody (Cell Signaling, cat. no. 2118) was used at 1:30,000. Horseradish peroxidase-

conjugated secondary antibodies (Jackson ImmunoResearch) were used at 1:10,000 for Western 

blotting. 
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For immunofluorescence, JAG1 primary antibody (Cell Signaling, cat. no. 70109) was used at 1:500. 

Goat anti-Rabbit Alexa Fluor 568 secondary antibody (Thermo Fisher Scientific cat. no. A-11032) was 

used at 1:200. For actin staining, Alexa-Fluor 488 Phalloidin (Thermo Fisher Scientific cat. no. 

A12379) was used at 1:40. 

 

Recombinant human TGF-β1 (PeproTech cat. no. 100-21) was used at 10g/mL. SB-505124 (Cayman 

Chemical Company cat. no. 11793) was used at 1.0uM. 

 

3-D invasion assays, spheroid microscopy and image analysis: 

Spheroids were generated as previously described (63) and embedded in 2 mg/mL Matrigel (Corning 

cat. no. 356237) diluted in complete media. Images were taken at 0, 24, and in some cases 48 hours 

post-embedding at 4x using an Olympus CKX41 microscope.  

 

For immunofluorescence, spheroids were imaged using a Leica SP8 inverted confocal microscope, 

10x objective with 0.75x zoom. Invasive area and spheroid circularity were measured using ImageJ as 

previously described (3). 

 

In vivo experiments: NOD scid gamma (NSG) mice aged 8 weeks were injected in the right flank 

with either 1x106 cells suspended in 25% Matrigel in PBS. After approximately 12 weeks, mice were 

sacrificed and primary tumors, lymph nodes, lungs and blood were collected for 

immunohistochemical, immunofluorescent and RNA analyses. 
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Immunohistochemistry: Tissues from NSG mice were fixed with neutral buffered formalin, 

embedded in paraffin and microtome-sectioned at 5um. Hematoxylin and eosin staining was 

performed on paraffin sections, followed by imaging using an Olympus CKX41 microscope. 
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4.3 Results 

Isolation and single-cell RNA-sequencing (scRNA-seq) of collectively invading H1299 cells 

The SaGA technique (3) was modified for single-cell sequencing (Fig. 4.1). As previously described, 

spheroids comprised of H1299 NSCLC cells were embedded in Matrigel. Either leader cells or 

follower cells (initially defined by positioning within invasive chains) were highlighted via 405nm laser-

driven photoconversion of Dendra2 and, after matrix degradation, isolated via FACS. Single cells were 

deposited into 10ul RLT buffer in separate wells of 96-well plates (n=84 leader cells and 80 follower 

cells). It was also important to be able to compare cells located in the spheroid core to those found 

within invasive chains; therefore, in a third condition, termed parentals, single cells were randomly 

sorted via FACS into a 96-well plate (n=84 cells). Single H1792 NSCLC cells grown in 2-dimensional 

culture used as controls (n=10 cells per plate). After library preparation and next-generation 

sequencing, samples were filtered by library size, number of expressed features, and proportion of 

mitochondrial reads, resulting in n=52 leader cells, 53 follower cells, and 65 parental cells. The top 6% 

most variably expressed genes (i.e. the core gene set; n=1,155 genes) across all single cells were defined 

by a combined variance, median absolute deviation (MAD) and IQR statistic. Consensus clustering 

was performed on the core gene set using Canberra distance, complete clustering with 1000 iterations, 

80% sample resampling and 100% gene resampling. The core cell set was defined by removing cells 

with negative silhouette widths based on the silhouette plots for the identified clusters, resulting in 

n=105 cells across three core clusters (n=56 cells, cluster 1; n=18 cells, cluster 2; n=32 cells, cluster 

3) (Fig. 4.2.A, B). A tSNE plot was generated for the core cell set based upon the core gene set (Fig. 

4.2.C). 
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Figure 4.1. Adaptation of the SaGA platform for single-cell RNA-sequencing. Schematic of the 
SaGA platform (3) adapted for single-cell RNA-sequencing. Spheroids of Dendra2-expressing H1299 
NSCLC cells were embedded in Matrigel and allowed to invade for 24 hours. After photoconversion 
of leader or follower cells and degradation of Matrigel, single red fluorescent cells (or green 
fluorescent, in the parental condition) were sorted directly into lysis buffer in individual wells of 96-
well plates. Plates were frozen at -80C and subsequently processed for single-cell RNA-sequencing. 
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Figure 4.2. Assigned positional phenotypes do not correlate strongly with gene expression 
profiles. (A) Silhouette plots for all single cells (n=170) and core cells only (n=105) based upon core 
consensus clustering of the core set of most variably expressed genes (n=1,155). Cells with negative 
silhouette widths were removed to obtain the core cell set. (B) Heatmap based upon consensus 
clustering of the 105 core and 1,155 most variably expressed genes. (C) tSNE plot of single H1299 
cells based upon expression of the most variably expressed genes. tSNE clusters were determined by 
positioning of cells within the plot. (D) Composition of each core cluster and each tSNE cluster 
based upon assigned phenotypes of each single cell prior to isolation.  
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Given previous work defining the gene expression profiles of leader and follower cells, it was expected 

that the leader and follower cells, as defined by physical positioning within invasive chains prior to 

photoconversion, would cluster separately in scRNA-seq analysis, with some parental cells falling into 

each category. However, the three core clusters of cells contained mixed populations of leaders and 

followers: Cluster 1 contained 40% each of leader and follower cells, cluster 2 contained 33% leaders 

and 44% followers, and cluster 3 contained 12.5% leaders and 15.6% followers, with over 70% of cells 

coming from the parental group (Fig. 4.2.D). Given the lack of correlation between the core clusters 

and phenotypes, it was determined that a secondary method for defining cell clusters was necessary. 

