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Abstract

Speech-Based Detection of Cognitive Impairments in Older Adults: Longitudinal
Validity Analysis and Cross-Lingual Generalization

By Iris Zheng

Early detection of Alzheimer’s Disease (AD)—the most common form of de-
mentia—and its prodromal stage, Mild Cognitive Impairment (MCI), is crucial for
enabling timely interventions and effective care planning. However, current diagnostic
practices—relying on clinical assessments, neuropsychological testing, and biomarker
analysis—are often costly, time-intensive, and inaccessible, especially in underserved
or resource-limited settings. These limitations have driven the development of speech-
based screening tools, which offer the advantages of being scalable, non-invasive, and
accessible. Most importantly, speech is highly sensitive to early neurodegenerative
changes, often reflected in fluency and acoustic patterns. However, key challenges
remain regarding the generalizability and stability of such models over time and across
diverse linguistic populations.

This dissertation addresses these challenges in two parts. The first part focuses
on the longitudinal analysis of speech-based models to assess their ability to track
cognitive changes over time. As part of this, it explores the use of both hand-crafted
and deep learning-derived speech features—encompassing acoustic and linguistic
aspects—for pre-screening MCI. It also examines psychological well-being measures,
such as loneliness and neuroticism, as complementary indicators of cognitive status.
Results show that speech-based models remain stable over time, underscoring their
potential for continuous cognitive monitoring. Additionally, speech features offer
moderate utility for MCI pre-screening, and well-being measures have limited predictive
value.

The second section turns to the challenge of cross-lingual generalizability, a key
barrier in global dementia screening efforts. To address this, the study analyzes speech-
based AD detection models across English, Greek, and Slovak datasets, evaluating
their robustness and adaptability in multilingual settings. Multiple transfer learning
techniques are applied to enhance the transferability of models trained in one language
to others. Training approaches that leverage multilingual data, along with fine-tuning,
yield strong results; however, transferability varies across language pairs, highlighting
the complexity of cross-lingual generalization. These findings highlight both the
promise and the limitations of current transfer learning approaches, emphasizing
the need for more sophisticated techniques that can bridge linguistic boundaries in
speech-based cognitive screening.

Together, these investigations advance the development of speech-based tools for
early, accessible, and globally applicable cognitive impairment screening, while also
identifying key limitations and future directions for improving their robustness and
reach.
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Chapter 1

Introduction

Alzheimer’s Disease (AD) is the most common form of dementia, accounting for

approximately two-thirds of all dementia cases [1]. It is characterized by gradual

degeneration of neurons within the cerebral cortex and hippocampus [2], leading

to symptoms such as memory loss, behavioral changes, and cognitive deterioration.

Mild Cognitive Impairment (MCI) is a preceding condition of AD, representing a

transitional state between normal aging and dementia [3]. Since older adults with

MCI can still function independently in daily activities, early detection is crucial to

implement timely interventions to delay cognitive decline [4].

The diagnosis and assessment of MCI often require costly or invasive biomarker

evaluations. Neuroimaging techniques such as positron emission tomography (PET)

and magnetic resonance imaging (MRI), cerebrospinal fluid analysis by lumbar punc-

ture, and comprehensive neurological assessments are frequently used [5]. However,

these methods can be inaccessible due to high costs, limited availability, or patient

discomfort, as they require extensive evaluations by dementia specialists. In particu-

lar, 20 states in the United States (US) are considered ’dementia neurology deserts’,

significantly limiting access to screening for older adults at risk [6]. These challenges

highlight the need for innovative, accessible, and scalable approaches to prescreen and

1
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monitor disease progression effectively.

As a cost-effective pre-screening to diagnostic methods, speech-based digital

biomarkers have emerged as a promising tool in dementia research [5] due to its

sensitivity to early cognitive changes. MCI-related speech changes include early

lexical-semantic deficits, such as reduced conceptual richness and lower idea density

[7]. As disease progresses, individuals with AD may produce less meaningful speech,

often marked by increased hesitation and semantic paraphasias [8].

Despite their promise, the generalizability of speech-based biomarkers remains

an open challenge. Variability in speech patterns across individuals, time points,

and languages can significantly limit model performance. Longitudinally, the subtle

and evolving nature of cognitive decline complicates reliable prediction over time.

Cross-lingually, differences in linguistic structure and cultural expression hinder the

transferability of models trained in one language to another. These challenges raise

critical questions about the robustness and scalability of speech-based approaches for

dementia detection.

This thesis aim to answer two questions: 1) Can speech-based biomarkers track

cognitive impairment consistently over time? 2) Can models trained on one language

generalize to others for detecting AD from speech?

To answer these questions, this work employs longitudinal analysis to evaluate the

stability of speech biomarkers over time and applies domain-adaptation techniques to

test cross-lingual generalizability.

Thesis Statement

Speech-based biomarkers have the potential to support longitudinal and cross-lingual

detection of cognitive impairment.

This dissertation is organized as follow: chapter 2 synthesizes prior research on

speech biomarkers for cognitive impairment and AD, highlighting gaps in longitudinal

tracking and multilingual generalization. Building on this foundation, chapter 3
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investigates whether speech features can reliably track cognitive decline over time.

chapter 4 then tackles the challenge of cross-lingual adaptation, testing whether

models trained on one language generalize to others like Greek or Slovak. Finally,

chapter 5 unifies these threads, arguing that while speech biomarkers show promise

for both longitudinal and multilingual AD screening, their broader adoption requires

overcoming dataset biases and refining domain-adaptation techniques.



Chapter 2

Related Work

2.1 Speech Biomarker

Speech is increasingly recognized as a promising biomarker for the early detection

of cognitive impairment (CI) [9]. Researchers have explored two primary types of

speech-derived features to effectively harness this potential: acoustic and linguistic

features. Acoustic features, such as pitch, intensity, and spectral patterns, capture

how something is said. In contrast, linguistic features focus on what is said, examining

word choice, syntactic structure, and semantic coherence.

Paralinguistic features play a crucial role in this analysis. These non-verbal aspects

of speech—including voice quality, hesitations, laughter, and emotional tone—offer

valuable insights into speaker states like emotional well-being, cognitive effort, and

fatigue [10]. Prosodic elements, particularly pitch, intensity, speech rate, and pauses,

are especially informative. Research has consistently shown that individuals with

cognitive decline exhibit more frequent disfluencies and hesitations [11]. Additionally,

emotional prosody can serve as an early marker of cognitive impairment [12].

Previous studies have demonstrated the potential of these approaches. Khod-

abakhsh et al. [13] used prosodic features to detect AD from spontaneous speech

4
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using a private Turkish dataset, achieving over 80% accuracy. The development of

standardized acoustic feature sets like The Geneva Minimalistic Acoustic Parame-

ter Set (eGeMAPS [14]) has further advanced this field, providing robust tools for

quantifying vocal markers across clinical domains. Additionally, Haider et al. [15]

applied paralinguistic feature sets on the DementiaBank Pitt Corpus [16] and demon-

strated that purely acoustic features, extracted without transcription, can achieve

high classification accuracy.

Researchers have employed various machine learning techniques to classify cognitive

status based on these features. Support Vector Machines (SVM), Random Forests

(RF), and Extreme Gradient Boosting (XGBoost) have been particularly prominent

[5]. For instance, Bhat and Kopparapu [17] employed three binary random forest

classifiers to distinguish between healthy controls, MCI, and AD populations.

Other studies have leveraged both acoustic and linguistic features. For instance,

Roark et al. [18] incorporated pause-related features and measures of linguistic

complexity to classify MCI versus healthy controls using a private English dataset

based on a narrative recall task, achieving strong performance.

The emergence of deep learning has significantly transformed cognitive impairment

detection research, enabling more sophisticated approaches to feature extraction and

classification. Notable advances include:

1) Recurrent Autoencoders: Bertini et al. [19] introduced a classifier using a

recurrent autoencoder trained on log-mel spectrograms to learn compact audio repre-

sentations. This approach, enhanced with data augmentation, outperformed traditional

and deep learning baselines on the Pitt Corpus.

2) Hybrid Architectures: Liu et al. [20] proposed a hybrid neural network archi-

tecture combining CNNs for local context, BiLSTMs for global temporal modeling,

and attention pooling for classification. Using bottleneck features from a pre-trained

ASR model and masking-based augmentation, their model achieved state-of-the-art
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performance on the DementiaBank Pitt corpus without relying on transcriptions.

3) Transformer-Based Models: Recent research has leveraged self-attention mech-

anisms, with the Audio Spectrogram Transformer (AST) [21] showing promise for

general audio classification task, though specific AD-related predictions were not

reported.

Beyond architectural innovations, deep learning models have also been employed

as feature extractors. Haulcy and Glass [22] utilized acoustic (i-vectors, x-vectors)

and linguistic (e.g., word vectors, BERT embeddings) features with both classical

classifiers and neural networks (CNNs, LSTMs) on the ADReSS dataset [23]. Evaluated

independently, models trained on BERT embeddings achieved the best performance.

Self-supervised learning (SSL) approaches have also emerged as powerful tools.

Models like wav2vec 2.0 [24] and WavLM [25] have enabled rich, pre-trained audio

representations that could be used as feature extractor for audios. Chen et al. [26]

explored SSL models for AD using the ADReSS dataset, demonstrating that fine-

tuning wav2vec 2.0 and HuBERT—enhanced with multi-task learning and data

augmentation—significantly improves performance, achieving results comparable to

state-of-the-art baselines.

To address the interpretability challenges of deep learning, researchers have begun

developing more transparent models. Rodriguez-Salas et al. [27] introduced Forest-

Net, which maps decision trees into sparse multilayer perceptrons. Building on this

work, Perez-Toro et al. [28] adapted the approach for AD prediction, highlighting

interpretable rhythm- and duration-based speech markers.

