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Abstract 

Using Deep-Learning Based Approaches to Quantify Drosophila Behaviors 
By Xinyue An 

Deep learning is an emergent theme in the field of computational neuroscience, and the 
increasing amount of behavioral data in the video form calls for better tools to quantify 
behaviors.  Building on previous research by Cande et al. (2018) that used an unsupervised 
method to quantify Drosophila behaviors, we investigate the incorporation of a new animal 
tracking tool and an autoencoder, both deep-learning-based methods, to define animal behaviors 
with greater precision and accuracy. Comparing to published results, the behavioral 
representation from the new analysis pipeline is able to reproduce many aspects of the previous 
work but has limitations that require further investigation.  These results show promising future 
directions towards linking behavior and the neural circuitry underlying it. 
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1. Introduction 

1.1 Significance of Descending Neurons in Animal Motor Control 

The highly conserved motor control system in animals composes of both a brain, which integrates 

contextual information and transmits motor commands, as well as an effective bottleneck between the 

brain and the circuitry that directly generates movements. In vertebrates, this bottleneck is the spinal cord, 

and in most arthropods, it is the ventral nerve cord (VNC). In arthropods, descending neurons (DNs) are a 

population of interneurons that connects the brain and the VNC by sending down motor commands, but 

they only take a small portion of the whole neuronal population.  

How descending neurons convey sufficient information about motor commands within their 

limited bandwidth remains unclear. One possibility is that the set of DNs decomposes the motor control 

signals from the brain to innervate individual motor modules in the central pattern generators of the VNC. 

If so, the activation of individual DNs should be sufficient to elicit observable motor behaviors, which is 

supported by previous studies (Kohatsu et al., 2011; von Philipsborn et al., 2011; von Reyn et al., 2014; 

Bidaye et al., 2014). However, previous studies also found that DNs may code behaviors in a combined or 

summed manner (Heinrich, 2002; Namiki et al., 2018), and the responses of DNs can have behaviorally 

dependent gating (Staudacher & Schildberger, 1998).  

To understand how descending neurons code the full spectrum of animal behaviors and model the 

neural principle governing animal motor control, it is necessary to link all individual descending neurons’ 

activity with its motor output. Toward that end, we would need a subjective and accurate measure of the 

animal’s motor behaviors. 
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1.2 Drosophila Descending Neurons as the Model System  

Figure 1 

Drosophila Central Nervous System Composes of the Brain and the Ventral Nerve Cord  

Note. Descending neurons (DNs) connect the brain and the VNC, with their cell bodies locating in the brain and axons projecting 
to VNC. An example of DN is drawn in black. From Death-Feigning in Insects (1st ed., p. 145-157), by S. Namiki, 2021, 
Springer. Copyright 2021 by Springer. 
 

We are interested in understanding how descending neurons function as a set of neurons, which 

involves a system-wide analysis of descending neurons’ activation phenotypes. Drosophila melanogaster 

is a good model system for this type of study, because (1) Drosophila is genetically tractable, with at 

most 550 pairs of descending neurons connecting the brain and the VNC (Hsu and Bhandawat, 2016; see 

Figure 1), and (2) with the library of split-GAL4 lines created by Namiki et al. (2018), individual 

Drosophila DNs became genetically accessible to external manipulation. The genetic tools, combined 

with a method to measure animal motor behaviors, together could allow researchers to decode the 

functional organization of descending neurons. 

1.3 Using Optogenetics to Study Drosophila Descending Motor Control 

While traditional approaches for studying fly behaviors involves human annotating of stereotyped 

behaviors, such as “front leg grooming”, to figure the rules that govern behavior sequences (Dawkins & 

Dawkins, 1976), recent advancements in experimental tools empower researchers to achieve the same end 

with computational tools. In Cande et al. “Optogenetic dissection of descending behavioral control in 

Drosophila” (2018), authors demonstrated a novel experimental analysis pipeline that surveys the 
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activation effects of descending neurons in a system scale with unsupervised computational methods (see 

Figure 2). 

Figure 2 

Descending Neuron Phenotyping Pipeline 

Note. From “Optogenetic dissection of descending behavioral control in Drosophila,” by J. Cande, S. Namiki, J. Qiu, W. Korff, 
G. M. Card, J. W. Shaevitz, D. L. Stern, and G. J. Berman, 2018, eLife, 7, e34275 (http://doi.org/10.7554/eLife.34275). 
Copyright 2018 by eLife. 
 

Using the split-GAL4 fly lines developed by Namiki et al. (2018), the authors crossed each line to 

enable neuronal activation with red light via CsChrimson, a red-shifted opsin protein (Klapoetke et al., 

2014). They imaged flies that move freely in a chamber, applied red light activation during the recording, 

and processed images to phenotype the descending neurons labeled by each split-GAL4 line. To identify 

and define the behavioral phenotypes without human bias, they decomposed video images into low-

dimensional data, producing a time-series that is then mapped onto a ‘behavioral space’ that can 

quantitatively define fly behaviors.  

Figure 3 

Fly Behavioral Analysis Pipeline 

Note. From “Mapping the stereotyped behavior of freely moving fruit flies,” by G. J. Berman, D. M. Choi, W. Bialek, and J. W. 
Shaevitz, 2014, Journal of the Royal Society, Interface, 11(99), 20140672. (https://doi.org/10.1098/rsif.2014.0672). Copyright 
2014 by the Royal Society. 
 



