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Abstract

Graph Laplacians For Directed Networks With Applications To Centrality
Measures

By Yiwen Guo

This thesis introduces a new approach to centrality measures by using the non-
normalized graph Laplacians. It then compares and contrasts this approach with
other existing techniques through small-scale and large-scale examples. Finally,
it gives the conclusion and discusses some limitations.
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Chapter 1

Introduction

Have you ever used social media, such as Facebook, Twitter, and Instagram?

If so, how many friends do you have? Or, in other words, how big is your social

network? Social networks are connections and interpersonal relationships that a

person has. More generally, a network contains some nodes representing individ-

uals or entities and some edges between these nodes. In our daily lives, we have

a variety of networks: transportation, food chain, web search, and so on. The

following graphs illustrate some of these examples. In the first graph, every node

represents a student from an elementary school and a student can choose up to

two neighbors who will be sitting next to him or her. For instance, an edge that

goes from HN2 to CE means that HN2 wishes CE to be his neighbor. We can also

see that the bigger the node is, the more popular the student is in terms of being

chosen to be other students’ neighbor. In the second graph, every node stands for

a species. If an edge points from a species to another one, it means that the latter
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eats the former.

Figure 1.1: Jacob Moreno’s sociogram of a group of elementary school students
This network can be found at https://commons.wikimedia.org/wiki/File:Moreno_Sociogram_1st_Grade.png
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Figure 1.2: Food web network
This network can be found at https://www.researchgate.net/figure/235637860_fig1_Figure-5-Food-web-network-of-late-

Cretaceous-terrestrial-communities-in-North-America

As shown above, networks are not only ubiquitous but also essential in our

daily lives. Analyzing networks allows us to get a better understanding of the

bigger world surrounding us. In this thesis, we are going to talk about centrality

measures, or how to identify the most central or important nodes in a network.
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A node is seen as important if it is a good authority or hub. An authority is a

node gathering(receiving) information from other nodes. A hub is a node sending

out(broadcasting) information to other nodes. A good authority is pointed at by

good hubs and vice versa. Notice that this definition is iterative or circular. For

more information, please refer to [1].

At this point, you may wonder why is it important to know the most central

node in a given graph? For instance, imagine that we have a social network where

every node represents an individual and any of the two nodes have an edge if they

are acquaintances. If we were an advertisement company, we would wish to tar-

get the most influential people in this network so that the advertising information

could spread out more quickly. Another example is virus transmission. Imagine

again that we have a network with every node representing a patient and any of the

two nodes will have an edge if virus transmission is possible between them. By

identifying the most dangerous patient with the highest possibility of virus trans-

mission in this network, we could try to isolate this particular patient to slow down

the spread of diseases. Hence, we can see that centrality measures are essential in

terms of flow of information.

The organization of the thesis is as follows. We begin by summarizing some

basic concepts in graph theory, such as the definition of directed graphs, the adja-

cency matrix of a given graph, and its graph Laplacians. We then introduce a new

approach to centrality measures, which is done by solving the linear systems:

LToutxout = 0 and Linxin = 0

where LTout and Lin are the graph Laplacians. We present and compare our solu-

4



tion with three other techniques: PageRank, HITS, and the Dominant Eigenvector

Approach. Finally, we draw our conclusion and discuss some possible limitations

that the new approach may have.
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Chapter 2

Graph Theory

2.1 Basic Concepts

Definition 1. A graph G = (V,E) is a set of nodes (vertices) V with |V | = n and

a set of edges E ⊂ {(i, j)|i, j ∈ V }. (see [2]).

Definition 2. Given any two nodes i, j ∈ V , a graph is undirected if (i, j) ∈ E

implies (j, i) ∈ E. A graph is directed if (i, j) ∈ E does not imply (j, i) ∈ E.

Definition 3. The in-degree din of a node in G is the number of directed edges

ending in that node. The out-degree dout of a node is the number of directed

edges starting at that node. Let Dout = diag(dout1 , dout2 , ..., doutn ) be the out-degree

diagonal matrix andDin = diag(din1 , d
in
2 , ..., d

in
n ) be the in-degree diagonal matrix

.

Definition 4. The adjacency matrix A of the graph is defined by aij = 1 if (i, j)

is an edge of G and aij = 0 otherwise.
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Remark 1. For an undirected graph, A is symmetric. For a directed graph, A is

unsymmetric. Also, the row sums of A give the out-degrees and the column sums

of A give the in-degrees.

Definition 5. A directed graph, also called digraph, is strongly connected if for

any pair of nodes i, j ∈ V , there exists a directed path

i→ i1 → i2 → ...→ ik → j

(See Definition 7 below). A digraph is weakly connected if it is connected as an

undirected graph (obtained by ignoring the orientation).

Figure 2.1: A strongly connected digraph

Figure 2.2: A weakly connected digraph
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Figure 2.3: A digraph with eight nodes that is neither strongly nor weakly con-
nected

Definition 6. A square matrix A is said to be reducible if there exists a permuta-

tion matrix Π such that

ΠAΠT =

A11 A12

0 A22


where A11 and A22 are square. If there is no such Π, we say that A is irreducible.

Theorem 1. A digraph is strongly connected if and only if the corresponding

adjacency matrix A is irreducible.

Fact 1. For any digraph G = (V,E), there exists a permutation matrix Π such

that

ΠAΠT =



A11 A12 ... A1p

A22 ... A2p

. . . ...

