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Abstract

Statistical Methods for Brain Network Estimation

Functional Magnetic Resonance Imaging (fMRI) allows researchers to study neural activ-
ity by measuring changes in blood oxygen levels throughout the brain at rest or in response to
experimental tasks/stimuli. In recent years, there has been great interest in using fMRI data
to study brain networks. In this dissertation, we develop new statistical methods for pro-
viding reliable and robust estimation and characterization of brain networks across different
cognitive states, subpopulations and imaging study designs.

In the first topic, we propose the Bayesian Joint Network Learning (BJNL) approach
to joint brain network estimation that pools information across groups to estimate group-
specific brain networks under a graph theoretic approach. BJNL uses information from
multiple groups to estimate the probability of edges between nodes without forcing similarity
in the edge strengths. The BJNL approach is shown to outperform other individual and joint
estimation techniques in simulations. The technique is then applied to a Stroop fMRI data
set.

Next, we propose a Sparse Bayesian Independent Component Analysis (SparseBayes ICA)
for reliable estimation of individual differences in brain networks. We model the population-
level ICA source signals for brain networks using a Dirichlet process mixture of Gaussians.
To reliably capture individual differences on brain networks, we propose sparse estimation
of the covariate effects in a hierarchical ICA model via a horseshoe prior. Through extensive
simulation studies, we show our approach has improved performance in detecting covariate
effects in comparison with the current group ICA methods. We then use it to perform an
ICA decomposition of a motivating Zen meditation resting-state study.

In our third topic, we introduce a general framework of repeated measures Sparse Bayesian
ICA (RM-SparseBayes ICA). This method provides a rigorous and much needed tool for in-
vestigating brain networks in imaging studies with complex study designs including longitu-
dinal and/or multi-center studies. Through simulations, we show that the proposed method
has considerably improved performance as compared to other potential approaches. We ap-
ply the RM-SparseBayes ICA to investigate brain network changes using the longitudinal
multi-center Alzheimer’s disease data from the ADNI2 study.
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Introduction
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1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) images the brain (or other tissues) by emitting a

strong magnetic field that lines up the protons in the tissues. After lining up the protons, the

MR scanner emits a radio frequency (RF) pulse that knocks the protons out of alignment.

As the protons return to their natural positions (a process known as relaxation), they emit

their own RF signals, which are then measured by the scanner to image the brain (Weishaupt

et al., 2008).

There are two forms of relaxation measured by the MR scanner: T1 weighted and T2

weighted (Weishaupt et al., 2008). T1 weighted relaxation, or longitudinal relaxation, shows

up as very bright white pixels for white matter, varying degrees of grey pixels in grey matter,

and dark pixels for cerebrospinal fluid. T2 weighted relaxation or transverse relaxation has

roughly the opposite pattern (Pooley, 2005).

Functional Magnetic Resonance Imaging (fMRI) is one of the most popular tools for

studying the human brain due to its combination of high spatial resolution and relatively

high temporal resolution (Hennig et al., 2003). The technique was first introduced in 1991

(Belliveau et al., 1991), following the common adaptation of structural MRI in the early 80s

(Bandettini, 2012).

fMRI measures a quantity called the blood-oxygenated-level-dependent (BOLD) signal

(Buxton, 2013). When a region of the brain is being used, the oxygen in the blood flowing

through that region is used up and the cardiovascular system responds by increasing blood

flow to that region. Crucially, the cardiovascular system sends more oxygenated blood than

is required (Fox and Raichle, 1986). Thus, fMRI is able to detect regions of the brain that

exhibit increased oxygen levels (higher BOLD signal) over the course of the scan, which is

associated with increased neural activation (Buxton, 2013). Thus, fMRI uses the BOLD

signal as a proxy for neural activity.
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1.2 Brain Networks

The early years of fMRI primarily saw interest in identifying brain regions that were

correlated with task performance, known as localization studies. However, in recent years the

interest of the neuroimaging community has largely shifted to understanding how the brain

behaves as a coherent entity via the study of functional brain networks. These functional

brain networks are most commonly studied during resting-state scans in which subjects in

the scanner are imaged while not performing any specific task.

The first study of resting-state functional connectivity revealed that motor regions of the

brain were correlated at rest (Biswal et al., 1995). Many studies followed, and the study

of resting-state functional connectivity has resulted in the discovery of a number of highly

reproducible brain networks. The most widely known of the networks is the default mode

network (DMN), which is hypothesized to be involved in self-referential thought, and has

been identified as a potential biomarker for Alzheimer’s disease (Greicius et al., 2004; Jones

et al., 2011).

There are numerous other brain functional networks which are highly reproducible across

subjects and sessions. In a large-scale study involving almost 30,000 subjects and over a

thousand experimental conditions, Smith et al. (2009) identified ten functional networks

that could be easily matched across multiple datasets. These networks have clear purposes

based on previous experimental activation studies and include three visual networks, the

DMN, and several networks related to cognitive function. We use several of these networks

in the work that follows. Some of the key networks involve the executive control network,

which is associated with cognition and action inhibition, and the left and right frontoparietal

networks, which are associated with language functions.

There are two main approaches to studying brain networks. The first, functional connec-

tivity, involves the study of how the observed BOLD time courses in anatomically distinct

brain regions change together over time (Van Den Heuvel and Pol, 2010). This approach is

generally concerned with the connections between regions. The second, related, approach
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involves investigating the spatial network organization of the brain. In what follows, we go

into further detail on both approaches and discuss some common statistical approaches to

each.

1.2.1 Functional Connectivity

In functional connectivity studies researchers examine the time courses of different regions

of the brain during an fMRI scan. Regions exhibiting similar time courses are said to

be “functionally connected,” and collections of functionally connected regions form brain

networks. In functional connectivity studies these aspect of interest is usually the strength

of the connection between regions. Research questions of interest often involve how these

connection strengths differ in different clinical populations. In the next sections we discuss

some of the commonly used statistical approaches to studying functional connectivity in

fMRI studies.

1.2.1.1 Seed Voxel Analyses

Traditionally functional connectivity has been studied via simple correlation analyses. In

many of the earliest studies investigators would chose a region of the brain, known as a seed

region, that was thought to be associated with some brain function of interest. They would

then correlate the rest of the regional time courses in the brain with this seed region in order

to identify brain regions that exhibited temporally coherent activity patterns (Biswal et al.,

1995). Figure 1.1 displays an example of this kind of procedure.

The seed voxel approach has several drawbacks. First, it requires the researcher to

know which region of the brain they wish to use as the seed. Second, the results of a

seed analysis can vary significantly depending on the selected region, even within similar

functional networks. Even a pair of nearby voxels can yield very different connectivity

estimates in some cases (Cole, Smith and Beckmann, 2010). Finally, seed analyses only

provide information about the relationship between the rest of the brain and the selected
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Figure 1.1: An illustration of the seed voxel approach. The top row shows the time course
of a seed voxel and another voxel, and they appear to have a strong functional connection.
The bottom row shows the time course of the same seed voxel, but with another voxel that
does not appear to be functionally connected to the seed region.
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Figure 1.2: An example graph with V = {A,B,C,D} and E = {(A,B), (A,D), (C,D)}.

A

B C

D

seed voxel/region. In many cases researchers are interested in multiple networks or how the

brain behaves as a whole.

1.2.1.2 Gaussian Graphical Models

A popular alternative to the seed voxel approach is to do network modeling by viewing the

brain from a graph theoretical perspective. Under these approach, functional connectivity is

assessed by examining the connections (edge) between distinct brain regions (nodes). This

approach has the advantage of enabling graph metrics use to describe different nodes or even

entire graphs, as will be discussed in Topic 1.

A graph G = {V,E} is a set of vertices, or nodes (V ), and the edges between those nodes

(E). An edge between two nodes indicates that there is direct information transmission

between them. In the context of a brain network, this is a direct functional connection. On

the other hand, if there is not an edge between two nodes, then the only way they can share

information is via a third (or more) intermediate node(s). Figure 1.2 provides an illustration

of this. The graph G in Figure 1.2 contains four nodes, A−D, and three edges. Notice that

while node A cannot communicate directly with node C, it can still reach it via node D.

Gaussian Graphical models provide a convenient statistical approach to studying graphs

such as the one above. Recall that a P−dimensional random variable Y that follows a

multivariate Gaussian distribution has density function

f(Y;µ,Ω−1) = (2π)−
P
2 |Ω| exp{−1

2
(Y − µ)TΩ(Y − µ)}. (1.1)
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Here, Ω = Σ−1 is the inverse covariance matrix, also known as the precision matrix. A

key property of the multivariate Gaussian distribution is that the conditional distribution of

a subset of its dimensions can be expressed as another multivariate Gaussian distribution.

Define Y1 to be the P ∗ dimensional subvector of Y, where P ∗ ≤ P and let Y2 be the P−

dimensional subvector containing the remaining elements of Y, where P ∗ + P− = P . The

conditional distribution of Y1 given Y2 is then:

f(Y1|Y2;µ,Σ) = NP ∗(µ1|2,Σ1|2), (1.2)

where

µ1|2 = µ1 + Σ12Σ
−1
22 (Y2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21, (1.3)

where µ1, µ2 are defined as the Y1, Y2 above and Σ11 is the P ∗ × P ∗ sub-matrix

of elements of the covariance matrix of Y corresponding to the sub-vector Y1. Σ12 and

Σ22 are defined similarly. From this, it can be shown that one dimension of Y, say i, is

independent of another dimension, say j, conditioned on the remaining dimensions if and

only if Ωij = 0. This relationship can be used to describe a graph. Specifically, each

dimension of Y corresponds to a node. If an off-diagonal element of Ω is zero, then there is

no edge between the corresponding nodes.

1.2.2 Spatial Network Organization

The functional connectivity approaches described above are primarily concerned with

examining the connections between different brain regions. The other general approach to

studying brain networks focuses the spatial extents of the regions involved in these connected

regions. Specifically, while the functional connectivity approaches examine the connections



8

between the voxels, the spatial network organization approaches examine where in the brain

these voxels are located. Additionally, spatial extent studies are concerned with the intensi-

ties within the regions during the fMRI scan.

The collections of these spatial regions form the brain networks of interest, and brain

network studies often concern how different clinical or demographic characteristics affect the

extent or intensity of the activation in these regions. For example, Greicius et al. (2007)

identified abnormalities in the default mode network associated with major depressive dis-

order.

1.2.2.1 Independent Component Analysis

Independent Component Analysis (ICA) is the most popular approach for studying the

spatial network organization of the brain. ICA models decompose the observed fMRI time

courses into a set of spatial components (brain networks) that are combined together via a

mixing matrix to generated the observed data. The single subject noisy ICA model is given

by:

Y = AS + E, (1.4)

where Y is a matrix with columns containing the observed (potentially preprocessed) time

courses for each voxel, A is a mixing matrix where each column contains the time course of

the corresponding brain network, S is a matrix with each row containing the network-specific

activation for each voxel, and E is an error term. This was the first type of ICA approach

applied to fMRI studies of a single subject (McKeown, Jung, Makeig, Brown, Kindermann,

Lee and Sejnowski, 1998).

In most settings investigators will be interested in using ICA to study the brain network

across an entire group or groups of subjects. In this case, a group ICA approach will be

required in order to enable comparison of brain networks across subjects. The most popular

group ICA approach is temporal concatenation group ICA, or TC-GICA (Calhoun et al.,
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Figure 1.3: Illustration of the temporal concatenation group ICA approach.

2001). TC-GICA works by stacking each subjects’ data along the time doing to create

a single, large data set. Standard single subject ICA methods can then be applied to the

concatenated data, and back-reconstruction can be performed to obtain subject-specific brain

networks (see Figure 1.3 for an illustration).

An alternative approach has been developed in recent years called hierarchical covariate-

adjusted ICA, or hc-ICA (Shi and Guo, 2016). hc-ICA utilizes a hierarchical statistical model

to estimate a common set of brain networks that is modulated by individual covariate effects.

These hc-ICA approaches have the advantage of providing a formal statistical framework for

testing covariate effects. Further details on both the TC-GICA and hc-ICA models will be

provided in Topics 2 and 3.
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1.3 Bayesian Nonparmetric Approaches

The Dirichlet Process (DP) (Ferguson, 1973) is by far the most popular tool for Bayesian

nonparametrics. The DP has two parameters: a scalar term M > 0, known as the precision,

and a measure G0, which is known as the center measure. Suppose that the center measure

has support over the region B, and that B1, . . . , BK form a disjoint partition of B. The defin-

ing property of a draw G from the DP is that it is a probability distribution on B such that the

joint distribution of G(B1), . . . , G(BK) is distributed Dirichlet(MG0(B1), . . . ,MG0(BK)).

Note that G is a discrete measure, and can be generated through a stick breaking pro-

cess (Sethuraman, 1994). To see this generation, first note that due to the discreteness of

distributions generated from a Dirichlet Process we can write

G =
∞∑
h=1

whδsh , (1.5)

where the wh are weights and the δsh are point masses at values in the support of G0. The

stick-breaking procedure for generating samples from the DP uses the following steps, one h

at a time.

1. Draw νh ∼ Beta(1,M)

2. Set wh = νh
∏h−1

h′=1(1− wh′)

3. Draw a new location δsh ∼ G0

Note that the sum in Equation (1.5) is infinite. In practice, some truncation must be

performed in order to sample from this distribution (i.e. we must stop at some h).

One drawback (in some circumstances) of the discreteness of distributions drawn from

the DP is that it makes the DP inappropriate as a prior for continuous distributions. To

solve this, Ferguson (1983) proposed the Dirichlet Process Mixture (DPM). In a DPM, a

continuous kernel (fθ(yi)) is mixed using a DP random probability measure in order to

produce a continuous distribution i.e.
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fG(yi) =

∫
fθ(yi)dG(θ). (1.6)

This extension allows the DP to be used for continuous distributions. One interesting

and useful aspect of this technique is clustering; because samples from the DP are discrete,

there is a non-zero probability of parameters drawn from the constructed prior being the

same. Thus, there will be a limited number of unique values for the parameters θ. We will

see later that this can lead to large computational savings when the clustering behavior is

expected for the study question. Specifically, instead of having to update a parameter vector

for each observation in the study, we only have to update the parameter vector for a finite

number of clusters.

1.4 Research Topics

Chapter 2 introduces Bayesian Joint Network Learning, a Bayesian technique for the

joint estimation of multiple brain networks under a graph theoretic approach. This method

models the probability of individual edges as a function of shared and differential effects. We

use information across all groups to estimate the shared effects, and the differential effects

give us information about where different groups have a different graph structure. We use

simulations to show that this technique is superior to other estimation approaches for this

problem. We apply the method to a Stroop task fMRI data set.

Chapter 3 introduces Sparse Bayes Independent Component Analysis (SparseBayes ICA).

SparseBayes ICA is a Bayesian extension of hierarchical covariate-adjusted ICA methods.

Our proposed method introduces a novel approach to modeling the distribution of the inde-

pendent component source signals. Additionally, it incorporates assumptions about covariate

effect sparsity directly into the ICA decomposition. Through simulations, we show that this

proposed method has a better ability to find significant covariate effects, as compared to

current state-of-the-art approaches. The method is then applied to a Zen meditation data
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set.

Chapter 4 extends the Sparse Bayes Independent Component Analysis from Chapter 2

to a repeated measures setting. This novel approach is applicable to data collected from

multiple centers, repeated longitudinal scans on the same subjects, or both. Though simu-

lations, we show that our proposed approach is superior to a naive dual regression and data

harmonization approaches. Finally, we apply the method to an Alzheimer’s disease data set

with three measurements for each subject over a period of two years.
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Chapter 2

Bayesian Joint Network Learning
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Figure 2.1: Illustration of the brain’s nodes under a graph theoretic approach.

2.1 Introduction

2.1.1 Graphical Models in fMRI

Graphical models provide an highly interpretable approach to the study of brain func-

tional connectivity. Under the graph theoretic approach, the brain is viewed as a set of nodes

and edges. Here, nodes are spatial regions of the brain (see Figure 2.1 for an example), and

edges are the set of functional connections between these regions. The nodes are typically de-

fined using a brain anatomical atlas. Some popular atlases include the automated anatomical

labeling atlas (AAL) (Tzourio-Mazoyer et al., 2002) and the Power 264 node system (Power

et al., 2011). Once a node atlas has been selected, it remains to estimate the edges. There

are many techniques for this, as will be discussed in Section 2.1.2.

Once the brain graph has been obtained, there are a wealth of metrics that can be used to

describe aspects of information transmission in the brain at different scales (He and Evans,

2010). At the macro scale, measures such as global efficiency and characteristic path length

give a picture of how many steps are required for brain regions to communicate. At the more

local node level, metrics such as the local efficiency provide information about the ability of

a specific node to communicate with different regions of the brain. Finally, at the very fine

edge level we have information about the strengths of individual connections in the brain.
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Graph theoretical approaches to the study of functional connectivity have been very pop-

ular in recent years (He and Evans, 2010). These approaches have been especially valuable to

the study of neurodegenerative disorders (Stam, 2014). There is significant interest in using

brain network metrics to classify and predict subjects based on the topological features of

their connections (Bullmore and Sporns, 2009). For example, global efficiency has been used

to successfully classify patients as healthy controls or Alzheimer’s disease patients (Supekar

et al., 2008). Similarly, Bassett et al. (2012) used connected graph components to classify

schizophrenia patients with a high degree of sensitivity and specificity.

2.1.2 Graph Estimation

The principal difficulty in applying a graph theoretical approach to the study of brain

functional connectivity is identifying the edge set and quantifying the strength of the edges.

The most basic approach to identifying the edge set is to calculate whole brain Pearson

correlation, however this approach has a number of drawbacks. The primary issue with using

a standard correlation analysis is that it does not account for the influence of intermediate

nodes; a Pearson correlation analysis will not be able to distinguish a direct connection

between two nodes from an indirect connection via an intermediary. Naturally this leads to

the estimation of graphs that are too dense.

In light of this difficulty, partial correlation analysis has become a more popular approach

to estimating the edge set. Recall that if the klth element of Ω is 0, then the nodes k and

l are conditionally independent (see Section 1.2.1.2 for a review). This is directly related to

the partial correlation between nodes k and l, which can be calculated from the precision

matrix as:

ρkl = − ωkl√
ωkkωll

. (2.1)

Clearly when ωkl = 0 the partial correlation is 0. This motivates the estimation of a sparse
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precision matrix Ω as a technique for estimating the edge set. This approach has been

shown to be very effective at identifying true connections between two nodes, as opposed to

a connection that appears to exist due to another, intermediate, node (Smith et al., 2011).

Estimation of a sparse precision matrix is key to the above partial correlation approach.