 4 

The image processing and the behavioral mapping of processed images utilize the technique 

developed by Berman et al. (2014). In this analysis pipeline (Figure 3), images are first segmented to 

detect the outline of the fly, re-scaled and rotationally aligned so that the fly has a uniform body size with 

the same orientation in each image. Normalized images are then converted to 50-dimensional vectors by a 

principal component analysis (PCA) on the pixel values to describe the fly’s postural modes. To obtain 

dynamic information about the postural modes, they decomposed those time series data into a 

spectrogram representation with Morlet wavelet transform so to extract changing patterns of vectors in the 

time-frequency domain and represent animal behaviors. The spectral feature vectors are then embedded 

into a behavior space by the dimensionality reduction of the t-SNE algorithm and spatially segmented 

with watershed transformation – each behavioral region represents a distinguishable set of postural 

dynamics.  

In Cande et al.’s phenotyping pipeline, when descending neurons are photo-activated, observable 

behaviors are performed by the flies, leading to a reduction of entropy in the behavior space. The elicited 

behaviors are thus quantitatively characterized by which regions in the behavior space are occupied upon 

photo-activation and measured by the density change of behavior space. The analysis pipeline allows 

them to process a huge amount of video data and eliminate the impact of human bias in measuring 

behaviors, so they were able to test several hypotheses on descending motor control as well as construct a 

systematic report of 58 descending neuron cell types’ behavioral effects. 

1.4 Recent Advances in Experimental Analysis Tool and Application 

One potential limitation in Cande et al. (2018) exists in the image processing technique, in which 

they define flies’ postural modes with the discriminative features in video frames’ pixel values to then 

estimate postural dynamics. A more intuitive way is to decompose images with respect to the fly’s 

anatomical body parts and describe postural modes as the angles between each pair of the body parts, but 

reliably identifying and tracking animal positions remained a computer vision challenge at the time of 

their study. The new computational methods in the field, however, allow an explicit tracking of joints and 
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limbs throughout videos, thus potentially providing a finer-scale representation of behaviors based on 

postural dynamics. 

Figure 4 

Neural Network Architectures Generated by the Encoder-Decoder Motif 

 
 
 
 
 
 
 
 

Note. From “SLEAP: A deep learning system for multi-animal pose tracking,” by T. D. Pereira, N. Tabris, A. Matsliah, et al., 
2022, Nat Methods. (https://doi.org/10.1038/s41592-022-01426-1). Copyright 2022 by Nature Methods. 
 

DeepLabCut and SLEAP are two of the most widely used toolboxes that track animal poses in an 

experimental setting with computer programs (Mathis et al., 2018; Pereira et al., 2020). With computer 

vision and deep learning algorithms, they both can reliably infer animals’ body-part positions from 

surface video recordings without physical markers that constrain animals’ behaviors. The general neural 

network architectures can be explained by the encoder-decoder meta-architecture (Figure 4.a). The 

“encoder” has a contracting path to extract relevant information about the labeled body parts from images, 

and the “decoder” has an expansive path to combine information and recover the input. Video frames 

with manually labeled body parts train the weights of the network to then predict the body-part locations 

in an unseen frame. Under the same meta-architecture, specific backbones serve to learn feature 

extraction with different approaches. 

DeepLabCut (Mathis et al., 2018; Figure 5) extends from the feature detectors of DeeperCut 

(Insafutdinov et al., 2016), a multi-human pose estimation model, and adopts transfer learning toward the 
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task of animal pose estimation. Its architecture composes of (1) an encoder as a variation of deep residual 

neural networks (ResNet) that is pretrained on ImageNet to achieve the object recognition benchmark, 

and (2) a decoder that, in substitution of the object classification layer, constitutes of a readout per body 

part that has a confidence map of the body part’s location.  

Figure 5 

Procedure for Using the DeepLabCut Toolbox 

Note. From “DeepLabCut: markerless pose estimation of user-defined body parts with deep learning,” by A. Mathis, P. 
Mamidanna, K. M. Cury, et al., 2018, Nat Neurosci 21, 1281–1289 (https://doi.org/10.1038/s41593-018-0209-y). Copyright 2018 
by Nature Neuroscience. 
 

While DeepLabCut implements the ResNet backbone for feature extraction, SLEAP (Pereira et 

al., 2020) allows implementation with two different backbones: ResNet, as a replicate of the architecture 

in DeepLabCut (Figure 4.b), and UNet (Figure 4.c). UNets are commonly used in biomedical image 

segmentation tasks, and its network architecture has (1) an encoder that increases feature information of 

the images and decreases spatial information with convolutional layers, and (2) a decoder that uses up-

convolutions to recover feature information and fuses with spatial information from the encoder to 

combine into the output – the confidence map of body parts’ locations.  

With the same training data, SLEAP can implement training with both ResNet and UNet 

backbones to compare for accuracy. Furthermore, SLEAP has a “human-in-the-loop” GUI-driven training 

style that expedites the workflows and demands fewer computation and time. After initial labeling of 
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minimal frames, predictions are incrementally refined and guide further labeling until desired accuracy is 

reached. Those features of SLEAP make it more desired in the execution of this project.  