App


where each Aii block is square and irreducible. The subgraphs of G having ad-

jacency matrices A11, ..., App are called the strongly connected components of G.

The largest one (say A11) is called the maximal strongly connected component.

8



Definition 7. A walk is a sequence of (directed) edges: i → i1 → i2 → ... →

ik → j. The nodes i1, ..., ik can be repeated. If none is repeated, we call this a

(directed) path.

Fact 2. Let Ak denote the kth power of the adjacency matrix A. Then (Ak)ij

is the number of walks of length k starting at node i and ending at node j. In

particular, (Ak)ii is the number of closed walks of length k passing through node

i. The distance d(i, j) is the length of the shortest path between node i and node

j. If there is no such path starting at i and ending at j, we set d(i, j) = ∞. Note

that d(i, j) 6= d(j, i) in general. Then a digraph is strongly connected if and only

if d(i, j) is finite for all i, j ∈ V . See [8].

2.2 Graph Laplacians

In this section, we first define Laplacians for undirected graphs and then de-

scribe two ways to extend this definition to the directed case. First of all, define D

as the diagonal matrix whose entries are the degrees of each node. Since graphs

are undirected, the in-degrees of every node equal the out-degrees. We call D the

degree matrix of G. Then, the graph Laplacian is defined as L = D −A where A

is the adjacency matrix. See [8].

Although we have a unique definition of Laplacians for undirected graphs,

notice that the in-degrees and out-degrees in the directed case are generally not

the same. Hence, we cannot simply use the same definition for directed graphs.

In this section, we introduce two methods: (1) the symmetric Laplacian and (2)
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the nonsymmetric Laplacians. Refer to [9].

2.2.1 Symmetric Laplacian Via A Bipartite Graph Model

Definition 8. An undirected graph G = (V,E) is bipartite if V = V1 ∪ V2 with

V1 ∩ V2 = ∅, where V1, V2 are such that nodes in V1 can be connected only with

nodes in V2 and nodes in V2 can be connected only with nodes in V1.

Any digraph of n nodes can be represented uniquely by a bipartite graph on

2n nodes as follows: If the digraph is G = (V,E), we construct the bipartite

graph G̃ = (Ṽ , Ẽ) where Ṽ = V ∪ V ′, V ′ =
{
n + 1, n + 2, ..., 2n

}
, and Ẽ ={

(i, j′)|j′ = n+ j and (i, j) ∈ E
}

. For instance,

Figure 2.4: A digraph with its bipartite graph

The adjacency matrices for the digraph and for the bipartite graph are

10



A =


0 1 0

0 0 0

1 1 0

, Ã =



0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 1 1 0

0 0 1 0 0 0

1 0 1 0 0 0

0 0 0 0 0 0


=

 0 A

AT 0



Since D = diag(1, 0, 2, 1, 2, 0),

L̃ = D − Ã =



1 0 0 0 −1 0

0 0 0 0 0 0

0 0 2 −1 −1 0

0 0 −1 1 0 0

−1 0 −1 0 2 0

0 0 0 0 0 0


=

Dout −A

−AT Din



If we use the above definition of graph Laplacian, what is the meaning of the

eigenvalues and eigenvectors of L̃ in terms of the original directed graph? Can we

relate them to quantities related to A? Assume the digraph is strongly connected.

Then Dout and Din are invertible. Consider

11



L̃ =

D−1/2
out 0

0 D
−1/2
in


Dout −A

−AT Din


D−1/2

out 0

0 D
−1/2
in


=

 I −D−1/2
out AD

−1/2
in

−D−1/2
in ATD

−1/2
out I


= I2n +

 0 −D−1/2
out AD

−1/2
in

−D−1/2
in ATD

−1/2
out


(2.1)

The eigenvalues of this normalized and symmetric Laplacian L̃ are of the form

λi = 1∓ σi(D−1/2
out AD

−1/2
in ).

Also let L̂ = (D − A)D−1 = I2n − AD−1 :

Dout −A

−AT Din


D−1

out 0

0 D−1
in

 =

 I −AD−1
in

−ATD−1
out I


= I2n −

 0 AD−1
in

(D−1
outA)T 0


(2.2)

Note that L̂ is not symmetric and that there is no simple relationship between its

eigenvalues and the singular values ofA orAD−1
in orAD−1

out. For another definition

of a symmetric Laplacian for directed graphs, see [6]. However, we will not make

12



use of this definition in our thesis.

2.2.2 Nonsymmetric Laplacians

As mentioned earlier in this chapter, we cannot simply use L = D−A because

we do not know if D is the out-degree matrix or the in-degree one. Just using as

D the degree matrix of the underlying undirected graph does not lead to a useful

definition. Hence, we introduce two nonsymmetric Laplacians as follows.

Definition 9. Lin = Din − A, Lout = Dout − A. Note that in general 1TLin = 0,

Lin1 6= 0; Lout1 = 0, 1TLout 6= 0.

Consider now the diffusion-type differential equations:
ẋ = −Loutx

x(0) = x0

(2.3)


ẋ = −Linx

x(0) = x0

(2.4)

where ẋ denotes the derivative with respect to t of x(t).

Assume thatG = (V,E) is strongly connected. In this caseA is an irreducible,

nonnegative matrix. By the Perron-Frobenius theorem, the spectral radius ρ(A) =

max
{
|λi|;λi ∈ σ(A)

}
is a simple eigenvalue of A (i.e. ρ(A) = λ1 = λmax(A)

is real and ≥ 0). Moreover, there exists x ∈ Rn, x = xi with xi > 0 for i =

1, ..., n such that Ax = λ1x (= ρ(A)x). This x is unique up to normalization.