While the advancements above have significantly improved predictive performance,

several critical gaps remain before speech-based models can be deployed in real-world

clinical or screening settings.
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2.2 Lack of Longitudinal Validity Analysis

First, the majority of existing studies focus on single-timepoint classification, often

using baseline data alone [29], which leaves open the question of whether speech

biomarkers maintain predictive validity as cognitive decline progresses over time.

Previous studies have employed baseline speech features to differentiate individuals

who experienced cognitive decline from those who remained stable [30, 31], but these

studies do not examine whether the same features remain predictive as cognition

changes. Moreover, cross-validation is often performed without controlling for speaker

identity, limiting insight into longitudinal, within-subject performance.

More recent research using voice assistant data collected over 18 months demon-

strated that incorporating historical speech data improved MCI detection accuracy

[32], suggesting that natural temporal variations in speech offer richer contextual

cues. This raises the question of the longitudinal validity of speech-based models for

continuous monitoring of cognitive decline.

2.3 Lack of Cross-lingual Generalization Analysis

Second, most frameworks are developed and validated in monolingual or language-

specific contexts, raising concerns about their cross-lingual generalizability, particularly

in global or multilingual populations.

Previous efforts in the field include the DementiaBank ADReSS-M Signal Pro-

cessing Grand Challenge [5], which focuses on transferring English-trained models

to Greek. Jin et al. [33] addressed the challenge of cross-lingual generalization by

developing an ensemble-based framework (CONSEN) that leverages disfluency and

pause features—shown to be more robust than standard acoustic embeddings like

wav2vec—achieving strong cross-lingual performance. Tamm et al. [34] employed

acoustic features (eGeMAPS) alongside demographic covariates in a mixed-batch train-
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ing approach using both English and Greek samples, achieving effective cross-lingual

adaptation with high accuracy. Chen et al. [35] found that hand-crafted paralin-

guistic features offered better cross-lingual generalization, outperforming linguistic

embeddings when English-trained models were applied to Greek speech.

Outside the Grand Challenge, Gosztolya et al. [36] demonstrated that temporal

speech features—such as articulation rate and pause patterns—can be reliably ex-

tracted using ASR systems trained in different languages, enabling cross-lingual MCI

detection without significant loss in performance.

Collectively, these studies suggest that language-independent features and trans-

fer learning techniques provide a promising direction for cross-lingual speech-based

detection of cognitive decline.

Cross-lingual transfer learning in NLP has shown strong potential in leveraging data

from high-resource languages to enhance performance in low-resource settings. For

example, Chen et al. [37] proposed a model that captures both language-invariant and

language-specific features through adversarial training and a mixture-of-experts archi-

tecture, enabling effective cross-lingual transfer for text classification tasks. Similarly,

Zhang et al. [38] applied language-adversarial training combined with bidirectional lan-

guage modeling to reduce language-specific biases in part-of-speech tagging, achieving

improved results across 14 languages. Recognizing the linguistic impairment related

to AD, Guo et al. [39] applied cross-lingual NLP techniques—combining BERT-based

contrastive learning with data augmentation—to improve Mandarin AD detection

using English data.

While prior studies have shown promising results in cross-lingual AD detection,

several gaps remain. First, most existing work focuses on a single language pair,

limiting insights into how well models generalize across a broader range of linguistic

settings. Inclusion of more diverse languages is essential to build equitable and globally

applicable tools. Second, although NLP techniques have proven effective in textual
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cross-lingual tasks, their utility for improving speech-based AD detection remains

underexplored.

To address these limitations, this thesis investigates the generalizability of speech-

based models along two critical and underexplored dimensions: (1) their ability to

track cognitive status longitudinally, using speech collected over multiple timepoints

from same individuals, and (2) their capacity for cross-lingual adaptation, leveraging

transfer learning techniques to extend performance across different languages. By

focusing on these dimensions, this work aims to move speech biomarkers closer to

practical, scalable, and globally accessible tools for early detection and monitoring of

cognitive impairment.



Chapter 3

Longitudinal Validity Analysis for

Cognitive Impairment with Speech

and Psychological Well-being

Patterns

3.1 Introduction

Alzheimer’s Disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI),

remain pressing public health concerns, affecting millions worldwide [40]. Early

detection is essential for enabling timely intervention and improving patient outcomes

[41]. Although clinical evaluations, neuropsychological assessments, and biomarker-

based diagnostics remain the gold standard, their high cost, invasiveness, and limited

accessibility have motivated the development of scalable, non-invasive screening tools.

Speech analysis has emerged as a promising, accessible, and naturalistic tool for

assessing cognitive function, as speech production gradually degrades from healthy

aging to MCI and AD [42]. This makes it well-suited for detecting early signs of

10
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cognitive decline. However, its sensitivity raises an question of whether speech-based

models reliably generalize as cognitive states change over time. The stability of

the relationship between speech features and cognitive function remains unclear, yet

understanding this temporal dynamic is key to effectively using speech for long-term

dementia screening and monitoring.

Beyond speech characteristics, psychological well-being (PWB) may offer com-

plementary information for cognitive impairment detection. Cognitive impairment

severity is linked to self-reported quality of life, with cognitive complaints associated

with lower well-being, increased depression, anxiety, and perceived stress [43]. Individ-

ual PWB profiles show varying prevalence of MCI, with those experiencing greater

social disconnectedness exhibiting higher rates of cognitive decline [44], while strong

social networks appear protective [45]. Personality traits further influence cognitive

trajectories, with higher conscientiousness and extraversion being protective against

dementia, while neuroticism increases susceptibility [46]. Depression also increases

dementia risk by 1.28 times [47], though this relationship varies with diagnostic criteria

and severity [48].

Given that speech can encode various psychological states [49], integrating PWB

measures into speech-based frameworks may enhance cognitive impairment detection

sensitivity.

To address these gaps, this work extends previous approaches by: 1) assessing

the longitudinal validity of speech biomarkers, specifically examining whether models

trained on baseline speech characteristics can generalize to the same participants

at their 6-month and 12-month follow-ups, 2) measuring the predictive power of

PWB scores for cognitive classification, evaluating whether these scores provide

complementary information to speech characteristics. By leveraging speech samples

from the same individuals across time, we assess whether models trained on baseline

data can generalize to future cognitive states. This evaluation provides insight into
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the stability of speech-based predictions and supports more personalized, longitudinal

monitoring.

3.2 Methods

3.2.1 Dataset

This study draws on data from the Internet-Based Conversational Engagement Clinical

Trial (I-CONECT) (NCT02871921) [50], a longitudinal trial investigating the effects

of social engagement on cognitive health in socially isolated older adults at risk of

cognitive decline. Participants were aged 75 or older and had either normal cognition

or Mild Cognitive Impairment (MCI) at baseline. Recruitment took place in Portland,

Oregon (primarily Caucasian participants) and Detroit, Michigan (primarily African

American participants).

To qualify as socially isolated, participants met at least one of the following criteria:

• Low social network score (≤ 12 on the 6-item Lubben Social Network Scale

(LSNS-6) [51]).

• Limited social engagement (≥ 30-minute conversations no more than twice a

week).

• Self-reported loneliness (”often” response on the 3-item UCLA Loneliness Scale

[52]).

Exclusion criteria included severe depressive symptoms (Geriatric Depression Scale

[53] (GDS) score ≥ 7) and a clinical diagnosis of dementia, which were made via a

consensus process involving neurologists and neuropsychologists, based on the National

Alzheimer’s Coordinating Center Uniform Data Set Version 3 (NACC UDS-3 [54]).

Participants completed weekly 10-minute phone check-ins with study coordinators

for 12 months. These calls, designed to monitor mental and physical health, also served
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as the primary source of longitudinal speech data. Clinical and cognitive assessments

were administered at three timepoints: baseline, 6 months, and 12 months.

Demographic characteristics, including age, gender, education, and cognitive status

at baseline, are shown in Table 3.1.

Table 3.1: Demographic Characteristics Across Cognitive Assessment Groups.
F/M = Female/Male, C/A/O = Caucasians/African Americans/Other. Cognitive
classification (Cognitively Normal vs. Cognitively Impaired) in this table is based on
baseline measures only.

Variable Overall
(n=103)

Cognitively
Normal (n=48)

Cognitively Im-
paired (n=55)

Sex (F/M) 78/25 41/7 37/18

Race (C/A/O) 80/22/1 38/10 42/12/1

Age (Mean ± Std) 80.93 ± 4.67 79.5 ± 3.9 82.2 ± 4.9

Speech Data Collection

Speech was collected during weekly calls, each lasting approximately 10 minutes.

Coordinators followed a semi-structured protocol covering:

• Hospital visits or medical concerns during the past week.

• Mood and emotional well-being.

• Social engagement activities (e.g., calls, in-person visits, written communication).

• A brief discussion of a weekly fun fact to encourage spontaneous conversation.

These longitudinal recordings allow for tracking intra-individual changes in speech

patterns over time.

3.2.2 Outcomes and Clinical Assessment

Cognitive function was evaluated using three clinical instruments: the Neuropsycho-

logical Test Battery (Normcog) [54], the Clinical Dementia Rating Scale (CDR) [55],
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and the Montreal Cognitive Assessment (MoCA) [56]. These measures were used to

define cognitive status and examine the predictive utility of speech-derived features.

Baseline (n=94) 6 Months (n=82) 12 Months (n=58)

Normcog 45/49 48/34 36/22
CDR 58/36 61/21 43/15
MoCA 54/40 30/52 15/43

Table 3.2: Distribution of Cognitive Status Across Time Points. Each cell
represents cognitively normal / cognitively impaired.

Normal Cognition (Normcog) vs. Impaired with distribution shown in Figure 3.1

was determined using clinician ratings from NACC UDS V3 Form D1, which evaluates

memory, attention, executive function, language, and visuospatial ability [54]. A score

of 1 indicates normal cognition; 0 indicates impairment.