1.5 Hypotheses 

The raw output of SLEAP composes of tracked body parts’ coordinates in the video frames, 

which does not directly describe animal behaviors. To estimate animal behaviors with the tracking data, 

Pereira et al. (2019) calculated the relative position of each body part to the fly thorax and generate 

spectrograms of the trajectories of body-part positions. After embedding the feature vectors of 

spectrograms to the behavior space with the method by Berman et al. (2014), the tracking data can 

estimate the fly’s body dynamics and describe locomotor behaviors. Extending from here, this project 

presents a new methodology that processes the video tracking data into time-series joint angles to 

estimate animal behaviors.  

Our hypothesis is that the surface tracking of animal joints and the calculated joint angles, at least 

for arthropods such as flies, entails their actual skeletal kinetics and thus locomotor behaviors. Previous 

studies presented the complications with inferring rodents’ limb kinematics from video tracking because 

of their overlying soft tissues’ movements (Bauman and Chang, 2010).  Comparing to vertebrates, fruit 

flies have relatively unobscured limbs and minimal soft tissues, so we might overcome such challenge, 

and the success of it was demonstrated by Pereira et al. (2019). With our attempt, we wish to validate the 

accuracy of deep learning tracking methods in the use toward measuring animal behaviors, and we 

hypothesize that the time-series data of joint angles are sufficient to capture flies’ motor behaviors. 

 

To validate the efficacy of our animal video processing methods, we substitute a section 

of the Cande et al.’s (2018) analysis pipeline and aim to re-analyze their original video data 

(Figure 6). We hypothesize to yield similar results as Cande et al.’s (2018) major findings, 

including: (1) activation of most descending neurons leads to stereotyped behaviors in flies, (2) 

activation of multiple DNs have similar behavioral output, and (3) behaviors activated by 

optogenetic stimulation depend on the prior behavioral state. We also hope to explore potential 
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new findings that were previously masked by the limited specificity in previous image 

processing techniques. With time-series data of joint angles, our findings could move beyond a 

coarse description of body dynamics and in the scale of specific body parts’ kinematics. 

Figure 6 

Modified Descending Neuron Phenotyping Pipeline 

Note. The top figure is from “Optogenetic dissection of descending behavioral control in Drosophila,” by J. Cande, S. Namiki, J. 
Qiu, W. Korff, G. M. Card, J. W. Shaevitz, D. L. Stern, and G. J. Berman, 2018, eLife, 7, e34275 
(http://doi.org/10.7554/eLife.34275). Copyright 2018 by eLife. The middle figure is from “Mapping the stereotyped behavior of 
freely moving fruit flies,” by G. J. Berman, D. M. Choi, W. Bialek, and J. W. Shaevitz, 2014, Journal of the Royal Society, 
Interface, 11(99), 20140672. (https://doi.org/10.1098/rsif.2014.0672). Copyright 2014 by the Royal Society. 
 

2. Methodology 

2.1 Dataset 

 With the split-GAL4 intersectional system, Namiki et al. (2018) created a collection of transgenic 

Drosophila strains that target descending neurons. Using this collection of strains, Cande et al. (2018) 

screened 130 of the sparsest line and crossed them with the channel rhodopsin CsChrimson to enable red 

light activation of the targeted descending neurons. For each fly line, they imaged six retinal-fed 

experimental animals and six non-retinal-fed control animals and recorded their behaviors from the 

activation of descending neuron split-GAL4 lines. (For detailed data collection methods, see Cande et al. 
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2018) Each video recorded for the animal has 30 LED cycles each composes of 15 seconds LED-on and 

45 seconds LED-off programs. 

The dataset for this project is a subset of the videos collected by Cande et al. (2018), and I 

screened 15 out of the 130 descending neuron split-GAL4 lines. In total, I processed 173 fly videos that 

are in total approximately 30 million frames long.  

2.2 SLEAP Model for Animal Tracking 

Figure 7 

User-Defined Skeleton for Fly 

Note. From “Fast animal pose estimation using deep neural networks,” by T. D. Pereira, D. E. Aldarondo, L. Willmore, et al., 
2019, Nat Methods 16, 117–125. (https://doi.org/10.1038/s41592-018-0234-5). Copyright 2019 by Nature Methods. 
 

 The fly’s skeleton (Figure 7) for labeling and tracking adopts the skeleton used in the original 

method paper by Pereira et al. (2019). The complete skeleton consists of 32 total nodes (joints or body 

parts) that are connected by 25 edges. 

The training cycle started with 100 frames of initial labeling and continued until desired labeling 

accuracy is achieved. The trained model in each stage was iteratively used to assist further labeling in the 

next stage. By the end of the training cycle, 1000 frames were labeled, sampled from 40 randomly chosen 

videos and 25 frames came from each video. The labeled frames were primarily chosen by random 

sampling. In the last training stage, to achieve a more robust model that tackles the tracking of difficult 
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frames, labeling frames were both chosen by the image feature method from SLEAP (algorithms that 

suggest visually distinctive frames for labeling) and manually chosen (frames of flies’ grooming 

behaviors that require higher resolution and were previously poorly tracked by the model). 

Since SLEAP supports training with different backbones, I was able to train the labeled images 

on both the ResNet50 backbone (with pretrained weights on ImageNet) and the UNet backbone (baseline) 

to compare for the tracking accuracy. Training profiles with hyperparameters of the training process are 

created by SLEAP and can be found on SLEAP’s GitHub page.  