As a consequence, the fact that G is strongly connected implies that 0 is a simple

eigenvalue of Lin, Lout. In other words,

13



Theorem 2. dim ker(Lin) = dim ker(Lout) = 1.

Proof:

Since G is strongly connected, the diagonal entries of Din, Dout are nonzero.

Hence, Din, Dout are invertible. Therefore,

Lout = (I − AD−1
out)Dout, Lin = Din(I −D−1

in A)

and dim ker(Lout) = dim ker(I − AD−1
out), dim ker(Lin) = dim ker(I −D−1

in A).

Now, A ≥ 0, D−1
in ≥ 0, D−1

out ≥ 0. So AD−1
out, D

−1
in A are both nonnegative and irre-

ducible. Since A is irreducible and multiplying an irreducible matrix by a nonsin-

gular diagonal matrix does not affect the irreducibility, by the Perron-Frobenius

theorem, both AD−1
out and D−1

in A have a simple dominant eigenvalue.

We claim that 1 ∈ σ(AD−1
out), 1 ∈ σ(D−1

in A), and all other eigenvalues of

AD−1
out, D

−1
in A are less in magnitude than (or 6=) 1.

Recall that for any matrix A ∈ Cn×n and any induced matrix norm, ρ(A) ≤

||A|| because

Ax = λx⇒ ‖Ax‖ = λ ‖x‖ ⇒ λ ≤ ‖Ax‖
‖x‖

≤ ‖A‖ = supx 6=0
‖Ax‖
‖x‖

.

Now observe that since
∥∥AD−1

out

∥∥
∞ = 1 and ADout1 = 1, ρ(AD−1

out) = 1.

Hence, 1 is an eigenvector corresponding to λ = 1. Similarly for D−1
in A (just

take the ‖·‖1 norm, which is the ‖·‖∞ of the transpose). But if 1 is a simple

eigenvalue of AD−1
out, then 0 is simple eigenvalue of I − AD−1

out. That is, dim

ker(I − AD−1
out) = 1. Likewise for dim ker(I − D−1

in A). Since multiplication by

14



a nonsingular (diagonal) matrix does not change the rank, the Theorem is proved.

�

Since Lout1 = (Dout−A)1 = Dout1−A1 = Dout1−Dout1 = 0, we see that

ker(Lout) = span{1} = {x = c1|c ∈ R} . For Lin, we know that 1TLin = 0T .

Denote by qin1 the (normalized) eigenvector of Lin associated with the eigenvalue

λ = 0. All we can say is that we can choose qin1 to have positive entries (by the

Perron-Frobenius theorem) if G is strongly connected. Unless G is undirected (in

which case Lin = Lout = L = D−A), qin1 is not a constant vector. Its entries are

all positive and presumably they can tell us something about the graph.

Assume now for simplicity that Lin, Lout are diagonalizable, then we can

write:

Lout = XoutΛoutX
−1
out, Lin = XinΛinX

−1
in

where Λout = diag(0, λ2(Lout), ..., λn(Lout)), and Λin = diag(0, λ2(Lin), ..., λn(Lin)).

Note that

λi(Lout) ∈ C, λi(Lout) 6= 0, λi(Lin) ∈ C, λi(Lin) 6= 0,

Xout = [1,qout2 , ...,qoutn ] ∈ Cn×n, Xin = [qin1 ,q
in
2 , ...,q

in
n ] ∈ Cn.

Also, denote by yout2 , yin2 the left eigenvectors of Lout, Lin corresponding to λ = 0.

Then,

15



Lout = XoutΛoutX
−1
out =

n∑
i=1

λi(Lout)q
out
i (youti )T (2.5)

Lin = XinΛinX
−1
in =

n∑
i=1

λi(Lin)qini (yini )T (2.6)

where the first term is a matrix of zeros in each of the sums.

From (2.5),

exp(−tLout) =
n∑
i=1

e−tλi(Lout)qouti (youti )T

= 1(yout1 )T +
n∑
i=2

e−tλi(Lout)qouti (youti )T
(2.7)

Since Lout is an M-matrix of rank n− 1, each λi(Lout) with i ≥ 2 has positive

real part ([3]). Therefore, as t→∞, exp(−tLout)→ 1(yout1 )T . Thus, the solution

to (2.5) is given by

x(t) = exp(−tLout)x0 = [(yout1 )Tx0]1 + o(t) as t→∞.

So at steady state, the solution x(t) must reach "thermal equilibrium": that is,

limt→∞ x(t) = c1 where c = (yout1 )Tx0. The rate of approach to this equilibrium

depends on γ(Lout) = min {|λi(Lout)|, λi(Lout) 6= 0} .

For the solution of (2.6), we find instead

x(t) = exp(−tLin)x0 = [(yin1 )Tx0]qin1 + o(t) as t→∞.

16



So now the steady state is not a constant vector, but a multiple of the eigenvector

qin1 , which is the eigenvetcor of Lin associated with the zero eigenvalue. The rate

of convergence is now governed by γ(Lin) = min {|λi(Lin)|, λi(Lin) 6= 0} .