Figure 3.1: Normal Cognition vs. Cognitive Impaired Score Distribution Over Time

The CDR (Figure 3.2) rates six functional domains, including memory, orientation,

judgment, community affairs, home and hobbies, and personal care, producing a global

score from 0 (no impairment) to 3 (severe impairment). All participants in this dataset

had scores of either 0 or 0.5, which were dichotomized into high and low cognitive

groups.
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Figure 3.2: CDR Score Distribution Over Time

The MoCA is a sensitive screening tool for MCI in older adults, assessing memory,

executive functioning, attention, language, visuospatial skills, and orientation. In this

study, the full MoCA was used, excluding visually impaired participants (who were

assessed using MoCA-Blind [57] due to different scaling). Participants were grouped

into high or low cognitive performance categories based on a median cutoff score of

24. The distribution of MoCA scores across time are shown in Figure 3.3 and the

distribution of high MoCA / low MoCA classes shown in Figure 3.4.

Figure 3.3: MoCA Score Distribution Change Over Time
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Figure 3.4: MoCA Categories Change Over Time

3.2.3 Audio Processing Pipeline Overview

The proposed pipeline Figure 3.5 quantifies cognitive function by analyzing both

acoustic and linguistic speech patterns. Since moderator speech was removed during

data collection, the recordings contained extended periods of silence. To address this,

the audio was further preprocessed to retain only the participant’s voiced segments,

followed by feature extraction. The extracted features were then used to train binary

classification models.

3.2.4 Preprocessing

To preserve key speech features and minimize the impact of silent segments during

mean pooling, a manual voice activity detection (VAD) pipeline was implemented.

Speech signals were framed (20 ms, 10 ms shift), and short-term energy (STE) was

computed as the squared amplitude sum, then normalized. Frames were classified as

voiced if their energy exceeded 5% of the max STE. Consecutive voiced frames were

merged, and silent gaps of ≤ 1 second were retained to maintain speech continuity. The

energy threshold and merging criteria were optimized after gap-bridging by evaluating
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Figure 3.5: Processing Pipeline for Extracting and Analyzing Speech-Based Acoustic
and Linguistic Features

10 manually labeled samples, selecting the threshold that maximized the Jaccard Index

between the automated pipeline’s output and human-annotated speech segments.

Since cognitive and psychological scores were available only at baseline, 6 months,

and 12 months, weekly phone call recordings were aggregated to align with these time

points. Specifically, the four nearest weekly recordings were concatenated for each

assessment: weeks 1–4 for baseline, weeks 22–25 for the 6-month mark, and weeks

45–48 for the 12-month mark.

3.2.5 Feature Extraction

Audio Features

All audio recordings were downsampled to 16 kHz before processing. A diverse set of

acoustic features was then extracted, incorporating both deep learning embeddings and

handcrafted acoustic descriptors—features that have been widely used to assess mental

and cognitive health [5, 34, 58]. By combining deep-learning-based representations
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with traditional acoustic and prosodic features, this approach aimed to capture a

comprehensive characterization of speech.

Deep Learning Embeddings To leverage pre-trained representations, WavLM-

Large embeddings were extracted every 20 ms using the WavLM-Large model [25],

which was trained on 94k hours of speech data through masked speech prediction and

denoising tasks. Additionally, Audio Spectrogram Transformer (AST) embeddings

were extracted from the 9th hidden layer of a pre-trained AST model [21], originally

trained on AudioSet [59].

Handcrafted Acoustic Features Complementing deep embeddings, handcrafted

features were extracted using OpenSMILE ComParE [60] and eGeMAPS feature sets

[14], which include measures of pitch, intensity, voice quality, and spectral descrip-

tors. To capture temporal dynamics, features were computed using a sliding window

approach with a frame length of 250 ms and a hop length of 150 ms. Additionally,

short-term acoustic features were computed using PyAudioAnalysis [61] with a 100 ms

window and 50% overlap, capturing energy, spectral properties, and 13-dimensional

Mel-frequency cepstral coefficients (MFCCs).

Language Features

Language features were extracted from transcripts generated using the Whisper-small

[62] automatic speech recognition (ASR) model. These transcripts were processed

using the LLaMA-7B model [63] to generate text embeddings, with input sequences

truncated or segmented to respect the model’s maximum context window of 2048

tokens. Additionally, sentiment and emotion scores were computed using deep learning

models:

• Emotion classification was processed with DistilRoBERTa-based model [64],

which categorized emotions into neutral, happiness, sadness, surprise, fear,
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disgust, and anger.

• Sentiment analysis was performed using a RoBERTa-large model [65], which

provided scores for positive and negative sentiment.

Psychological Well-being Scores

To assess psychological well-being in relation to cognitive decline or aging, we incorpo-

rated the following measures:

• Geriatric Depression Scale (GDS) [53]: Assesses depression symptoms in elderly.

• LSNS-6 [51]: Evaluates social network size and quality.

• Neuroticism from NEO Five-Factor Inventory [66]: Measures emotional stability.

• NIHTB-EB Emotional Well-being Assessment [67]: A composite measure of

emotional well-being based on 17 subscales. Following prior methodology [68],

three key composite scores were derived—negative affect, social satisfaction,

and overall psychological well-being. These composites were computed using

standardized factor loadings, averaged across relevant subscales, normalized, and

converted to T-scores (T=50, SD=10).

3.2.6 Participant-Level Feature Aggregation

To obtain a fixed-size representation for each speech audio, we applied temporal

pooling by computing statistical descriptors—mean and standard deviation—over the

extracted feature vectors. While both mean and max pooling were evaluated, mean

pooling was ultimately selected due to its superior performance on the validation set

across downstream classification tasks.
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3.2.7 Experiment Setting

Longitudinal Validity Analysis

To evaluate the predictive power and temporal generalizability of audio-derived features

for detecting cognitive decline, models were trained on each participant’s baseline

data and tested on their corresponding 6- or 12-month follow-ups. Hyperparameters

were tuned using data from the remaining participants, following a user-dependent

cross-validation strategy. This setup ensured that training and testing occurred within

the same individual but across timepoints, allowing us to assess how well speech

features captured longitudinal changes in cognitive status. To enhance robustness, the

training set order was randomly shuffled 20 times per split.

Psychological Well-being as a Predictor

To investigate the role of PWB in cognitive impairment detection, we employed

a distinct evaluation framework. In this case, data from all participants and all

timepoints (baseline, 6-month, and 12-month) were pooled together. We evaluated

two scenarios: (1) using PWB scores and acoustic features independently, and (2)

combining standardized PWB scores with each acoustic or language feature set.

Models were trained and evaluated using stratified, user-independent 5-fold nested

cross-validation, where the inner loop handled hyperparameter tuning and the outer

loop measured generalization to unseen participants. This setup tested whether PWB

contributed useful information for distinguishing cognitive status across individuals,

independent of specific timepoints.

Multi-Modal Fusion and Classification

To classify cognitive impairment, a late-fusion approach was used, shown to outperform

early fusion in prior work [69]. Separate Random Forest classifiers were trained per
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modality, and final predictions were obtained via majority voting across modalities.

Evaluation Metrics

Accuracy and Area Under the Curve (AUC) were computed. Final scores were reported

as the mean ± standard deviation across CV folds.

3.3 Result

3.3.1 Longitudinal Validity Analysis of Cognitive Impairment

Over Time

Feature Set 6mo AUC 12mo AUC
CDR Normcog MoCA CDR Normcog MoCA

AST 0.75± 0.03 0.74± 0.03 0.57± 0.04 0.65± 0.04 0.58± 0.04 0.51± 0.04
ComParE 0.74± 0.03 0.71± 0.03 0.59± 0.03 0.63± 0.03 0.64± 0.04 0.62± 0.04
eGeMAPS 0.73± 0.03 0.64± 0.04 0.54± 0.04 0.71± 0.03 0.64± 0.03 0.54± 0.04
PyAudio 0.64± 0.03 0.70± 0.03 0.57± 0.04 0.74± 0.03 0.66± 0.04 0.53± 0.04
WavLM 0.74± 0.03 0.76± 0.02 0.62± 0.04 0.74± 0.03 0.69± 0.03 0.59± 0.05
LLaMA 0.57± 0.04 0.58± 0.04 0.64± 0.03 0.63± 0.05 0.58± 0.04 0.60± 0.05
Sentiment 0.59± 0.03 0.50± 0.03 0.51± 0.03 0.58± 0.04 0.48± 0.03 0.54± 0.03
Majority Vote 0.58± 0.03 0.65± 0.04 0.56± 0.03 0.55± 0.05 0.61± 0.03 0.62± 0.04

Table 3.3: AUC performance of the RF model for longitudinal prediction of cognitive
status at 6- and 12-month follow-ups. Models trained on baseline features; bold values
denote best performance per column.