Because the graph interpretation requires exact zeros, these problems naturally lend them-

selves to frequentist penalized approaches. The most popular graph estimation technique

is the graphical lasso (Friedman et al., 2008). The graphical lasso estimates the precision

matrix for a given group or individual as:

Ω = arg min
Ω

{
tr(SΩ)− log det(Ω) + λ

∑
k 6=l

|ωkl|
}
,

where λ is a penalty that can be chosen using cross-validation or a measure such as AIC.

The penalty on the magnitude of the ωkl terms encourages exact zeros, and the larger λ is,

the more exact zeros that will be obtained.

Penalized techniques such as the graphical lasso have become very popular in the fMRI

graph theoretical literature (Rosa et al., 2015; Schmittmann et al., 2015). Despite their

popularity, they have a significant drawback: they estimate the graph for one group or

experimental condition at a time. Many research questions involve more than one group

of subjects, such as our Stroop task example. In such cases, the focus is often identify-

ing similarities and differences between groups. Estimating the graphs separately for each

group/condition ignores the likely presence of a large degree of similarity between the two

graphs. For problems like this, joint estimation - estimating the graphs for all groups of

interest together - is preferred, as it allows us to leverage information from each group of

subjects when estimating the graphs for the other subjects.

There are numerous frequentist extensions to joint estimation of multiple graphical mod-

els (Guo et al., 2011; Danaher et al., 2014). These approaches pool information across groups

by smoothing over the edge strengths. This enforces shared edges by penalizing differences

in the edge strengths between two groups. For example, the penalty term:
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P (Ω) = λ1

∑
j 6=k

G∑
g=1

|ωg,jk|+ λ2

∑
j 6=k

∑
g 6=g′
|ωg,jk − ωg′,jk|

pools information across groups by penalizing the distance |ωg,jk − ωg′,jk|, with new tuning

parameter λ2. Such procedures are convenient from a computational perspective. However

this approach adds the assumption that the shared edges between graphs have similar edge

strengths. That is, by smoothing over the edge strengths, these techniques force shared

structure in the graph by encouraging the edge strengths to be similar. This assumption

is rather restrictive, and might be quite unrealistic in practice. Another downside of these

penalized approaches is that they only provide point estimates for the precision matrices;

they do not provide any measures of uncertainty. This makes quantifying our uncertainty

about the values of the matrix difficult, requiring additional computation stages such as

bootstrap or permutation tests.

As an alternative to the frequentist penalized approaches, there are numerous Bayesian

approaches to sparse precision matrix estimation (Wang, 2012; Li et al., 2019). These ap-

proaches place a prior on the off-diagonal elements of the precision matrix in order to encour-

age sparsity. The priors chosen generally are based on either a spike-and-slab approach (Yu

and Dauwels, 2016) or a continuous shrinkage approach (Carvalho et al., 2010; Polson and

Scott, 2010; Piironen et al., 2017). The spike and slab approach will be discussed in more

detail shortly. In short, spike and slab approaches assume that the observed data comes

from two distinct groups, the groups are modeled under a diffuse distribution (the slab) and

a distribution that is tight around zero (the spike). The contribution of each distribution is

determined by a weight term. On the other hand, the continuous shrinkage approaches are

“one-group” models, that generally use a normal prior for the model parameters, where the

precision is encouraged to be large/small for each parameter depending on the information

provided in the data. While the two-group model under the spike and slab is likely more

realistic, the one-group models can often achieve similar/better performance because they

have an easier parameter space to explore.
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There are several additional difficulties introduced by using a Bayesian approach. First,

these approaches do not give exact zeros, and thus some thresholding must be performed

in order to obtain exact zeros. Common approaches involve thresholding based on the

magnitude of the precision matrix elements, or on the posterior probability of an edge for

models that calculate edge probabilities (Wang, 2012). Second, the computation is generally

more difficult under the Bayesian approaches. These approaches generally require the use

of Markov chain Monte Carlo (MCMC) techniques to carry out posterior inference. Despite

the additional difficulties encountered when using Bayesian approaches, they provide some

significant advantages over the frequentist techniques. First, they provide measures of un-

certainty in the form of credible intervals. This allows us to quantify our certainty about

the presence or absence of an edge. Second, they are extremely flexible; we can select priors

with varying degrees of strength in our prior belief.

Despite the advantages of using Bayesian approaches to sparse precision matrix estima-

tion, the above Bayesian approaches have generally only been developed for estimation of

a single graph. An exception is the recent work by Peterson et al. (2015) using a Markov

random field approach to jointly estimate multiple networks. However, this approach was

intended for multiple protein-protein interaction networks, and generally only appears to be

applicable to networks with a small number of nodes. Clearly there is a need for Bayesian

approaches to joint estimation of multiple networks.

In the first topic, we propose a novel Bayesian approach to joint estimation of multiple

brain networks: Bayesian Joint Network Learning (BJNL). Our approach pools information

across experimental conditions or groups in order to estimate the probability of an edge

between connections, instead of the strengths of the connections themselves. We do this by

modeling the probability of an edge using a function of shared and differential components.

Specifically, we use a logistic regression model to describe the probability of an edge between

any two nodes. The regression coefficients in this model are clustered using a Dirichlet

process mixture (DPM) of Gaussians approach (Müller et al., 1996). The edge probabilities
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allow us to threshold the find edge set using the posterior probability of an edge. They also

enable interpretation of group effects on the odds of an edge. The off-diagonal precision

elements are modeled under a spike and slab prior, where the weights are given by the edge

probabilities. Posterior computation is carried out via MCMC using Gibbs sampling.

2.2 Methods

2.2.1 Stroop Task Data

In this work we consider an fMRI Stroop Task study data (Stroop, 1935; Khachouf et al.,

2017). All MRI data were collected from the N.O.C.S.A.E Hospital in Baggiovara (MO),

Italy, using a 3T Philips Achieva scanner. Data were collected from forty-five right-handed

college students (mean age = 21.9 years, sd = 2.2). The imaging session consisted of the

collection of 6 echo-planar imaging (EPI) runs (112 volumes each, TR=2.5s, 25 axial slice,

3 × 3 × 3 mm voxels) and a T1-weighted high-resolution volume (180 sagittal slices, 1mm

isotropic voxels) for anatomical reference.

Figure 2.2 provides an illustration of the 4-color version of the Stroop task the subjects

performed in the scanner (Gianaros et al., 2005). For each trial in the task, a word corre-

sponding to a color appears on the screen in a colored font. The subjects are instructed to

press a button corresponding to the color of the word that is being presented on the screen.

There are two types of trials - congruent and incongruent. In the congruent trials, the color

of the font matches the text of the word on the screen. In the incongruent trials, the color

of the word does not match. This task has been found to elicit a slower response time in the

incongruent trials as compared to the congruent trials (Stroop, 1935).

Trials were presented in task blocks. Each block was 30 seconds and contained a total

of 12 trials, 6 congruent and 6 incongruent. The trials were administered in a (pseudo)

random order, and there were 2.5 seconds between trials. Each task block was followed by

a 25 second resting-state block in which subjects were instructed to focus on a crosshair at
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Congruent Trial Incongruent Trial

Exertion

Relaxed

Figure 2.2: An illustration of the Stroop task involving task blocks of congruent and incongruent trials,
indicated by purple bars and yellow bars respectively, and fixation blocks denoted by a centrally fixated
cross. The purple and yellow bars are expanded into two boxes, and the correct button presses are indicated
with a rectangle within each box.

the center of the viewing screen. A total of 6 runs were collected per subject. Each run

had 4 task blocks and 5 rest blocks. Subjects were instructed to perform the odd numbered

blocks “with maximum exertion” and the even numbered blocks “as relaxed as possible.”

Some subjects received the instructions in the opposite order, in order to check for possible

order-effects. We are interested in the following two research questions:

1. How does the brain network differ between task performance and resting-state?

2. Within the task performance data, how does approaching the task “with maximum

exertion” change the structure and function of the brain network as compared to

approach the task from a relaxed state?

Note that both questions involves estimation of two graphs - one for each experimental

condition. As discussed above, there is likely significant overlap in the graph structure
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between the two conditions, and thus it is natural to want to pool information across groups

to aid the estimation procedure. In what follows, we describe our proposed BJNL approach

for this type of joint-estimation problem.

2.2.2 Bayesian Joint Network Learning

Consider an experiment with G groups, where the groups may correspond to different

study populations or different experimental conditions, such as task performance versus

rest. Our BJNL approach models the pre-whitened fMRI time courses for the gth cohort

as yit(g) ∼ Np(0,Ω
−1
g ), i = 1, . . . , n, t = 1, . . . , Tig, g = 1, . . . , G. Here Np(·; 0,Σ) denotes

a p-dimensional normal distribution. As discussed above, in order to ensure sparsity in the

precision matrices, we place the following prior on the precision matrix:

π(Ωg) = C−1
g

p∏
k=1

E(ωg,kk;
α

2
)

{∏
k<l

wg,klN(ωg,kl; 0, τ−1
g,kl) + (1− wg,kl)DE(ωg,kl;λ0)

}
I(Ωg ∈M+), (2.2)

where ωg,kl is the strength of the edge (precision off diagonal) between nodes k and l in cohort

g and wg,kl is the corresponding weight or edge probability. M+ denotes the space of all

positive definite matrices, which is required because we are modeling a precision matrix and

thus it must be invertable. E(α) denotes an exponential distribution with scale parameter

α−1. DE(λ) denotes a double exponential distribution with scale parameter λ−1. Finally,

I(·) denotes the indicator function and Cg is the intractable normalizing constant, which can

easily be shown to be finite (Wang, 2012).

We note that the weighted mixture of the normal and double exponential distributions

as a prior for the precision off-diagonals corresponds to the spike and slab prior (George and

McCulloch, 1993) and thus the entire prior in Equation 2.2 is known as the spike and slab

Bayesian graphical lasso. The DE(λ) distribution is the spike, which has a large value for the

hyperparameter λ0 corresponding to a sharp peak at 0. The N(ωg,kl; 0, τ−1
g,kl) distribution is
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Figure 2.3: Illustration of the spike and slab prior. The blue line corresponds to the double
exponential distribution (spike) and the red line corresponds to the normal distribution
(slab).

the slab component, with small values of the precision τ−1
g,kl resulting in a diffuse distribution

that accommodates non-zero values for locations in the brain with a connection. Figure 2.3

provides an illustration of the spike and slab prior. The weight terms wg,kl control how much

each distribution contributes to the prior, with large wg,kl being indicative of strong prior

belief that an edge is present between nodes k and l in cohort g.

As discussed in the introduction, our goal is to pool information across cohorts to esti-

mate the brain networks without enforcing similarity in the edges strengths. We do this by

borrowing information across cohorts to estimate the weights in the spike and slab prior.

We model the weights using a generalized linear model with a parametric link function that

includes a shared intercept term and differential cohort effects:

wg,kl = h(η0,kl, ηg,kl)

η0,kl ∼ f0

ηg,kl ∼ fg

f0 ∼ DP (MP0)

fg ∼ DP (MP0). (2.3)
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For our purposes we use the logistic link function for h(·), however other link functions

such as the probit could also be considered. The prior structure on the regression coefficients

is DPM with precision parameter M and center measure P0 ≡ N(0, σ2
η). There are two

main advantages to this approach to modeling the regression coefficents. First, the DPM

is highly flexible as a prior, and thus we are not making strong assumptions about the

prior distribution of the regression coefficients. Second, as discussed in Section 1.3, this

prior induces a clustering on the regression coefficients. In doing so, we are able to avoid

estimating an extremely large number of regression coefficients (one set for every possible

edge) and instead can estimate a much smaller number.

Under our model, the η0,kl term is a baseline effect that is common across all cohorts

corresponding to the overall probability of an edge between nodes k and l. It is estimated by

pooling information across all of the cohorts of interest. On the other hand, the ηg,kl terms

correspond to cohort-specific modifications of the edge probability, or differential effects.

Thus strong differences between ηg,kl and ηg′,kl, g 6= g′ suggest that there is a difference in

the probability of an edge between nodes k and l in the two groups. Under the logistic

link function, we can interpret ηg,kl − ηg′,kl as the log odds ratio of having edge kl in the

gth network versus the g′th network. Note that the model is overcomplete, and thus the

individual parameters are not identifiable since h(η0,kl, ηg,kl) = h(η0,kl + c, ηg,kl − c) for any

real constant c. However, the log odds ratios of interest are identifiable.

A schematic representation of the proposed model is illustrated in Figure 2.4.

2.2.3 Posterior Computation

Posterior computation for the BJNL model is carried out via MCMC. All updates are

Gibbs. First, we augment the likelihood by introducing edge-inclusion indicators δg,kl such

that,
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tt tη0

η1

η2

w1 = h(η0, η1)

w2 = h(η0, η2)

Ω1

Ω2

P0,M, σ2
η
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α, λ0

τ−1
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τ−1
2

LikelihoodEdge WeightsDir. Process Hyperparameters

Spike and Slab Prior Observed Data

Figure 2.4: Directed graph illustrating the relationships between the model parameters for the case of two
experimental conditions represented by fMRI data matrices Y1 and Y2. Rectangular nodes correspond to
parameters which are updated or tuned, diamond-shaped nodes correspond to parameters involved in the
likelihood, and the circular nodes correspond to the observed data.

δg,kl =

 0 if edge kl is not present in group g

1 if edge kl is present in group g

The augmented likelihood can now be written:

π(Ωg | λ0, τ g, τ
∗
g) = C−1

τ,g1(Ωg ∈M+)

p∏
l=1

Exp(ωg,ll;α/2)×
p∏
l=1

∏
k<l

w
δg,kl
g,kl (1− wg,kl)1−δg,kl

×
p∏
l=1

∏
k<l

[N(ωg,kl; 0, τ−1
g,kl)]

δg,kl [

∫
N(ωg,kl; 0, τ−1

g,kl)Exp(τg,kl;
λ2

0

2
)dτg,kl]

1−δg,kl ,

π(τ g, τ
∗
g) ∝ Cτ,g

( p∏
l=1

∏
k<l

Ga(τg,kl; aτ , bτ )× Exp(τ∗g,kl;λ2
0/2)

)

where τ g = {τg,kl, k 6= l, k, l = 1, . . . , p}, τ ∗g = {τ ∗g,kl, k 6= l, k, l = 1, . . . , p}, Ga(·; aτ , bτ )

corresponds to a Gamma distribution with mean aτ/bτ , and Cτ,g is the intractable normal-

izing constant. Note that Cτ,g cancels out in the expression for π(Ωg, λ0, τ g, τ
∗
g). After

integrating out τ ∗g this results in a marginal prior π(Ωg, λ0, τ g) as shown in (2.2).
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For the double exponential distribution to yield a sharp spike at zero, we require that

λ0 be large. For our purposes we select λ0 = 100 as a hyperparameter, although a prior

distribution could instead be used to learn λ0 from the data. The sharp spike at zero in

turn provides strong shrinkage for the off-diagonal elements of the precision matrix that

correspond to absent edges. In a similar way, for the slab component to effectively be able

to model very dispersed values, we need the latent scale parameters for the slab component

to be large. We select aτ and bτ such that aτ/bτ is small, which allows for long tails on the

Gamma prior for the scale parameters.

As discussed in Section 2.2, we choose the logistic link function to relate the linear

predictor to the probability of an edge being present between nodes k and l in group g, πg,kl.

To carry out posterior computation under this approach, we use the an approximation to

the logistic link function. Following O’Brien and Dunson (2004) we use,

eµ∗

(1 + eµ∗)
≈
∫ ∞

0

t
(
u;µ∗, π

2(φ− 2)

3φ

)
du =

∫ ∞
0

N(u;µ∗, π
2(φ− 2)

3φ
σ2
φ)π(σ2

φ;
φ

2
,
φ

2
)du,

where t(·) denotes a t-distribution, π(σ2
φ) corresponds to a inverse Gamma distribution,

φ = 7.3, and u is a Gaussian latent variable used for data augmentation.

Note that the use of this approximation to the logistic link function implies that we are

sampling from a posterior that is an approximation to the original posterior specification,

which is based on the logistic link function. However, our posterior computation is still

fully Gibbs, as all MCMC samples are being drawn from exact posterior distributions. We

could consider an alternative to this approximation scheme. For example, Polson et al.

(2013) proposed a Polya-gamma data augmentation scheme for Bayesian logistic regression.

However, in our experience the approximation in O’Brien and Dunson (2004) works quite

well.

Posterior computation under the DPM is more complicated. As discussed in the intro-
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duction, the DPM can be written using a stick breaking representation (Sethuraman, 1994)

as:

ηg,kl ∼ fg

fg =
∞∑
h=1

νg,hδη∗g,h

η∗g,h ∼ N(0, σ2
η)

νg,h = vg,h
∏
l<h

[1− vg,l]

vg,h ∼ Beta(1,M) (2.4)

for g = 0, . . . , G. We can then use slice sampling techniques (Walker, 2007; Kalli et al., 2011)

to sample from the posterior as follows.

First, compute the prior inclusion probability for edge (k, l) as

θg,kl =
exp{−(ug,kl − θng,kl)}

1 + exp{−(ug,kl − θng,kl)}
=

∫ ∞
0

exp{−(ug,kl − θng,kl)}
(1 + exp{−(ug,kl − θng,kl)})2

dug,kl

≈
∫ ∞

0

∫ ∞
0

t(ug,kl; θ
n
g,kl,

π2(φ− 2)

3
σ2
φ,g,kl)π(σ2

φ,g,kl,
φ

2
,
φ

2
)dσ2

φdug,kl,

under the approximation to the logistic function where θng,kl = η0,kl+ηg,kl, and π(σ2
φ) follows a

inverse-Gamma distribution with parameters φ/2 and φ/2, with φ = 7.3. In order to sample

the common and differential effects, we perform the data augmentation described earlier by

introducing latent variables ug,kl ∼ N(η0,kl + ηg,kl, σ
2
φ,g,kl

π2(φ−2)
3

). In particular the following

sampling steps are performed sequentially:

• Sample ug,kl ∼ N(η0,kl+
∑G

g=1 ηg,kl1g=m, σ
2
φ,g,kl

π2(φ−2)
3

) with ug,kl truncated to 1 if δg,kl =

1 or to zero if δg,kl = 0.

• Denote the prior variance for the hth cluster by σ2
h, h = 1, . . . , H. Denote the clus-
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ter membership of the klth edge weight by ckl, where ckl ∈ {1, . . . H}. The cluster

memberships and regression coefficients are updated using a slice sampling technique

(Walker, 2007). The update steps are as follows:

1. Sample u∗g,kl ∼ Uniform(0, νg,kl)

2. Sample the stick breaking weights as: vg,h ∼ Beta(1 + ng,h,M +
∑

h′>h ng,h′),

followed by νg,h = vg,h
∏

h′<h(1−vg,h′), where ng,h is the number of edges assigned

to cluster h in platform g (Sethuraman, 1994).