Now, given the solution x(t) = exp(−tLin)x0, we would like to know if x(t)

is monotonic. In other words, if (x0)i > (q1)i, where Linq1 = 0 and q1 > 0, and

is normalized, does xi(t) decrease to (q1)i as t→∞? If (x0)i < (q1)i, does xi(t)

increase to (q1)i as t→∞?

In order to know the monoticity of the solution, we need to look at its deriva-

tive. Given x(t) = exp(−tLin)x0,

d

dt
x(t) = −Line−tLinx0 (= −Linx(t))

and we claim that

d

dt
(−Line−tLin)ij < 0 ∀ i = j and

d

dt
(−Line−tLin)ij > 0 ∀ i 6= j.

Argument: Let t be small.

−Line−tLin = −Lin(I − tLin +
t2

2!
L2
in −

t3

3!
L3
in + ...)

= −Lin + tL2
in −

t2

2!
L3
in +

t3

3!
L4
in − ...

= −Lin + t(L2
in −

t

2!
L3
in +

t3

3!
L4
in − ...)

= −Lin +O(t)

(2.8)

So if t is small enough, the sign of the entries of −Line−tLin is the same as the

sign of the entries of −Lin. This implies that the diagonal entries are less than

zero and the off-diagonal entries are bigger than zero.

Now let t′ > t,∆t = t′ − t > 0. Then,

17



−Line−t
′Lin = −Line−(t′−t)Lin−tLin

= (−Line−tLin)e−∆tLin

= (−Line−tLin)(I −∆tLin +
(∆t)2

2!
L2
in − ...)

(2.9)

For ∆t small enough, the signs of the entries of −Line−t
′Lin will be equal to the

signs of the entries of −Line−tLin . Hence, for all t,

(−Line−tLin)ij


< 0 if i = j

> 0 if i 6= j

Recall that

exp(−tLin)x0 → (1/n)(1Tx0)q1 as t→∞ (2.10)

exp(−tLin)→ (1/
√
n)q11T as t→∞ (2.11)

From (2.11), as t→∞,

(e−tLinx0)i


decreases to (1/

√
n)q1

increases to (1/
√
n)q1

depending on whether (x0)i > (q1)i or (x0)i < (q1)i.
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Chapter 3

Centrality Measures

In this chapter, we are mainly concerned with the question: how can we iden-

tify the most "important" nodes in a graph? Intuitively, you might think that this

can be done by counting the number of in-degrees and out-degrees a node has and

the one which has the most in and out-degrees is the most important. Although it

is reasonable to think in this way, we will see later in this chapter that this simple

approach is not sufficient to determine the importance of a node. In addition, how

can we define "important"? These are the questions that we will address in this

chapter. The techniques we touch upon in this chapter are the most popular and

widely used ones, but there are also many other approaches to centrality measures

such as [2] and [7]. We refer to [8] for additional discussion.
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3.1 Existing Techniques For Centrality Measures

3.1.1 PageRank

Definition 10. Let H = I−ATD−1
out = LToutD

−1
out and K = I−AD−1

in = LinD
−1
in ,

which are normalizations of Lout, Lin. Notice thatATD−1
out andAD−1

in are column-

stochastic.

Assume that G is strongly connected. We know that λ = 0 is a simple eigen-

value of H, and the solution of

Hx = 0 with xi > 0 and 1Tx =
n∑
i=1

xi = 1

is the stationary probability distribution of the Markov Chain, or random walk on

G, described by the transition probability matrix ATD−1
out [3]. To solve for x, we

replace the last equation in Hx = 0 with the constraint
n∑
i=1

xi = 1 so that we

can get a unique solution. In this case, x is also known as the PageRank vector.

Similarly, we do the same for Kx = 0 and the solution is called the reverse

PageRank vector. One drawback of this method is that sometimes it does not

distinguish between authority and hub ranking, as we will see in the next section.

3.1.2 HITS

In addition to the PageRank method mentioned, HITS (see [1]) is another

method used to rank nodes. Let A be the adjacency matrix of a digraph.

Definition 11. The singular value decomposition ofA isA = UΣV T whereU and
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V are orthogonal matrices and Σ is a diagonal matrix with nonnegative numbers

on its diagonal, referred to as the singular values of A.

Then we can get:

AT = (UΣV T )T = V ΣTUT and AAT = UΣ2UT , ATA = V Σ2V T .

Hence, the eigenvalues of AAT and ATA are the squared singular values of A.

Let U = [u1,u2, ...,un] = left singular vectors of A and V = [v1, v2, ..., vn] =

right singular vectors of A. Since A = UΣV T , AV = UΣ and Avi = σiui. Also,

since AT = V ΣUT , ATU = V Σ and ATui = σivi. Therefore,

AATui = A(σivi) = σiAvi = σi(σiui) = σ2
i ui and

ATAvi = AT (σiui) = σi(σivi) = σ2
i vi.

This shows that ui is the ith eigenvector of AAT and vi is the ith eigenvector of

ATA. If we denote AAT as the hub matrix and ATA as the authority matrix, then

u1 gives the hub scores of nodes and v1 gives the authority scores of nodes. One

problem of HITS is that in order to do the calculation, we need to make sure that

the matrices AAT and ATA are irreducible. Note that the condition that A is

strongly connected is not enough for AAT and ATA to be irreducible.

3.1.3 The Dominant Eigenvector Approach

Last but not least, we introduce the dominant eigenvector approach for cen-

trality measure. Given the adjacency matrix A, we compute Ax = λx and find
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the eigenvector corresponding to the largest eigenvalue, which is called the domi-

nant eigenvector for A. This is the hub centrality measure. Similarly, we compute

ATy = λy and find its corresponding dominant eigenvector, which represents the

authority centrality measure.