Table 3.3 presents the results of the Longitudinal Validity Analysis for models

trained on baseline data and evaluated at subsequent time points (6-month and

12-month). CDR classification demonstrated the highest generalizability, with per-

formance remaining stable across time points (Highest AUC = 0.75 for 6-month

prediction and 0.74 for 12 month). Normcog also exhibited moderate generalizability,

achieving an AUC of 0.76 for 6-month prediction and 0.69 for 12-month prediction. In

contrast, MoCA classification showed lower predictive performance, with AUC values

of 0.64 for 6-month and 0.62 for 12-month predictions.
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3.3.2 User-Independent Audio-Based Classification of Cogni-

tive Impairment

Feature
MoCA Normcog CDR

Accuracy AUC Accuracy AUC Accuracy AUC

AST 0.47 ± 0.06 0.48 ± 0.09 0.57 ± 0.04 0.58 ± 0.07 0.69 ± 0.05 0.62 ± 0.08

ComParE 0.50 ± 0.07 0.52 ± 0.10 0.60 ± 0.06 0.65 ± 0.06 0.69 ± 0.03 0.57 ± 0.09

eGeMAPS 0.54 ± 0.07 0.54 ± 0.07 0.55 ± 0.11 0.62 ± 0.11 0.68 ± 0.07 0.55 ± 0.14

pyAudio 0.55 ± 0.08 0.54 ± 0.06 0.55 ± 0.09 0.54 ± 0.10 0.68 ± 0.06 0.60 ± 0.04

WavLM 0.52 ± 0.08 0.52 ± 0.07 0.60 ± 0.10 0.62 ± 0.14 0.69 ± 0.04 0.57 ± 0.08

LLaMA 0.57 ± 0.06 0.64 ± 0.08 0.56 ± 0.07 0.59 ± 0.11 0.69 ± 0.05 0.60 ± 0.07

Sentiment 0.51 ± 0.04 0.53 ± 0.05 0.50 ± 0.05 0.48 ± 0.03 0.67 ± 0.03 0.56 ± 0.13

Majority Vote 0.53 ± 0.01 0.6 ± 0.02 0.55 ± 0.03 0.58 ± 0.05 0.69 ± 0.02 0.68 ± 0.02

Table 3.4: Classification performance using speech-derived acoustic and linguistic
features. User-independent cross-validation applied; bold indicates best performance
for each cognitive assessment.

Table 3.4 summarizes the performance of speech-related features in predicting

cognitive assessment categories. Among the feature sets, ComParE achieved the highest

AUC for distinguishing Normcog status (0.65), while LLaMA-based embeddings yielded

the best AUC for MoCA classification (0.64). For CDR, majority vote result yielded

best result, with AUC of 0.68.

3.3.3 User-Independent Classification of Cognitive Impair-

ment via Well-being Scores

Target Accuracy F1 Score AUC
MoCA 0.53 ± 0.06 0.52 ± 0.09 0.56 ± 0.05
Normcog 0.52 ± 0.09 0.51 ± 0.011 0.54 ± 0.08
CDR 0.69 ± 0.11 0.66 ± 0.13 0.62 ± 0.09

Table 3.5: Predictive performance using psychological well-being scores for MoCA,
Normcog, and CDR outcomes. User-independent cross-validation; metrics include
Accuracy, F1-score, and AUC.

When using psychological well-being alone to predict cognitive impairment (Ta-

ble 3.5), all scores are approximately random (0.5). CDR demonstrate best predic-
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tivabiltiy with AUC of 0.62.

Feature
MoCA Normcog CDR

Accuracy AUC Accuracy AUC Accuracy AUC

AST 0.54 ± 0.03 0.43 ± 0.07 0.51 ± 0.06 0.53 ± 0.09 0.70 ± 0.04 0.59 ± 0.09

ComParE 0.60 ± 0.07 0.49 ± 0.09 0.55 ± 0.06 0.64 ± 0.05 0.70 ± 0.04 0.56 ± 0.10

eGeMAPS 0.52 ± 0.03 0.48 ± 0.05 0.58 ± 0.08 0.65 ± 0.11 0.66 ± 0.06 0.52 ± 0.12

PyAudio 0.56 ± 0.08 0.52 ± 0.04 0.58 ± 0.07 0.56 ± 0.10 0.66 ± 0.06 0.60 ± 0.08

WavLM 0.60 ± 0.03 0.61 ± 0.03 0.60 ± 0.07 0.59 ± 0.09 0.69 ± 0.04 0.56 ± 0.03

LLaMA 0.61 ± 0.07 0.66 ± 0.06 0.52 ± 0.03 0.59 ± 0.07 0.70 ± 0.04 0.61 ± 0.08

Sentiment 0.54 ± 0.04 0.52 ± 0.07 0.45 ± 0.05 0.43 ± 0.10 0.68 ± 0.06 0.50 ± 0.07

Majority Vote 0.55 ± 0.02 0.57 ± 0.02 0.56 ± 0.02 0.57 ± 0.03 0.69 ± 0.02 0.67 ± 0.04

Table 3.6: Performance of models combining speech and psychological features via
feature concatenation. User-independent evaluation for predicting cognitive assess-
ments; bold values show highest scoring method per assessment.

Table 3.6 presents the performance of models trained on speech-derived features

combined with psychological well-being scores. Overall, changes in performance were

minimal and remained within the standard deviation range. For MoCA, LLaMA’s

accuracy increased from 0.57 to 0.61, and its AUC from 0.64 to 0.66, though both

remained within the variability of the original results. For Normcog, performance

remained largely unchanged. For CDR, accuracy showed a slight improvement (e.g.,

AST and ComParE increasing from 0.69 to 0.70), while AUC experienced a small

decrease (AST: 0.62 to 0.59; ComParE: 0.57 to 0.56).

3.4 Discussion

3.4.1 Longitudinal Validity Analysis of Cognitive Impairment

Over Time

Cognitive assessment tools demonstrate markedly different predictive stabilities over

time, as evidenced by our analysis (Table 3.3). While CDR and Normcog show

moderate predictive consistency with 6-month AUCs of 0.75 and 0.76, respectively,

MoCA reveals significant longitudinal variability when models are trained on baseline
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data.

This variability stems from multiple interconnected factors. Critically, MoCA’s

reliance on a rigid cutoff score (≥ 24) amplifies minor score fluctuations into seemingly

significant clinical changes.

At baseline, 58.1% of participants were classified as ”high MoCA,” but this propor-

tion plummeted to 25.8% by 12 months (Figure 3.4)—a dramatic shift attributable

to both participant attrition and score volatility. In contrast, Normcog and CDR

demonstrate more stable trajectories: Normcog’s cognitively normal classifications

gradually increased from 48.4% to 62.1%, while CDR showed a similar trend, rising

from 61.1% to 74.1% (Figure 3.1, Figure 3.2). The inherent limitations of MoCA’s

scoring methodology contribute significantly to this longitudinal instability. While its

cutoff point is clinically established [70], it remains overly sensitive to minor fluctua-

tions that may not reflect meaningful cognitive change. Prior research demonstrates

that MoCA scores tend to decline naturally with age [71], reflecting normal cogni-

tive aging rather than pathological deterioration. Consequently, relying on a binary

threshold risks misinterpreting these subtle, expected changes as clinically significant.

In contrast, Normcog and CDR integrate clinician judgment that accounts for

broader contextual factors, functional abilities, and compensatory strategies. This

holistic approach yields more stable and nuanced cognitive classifications, demon-

strating the limitations of mechanistic, threshold-based assessments in capturing the

complexity of cognitive function.

The moderate predictive performance (AUCs around 0.75-0.76) underscores the

nuanced relationship between speech patterns and cognitive states. While speech pro-

vides valuable insights into cognitive function, these metrics suggest that speech alone

cannot fully capture the complexity of cognitive changes. This limitation highlights

the importance of multi-modal assessment approaches that integrate speech analysis

with traditional cognitive screening tools, clinician judgment, and comprehensive
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functional evaluations.

3.4.2 Classifying Cognitive Impairment with Audio Features

When predicting CDR, Normcog, and MoCA with speech-based, user-independent

CV (Table 3.4), no single feature set demonstrated superior predictive power, and

performance remained within a moderate range. Additionally, no single category of

speech-derived features (acoustic vs. linguistic) or approach (hand-crafted vs. deep

embeddings) uniformly outperformed all others. This outcome contrasts with prior

research, where deep neural embeddings frequently outperformed hand-engineered

features [72, 73].

A key factor may be the restricted nature and quality of the phone-based audio

data. In this study, weekly phone call check-ups were used, where participants engaged

in brief conversations but primarily provided yes/no answers, short explanations, or

minimal responses (e.g., ”3 hours”). Due to the structured nature of these calls,

the data offered limited acoustic and linguistic variability, potentially impacting the

model’s ability to capture nuanced speech patterns. In line with Knopman et al., who

noted that while telephone-based assessments (like TICS-m) can distinguish dementia

from normal cognition, they do so only moderately well when differentiating MCI [74].

Given the brevity and structure of telephone-based interactions, such speech may lack

the depth needed for robust cognitive assessments.

3.4.3 Classifying Cognitive Impairment with Psychological

Well-Being Scores

When using psychological well-being scores alone to predict cognitive impairment,

performance remained near chance (0.5) (Table 3.5). Moreover, incorporating these

scores with speech-derived features did not significantly enhance model performance
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(Table 3.6).

One explanation lies in the characteristics of our study sample. One of the exclusion

criteria was severe depressive symptoms (GDS-15 ≥ 7), leading to a cohort primarily

with no or mild depression. Similarly, 49.0% of participants had LSNS scores between

10 and 15, close to the social isolation cutoff of 12, thereby limiting variability. Such

restricted ranges may reduce the predictive power of these psychological measures.

Additionally, the association between cognitive impairment and psychological well-

being are shaped by a complex interplay of cognition, mood, memory perception, and

quality of life [75]. Relying solely on psychological well-being scores overlooks these

multifaceted interactions. As a result, excluding direct measures of functionality can

oversimplify the relationship between psychological state and cognitive impairment,

thereby restricting predictive performance.

3.4.4 Limitations and Future Directions

Longitudinal Validity Analysis and Label Stability. A key limitation is the

fixed cut-off point of 24 used in MoCA, which can amplify minor test fluctuations and

resulting in inconsistent classifications over time. Personalized modeling approaches,

which have shown promise in improving AD prediction using Electroencephalography

(EEG) data [76], merit consideration to account for individual differences in cognitive

trajectories. Rather than applying a fixed threshold (e.g., MoCA ≥ 24), models could

adapt classification cutoffs based on an individual’s baseline cognitive profile and rate

of change, thereby improving both sensitivity and specificity.