Figure 8 

Training Results with the Pretrained Training Profile (ResNet50) 

Note. This figure includes the output from using “SLEAP: A deep learning system for multi-animal pose tracking,” by T. D. 
Pereira, N. Tabris, A. Matsliah, et al., 2022, Nat Methods. (https://doi.org/10.1038/s41592-022-01426-1). 
 

The ResNet50 backbone was chosen because it has a superior accuracy for every accuracy metric, 

including lower percentile distances and higher mean Average Precision and mean Average Recall. The 

final SLEAP model trained on ResNet50 has an average distance of 2.32 pixels for each tracked node 

across all video frames, with <6 pixels distance for 95th percentile of the frames (Figure 8). The average 

pixel distance (~2 px) is relatively small comparing to the body length of flies in video frames which is 
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~100 pixels. The distribution of the node distance suggests that the model can predict most of the frames 

well, but not as well for some difficult frames. The errors resulted from tracking will be further addressed 

by the following methods in Section 2.4. 

2.3 Joint Angle Calculation 

The output shape of SLEAP is a time series of tracked node positions (x, y coordinates) 

throughout the video. With 32 tracked nodes, the representation of the fly’s pose in each frame is a 64-

dimensional data. Converting the joint-position representation into the joint-angle representation of 

animal poses is beneficial for several reasons: (1) joint angles are independent from the fly’s body 

orientation and size, so they can act as a measure to standardize the data, (2) the joint angle calculation 

method that I apply here reduces the dimensionality of the data from 64 dimensions to 22 dimensions, 

which preserves the shape of the fly skeleton yet demands fewer computation power, (3) joint angles 

present more human interpretable data, so the results could be used for more potential applications and 

lead future research directions.  

Figure 9 

Description of the Joint Angle Calculation Method on the Fly’s Skeleton 

Note. This figure is adapted from Figure 7. 
 

 The objective for the joint angle conversion is to account for and faithfully represent the fly’s 

pose in each frame by calculating enough yet minimal number of angles. Toward that end, angles that are 
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fixed and independent from the fly’s postural dynamics are not included in the calculation (e.g., the 

angles between the eyes’ and the head’s positions, formed by nodes 2-1-4 and 3-1-4 in Figure 9).  

The detailed method for joint angle calculation is as follows. For each of the fly’s six limbs (e.g., 

nodes 7 to 10 represent the fly’s right forelimb), two angles around each joint ought to be calculated (e.g., 

angles formed by nodes 10-9-8 and 9-8-7). However, six proximal joints tend to be obscured by the fly’s 

trunk and thus poorly tracked by the SLEAP model (nodes 7, 11, 15, 19, 23, 27). Because the proximal 

joints have relatively fixed positions in the fly’s body, an alternative solution is to use another fixed node, 

the methoracic phragma (node 5), to substitute the proximal joints (e.g., calculate angles formed by nodes 

10-9-8 and 9-8-5, instead of 9-8-7). 

In a fly, the thorax connects all other body parts of the fly including three pairs of legs, two 

wings, head, and abdomen, thus acting as a pivot in the fly’s anatomy. Taking the thorax as a pivot, I 

choose the line formed by node 4 and 5 (solid arrowed line in Figure 9) as a base axis of the fly and 

calculate all other body parts’ angles with it. For example, the angle formed by nodes 31-4-5 accounts the 

left wing’s relative position, and the angle formed by 1-4-5 accounts for the head’s relative position. 

Taken together, a total of 22 joint angles are calculated from each image to approximate the fly’s pose.  

The discontinuity in an angle’s magnitude during a brief time period can disrupt the approximated 

postural dynamics measured by the following steps. Thus, according to the range of each angle, I adjusted 

it to either reside in the range of [-π, π] or [0, 2π] to make the joint angle time series maximally 

continuous during the fly’s natural behaviors. For example, avoiding a jump of an angle’s magnitude 

from – π to π between two consecutive frames when the fly is performing a continuous movement.  

2.4 Autoencoder and Median Filter for Data Denoising 

The time series of joint angles will then pass through an autoencoder and a median filter to 

denoise the data and reduce errors from tracking, as will be described below. 

2.4.1 Autoencoder Training 

An autoencoder is an unsupervised artificial neural network that can be trained to produce an 

output that is a replicate of its input. A stacked autoencoder composes of an encoder that compresses the 
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input data into a low dimensional representation (encoding dimension), and a decoder that reconstructs 

the original data from the low dimensional representation. The weights of the network are iteratively 

trained through training epochs for the output to maximally resemble the input. 

For this dataset, an autoencoder is especially useful because some of the joint positions might be 

falsely tracked or not tracked by the SLEAP model, leading to missing or error values in the 22 joint 

angles calculated. Thus, a denoising autoencoder structure is adopted here to correct those data (Figure 

10). 

