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Abstract

Maryam Khaqan

Moonshine and Elliptic Curves

In this dissertation, we characterize all infinite-dimensional graded virtual
modules for Thompson’s sporadic simple group, whose graded traces are
weight 3

2
weakly holomorphic modular forms satisfying certain special prop-

erties. We then use these modules to detect the non-triviality of Mordell-
Weil, Selmer and Tate-Shafarevich groups of quadratic twists of certain ellip-
tic curves. Thus proving the existence of a new kind of moonshine as well as
establishing applications of moonshine to number theory.
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Chapter 1

Introduction

1.1 Moonshine

In 1978, McKay and Thompson observed [Thompson 1979b] that the first
few coefficients of the normalized elliptic modular invariant J(τ) = q−1 +

196884q + 21493760q2 + 864299970q3 + O(q4), a central object in the theory
of modular forms, can be written as sums involving the first few dimensions
of irreducible representations of the monster group M, e.g.,

196884 = 2 · 11 + 2 · 1196883

21493760 = 2 · 11 + 2 · 1196883 + 21296876

864299970 = 12 · 1 + 12 · 196883 + 21296876 + 842609326.

(1.1.1)

This coincidence inspired Thompson’s conjecture [Thompson 1979a] that
there is an infinite-dimensional M-module V =

⊕
n≥−1

Vn whose graded di-

mension is J(τ) and whose McKay–Thompson series

Tg(τ) :=
∑
n≥−1

tr(g|Vn)qn (1.1.2)



are distinguished functions on the upper half-plane. Conway and Nor-
ton [Conway and Norton 1979] explicitly described the relevant McKay-
Thompson series, and also christened this phenomenon “monstrous moon-
shine.” Their conjecture was proven by Borcherds [Borcherds 1992], build-
ing on work by Frenkel, Lepowsky and Meurman [Frenkel et al. 1988] (see
also, [Frenkel et al. 1985; 1984]) in 1992. In the few decades since the first
observations of McKay and Thompson, it has become clear that monstrous
moonshine is just the first of a series of similar phenomena encompassing
several finite groups and their counterparts in the world of modular forms.

Generalized moonshine [Carnahan 2012] (see also, [Norton 1987; Conway
and Norton 1979; Queen 1981]), for example, relates various subquotients
of the Monster to other weight zero modular forms. Umbral moonshine
[Cheng et al. 2014a;b] (see also [Duncan et al. 2015; Gannon 2016] and
[Cheng et al. 2018]), on the other hand, relates the 23 umbral groups
(each of which is a quotient of the automorphism group of one of the 23
Niemeier lattices) to weight 1

2
mock modular forms. Thompson moonshine,

conjectured by Harvey and Rayhaun [Harvey and Rayhaun 2015] in 2015
and proven by Griffin and Mertens in [Griffin and Mertens 2016], involves
Thompson’s sporadic simple group Th, and certain weight 1

2
modular forms.

(We remark here that the Thompson group, being a subgroup of the Monster,
also appears in the generalized moonshine setting mentioned above. For the
purpose of this dissertation, “Thompson moonshine” refers to the Harvey
and Rayhaun version.)

Recently, in [Duncan et al. 2017; to appear], Duncan, Mertens, and Ono
discovered the first instance of moonshine for the O’Nan group, one of the
so-called pariah groups (i.e., a sporadic simple group which is not a sub-
quotient of the monster group), where the functions involved are modular
forms of weight 3

2
. Their work is not only a contribution to the theory of



moonshine, it also serves another important purpose: In the same paper,
they use their O’Nan-module to study properties of quadratic twists of cer-
tain elliptic curves and thus use moonshine to provide insight into objects
that are central to current research in number theory.

1.2 Weight 3
2 moonshine for Th

While number theory’s contribution to moonshine is ubiquitous and ir-
refutable, O’Nan moonshine is one of the first instances where we see moon-
shine’s direct contribution to number theory. Such a role-reversal is our pri-
mary motivation for this work.