The tSNE plot based upon the most variably expressed 1,155 genes was separated into 4 tSNE 

clusters, which more closely aligned with the assigned phenotypes for each cell: tSNE cluster 1 

contained 61% leader cells and 22% follower cells; tSNE cluster 2 contained 27% leader cells and 54% 

follower cells; and tSNE clusters 3 and 4 were mainly comprised of cells from the parental group (Fig. 

4.2.D). However, there was still a number of cells for which the assigned phenotypes did not align 

fully with the defined clusters, and we therefore sought to determine a more definitive method for 

labeling each cell. 

 
Labeling of single cells by leader- or follower-mutational profile 

One of the major limitations of single-cell sequencing is that the exact analyzed cells cannot be further 

studied to verify their phenotypes. However, as previously described in (104), H1299 leader and 

follower cell populations harbor distinct mutational profiles. Therefore, we explored whether these 

leader- and follower-specific mutations could be detected by scRNA-seq and used to genomically label 

each cell. We selected mutation loci from the list of leader- and follower-specific genes (104) and 

verified that they had sufficient coverage in the single-cell sequences. This left 5 leader-specific 

mutation loci, and 7 follower-specific mutation loci (Fig. 4.3.A). Interestingly, there was 95.9% mutual 

exclusivity between the mutational profiles on the single-cell level – that is, of the 171 cells with at 
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least one leader- or follower-specific mutation, only 7 cells (4.1%) had both (Fig. 4.3.A). In each of 

these 7 cases, the cell had a NADK mutation in addition to one or more leader-specific mutations. 

Given this finding, we next investigated whether the leader and follower mutation profiles also 

correlated with expression of leader and follower biomarkers, which have also been previously 

determined through bulk RNA-sequencing of the populations. We first re-labeled each cell in the most 

variable gene expression tSNE plot by its mutational profile – leader, follower, or unknown – and 

found that in tSNE clusters 1 and 4, 100% and 93% of cells, respectively, had a leader mutation profile 

(4.3.B, C). Among clusters 2 and 3, 89% and 93% of cells, respectively, had a follower mutation profile 

(Fig. 4.3.C). Thus, classifying each cell by its mutational profile resulted in much clearer correlation 

with overall gene expression than the positional labels assigned prior to cell collection. 

 

Next, the correlation between mutation profile and specific leader-follower gene expression markers 

was measured. Among the most differentially expressed leader cell markers from our previous bulk 

RNA-sequencing was MYO10, an unconventional myosin involved in filopodial elongation. 

Conversely, IL13RA2, a cell surface protein commonly characterized as a decoy receptor for IL-13, 

was among the clearest follower cell expression markers from previous analyses (27). Thus, we 

analyzed the expression of these two genes within each single cell comprising the four tSNE clusters. 

Clusters 1 and 4 had significantly increased expression of MYO10 compared to clusters 2 and 3, while 

the converse was true for IL13RA2 (Fig. 4.3.D, E). Thus, it was concluded that the leader and follower 

mutation profiles correlated strongly with leader and follower cell gene expression profiles, and thus 

these mutation profiles could be utilized to label each single cell as either a leader or follower in the 

single cell analysis. 
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  Figure 4.3. Mutational profiles correlate more strongly with gene expression than assigned 

positional phenotypes. (A) Mutation profile plot for n=171 single cells using previously identified 
H1299 leader- and follower-specific mutations (Zoeller, Pedro et al. 2019), with quantification of 
total cells containing exclusively leader mutations, exclusively follower mutations, or both. (B) tSNE 
plot from 4.XC with each cell labeled by its mutation profile from panel A. Leader mutational profile: 
>1 leader-specific mutation; Follower mutational profile: 0 leader-specific mutations and > 1 
follower-specific mutation; Unknown: 0 leader- or follower-specific mutations. (C) Composition of 
each core cluster and each tSNE cluster based upon mutation profiles. (D-E) Quantification of 
MYO10 expression (D) and IL13RA2 expression (E) for each tSNE cluster and for cells grouped by 
mutation profile. *P<0.05 by one-way ANOVA with Tukey’s multiple comparisons test; 
****P<0.0001 by two-tailed, unpaired t-test (for mutation profile groups) or by one-way ANOVA 
with Tukey’s multiple comparisons test (for tSNE clusters).  
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Leader and follower cells contain cycling and non-cycling populations in 3-D 

To determine the genes driving the formation of two separate leader and follower clusters in the gene 

expression tSNE plot, we performed GSEA for two groups: one comprised of tSNE clusters 1 and 

2, and the other comprised of tSNE clusters 3 and 4. Among the mostly highly enriched gene  

sets in tSNE clusters 1 and 2 were “GO_POSITIVE_REGULATION_OF_CELL_ POPULATION 

_PROLIFERATION”, and “GO_CELL_CYCLE” which included core enrichment of genes 

including CCNA2/B1/B2, CDK1, and Ki-67, suggesting that tSNE clusters 1 and 2 represented more 

actively proliferating populations (Fig 4.4.A). By contrast, tSNE clusters 3 and 4 were not enriched 

for cell cycle or proliferation gene sets; in addition, it is notable that tSNE clusters 3 and 4 contained 

a higher proportion of cells initially derived from the parental population (Fig. 4.2.D). This was the 

only population in which cells may have been located in the core of the spheroid, and thus may have 

been more hypoxic. Indeed, tSNE clusters 3 and 4 showed enrichment of gene sets including 

“GO_CARBOHYDRATE_TRANSPORT” and 

“GO_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS” which included core 

enrichment of HK2, INSR, and DDIT3, genes reported to be hypoxia-inducible (136-138) (Fig. 4.4.B). 