The direct concatenation of four weeks’ data to align with baseline, 6-month, and

12-month assessments presents another limitation. Future research should explore

time-aware modeling strategies to better capture the evolving nature of cognitive

impairment. Recurrent neural networks such as Long Short-Term Memory (LSTM)

and Gated Recurrent Units (GRUs) are well-suited for tracking temporal dependencies
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in speech features [77], enabling models to learn progression patterns that enhance

predictive accuracy.

Phone-Based Audio Assessments. A significant limitation stems from the reliance

on phone-based calls, which often yield brief, constrained responses and inconsistent

data quality. This limited variability in speech can impede both acoustic and linguistic

feature extraction. Future studies could expand data collection methods to include

more naturalistic speech samples or passive sensing data (e.g., wearable sensors [78]).

These approaches may capture richer language use and real-world behavioral patterns

over extended periods, providing a more robust foundation for cognitive assessment.

Psychological Well-Being as a Predictor. The exclusion of individuals with

more severe depressive symptoms resulted in a restricted range of psychological well-

being scores, potentially diminishing their predictive power. Future research should

incorporate a larger and more diverse cohort, encompassing a broader spectrum of

psychological well-being to more accurately evaluate its relationship with cognitive

impairment.

Another constraint lies in the method used to integrate psychological well-being

features with speech-derived representations. The straightforward concatenation

approach employed may not have effectively merged these modalities, likely due to the

high dimensionality of speech features. To enhance integration, future studies should

explore more sophisticated fusion techniques, such as attention-based models [79], to

better leverage psychological data within multimodal frameworks.

Finally, psychological well-being alone may not comprehensively reflect cognitive

and functional changes, as it is influenced by a complex interaction of cognition, mood,

memory perception, and overall quality of life [75]. Investigating alternative or com-

plementary constructs—such as perceived cognitive abilities [80] or daily functioning

metrics [81]—could provide a more holistic perspective on the relationship between
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emotional well-being and cognitive health.

3.5 Conclusion

This study established the feasibility of using speech-based biomarkers to predict

cognitive impairment, highlighting both their promise and limitations. Models trained

on CDR and Normcog demonstrated moderate longitudinal predictive performance,

suggesting stability of speech-based models. However, user-independent prediction

accuracy was constrained, likely due to the variability and noise inherent in phone-

based audio data. Furthermore, psychological well-being measures yielded near-random

predictive power, and combining them with speech features provided only marginal

improvements.

These findings underscore the need for more robust and generalizable approaches.

Building on this foundation, the next chapter explores transfer learning and domain

adaptation for cross-lingual cognitive impairment detection. Unlike the current study’s

focus on English dataset, cross-lingual modeling introduces additional challenges due

to linguistic variability and mismatched data distributions. To address this, chapter 4

investigates methods to enhance the transferability and resilience of speech-derived

biomarkers across diverse language contexts.



Chapter 4

Feasibility of Cross-Lingual

Audio-Based AD Classification with

Domain Adaptation

4.1 Introduction

The rising global prevalence of AD [82] has coincided with increasing worldwide mobility

[83], amplifying the linguistic diversity encountered in clinical settings. In many regions,

clinicians are routinely faced with assessing patients whose native languages differ from

the locally dominant tongue. These shifts in population demographics underscore the

pressing need for reliable prescreening biomarkers that can perform robustly across

language and cultural boundaries.

Speech-based biomarkers represent a promising tool as non-invasive, cost-effective

screening for cognitive assessment. However, most existing speech-based AD detection

methods are grounded in monolingual datasets—particularly American English [9].

This narrow focus raises valid concerns regarding ecological validity and cross-cultural

generalizability. Cultural and linguistic differences can profoundly influence both

29
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acoustic (e.g., vowel quality, tone, rhythm) and linguistic (e.g., grammatical complexity,

lexical choice) features, making it uncertain whether patterns identified in a single

language will readily transfer to another [30].

Cross-lingual AD detection presents unique challenges that go beyond traditional

domain adaptation, due to a dual domain shift [84]: covariate shifts stemming from

language-dependent acoustic features, and concept shifts caused by differences in how

AD manifests across languages. These shifts complicate the direct transfer of models

trained on one language to another, particularly in speech-based systems.

While several recent studies have explored cross-lingual adaptation—primarily

between English and Greek—most frameworks remain limited to monolingual settings

or a single language pair, raising concerns about their broader generalizability [5,

33, 34, 35]. Moreover, though NLP-based transfer techniques have shown promise in

text-based AD detection [37, 38], their utility for speech remains underexplored.

This work investigates the feasibility of building audio-based AD classification

models that are robust across languages. By evaluating various fine-tuning strategies,

we assess the transferability of acoustic AD markers across linguistic contexts—toward

scalable, cost-effective, and globally inclusive speech-based screening tools.

4.2 Methods

4.2.1 Datasets

Three speech datasets were used in this study. ADReSS-20 [30] consists of Ameri-

can English speech samples from the Cookie Theft picture description task [16, 85].

ADReSS-M [23] provides Greek speech samples elicited by a different picture de-

scription task depicting lions in a natural setting. EWA-DB [86, 87] is a Slovak

corpus encompassing neurodegenerative conditions such as Parkinson’s disease, AD,

and MCI. Each Slovak participant performed four tasks—picture description, word
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pronunciation, phonation, and pataka syllable repetition—with manual transcription.

To ensure comparability with the other datasets, only the Slovak picture description

task was used. This task features multiple scenes (e.g., family gatherings, everyday

household activities); audios corresponding to three colored-image tasks were chosen

and concatenated into a single audio sample for each subject. To achieve balanced

groups in the Slovak dataset, healthy control participants were matched to participants

with AD based on age, years of education, and sex. Where exact matches were

not possible, controls were selected from a ±2-year range. Detailed demographic

information and class distributions for each dataset are presented in Table 4.1.

Dataset Language Split
(HC/MCI/AD)

Sex (M/F) Age Pre-
processing

ADReSS-
20

English 78 / 0 / 78
(n = 156)

70 / 86 66.4 ±
6.7

Noise-reduced
and volume-
normalized

ADReSS-
M

Greek 32 / 0 / 30
(n = 62)

17 / 45 69.8 ±
7.5

Unspecified

EWA-DB Slovak 42 / 3 / 41
(n = 86)

29 / 57 77.9 ±
8.4

Multi-device
recording &
manual quality
assessment.

Table 4.1: Overview of speech datasets used in this study, including language coverage,
subject distribution, and demographic characteristics.

4.2.2 Feature Extraction and Evaluation

To assess the feasibility of cross-lingual AD detection, several speech-based features

were extracted, similarly from chapter 3, including AST, eGeMAPS, ComParE,

WavLM, and PyAudioAnalysis acoustic features, as described previously. Linguistic

features including LLaMA and sentiment was also utilized. Similar to chapter 3,

statistical features (mean and standard deviation) were computed across the entire

audio sequence for each subject’s audio.
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Initial Evaluation of Feature Sets. Each feature set was evaluated in a standalone

manner to gauge its predictive power for AD classification for different languages.

Specifically, a Random Forest (RF) classifier was trained for each feature set to provide

a baseline performance assessment. ComParE was selected as the primary feature

representation for subsequent neural network experiments, based on its consistent

performance in baseline analyses and prior research suggesting that paralinguistic

features offer superior cross-lingual transferability compared to linguistic and deep

acoustic embeddings [33, 34, 35].

4.2.3 Neural Network Model

Given the small dataset sizes, we used a lightweight neural network implemented using

PyTorch Lightning [88] for binary AD vs. HC classification, serving as a controlled

baseline for testing cross-lingual adaptation strategies.

The architecture comprises:

Figure 4.1: Neural Network Architecture for Cross-Lingual Transfer Learning Using
Speech-Based Acoustic Features

1. Projection Layer: Reduces the high-dimensional ComParE feature (6505D)

to a more manageable size.
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2. Fully Connected Layers: Two hidden layers process the projected features,

with batch normalization following the first linear transformation and dropout

applied before the final output layer.

3. Output Layer: A single neuron with a sigmoid activation for binary classifica-

tion (AD vs. healthy control). Binary Cross-Entropy with Logits (BCEWith-

LogitsLoss) is employed as the loss function.

4.2.4 Cross-Lingual Adaptation Strategies

Three domain adaptation strategies were investigated to evaluate the model’s cross-

lingual generalizability. A summary of these approaches is shown in Figure 4.2.

Figure 4.2: Cross-lingual Transfer Learning Techniques

1) Mixed-Batch Training. A mixed-batch strategy that combines source and

target language samples within each mini-batch was adopted, following the approach

proposed by Tamm et al. [34]. Specifically, the mini-batch ratio is maintained at

5:1 (five source-language samples for every one target-language sample), stratified by
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class to preserve the AD-to-healthy ratio. This technique exposes the network to both

languages during training while preserving the source-language data’s dominance.

2) Fine-Tuning. The second approach involves training the network on a single

source language and then fine-tuning it on a target language. To assess how much

target data is needed for effective adaptation, we used different subsets of target-

language training samples (in increments of three, up to half the dataset). Fine-tuning

was performed using a learning rate set to 0.1× the initial training rate. In addition to

tracking performance on the target language, we also monitored performance on the

source language test set to observe any performance drop—i.e., potential forgetting of

previously learned knowledge.

3) Adversarial Learning. The third approach employs an adversarial domain

adaptation scheme inspired by [89]. The model is jointly trained on data from all

three languages, with two simultaneous objectives: (1) a primary task of predicting

AD, and (2) an adversarial task that predicts the language. The core AD-detection

gradients and the adversarial gradients are aligned using a projection step:

∇WP
LP − proj∇WA

∇WP
LP − α∇WLA

LLA, (4.1)

where ∇WP
LP is the gradient of the primary AD classification task with respect to

the model’s parameters, ∇WA
is the gradient for the adversarial task with respect to

the adversarial parameters, LLA is the language-adversarial loss, and α is a scaling

factor. This technique aims to learn language-invariant features by reducing overlap

between the primary-task and adversarial-task gradients.