3.2 A New Approach To Centrality Measure

Recall that in the previous chapter, we defined two nonsymmetric Laplacians

Lout = Dout − A,Lin = Din − A. Since Lout1 = 0, there exists xout ∈ Rn such

that (xout)TLout = 0 or LToutxout = 0. Similarly, since 1TLin = 0T , there exists

xin ∈ Rn such that Linxin = 0. Moreover, by the Perron-Frobenius theorem, we

can pick xout, xin to be positive. So what do xout, xin tell us about the graph?

Before answering this question, we will first introduce some new concepts.

Definition 12. A node is a good authority (receiver) if it is pointed at by good

hubs. Similarly, a node is a good hub (broadcaster) if it is pointed at by good

authorities. Authorities and hubs can be not exclusive to each other. A node can

be both.

We conjecture that the entries of xin give the scores of authorities, which are

receivers of information and that the entries of xout give the scores of hubs, which

are broadcasters of information. We will see some examples later in the next

chapter.

Given G = (V,E), undirected and connected, consider the following ODE:

22




ẋ = −Lx

x(0) = x0(6= 0)

The solution of this ODE is as t→∞,

x(t) = e−tLx0 → ((1/n)1Tx0)1 (3.1)

This constant vector is called the equilibrium or consensus. For instance, if x0 =

e1 = [1, 0, ..., 0]T , then x∞ = [1/n, 1/n, ..., 1/n]T .

Figure 3.1: The steady-state of the solution for different initial values

If we rewrite ẋ using the definition of derivatives, we will get

x(t+ ∆t)− x(t)

∆t
= −Lx(t)⇒ xt+1 = xt −∆tLxt = (I −∆tL)xt

If ∆t is small enough, this converges to the steady state: as t→∞, xt → x∞.

Now, given G = (V,E), directed and strongly connected, consider again the

following system of ODEs:
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ẋ = −Loutx

x(0) = x0

(3.2)


ẋ = −Linx

x(0) = x0

(3.3)

The solution to (3.2) converges to the same limit as (3.1) and is called the con-

census dynamics. However, for (3.3),

limt→∞ x(t) = (1/
√
n)(qT1 x0)q1 where Linq1 = 0, ‖q1‖2 = 1.

Note that this limit is not constant in general. It is called the advection dynamics.

Advection is the process where a distribution or mass is actively transported by

a flow field. See [5]. Therefore, we can interpret the solution given by (3.3) as

advection, where each node carries information and the latter moves from nodes

to nodes. During this process, every node tries to gather information from all other

nodes and thus (3.3) gives the authority scores.

For LToutx = 0, LTout = (Dout − A)T = Dout − AT where AT is the adjacency

matrix for the reverse graph.

Definition 13. Given a directed graph G, its reverse graph is a directed graph on

the same set of vertices with all of the edges reversed in direction. That is, if G

contains an edge (i, j), then the reverse graph of G contains an edge (j, i).

Now, instead of gathering information from all other nodes, each node tries

to send out information to all other nodes. Therefore, the solution of LToutx = 0

gives the hub scores.
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Chapter 4

Experiments And Comparison

4.1 Small-scale Graphs

In this section, we introduce three small-scale graphs and compute the score

of each node by using four different methods. The results are shown as follows.

Figure 4.1: A four-node digraph
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Authority Ranking
New Approach PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
4 0.5000 1 0.3750 - - 4 0.7442
1 0.1667 4 0.3750 - - 1 0.4892
2 0.1667 2 0.1250 - - 2 0.3215
3 0.1667 3 0.1250 - - 3 0.3215

Table 4.1: Authority ranking for the graph in figure 4.1

Hub Ranking
New Approach Reverse PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
1 0.5000 1 0.3750 - - 1 0.7442
2 0.1667 4 0.3750 - - 4 0.4892
3 0.1667 2 0.1250 - - 2 0.3215
4 0.1667 3 0.1250 - - 3 0.3215

Table 4.2: Hub ranking for the graph in figure 4.1

In this example, since ATA and AAT are not irreducible, we cannot use the

ranking given by HITS. We can see that both our method and the dominant eigen-

vector approach rank node 4 as the most important in terms of authorities and

node 1 as the most important in terms of hubs. This result seems reasonable since

node 4 has three incoming edges and node 1 has three outcoming edges. It means

that node 4 can be reached by any of the other three nodes and that node 1 can

reach any other nodes. Hence, node 4 is regarded as the most important receiver

of information and node 1 is the most important broadcaster of information. Note

that PageRank and Reverse PageRank regard node 1 and 4 as equally important,

which also makes sense. Recall that good authorities are those pointed to by good
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hubs and vice versa. However, this result implies one disadvantage of PageRank,

which is its inability to distinguish between authorities and hubs in some cases.