Furthermore, prolonged hypoxia is known to induce cell cycle arrest (139); thus, tSNE clusters 3 and 

4 are consistent with cells that were localized to the core of the spheroid, and were thus more hypoxic 

and less proliferative. This also suggests that some cells with leader mutation and gene expression 

profiles are slower to emerge from the core of the spheroid; however, it is possible that these cells 

would have emerged to lead out invasive chains if invasion were allowed to proceed longer. 

 

Leader cells have a cancer stem cell-like gene expression profile 

After labeling each cell by its mutation profile, GSEA was performed on the leader (n=61) and 

follower (n=95) populations to determine which biological processes may be differentially regulated.  
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Figure 4.4. Leader and follower cells contain cycling and non-cycling populations in 3-D. (A) 
GSEA plots for selected gene sets among the topmost enriched in combined tSNE clusters 1 and 2. 
Shown is tSNE plot from Fig. 4.2C with each cell labeled by high (defined as [log2 (normalized 
counts+1)]>2) or low (defined as [log2 (normalized counts+1)]<2) expression of Ki-67. (B) GSEA 
plots for selected gene sets among the topmost enriched in combined tSNE clusters 3 and 4. Shown 
is tSNE plot from Fig. 4.2C with each cell labeled by high (defined as [log2 (normalized 
counts+1)]>3.5) or low (defined as [log2 (normalized counts+1)]<3.5) expression of INSR. NES: 
normalized enrichment score defined by (clusters 1 & 2) vs. (clusters 3 & 4). 
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Among the top 30 most-enriched gene sets in the leader group were 10 related to regulation of 

differentiation, development, and morphogenesis – indicative of a more stem cell-like population (Fig. 

4.5.A). By contrast, only one gene set related to development was enriched in the follower group, and 

it indicated positive, rather than negative regulation of development (Fig. 4.5.A). To further probe the 

possibility that leader cells harbor a more cancer stem cell-like expression profile, we compared 

expression of 195 stemness-related genes between the two groups. Of those 195 genes, 87 were 

significantly differentially expressed: 42 were higher leaders, and 45 were higher in followers (Fig. 

4.5.B). Notably, among those genes higher in leaders were ALDH1A3, a common lung cancer stem 

cell (CSC) marker, and JAG1 and NOTCH1, members of the Notch pathway reported to promote 

CSC survival and self-renewal (Fig. 4.5.B). To determine the potential functional role of these genes 

in each group, we performed a PANTHER analysis to determine which pathways and biological 

processes were represented. Significantly overrepresented pathways among the leader stemness-

related genes were TGFβ, Wnt, and Notch signaling, as well as angiogenesis, while the most 

significantly overrepresented biological process was negative regulation of differentiation (Fig. 4.5.C, 

D). Among the follower stemness-related genes there was also significant overrepresentation of TGFβ 

signaling but a lack of canonical stemness-related pathways, and the most significantly overrepresented 

biological process was positive regulation of differentiation (Fig. 4.5.C, E). Taken together, these data 

suggest that followers are expressing genes that serve to promote differentiation, while leaders express 

genes that could help to maintain a more stem-like phenotype. 

 

Leader cells display tumor initiating capacity 

To test the hypothesis that leader cells are a cancer stem cell-like population, self-renewal capacity as 

measured through a 3-D in vitro colony formation assay (Fig. 4.6.A). Briefly, single H1299 parental, 

leader, and follower cells were embedded in 100% Matrigel and colony formation was quantified after  
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Figure 4.5. Leader cells have stem cell-like gene expression. (A) Graph of top 30 most enriched 
gene sets in followers and leaders, as defined by each cell’s mutation profile. Gene sets were derived 
from the C5: GO Biological Process Ontology collection from MSigDB. (B) Volcano plot of 
stemness-related genes (n=195 genes). P values were determined using multiple t-tests with the 
Holm-Sidak method. (C) PANTHER pathway analysis of stemness-related genes with significantly 
increased expression in leaders (n=43 genes) and in followers (n=45 genes). (D-E) PANTHER 
biological process gene ontology analyses of stemness-related genes significantly increased in leaders 
(D) and followers (E). 
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Figure 4.6. Leader cells display tumor-initiating capacity. (A) Representative images and 
quantification of # of colonies per well (n=3 wells) and average colony diameter from in vitro 3-D 
colony formation assay. *P<0.05, **P<0.01 by one-way ANOVA with Tukey’s multiple comparisons 
test. (B) Quantification of primary tumor volume resulting from flank injections of the listed cell 
populations in NSG mice. L+F mix includes a 1:1 mix of each cell type. n=5 mice per group. 
**P<0.01 by one-way ANOVA with Tukey’s multiple comparisons test. (C) Quantification of 
metastatic foci in the lungs of mice from panel G; micro metastases: <20 cells; macro metastases: 
>20 cells. (D) Representative immunohistochemistry images of sections taken from the lungs of mice 
from panels B-C. Blue outlines indicate micro or macro metastatic lesions.     
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14 days. Leader cells formed numerous large colonies, indicating they can function as tumor initiating 

cells. By contrast, follower and parental cells formed very few colonies, suggesting they lack tumor 

initiating capacity Fig. 4.6.A). To further evaluate the tumor initiating capacity of these cell populations 

in vivo, each separate population, plus a mixed population of leader and follower cells, was injected 

into the flank of NOD/SCID mice. After 12 weeks, mice were sacrificed and primary tumor volume 

was measured. The parental, leader and leader/follower mixed populations were able to form 

substantial primary tumors, while the follower population formed significantly smaller primary tumors 

(Fig. 4.6.B). Metastatic foci at the lung were also quantified; both macro- and micro-metastases 

(defined as tumor foci containing >20 or <20 cells, respectively) were observed for the parental and 

leader/follower mixed populations, while leaders only formed micro-metastases, and followers 

formed no metastatic foci (Fig. 4.6.C, D). These data suggest that leaders alone may be capable of 

forming primary tumors, but they may require the presence of follower cells to promote secondary 

tumor-initiating capacity. 