As a baseline comparison for adversarial learning, samples from all languages were

combined to train a single model, and performance scores were reported separately

for each language.
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4.2.5 Training and Evaluation Setup

Data Splits and Evaluation Protocol Each dataset was stratified into five outer

folds, with each fold comprising a training set (80%) and a test set (20%). For

each outer fold, the training portion was further split into a single inner validation

fold to support hyperparameter tuning. This process resulted in five independently

optimized models per language. To evaluate cross-lingual generalization, each model

was additionally tested on the held-out test sets of the other languages. Model

performance was assessed using Accuracy and Area Under the ROC Curve (AUC).

Input Normalization and Dimensionality Reduction To ensure consistent

feature scaling, a StandardScaler was fitted on the training data of each dataset and

applied to its corresponding test data. For visualization and interpretability, principal

component analysis (PCA) was applied after standardization, retaining 95% of the

variance. Subsequently, a two-dimensional t-SNE projection (n components = 2) was

used to explore how samples cluster by class and language in the reduced feature

space.

Model Implementation and Hyperparameter Tuning Hyperparameters—including

down-projection dimension, hidden layer size, learning rate, dropout rate, and the

adversarial regularization coefficient—were tuned using five-fold cross-validation on

the training data. Validation AUC served as the selection criterion. To mitigate

overfitting, early stopping based on validation loss was applied, with a patience of 5

epochs.
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Feature English Greek Slovak

Accuracy AUC Accuracy AUC Accuracy AUC

AST 0.54 ± 0.04 0.56 ± 0.07 0.50 ± 0.15 0.56 ± 0.16 0.69 ± 0.08 0.75 ± 0.11
ComParE 0.65 ± 0.16 0.69 ± 0.16 0.68 ± 0.07 0.77 ± 0.04 0.79 ± 0.08 0.85 ± 0.08
eGeMAPS 0.57 ± 0.10 0.60 ± 0.11 0.65 ± 0.11 0.65 ± 0.06 0.77 ± 0.08 0.83 ± 0.11
PyAudio 0.57 ± 0.09 0.62 ± 0.07 0.76 ± 0.09 0.79 ± 0.09 0.78 ± 0.11 0.87 ± 0.07
WavLM 0.67 ± 0.12 0.69 ± 0.13 0.53 ± 0.18 0.58 ± 0.18 0.85 ± 0.09 0.92 ± 0.04

LLaMA 0.69 ± 0.07 0.77 ± 0.03 0.52 ± 0.09 0.55 ± 0.16 0.66 ± 0.16 0.77 ± 0.13
Sentiment 0.51 ± 0.06 0.54 ± 0.07 0.66 ± 0.04 0.68 ± 0.08 0.66 ± 0.18 0.70 ± 0.20

Table 4.2: Monolingual Classification Results Using RF Across Acoustic and Linguistic
Features

4.3 Results

4.3.1 Monolingual Performance with Feature Set Comparison

Table 4.2 presents binary classification results for all feature sets, trained and evaluated

within the same language. The results highlight that the best-performing feature

varies across languages. For English, LLaMA achieved the highest performance with

an accuracy of 0.69 and an AUC of 0.77. In Greek, acoustic features performed best,

reaching an accuracy of 0.76 and an AUC of 0.79. For Slovak, WavLM outperformed all

other features, achieving 0.85 accuracy and 0.92 AUC. While ComParE did not yield

the highest performance, it consistently demonstrated strong results across languages,

ranking as the second-best performing feature overall.

4.3.2 Within- and Zero-Shot Cross-lingual Inference

Figure 4.3 presented the t-SNE result of ComParE feature distribution across datasets.

From the figure, there are three distinct clusters corresponding to each language. In

addition, within each language, the separation between AD (triangles) and HC (circles)

is not particularly strong, with noticeable overlap between the two classes.
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Figure 4.3: ComParE Feature Distribution Across Datasets

Train \ Test English Greek Slovak

English (Accuracy) 0.61 ± 0.08 0.54 ± 0.07 0.62 ± 0.06

English (AUC) 0.60 ± 0.11 0.57 ± 0.05 0.7 ± 0.07

Greek (Accuracy) 0.54 ± 0.03 0.61 ± 0.06 0.58 ± 0.09

Greek (AUC) 0.57 ± 0.03 0.63 ± 0.08 0.63 ± 0.14

Slovak (Accuracy) 0.58 ± 0.01 0.55 ± 0.03 0.74 ± 0.11

Slovak (AUC) 0.60 ± 0.01 0.61 ± 0.04 0.84 ± 0.06

Table 4.3: Binary classification results with NN models trained and tested on self or a
different target language. Bold text represent training and inference on self.

Table 4.3 presents results of train and inference using a neural network on ComParE

feature sets, selected for its consistency across language. The model performs best when

trained and tested on Slovak data (0.74 accuracy, 0.84 AUC), while English and Greek

show moderate performance when trained and tested in-domain (0.6 and 0.63 AUC

respectively). In cross-lingual inferences, the performances generally drop. However,

highest cross-lingual performance is observed when applying the English-trained model

to Slovak (0.7 AUC).
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4.3.3 Mixed-Batch Training

Train \ Test English Greek Slovak

English (Accuracy) 0.60 ± 0.08 0.67 ± 0.09 0.78 ± 0.01

English (AUC) 0.64 ± 0.10 0.77 ± 0.06 0.83 ± 0.02

Greek (Accuracy) 0.52 ± 0.03 0.63 ± 0.12 0.60 ± 0.10

Greek (AUC) 0.56 ± 0.02 0.69 ± 0.15 0.79 ± 0.06

Slovak (Accuracy) 0.58 ± 0.03 0.62 ± 0.02 0.72 ± 0.11

Slovak (AUC) 0.60 ± 0.02 0.68 ± 0.02 0.84 ± 0.06

Table 4.4: Binary classification results with mixed-batch training. Bold values indicate
performance improvements over within-language testing

Table 4.4 presents the results of mixed-batch training for cross-lingual generalization.

The highest performance is observed when training on English and evaluating on

Slovak, achieving an AUC of 0.83. Similarly, using English as the source language with

mixed Greek samples improves performance, yielding a higher AUC (0.77). When

Greek was used as the source language with a subset of Slovak training samples, the

model also demonstrated moderate performance (AUC 0.79). In contrast, models

trained on Greek and Slovak with mixed English samples exhibited lower performance

when evaluated on English (AUC of 0.56 and 0.6 respectively).

4.3.4 Fine-Tuning Results

Figure 4.4, Figure 4.5, and Figure 4.6 show how AUCs change as the number of

fine-tuning samples in the target language increase, while also tracking performance

(dashed lines) on the original language.

Slovak Fine-Tuning (target = Slovak) Fine-tuning with English-to-Slovak and

Greek-to-Slovak data initially caused a drop in performance. However, after incorporat-

ing 6,700 seconds of Slovak audio, AUC scores stabilized at 0.73 for the English-trained



39

Figure 4.4: Fine-tuning AUC over Fine-tuning Sample Size for Slovak Dataset

model and 0.75 for the Greek-trained model. Performance on the source languages

(English and Greek) remained relatively close to baseline levels as more Slovak fine-

tuning data was added. The Greek-trained model showed an improvement, with AUC

increasing from 0.63 to 0.68, while the English-trained model fluctuated around 0.58.

Figure 4.5: Fine-tuning AUC over Fine-tuning Sample Size for Greek Dataset

Greek Fine-Tuning (target = Greek) Fine-tuning with English-to-Greek data

began at 0.64 AUC and stabilized at 0.75 AUC after approximately 370 seconds
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of target-language fine-tuning. In contrast, Slovak-to-Greek fine-tuning exhibited

fluctuations around the baseline AUC of 0.54, with no consistent improvement. Source

language performance remained stable throughout, with the Slovak model maintaining

0.84 AUC and the English-trained model fluctuating near 0.59 AUC.

Figure 4.6: Fine-tuning AUC over Fine-tuning Sample Size for English Dataset

English Fine-Tuning (target = English) Fine-tuning from Greek to English

yielded gradual performance gains, with AUC improving from 0.47 to 0.56 over

5,000 seconds of English fine-tuning, though remaining below the English-trained

baseline. In contrast, Slovak-to-English fine-tuning showed unstable behavior, with

AUC fluctuating between 0.45 and 0.54 irrespective of fine-tuning duration. Source

language performance varied: the Greek-to-English model maintained Greek AUC

between 0.63 and 0.73, while Slovak-to-English performance on Slovak remained stable

between 0.75 and 0.85 AUC, comparable to the original baseline.