3. Sample the cluster membership indicators:

(a) For each edge, calculate the atoms available to it as Akl = {h : u∗g,kl <

νg,h, h = 1, . . . , H, g = 0, . . . , G}

(b) For each edge, calculate the vector of likelihood values

π∗kl = [π∗1,klI1∈Akl
, . . . , π∗H,klIH∈Akl

] where π∗h,kl =
∏G

g=1N(ug,kl; ηg,h, σ
2
φ,g,kl

π2(φ−2)
3

)

(c) Calculate the normalized likelihoods πh′,kl = π∗h′,kl/
∑H

h=1 π
∗
h,kl

(d) Draw r ∼ Uniform(0, 1) and update ckl = h′ where h′ is the smallest h′ s.t.

r <
∑h′

h=1 πh,kl

4. Draw the new values for the η terms conditioned on the updated cluster member-

ships, using a Gaussian posterior distribution.

As a final step, we update the variance terms from gamma posteriors.

Edge Detection: The important network edges (and hence the network structure) can

be estimated by either including edges with high marginal inclusion probabilities or those

with non-negligible absolute values for the precision off-diagonals, lying above a chosen

threshold. We propose a strategy to choose such thresholds in a manner which controls the

false discovery rate (FDR). Denoting ζg,kl as the marginal posterior exclusion probability for
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edge (k, l) in network Gg, one can compute the FDR as in Peterson et al. (2015) as

FDR =

∑G
g=1

∑
k<l ζg,kl1(ζg,kl < κ)∑G

g=1

∑
k<l 1(ζg,kl < κ)

, or FDR =

∑G
g=1

∑
k<l ζg,kl1(|ω̂g,kl| > κ∗)∑G

g=1

∑
k<l 1(|ω̂g,kl| > κ∗)

, (2.5)

depending on whether the edges are included based on posterior inclusion probabilities

or edge strengths. Clearly the FDR increases with κ/κ∗, and one can choose a suitable

threshold to control the FDR. In our numerical experiments we found that choosing the

edges based on whether the absolute precision off-diagonals were greater than 0.1 results in

overall good numerical performance and FDR values which are less than 0.03 across a wide

spectrum of scenarios. Hence we recommend this as a default threshold under our approach,

and we note that the corresponding threshold for posterior probability for edge selection can

be obtained as one which yields similar FDR as computed using (2.5).

Inferring Network Differences: In addition to network estimation, the proposed BJNL

provides a natural framework for testing network differences between experimental condi-

tions at multiple scales. In particular, for our Stroop task data analysis, we use MCMC

samples under BJNL to obtain the posterior distribution for differences in edge level partial

correlations as well as global and local network metrics. At the edge-level, T-tests of the

Fisher Z-transformed partial correlation differences for all MCMC samples (after burn-in)

were used to infer differences in edge strengths across networks. Similarly, the differences in

the graph metrics across conditions were computed at each MCMC iteration, and the cen-

tral tendency and dispersion of their distributions were statistically assessed by T-tests and

Kolmogorov-Smirnov (KS) tests. The p-values of these tests were used to assess significance

after controlling for false discoveries (Benjamini and Yekutieli, 2001).
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2.3 Simulation

2.3.1 Simulation Setup

We conducted a series of simulations to compare group level network estimation between

BJNL and competing methods. These approaches include the graphical horseshoe estimator

(HS) (Carvalho et al., 2010; Li et al., 2019) which extends the horseshoe prior in regression

settings to graphical model estimation, and the graphical lasso approach (GL) (Friedman

et al., 2008) which imposes L1 penalty on the off-diagonals to impose sparsity, as well as the

Joint Graphical Lasso (JGL) (Danaher et al., 2014) which uses a fused lasso penalty to pool

information across graphs while encouraging sparsity via a L1 penalty. While both the HS

and GL approaches estimate individual networks separately, the JGL approach is designed to

jointly estimate multiple networks. The HS was implemented using Matlab codes provided

on the author’s website. The JGL and the graphical lasso were implemented using the JGL

and glasso packages in R, respectively. Our method was implemented in Matlab, version

8.3.0.532 (R2014a).

The data for the simulation study was generated under a Gaussian graphical model for

n=60 subjects with T=300 time points each and for dimensions p = 40, 100. Each subject

had data corresponding to two experimental conditions having networks with shared and

differential patterns. We considered three different network structures: (a) Erdos-Renyi

networks which randomly generate edges with equal probabilities, (b) small-world networks

generated under the Watts-Strogatz model (Watts and Strogatz, 1998), and (c) scale-free

networks generated using the preferential attachment model (Barabási and Albert, 1999)

resulting in a hub network. For each type of network, we obtained an adjacency matrix

corresponding to the first experimental condition, and then flipped a proportion of the edges

in this adjacency matrix to obtain the second network, adding edges where there were no

edges and removing an equal number of edges. The proportion of flipped edges was set to

25%(low), 50%(medium), and 75%(high), which correspond to varying levels of discordance
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between the experimental conditions.

After generating the networks, the corresponding precision matrices were constructed

as follows. For each edge, we generated the corresponding off-diagonal element from a

Uniform(-1,1) distribution and fixed the diagonal elements to be one and the off-diagonals

corresponding to absent edges as zero. In order to ensure that the resulting precision matrices

were positive definite, we subtracted the minimum of the eigenvalues from each diagonal

element of the generated precision matrix. To enable a group level comparison for each

scenario, all subjects had the same network across all time points within each experimental

condition and the same precision matrices for each network.

Erdos-Renyi Random Networks Truly random graphs in which each edge has equal

probability of being present (Erdős and Rényi, 1961).

Small-World Networks Graphs generated using the Watts-Strogatz model (Watts and

Strogatz, 1998) in which a small number of hub nodes have a large number of connec-

tions, meaning that while most nodes are not directly neighbors, they can easily be

reached in a small number of steps via the hub nodes.

Scale-Free Networks Graphs in which the number of connections follows a power law

(Barabási and Albert, 1999).

Tuning: We used BJNL with 1000 burn-in iterations and 5000 MCMC iterations. We

specified the tuning parameters as follows. We chose λ0 = 100 and τg,kl ∼ Ga(aτ , bτ )

with aτ = 0.1 and bτ = 1 to enforce a sharp spike at zero and thick tails for the slab

component. The stick breaking weights in the mixture distribution in (2.4) were modeled

as νg,h ∼ Be(1,M), where M ∼ Ga(am, bm), and we choose am = 1, bm = 1, to encourage a

small number of edge clusters for a parsimonious representation. We could increase am to

encourage a larger number of clusters. However, we have observed that varying am has a

limited effect on the final estimated network. Our experience in extensive numerical studies

suggests that the performance of the approach is not overly sensitive to the choice of λ0 as long
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as it is large enough (> 100); however, extremely large values of λ0 can result in numerical

instability. Moreover, performance is fairly robust to the choice of the hyperparameters in

the prior for the precision parameter of the slab component, as long as the ratio aτ/bτ < 1.

For the joint graphical lasso that depends on two tuning parameters (a lasso penalty and

a fused lasso penalty), we searched a 30×30 grid over [0.01, 0.1] for both parameters to

find the best combination using a AIC criteria as recommended in Danaher et. al (2014).

The graphical lasso was run independently for each network over a grid of regularization

parameter values, and the optimal graph was selected for each network using a BIC criteria

as described in Yuan and Lin (2007).

Performance metrics: We assessed the performance of the three algorithms in terms of

the ability to estimate the individual networks, as measured by the area under the receiver

operating characteristic (ROC) curve (AUC), the accuracy in estimating the strength of

connections, as measured by the L1 error in estimating the precision matrix (L1 error),

the power to detect true differential edges as measured via sensitivity (TPR) and control

over false positives for differential edges which is computed as 1-specificity (FPR). For all

the metrics, we performed pairwise comparisons using Wilcoxon signed rank tests in order

to assess whether one approach performed significantly better than the others. For edge

detection, point estimates for the penalized networks were obtained by choosing the threshold

for the absolute off-diagonal elements as 0.005, while for BJNL we computed thresholds

controlling for false discoveries as described above.

2.3.2 Simulation Results

Figure 2.5 displays the ROC curves for the 100 node simulations, Figures 2.6, 2.7, and 2.8

displays box plots of the reported metrics for the three network generation types, and Tables

2.1 and 2.2 report results for the 40 and 100 node simulations, respectively. The results

across the three network types are relatively consistent. First, we note that the degree of

dissimilarity between the networks does not appear to have a major effect on the relative
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performance of the algorithms, although we conjecture that the differences could be more

pronounced for smaller sample sizes. For all settings involving Erdos-Renyi graphs, the pro-

posed BJNL approach outperformed the HS, JGL, and GL uniformly across all metrics under

the Wilcoxon signed rank test. Notably, the proposed approach simultaneously achieved a

significantly higher TPR and a significantly lower FPR for differential edges, indicating that

it was both better able to detect significant differences and less likely to incorrectly classify

an edge as differential. These suggest a greater power to detect true differential edges with

an adequate control over false positives across all network types, under the BJNL. Further,

an increased improvement of the TPR over competing approaches and relative stability of

the FPR for differential edges for p = 100 versus p = 40 indicates a clear advantage of the

proposed joint estimation approach for increasing dimensions. For the small-world and scale-

free networks, the BJNL also had significantly improved AUC, TPR, and L1 error metrics,

and a comparable or lower FPR, compared to all other considered approaches.

On the other hand, the significantly higher L1 error under the JGL potentially points to

the perils of smoothing over edge strengths across networks under penalized approaches. In

particular, assigning similar magnitudes for precision matrix off-diagonals for shared edges

may adversely affect the identification of differential edges, as well as the estimation of

varying edge strengths for common edges across networks. Moreover while HS has low FPR,

it consistently exhibits the lowest AUC and TPR and the highest L1 error for p = 100 across

all scenarios, which is concerning. On the other hand, the GL had the highest FPR for

both the small-world and scale-free network simulations, but has a reasonable TPR. These

results under HS and GL illustrate the difficulties resulting from the separate estimation of

individual networks which may result in exceedingly low power to detect true positives (as

with HS), or an inflated number of false positives (as with GL).

To examine the sensitivity of the proposed approach with respect to the chosen link

function, we performed additional simulation studies by fitting the proposed model to the

100 node data generated as above, but under a probit link. The results in Table 2.3 illustrate
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Figure 2.5: ROC curves for edge detection for the 40 and 100 node simulations. The blue, green, red, and
purple solid lines correspond to BJNL, JGL, GL, and HS respectively.

non-significant differences in the performance metrics for network estimation across the logit

and the probit links, which illustrate the robustness of the proposed approach resulting from

the specification of the DP prior on the shared and differential components.

2.4 Stroop Task fMRI Data Analysis

We applied the proposed BJNL to the fMRI Stroop task study to investigate similari-

ties and differences in the brain network under the two experimental conditions and passive

fixation (REST). The first analysis was aimed at comparing the mental states of task per-

formance (TASK) and passive fixation (REST), with the hypothesis that the brain networks

exhibit major differences between these two grossly different conditions. The TASK data

consisted of the subject-wise concatenation of the prewhitened fMRI time courses acquired

during the exertion (EXR) and relaxed (RLX) task blocks, while the REST data consisted

of the subject-wise concatenation of the prewhitened fMRI time courses acquired during the

passive fixation blocks. The second analysis aimed to detect finer differences in connectivity

between the mental states of EXR and RLX task performance. The study hypothesized that
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Figure 2.6: Box plots of the AUC, L1 Error, and TPR/FPR for differential edge detection for the Erdos-
Renyi simulations for Bayesian Joint Network Learning (BJNL), the Joint Graphical Lasso (JGL), Graphical
Lasso (GL) and the Graphical Horseshoe Estimator (HS). Within each approach, the box plots are organized
as: low difference, medium difference, and high difference in edges between experimental conditions, in that
order.
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Figure 2.7: Box plots of the AUC, L1 Error, and TPR/FPR for differential edge detection for the
Small-World network simulations. Within each color, the box plots are organized as: low difference,
medium difference, and high difference in edges between experimental conditions, in that order.
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Figure 2.8: Box plots of the AUC, L1 Error, and TPR/FPR for differential edge detection for the
Scale-Free network simulations. Within each color, the box plots are organized as: low difference,
medium difference, and high difference in edges between experimental conditions, in that order.
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Table 2.1: 40 node simulation results comparing BJNL, JGL, GL, and HS. Text in bold
indicates a method was better than both competing methods as assessed through Wilcoxon
signed rank tests at α = 0.05.

AUC L1 Error × 100
BJNL JGL GL HS BJNL JGL GL HS

Erdos-Renyi
low 0.98 (0.01) 0.91 (0.03) 0.91 (0.03) 0.84 (0.05) 0.08 (0.02) 1.02 (0.15) 1.91 (0.26) 4.66 (0.62)
med 0.99 (0.01) 0.91 (0.04) 0.91 (0.04) 0.78 (0.03) 0.09 (0.02) 1.02 (0.17) 1.90 (0.27) 11.15 (0.58)
high 0.98 (0.02) 0.91 (0.03) 0.91 (0.03) 0.83 (0.06) 0.09 (0.02) 1.02 (0.18) 1.90 (0.29) 11.35 (0.78)

Small World
low 0.97 (0.01) 0.92 (0.01) 0.78 (0.02) 0.81 (0.02) 0.50 (0.05) 1.89 (0.37) 4.09 (0.27) 4.68 (0.62)
med 0.97 (0.01) 0.92 (0.01) 0.78 (0.02) 0.78 (0.03) 0.50 (0.04) 1.92 (0.41) 4.16 (0.33) 10.98 (0.53)
high 0.97 (0.01) 0.92 (0.01) 0.78 (0.02) 0.78 (0.03) 0.49 (0.05) 1.98 (0.41) 4.13 (0.33) 11.33 (0.67)

Scale Free
low 0.97 (0.01) 0.93 (0.01) 0.79 (0.02) 0.84 (0.05) 0.48 (0.03) 1.95 (0.50) 4.13 (0.33) 4.59 (0.6)
med 0.97 (0.01) 0.92 (0.01) 0.79 (0.02) 0.81 (0.02) 0.47 (0.02) 2.01 (0.52) 4.18 (0.36) 11.05 (0.51)
high 0.97 (0.01) 0.93 (0.01) 0.79 (0.02) 0.79 (0.03) 0.47 (0.03) 1.97 (0.48) 4.13 (0.36) 11.21 (0.81)

TPR FPR
BJNL JGL GL HS BJNL JGL GL HS

Erdos-Renyi
low 0.92 (0.09) 0.76 (0.12) 0.78 (0.12) 0.70 (0.12) 0.01 (0.003) 0.23 (0.05) 0.10 (0.02) 0.03 (0.01)
med 0.89 (0.07) 0.75 (0.10) 0.76 (0.12) 0.69 (0.18) 0.01 (0.003) 0.23 (0.05) 0.10 (0.02) 0.32 (0.03)
high 0.88 (0.06) 0.75 (0.08) 0.77 (0.08) 0.57 (0.17) 0.01 (0.003) 0.24 (0.05) 0.10 (0.02) 0.28 (0.03)

Small World
low 0.89 (0.10) 0.45 (0.16) 0.67 (0.16) 0.66 (0.11) 0.04 (0.01) 0.05 (0.01) 0.38 (0.02) 0.03 (0.01)
med 0.88 (0.09) 0.44 (0.11) 0.63 (0.12) 0.67 (0.11) 0.04 (0.01) 0.05 (0.01) 0.38 (0.02) 0.32 (0.03)
high 0.85 (0.07) 0.46 (0.09) 0.62 (0.10) 0.60 (0.13) 0.04 (0.01) 0.05 (0.01) 0.39 (0.02) 0.28 (0.03)

Scale Free
low 0.89 (0.09) 0.44 (0.13) 0.66 (0.17) 0.68 (0.09) 0.04 (0.01) 0.04 (0.01) 0.35 (0.02) 0.02 (0.01)
med 0.88 (0.07) 0.43 (0.11) 0.65 (0.11) 0.64 (0.08) 0.04 (0.01) 0.05 (0.01) 0.35 (0.02) 0.33 (0.03)
high 0.88 (0.07) 0.42 (0.10) 0.62 (0.09) 0.58 (0.09) 0.04 (0.01) 0.04 (0.01) 0.35 (0.02) 0.28 (0.03)

the mental states should be similar between the two task conditions with some fine network

differences. In this case, the subject-wise prewhitened fMRI time courses were concatenated

for the EXR blocks and also separately for the RLX blocks for analysis.

We performed a brain network analysis based on region of interest (ROI) level data,

adopting the 90 node Automated Anatomical Labeling (AAL) cortical parcellation scheme

described in Tzourio-Mazoyer et al. (2002). For each ROI, we estimated the representative

BOLD time series by performing a singular value decomposition on the time series of the

voxels within the ROI and extracting the first principal time series. This resulted in 90

time courses of fMRI measurements, one for each ROI, which were then demeaned. We

classified each ROI into one of nine functional modules as defined in Smith et al. (2009).

We performed standard pre-processing including slice-timing correction, warping to stan-

dard Talairach space, blurring, demeaning, and pre-whitening. The fMRI time series was

prewhitened using an ARMA(1,1) model, as is common in imaging toolboxes such as AFNI
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Table 2.2: 100 node simulation results comparing Bayesian Joint Network Learning (BJNL), the
Joint Graphical Lasso (JGL), Graphical Lasso (GL) and the Graphical Horseshoe Estimator (HS).
Text in bold indicates a method was better than all other competing methods as assessed through
Wilcoxon signed rank tests at α = 0.05.