  

TGFβ crosstalk between leaders and followers regulates tumor initiating capacity 

Recent evidence has shown that CSCs exhibit differential primary versus secondary tumor initiating 

capacity, and that these potentials are modulated by TGFβ signaling (140). Furthermore, TGFβ 

signaling was enriched among the groups of stemness-related genes expressed in both leaders and 

followers (Fig. 4.5.C); thus, we determined whether TGFβ crosstalk between leaders and followers 

could modulate leader cell tumor initiating capacity. We first analyzed expression levels of TGFβ 

pathway components from scRNA-seq, finding that followers express significantly higher levels of 

TGFB1, while leaders express higher levels of TGFBR1, one of the main receptors for TGFβ (Fig. 

4.7.A). Furthermore, followers showed higher levels of TGFβ1 protein in both whole cell lysates and 

secreted media compared to leaders (Fig. 4.7.B). Other TGFβ signaling components differentially 
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expressed between leaders and followers included TGFB2, which was somewhat higher in leaders, 

and LTBP1/LTBP4, genes encoding latent TGFβ binding proteins, which were significantly higher 

in followers. Numerous members of the TGFβ-related BMP signaling pathway were differentially 

expressed, including upregulation of BMP6, BMPR2, SMAD7/8, and ID2/3/4 (which are BMP target 

genes) in leaders, and upregulation of the BMP receptors ACVR1 and ACVR2A in followers (Fig. 

S4.1).  

 

To determine whether leader cell self-renewal capacity was affected by TGFβ signaling, the 3-D in 

vitro colony formation assay was repeated using leader cells plus 1) DMSO, 2) 10µg/mL TGFβ1 alone, 

3) 10µg/mL TGFβ1 plus 1.0uM SB-505124 (a selective TGFβ-R1 antagonist), or 4) 1.0uM SB-505124 

alone in serum-free RPMI 1640 media. At day 15, no significant difference was observed in the colony 

number for conditions 1-3, but significantly more colonies were observed with SB-505124 alone (Fig. 

4.7.C). Additionally, the addition of TGFβ1 led to a modest increase in colony size that was not 

reduced by the addition of SB-505124; however, addition of SB-505124 alone resulted in significantly 

smaller colonies than the other three conditions (Fig. 4.7.C). Together, these data indicate that 

blocking TGFβ1 from binding to TGFβ-R1 on leader cells affects tumor initiating capacity, leading 

to more numerous, smaller colonies, while addition of extra TGFβ1 enhances tumor initiating capacity 

as evidenced by the larger average colony size. This data also mirrors the observations at the metastatic 

site in the previous in vivo experiments (Fig. 4.6.D); if followers are considered a source of TGFβ1 for 

leader cells, then only when this follower-produced TGFβ1 is present at the secondary site alongside 

leaders are they able to form large metastatic lesions. 
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Figure 4.7. TGFβ drives leader-follower cooperativity and increases collective invasion. (A) 
Quantification of TGFB1 and TGFBR1 expression between leaders and followers, defined by each 
cell’s mutational profile. **P<0.01, ****P<0.0001 by unpaired, two-tailed t-test. (B) Western blots 
showing expression of TGF-β1 protein in both whole-cell lysates (WCL) and conditioned media for 
H1299 parental, leader, and follower cell populations cultured in 2-D. Densitometry quantification is 
listed. (C) Representative images and quantification of # of colonies per field (n=2-3 fields across 
N=wells per condition) and average colony diameter from in vitro 3-D colony formation assay. 
*P<0.05, ****P<0.0001 by one-way ANOVA with Tukey’s multiple comparisons test. (D) 
Representative images of 3-D invasion assay for H1299 parental, leader, follower or mixed 
leader+follower cells plus either DMSO, TGF-β1 (10µg/mL), TGF-β1 (10µg/mL) plus the TGFβR1 
inhibitor SB-505124 (1uM), or SB-505124 (1uM) alone. Scale bar: 100um. (E) Quantification of 3-D 
invasion assays from panel D. Invasive area and circularity normalized to DMSO control for each 
condition. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 by two-way ANOVA with Tukey’s 
multiple comparisons test. (F) Immunofluorescence of spheroids from panel D stained for actin 
(Phalloidin, green), and JAG1 (red).  
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  Figure 4.8. TGFβ induces expression of JAG1. Immunofluorescence of spheroids from 4.7.D 

stained for actin (Phalloidin, green), and JAG1 (red).  
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TGFβ signaling is important for cooperative invasion 

As leader-follower cooperativity is also important during collective invasion, and TGFβ has been 

reported to promote a more mesenchymal, invasive phenotype in cancer cells, we tested the effects of 

TGFβ modulation using a 3-D invasion assay (Fig. 4.7.D). Leader cell spheroids showed no change in 

invasive area or circularity upon addition or inhibition of TGFβ (Fig. 4.7.E). However, follower cell 

spheroids showed significantly increased invasive area and decreased circularity (an indication of more 

chain-like vs. sheet-like invasion) upon addition of TGFβ1, and this effect was maintained even with 

addition of SB-505124 (Fig. 4.7.E). Parental spheroids also become more invasive and more chain-

like when TGFβ1 was added; however, only in parental spheroids did SB-505124 alone decrease 

invasion compared to control (Fig. 4.7.E). This indicates that leaders and followers utilize TGFβ 

signaling to cooperative during collective invasion, and interruption of this crosstalk thus inhibits 

invasion. SB-505124 treatment did not affect invasion of leader or follower cells alone, further 

suggesting that TGFβ signaling is only important for invasion when the two populations are mixed. 