In this dissertation, we begin by proving the existence of a family of infinite-
dimensional graded Th-modules whose McKay–Thompson series are weight
3
2

modular forms that satisfy certain properties (cf. Theorem 3.1.2). The
techniques we use to prove this are similar to ones used in Griffin and
Mertens’ work [Griffin and Mertens 2016] to prove the Thompson moon-
shine conjecture [Harvey and Rayhaun 2015]. (These techniques were first
suggested by Thompson, and subsequently used by Atkin, Fong and Smith
[Fong 1980; Smith 1985] to prove monstrous moonshine abstractly.) On
the other hand, our McKay–Thompson series are weight 3

2
modular forms

(in contrast to the weight 1
2

forms of [Harvey and Rayhaun 2015]) and the
role played by theta functions in their paper is taken up by weight 3

2
cusp

forms in ours. The involvement of weight 3
2

cusp forms allows us to employ
an approach similar to Duncan, Mertens, and Ono (in [Duncan et al. 2017;
to appear]): We exploit the existing relationship between these forms and
elliptic curves to study geometric invariants of various elliptic curves. This is
the content of Theorems 4.1.1 and 4.1.2.



Our result regarding the existence of a family of Thompson modules is, in
fact, a classification result. We classify all infinite-dimensional graded mod-
ulesW =

⊕
Wn (cf. Theorem 3.1.2) for the Thompson group whose McKay–

Thompson series take the form

Fg(τ) := 6q−5 +
∑
n>0

tr(g|Wn)qn (1.2.1)

and satisfy the following properties (cf. Proposition 3.1.1):

1. For each g ∈ Th, the corresponding McKay–Thompson series Fg(τ) is
a weight 3

2
weakly holomorphic modular form of a specific level and

multiplier system, and satisfies the Kohnen plus space condition.

2. Each McKay–Thompson series Fg(τ) has integer coefficients and is
uniquely determined — up to the addition of certain cusp forms —
by its polar parts at the cusps, which are specified in a uniform way.
(See Section 3.1 for details.)

We note here that properties (1) and (2) listed above ensure that the func-
tions Fg(τ) are, up to the addition of cusp forms, simply Rademacher sums
projected to the Kohnen plus space (see Section 2.1 for background on
Rademacher sums).

The connection between Rademacher sums and moonshine was first pro-
posed in [Duncan and Frenkel 2011], where the McKay–Thompson series
that appear in monstrous moonshine were characterized completely in terms
of Rademacher sums of weight 0. In particular, it was shown that the so-
called genus-zero property of monstrous moonshine is equivalent to the fact
that the McKay–Thompson series of the Monster module coincide (up to a



constant) with corresponding Rademacher sums of weight 0. It was later ar-
gued in [Cheng and Duncan 2014; Cheng et al. 2014a] that the correct ana-
logue of the genus zero property in the case of Umbral (and Mathieu) moon-
shine is that the corresponding McKay–Thompson series must coincide with
the relevant Rademacher sums in each case (see also [Cheng et al. 2018;
Duncan 2019]). Here we take this perspective and hence consider it natural,
from the point of view of moonshine, to ask for our McKay–Thompson series
to satisfy the properties listed above.

To prove our classification result, we first construct spaces of weakly holo-
morphic modular forms of the appropriate level and multiplier for each
g ∈ Th. We use Rademacher sums and eta-quotients to do this. Since we can
explicitly compute the Fourier coefficients of these forms at various cusps, we
can restrict our attention to the subspace of forms that satisfy properties (1)
and (2). For a collection of these forms to be the McKay–Thompson series of
a virtual module (as in Theorem 3.1.2), they must satisfy congruences mod-
ulo certain powers of primes that divide the order of the Thompson group (cf.
Section 3.3). A complete description of these congruences can be obtained
using Thompson’s reformulation (cf. [Smith 1985]) of Brauer’s characteriza-
tion of generalized characters. We prove that our alleged McKay–Thompson
series satisfy the congruences mentioned above in Section 3.3. We note here
that it would be interesting to consider the analogous classification for the
O’Nan group, building on the work already done in [Duncan et al. to ap-
pear]. Once we have proven the existence of the Thompson modules, we
will use their properties to help detect the non-triviality of Mordell–Weil,
Selmer, and Tate–Shafarevich groups of quadratic twists of certain elliptic
curves. See Chapter 4 for details on theorems related to elliptic curves.
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Chapter 2

Background and Notation

2.1 Notation

Throughout this dissertation, we use the notation e(x) = e2πix and q = e(τ)

with τ in the upper half-plane, which we denote H. We also use
(
m
n

)
to

denote the Kronecker symbol [Cohen 1993; Algorithm 1.4.10]. We will use
the ATLAS [Conway et al. 1985] notation for conjugacy classes of Th, and
understand nAB to mean nA ∪ nB.