AUC L1 Error × 100
BJNL JGL GL HS BJNL JGL GL HS

Erdos-Renyi
low 0.97 (0.01) 0.88 (0.02) 0.88 (0.02) 0.72 (0.03) 0.11 (0.01) 1.11 (0.09) 1.66 (0.13) 3.51 (0.19)
med 0.97 (0.01) 0.88 (0.02) 0.88 (0.02) 0.72 (0.04) 0.11 (0.01) 1.09 (0.09) 1.65 (0.14) 3.50 (0.20)
high 0.97 (0.01) 0.88 (0.02) 0.88 (0.02) 0.73 (0.03) 0.11 (0.01) 1.09 (0.07) 1.62 (0.11) 3.50 (0.23)

Small World
low 0.97 (0.01) 0.95 (0.01) 0.79 (0.01) 0.72 (0.04) 0.25 (0.01) 0.75 (0.12) 2.06 (0.08) 4.70 (0.15)
med 0.97 (0.01) 0.95 (0.01) 0.80 (0.01) 0.72 (0.03) 0.24 (0.01) 0.77 (0.13) 2.07 (0.08) 4.65 (0.14)
high 0.97 (0.01) 0.95 (0.01) 0.79 (0.01) 0.73 (0.03) 0.24 (0.01) 0.78 (0.13) 2.06 (0.08) 4.65 (0.14)

Scale Free
low 0.96 (0.01) 0.93 (0.01) 0.81 (0.01) 0.64 (0.03) 0.20 (0.01) 1.01 (0.20) 2.23 (0.10) 5.30 (0.23)
med 0.96 (0.01) 0.92 (0.01) 0.81 (0.01) 0.64 (0.03) 0.19 (0.01) 1.02 (0.21) 2.24 (0.90) 5.26 (0.24)
high 0.96 (0.01) 0.92 (0.01) 0.81 (0.01) 0.64 (0.03) 0.19 (0.01) 1.00 (0.21) 2.20 (0.08) 5.23 (0.23)

TPR FPR
BJNL JGL GL HS BJNL JGL GL HS

Erdos-Renyi
low 0.87 (0.05) 0.71 (0.07) 0.68 (0.07) 0.43 (0.08) 0.01 (0.001) 0.22 (0.03) 0.10 (0.02) 0.03(0.00)
med 0.88 (0.04) 0.73 (0.04) 0.69 (0.05) 0.44 (0.06) 0.01 (0.001) 0.22 (0.03) 0.10 (0.01) 0.03(0.00)
high 0.88 (0.02) 0.72 (0.03) 0.69 (0.04) 0.44 (0.06) 0.01 (0.001) 0.23 (0.02) 0.10 (0.02) 0.02 (0.00)

Small World
low 0.86 (0.04) 0.47 (0.07) 0.66 (0.06) 0.44 (0.07) 0.02 (0.002) 0.02 (0.00) 0.36 (0.01) 0.06 (0.01)
med 0.86 (0.04) 0.49 (0.04) 0.67 (0.04) 0.46 (0.05) 0.02 (0.002) 0.02 (0.00) 0.36 (0.01) 0.05 (0.01)
high 0.86 (0.02) 0.48 (0.04) 0.67 (0.03) 0.46 (0.05) 0.01 (0.002) 0.02 (0.00) 0.36 (0.01) 0.05 (0.01)

Scale Free
low 0.87 (0.05) 0.39 (0.06) 0.63 (0.07) 0.25 (0.06) 0.02 (0.002) 0.02 (0.00) 0.24 (0.03) 0.04 (0.01)
med 0.87 (0.03) 0.41 (0.05) 0.63 (0.04) 0.26 (0.05) 0.02 (0.002) 0.02 (0.00) 0.24 (0.02) 0.04 (0.01)
high 0.87 (0.03) 0.42 (0.04) 0.64 (0.04) 0.27 (0.05) 0.01 (0.002) 0.02 (0.00) 0.25 (0.02) 0.04 (0.01)

Table 2.3: Comparison of the 100 node simulation results using the probit link function to
the simulation results using the logit link function.

Erdos Renyi Small World Scale Free
AUC TPR FPR AUC TPR FPR AUC TPR FPR

Probit 0.97 0.88 0.01 0.96 0.86 0.02 0.97 0.87 0.02
Logit 0.97 0.88 0.01 0.97 0.87 0.02 0.96 0.86 0.02
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(Cox, 1996). Further details are provided in Appendix A. The proposed BJNL was run

using the same tuning parameters as in the simulations.

Graph metrics: We analyzed the brain’s connectivity structure during the different men-

tal states in terms of four graph metrics: global efficiency, local efficiency, clustering coef-

ficient, and characteristic path length. Efficiency measures how effectively information is

transmitted from node-to-node in a network. Global efficiency measures information trans-

mission across the entire graph and is calculated by taking the average across all ROIs of the

inverse shortest path lengths between ROIs. Thus, large values of global efficiency indicate

that, on average, the number of steps required to transmit information from one node to

another is small. Local efficiency measures information transmission between an ROI and

its neighbors and is calculated for each ROI by taking the average of the inverse shortest

path lengths between ROIs in the relevant neighborhood, where the relevant neighborhood

is the collection of ROIs with a connection to the selected ROI. The clustering coefficient

measures the interconnectedness of the graph and is calculated for each ROI by examining

how many of its neighbors are also neighbors to each other. Finally, characteristic path

length is the average across ROIs of the shortest path length in the networks, with smaller

values indicating a more efficient network.

All metrics were calculated using the Matlab Brain Connectivity Toolbox (Rubinov and

Sporns, 2010). In addition, we also examined differences in local graph metrics across exper-

imental conditions corresponding to several brain regions that were found to be differentially

activated in a previous study using the same Stroop task experiment (Khachouf et al., 2017).

Although distinct from earlier activation analysis, potential connectivity differences in these

previously identified brain regions will bolster earlier activation based discoveries and also

help illustrate the biological interpretability of the connectivity analysis.

2.4.1 Results

TASK vs REST Conditions: The analysis produced a large contingent of edges with signifi-
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Figure 2.9: Estimated densities of graph metrics for the analysis of task vs. passive fixation and maximum
exertion (EXR) vs. relaxed (RLX) task performance.

cantly different edge strengths in the two mental states - Figure 2.10 displays a heatmap of

the significant edge counts by functional module. Our analysis revealed 1550 significantly

different edges (under T-tests) that provide evidence supporting the study hypothesis that

there are major differences in the brain networks due to the manifest phenomenological and

procedural dissimilarity of task performance and rest. Moreover, our examination revealed

significant differences in the mean (under T-tests) and the posterior distributions (under

KS tests) for all network metrics between the two conditions (Figure 2.9). Additional ex-

amination of local network differences between task and fixation conditions corresponding

to 20 pre-specified regions revealed larger clustering coefficients for REST in all implicated

regions, and larger local efficiencies for REST in 18 of the 20 regions (see Table 2.4 for the

brain regions and p-values).

EXR vs. RLX conditions of task performance: Compared with the relatively large network

differences between TASK and REST, the network structures corresponding to the EXR

and RLX task conditions exhibited more nuanced differences. Our analysis revealed 226

significantly different edges between the EXR and RLX conditions - see Figure 2.10 for a

heatmap of the significant edge counts by functional module. None of the graph metrics were

significantly different between the EXR and RLX conditions, implying that the network dif-
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Table 2.4: P-values for testing differences between TASK and REST in local efficiency and cluster-
ing coefficient for the nodes identified in the Khachouf (2017) study. Our analysis revealed larger
clustering coefficients for REST in all implicated regions, and larger local efficiencies for REST in
18 of the 20 regions

AAL Region
Metric Center (t-test) Metric Distribution (ks-test)

Local Efficiency Clustering Coefficient Local Efficiency Clustering Coefficient
BJNL JGL GL BJNL JGL GL BJNL BJNL

Cingulate Ant L 0.01 0.27 0.52 <0.01 0.40 0.53 0.03 <0.01
Cingulate Ant R <0.01 0.75 0.61 <0.01 0.87 0.78 <0.01 <0.01
Cingulate Mid L 0.01 <0.01 0.94 <0.01 <0.01 0.70 0.03 <0.01
Cingulate Mid R <0.01 0.50 0.58 <0.01 0.54 0.45 <0.01 <0.01
Cingulate Post L <0.01 0.01 0.04 <0.01 0.04 0.03 0.01 <0.01
Cingulate Post R <0.01 0.55 0.12 <0.01 0.26 0.08 <0.01 <0.01

Supp Motor Area L <0.01 <0.01 0.99 <0.01 <0.01 0.85 <0.01 <0.01
Supp Motor Area R <0.01 0.35 0.94 <0.01 0.73 0.86 <0.01 <0.01

Insula L <0.01 0.13 0.34 <0.01 0.02 0.34 0.07 0.04
Insula R 0.03 0.31 0.06 <0.01 0.06 0.11 0.02 <0.01

Parietal Sup L <0.01 <0.01 0.52 <0.01 0.03 0.71 <0.01 <0.01
Parietal Sup R <0.01 0.02 0.64 <0.01 0.05 0.38 <0.01 <0.01
Parietal Inf L <0.01 0.74 0.64 <0.01 0.64 0.69 0.02 <0.01
Parietal Inf R <0.01 <0.01 0.14 <0.01 0.09 0.37 <0.01 <0.01
Thalamus L <0.01 0.70 0.68 <0.01 0.54 0.81 <0.01 <0.01
Thalamus R <0.01 0.64 <0.01 <0.01 0.69 <0.01 <0.01 <0.01

Hippocampus L <0.01 0.28 0.58 <0.01 0.71 0.61 <0.01 <0.01
Hippocampus R 0.01 0.83 0.86 <0.01 0.63 0.72 0.13 <0.01

Paracentral Lobule L <0.01 0.98 0.89 <0.01 0.36 0.57 <0.01 <0.01
Paracentral Lobule R <0.01 0.38 0.60 <0.01 0.82 0.46 <0.01 <0.01

ferences did not manifest at a global level (Figure 2.9). However, more localized changes

were discovered in the pre-selected regions that were previously shown to be differentially

activated between EXR versus RLX (Khachouf et al., 2017). Significant differences were

found in terms of mean local efficiency in the right inferior occipital node and the left cau-

date. Similarly, significant differences were found in mean and distribution for the clustering

coefficient for the right inferior occipital node. Several borderline network differences were

also identified - see Table 2.5 for the p-values.

Interpretation of Findings: Our BJNL analysis identified strong connectivity differences be-

tween Stroop task performance and passive fixation in terms of significantly higher efficiency

and clustering, and lower characteristic path length for REST as well as stronger positive

connections involving frontoparietal circuits, EC, DMN, sensorimotor, and visual cortices in

the TASK condition compared to REST. Our findings also aligned with the widely used the-
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Table 2.5: P-values for testing differences between EXR and RLX in local efficiency and cluster-
ing coefficient for the nodes identified in the Khachouf (2017) study. Significant differences were
found in terms of mean local efficiency in the right inferior occipital node and the left caudate,
and borderline significant results were found for the left superior parietal cortex and left insula.
Similarly, we found significant differences in the mean and posterior distribution of the clustering
coefficient for the right inferior occipital node. We identified borderline significant differences in
the clustering coefficient distribution and center for the left anterior cingulate, the mean of the
clustering coefficient in the left insula, and the mean and distribution of the clustering coefficient
in the left caudate.

AAL Region
Metric Center (t-test) Metric Distribution (ks-test)

Local Efficiency Clustering Coefficient Local Efficiency Clustering Coefficient
BJNL JGL GL BJNL JGL GL BJNL BJNL

Parietal Sup L 0.10 0.37 0.97 0.33 0.36 0.70 0.36 0.42
Parietal Sup R 0.88 0.66 0.48 0.78 0.64 0.31 0.83 0.74

Supp Motor Area L 0.88 0.92 0.14 0.53 0.90 0.21 0.80 0.36
Supp Motor Area R 0.94 0.77 0.73 0.50 0.81 0.71 0.97 0.86

Cingulate Ant L 0.47 0.03 0.64 0.07 0.03 0.62 0.28 0.07
Cingulate Ant R 0.19 <0.01 0.13 0.15 <0.01 0.26 0.52 0.26
Cingulate Mid L 0.89 0.34 0.87 0.57 0.38 0.53 0.24 0.67
Cingulate Mid R 1.00 0.02 0.82 0.72 0.07 0.81 0.39 0.24

Insula L 0.07 0.21 0.82 0.08 0.21 0.65 0.24 0.15
Insula R 0.81 0.21 0.10 0.72 0.21 0.04 0.97 0.13

Caudate L 0.05 0.35 0.84 0.09 0.34 0.39 0.24 0.07
Caudate R 0.20 0.49 0.89 0.71 0.48 0.81 0.27 0.76

Occipital Sup L 0.31 0.01 0.66 0.43 0.05 0.63 0.57 0.69
Occipital Sup R 0.76 1.00 0.69 0.75 <0.01 0.77 0.71 0.93
Occipital Mid L 0.22 1.00 0.39 0.86 <0.01 0.56 0.51 0.80
Occipital Mid R 0.82 1.00 0.56 0.86 <0.01 0.46 0.91 0.93
Occipital Inf L 0.64 1.00 0.73 0.80 <0.01 0.63 0.57 0.56
Occipital Inf R 0.01 0.35 0.13 0.03 0.35 0.14 0.01 0.04

Precuneus L 0.27 0.56 0.30 0.19 0.53 0.51 0.15 0.36
Precuneus R 0.27 0.47 0.14 0.84 0.46 0.23 0.43 0.97

Paracentral Lobule L 0.70 0.54 0.93 0.68 0.56 0.98 0.54 0.21
Paracentral Lobule R 0.64 0.25 0.02 0.61 0.24 0.03 0.35 0.39

Fusiform L 0.38 0.01 0.11 0.39 0.01 0.13 0.31 0.52
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ory of global workspace where more difficult tasks are associated with increased connection

distance, as well as reduced clustering (GeiBerg et. al, 2013). More localized associations

were also discovered in all regions identified as differentially activated in previous studies

(Khachouf et al., 2017), which highlights the biological interpretability of our connectivity

findings. Our analysis provides exciting new insights into the connectivity differences between

passive fixation and the task-related network that requires a rearrangement of connections

in order to perform the task.

On the other hand, fewer connectivity differences were discovered between EXR and

RLX task performance, as expected due to the only difference between conditions being

the level of voluntary effort invested in the task. While no global topological differences

between the EXR and RLX conditions were discovered, the BJNL analysis did reveal some

fine differences in the functional modules including the EC and FPL that are involved in

high level cognitive function, as well as some limited localized connectivity differences in 23

pre-specified brain regions that previously showed major activation differences in (Khachouf

et al., 2017). In general compared to TASK versus REST, the RLX task performance con-

dition featured significantly more negative connections between regions compared to EXR,

and there were fewer connectivity differences between nodes within the EC. Compared to

a much larger number of connectivity differences in EC and other functional modules in

TASK versus REST, the limited connectivity differences between EXR and RLX implies a

restricted rearrangement of the network between EXR and RLX.

Comparison with penalized approaches: We are also interested in comparing the network

differences under BJNL with those obtained under penalized methods. Hence we performed

an illustrative analysis for the Stroop task data using the GL and JGL approaches that

involved permutation testing to infer significant network differences between experimental

conditions. A permuted sample for two experimental conditions was generated by randomly

switching the labels across conditions multiple times. Then, the networks corresponding

to these permuted samples were computed using JGL and GL. Subsequently, the network



44

Figure 2.10: Heatmaps of the number of differential edges between conditions. The heatmap on the left
corresponds to the analysis of task vs. passive fixation, and the heatmap on the right corresponds to the
analysis of maximum exertion (EXR) vs. relaxed task performance (RLX).

differences corresponding to distinct experimental conditions were computed. The above

process was repeated 10,000 times, and the permutation distributions for between-network

differences were constructed to compute p-values to test for significant differences.

Note that it was computationally infeasible to use AIC to select the tuning parameters for

JGL for all 10,000 permutations since the run time for the best tuning parameter search over

a grid took one hour per permutation. Hence, the starting values for the tuning parameters

for JGL were selected as those values used for the JGL analysis for the original data without

permutation. The tuning parameters were then adaptively searched on a permutation-by-

permutation basis until the resulting edge density was within 20% of the edge density for

the network corresponding to the original samples. While the process was required to make

testing under the JGL computationally feasible, it could potentially result in misleading

results under JGL due to possible mis-specification of network densities.

The analysis revealed that only one of the resulting edges for the EXR versus RLX

network comparisons was significant under the GL, whereas only 62 edges were significant

for the JGL. Similarly, for the analysis of TASK versus REST, the JGL identified 476 edges

with differential strengths and 3873 common edges (versus 1550 differential edges and 1565

common edges under BJNL). In this case, GL was able to identify 51 edges with differential

strengths, and 552 common edges. We believe that the low number of differential edges
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between EXR versus RLX conditions under the penalized approaches is unrealistic, and that

more differences are to be expected between TASK and REST since it involves significant

differences in brain activation across the brain (Khachouf et al., 2017). Further, only 5 of the

20 pre-specified brain regions which were shown to be differentially activated had significant

network differences between TASK and REST under the penalized approaches. These results

suggests the proposed BNJL method has much better statistical power to detect differences

in brain networks under different cognitive states compared to penalized approaches for

modeling networks.

2.5 Discussion

In Topic 1 we introduced a novel Bayesian approach to joint estimation of multiple group

level brain networks that pools information across networks to estimate shared and differen-

tial patterns in brain functional networks formed under different cognitive conditions. The

proposed BJNL approach naturally enables a systematic inferential framework for comparing

networks, which is a central question of interest in many connectome studies including our

Stroop task application where the focus is to investigate connectivity differences between

passive fixation and relaxed and exertion modes of Stroop task. Our analysis of Stroop task

data revealed important dissimilarities between the task and rest conditions, but more sub-

dued differences between the two task conditions, which aligns with the scientific hypotheses

of the study. Moreover the connectivity differences were found to be concentrated in brain

regions shown to be differentially activated for Stroop task in previous studies, which signifies

that the connectivity differences are biological interpretability. In contrast, a separate esti-

mation of networks using penalized approaches identified negligible or limited connectivity

differences between varying modes of mental effort that seem biologically implausible. In ad-

dition, the joint estimation of multiple networks under a penalized approach is not naturally

conducive for comparing networks and hence one had to use computationally prohibitive
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permutation tests that tend to give sub-optimal results in terms of network accuracy and

inferring between-network differences.

In this topic, we demonstrated BJNL for estimating networks using fMRI data because

they are the most prevalent type of functional images. However, our method can also be gen-

eralized to data from other imaging modalities in a straightforward manner. One advantage

of our proposed approach for clustering the edge weights is that it allows for unsupervised

estimation of the number of clusters. This means that in generalizing the method to other

modalities, we do not have to laboriously tune the clustering parameters to each individual

problem. Going beyond multiple experimental conditions, our approach can also be used to

jointly model networks across multiple cohorts, such as healthy individuals, subjects with

mild cognitive disorder, and those with Alzheimer’s disease (Kundu et al., 2019). Future

work should investigate the scalability of BJNL to larger numbers of conditions while taking

into account the dynamic nature of the brain networks over time.
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Chapter 3

Sparse Bayesian Independent

Component Analysis
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3.1 Introduction

3.1.1 ICA - Introduction

Neuroimaging studies have revealed that human brain function is composed of activation

from various “functional brain networks” that consist of spatially disjoint brain regions

that exhibit coherent temporal dynamics (Friston et al., 1993). These networks are most

commonly studied using functional magnetic resonance imaging (fMRI), which captures the

blood-oxygen-level-dependent (BOLD) signal series across hundreds of thousands of brain

locations (known as voxels). The brain functional networks have well-known neurobiological

interpretations.