It is also notable that addition of TGFβ1 to followers is sufficient to induce chain-like invasion, as 

followers are a poorly invasive population that typically only displays sheet-like invasion with few 

chains. To test whether TGFβ1 was inducing expression of leader cell genes, we performed 

immunofluorescence staining for JAG1, a leader cell expression marker identified from both bulk 

RNA-seq and scRNA-seq. We found that addition of TGFβ1 increased JAG1 expression in followers 

as well as leaders, despite leaders’ already expressing high levels of JAG1 at baseline (Fig. 4.8). SB-

505124 blocked the ability of TGFβ1 to induce JAG1 expression, and in leader cells, SB-505124 

treatment alone further decreased JAG1 expression from baseline (Fig. 4.8), suggesting that TGFβ 

may be important for induction and maintenance of JAG1 expression in leader cells. 
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4.4 Discussion 

RNA-sequencing (RNA-seq), including single-cell RNA-seq (scRNA-seq), has traditionally been used 

to measure gene expression; however, recent studies have begun utilizing the sequence information 

from RNA-seq to identify genomic variants in a tumor cell population, or in the case of scRNA-seq, 

within individual cells (141, 142). Combining gene expression and variant analysis can thus provide a 

multi-dimensional view of the genomic state of a single cell. Indeed, single-cell sequencing has been 

increasingly employed in the exploration of intra-tumoral genetic heterogeneity across numerous 

cancer types, often revealing numerous distinct subpopulations that have evolved within a single 

tumor (143-147). However, a major drawback of single-cell sequencing is that the analyzed cells cannot 

be subsequently followed to determine correlations between genetic profiles and phenotypes. This is 

especially important when considering collective cancer invasion, which depends upon cooperation 

between phenotypically distinct cell types often termed leaders and followers (3, 11). To address this, 

we adapted the SaGA platform (3) to precisely select, and subject to scRNA-seq, single H1299 leader 

and follower cells directly from collective invasion packs. Utilizing our previous analyses of H1299 

leader and follower populations, we had the unique advantage of previously defined expression and 

mutational markers that allowed for the to precise labeling of each single cell in our analysis. This 

genomic labeling enabled, for the first time, a robust examination of the genetic profiles of individual 

leader and follower cells that were actively participating in collective invasion.  

 

Our results demonstrated that genetically distinct cell populations exist within the H1299 cell line. 

Importantly, it was found that previously identified leader and follower mutation profiles are mutually 

exclusive on the single-cell level, and that these mutations correlate strongly with leader and follower 

cell gene expression markers. Mutations represent more permanent changes in the genome of a cell, 

and are thus a more robust marker than gene expression, which can vary based upon the context in 
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which it is measured. Mutational labeling of single cells in this analysis revealed a number of novel 

findings. Firstly, it must be noted that the user-defined positional phenotypes that were assigned 

during initial cell selection did not perfectly correlate with leader-follower genomic markers. This is 

likely due to the dynamic process of collective invasion; a cell isolated from farther back in a chain 

may appear to be a follower, but actually have the capacity to eventually move forward and lead its 

own chain. Furthermore, we found that there exist cycling and non-cycling populations of both leaders 

and followers. The majority of non-cycling leaders and followers were actually isolated from the 

control condition, which could have included cells from the spheroid core; thus, we hypothesize that 

the hypoxic environment of the core led to inhibition of the cell cycle in these cells.  

 

When comparing the gene expression profiles mutationally-labeled groups of individual leader and 

follower cells through GSEA, we discovered that, importantly, leader cells are enriched for gene sets 

related to processes including development, differentiation, and morphogenesis, suggesting they could 

be a more cancer stem cell-like population. Indeed, subsequent in vitro and in vivo experiments showed 

that leaders display increased tumor initiating capacity. This could represent an important new role for 

leader cells in the metastatic cascade, where they could drive secondary tumor formation in addition 

to facilitating collective invasion. Only recently have cancer stem cells been implicated as displaying 

leader cell behavior (32, 148), and this hypothesis thus warrants further exploration. A potentially 

important distinction is that of primary versus secondary tumor-initiating capacity. In our in vivo 

experiments, leader cells alone can travel from the flank to the lung and form micro-metastases; 

however, only in the condition of mixed leader and follower cells do macro-metastases form in the 

lungs. This raises the possibility that leader cells alone show primary tumor initiating capacity, but 

require the support of follower cells to form robust secondary tumors. It is also possible that only a 

subset of leader cells are cancer stem cell-like; for example, ALDH1A3, an established cancer stem 
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cell marker, was completely absent in follower cells and was expressed in 29/61 (47.5%) of leader 

cells. Further studies, including side-population analysis through flow cytometry, are indicated to 

better understand stemness potential of different cells within the leader cell population. Unfortunately, 

there are few consensus markers for lung cancer stem cells (31), and thus there is greater reliance upon 

phenotypic studies to determine whether leader cells are indeed a stem-like population. 