Figure 10 

Stacked Autoencoder Structure 

 

For the autoencoder training, I randomly sampled 260 frames from each of the 173 videos that have 

all 22 joint angles calculated, totaling approximately 45,000 frames, which should be sufficient to capture 

most of the possible fly poses. All data points have a shape of [22,] for 22 joint angles. The dataset is 

randomly shuffled and split into the training dataset and the test dataset by 40,000 : 5,000. Before inputting 

into the autoencoder, each joint angle is adjusted to the range [0, 1] with min-max normalization for better 

computation of the activation function in the autoencoder. Min-max normalization uses the formula: 

where the maximum and minimum value of a given joint angle is found across 45,000 frames and adjusted 

up or down by 10 percent to account for possible actual values out of the range of the sampled frames. 
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The input layer of the autoencoder has 22 joint angles calculated from a fly’s image. Between the 

input layer and the first layer of the encoder, a dropout layer of 0.1 is added to simulate a partially destroyed 

input (10% of the input data is corrupted). Every layer in the neural network is a dense layer, which means 

every single neuron receives output from every neuron in its preceding layer. By combining results from 

the preceding layer, a dense layer is often used to change the dimension of the vectors yet retain information. 

Each layer before the output layer uses the Scaled Exponential Linear Unit (SELU) activation function that 

can give a faster convergence of the network. The output layer uses the Sigmoid function to scale the result 

between 0 and 1 and reconstruct the input. 

By iterative training on the training dataset, the network will correct its weights and learn to reconstruct 

the original input in an unsupervised manner despite of the destroyed input. Sizes of the encoder layers (n 

= 500, 200, 50) are arbitrarily chosen. The idea is to first expand the low-dimensional input and gather 

enough information about the input, and gradually compress into the latent space representation. The 

decoder has a symmetrical architecture to reconstruct the input. The key of the autoencoder architecture is 

the size of the encoding dimension, so I experiment to find the best suited size for this specific dataset. 

Figure 11 

Training Curves of Example Models 

Note. (a) Training plots for encoding dimension = 9, batch size = 128, epochs = 200. (b) Training plots for encoding dimension = 
16, batch size = 128, epochs = 200. 
 

The loss function of the network is the mean squared error between the output and the input, and 

Adam optimizer is used in training. Parameters of the model are constantly updated by the optimizer 



 15 

through training, and I experiment to choose hyperparameters for training, including the batch size of 

training and the number of training epochs. 

To choose the most appropriate size of the encoding dimension, I trained the autoencoder on a 

combination of varying encoding dimension size (in the range of 5 to 20) and batch size (n = 32, 64, 128, 

256, 512) for 200 epochs. A good autoencoder model, by the end of the training, should have a minimal 

validation loss value. Also, the validation loss (the prediction loss on un-trained data) should converge with 

the training loss (the prediction loss on trained data) to avoid model overfitting. Figure 11 shows an example 

of a better-fitted model (Figure 11.a) and an overfitted model (Figure 11.b). 

After experimenting, I observed that the model’s loss after 100 epochs do not further decrease, 

independent of the fitting of the model (Figure 11). The model’s loss reaches a minimum value for encoding 

dimensions 8 to 11, independent of the batch size (Figure 12). By plotting the loss versus batch size for 

encoding dimensions 8 to 11, I chose the combination of encoding dimension = 9 and batch size = 128 that 

has the minimum validation loss (Figure 13) and an optimal fitting curve (Figure 11.a). 

Figure 12  

Validation Loss of Varying Encoding Dimensions with Different Batch Sizes 

Note. Each loss value is averaged among three independent training events with the same encoding dimension, batch size, and 
epochs = 200. 
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Figure 13 

Validation Loss of Encoding Dimensions 8 to 11 with Different Batch Sizes 

 

Note. Each loss value is averaged among three independent training events with the same encoding dimension, batch size, and 
epochs = 200. 
 

Figure 14 

Training Curve of the Final Model  

Note. Model has encoding dimension = 9, batch size = 128, epochs = 100. The validation loss (Mean Squared Error) = 0.000764, 
converging with the training loss. R^2 of the model is 0.975156. 
 

The final model is trained on encoding dimension = 9, batch size = 128, and epochs = 100 (Figure 

14), which has a validation loss of 0.00076 (the mean squared error between the prediction value and the 

ground truth on un-trained dataset). R-squared of the model is 0.975, which means ~97.5% of the variance 

in the test dataset can be explained by the model prediction, further proving the strength of this autoencoder 

model on predicting the actual data.  

2.4.2 Joint Angle Data Processing Pipeline 

All 173 time series of joint angles go through a processing pipeline as follows. For each time series 

(video), all joint angles are first normalized by the min-max normalization, where minimum and maximum 
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value for each joint angle is obtained across all data points. Frames with some but not all NaN joint angle 

values are screened and predicted by the autoencoder to reconstruct the data. Each time series will go 

through a median filter of window size 5, with the purpose of reducing tracking glitches as well as filling 

in some frames where all joint angle values are NaN’s. The video is in the form of 100 frames per second 

(FPS), thus a median filter with the window size of 5 frames will sacrifice some temporal resolution of the 

fly’s movement but mostly preserve the movement dynamics. All joint angles in the time series will again 

be predicted by the autoencoder to reduce tracking errors.   

By the end of the processing pipeline, 6 out of 173 videos still have NaN gaps of lengths mostly < 

50 frames. Since the following computational methods to extract postural dynamics does not allow the 

presence of NaN values, for each NaN gap < 100 frames, I use linear interpolation on the gap’s preceding 

and succeeding ‘good’ data points to fill in the gap. For the two NaN gaps > 100 frames, which means more 

than 1 second of the video has missing tracking data, I split the dataset at the NaN gap to avoid over-

interpolation on missing data. The presence of NaN gaps often suggest that the fly is performing an 

abnormal movement that poses challenge to the tracking method. The use of linear interpolation here aims 

to identify (not to homogenize) NaN gaps from other parts of the tracking, because postural dynamics in a 

linear mode can be separated with other natural dynamics by the following method in Section 2.5.  