Independent component analysis (ICA) is one of the most popular techniques for studying

brain functional networks. The standard spatial ICA approach decomposes the data for a

single subject into a set of spatially independent ICs and corresponding mixing matrix as,

Yi = AiSi + ei, (3.1)

where Ai is the subject specific mixing matrix for the ith subject and Si is their corresponding

set of spatial maps (independent components). This type of spatial ICA model is known as

a probabilistic spatial ICA model due to the inclusion of the error term ei (Beckmann and

Smith, 2004).

While the ICA decomposition for a single subject is straightforward, in the majority

of studies researchers will be interested in aggregating data across subjects to obtain more

reliable estimates of brain functional networks. In such cases, performing a separate decom-

position for each subject is undesirable, as it is difficult to match and compare the ICs from

the different subjects. Instead, group ICA approaches are used to decompose the data in a

manner that ensures the spatial components are comparable across subjects. These methods

include temporal-concatenation group ICA (Calhoun et al., 2001, 2009; Erhardt et al., 2011;
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Du and Fan, 2013) and tensor ICA (Beckmann and Smith, 2005).

The above data aggregation approaches are suitable for identifying population-level brain

functional networks. However considerable differences in brain functional networks also exist

across individuals and sub-populations. These individual level differences are associated

with different clinical (Greicius et al., 2004; Liu et al., 2008) or demographic characteristics.

Under TC-GICA approaches, an ad-hoc two-stage technique must be used to answer such

questions. First, an initial TC-GICA decomposition is performed, then the back-projected

subject-specific IC maps are regressed against the covariates of interest to obtain covariate

effect maps. This comes with the disadvantage of failing to account for variability in the

subject-level ICA decomposition, which in turn can result in less accurate effect estimates

and inefficient hypothesis testing.

Recently, Shi and Guo (2016) introduced a hierarchical covariate-adjusted ICA method

(hc-ICA) that provides a formal statistical framework for estimating covariate effects and

testing differences in brain functional networks. This approach also enables model-based es-

timation of sub-population networks such as those of a diseased group versus a control group.

Their hierarchical approach models subject-specific spatial ICs as a function of population-

level source signals modulated by covariate effects and additional between-subject random

variabilities. The approach has been shown to result in more accurate estimates of brain

networks at the individual and group levels, and improved power to detect covariate effects

as compared to TC-GICA approaches such as dual-regression (Shi and Guo, 2016; Wang and

Guo, 2019; Lukemire, Wang, Verma and Guo, 2020).

While the hc-ICA framework offers significant improvements over two-stage approaches,

it faces several limitations which can significantly hamper its performance. In particular, hc-

ICA relies on a mixture of Gaussians (MoG) approach to model the population level source

signals. In the hc-ICA model, voxel-specific activation in different components corresponds to

different configurations of a latent state variable underlying the MoG. Though this approach

offers nice interpretability, it is computationally expensive due to the cardinality of the latent
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space increasing exponentially with the number of components. Proposed solutions to this

issue include a subspace EM (Shi and Guo, 2016) or template ICA methods (Mejia et al.,

2020).

Furthermore, hypothesis testing under hc-ICA (or TC-GICA with dual-regression) in-

volves performing tests at hundreds of thousands of voxels for each covariate effect under

investigation. The influence of clinical covariates on the spatial extent of functional brain

networks should be small in practice. That is, most brain function should be common across

subjects, and clinical covariates such as disease status will likely only influence small regions

of the brain network (see, for example, Rytty et al. (2013); Smith et al. (2014); Reineberg

et al. (2015)). Because of this, uncorrected voxel-level hypothesis testing will likely have

an unacceptably large false discovery rate. Current hc-ICA and dual-regression approaches

must account for this after estimation via some method of FDR control (Genovese et al.,

2002). However, this can result in less power to detect true covariate effects.

Motivated by these limitations, we introduce a Sparse Bayesian Independent Component

Analysis (SparseBayes ICA) approach. This is a fully Bayesian hc-ICA method that uses

shrinkage priors to model the covariate effects and places Bayesian non-parametric priors

on the shared source signals. To the best of our knowledge, this is the first Bayesian hc-

ICA method. Our approach addresses the limitations of current group-level ICA techniques.

In particular, our approach uses a Dirichlet process mixture of Gaussians to model the

population-level source signals as an infinite mixture of Gaussians. This resolves the MoG

cardinality issues discussed above, and comes with the added advantage that it does not

require us to specify a number of Gaussian components. To address the large scale hypothesis

testing required testing for covariate effects in ICA, we propose to use horseshoe shrinkage

priors on the covariate effects, allowing us to build the sparsity assumption into our model.

To the best of our knowledge, this is the first approach to incorporate shrinkage estimates for

covariate effects directly into the ICA decomposition. Finally, current hc-ICA approaches are

very sensitive to the choice of initial parameter values due to their use of an EM algorithm in
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estimation. Our approach allows us to perform posterior computation using Markov chain

Monte Carlo (MCMC), and as such it is able to better explore the parameter space. Using

MCMC also allows us to construct credible intervals for any quantities of interest, which

avoids some of the difficulties with constructing standard error estimates for performing

hypothesis testing in the typical hc-ICA case. This also enables hypothesis testing for other

quantities, such as the population-level spatial maps.

We apply our proposed SparseBayes ICA approach to a resting-state fMRI study of Zen

meditators. We show that our approach is able to identify the default mode network in a

way that is more consistent with the literature than competing methods. We also are able

to identify several regions exhibiting differences related to meditation training on the default

mode network where other methods find fewer regions, or none at all.

This chapter proceeds as follows. In Section 2 we introduce the proposed method, and

in Section 3 we discuss the steps required by the posterior computation. Then, in Section 4

we carry out extensive simulation studies to demonstrate some of the potential benefits of

our approach. In Section 5, we use our approach to carry out an ICA decomposition of the

motivating Zen meditation resting-state study. We also compare our findings to those from

hc-ICA and TC-GICA. Finally, in Section 6 we provide some concluding remarks.

3.2 SparseBayes ICA

In this section, we present the SparseBayes ICA framework for investigating individual

differences in brain networks.

3.2.1 Preprocessing prior to ICA

Following standard ICA procedures, we perform some preprocessing steps prior to ICA

decomposition which include centering, dimension reduction, and whitening of the fMRI

data (Hyvärinen and Oja, 2000). Let T be the number of fMRI scans are acquired during
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the imaging session and let V be the total number of voxels. Let Ỹi(v) ∈ RT be the centered

time series recorded for subject i at voxel v and Ỹi = [Ỹi(1), ..., Ỹi(V )] is the T × V fMRI

data matrix for subject i. We perform the following dimension reduction and prewhitening

of the data (Shi and Guo, 2016):

Yi = (Λi,Q − σ̃2
i,QIQ)−

1
2 U′i,QỸi, (3.2)

where Ui,Q and Λi,Q contain the first Q eigenvectors and eigenvalues from the singular value

decomposition of Ỹi. σ̃
2
i,Q is the residual variance, representing the variability in Ỹi that is

not accounted by the first Q components; it is estimated by the average of the smallest T−Q

eigenvalues that are not included in Λi,Q. The parameter Q is the number of ICs and can

be determined by quantitative methods such as the Laplace approximation method (Minka,

2001; Shi and Guo, 2016). In neuroimaging studies, the selection of Q can also be guided by

the scale of brain networks investigators are interested in identifying. The literature (Smith

et al., 2013) has established that low model orders lead to large-scale networks responsible for

broad sets of similar functions and high model orders give rise to small networks with more

specific functions under the same umbrella. The ICA decomposition is then performed after

the prior-ICA pre-processing. In what follows, we present the methods for the prewhitened

data, Yi = [Yi(1), ...,Yi(V )] (i = 1, ..., N), which is of dimension Q× V .

3.2.2 SparseBayes ICA Method

In this section, we present a SparseBayes ICA method for investigating individual differ-

ences in brain networks using multi-subject fMRI data. The SparseBayes ICA is a hierar-

chical group ICA model. The first-level decomposes a subject’s fMRI signals into a product

of an individual-level mixing matrix and individual-level ICs,

Yi(v) = AiSi(v) + Ei(v), (3.3)
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where Si(v) = [si1(v), ..., siQ(v)]′ is a Q× 1 vector with siq(v) representing the spatial source

signal of the qth IC (i.e., brain functional network) at voxel v for subject i. The Q elements

of Si(v) are assumed to be independent and non-Gaussian. Ai is the ith subject’s Q × Q

mixing matrix, and Ei(v) = [ei1(v), ..., eiQ(v)]′ is a Q × 1 noise term. Following previous

work (Beckmann and Smith, 2004; Guo, 2011; Shi and Guo, 2016), we assume that the

noise term is independent across voxels and follows a Gaussian distribution with isotropic

variance, i.e. Ei(v) ∼ N(0, σ2
eIQ). Since Yi is whitened, we have that the mixing matrix,

Ai, is orthonormal (Hyvärinen and Oja, 2000).

At the second-level of hc-ICA, we model subject-specific spatial source signals Si(v)

in terms of population-level source signals modulated by covariate effects and additional

between-subject random variations:

Si(v) = S0(v) +
P∑
p=1

xipβp(v) + ri(v), (3.4)

where S0(v) models the population-level spatial source signals of the Q statistically inde-

pendent and non-Gaussian ICs; xip, p = 1, . . . , P , are covariates containing subject-specific

characteristics such as disease groups or demographic and biological traits; βp(v) is the Q×1

covariate effects coefficients capturing the effects of the pth covariate on the Q brain net-

works at voxel v, and ri(v) is an error term describing subject-specific variability for the

IC. We assume that ri(v) ∼ NQ(0, diag{σ2
1, σ

2
2, . . . , σ

2
Q}), which allows for different levels of

between-subject variability across the brain networks.

3.2.3 Source Distribution Model

To conduct inference for the hierarchical ICA model, we model the unobserved population-

level spatial source signals S0(v) with a source distribution. Various probability distributions

have been proposed to model source signals in ICA (Hyvärinen and Oja, 2000). For example,

mixtures of Gaussians (MoG) has been applied in previous work (Guo, 2011; Guo and Tang,
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2013; Shi and Guo, 2016). In these works, mixtures of two or three Gaussians were typi-

cally used to model the fMRI spatial source signals to capture the background fluctuations,

activation and deactivation across the voxels in the brain. Though these MoG models offer

nice interpretation and tractable likelihood, they have several drawbacks including limited

capacity to capture the some complex distribution patterns in the source signals and signif-

icant increase in computational load with the increase of ICs. In this paper, we propose to

use a Dirichlet process mixture of Gaussians (DPM) to model the spatial source signals as

an infinite mixture of Gaussians.

S0,q(v)|Kq(v), µKq(v), φ
2
Kq(v), γ

2
q ∼ N(µKq(v), φ

2
Kq(v)γ

2
q )

µKq(v), φ
2
Kq(v)|G ∼ G

G ∼ DP (MG0), (3.5)

where γ2
q = σ2

e + σ2
q , and DP (MG0) denotes a Dirichlet process with total mass parameter

M and centering measure G0 (Ferguson, 1983; Müller et al., 1996). For our purposes we use

G0 = N -Γ−1(0, 1, αG, βG), a normal inverse-gamma distribution with shape αG and scale βG.

The DPM approach performs non-parametric clustering of the source signals. Here, K is

a matrix indicating cluster memberships; Kq(v) = h if the vth voxel in the qth IC belongs

to cluster h. There are several major advantages of the DPM source distribution model. It

is extremely flexible and can thus capture different patterns in source intensities across the

brain. Additionally, voxels in different ICs can share the same cluster membership, which

eliminate the need in the previous MoG models to determine the voxel memberships over a

set whose cardinality increases exponentially with the number of ICs, a primary difficulty in

the current hc-ICA with MoG source modeling (Shi and Guo, 2016).
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3.2.4 Modeling Covariate Effects

The neuroscience literature has shown evidence that brain networks can vary consid-

erably due to subjects’ clinical, biological and demographic characteristics. For example,

neuroimaging studies have shown that neural activity and connectivity in specific functional

networks are significantly associated with mental disorders and their responses to treatment

regimes (Anand et al., 2005; Greicius et al., 2007; Chen et al., 2007; Sheline et al., 2009).

Other studies have found activity patterns in major functional networks vary with demo-

graphic factors including age and gender (Quiton and Greenspan, 2007; Cole, Farrell, Gibson

and Egan, 2010). There is a strong interest in statistical methods that reliably identify and

quantify the differences in brain functional networks that are related to subjects’ clinical and

demographic characteristics. Neuroscience literature has shown that the network differences

are generally found at limited spatial locations in the brain instead of broadly across large

brain regions. A limitation of the existing methods for studying differences on ICA-derived

brain networks (Shi and Guo, 2016; Wang and Guo, 2019) is that they don’t take into ac-

count the sparsity in the covariate effects on brain networks. Motivated by the neuroscience

findings, we propose to incorporate sparsity regularization in the modeling of covariate effects

in our hierarchical ICA. We model the covariate effect maps via a horseshoe+ prior which

provides a robust method at handling unknown sparsity (Carvalho et al., 2010; Bhadra et al.,

2017),

βp,q(v) ∼ N(0, λp,q(v)2τ 2γ2
q ),

where τ 2 and λp,q(v)2 are global and local shrinkage parameters, respectively. The overall

level of shrinkage is controlled by τ 2, and λp,q(v)2 applies shrinkage to individual elements
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of β. Under the horseshoe+, we place half-Cauchy priors on the shrinkage terms,

λp,q(v) ∼ C+(0, ηp,q(v))

τ ∼ C+(0, 1)

ηp,q(v) ∼ C+(0, 1), (3.6)

where C+(0, 1) is a half-Cauchy distribution. This approach results in a significant amount of

shrinkage on non-existent/small covariate effects, and little-to-no shrinkage of large covariate

effects. Compared to alternative shrinkage approaches such as a two-group model using a

spike-and-slab prior (George and McCulloch, 1993), the horseshoe prior, as a one-group

model, is computationally more efficient when modeling high dimensional data such as brain

networks (Polson and Scott, 2010).

tt tYiAi Si

βp,q(v) ∼ N(0, λp,q(v)2τ 2γ2
q )S0,q(v) ∼ N(µKq(v), σ

2
Kq(v)γ

2
q )

M ∼ Gamma(a, b)
G ∼ DP (M,G0)
µh, σ

2
h ∼ G

τ ∼ C+(0, 1)
λp,q(v) ∼ C+(0, ηp,q(v))
ηp,q(v) ∼ C+(0, 1)

Figure 3.1: Directed graph illustrating the relationships between the model parameters. Yel-
low nodes correspond to hyperparameters which are updated or tuned, blue nodes correspond to
parameters of interest in the ICA model, and the orange node corresponds to the observed data.
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3.3 Posterior Computation

To facilitate posterior computation for SparseBayes ICA, we rewrite the model in a non-

hierarchical form by collapsing the two-level models in (3.3) and (3.4) and then multiplying

the orthogonal mixing matrix Ai on both sides to obtain the following,

A′iYi(v) = S0(v) +
P∑
p=1

xipβp(v) + εi(v),

where εi(v) = ri(v)+A′iei(v) is the combined error across the two levels of models and we have

εi(v) ∼ NQ(0, diag{γ2
1 , γ

2
2 , . . . , γ

2
Q}) with γ2

q = σ2
e + σ2

q . We specify a non-informative prior

on these variance terms, i.e. γ2
q ∼ γ−2

q dγ2
q . Furthermore, we specify a uniform distribution

over a sphere as the prior distribution for each participant’s mixing matrix Ai (Hoff, 2009).

3.3.1 MCMC algorithm

Posterior computation for the SparseBayes ICA model is carried out via MCMC and all

updates can be performed via Gibbs sampling. The detailed updating steps are presented

in the following.

3.3.1.1 Updating the Mixing Matrix Ai

The posterior distribution for the ith subject’s mixing matrix is given by,

Ai|Yi,Si, {γq} ∼ BMF(W,Z,C), (3.7)

where BMF denotes a Matrix-Bingham-von-Mises-Fisher Distribution with W = YiY
′
i,

C = YiS
′
i, and Z = −1

2
diag{γ−2

1 , γ−2
2 , . . . , γ−2

Q }. Sampling from this distribution can be

carried out using the approach developed in Hoff (2009) by cycling through all pairs of

columns of Ai indexed here by q and q′ with q 6= q′, q, q′ = 1, . . . Q and performing the

following steps:
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1. For the pair q, q′ let Nqq′ denote null space of Ai,·−[q,q′], the mixing matrix with columns

q and q′ removed. Nqq′ has dimension Q×2, and the sample for the q and q′th columns

of the mixing matrix can be found by finding an orthonormal rotation of this space.

2. Sample a 2 × 2 rotation matrix, R ∼ BMF (W̃,Z̃, C̃). Here, W̃ = N′qq′WNqq′ , Z̃ =

diag{Zqq, Zq′q′}, and C̃ = N′qq′C·[qq′]. The corresponding sampling density is R ∝

etr{C̃′R + Z̃R′W̃R}, a 2-dimensional BMF distribution. We can sample from this by

defining R in terms of a sign and an angle. Further details are provided in Hoff (2009).

3. Set Ai,qq′ = Nqq′R.

3.3.1.2 Updating the DPM Cluster Memberships K

Under the stick breaking representation of the DP (Sethuraman, 1994), we can write G

as,

G =
∞∑
h=1

whδµh,φ2h , (3.8)

where wh = νh
∏h−1

h′=1(1− νh′), νh ∼ Beta(1,M), and (µh, φ
2
h) ∼ G0. Under this representa-

tion, the density for the S0,qv can be written,

p(S0,q(v)|−) =
∞∑
h=1

whf(S0,q(v);µh, φ
2
hγ

2
q ), (3.9)

where f(·;µh, φ2
hγ

2
q ) denotes the density of a normal distribution with mean µh and variance

φ2
hγ

2
q .

The parameters of the DPM can be updated using the slice sampling approach of Walker

(2007), which introduces latent variables that allow us to reduce the sum in (3.9) to a finite

number of terms. Following this approach, we augment the model with two steps. The first

step is to introduce a latent variable for each element, uq(v) ∼ U(0, wKq(v)), where U denotes
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a uniform distribution. The joint density for S0,q(v) and uq(v) can be written:

p(S0,q(v), uq(v)|w,µ,φ2, γ2
q ) =

h∗∑
h=1

Iuq(v)<wh
f(S0,q(v);µh, φ

2
hγ

2
q ), (3.10)

where h∗ = min{h : uq(v) > 1−
∑h

h′=1wh′ for all q, v}. The second step is to add the cluster

membership variable for each voxel and IC, Kq(v), where p(Kq(v) = h|uq(v), wh) ∝ Iuq(v)<wh
,

yielding,

p(S0,q(v), uq(v), Kq(v)|w,µ,φ2, γ2
q ) = Iuq(v)<wKq(v)

f(S0,q(v);µKq(v), φ
2
Kq(v)γ

2
q ), (3.11)

Note that this augmented model simplifies computation dramatically, since each element of

S0 belongs to a single cluster, and thus once we know the cluster memberships {Kq(v)} the

typical posterior inference for Normal distributions can be applied.