 

Importantly, recent studies using breast cancer cell populations has shown that CSC populations 

switch between primary and secondary tumor initiating capacity through modulation of TGFβ 

signaling, where TGFβ inhibition promotes primary tumor formation but inhibits secondary tumor 

formation (140). Interestingly, our scRNA-seq analysis also revealed differential expression of TGFβ 

pathway components between leaders and followers during collective invasion, with leaders expressing 

higher levels of TGFβ-R1 and followers expressing (and secreting, as shown by Western blotting) 

higher levels of TGFβ1. In vitro tumor initiation experiments showed that addition of TGFβ1 

modestly increased colony size, while TGFβ-R1 inhibition decreased colony size but increased colony 

number. Thus, we hypothesize that follower cells may act as a source of TGFβ1 for leader cells, 

allowing for metastatic tumor growth. Further in vivo experiments will use fluorescently labeled cells 

to determine which cell types (leaders, followers, or both) comprise the secondary tumors, and 

different mixing conditions will explore the lowest percentage of follower cells needed to support 

secondary tumor growth. Furthermore, scRNA-seq analysis indicated upregulation of other 

components of the TGFβ and BMP signaling pathways, suggesting there is potentially complex TGFβ 

crosstalk between leaders and followers. 

 

TGFβ has also been implicated as a driver of EMT and cancer invasion, a characteristic that was 

further supported by our findings; however, EMT is typically associated with single-cell invasion, 
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rather than collective invasion. We found that addition of TGFβ1 led to both single cell invasion and 

collective chain formation in H23 and H1975 NSCLC lines (Fig. S4.2). However, TGFβ stimulation 

led to increased collective invasion – without increasing single-cell invasion – among H1299 parental 

and follower cells, and significantly upregulated JAG1, a leader cell marker we previously identified, 

in both leader and follower cells. Importantly, inhibition of TGFβ signaling through SB-505124 had 

no effect on invasion of leaders or followers alone, while it significantly decreased collective invasion 

of parental H1299 cells. This is an indication that leaders and followers may communicate via TGFβ 

signaling during collective invasion, and that this signaling is important for invasion to proceed. 

Continued experiments using Western blotting and immunofluorescence will examine the protein 

expression of TGFβ pathway components within leaders and follower during collective invasion, as 

well as in vivo studies with modulation of TGFβ signaling and subsequent immunohistochemistry to 

examine effects on collective invasion. Furthermore, the effects of TGFβ modulation on both self-

renewal capacity and collective invasion will be explored in additional lung cancer cell lines and patient 

samples. 

 

There are a number of drawbacks to these studies, including the limitation of studying leader and 

follower cells from a single cell line. To more fully determine the applicability of these findings to lung 

cancer and collective invasion in general, the same experiments must be performed using additional 

cell lines, and ideally patient-derived organoids. Additionally, our analysis was aided by our previous 

bulk RNA-seq analysis of H1299 leader and follower populations, which provided known mutational 

and gene expression markers. When applying this type of analysis to patient samples, it may not be 

cost- or time-effective to perform both bulk and single-cell RNA-seq. Ideally, continued single-cell 

sequencing studies will result in a database of expression and mutational markers that can be probed 

in scRNA-seq studies of new patient tumors; however, it remains to be seen if this is feasible. In 
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addition, our scRNA-seq analysis has implicated a large number of genes as being potentially involved 

in driving the leader cell phenotype, many of which warrant follow-up studies. One such example is  

CD70, which is significantly overexpressed in leader cells compared to followers (Fig. 4.5.B) and has 

previously been implicated in cancer cell stemness and increased invasion (149, 150). Indeed, when 

we sorted CD70+ and CD70- cells from four different lung cancer cell lines, we found increased 

invasiveness and tumor initiating capacity for H1299 CD70+ cells; however, the invasive phenotype 

and tumor-initiating capacity of CD70+ cells were more variable in the other lung cancer cell lines 

(Fig. S4.3). This highlights the difficulties of identifying broadly applicable biomarkers from a single 

cell line or primary tumor, as well as the necessity of building a database of biomarkers for rare cell 

types such as leader cells and cancer stem cells. Overall, by combining the SaGA platform with 

scRNA-seq, this study provides a novel pathway for precise genomic and phenotypic profiling of 

leader and follower cells in collective invasion, revealing new insights about the biology of these unique 

cell types and opening the door for new precision medicine techniques in cancer patient care. 
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Supplementary information 

 

 
 
 
 
 
 

Figure S4.1. Expression of TGFβ family members in H1299 leader and follower cells. Violin 
plots showing expression of TGFβ and BMP signaling-related genes from scRNA-seq analysis. 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 by two-way ANOVA with Tukey’s multiple 
comparisons test.    
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  Figure S4.2. TGFβ drives invasion in H1975 and H23 NSCLC cells. Representative images of 

3-D invasion assay for H1975 and H23 cells plus either DMSO, TGF-β1 (10µg/mL), TGF-β1 
(10µg/mL) plus the TGFβR1 inhibitor SB-505124 (1uM), or SB-505124 (1uM) alone. Scale bar: 
100um. 
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Figure S4.3. Invasiveness and self-renewal capacity of CD70+ cells. (A) CD70+ and CD70- 
cells were sorted from four different lung cancer cell lines. (B) Phenotypes of CD70+/- cells for each 
cell line in 2-dimensional culture. (C) Representative images of 3-D colony formation in Matrigel for 
CD70+/- cells. (D) Representative images of 3-D spheroid invasion in Matrigel for CD70- cells 
alone, CD70+ cells alone, and a mix of 75% CD70- cells + 25% mCherry-CD70+ cells for each cell 
line. 
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Chapter 5: Conclusions and Future Directions 

 

5.1 Role of gene mutations in dissecting leader and follower cell biology 

Despite the substantial increase in recent years in studies focusing on leader and follower cells in 

collective cancer invasion, the vast majority have focused on gene expression or epigenetic changes, 

with virtually none specifically examining the role of gene mutations in the development of these 

phenotypes. This is likely due in part to the challenges of linking genetic profiling with a cell’s 

phenotype; however, through the SaGA platform, we have devised a mechanism by which leader and 

follower cells can be identified, isolated, and genomically profiled, even down to the single-cell level. 