2.2 Rational Characters.

We define the rational conjugacy class of an element g ∈ Th, denoted by
[g], to be the set of all elements conjugate to an nth power of g where n is
relatively prime to the order of g. (In particular, this contains the conjugacy
class of g as a subset.)

We recall that a rational character of a group G is a character afforded by a
QG-module. By [Curtis and Reiner 1988; Lemma 39.4], if g and h are in the
same rational conjugacy class, and φ : G → Q is a rational character, then



φ(g) = φ(h). We note that if φ is a rational character of Th, then φ(g) is an
algebraic integer lying in Q, so in fact φ(g) ∈ Z.

In this paper, we will consider the irreducible rational characters of Th. To
describe these, we first define a few things. Let G be a finite group and V be
a CG-module. For each field automorphism γ : C→ C, there exists a unique
(up to isomorphism) representation V γ with character χV γ(g) = γχV (g). We
call V γ a Galois-conjugate of V. Then, we have the following proposition.

Proposition 2.2.1. (see [Curtis and Reiner 1988; Theorem 74.5], for ex-
ample.) Let V1(= V ), V2 . . . , Vn be the distinct Galois-conjugates of an ir-
reducible CG-module V. Then there exists a natural number mV such that
mV (V1 ⊕ · · · ⊕ Vn) is the complexification of an irreducible QG-module. Fur-
thermore, each irreducible QG-module W arises in this way from a unique
Galois-class of irreducible CG-modules, i.e.

W ⊗Q C ' mV (V1 ⊕ · · · ⊕ Vn). (2.2.1)

The number mV is called the (rational) Schur index of V. By [Feit 1983;
Section 7], the Schur index is 1 for each irreducible representation of Th.
Thus, we can read off the 39 irreducible rational characters of Th directly
from the character table. We denote these by χ1, χ2, . . . , χ39.

2.3 Mock Modular Forms

To prove the existence of the Thompson modules in Theorem 3.1.2, we first
have to construct weakly holomorphic modular forms of weight 3

2
with the

appropriate level and multiplier. Recall that a weakly holomorphic modu-
lar form is a function on the upper half-plane that transforms like a mod-
ular form, is holomorphic on the upper half-plane and meromorphic at the



cusps. One way of constructing spaces of weakly holomorphic forms is to use
Rademacher sums, which are a priori mock modular forms, and then restrict
to the subspace of forms with vanishing shadow. Here we recall the defi-
nitions and basic facts that we will need from the theory of mock modular
forms and Rademacher sums to describe these functions. We refer the reader
to [Bringmann et al. 2017; Dabholkar et al. 2012; Ono 2009] for more on
mock modular forms.

Let k ∈ 1
2
Z and Γ be a subgroup of SL2(R) containing ±I such that Γ is

commensurable with SL2(Z). For γ = ( a bc d ) , write γτ for aτ+b
cτ+d

, and define
j(γ, τ) = (cτ + d)−2. We call a function ψ : Γ→ C a multiplier system for Γ of
weight k if

ψ(γ1γ2)j(γ1γ2, τ)
k
2 = ψ(γ1)j(γ1, γ2τ)

k
2ψ(γ2)j(γ2, τ)

k
2 (2.3.1)

for each γ1, γ2 ∈ Γ, where we choose the principal branch of the logarithm
to define the exponential x 7→ xs in case s is not an integer.

In this paper we will consider multiplier systems of the form

ψ4N,v,h (γ) := e

(
− vcd

4Nh

)
, (2.3.2)

where γ = ( a bc d ) ∈ Γ0(4N) and v, h are integers with h| gcd(N, 24).