Updating the latent terms is straightforward. First, we sample the stick breaking weights

from their conditional posterior νh|K,M ∼ Beta(1 + nh,M +
∑∞

h′=h+1 nh′), where nh is the

number of elements of K equal to h. Then we sample the uq(v) from uq(v)|w, Kq(v) ∼

U(0, wKq(v)). Finally, the cluster memberships K can be sampled from their posterior distri-

butions, which are given by:

p(Kq(v) = h|u,w,µ,φ2) =
Iuq(v)<wh

f(S0,q(v);µh, φ
2
hγ

2
q )∑h∗

h′=1 Iuq(v)<w′h
f(S0,q(v);µh′ , φ2

h′γ
2
q )
. (3.12)

3.3.1.3 Updating Population-level IC maps, S0, and covariate effects, β

Conditioned on the cluster memberships K, the posterior distribution for the population-

level IC maps and covariate effects is multivariate normal. Let X∗ = [x′1,x
′
2, . . . ,x

′
N ]′,

β∗q(v) = [S0,q(v), β1,q(v), . . . , βP,q(v)]′, and Y∗q(v) = [{A′1Y1(v)}q, {A′2Y2(v)}q, . . . , {A′NYN(v)}q]′
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then,

β∗q(v)|X∗,Yq(v)∗, γ2
q , τ

−2,λ,σ2,µ,φ2, Kq(v) ∼ NP+1(µβ∗,q(v),Σβ∗,q(v)), (3.13)

where

Σβ∗,q(v) =

(
X∗
′
X∗γ−2

q + γ−2
q diag{σ−2

Kq(v), τ
−2λ1,q(v)−2, . . . , τ−2λP,q(v)−2}

)−1

,

µβ∗,q(v) = Σβ∗,q(v)

(
X∗
′
Y∗q(v)γ−2

q +

[
µKq(v)

φ2
Kq(v)

,0′P

]′)
. (3.14)

3.3.1.4 DPM Cluster Parameters

Conditioned on the cluster memberships, K, and the population-level spatial maps S0,

we can sample the mean and variance of each DPM cluster from their posterior distribution.

First, the posterior for the cluster variances is an inverse gamma,

φ2
h ∼ IG(ah, bh), (3.15)

where ah = αG + nh

2
− 1, bh = βG + 1

2

∑Q
q=1

∑V
v=1

(S0,q(v)−S̄h,q)2+S0,q(v)2

γ2q
IKq(v)=h, and S̄h,q is the

mean of all elements of S0,q belonging to cluster h.

The cluster means have a normal posterior distribution,

µh|φh ∼ N(µ∗h, φ
2∗

h ), (3.16)

with µ∗h =

∑Q
q=1

1
γ2q

∑V
v=1 S0,q(v)IKq(v)=h

1 +
∑Q

q=1
nh,q

γ2q

and φ2∗

h =
φ2
h

1 +
∑Q

q=1
nh,q

γ2q

,

where nh,q is the number of voxels in IC q belonging to cluster h. Note that the posterior

distribution (3.16) is essentially a weighted version of the typical normal posterior update,

where the spatial source signals from ICs with lower variance are weighted more heavily. This

is an advantage by having the IC-specific variance in our proposed DPM source distribution
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model (3.5).

3.3.1.5 Total Mass Parameter

The total mass, M , controls how many clusters are formed. With a Gamma(a, b) prior

on M , the posterior for M can be found following Escobar and West (1995). First, draw a

random uniform variable z ∼ U(0, 1). Then,

M |a, h, b, z, p∗ ∼


Gamma(a+ h∗, b− log(z)) w.p. p∗

Gamma(a+ h∗ − 1, b− log(z)) w.p. 1− p∗
, (3.17)

where

p∗ =

a+h∗−1
QV [b−log(z)]

a+h∗−1
QV [b−log(z)]

+ 1
.

3.3.1.6 Horseshoe Hyperparameters

We update the horseshoe hyperparameters using the approach developed in Makalic and

Schmidt (2015). In particular, using the representation of the half-Cauchy distribution as a

scale mixture of inverse-gamma distributions we can re-write (3.6) as
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βp,q(v) ∼ N(0, λp,q(v)2τ 2γ2
q )

λp,q(v)2|ηp,q(v)νp,q(v) ∼ IG(
1

2
,

1

νp,q(v)
)

νp,q(v) ∼ IG(
1

2
, ηp,q(v)2)

ηp,q(v)2 ∼ IG(
1

2
,

1

cp,q(v)
),

cp,q(v) ∼ IG(
1

2
, 1)

τ 2|ξ ∼ IG(
1

2
,
1

ξ
)

ξ ∼ IG(
1

2
, 1). (3.18)

The corresponding posterior distributions are:

τ 2|ξ, {λp,q(v)}, {γq},β ∼ IG(
1 + PQV

2
,
1

ξ
+

P∑
p=1

Q∑
q=1

V∑
v=1

1

2λp,q(v)2γ2
q

βp,q(v)2)

ξ|τ 2 ∼ IG(
1

2
,

1

τ 2
)

λp,q(v)2|νp,q(v), τ, γq, βp,q(v) ∼ IG(1,
1

νp,q(v)
+

1

2τ 2γ2
q

βp,q(v)2)

νp,q(v)|λp,q(v), ηp,q(v) ∼ IG(1,
1

λp,q(v)2
+

1

ηp,q(v)2
)

ηp,q(v)2|cp,q(v), νp,q(v) ∼ IG(1,
1

cp,q(v)
+

1

νp,q(v)
)

cp,q(v)|ηp,q(v) ∼ IG(1, 1 +
1

ηp,q(v)2
). (3.19)

3.3.1.7 IC-specific Variance Terms

The posterior for each variance term γ2
q , q = 1, . . . , Q is inverse gamma:
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γ2
q ∼ IG

(
(N + P + 1)V

2
, (3.20)

N∑
i=1

V∑
v=1


(
Yi,q(v)− Ŷi,q(v)

)2

2

+
V∑
v=1

[
(S0,q(v)− µKq(v))

2

2φ2
Kq(v)

+
P∑
p=1

βp,q(v)2

τ 2λp,q(v)2

])
,

where Ŷi,q(v) is the q, vth element of AiSi.

3.3.2 Inference for Covariate Effects

We focus here on posterior inference for the population-level spatial source signals S0(v)

and the covariate effects β. Denote the jth sample of S0 from its posterior distribution by

S0(v)(j). Similarly let βp,q(v)(j) be the jth sample for the pth covariate effect at IC q and voxel

v. The point estimates are given by Ŝ0(v) = 1
J

∑J
j=1 S0(v)(j) and β̂p,q(v) = 1

J

∑J
j=1 βp,q(v)(j)

where J is the number of MCMC samples. We use Bayesian credible intervals to determine

significance of the covariate effects. The proportion of the samples on either side of zero can

be used to construct a p-value as follows. Let I(βp,q(v)(j) > 0) = 1 if the jth sample from

the posterior is positive, 0 otherwise. Denote the credible interval-based p-value for the pth

covariate at the qth IC and vth voxel by CIPp,q(v). Then,

CIPp,q(v) = 2×min

{
1

J

J∑
j=1

I(βp,q(v)(j) > 0), 1− 1

J

J∑
j=1

I(βp,q(v)(j) > 0)

}
. (3.21)

Throughout the rest of this manuscript, we determine the significant voxels to be those for

which CIPp,q(v) < 0.05.
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3.4 Simulation Studies

In this section, we evaluate the performance of the proposed SparseBayes ICA approach

through extensive simulation studies. We conducted a full factorial experiment in which we

varied the sample size, number of ICs, and variability in the data, where 50 replications were

generated for each combination of factor levels.

We designed the spatial IC maps and covariate effects to mimic real brain networks.

Specifically, for each IC source signal, we created 3D spatial maps using the MNI space

brain re-sampled to have dimension 36× 46× 26. We then generated two covariates for each

subject from independent distributions. The spatial distribution of the ICs, i.e. S0, and

covariate effects maps for the first three networks are illustrated in Figure 3.2 for illustration

purposes. For the spatial distribution of the qth IC (q = 1, . . . , Q), we first generated a set

of voxel-specific intensity values from normal distributions with IC-specific parameters (see

Appendix B for detailed settings). We then spatially distributed the intensity values in the

activated region of the IC in the way that values in neighboring voxels tend to be similar to

each other and that spatial source signals are higher in the central regions in an IC map and

gradually decreases towards the outer regions in an IC. This procedure aims to generate IC

maps that mimic the activation patterns observed in real-world brain networks. Similarly,

the intensities for the covariate effects were drawn from independent normal distributions

with covariate-specific parameters (see Appendix) and spatially distributed in the IC maps

following a similar procedure as described above.

We constructed the subject-specific spatial components, Si, as a combination of the

population-level signals, covariate effects and subject-specific random effects. The subject-

specific random effects, i.e., ri(v), were generated from a zero-mean Gaussian distribution

with the variance σ2
q ∼ Gamma(b, 1). We considered three levels of between-subject variabil-

ity: low (b = 1.5), medium (b = 3) and high (b = 5). Subject-specific mixing matrices were

generated based on time courses from real imaging studies. Finally, we generated observed

fMRI series based on the subject-specific spatial maps and mixing matrices and Gaussian
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random noise with a standard deviation of σ2
e were added to the mixtures. We considered

two noise levels with a low (σ2
e = 1.5) and a high setting (σ2

e = 3.0).

We compare to two advanced TC-GICA approaches, as well as the current state-of-the-art

hc-ICA approach. The first TC-GICA approach is dual regression or spatio-temporal regres-

sion (STR), which is one of most commonly used methods in group ICA. The second TC-

GICA approach is the GICA3 method (Erhardt et al., 2011), which has been shown to be a

top TC-GICA method for estimating subject-specific ICs. The two TC-GICA approaches es-

timate covariate effects by performing post-hoc regression analysis on the back-reconstructed

individual-level ICs maps (Beckmann et al., 2009). In comparison to the two-step ad-hoc

procedure taken by the TC-GICA methods, the hc-ICA approach (Shi and Guo, 2016) is the

current state-of-art ICA method for testing covariate effects by formally incorporating and

estimating covariate effects in group ICA decomposition. To obtain multiplicity corrected

p-values for the TC-GICA approaches and hc-ICA, we then perform FDR correction using

Benjamini and Yekutieli method (Benjamini and Yekutieli, 2001; Genovese et al., 2002). For

the SparseBayes ICA approach, we apply the proposed credible intervals described in Sec-

tion 3.3.2 to assess significance of covariate effects. The proposed horseshoe priors provides

sparsity regularization for estimating covariate effects which helps achieve adequate FDR

control (van der Pas et al., 2017).

We calculate the precision-recall curves for identifying true covariate effects for each repli-

cate over a range of significance thresholds. Figures 3.3 and 3.4 display boxplots of the AUC

for each method and combination of simulation settings for Q = 3 and Q = 6, respectively.

From the plots, it is clear that the proposed SparseBayes ICA approach consistently out-

performs the other two methods in accurately detecting the covariate effects across various

simulation settings. In particular, SparseBayes ICA has considerable advantages over the

other methods in small sample sizes. The SparseBayes ICA method has more power to detect

active covariate effects while still maintaining a lower rate of false positives.
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Figure 3.2: Spatial extent for the S0 maps and covariate effects used in the simulation
experiment.

IC S0 Map Covariate Effect 1 Covariate Effect 2
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IC 3
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Figure 3.3: Area under the precision recall curve for identifying significant covariate effects
3 components.
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Figure 3.4: Area under the precision recall curve for identifying significant covariate effects,
6 components.
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3.5 Zen Meditation Study

We apply the SparseBayes ICA to investigate differences in brain networks related to Zen

meditation practice.

3.5.1 Data and Preprocessing

In a Zen meditation study (Pagnoni, 2012), 24 right-handed (one ambidextrous), English

speaking participants were recruited for the study. The meditation (MEDT) group consisted

of 12 participants with at least 3 years of daily meditation practice in the Zen objectless

tradition (mean years of practice = 8.7, SD = 6.5 years). The control group (CTRL)

consisted of 12 gender, age, and education matched controls.

T1-weighted high resolution anatomical scans (MPRAGE, 176 sagittal slices, 1mm isotropic

voxel size) and resting-state fMRI images (echo-planar, 200 volumes, 35 axial slices, voxel

size: 3 mm isotropic, TR = 2.35 s, TE = 30 ms) were collected with a 3.0 Tesla Siemens

Magnetom Trio Scanner. The resting-state run lasted for approximately 8 minutes. During

the scan, participants were instructed to fixate on a cross directly in front of their view.

While fixating, participants were to focus on their breathing and avoid allowing their mind

to wander to any thoughts or physical sensations. Standard fMRI preprocessing pipelines

were applied, including slice time correction, motion correction, image alignment and regis-

tration to a common MNI space, smoothing the functional images with an 8mm kernel, and

removal of low-frequency drifts. Further details are provided in Pagnoni (2012) and Kemmer

et al. (2015).

One week before the scanning session, participants completed a sustained attention

CANTAB computerized psychological test (Sahakian and Owen, 1992). Performance was

measured in terms of sensitivity to a target sequences, quantified as A-prime score. We

control for this score when investigating differences between meditators and controls by

including it in our model.
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3.5.2 SparseBayes ICA Modeling Procedure

We applied the proposed SparseBayes ICA method to analyze the Zen meditation data.

We decomposed the resting-state data into 15 ICs, and included two covariates in the model:

MEDT status (Zen vs. Control) and A-prime score (transformed to Z-scores). We used 3000

burn-in iterations and 5000 MCMC iterations. We also fit this model using TC-GICA with

GICA3 back reconstruction and hc-ICA. FDR method was applied for TC-GICA and hc-

ICA, while the credible interval-based procedure from Section 3.3.2 was used for SparseBayes

ICA.

Previous work with populations of meditators has identified the default mode network

(DMN) as a primary network of interest (Brewer et al., 2011; Garrison et al., 2015). In the

results that follow, we focus on the DMN network for investigating the effect of meditation

training.

3.5.3 Results

Each of the three approaches was able to identify a network corresponding to the DMN.

Figure 3.5 displays the population level spatial map obtained using each method. Compared

to the hc-ICA and TC-GICA results, the SparseBayes ICA derived DMN better complies with

the spatial distribution of the network established in the neuroscience literature. Specifically

the SparseBayes ICA DMN network includes all the key areas in DMN including the posterior

cingulate cortex (PCC), angular gyri and the prefrontal cortex (Alves et al., 2019). In

comparison, the DMN networks estimated by the other two methods mainly include the

PCC regions with weaker signals for the angular gyri and no inclusion of the prefrontal

cortex.

Figure 3.6 shows the regions where the methods identify significant differences between

meditation and control participants. SparseBayes ICA finds significant MEDT differences

in the ventral posterior cingulate, the angular gyrus, the visuo-motor cortex, and the dorso-

lateral PFC. In comparison, hc-ICA only finds significant effects in the visuo-motor cortex



71

and TC-GICA is unable to find any significant effects after performing FDR control.

The regions identified using SparseBayes ICA are consistent with prior research into

meditation and the DMN. In particular, Brewer et al. (2011) showed reductions in DMN

activity at rest in meditators relative to healthy controls in the PCC and and dorsolateral

PFC. Reductions in connectivity in these two primary DMN regions have also been found

in meditators relative to healthy controls during meditation tasks, as opposed to the resting

state task investigated here (Brewer et al., 2011; Garrison et al., 2015). It has been suggested

that the lowered DMN activation in meditators is consistent with a reduction in mind-

wandering and self-referential thought.

Our findings also suggest that meditators exhibit stronger DMN connectivity in several

regions relative to controls. The largest meditation effect in terms of spatial extent found by

SparseBayes ICA is a positive region in the superior parietal lobule. Taren et al. (2017) also

reported an increase in activation in the superior parietal lobule after mindfulness meditation

training, specifically an increase in the connectivity between the superior parietal lobule and

the dlPFC. A smaller spatial effect was also found in this region using hc-ICA. Moreover, we

identified a second, smaller area of increased activation in meditators located in the inferior

parietal lobule, which is consistent with the findings in Taylor et al. (2013).

3.6 Discussion

In this work, we introduced a fully Bayesian approach to hierarchical independent com-

ponent analysis. This method offers several significant improvements over existing group

ICA approaches. In particular, it provides a solution to modeling the population-level spa-

tial maps and incorporates sparsity regularization in estimating covariate effects in the ICA

decomposition. Through simulation, we showed that the method has better performance

in detecting significant covariate effects. We used our SparseBayes ICA approach to study

individual- and group-level differences in the DMN between meditators and healthy controls,



72

Figure 3.5: Population-level spatial maps corresponding to the DMN as identified by Sparse-
Bayes ICA, hc-ICA, and TC-GICA with GICA3.

SparseBayes ICA hc-ICA

TC-GICA

The figure displays Z-transformed source signal intensity. A threshold of |Z| ≥ 1.64 was used to mask the spatial maps.
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Figure 3.6: The differences between meditation and control subjects in the DMN.
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Orange voxels denote effects with a positive sign and green voxels denote effects with a negative sign.
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and showed that our proposed method was able to find biologically meaningful differences

while other approaches could not.
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Chapter 4

Repeated Measures Sparse Bayesian

Independent Component Analysis
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4.1 Introduction

Human brain function can be decomposed into collections of spatially distinct regions

exhibiting highly correlated neural activation patterns. These collections of regions are

known as brain functional networks, and they have well-understood biological meanings.

These networks are known to exhibit differences in spatial extent (the size of the network)

and intensity across individuals. This naturally has led to great interest in understanding

how different clinical and demographic variables, i.e. covariates, can influence the brain

networks. Many studies have been conducted to assess this in various populations, most of

which are cross-sectional studies conducted at a single site.

In recent years there has been an increase in large-scale neuroimaging studies. These

studies involve scanning sessions from multiple data collection sites, and often involve re-

peated imaging sessions over the course of several years. Some notable example include

the Adolecent Brain Cognitive Development study (Jernigan et al., 2018), the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005), and the Human Connectome

Project (Van Essen et al., 2013). Such studies offer exciting opportunities to study the brain

network in different populations. In particular, these studies are well positioned to examine

how covariates such as disease status influence brain function. With the increase in the num-

ber of multi-center, longitudinal studies, statistical techniques are needed that are tailored

to the unique challenges posed by these data.