Figure 4.2: A five-node digraph

Authority Ranking
New Approach PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
1 0.5000 1 0.2857 - - 5 0.5896
5 0.2500 5 0.2857 - - 4 0.5202
4 0.1250 4 0.2143 - - 3 0.4138
2 0.0625 3 0.1429 - - 1 0.3843
3 0.0625 2 0.0714 - - 2 0.2505

Table 4.3: Authority ranking for the graph in figure 4.2
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Hub Ranking
New Approach Reverse PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
5 0.3636 5 0.3478 - - 1 0.7637
4 0.2727 1 0.3478 - - 5 0.4978
3 0.1818 4 0.1739 - - 4 0.3245
1 0.0909 3 0.0870 - - 3 0.2115
2 0.0909 2 0.0435 - - 2 0.1379

Table 4.4: Hub ranking for the graph in figure 4.2

In this example, the authority ranking of the new approach and PageRank are

consistent. However, there are some differences for hub ranking. From this exam-

ple, we can see that the new approach shares some commonalities with PageRank,

but it is also different from it. Again, since ATA and AAT are not irreducible, we

cannot use HITS. Note that PageRank and Reverse PageRank view node 1 and 5

as equally important.

28



Figure 4.3: Knoke’s data on information exchanges among organizations operat-
ing in the social welfare field from [10]

Authority Ranking
New Approach PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
7 0.2500 7 0.1742 7 0.5581 7 0.5076
9 0.1321 5 0.1740 2 0.4204 5 0.4239
4 0.1321 2 0.1740 5 0.4204 2 0.4239
2 0.1249 4 0.1227 9 0.3145 4 0.3319
5 0.1070 9 0.0921 1 0.2696 9 0.2942
1 0.0992 1 0.0921 4 0.2498 1 0.2847
3 0.0567 3 0.0659 3 0.2493 3 0.2235
8 0.0464 8 0.0539 8 0.1366 8 0.1829
10 0.0327 10 0.0380 10 0.1296 10 0.1397
6 0.0189 6 0.0132 6 0.0588 6 0.0482

Table 4.5: Authority ranking for the graph in figure 4.3
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Hub Ranking
New Approach Reverse PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
6 0.2027 5 0.1905 8 0.3780 5 0.4478
10 0.1885 3 0.1698 10 0.3692 2 0.3698
3 0.1428 2 0.1345 5 0.3673 10 0.3618
8 0.1373 10 0.1120 2 0.3423 3 0.3436
5 0.0916 8 0.0816 1 0.3299 8 0.3391
2 0.0647 4 0.0696 4 0.3212 4 0.2876
4 0.0585 1 0.0642 3 0.3056 1 0.2770
1 0.0540 7 0.0638 9 0.2693 7 0.2385
9 0.0360 6 0.0602 6 0.2160 9 0.2279
7 0.0239 9 0.0535 7 0.2100 6 0.1748

Table 4.6: Hub ranking for the graph in figure 4.3

In this example [10], all four methods agree that node 7 is the most important

receiver of information. However, we can see that they disagree about the most

important broadcaster. Our method states that node 6 is the most important hub.

This is counter-intuitive at first because node 6 has only three outcoming edges

reaching out to node 6, 7, and 9. Recall that a good hub is one that is pointed to by

a good authority. Hence, by this definition, it makes sense that node 6 is the most

important node because it is pointed to by the most important authority, node 7.

Reverse PageRank and the dominant eigenvector approach claim that node 5 is the

most important hub, which also makes sense since node 5 can reach 7 nodes. In

addition, HITS regards Node 8 as the most important hub since it can reach node

5, 2, and 7, which are important authorities. If we look at the top four nodes in au-

thority ranking, our method has two overlaps with PageRank and the eigenvector
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approach, and three overlaps with HITS. Similarly, looking at the top four nodes

in hub ranking, we can see that our method has two overlaps with PageRank and

the eigenvector approach, and one overlap with HITS. These observations suggest

that our method has some overlaps with the other three methods, but it also reveals

some new information that the other three do not tell us.

4.2 Larger Graphs

In this section, we compute the ranking scores for larger graphs. We first

browse the sparse matrix collection created by Tim Davis and find those matrices

that are binary and unsymmetric. We then find their largest strongly connected

components and compute their rankings of nodes. Finally, we display the results

in the following tables. Note that if ATA and AAT are not strongly connected,

then HITS is not applicable.

Description of Examples
Example ID Number of

Rows
Number of
Columns

1 1482 60 60
2 1456 31 31
3 2288 1300 1300
4 2286 70533 70533
5 2315 8490 8490

Table 4.7: Information on the test matrices
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Example 1: This graph comes from a graph drawing contest in 2002.

Authority Ranking
New Approach PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
57 0.1018 55 0.0903 - - 51 0.3706
58 0.0837 51 0.0703 - - 52 0.3367
51 0.0667 56 0.0691 - - 50 0.3309
56 0.0657 49 0.0596 - - 56 0.3230
55 0.0572 52 0.0590 - - 49 0.3154
52 0.0561 57 0.0536 - - 45 0.2929

Table 4.8: Authority ranking for example 1

Hub Ranking
New Approach Reverse PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
9 0.1623 10 0.1404 - - 53 0.3175
10 0.1224 11 0.1276 - - 47 0.3125
11 0.1112 12 0.1036 - - 54 0.2806
13 0.0969 9 0.0931 - - 49 0.2418
36 0.0946 4 0.0668 - - 48 0.2409
12 0.0602 31 0.0631 - - 41 0.2317

Table 4.9: Hub ranking for example 1

Number of Intersection Between Two Sets
New Approach
and PageRank

New Approach
and HITS

New Approach
and eigenvector

Authority 5 NA 3
Hub 4 NA 0

Table 4.10: Number of elements in common for example 1

Example 2: This graph was constructed by expanding a 200-page response set
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to a search engine query "California" by Jon Kleinberg.