Finally, I obtained time series of joint angles that have eliminated tracking glitches and errors and 

without NaN joint angle values in each frame. 

2.5 Motion Mapper for Building the Behavior Map  

The method to build the behavior map uses the MotionMapperPy package, which adapts the 

original MotionMapper methodology described by Berman et al. (2014). In the first step, time series data 

undergoes wavelet transform to generate a spectrogram representation of the postural modes. By computing 

amplitudes of the Morlet continuous wavelet transform for the time series of joint angles, the method can 

identify representative postural dynamics (in this context, stereotyped behaviors) of flies in different time 

scales. Since the videos have the sampling frequency (or FPS) of 100 Hz, the maximum frequency for 

Morlet wavelet transform is set as 50 Hz, and we set the minimum frequency to be 0.5 Hz.  
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Following the wavelet transformation, a behavior map is created using the t-distributed Stochastic 

Neighbor Embedding (t-SNE). t-SNE is a dimensionality reduction algorithm that can transform the high-

dimensional spectrogram data from the previous step into a two-dimensional visual map. Inside the map, 

data points will be clustered if the animal poses defined by their feature vectors are close in the high-

dimensional space, meaning their transition probability is high. For each dataset, I trained the t-SNE on 

4,500 number of points to generate a two-dimensional behavior map (“mini-tSNEs”). The algorithm with 

trained weights can learn to embed all data points into a single behavior map. 

Figure 15 

Segmentation into Behavioral Regions  

Note. From “Mapping the stereotyped behavior of freely moving fruit flies,” by G. J. Berman, D. M. Choi, W. Bialek, and J. W. 
Shaevitz, 2014, Journal of the Royal Society, Interface, 11(99), 20140672. (https://doi.org/10.1098/rsif.2014.0672). Copyright 
2014 by the Royal Society. 
 

The behavior map can be then segmented into multiple behavior regions where each region 

corresponds to a particular behavior performed by the fly (Figure 15.a). The image segmentation method 

uses the watershed transformation technique which finds watershed regions based on probability density 

peaks present in the map. By adjusting the number of regions to segment inside a map, each map region 

can provide a finer to more coarse description of the behaviors in the behavior repertoire, and the definitions 

of regions can be determined by visual assessment of videos (15.c). For this project, I choose to identify 

around 150 behavior regions in the map. 
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3. Results 

3.1 Choosing the Behavior Map  

With the data as time series of joint angles (from Section 2.4), I made two different attempts to 

generate the behavior space. First, I can feed the raw time series of joint angles (22 dimensional) to directly 

build the behavior map (Figure 16.a). Else, I can generate the map based on the time-series latent state data 

of the joint angles, to compress the 22-dimensional data into a lower dimension and enable more efficient 

computation (Figure 16.b). Toward which, I adopt the encoder architecture and weights of the trained 

autoencoder described in Section 2.4.1. and yield time series of 9-dimensional data by extracting the output 

of the encoding layer.  

Figure 16 

Behavior Maps Generated from Time-series Data  

Note. (a) uses raw time-series of joint angles, probability density ∈ [0, 2.66×10−19] (b) uses encoded time-series of joint angles, 
probability density ∈ [0, 1.98×10−19].  
 

I used the output behavior map from the first method (Figure 16.a) to proceed with the result 

analysis because it shows more probability density peaks (shown as yellow and red regions) inside the map. 

More probability density peaks mean that more video frames are identified as “similar” by the algorithm, 

and in the context of animal behaviors, it suggests the method is more capable of identifying stereotyped 

behaviors from the raw time-series data. 

3.2 Labeling the Behavior Map  
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 The raw behavior map is not easily understandable by human eyes (Figure 17). To make sense of 

the map and measure the accuracy of my methods, I manually annotate the map with human-curated 

labels of fly behaviors.  

Figure 17 

Final Behavior Map Generated and Segmented 

Note. (a) Map is segmented into 136 regions with watershed transformation, sigma = 0.8 for Gaussian probability curves. (b) 
Probability density ∈ [0, 2.66×10−19]. 

 

 For each region in the behavior map, the MotionMapper can identify frame ranges across all videos 

that are allocated to this region. Ideally, flies across videos should be performing comparable behaviors in 

the identified frame regions. By adapting the video correspondence method created by Kanishk Jain for 

mice videos, I created a composite video for each region in the behavior map (Figure 18). Each composite 

video is composed of at most 25 video clips for the behavior region they are contained to. The selected 

video clips are at least 30 frames long and at most 300 frames long, corresponding 0.3 seconds to 3 seconds 

in the original experimental video.  

Figure 18 

Screenshot of a Composite Video Created for Region 5 in the Behavior Map  

Note. All composite videos can be accessed at http://drive.google.com/drive/folders/1fVz_2SDwc48HIz0r4kt-TH4IMnsQFgEZ. 
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By observing the composite videos, I labeled the map to describe stereotyped fly behaviors in each 

region by “idle”, “locomotion”, and “grooming (anterior)” (Figure 19), similar to the labels used in Berman 

et al (2014). Regions labeled as “mixed” describe two or more labels of stereotyped behaviors. Regions 

labeled as “flipped” suggest that the flies are downside up in the frames.  