One primary question in multi-center, longitudinal imaging studies is how to best accom-

modate additional variability due to center and longitudinal effects. Different data collection

sites may have different scanner brands, head coils, or any number of other features which

can affect the fMRI data that is collected. Recent work has shown that these center effects

can influence the resulting findings of the study in non-trivial ways. For example, (Yu et al.,

2018) identified significant site effects on several brain connectivity measures. Similarly, the

brain networks from repeated scans on the same individuals are clearly not independent,

and it is important to incorporate this into any subsequent data analysis. In this work, we
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will focus on how to solve these problems in the context of independent component analysis

(ICA).

ICA is the most commonly used approach for studying the brain network. ICA sepa-

rates the observed fMRI time courses into a set of brain maps (spatial components) and

corresponding temporal patterns. However, to date there has been little work on how to

incorporate multi-center longitudinal measurements in the ICA model, which is the focus of

this work.

The standard approach for group-level ICA analysis is temporal concatenation group ICA

(TC-GICA). In TC-GICA, each subject’s data is stacked along the time domain, and then an

ICA analysis is performed on a dimension-reduced version of the stacked data (Calhoun et al.,

2001). Subject-specific brain networks can be obtained by performing back-reconstruction

from the group level maps. When covariate effects are of interest, this leads to an ad-

hoc two stage dual regression approach where the estimated subject maps are used as the

outcome in a regression model with the covariates as predictors. Such an approach could

potentially be extended to multi-center and longitudinal data by implementing some form

of data harmonization.

One of the leading techniques for data harmonization is ComBat (Johnson et al., 2007).

ComBat techniques have recently been growing in popularity in the neuroimaging field. For

example, (Yu et al., 2018) used ComBat to correct data collection site effects in connectivity

matrices and graph metrics. Similarly, Fortin et al. (2017) used ComBat to harmonize DTI

measurements across different sites. Recently, Beer et al. (2020) developed a longitudinal

form of ComBat termed longComBat, which could potentially be applied to harmonize data

in longitudinal multi-center data sets.

While ComBat approaches have proven very effective in several imaging situations, they

rely on performing correction of derived features such as connectivity matrices or cortical

thickness measures. In many neuroimaging studies this is not an issue, since the derived

features will be calculated on a subject-by-subject level and then harmonized. However, for
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group ICA purposes, these derived features would be the estimates for the subject-level brain

networks, which are back-reconstructed from a group level ICA analysis. This means that

we will be unable to correct for batch effects during the ICA decomposition. Two-stage dual

regression methods have already been shown to suffer from reduced power in many cases

due to the lack of information about variation in the subject-level ICA decomposition when

estimating the covariate effects (Shi and Guo, 2016; Lukemire, Wang, Verma and Guo, 2020).

Similarly, data harmonization will be limited in what it can achieve due to the dependency

on the back-reconstructed spatial maps. In light of these issues, we propose the use of a

hierarchical model to incorporate multi-center and longitudinal measurements.

In recent years there has been significant development of hierarchical covariate-adjusted

ICA (hc-ICA) techniques for identifying individual differences in brain networks due to clin-

ical and demographic covariates (Shi and Guo, 2016; Wang and Guo, 2019; Lukemire, Wang,

Verma and Guo, 2020). These hc-ICA methods model the individual-level brain networks as

a function of a shared component among all subjects and individual-level covariate effects.

This provides a principled statistical approach to estimating covariate effects, performing

hypothesis testing, and examining the brain network for different sub-populations such as

healthy and diseased groups.

In Chapter 3, we proposed a fully Bayesian variant of the hc-ICA model that incorpo-

rates sparsity into the covariate effect estimates termed SparseBayes ICA. In this work, we

introduce a general framework of repeated measures Sparse Bayesian ICA (RM-SparseBayes

ICA) that can perform ICA decomposition of multi-center and/or longitudinal data. To

the best of our knowledge, this is the first such ICA approach. Our method models the

multi-center, longitudinal nature of the data as follows.

First, our approach uses random intercept terms in the hierarchical model to introduce

dependencies among individuals’ brain networks from the same data collection center. These

terms allow us to capture additional variation in the spatial components that is due to data

collection site effects. We include fixed effects in the model for known sources of potential
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variability such as scanner model. This has the advantage of pooling formation across centers

with the same values for these covariates (e.g. same scanner model) when estimating effects

on the brain network.

To incorporate longitudinal measurements we introduce subject specific random terms.

In particular, we model the covariate effects as fixed, with investigator-determined random

slopes for quantities that vary at the subject level. This allows us to introduce a significant

amount of flexibility into the model describing the spatial components over time. Moreover,

by adopting a fixed set of effects for the covariates, we are able to pool information across

visits to estimate the covariate effects.

Our proposed RM-SparseBayes ICA approach provides a flexible, general framework for

ICA decomposition of data from multiple centers, longitudinal data, or both. Taken together,

the inclusion of these two sets of random effects allows us to incorporate information about

longitudinal measurements and/or multiple centers directly into the ICA decomposition, im-

proving our ability to estimate the subject-level brain networks of interest. Additionally, our

proposed RM-SparseBayes ICA approach uses shrinkage priors to model the fixed individual-

and center-effects, which results in improved ability to detect significant effects on the brain

network, as we will show in simulations.

This paper proceeds as follows. In Section 2, we introduce the RM-SparseBayes ICA

model and discuss how we model the center and individual effects in a hierarchical model.

Section 3 describes the steps in the posterior computation. In Section 4 we conduct a

simulation study to evaluate the performance of our proposed approach. We then apply the

RM-SparseBayes ICA approach to the ADNI2 longitudinal fMRI data in Section 5. Finally,

in Section 6 we provide some concluding remarks.
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4.2 Methods

4.2.1 Preprocessing

We perform standard preprocessing steps prior to the ICA decomposition including cen-

tering, dimension reduction, and whitening of the fMRI data (Hyvärinen and Oja, 2000).

Let Y
(centered)
i,c,j (v) ∈ RT be the centered time series recorded for subject i from center c at

visit j at voxel v, where T is the total number of fMRI scans during the imaging session and

V is the number of voxels in the brain. Let Y
(centered.)
i,c,j = [Y

(centered.)
i,c,j (1), ...,Y

(centered.)
i,c,j (V )]

be the corresponding T ×V fMRI data matrix encompassing the data from the entire brain.

We perform the following dimension reduction and prewhitening of the data (Shi and Guo,

2016):

Yi,c,j = (Λi,c,j,Q − σ̃2
i,c,j,QIQ)−

1
2 U′i,c,j,QY

(centered.)
i,c,j , (4.1)

where Ui,c,j,Q and Λi,c,j,q,Q contain the first Q eigenvectors and eigenvalues from the singular

value decomposition of Y
(centered.)
i,c,j . σ̃2

i,c,j,Q is the residual variance and is estimated by the

average of the smallest T − Q eigenvalues that are not included in Λi,c,j,Q. Here, Q is

the number of independent components in the model. The number of components should

be determined based on the level of granularity desired by the investigator – low model

orders tend to result in large-scale brain networks, while high model orders tend to split the

large-scale brain networks into component pieces with specific functionality. Throughout

this work, we present the methods for the prewhitened data, Yi,c,j = [Yi,c,j(1), ...,Yi,c,j(V )]

(i = 1, ..., nc, c = 1, . . . , C, j = 1, . . . , J), which is of dimension Q× V .

4.2.2 RM-SparseBayes ICA Model

We next present our proposed RM-SparseBayes ICA method for investigating individual

differences in brain networks using longitudinal data collected across multiple subjects and
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centers. Our approach builds on the hierarchical ICA models developed in Shi and Guo

(2016), Wang and Guo (2019), and our Chapter 3. For an analysis with C centers and J

visits, let yi,c,j(v) be the preprocessed data for subject i, center c, visit j, and voxel v. The

first level of the model is a spatial ICA model:

yi,c,j(v) = Ai,c,jSi,c,j(v) + ri,c,j(v), (4.2)

where Ai,c,j is the ith subject from center c’s Q × Q mixing matrix at visit j, which is

orthonormal due to the prewhitening step (Hyvärinen and Oja, 2000). The spatial source

signals at the vth brain voxel for subject i and center c at visit j are contained in Si,c,j(v) =

[si,c,j,1(v), ..., si,c,j,Q(v)]′. The Q elements of Si,c,j(v) are assumed to be independent and non-

Gaussian. ri,c,j(v) = [ri,c,j,1(v), ..., ri,c,j,Q(v)]′ is a Q× 1 noise term. Following previous work

(Beckmann and Smith, 2004; Guo, 2011; Shi and Guo, 2016), we assume that the noise term

is independent across voxels and follows a Gaussian distribution with isotropic variance, i.e.

ri,c,j(v) ∼ N(0, σ2
yIQ).

At the second level, our proposed approach models each subject’s spatial maps as a linear

combination of a shared component across all subjects, random intercepts corresponding to

center, a set of potentially time-varying covariate effects, and subject specific random effects.

We write the model for IC q, q = 1, . . . , Q, across visits as:

Si,c,q(v) = S0,q(v)1J + Lq,c(v)1J + X
(center)
i,c β(center)

q (v)

+ X
(ind.)
i,c β(ind.)

q (v) + Zi,cBi,c,q(v) + Ei,c,q(v), (4.3)

where S0,q(v) is the part of brain network q that is common across all subjects at voxel v,

Lq,c(v)1J is the center specific random intercept for center c and component q, X
(ind.)
i,c is a

J × P1 matrix of covariate values where each row contains the covariate settings for subject

i in center c at visit j. Similarly, X
(center)
i,c is a J × P2 matrix of center effects. Bi,c,q(v) is a
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vector of random effects for subject i at center c and voxel v. Finally, Ei,c,q(v) is the error

in estimating the subject and visit specific spatial maps. We assume that the errors across

different components are independent, with Ei,c,q(v) ∼ N(0, σ2
q ).

Following our earlier work, we model the source distribution under a Dirichlet process

mixture of Gaussians as,

S0,q(v)|Kq(v), µKq(v), φ
2
Kq(v), σ

2
q ∼ N(µKq(v), φ

2
Kq(v)σ

2
q )

µKq(v), φ
2
Kq(v)|G ∼ G

G ∼ DP (MG0), (4.4)

where γ2
q = σ2

y + σ2
q , Kq(v) is a cluster membership indicator, and DP (MG0) denotes a

Dirichlet process with total mass parameter M and centering measure G0 (Ferguson, 1983;

Müller et al., 1996). We take G0 = N -Γ−1(0, 1, αG, βG), a normal inverse-gamma distribution

with shape αG and scale βG. This approach allows us to flexibly model the source signals,

without having to assume a fixed number of Gaussian components. This additional flexibility

has been shown to improve estimation of the S0 maps in simulations and in fMRI data

analysis in our Chapter 3.

The covariate and center fixed effects are modeled under a Horseshoe+ prior (Carvalho

et al., 2010; Bhadra et al., 2017). In particular, let Xi,c be a J × P matrix with rows

corresponding to the individual and center covariates for subject i in center c at visit j, with

P = P1 + P2. Similarly, let βq(v) = [β
(ind.)
1,q (v), . . . , β

(ind.)
P1,q

(v), β
(center)
1,q (v), . . . , β

(center)
P2,q

(v)]′ be

the stacked individual and center covariate effects. Then under the Horseshoe+ prior we

have,

βp,q(v) ∼ N(0, λp,q(v)2τ 2γ2
q ),
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for p = 1, . . . , P and q = 1, . . . , Q. Here, τ 2 is a global shrinkage parameter controlling the

overall sparsity level among the covariate effects. λp,q(v)2 is a local shrinkage term that is

different across voxels, components, and effects that allows different levels of shrinkage in

different spatial locations in the brain. The Horseshoe+ prior models the shrinkage terms

under half-Cauchy priors as,

λp,q(v) ∼ C+(0, ηp,q(v))

τ ∼ C+(0, 1)

ηp,q(v) ∼ C+(0, 1), (4.5)

where C+(0, 1) is a half-Cauchy distribution. This approach allows us to achieve the desired

sparsity in estimating the individual and center level covariate effects.

4.2.3 Modeling the relationship between scans

A key innovation of our approach is how we model the dependency between different

scanning sessions. There are several potential sources of within-group correlation in multi-

center longitudinal studies.

First, we include a random intercept corresponding to data collection center to account

for possible random variation in the brain network due simply to location. We place Normal

priors on these terms,

Lq,c(v) ∼ N(0, σ2
center) for c = 1, . . . C

We place inverse gamma priors on the variance terms for the random intercepts. Specifically

σ2
center ∼ IG(αcenter, βcenter).

Second, to address the longitudinal nature of the data collection, we model within subject
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correlation using a random subject-specific intercept, as well as random slopes for some

research-defined subset of the covariates of interest. The random intercept accounts for

differential variation in the source signals, while the random slopes allow us to account for

potentially varying covariate effects across different subjects within the population. For

example, in a sample of subjects with neurodegenerative diseases, we would potentially

expect different rates of changes in the brain network in different subjects. The subject

specific effects, Bi,c,q(v), are modeled under a multivariate normal distribution,

Bi,c,q(v) ∼ N(0,Rq(v)). (4.6)

Note that under this setup we allow the relationship between the subject-specific random

terms to be voxel and component specific. This is important, as the correlation structure

between subject-effects is not likely to be the same across the entire brain and across all brain

networks. For example, the correlation structure is likely different in active and inactive

regions within a network. While this approach is quite flexible, it is not possible to estimate

a separate covariance matrix at each voxel and network. Instead, we use a Bayesian non-

parametric prior to cluster these covariance terms. In particular we use the DPM to flexibly

model the subject-specific covariance terms,

Bi,c,q(v) ∼ N(0,Rq(v)) for i = 1, . . . N

Rq(v) ∼ D

D ∼ DP (MD, D0),

where D0 is an inverse Wishart distribution and MD is the concentration parameter. By

clustering the covariance terms under the DPM we are able to introduce flexibility in the

dependency structure among the subject-level random effects without compromising the
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ability to estimate the model parameters.

4.3 Posterior Computation

The posterior computation is simplified by collapsing the models in Equations (4.2) and

(4.3) and premultiplying by the inverse of the orthogonal mixing matrix Ai,c,j to obtain a

model for the unmixed preprocessed fMRI time courses:

Ỹi,c,q(v) = A′i,c,jYi,c,j(v) = S0,q(v)1J + Lq,c(v)1J + Xi,cβq(v) + Zi,cBi,c,q(v) + εi,c,q(v),

where εi,c,j(v) = Ei,c,j(v) + A′i,c,jri,c,j(v) is the combined error for the unmixed data. Here,

εi,c,j(v) ∼ NQ(0, diag{γ2
1 , γ

2
2 , . . . , γ

2
Q}) with γ2

q = σ2
y + σ2

q . We model each combined error

term using a non-informative prior, γ2
q ∼ γ−2

q dγ2
q . We specify a uniform distribution over

a sphere as the prior distribution for each participant’s visit-specific mixing matrix, Ai,c,j

(Hoff, 2009).

4.3.1 MCMC algorithm

The detailed updating steps for the posterior computation for the RM-SparseBayes ICA

model are listed below.

4.3.1.1 Subject-Visit Level Mixing Matrix

The posterior distribution for the ith subject from center c’s mixing matrix at visit j is

given by,

Ai,c,j|Yi,c,j,Si,c,j, {γ2
q} ∼ BMF

(
Yi,c,jY

′
i,c,j,−

1

2
diag{γ−2

1 , γ−2
2 , . . . , γ−2

Q },Yi,c,jS
′
i,c,j

)
, (4.7)

where BMF denotes a Matrix-Bingham-von-Mises-Fisher Distribution, which can be sampled

from one pair of columns at a time as described in Hoff (2009). Detailed steps specific to
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sampling a mixing matrix can be found in the posterior computation section of Chapter 3.

4.3.1.2 Center Random Effects

Let Y∗i,c,q(v) = Ỹi,c,q(v)− S0,q(v)1J −Xi,cβq(v)− Zi,cBi,c,q(v). Then,

Y∗i,c,q(v)|Lq,c(v)1J , γ
2
q ,∼ N(Lq,c(v)1J , γ

2
q IQ). (4.8)

Let Y∗q(v) = [Y∗1,q(v)′, . . . ,Y∗N,q(v)′]′ be the stacked subject-level data for IC q and voxel v

and let Wi be a J × C matrix with wj,c = 1 if subject i belongs to center c and wj,c = 0

otherwise. We can write the model across all subjects in matrix notation,

Y∗q(v)|W,Lq(v) ∼ N (W[Lq,1(v), Lq,2(v), . . . , Lq,C(v)]′,Λq(v)) , (4.9)

where W = [[W′
1, . . . ,W

′
N ]′] is a NJ ×C matrix with rows corresponding to the center and

visit membership of a subject and Λq(v) =
(
γ2
q INJ

)
captures the variation in Y∗q(v).

The priors on the center-specific random intercepts are independent Normal with zero-

means and variances of σ2
center. The posterior for the center-specific random intercepts is also

Normal, i.e.,

[Lq,1(v), . . . , Lq,C(v)]′|Y∗q(v),W,Λq(v), σ2
center ∝ N

(
µ(L)
q (v),Σ(L)

q (v)
)

Σ(L)
q (v) =

(
W′Λq(v)W + σ2

centerI}
)−1

µ(L)
q (v) = Σ(L)

q (v)W′Λq(v)Y∗q(v).

Conditioned on the draws for the random intercepts, the corresponding posterior samples
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for the variance term can be drawn an inverse gamma distribution:

σ2
center|acenter, bcenter,L ∝ IG

(
acenter +

1

2
QV C, bcenter +

1

2

Q∑
q=1

V∑
v=1

C∑
c=1

Lq,c(v)2

)
. (4.10)

4.3.1.3 Subject-Specific Random Effects

Let e∗i,q(v) = Ỹi,c,q(v) − Lq,c(v)1J − S0,q(v)1J −Xi,cβq(v) be the residual unmixed data

after removing the random intercept for center, the fixed covariate effects, and the common

set of spatial maps. Then we have the hierarchy,

e∗i,q(v)|γ2
q ,Zi,Bi,q(v) ∼ N(ZiBi,q(v), γ2

q IJ)

Bi,q(v) ∼ N(0,Rq(v)), (4.11)

and thus,

Bi,q(v)|e∗i,q(v), γ2
q ,Zi ∼ N

(
µ

(B)
i,q (v),Σ

(B)
i,q (v)

)
Σ

(B)
i,q (v) =

(
1

γ2
q

Z′iZi + Rq(v)−1

)−1

µ
(B)
i,q (v) = Σ

(B)
i,q (v)

(
1

γ2
q

Z′ie
∗
i,q(v)

)
. (4.12)

Conditioned on the subject-specific random effects it is straightforward to sample the

random effects variance terms. This sampling is facilitated using the stick breaking repre-

sentation of the Dirichlet process mixture (Sethuraman, 1994). In particular we can write

D as,

D =
∞∑
d=1

w
(R)
d δRd

, (4.13)

where w
(R)
d = ν

(R)
d

∏d−1
d′=1(1 − ν(R)

d′ ), ν
(R)
d ∼ Beta(1,M), and Rd ∼ D0. Under this represen-

tation, the density for the Bi,c,q(v) is written,
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p(Bi,c,q(v)|−) =
∞∑
d=1

w
(R)
d g (Bi,c,q(v); 0,Rq(v)) , (4.14)

where g(·; 0,Rq(v)) denotes a multivariate normal density with mean 0 and variance Rq(v).