Recall that Γ0(N) is the congruence subgroup

Γ0(N) :=

{
γ =

(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 (mod N)

}
(2.3.3)



of the full modular group SL2(Z). We can now define the (k, ψ)-action of
γ ∈ Γ0(N) on a smooth function f : H→ C by

(f |k,ψγ) (τ) :=

ψ(γ)j(γ, τ)
k
2 f (γτ) if k ∈ Z(

c
d

)
ε2k
d ψ(γ)j(γ, τ)

k
2 f (γτ) if k ∈ 1

2
+ Z,

(2.3.4)

where

εd :=

1 d ≡ 1 (mod 4),

i d ≡ 3 (mod 4).
(2.3.5)

and we assume 4|N if k /∈ Z.

Definition 2.3.1. A harmonic (weak) Maaß form of weight k ∈ 1
2
Z, level N

and multiplier system ψ, is a smooth function f : H → C on the upper half-
plane that satisfies the following properties:

1. It is invariant under the (k, ψ)-action by all γ ∈ Γ0(N) and τ = u+ iv ∈
H.

2. It is annihilated by the weight k hyperbolic Laplacian,

∆kf :=

[
−v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)]
f ≡ 0. (2.3.6)

3. There is a polynomial Pf (q−1) such that f(τ)−Pf (e−2πiτ ) = O(e−cv) for
some c > 0 as v →∞. Analogous growth conditions are required at all
cusps of Γ0(N).

We denote the space of harmonic Maaß forms of weight k, level N, and
multiplier ψ by Hk(Γ0(N), ψ), and we omit the multiplier if it is trivial.

Bruinier and Funke first introduced harmonic Maaß forms in [Bruinier and
Funke 2004]. We are going to need the following two results from their



paper.

Lemma 2.3.2. [Bruinier and Funke 2004; equations (3.2a) and (3.2b)] Let
f ∈ Hk(Γ0(N), ψ) be a harmonic Maaß form of weight k 6= 1 such that
ψ(( 1 1

0 1 )) = 1. Then there is a canonical splitting

f(τ) = f+(τ) + f−(τ), (2.3.7)

where for some m0 ∈ Z we have the holomorphic part,

f+(τ) :=
∞∑

n=m0

c+
f (n)qn, (2.3.8)

and the non-holomorphic part,

f−(τ) :=
∞∑
n=1

c−f (n)nk−1Γ(1− k; 4πnv)q−n. (2.3.9)

Here Γ(α;x) denotes the upper incomplete Gamma function.

We call the holomorphic part of a harmonic Maaß form a mock modular form.
Let M !

k(Γ0(N), ψ) denote the space of weakly holomorphic modular forms of
weight k, level N, and multiplier system ψ. Then we have the following
proposition.

Proposition 2.3.3. (See [Bruinier and Funke 2004; Proposition 3.2]) The
operator

ξk : Hk(Γ0(N), ψ)→M2−k
(
(Γ0(N), ψ

)
, f 7→ ξkf := 2ivk

∂f

∂τ
(2.3.10)



is well-defined and surjective with kernel M !
k(Γ0(N), ψ). Moreover, we have

that

(ξkf)(τ) = −(4π)1−k
∞∑
n=1

c−f (n)qn (2.3.11)

and we call ξkf the shadow of (the holomorphic part of) f .

Thus, in particular, a mock modular form is a weakly holomorphic modular
form if it has a vanishing shadow. We will construct the desired space of
weakly holomorphic forms by first constructing mock modular forms of the
appropriate level and weight and then showing that they have vanishing
shadows.

2.4 Rademacher sums

To construct the relevant mock modular forms for the proof of Theo-
rem 3.1.2, we need to recall some facts about Rademacher sums and
Rademacher series. See [Cheng and Duncan 2012; 2014; Duncan and
Frenkel 2011] for more details.

Let Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z} denote the stabilizer of ∞ in Γ0(N). Then one

can define the Rademacher sum of weight k ≥ 1, level N , multiplier system
ψ and index µ, by

R
[µ]
k,N,ψ(τ) := lim

K→∞

∑
γ∈Γ∞\ΓK,K2 (N)

qµ|k,ψγ (2.4.1)

where

ΓK,K2(N) :=
{

( a bc d ) ∈ Γ0(N) : |c| < K and |d| < K2
}

(2.4.2)

and µ ∈ Z+−i
2π

log (ψ ( 1 1
0 1 )).



When convergent, Rademacher sums define mock modular forms of level N,
weight k, and multiplier system ψ. We will use the following important facts
from the theory of Rademacher sums, which we condense in one lemma.