Authority Ranking
New Approach PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
6 0.1458 4 0.1542 - - 4 0.3542
27 0.0833 6 0.0899 - - 14 0.3465
18 0.0625 1 0.0771 - - 5 0.3465
1 0.0417 3 0.0771 - - 6 0.3218
10 0.0417 27 0.0514 - - 1 0.2616
20 0.0417 18 0.0385 - - 27 0.2105
19 0.0417 14 0.0385 - - 3 0.1953
31 0.0417 5 0.0385 - - 18 0.1775
11 0.0417 11 0.0257 - - 20 0.1578
4 0.0417 12 0.0257 - - 28 0.1578

Table 4.11: Authority ranking for example 2

Hub Ranking
New Approach Reverse PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
21 0.1171 4 0.2513 - - 3 0.3707
20 0.1081 3 0.0838 - - 24 0.3394
4 0.1081 21 0.0681 - - 14 0.3024
19 0.1081 19 0.0628 - - 4 0.2753
28 0.0450 20 0.0628 - - 9 0.2591
6 0.0360 6 0.0628 - - 22 0.2348
3 0.0360 14 0.0366 - - 7 0.2348
24 0.0360 1 0.0314 - - 25 0.2348
13 0.0360 28 0.0262 - - 23 0.2348
15 0.0360 5 0.0262 - - 5 0.2248

Table 4.12: Hub ranking for example 2
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Number of Intersection Between Two Sets
New Approach
and PageRank

New Approach
and HITS

New Approach
and eigenvector

Authority 6 NA 6
Hub 7 NA 2

Table 4.13: Number of elements in common for example 2

Example 3: Wikipedia vote network - Wikipedia is a free encyclopedia writ-

ten collaboratively by volunteers around the world. A small part of Wikipedia

contributors are administrators, who are users with access to additional technical

features that aid in maintenance. In order for a user to become an administrator a

Request for adminship (RfA) is issued and the Wikipedia community via a public

discussion or a vote decides who to promote to adminship. The network contains

all the users and discussion from the inception of Wikipedia till January 2008.

Nodes in the network represent Wikipedia users and a directed edge from node i

to node j represents that user i voted on user j.
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Authority Ranking
New Approach PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
4 0.0676 2 0.0302 604 0.2732 604 0.2276
2 0.0528 3 0.0296 393 0.2071 393 0.2193
3 0.0358 8 0.0223 299 0.2067 299 0.1924
516 0.0246 9 0.0184 291 0.1612 291 0.1657
6 0.0203 4 0.0172 344 0.1535 81 0.1424
78 0.0192 21 0.0125 588 0.1425 199 0.1361
17 0.0152 17 0.0125 757 0.1235 588 0.1298
44 0.0145 78 0.0110 676 0.1184 344 0.1257
30 0.0138 6 0.0103 770 0.1182 407 0.1179
7 0.0137 26 0.0101 691 0.1172 537 0.1135

Table 4.14: Authority ranking for example 3

Hub Ranking
New Approach Reverse PageRank HITS Eigenvector
Node Score Node Score Node Score Node Score
1294 0.0562 1186 0.0150 578 0.1065 578 0.1357
1186 0.0484 1218 0.0096 858 0.1050 858 0.1261
719 0.0149 1294 0.0087 393 0.1011 5 0.1136
1205 0.0103 578 0.0071 757 0.0992 880 0.1108
961 0.0099 5 0.0068 719 0.0983 393 0.1100
871 0.0095 858 0.0067 562 0.0978 562 0.1097
1113 0.0092 901 0.0050 333 0.973 719 0.1078
1057 0.0090 880 0.0048 880 0.0939 178 0.1038
811 0.0089 719 0.0046 183 0.0926 604 0.1019
1157 0.0087 562 0.0044 604 0.0907 757 0.1005

Table 4.15: Hub ranking for example 3
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Number of Intersection Between Two Sets
New Approach
and PageRank

New Approach
and HITS

New Approach
and eigenvector

Authority 6 0 0
Hub 2 1 1

Table 4.16: Number of elements in common for example 3

Even though we have only two nodes in common with PageRank in this ex-

ample, note that they are among the top three ranked nodes. This implies that our

method and PageRank do agree on the most important top nodes. Also notice that

HITS and the eigenvector approach agree on top four and two nodes respectively

for authority and hub ranking.

Example 4: Slashdot social network - Slashdot is a technology-related news

website know for its specific user community. The website features user-submitted

and editor-evaluated current primarily technology oriented news. In 2002 Slash-

dot introduced the Slashdot Zoo feature which allows users to tag each other as

friends or foes. The network contains friend/foe links between the users of Slash-

dot.
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Authority Ranking
New Approach PageRank HITS Eigenvector

Node Score Node Score Node Score Node Score
70355 4.3438e-06 70328 0.2126 47 0.1136 47 0.1173
70354 3.8454e-06 70355 0.1942 2479 0.1070 2479 0.1165
70328 3.3611e-06 70354 0.1768 395 0.1059 4669 0.1152
69948 1.9369e-06 69948 0.1072 4669 0.1042 395 0.1141
65219 7.2635e-07 65219 0.0550 193 0.1025 193 0.1046
1 5.8329e-13 31818 0.0444 338 0.0945 1710 0.0965
395 1.4025e-15 48538 0.0027 1710 0.0943 338 0.0962
401 9.6160e-16 8092 0.0027 4978 0.0881 4978 0.0888
4669 8.3182e-16 3132 0.0023 2525 0.0820 2525 0.0845
2479 7.6943e-16 35100 0.0022 321 0.0817 321 0.0841