Thus, we have an unprecedented window into the biological mechanisms underlying the emergence 

of leader and follower phenotypes during collective invasion, including mutations that could underlie 

the evolution of these cell types within a tumor population. This led to the discovery that within the 

H1299 cell line, there exist leader and follower cell populations that contain numerous mutually 

exclusive gene mutations. 

 

This finding presented a unique opportunity to probe the mechanisms of leader and follower cell 

behavior. Firstly, we sought to test whether these mutations were merely passengers, or if they could 

be active drivers of leader and follower cell phenotypes. Indeed, introduction of a single leader-specific 

mutation in the protein ARP3, a crucial component of the Arp2/3 complex that drives cell motility 

through actin dynamics, conferred leader-like capabilities upon follower cells, including invasiveness 

and pioneering chains of unmodified followers. This is a strong indication that gene mutations, and 

specifically the ARP3 K240R mutation, can in fact drive leader cell behavior; furthermore, these results 

continue to highlight the potential utility of searching for leader cell mutations in other cell lines,  
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Figure 5.1. Dissertation conclusions regarding leader- and follower-specific mutations. 
Chapters 2, 3, and 4 demonstrate that leader- and follower-specific mutations have roles as drivers 
as drivers of leader and follower cell phenotypes in collective invasion, as prognostic biomarkers 
for identification of high-risk NSCLC patients, and as precise genomic labels for leader and 
follower cells in single-cell analysis of collectively invading cancer cells. 
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cancer types, and patient samples as the search for targeted anti-metastatic therapy continues (Fig. 

5.1). 

 

The finding that ARP3 K240R promotes leader cell behavior suggests numerous avenues for future 

investigation. Firstly, as the ultimate goal of these experiments is to identify a strategy for targeting 

leader cells and thus inhibiting invasion and metastasis, it should be tested whether treatment with the 

small-molecule Arp2/3 inhibitor CK-666 (95) can inhibit invasion in vitro and metastasis in vivo, both 

using the H1299 cell line as well as others. Furthermore, through scRNA-seq, we have shown that 

leader- and follower-specific mutations are useful genomic markers; therefore, in future in vivo 

experiments, one could sequence for these mutations in both primary and secondary tumors, as well 

as CSCs and CSC clusters, as a means of tracking leaders and followers throughout the metastatic 

process. If the mutations identified from the H1299 cell line prove to be found in other cell lines and 

patient samples, the same mutations could be used in other contexts as well; however, the more likely 

scenario is that different mutations will be found in different samples; thus, it would be ideal to use 

the SaGA platform to begin building a database of known leader and follower mutations, thus 

increasing the likelihood of identifying mutations that are found across samples and tumors.  

 

 

5.2 Clinical implications of the leader-derived 16q mutation cluster 

The vast majority of leader and follower cell studies have thus far focused on dissecting their basic 

mechanisms and underlying biology. While this is crucial in order to ultimately develop targeted anti-

metastatic therapeutics, our data have shown that these markers, including leader-specific mutations, 

also have direct clinical utility as a prognostic biomarker. Specifically probing for mutations in a group 

of 10 genes on chromosome 16q identifies patients who experienced poorer overall and progression-
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free survival among cohorts of LUSC and LUAD patients (the two major types of NSCLC), as well 

as a cohort of HCC patients. Importantly, these mutations were predictive of survival even among 

patients diagnosed with earlier-stage disease. Furthermore, 16qMC+ tumors were enriched for gene 

expression sets associated with poor prognosis from previous large-scale sequencing studies. These 

data suggest that a targeted panel for these 10 genes could be feasibly used by clinicians to identify 

higher-risk, newly diagnosed NSCLC (Fig. 5.1).  

 

Prior to any clinical implementation of a 16qMC panel, additional clinical validation of the mutation 

cluster will be needed. As the analyses described here were performed retrospectively in publicly 

available patient cohorts, the first step will be to perform retrospective analyses using banked tumor 

tissue, and prospective analyses using newly-isolated patient tissue. The prospective analyses will be 

particularly informative, as they could elucidate both the efficiency with which the 16qMC panel can 

be applied, and eventually, its accuracy in stratifying patients as higher risk. However, prospective 

studies, especially those measuring survival, necessarily require long follow-up periods before 

sufficient data are obtained. Thus, it will be important to simultaneously continue validating this 

mutation cluster retrospectively, both using patient samples and additional public databases as they 

become available. 

 

Subsequent steps toward clinical implementation would include a clinical trial, in which patients would 

be stratified as 16qMC+ or 16qMC- upon diagnosis. Stage I NSCLC patients are typically treated with 

surgical resection, followed by either regular screening (if the removal is deemed complete), or 

additional therapy including radiotherapy and/or chemotherapy if removal is incomplete (6). 

Therefore, following surgical resection, the tumor tissue could be subjected to the 16qMC panel, and 

if found to be 16qMC+, those patients could be given either more frequent screening or adjuvant 
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chemotherapy or immunotherapy, followed by monitoring to measure disease progression/recurrence 

and overall survival. If it is found that 16qMC+ patients who receive additional screening or treatment 

do indeed have improved outcomes compared to those who only receive standard screening, then the 

16qMC panel could be approved as a standard prognostic test in the clinic. Immune checkpoint 

inhibitor (ICI) therapy could be an attractive adjuvant treatment option for 16qMC+ patients, as 

studies have shown mutational burden to be a useful biomarker in predicting response to ICI therapy 

(151-153), and our studies found that 16qMC+ tumors consistently have increased average mutational 

burden in NSCLC and across numerous other cancer types.  