Lemma 2.4.1. (See [Duncan et al. to appear; Theorem 2.5], for example.)
Let µ ≤ 0. Assuming locally uniform convergence, the Rademacher sum
R

[µ]
k,4N,ψ(τ) for k ≥ 1 defines a mock modular form of weight k ∈ Z + 1

2
,

for Γ0(4N) and multiplier ψ whose shadow is given by a constant multiple
of the Rademacher sum R

[−µ]

2−k,4N,ψ(τ). The completion of R[µ]
k,4N,ψ(τ) to a har-

monic Maaß form has a pole of order µ at the cusp ∞ and vanishes at all
other cusps.

In this paper, we will be looking at Rademacher sums of weight 3
2

for Γ0(4N)

with multiplier ψ4N,v,h and index µ < 0. In this particular case, it has been
proven in [Cheng and Duncan 2012] that the sums converge locally uni-
formly and define holomorphic functions on H.

2.5 Kohnen Plus Space Condition

One of the properties that we want our candidate McKay–Thompson series
to satisfy is to lie in Kohnen’s plus space. Let Sk(Γ0(N)) denote the space of
weight k cusp forms for Γ0(N). Kohnen’s plus space was first introduced by
Kohnen (see [Kohnen 1980; 1982; 1985]) as the subspace of Sk+ 1

2
(Γ0(4N))

which consists of all forms whose Fourier coefficients are supported on ex-
ponents n with n ≡ 0, (−1)k (mod 4). We extend this idea to all modular
forms and harmonic Maaß forms as follows: We say that a function f in
Hk+ 1

2
(Γ0(4N)) (resp. in M !

k+ 1
2

(Γ0(4N))) satisfies the Kohnen plus space con-
dition if the Fourier coefficients of f are supported on exponents n with



n ≡ 0, (−1)k (mod 4). We denote the space of such forms H+
k+ 1

2

(Γ0(4N))

(resp. M+,!

k+ 1
2

(Γ0(4N))).

For odd N , there is a natural projection operator | pr : Sk+ 1
2
(Γ0(4N)) →

S+
k+ 1

2

(Γ0(4N)) given in terms of slash operators which extends to spaces of
weakly holomorphic modular forms and harmonic Maaß forms. Let f ∈
M !,+

k+ 1
2

(Γ0(4N)), where N is an odd integer. Then the projection operator acts
on f in the following way [Kohnen 1985] (see also, [Griffin and Mertens
2016])

(f | pr)(τ) = (−1)b
k+1
2
c 1

3
√

2

2∑
v=−1

(
f |
(

4(1+Nv) 1
8Nv 4

))
(τ) +

1

3
f(τ). (2.5.1)

The action of this projection operator on principal parts of harmonic Maaß
forms is described in the following lemma (see [Griffin and Mertens 2016;
Lemma 2.9, 2.10] and [Duncan et al. to appear; Lemma 2.6]).

Lemma 2.5.1. Let N be odd and f ∈ Hk+ 1
2
(Γ0(4N)) for some k ∈ N, such

that

f+(τ) = q−m +
∞∑
n=0

anq
n (2.5.2)

for some m > 0 with −m ≡ 0, (−1)k (mod 4), and suppose that f has a
non-vanishing principal part only at the cusp∞ and is bounded at the other
cusps of Γ0(4N). Then the projection f | pr of f to the plus space has a pole
of order m at∞, a pole of order m

4
either at the cusp 1

N
if m ≡ 0 (mod 4) or

at the cusp 1
2N

if −m ≡ (−1)k (mod 4) and is bounded at all other cusps.

For even N, we have the following lemma for the Rademacher sums that we
consider in this paper.



Lemma 2.5.2. For even N, the Rademacher sum R
[−5]
3
2
,4N,ψ

(τ) satisfies the
Kohnen plus space condition.

Proof. This is an immediate consequence of Lemma 2.10 of [Griffin and
Mertens 2016].