Table 4.17: Authority ranking for example 4

Hub Ranking
New Approach Reverse PageRank HITS Eigenvector

Node Score Node Score Node Score Node Score
69948 4.9881e-06 70328 0.2055 47 0.1218 47 0.1221
70355 4.4344e-06 70355 0.1878 395 0.1217 395 0.1146
26105 2.1227e-07 70354 0.1710 4669 0.1210 2479 0.1132
50067 2.1227e-07 69948 0.1037 2479 0.1204 4669 0.1100
48538 2.1227e-07 65219 0.0533 193 0.1016 193 0.1063
8092 2.1227e-07 31818 0.0468 338 0.0955 338 0.1002
3132 2.1227e-07 8092 0.0036 1710 0.936 1710 0.0985
35100 2.1227e-07 48530 0.0036 4978 0.0874 4978 0.0915
9045 2.1227e-07 56540 0.0027 2473 0.0833 321 0.0869
8341 2.1227e-07 48539 0.0027 2525 0.0832 2525 0.0865

Table 4.18: Hub ranking for example 4
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Number of Intersection Between Two Sets
New Approach
and PageRank

New Approach
and HITS

New Approach
and eigenvector

Authority 5 1 1
Hub 3 0 0

Table 4.19: Number of elements in common for example 4

Example 5: Gnutella peer-to-peer network - A sequence of snapshots of the

Gnutella peer-to-peer file sharing network from August 2002. Nodes represent

hosts in the Gnutella network topology and edges represent connections between

the Gnutella hosts.

Authority Ranking
New Approach PageRank HITS Eigenvector

Node Score Node Score Node Score Node Score
7165 0.0047 5720 0.0028 - - 703 0.0491
7295 0.0045 7165 0.0027 - - 112 0.0480
8438 0.0040 2371 0.0026 - - 7840 0.0456
3091 0.0040 7295 0.0026 - - 7390 0.0387
4447 0.0033 6901 0.0024 - - 6926 0.0379
5793 0.0030 8438 0.0023 - - 5239 0.0367
7171 0.0028 3091 0.0023 - - 872 0.0365
7538 0.0027 6779 0.0019 - - 7135 0.0361
6348 0.0025 4447 0.0019 - - 3885 0.0360
7220 0.0025 3530 0.0018 - - 6956 0.0353

Table 4.20: Authority ranking for example 5
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Hub Ranking
New Approach Reverse PageRank HITS Eigenvector

Node Score Node Score Node Score Node Score
1443 0.0040 518 0.0026 - - 641 0.0798
629 0.0030 1443 0.0016 - - 1383 0.0716
415 0.0030 238 0.0016 - - 830 0.0695
1344 0.0027 2412 0.0014 - - 390 0.0687
183 0.0026 390 0.0013 - - 562 0.0682
610 0.0025 1264 0.0012 - - 629 0.0668
180 0.0024 915 0.0012 - - 1208 0.0664
6229 0.0023 629 0.0012 - - 55 0.0658
371 0.0023 415 0.0012 - - 1253 0.0639
1704 0.0020 1599 0.0012 - - 1145 0.0620

Table 4.21: Hub ranking for example 5

Number of Intersection Between Two Sets
New Approach
and PageRank

New Approach
and HITS

New Approach
and eigenvector

Authority 5 NA 0
Hub 3 NA 0

Table 4.22: Number of elements in common for example 5
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Chapter 5

Conclusion And Discussion

According to the results in the previous chapter, we can see that the new ap-

proach is similar to PageRank and Reverse PageRank, but is very different from

HITS and the dominant eigenvector approach. However, we see that the latter

two methods yield similar results, which imply that the four methods discussed in

this thesis can be divided into two groups. Since the new approach and PageR-

ank(Reverse PageRank) are both based on graph Laplacians, even though the for-

mer depends on non-normalized ones and the latter on normalized ones, they rank

nodes in similar fashions. Since HITS and the dominant eigenvector approach are

both based on the adjacency matrix A, it is reasonable that their results agree with

each other.

Even though the new approach shares some commonalities with PageRank, it

is also different from it and thus sheds light on some new information that PageR-

ank cannot provide. One interpretation of the new approach is in terns of advec-
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tion, where each node carries some information and moves from nodes to nodes

until it reaches an equilibrium or steady state. At this equilibrium, the score com-

puted is a measure of how well the information is advected to one node from

all the others (for authorities) and from one node to all the others (for hubs). In

other words, the score computed represents how influential a node is in terms of

spreading out information, or gathering information.

However, this method does have some limitations [5]. We say that a graph

is balanced if its in-degrees are equal to its out-degrees. Recall from the second

chapter where we talked about advection and consensus dynamics, the limit for

ẋ = −Linx, x(0) = x0

goes to

limt→∞x(t) =
1√
n

(qT1 x0)q1 where Linq1 = 0, ‖q1‖2 = 1.

However, if the graph is balanced,

x(t)→ ((1/n)1Tx0)1(= constant).

Therefore, in this case, Lout = Lin, which implies that the advection dynamics is

equivalent to the consensus dynamics. Hence, x(t) tends to a constant vector as

t→∞. Hence, if a graph is a balanced one, then no ranking is possible.
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