Figure 4.7 presents the result of comparison between zero-shot inference, mixed-

batch training, and fine-tuning across six transfer directions. Overall, mixed-batch

training outperformed both zero-shot and fine-tuning across all language pairs.
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Figure 4.7: AUC Performance Comparison of Transfer Learning Techniques Across
Language Pairs

4.3.5 Adversarial Learning

Training Method Metric English Greek Slovak

Train w/o Adversary
Accuracy 0.61 ± 0.13 0.71 ± 0.14 0.79 ± 0.05

AUC 0.62 ± 0.13 0.71 ± 0.15 0.79 ± 0.05

Adversarial
Accuracy 0.61 ± 0.09 0.63 ± 0.16 0.76 ± 0.09

AUC 0.61 ± 0.09 0.63 ± 0.16 0.75 ± 0.09

Table 4.5: Comparison of Adversarial and Non-Adversarial Training Results

Table 4.5 presents the model’s performance on English, Greek, and Slovak test sets

under two training conditions – with and without adversarial training. The results

indicate that adversarial training resulted in a decline in both accuracy and AUC

across all languages, with AUC decreasing from 0.62 to 0.61 for English, 0.71 to 0.63

for Greek, and 0.79 to 0.75 for Slovak.
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Feature Slovak [90] English [91] Greek [92]

Total
Phonemes

42 40–44 31

Vowel
Sounds

14 20 5

Consonant
Sounds

27 24 31

Syllable
Complex-
ity

Allows complex clus-
ters (up to CCCCV on-
set and CCC coda)

Moderate (allows some
complex onsets and co-
das)

Simple (CV, CVC) but
allows complex onsets

Rhythm
Type

Mixed Stress-timed Syllable-timed

Stress
Pattern

Fixed on the first syl-
lable

Variable Predictable (within
last three syllables)

Intonation Predictable and struc-
tured

Highly dynamic and
variable

Moderately complex
and varied

Vowel Re-
duction

No Yes No

Tonal
Lan-
guage?

No No No

Table 4.6: Comparison of Slovak, English, and Greek in Phonetic and Prosodic
Features

4.4 Discussion

Language-specific phonetic and prosodic characteristics can influence the effectiveness

of speech-based AD detection. Differences in rhythm type, syllable complexity, vowel

reduction, and stress patterns may affect the way linguistic and acoustic biomarkers

manifest across languages [93]. To better contextualize the observed variations in

feature performance, Table 4.6 summarizes key phonetic and prosodic distinctions

among Slovak, English, and Greek. These differences provide insight into why certain

feature sets may perform better in some languages than others.
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4.4.1 Monolingual Performance with Feature Set Comparison

Table 4.2 shows that the best-performing feature sets for AD classification varied

across languages. For English, LLaMa led performance, with ComParE and WavLM

also performing well (0.69 AUC). In Greek, PyAudioAnalysis and ComParE achieved

the highest AUCs (0.79 and 0.77). For Slovak, Acoustic, ComParE, and WavLM

features yielded the best results (0.87, 0.85, and 0.92 AUC, respectively).

LLaMa performed the best on the English dataset, which is explained by previous

research indicating vocabulary richness, syntactic complexity, and semantic coherence

are critical in detecting cognitive impairments [94]. LLaMa’s capacity to process

these intricate patterns likely contributes to its superior performance in this context.

However, since the majority of LLaMa’s training data is in English [63], its ability to

generate meaningful representation in Greek and Slovak could be limited.

In addition, ComParE performed consistently well across languages, which can

be attributed to its comprehensive range of acoustic-prosodic and paralinguistic

parameters[60], which was shown to be effective in detecting cognitive impairments

across different languages [5].

4.4.2 Within- and Zero-Shot Cross-lingual Inference

Table 4.3 presents within- and zero-shot cross-lingual inference results using the

ComParE feature set. The model achieved its highest performance on Slovak data

(AUC = 0.84), substantially outperforming English (0.60) and Greek (0.63) under

the same architecture. These differences likely reflect the non-standardized nature

of data collection and preprocessing across datasets (Table 4.1). Additionally, it

is possible that language-specific manifestations of AD—such as more pronounced

acoustic changes in Slovak—contributed to the improved classification performance,

though direct empirical evidence is limited.

Cross-lingual inference generally resulted in performance degradation. For example,
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transferring from English to Greek led to an AUC drop from 0.60 to 0.57, while

transferring from Greek to English reduced AUC from 0.63 to 0.57. However, an

exception was observed when transferring from English to Slovak, where the model

retained relatively high performance (AUC = 0.70). This result may stem from the

larger and more diverse English dataset (n=156), which offers richer, more generalizable

representations of AD-related speech patterns, aiding cross-lingual generalization

through shared acoustic and prosodic features.

4.4.3 Mixed-batch Training

Comparing results from zero-shot inference (Table 4.3), mixed-batch results (Table 4.4)

showed a few patterns: firstly, mixed-batch training improved performance when the

target language was Slovak or Greek but not English. Specifically, AUC increased for

English to Greek (0.57 → 0.77), English to Slovak (0.70 → 0.83), Greek to Slovak

(0.63 → 0.79), and Slovak to Greek (0.61 → 0.68). On the other hand, mixing English

training samples to models primarily trained on Slovak or Greek did not notably

enhance performance on English. The AUC remained nearly unchanged for Greek

to English (0.57 → 0.56) and Slovak to English (0.60 → 0.60) under mixed-batch

training.

The observed asymmetric transferability of linguistic features underscores the com-

plexity of selecting source and target languages for transfer learning. This phenomenon

can be attributed to two primary factors: 1) Dataset size and feature distribution and

2) Linguistic distance and transferability.

Specifically, the English dataset comprises a substantially larger number of samples

(n=156), providing a more diverse and extensive speech corpus with a heterogeneous

feature distribution, as illustrated in the t-SNE plot (Figure 4.3). In contrast, the

Greek (n=62) and Slovak (n=86) datasets contain fewer examples, resulting in a

sparser and less discriminative feature space. When training with same number of
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mixed-batch samples, this data imbalance may have constrained the model’s ability

to effectively represent English dataset.

Additionally, prior research in NLP has established that cross-lingual transfer

success is influenced by multiple factors, including phylogenetic similarity, typological

properties, lexical overlap, and data availability [95]. The observed asymmetry in

transferability may be explained by the linguistic divergence between Slovak and

English. As members of distinct language families—Slovak being a Slavic language

with rich inflectional morphology and flexible word order, and English being a Germanic

language with relatively simpler morphology and fixed word order—the structural

dissimilarities between the two may hinder effective transfer. However, a more in-depth

feature importance analysis is necessary to provide concrete evidence supporting this

hypothesis.

Additionally, when testing on the source language, mixed-batch training yielded

comparable performance or even better performance to when no target language

insertion. Models trained on English, with mixed Greek and Slovak sample, increased

performance from 0.6 to 0.64 AUC. For Greek, the performance enhanced from 0.63

to 0.69, while for Slovak, the performance remained unchanged (0.84 AUC). This

suggests that exposure to diverse acoustic patterns might help the model learn more

generalizable cognitive-related speech patterns and reduce overfitting.

These results align with findings from Lim et al., who show that multi-source

language training (MSLT)—akin to our mixed-batch setup—enhances the learning of

language-agnostic features by exposing the model to diverse linguistic inputs during

training [96].

4.4.4 Fine-tuning

Fine-tuning results (Figure 4.6, Figure 4.5, Figure 4.4) demonstrate that target-

language fine-tuning generally leads to performance gains, though the magnitude
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of improvement varies across source-target language pairs. Fine-tuning for Slovak

inference yielded the most stable and consistent gains, (AUC between 0.73 and 0.75).

Greek also showed marked improvement when fine-tuned from an English-trained

model (AUC of 0.73). In contrast, fine-tuning toward English resulted in minimal

performance gains, with AUC values remaining relatively close to baseline.

Source language performance exhibited initial fluctuations during fine-tuning but

tended to recover or stabilize near baseline levels as more target-language data was

introduced. This pattern suggests that the model retains core discriminative features

with sufficient fine-tuning.

An initial drop in target-language AUC, consistent with known fine-tuning insta-

bility [97], was observed but recovered as training progressed, reflecting early-stage

adaptation to small or unrepresentative target-language data rather than true model

instability. However, the continued improvement in target-language AUC, suggests

that the model may be leveraging AD-relevant acoustic or paralinguistic features that

are transferable across languages, provided the target dataset is sufficiently rich and

representative.

This observation is consistent with prior work demonstrating cross-lingual trans-

ferability in AD detection—specifically, the effective use of English-trained models for

Greek data [35]. Nevertheless, further investigation into feature attribution and cross-

lingual representation learning is required to validate this hypothesis and elucidate

the mechanisms underpinning transfer performance.

Comparing mixed-batch training to fine-tuning (Figure 4.7), the improved per-

formance of mixed-batch training may be attributed to its enhanced generalization,

potentially resulting from simultaneous exposure to both source and target language

distributions during training. While preliminary results are promising, there appears

to be limited empirical work directly comparing these two approaches in this context,

underscoring the need for more systematic investigation.
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4.4.5 Adversarial Learning

Table 4.5 shows that adversarial training did not improve performance and, in some

cases, even led to a decline. This suggests that adversarial learning, intended to reduce

language-specific biases, may have inadvertently removed essential features needed for

AD classification while overemphasizing language-agnostic features.

One possible reason for this decline lies in the nature of cross-lingual AD detection.

AD-related speech changes manifest in both linguistic (e.g., lexical access) and par-

alinguistic (e.g., cognitive processing speed) domains, yet adversarial training aims to

neutralize language differences [98]. This process may suppress language-specific cues

that are also critical for detecting AD. Research has shown that while grammatical

structures often remain intact in AD speech, deficits in fluency, word retrieval, and

informativeness are prominent [99]. By minimizing language distinctions, adversar-

ial learning may have inadvertently weakened the model’s ability to capture these

impairments.

Additionally, adversarial networks are prone to mode collapse [100], where the

model overfits to a limited subset of representations. In seeking language-invariant

features, the adversarial objective may inadvertently suppress subtle, disease-relevant

cues that vary across languages. This loss of discriminative information can hinder

cross-lingual generalization, ultimately degrading performance.

4.4.6 Limitation and Future Direction

This study aimed to assess whether speech-based AD detection models trained in one

language can generalize to others. The findings indicate that mixed-batch training

and fine-tuning enhance cross-lingual transfer, though the extent of transferability

was asymmetric across different language pairs. Several limitations remain, requiring

further investigation.