We update the DPM parameters using a slice sampling procedure (Walker, 2007). First,

we introduce a latent variable for each element, `q(v) ∼ Uniform(0, wHq(v)). The joint

density for the Bi,c,q(v) and `q(v) can be written:

p
(
{Bi,c,q(v)} , `q(v)|w(R), {Rd}

)
=

d∗∑
d=1

I
`q(v)<w

(R)
d

N∏
i=1

g (Bi,c,q(v); 0,Rd) , (4.15)

where d∗ = min{d : `q(v) > 1−
∑d

d′=1w
(R)
d′ for all q, v}. We then add the cluster membership

variable for each voxel and IC, Hq(v), where p(Hq(v) = d|`q(v), w
(R)
h ) ∝ I

`q(v)<w
(R)
d

, yielding,

p
(
{Bi,c,q(v)} , `q(v), Hq(v)|w(R), {Rd}

)
= I`q(v)<wHq(v)

N∏
i=1

g(Bi,c,q(v); 0,RHq(v)), (4.16)

Once we obtain the cluster memberships, {Hq(v)}, the typical posterior inference for Normal

distributions can be applied by pooling information across voxels and ICs for all members

of the same cluster.

The final step is to update the latent terms involved in the slice sampler. We sample

the stick breaking weights from their conditional posterior ν
(R)
d |H,M ∼ Beta(1 + nd,MD +∑∞

d′=d+1 nd′), where nd is the number of elements of H equal to d. We sample the `q(v) from

their posterior: `q(v)|w(R), Hq(v) ∼ Uniform(0, w
(R)
Hq(v)). Finally, the cluster memberships H

can be sampled from their posterior distributions, which are given by:

p(Hq(v) = d|`,w(R),R) =
I
`q(v)<w

(R)
d

∏N
i=1 g(Bi,c,q(v); 0,Rd)∑d∗

d′=1 I`q(v)<w
(R)

d′

∏N
i=1 g(Bi,c,q(v); 0,Rd′)

. (4.17)
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4.3.1.4 Population level maps, S0, and Individual and Center Effects, β

The population level maps, individual effects, and center effects can be updated as de-

scribed in Chapter 3 after removing the random effects from the unmixed data, Ỹi,c,q(v).

Let Y
(r)
i,c,q(v) = Ỹi,c,q(v) − Lq,c(v)1J − Zi,cBi,c,q(v), and let Y

(r)
q (v) be the NJ × 1 vector

of the Y
(r)
i,c,q(v) stacked across all subjects and visits. Let X∗ = [X1,1; . . . ; XnC ,C ] be the

corresponding NJ × P matrix of individual and center covariates. Then,

β∗q(v)|X∗,Yq(v)∗, γ2
q , τ

−2,λ,σ2,µ,φ2, Kq(v) ∼ NP+1(µβ∗,q(v),Σβ∗,q(v)), (4.18)

where

Σβ∗,q(v) =

(
X∗
′
X∗γ−2

q + γ−2
q diag{σ−2

Kq(v), τ
−2λ1,q(v)−2, . . . , τ−2λP,q(v)−2}

)−1

,

µβ∗,q(v) = Σβ∗,q(v)

(
X∗
′
Y∗q(v)γ−2

q +

[
µKq(v)

φ2
Kq(v)

,0′P

]′)
. (4.19)

4.3.2 Inference for Covariate Effects

Let S0(v)(k) be the kth sample of S0 from its posterior distribution and let βp,q(v)(k) be

the kth sample for the pth fixed effect at IC q and voxel v. Point estimates are given by

Ŝ0(v) = 1
K

∑K
k=1 S0(v)(k) and β̂p,q(v) = 1

K

∑K
k=1 βp,q(v)(k) where K is the number of MCMC

samples. We use Bayesian credible intervals to determine significance of the covariate effects.

Let I(βp,q(v)(k) > 0) = 1 if the kth sample from the posterior is positive, 0 otherwise. Denote

the credible interval-based p-value for the pth covariate at the qth IC and vth voxel by

CIPp,q(v). Then,

CIPp,q(v) = 2×min

{
1

K

K∑
k=1

I(βp,q(v)(k) > 0), 1− 1

K

K∑
k=1

I(βp,q(v)(k) > 0)

}
. (4.20)
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Throughout the following simulations and data analysis, we determine the significant voxels

to be those for which CIPp,q(v) < 0.05.

4.4 Simulation

We next use a simulation study to investigate RM-SparseBayes ICA’s performance un-

der different data generation scenarios. To the best of our knowledge, there are no other

approaches developed for this type of multi-center longitudinal data. Thus, we consider

two reasonable alternative approaches to compare with our proposed RM-SparseBayes ICA.

First, we consider a simple dual regression procedure that fits a linear model at each voxel,

ignoring the random variation due to center and visit. We refer to this method as Naive DR.

It is not expected to perform well, but provides some baseline idea of expected performance.

Next, we consider using a data harmonization method known as ComBat (Johnson et al.,

2007). Recently a version of ComBat, termed longComBat, was developed for longitudinal

multi-center data (Beer et al., 2020). We implement a three stage approach using long-

ComBat as follows. First, a TC-GICA approach is used with back reconstruction to obtain

subject-specific independent component estimates. Then, in a second stage, these estimates

are harmonized using the longComBat approach in order to remove variation due to center.

Finally, a harmonized component data are used as the outcome in voxel-specific linear mixed

effects models that include fixed individual and center effects, as well as random subject-

specific intercepts and slopes. The estimates from this third stage are our final estimates

under this approach, and the corresponding p-values from the mixed effects models can be

used for hypothesis testing.

4.4.1 Data Generation

We created the spatial layout of the brain maps by first selecting three slices of a real

brain (V = 5080). We created three square regions corresponding to the spatial activation
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Figure 4.1: True spatial maps used for the simulation study.
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of three brain networks (Figure 4.1, top).

Next, we generated covariate effect maps for two individual-level covariates – one continu-

ous and one categorical. These effects were contained entirely within the activation map and

were shaped as rectangular bars (Figure 4.1, bottom). Finally, we generated a center effect

to represent scanner type. The activation region for this effect was circular. The intensities

for the covariate effects were drawn from independent normal distributions with parameters

specific to each covariate and IC. The covariate effects in all inactive regions were set to 0.

We considered data from 4 centers, and varied the sample size within each center at

N = 10, 20, and 30. Each subject had three visits. Each subject’s continuous covariate value

at baseline was generated from a standard Normal distribution. The value for the continuous

covariate at subsequent visits was incremented by a random uniform amount between 0 and

1. The categorical covariate value was drawn from a Bernoulii distribution. The subject-

visit level spatial maps were created by adding the population level spatial maps and the

covariate and center effects. Then, random variation was added due to visit and center.

A subject-specific random intercept was added, as well as additional random variation in

the slope for the continuous covariate (i.e. a random slope). Finally, independent noise was

generated for each component from a normal distribution with mean 0 and variance σ2
q , where

σ2
q ∼ Gamma(b, 1). We considered 2 levels of variability: low (b = 1.5) and high (b = 3.0).

The random intercept for each center was created by sampling a normal distribution with

mean 0 and variance 0.1 at each voxel. For the subject-effect covariance, Rqv, three different

settings were used throughout the brain.

Finally, the subject and visit level time courses were generated to mimic the time courses

of real fMRI studies by multiplying the subject-visit specific spatial maps with an orthonor-

mal mixing matrix, adding N(0, 0.1) noise, and then coloring the data to have 100 time

points.

We assess the performance of the estimation procedures by examining the correlation

between the estimated and true spatial maps for the source signals and fixed effects. We
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also examine the ability to identify significant voxels via the area under the precision recall

curve.

4.4.2 Results

Figure 4.2 displays the correlation between the true and estimated S0 maps under each

method. From the plots, our proposed approach shows clear advantages over the two-stage

DR approaches, even for larger sample sizes. This indicates that our proposed approach has

a better ability to estimate the underlying spatial components that are common across all

subjects.

The advantages of our approach are even more pronounced when examining the corre-

lation between the true and estimated individual covariate effects in Figure 4.3. Several

randomly selected replicates are plotted in Figures 4.5 and 4.6, allowing us to see why the

correlation under our approach is so much higher. From the plots, it is clear that our ap-

proach does a much better job of differentiating the active from the inactive regions. Figure

4.4 displays the corresponding area under the precision-recall curve results for identification

of non-zero individual effects. From the plots, our approach has a clear advantage in finding

significant regions. This advantage persists even as the sample size increases.

4.5 ADNI2 Study

4.5.1 Data and Preprocessing

We apply the RM-SparseBayes ICA approach to investigate brain networks in the Alzheimer’s

disease neuroimaging initiative 2 (ADNI2) data. This data contains longitudinal fMRI

measurements on healthy controls, subjects with mild cognitive impairment (MCI) and

Alzheimer’s disease (AD). For our analysis, we used resting-state data from baseline screen-

ing, one year follow up, and two year follow up. All data were acquired from the ADNI

website (http://adni.loni.usc.edu). Details on data acquisition are also available there.
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Figure 4.2: Correlation between the estimated and true S0 maps for each method and each
combination of simulation settings.

Figure 4.3: Correlation between the estimated and true S0 maps for each method and each
combination of simulation settings.
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Figure 4.4: Area under the precision-recall curve for identifying non-zero covariate effects
under each method.

We included 51 subjects in our analysis, each with 3 visits. At baseline, 16 subjects were

classified as healthy controls, 29 as MCI patients, and 6 as AD patients. 24 (47%) of the

subjects were female. The mean age at baseline was 73.6. The data were collected from 8

different centers, with 3 different types of scanner model (Achieva, Ingenia, and Intera). 33

scans were conducted on Intera scanners, 21 on Ingenia, and 99 on Achieva.

4.5.2 Modeling Procedure

We decomposed the ADNI2 resting-state data into 14 ICs. At the second level of the

model, we included covariates for gender, age, time since baseline scan, MCI (yes/no), AD

(yes/no), and time × diagnosis interactions. In the random component, we specific random

intercepts for center and subject. We also included a random slope corresponding to the time

since baseline to account for potentially varying subject-specific trajectories. We included

two fixed center effects corresponding to indicator variables for Achieva and Ingenia scanners.

We fit the model using 3000 burn in iterations and 5000 MCMC iterations. We examined

significance using credible intervals as described in Section 4.3.2.
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Figure 4.5: Estimates under each method for the individual time-varying effect from 3 ran-
domly selected replicates. The true effect map for the individual time-varying effects is
plotted on the right-hand side.
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Figure 4.6: Estimates under each method for the individual non-time-varying effect from 3
randomly selected replicates. The true effect map for the individual non-time-varying effects
is plotted on the right-hand side.
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4.5.3 Results

The overall pattern of our results is similar to previous work (Wang and Guo, 2019).

In particular, we see a large number of significant differences in the brain network between

healthy controls and MCI and AD patients. Overall, there are more significant differences

between healthy controls and AD patients than there are between healthy controls and MCI

patients. In what follows, we highlight some of the interesting brain network results.

4.5.4 Sensorimotor Network

We found a cluster of significant voxels corresponding to AD within the sensorimotor

network. This cluster of voxels was significant both in the AD main effect and the interaction

between AD and time. The main effect for AD is negative, indicating less activation in the

sensorimotor network. However, the interaction effect is positive, indicating that over time

there is less of a disease effect in this region. There was no corresponding effect for the MCI

group. Previous work has also identified AD related differences in sensorimotor network

(Agosta et al., 2010; Salustri et al., 2013).

4.5.5 Default Mode Network

We found a significant negative MCI × time interaction in the left angular gyrus, indi-

cating that this region in the DMN is less active in MCI patients. Interestingly, there was

not a corresponding effect for AD patients, possibly due to the smaller AD sample size.

4.6 Discussion

In this work we introduced a general framework for repeated measures Sparse Bayesian

ICA. This method can be applied to data collected from multiple centers, longitudinal data,

or both. To the best of our knowledge, this is the first such ICA tool. Through simulation,

we showed that our proposed approach has significantly better ability to identify individual
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Figure 4.7: Estimated sensorimotor S0 map using RM-SparseBayes ICA (top). Significant
AD effects on the sensorimotor network. The left image shows the main effect for AD in
blue (negative effect), and the right side displays the AD × time interaction in red (positive
effect).
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Figure 4.8: RM-SparseBayes ICA estimates for the DMN S0 map (left). Significant negative
effect of MCI × time interaction (right).

effects on the brain network. Application to a Alzheimer’s disease data set found differences

in the brain network due to MCI and AD status.
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Chapter 5

Summary and Future Directions
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In this dissertation, we have developed novel statistical methods for estimating and study-

ing brain functional networks. Our approaches are relevant to both researchers interested

in connectivity (Topic 1) and researchers interested in the overall spatial extent of brain

networks (Topics 2 and 3).

In Topic 1, we introduced a novel Bayesian Joint Network Learning approach (BJNL)

(Lukemire, Kundu, Pagnoni and Guo, 2020). This method examines functional connectivity

using a graph theoretical approach, which allows the use of multi-scale analyses using graph

metrics and connection strengths. The key innovation of this approach is that it pools

information across different groups to model the edge probabilities, while estimating the

edge strengths separately for each group conditioned on the edge probabilities. Through

simulation, we showed that this approach can result in better graph estimation. In an

application to a Stroop task fMRI study we found widespread, meaningful differences between

executive control and frontoparietal networks. One potential future direction for the BJNL

approach is an extension to longitudinal imaging data studies, which have become more

common in recent years. Such an approach could model how brain connectivity changes

over time in different groups.

In Topic 2, we developed a fully Bayesian approach to hierarchical covariate-adjusted

independent component analysis, which we termed SparseBayes ICA. This approach offers

several advantages over current state-of-the-art ICA techniques. In particular, it uses a

flexible non-parametric approach to model the source signal distribution and incorporates

shrinkage assumptions directly into the ICA decomposition. We show using simulations

that this results in significantly improved power to detect true individual effects on the

brain network. We then applied the SpareBayes ICA method to a Zen meditation study

and showed that our proposed approach could find biologically meaningful differences in the

brain network that competing methods failed to find.

In Topic 3, we introduced a general method of repeated measures SparseBayes ICA for

the analysis of multi-center and longitudinal data. This uses random and fixed effects for
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the data-collection centers to account for potential site effects. The RM-SparseBayes ICA

procedure also uses random subject effects to incorporate longitudinal measurements. We

conducted simulations and showed that our proposed approach offers significantly improved

performance over other approaches. We applied the RM-SparseBayes ICA procedure to

estimate the brain network in a longitudinal study of Alzheimer’s disease and found re-

gions in the sensorimotor and default mode networks exhibiting time-dependent changes in

Alzhemier’s and MCI patients, respectively. Future directions for both SparseBayes ICA and

RM-SparseBayes ICA include developing computationally efficient forms applicable to large-

scale imaging data, as well as incorporation into the Hierarchical Independent Component

Analysis Toolbox (Lukemire, Wang, Verma and Guo, 2020).
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Appendix A

Appendix for Chapter 2

A.1 fMRI Data Preprocessing

Image preprocessing was performed using the AFNI software package (Cox, 1996) and

included slice-timing and motion correction, warping of brain volumes to standard Talairach

space, Gaussian spatial blurring (6mm FWHM), and signal percent scaling.

In order to minimize the effect of spurious sources of temporal correlation in the fMRI

time series, which could have negatively affected our network analysis, we performed the

following additional pre-processing steps for each subject. First, a regression model was

fit using a maximum likelihood approach with a baseline portion accounting for noise (a

second-order Legendre polynomial, modeling slow signal drifts from biological or scanner-

related confounds, plus 6 head-motion parameters) and a set of event-related regressors

representing the expected BOLD response for the following classes of stimuli: (a) correctly-

responded congruent trials, (b) correctly-responded incongruent trials, (c) commission error

trials corresponding to incorrect responses, (d) omission error trials corresponding to omit-

ted responses. Each event was modeled as a mini boxcar starting at the stimulus onset and

ending at the time of the subject’s response, followed by convolution with a gamma function

accounting for the BOLD hemodynamic properties; if a response was not issued within the
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allotted 2 second window, the trial was marked as an omission error and the duration of

the corresponding boxcar was set at 2 seconds. The residual time-series from the regres-

sion analysis were collected, and task-related regressors, multiplied by their corresponding

regression coefficients, were added back to them. This procedure aimed to remove the con-

founding components of the BOLD time series (slow scanner-related drifts, task-unrelated

physiological variance, head motion) without also removing the component of interest, that

is, task-related variance.

As a final preprocessing step prior to the analysis, we prewhitened the time series for

each node. We fit an ARMA(1, 1) model at each node for each subject’s data and used the

residuals from these models as the corresponding node time series for the analysis. Boxplots

of the autocorrelation of the resulting prewhitened data at lags 1−6 are provided in Figure

A.1 for both the passive fixation and task conditions. The values at all lags are close to zero,

which confirms that the temporal autocorrelation has been largely removed.

Figure A.1: Boxplots of the mean ACF across subjects for the passive fixation condition
(left) and the task condition (right).
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Appendix B

Appendix for Chapter 3

B.1 Additional Simulation Information

The factors for the simulation study are presented in Table B.1.

The intensities for the covariate effects were drawn from independent normal distributions

N(µβp , σ
2
βp

) (p = 1, 2) Here, µβ1 = 1.5, µβ2 = 3.0 and σ2
βp

= 1.5 Covariate effects in all inactive

regions were set to 0.

Table B.1: Factors in the simulation experiment. For each combination of factors, we re-
peated the experiment 50 times.

Factor Levels Description
Q 3, 6 Number of independent components
N 25, 50, 100 Number of subjects
σ2
e 1.5, 3 Subject-level variance
b 1.5, 3.0, 5.0 between-subject variability in ICs
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