Figure 19 

Human-Labeled Behavior Map with Stereotyped Behaviors  

 

3.3 Optogenetic Analysis 

 After generating the behavior space, I used the same methodology described by Cande et al. 

(2018) to measure the activation phenotypes of 13 split-GAL4 lines that I have full access to for the 6 

experimental and 6 control animals’ video tapes.  

If the targeted descending neurons of a split-GAL4 line elicits or modifies the fly’s motor behaviors upon 

red light activation, the density of the behavior map will significantly shift to a particular region for the 

experimental but not control flies. For each fly line, the method isolates behavior regions that have a 

significant shift in density during red-light stimulation (as an example, see Figure 20). To determine that a 

behavior region is affected, Cande et al. assessed significance both within experimental flies and between 

experimental and control flies (Figure 21).  
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Figure 20 

Analysis of Line SS02635 (Targeting DNg07 and DNg08) 

Note. Image on the left is the behavior region that has significantly increased density during red-light stimulation. Image on the 
right compares the averaged density in this region for control (blue line) and experimental (red) animals. Experimental animals 
have a higher region density during the 15-second red-light stimulation (in between dotted lines). Similar to Cande et al. (2018), I 
reported the activation phenotype of line SS02635 as anterior grooming.  
 

Figure 21 

Averaged Change in Region Density of Experimental Animals above Controls for the Elicited Behavior Region of Line SS02635 

 

Within experimental flies, for each animal in each LED cycle, the authors defined the average 

behavior space density during the 3 seconds of stimulation (on-period, t = 0s to t = 3s) and 15 seconds 

furthest from the stimulation (off-period, t = 30s to t = 45s) to be the same for normalization purposes. 

They used a Wilcoxon rank sum with Šidák correction to assess if the behavior space density during on-
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and off-period is significantly different at each location in the space (p<0.05), where the Šidák correction 

is used to account for the loss in statistical significance with multiple comparisons.  

Between experimental and control flies, the authors computed the difference in average behavior 

space density between the on-period and the mean of its two preceding off-periods, and used this quantity 

at each behavior space location to compare the behaviors among experimental and control flies. Similarly, 

they used a Wilcoxon rank sum with Šidák correction to assess if the behavior space density at each 

location is significantly different between two groups. 

For a behavior region to be considered affected by the light stimulation, locations in this region 

show significant results by the assessments of both within experimental flies (light-on versus light-off 

periods) and between experimental and control flies (experimental versus control animals). 

With the described approach, I measured the activation effects of 13 split-GAL4 fly lines that are 

created by Namiki et al. (2018). 11 out of 13 fly lines show significant region density increases during 

light stimulation, and affected regions are organized by broad behavior categories, labeled according to 

results from Section 3.2 (Figure 22). If multiple regions are significantly affected, I reported the most 

significant region. Targeted descending neurons by 11 split-GAL4 lines can be referenced by Table 1. 
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Table 1 

Line Identifiers and Targeting Descending Neurons 

Measured in This Project 

Note. The data are compiled from “The functional 
organization of descending sensory-motor pathways in 
Drosophila,” by S. Namiki, M. H. Dickinson, A. M. Wong, 
W. Korff, and G. M. Card, 2018, eLife 7:e34272. 
(https://doi.org/10.7554/eLife.34272). 
 

Note. Activation effects are labeled by line identifiers and 
organized by broad behavior categories. 

Figure 22 

Summary of Activation Behavioral Effects of 11 Fly Lines 
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4. Discussion 

 In this project, I demonstrated a new analysis pipeline to represent fly behaviors in an 

experimental setting, with computational methods consisting of an animal tracking model, a joint angle 

calculation method, and an autoencoder. After that, I evaluated the accuracy of my methods by annotating 

the ‘behavior map’ generated from the processed data.  

By revisiting the original experimental design of the dataset, I also measured the activation 

effects of 11 fly descending neuron lines. Similar to Cande et al.’s (2018) major results, I found that (1) 

activation of most descending neurons leads to stereotyped behaviors in flies, and (2) activation of 

multiple DNs have similar behavioral output.  

The analysis pipeline presented here highly depends on deep learning methods that flourish in the 

computational field in the past decades. The animal tracking model built by SLEAP uses the encoder-

decoder architecture to track animal body parts through video frames; the autoencoder uses the encoder-

decoder architecture to restore missing data and denoise errors; the MotionMapper package uses an 

unsupervised learning algorithm (t-SNE) to embed and cluster data points in a meaningful way onto the 

two-dimensional space. A major theme of the neural networks used in those methods lies in 

dimensionality reduction which extracts useful information from complex data and saves power in 

computation. Comparable dimensionality reduction techniques are also employed by biological systems 

to perceive real-world complex variables, compress into lower dimensions, correspond with previous 

experiences, and process into meaningful representations in the brain.  

Results of this project indicate the potentially advantageous incorporation of deep learning 

methods in studying animal behaviors. Unlike traditional approaches, computational analysis pipelines 

free human labors and biases in annotating video datasets and present findings that are not readily 

apparent to researchers by visual assessment. 
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4.1 Limitations 

Figure 23 

2D Representation of Behaviors in the Descending Neuron Video Dataset and Human Curation of Watershedded Regions in the 

Behavior Space 

Note. From “Optogenetic dissection of descending behavioral control in Drosophila,” by J. Cande, S. Namiki, J. Qiu, W. Korff, 
G. M. Card, J. W. Shaevitz, D. L. Stern, and G. J. Berman, 2018, eLife, 7, e34275 (http://doi.org/10.7554/eLife.34275). 
Copyright 2018 by eLife. 
 