Adversarial learning, initially explored as a method for improving language-
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invariant feature learning, did not yield the expected benefits and, in some cases, led

to decreased performance. A key limitation of this approach is its susceptibility to

mode collapse [100], where the model overfits to a limited subset of learned patterns

and fails to capture the full diversity of AD-related speech characteristics. To mitigate

this issue, various strategies in adversarial training have been proposed. One approach

is to use Wasserstein-based loss functions, such as those employed in Wasserstein

GANs (WGANs) [101], which replace traditional loss functions with the Wasserstein

distance to ensure smoother convergence and better preservation of diverse feature

representations. Another promising technique is Unrolled Adversarial Training [102],

where the adversarial component is optimized over multiple future iterations, pre-

venting the model from overfitting to a narrow distribution. Future research should

explore whether these advanced adversarial techniques improve generalization across

languages.

Another key limitation of this study is the variability in datasets. The datasets used

differed in preprocessing techniques, clinical diagnostic criteria, recording conditions,

sample sizes (English: 156 / Greek: 62 / Slovak: 86), and quality control standards,

introducing potential confounding factors. These inconsistencies make it difficult

to distinguish true language-specific speech patterns from dataset-related artifacts.

Some observed trends may reflect variations in dataset quality rather than intrinsic

linguistic differences. Establishing standardized data collection and preprocessing

protocols across languages would be essential for ensuring more reliable cross-lingual

comparisons. Furthermore, exploring data augmentation techniques tailored for

low-resource languages—such as synthetic speech generation, noise injection, and

cross-lingual transfer learning—could help mitigate data scarcity and improve model

generalizability in multilingual settings [103].

A further limitation is the restricted number of languages examined (n = 3),

which limits broader insights into language transferability in speech-based AD detec-



49

tion. Prior research in NLP suggests that cross-lingual transferability is influenced

by multiple factors, including linguistic similarity, lexical overlap, and pre-training

configurations [104]. This is particularly relevant for speech-based models, where

certain source languages may inherently provide better transferability for specific

target languages. The small number of languages in this study prevents a comprehen-

sive analysis of these factors, leaving open the question of how language properties

influence the effectiveness of cross-lingual transfer in speech-based AD detection.

Given this, another important direction for future work is the use of feature

attribution methods, such as SHAP [105], to analyze model behavior before and

after transfer learning. By comparing feature importance scores across languages

and transfer stages, such analysis could shed light on the asymmetric transferability

observed in our results. Specifically, it may help identify which features are shared

across languages and consistently associated with AD, versus those that are language-

specific. This would provide more interpretable insights into what the model is actually

leveraging for prediction, and guide the design of more robust, cross-lingual systems.

Beyond cross-lingual transfer, the generalizability of speech-based AD detection

within a single language remains a challenge due to regional accent diversity and

the presence of non-native speakers. Variations in phonetic and prosodic patterns

across dialects may impact model performance, while models trained primarily on

native speakers risk biases and reduced accuracy for non-native speakers [106]. These

challenges are not limited to English but are relevant across many languages with

diverse regional and non-native speakers. Future research should explore adaptation

techniques, such as accent-invariant feature learning or accent-conditioned modeling,

to improve robustness across linguistic and demographic variations.
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4.5 Conclusion

This study explored the cross-lingual generalizability of speech-based AD detection

models, demonstrating that mixed-batch training and fine-tuning enhance transferabil-

ity across languages without compromising source-language performance. Additionally,

it investigated the feasibility of adversarial learning for cross-lingual adaptation. While

this approach did not achieve successful transfer, it provided valuable insights into

the challenges of aligning speech representations across languages, guiding future

research in robust model adaptation. Lastly, the asymmetric transferability observed

suggests that some language pairs adapt more effectively than others, leaving open

the question of which languages transfer better and why, an important direction for

further exploration.

Developing more robust cross-lingual speech-based models and uncovering hidden

linguistic patterns will be crucial for advancing multilingual AD detection systems.

Future research should focus on refining adversarial learning techniques, standardizing

data collection across languages, and expanding to a broader range of languages and

speech tasks. Additionally, addressing intra-language variability, including regional

accent differences, will be essential for improving model adaptability and ensuring

clinically useful applications. Ultimately, a comprehensive approach that integrates

linguistic diversity, methodological rigor, and advanced adaptation techniques will

drive the development of more effective and inclusive speech-based AD detection

systems.



Chapter 5

Conclusion

This dissertation advances the field of speech-based cognitive impairment detection by

demonstrating that speech-derived biomarkers can track cognitive changes over time

and transfer across languages, offering a promising tool for early detection. While

our findings highlight the potential of speech-based models, they also expose critical

challenges and limitations that must be addressed for broader adoption.

In chapter 3, we established that speech-derived features hold longitudinal validity

as cognitive assessment markers, showing that models trained at baseline retained

moderate predictive power at future time points (6-month and 12-month follow-ups).

Despite promising results, predictive performance remained limited, reflecting a com-

plex relationship between speech and cognition—where speech may not always mirror

cognitive change. Dataset-specific constraints, such as brief and structured phone-

based conversations, and the poor performance of PWB scores, further underscore

the challenges of using short, spontaneous speech for longitudinal monitoring. Fu-

ture work should explore longer, more naturalistic recordings, temporal modeling of

speech patterns, and multimodal approaches to improve the reliability of speech-based

biomarkers over time.

In chapter 4, we extended this work to a cross-lingual setting, demonstrating that

51
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transfer-learning techniques such as mixed-batch training and fine-tuning improve

adaptation across languages without hindering source-language performance. However,

the observed asymmetric transferability leaves open questions about which languages

transfer best and why. Moreover, our exploration of adversarial learning for cross-

lingual transfer, while unsuccessful, provided valuable insights into the challenges of

aligning speech representations across languages. These results highlight the need for

more advanced adaptation techniques that can better balance language-invariant and

language-specific features, ensuring models remain effective across diverse linguistic

and demographic contexts.

Despite important progress, major gaps remain in our ability to track AD pro-

gression through speech across diverse populations and real-world settings. The field

still lacks large-scale, standardized, and longitudinal datasets that capture linguistic

diversity, span disease stages, and include consistent cognitive assessments [107]. Chal-

lenges such as inconsistent annotation practices, limited labeled data, and variable

recording conditions continue to undermine model generalizability and reliability [108].

Cross-lingual modeling offers promise, but disparities in linguistic resources lead

to uneven performance across languages and dialects [109]. Data scarcity in minority

variants and regional dialects, combined with high variability in speech patterns and

recording environments [110], further complicates model adaptation and transfer.

Together, these limitations highlight the need for more inclusive, well-curated, and

harmonized speech datasets to support robust, generalizable detection systems.

Current models also fail to capture individualized speech characteristics, such as

personal conversation styles, emotional tone, and speaker variability. These factors

could serve as early subclinical markers of cognitive decline, yet their role in predictive

modeling remains underexplored—especially in everyday, non-laboratory settings.

Moreover, there is limited insight into how the observed speech patterns align

with clinically and linguistically meaningful measures of cognitive decline. Addressing
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this gap calls for interpretable models that connect extracted features to established

linguistic and neurological markers, ensuring that speech-based AD detection is

grounded in clinical frameworks.

Advancing toward scalable, accessible, ethical, and inclusive screening for cognitive

impairments calls for multiple strategic steps. First, standardizing speech collection

protocols and annotation practices can foster cross-study comparisons and model

replication. Second, privacy-preserving machine learning approaches [111]—such as

federated or encrypted methods—can facilitate broader data-sharing while safeguard-

ing patient confidentiality. Third, integrating multimodal data, from speech signals

to motor activity, will help capture a more holistic view of early AD manifestations.

Ultimately, the goal is a future in which speech-based tools serve as widely accessible,

non-invasive pre-screening methods, seamlessly running on everyday devices to contin-

uously monitor cognitive status. Such solutions have the potential to democratize early

detection, enable timely interventions, and improve health outcomes across diverse

populations worldwide.
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adversarial networks. In International conference on machine learning, pages
214–223. PMLR, 2017.

[102] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled genera-
tive adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

[103] Zolzaya Byambadorj, Ryota Nishimura, Altangerel Ayush, Kengo Ohta, and
Norihide Kitaoka. Text-to-speech system for low-resource language using cross-
lingual transfer learning and data augmentation. EURASIP Journal on Audio,
Speech, and Music Processing, 2021(1):42, 2021.



64

[104] Fred Philippy, Siwen Guo, and Shohreh Haddadan. Towards a common un-
derstanding of contributing factors for cross-lingual transfer in multilingual
language models: A review. arXiv preprint arXiv:2305.16768, 2023.

[105] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. Advances in neural information processing systems, 30, 2017.

[106] Ingy Farouk Emara and Nabil Hamdy Shaker. The impact of non-native english
speakers’ phonological and prosodic features on automatic speech recognition
accuracy. Speech Communication, 157:103038, 2024.

[107] James W Schwoebel, Joel Schwartz, Lindsay A Warrenburg, Roland Brown, Ashi
Awasthi, Austin New, Monroe Butler, Mark Moss, and Eleftheria K Pissadaki. A
longitudinal normative dataset and protocol for speech and language biomarker
research. medrxiv, pages 2021–08, 2021.

[108] Lara Gauder, Pablo Riera, Andrea Slachevsky, Gonzalo Forno, Adolfo M Gar-
cia, and Luciana Ferrer. The unreliability of acoustic systems in alzheimer’s
speech datasets with heterogeneous recording conditions. arXiv preprint
arXiv:2409.12170, 2024.

[109] Yuemei Xu, Ling Hu, Jiayi Zhao, Zihan Qiu, Kexin Xu, Yuqi Ye, and Hanwen
Gu. A survey on multilingual large language models: Corpora, alignment, and
bias. Frontiers of Computer Science, 19(11):1911362, 2025.
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