 

One of the major potential complications with sequencing primary tumor tissue, however, is that there 

is a high likelihood of missing cell subpopulations, and certain mutations that are either rare, or simply 

located in other regions of the tumor. Therefore, an alternative approach to 16qMC sequencing could 

be to employ a liquid biopsy approach, in which blood is taken from the patient and circulating tumor 

DNA (ctDNA) is sequenced (127). This would also provide the advantage of being minimally invasive, 

without requiring actual tumor tissue. However, it remains to be seen whether sufficient ctDNA could 

be obtained to detect 16qMC mutations.  

 
 

5.3 Characterization of leader cells as a cancer stem cell-like population and the role of TGFβ 
signaling in leader-follower cooperativity 

By applying mutational labels to individual cells in our scRNA-seq analysis, we were able to dissect 

the gene expression profiles of leader and follower cells to a degree that was not previously possible 

(Fig. 5.1). Importantly, this led to the discovery that the gene expression found in leader cells is similar 

to what might typically be seen in a cancer stem cell-like population, with enrichment of gene sets 

related to development, morphogenesis, and differentiation. This also makes sense when considering 
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that Notch signaling has been previously associated with H1299 leader cells – Notch signaling, and in 

particular JAG1, a leader cell expression marker (27), are commonly implicated in regulating cancer 

cell stemness (154, 155). Furthermore, leader cells have been found to be highly chemo-resistant 

compared to followers (28), another property typically attributed to stem-like cells (156). Our in vitro 

and preliminary in vivo experiments confirmed that leaders possess increased self-renewal and tumor-

initiating capacity, which further supports the possibility of leaders being a CSC population. It is also 

possible that only a subset of leader cells is stem-like, as some stem cell-associated markers such as 

ALDH1A3 are only expressed in a fraction of leader cells.  

 

Our data also support the possibility that leaders have differential primary vs. secondary tumor-

initiating capacity. Leader cells alone could form robust primary flank tumors and successfully form 

lung micro-metastases, but macro-metastases were only observed in the conditions with mixed leaders 

and followers. Given previous studies implicating TGFβ signaling modulation as a switch between 

primary and secondary tumor-initiating cells, and our data showing that followers express and secrete 

higher levels of TGFβ, continued experiments will focus on determining whether follower cells can 

1) act as a source of TGFβ for leader cells, and 2) promote secondary tumor formation by leader cells. 

To address this question, in vivo experiments will use fluorescently labeled leader cells mixed in 

different proportions with followers. This will reveal whether secondary tumors are comprised of 

leader cells alone, followers alone, or a mixed population, and also whether TGFβ crosstalk is 

occurring at the secondary site. 

 

Previous studies examining clonality of metastatic lung tumors in a mouse model of breast cancer 

have demonstrated that these metastases typically arise from seeding of polyclonal tumor cell clusters 

and thus develop into polyclonal tumors (14). Therefore, we could expect to see polyclonal metastases 
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as well; however, this could arise from expansion of both leader and follower populations, or from 

differentiation of a stem cell-like leader population. Fluorescent labeling of leader cells should help to 

answer this question – if there are subpopulations in the metastatic tumor that arise from a leader cell 

stem-like population, they would be expected to maintain this fluorescence, whereas cells arising from 

follower cells would not. 

 

The finding that leader cells are potentially a tumor-initiating population has significant clinical 

relevance. Previous research into leader and follower cells has been focused on their functions during 

collective invasion; however, if leader cells are also responsible in some cases for colonization and 

tumor formation at the secondary site, it would mean that leader cells play a crucial role during multiple 

steps of the metastatic cascade. Development of targeted anti-leader cell therapeutics would also 

become even more important, as inhibiting leader cells could potentially halt both collective invasion 

(i.e. early steps metastasis) and secondary tumor formation (i.e. late steps of metastasis). In addition, 

our in vivo data indicate a role for anti-follower cell therapeutics, specifically for inhibiting secondary 

tumor formation, as leader cells can only form micro-metastases in the absence of follower cells. It is 

therefore possible that targeting follower cells could prevent them from signaling to leader cells 

through TGFβ or other mechanisms, resulting in diminished formation of macro-metastases. 

Alternatively, if TGFβ crosstalk is indeed a mechanism by which leaders and followers communicate, 

inhibitors of TGFβ signaling could be employed. As TGFβ has been shown to act as a tumor 

suppressor during early tumorigenesis but promote metastasis at later stages, it has potential as an 

therapeutic target but must be approached carefully (157). Although there are currently no FDA-

approved TGFβ inhibitors, there are a number of agents currently in Phase I, II and III trials (157). 
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The next phase of this research will also necessarily include expansion of the SaGA platform into 

other cell lines, cancer types, and patient-derived organoids. The latter is particularly important for the 

eventual application of SaGA toward developing personalized therapeutics; it needs to be proven that 

SaGA can be used to isolate phenotypically distinct cells from a patient-derived organoid, and 

subsequently subject them to genomic analyses to determine whether they express any currently 

targetable markers. In order to significantly impact patient, care these steps need to be undertaken 

expeditiously yet in a highly reproducible manner. In addition, it would be highly beneficial in the 

meantime to construct a database of most common potential leader and follower driver mutations, 

especially those for which targeted therapies are available. Although metastatic disease still accounts 

for the vast majority of cancer-related mortality, survival rates across all cancer types, especially 

including lung cancer, continue to climb (5); continuing to dissect the mechanisms leader and follower 

cell cooperation during metastasis will help ensure that this upward trend continues.  
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