As shown in the Results section, my analysis pipeline is able to identify and cluster some fly 

behaviors based on the video dataset. Comparing with the behavior map generated by Cande et al. (2018) 

(Figure 23), however, several stereotyped fly behaviors are missing from the behavior map. For example, 

most posterior movements (wings & abdomen region in Figure 23) are not identified.  

 A post-hoc visual inspection on the dataset suggests flies in my sampled videos do exhibit 

posterior movements, albeit in much lower frequencies than anterior and locomotion movements. As a 

result, they might not be well represented in all the training sets (of SLEAP, autoencoder, and 

MotionMapper) and thus poorly represented in the final behavior map. That could possibly explain the 

difference in completeness between my behavior map and the map generated by Cande et al. (2018) 

because my dataset is a subset of theirs, and flies in my sampled videos might not fully represent posterior 

and wing behaviors. 

Another hypothesis to explain the missing behaviors in my behavior map is mainly due to the 

autoencoder implementation. As explained in Section 2.4.1, the training/validation set of the autoencoder 

composes of 45,000 data points with no missing joint angles. Those data may not fully capture all the fly 
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poses and bias toward more easily tracked frames when flies have all body parts exposed (i.e., those in 

locomotion and anterior grooming behaviors). In the joint-angle data processing pipeline (Section 2.4.1), 

the restoration of any input with missing values depends on available joint angles, which uses the learnt 

model weights trained on the training set. As a result, the filling in of missing values, when some body 

parts are obscured, might bias toward poses present in the training set.  

4.2 Future Directions 

Figure 24 

Activated Behavior Regions of Representative Lines 

Note. (A) Example showing how the averaging of two lines to produce an estimated phenotype of DNp25. (B) Averaged 
activation effects of 53 individual descending neurons, organized by broad behavior categories. From “Optogenetic dissection of 
descending behavioral control in Drosophila,” by J. Cande, S. Namiki, J. Qiu, W. Korff, G. M. Card, J. W. Shaevitz, D. L. Stern, 
and G. J. Berman, 2018, eLife, 7, e34275 (http://doi.org/10.7554/eLife.34275). Copyright 2018 by eLife. 
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Cande et al. reported the activation effect of 53 individual descending neurons by averaging 

across multiple fly lines that target the same DN (example shown in Figure 24.A). My report (Section 

3.3) only surveys 11 fly lines and the limited dataset would not allow averaging calculations, so it is not 

feasible to directly compare my results with the results by the original authors.  

A rough comparison of the activation effects of DNs targeted by my 11 fly lines based on DN cell 

types shows that most but not all activation effects of individual descending neurons are reported as the 

same (Table 2). An immediate future direction of this work, thus, is to apply the analysis pipeline on the 

whole dataset by Cande et al. (2018) and compare the resulting behavior map and measured activation 

effects of descending neurons. The broadening of dataset would also better allow the exploration of 

context dependency in activated behaviors by optogenetic stimulation. 

Table 2  

Comparing Activation Effects of 11 Surveyed Fly Lines with Cande et al.’s Report by Targeted DN Cell Types  

Note. The column of reported activation effects in this project is adapted from Figure 22 and Table 1. The column of Cande et 
al.’s report is adapted from “Optogenetic dissection of descending behavioral control in Drosophila,” by J. Cande, S. Namiki, J. 
Qiu, W. Korff, G. M. Card, J. W. Shaevitz, D. L. Stern, and G. J. Berman, 2018, eLife, 7, e34275 
(http://doi.org/10.7554/eLife.34275).  
 

While Cande et al. provided a systematic report for the activation effects of 53 descending 

neurons (Figure 24.B), those effects are defined by the activated behavior regions and do not provide finer 

details on the actual behaviors beyond a coarse description. An advantage of using joint angles to build 
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the behavior map is that one can reverse the data processing procedure and better define the activation 

effects with the average joint angle dynamics of the activated behavior regions, so to differentiate 

multiple descending neurons that are organized under the same broad category as in Figure 24. 

Prior to achieving this goal, we need to rule out the causes of errors in the current results and 

make modifications to improve the analysis pipeline if necessary. First, one may impose the analysis 

pipeline on video datasets that span the whole behavior repertoire of fly, and the representation of more 

fly behaviors in the behavior map would suggest the current errors are generated from the incompleteness 

of the dataset. Also, one may generate the behavior map by skipping or substituting the autoencoder (with 

Principal Component Analysis or similar dimensionality reduction techniques) and comparing the results, 

which might suggest if the errors come from the autoencoder implementation. 

We can imagine that flies, unlike human or other mammals, have relatively independently 

moving limbs. On the contrary, mammals have biomechanical constraints to maintain postural stability 

and movement control (Ivanenko & Gurfinkel, 2018). The failure of an autoencoder to predict missing 

joint angles with available joint angles in fly, if verified, might indicate the complexity in predicting fly 

poses when a significant amount of tracking data is missing. As another direction of future work, one 

could attempt implementing similar analysis pipeline in other experimental contexts on rodents or 

mammals to provide insights into the biomechanical aspect of animal behaviors.  
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