For even N, we define the projection operator |pr to be the following sieving
operator: Let f(τ) =

∑∞
n=n0

c(n)qn be modular of weight k + 1
2

where k ∈ N,
and level 4N, where N is even, then we define

f | pr =
∞∑

n=n0

n≡0,(−1)k (mod 4)

c(n)qn. (2.5.3)

By Lemma 2.5.2, we have R[−5]
3
2
,4N,ψ

(τ)| pr = R
[−5]
3
2
,4N,ψ

(τ) if N is even.

2.6 Eta-Quotients

For the rational conjugacy classes [g] ∈ {21A, 30AB}, it is convenient to use
eta-quotients instead of Rademacher sums.

Recall that an eta-quotient is defined to be a function of the form

f(τ) =
∏
δ|N

η(δτ)rδ , (2.6.1)

where rδ ∈ Z and η(τ) := q
1
24

∏∞
n=1(1 − qn) is the Dedekind eta function.

As a consequence of the product definition for η(τ), any eta-quotient is non-
vanishing on H. We will need the following lemma from [Rouse and Webb
2015] to construct eta-quotients which vanish only at a specific cusp.



Lemma 2.6.1. ([Rouse and Webb 2015; Lemma 14]) Let N ∈ N, then for
each divisor d of N , there exists kd ∈ N and a corresponding eta-quotient
Ed,N(τ) ∈Mkd(Γ0(N)) such that Ed,N vanishes only at the cusp c

d
.

The proof of Lemma 2.6.1 is constructive, and MAGMA [Bosma et al. 1997]
code implementing it can be found at http://users.wfu.edu/rouseja/
eta/. We write EN(τ) for the holomorphic eta-quotient EN,N(τ) that is pro-
duced by this code. In Section 3.1.2 we will use the explicit construction of
eta-quotients EN(τ) to construct weakly holomorphic modular forms fwhg (τ)

for [g] ∈ {21A, 30AB}.

For completeness, we recall here the modular transformation law of the
Dedekind eta-function,

η

(
az + b

cz + d

)
= e

(
a+ d

24c
+
s(−d, c)

2
+

3

8

)
(cz + d)

1
2η(z). (2.6.2)

Here, γ =

(
a b

c d

)
∈ SL2(Z) and s(d, c) is the Dedekind sum,

s(d, c) =
c−1∑
r=1

r

c

(
dr

c
−
⌊
dr

c

⌋
− 1

2

)
. (2.6.3)

Using eq. (2.6.2), we can explicitly compute Fourier coefficients of
(f |k,ψγ) (τ) whenever f is an eta-quotient, γ ∈ Γ0(N) and ψ is a multiplier
system of weight k and level N.

http://users.wfu.edu/rouseja/eta/
http://users.wfu.edu/rouseja/eta/
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Chapter 3

Moonshine for Thompson’s
sporadic simple group

In this chapter, we will state and prove the first main result of this thesis.
We will characterize all infinite-dimensional graded modules for the Thomp-
son group whose graded traces are certain weight 3/2 weakly holomorphic
modular forms satisfying special properties. This characterization serves as
an example of moonshine for the Thompson group.

3.1 McKay–Thompson Series

To state our main theorem of this section, we associate to each rational con-
jugacy class [g] of the Thompson group Th, the following data:

1. Integers vg and hg as specified in Table A.1.1. We use these to define
the character ψg := ψ4|g|,vg ,hg (cf. Equation (2.3.2)), where |g| denotes
the order of g in Th.

2. The space of cusp forms Sg := S+
3
2

(Γ0(4|g|), ψg) of weight 3
2

in the plus-
space which transform under Γ0 (4|g|) with character ψg. We define



dg to be the dimension of this space and let fg be the dg-tuple fg :=

(f
(1)
g , . . . , f

(dg)
g ) where f

(i)
g is the ith element of the canonical basis of

Sg. A list of f (i)
g ’s can be found in Table A.3.1.

3. For each f (i)
g defined as above, we let n(i)

g and m(i)
g be the integers listed

in Table A.3.2. We define ng to be the dg-tuple ng := (n
(1)
g , . . . , n

(dg)
g ),

and define Mg to be the dg × dg diagonal matrix with entries given by
(m

(1)
g , . . . ,m

(dg)
g ).

4. Finally, to each rational conjugacy class [g] of Th, we associate integers
ag(n) for each n > 0, where n ≡ 0, 3 (mod 4). For g 6∈ {21A, 30AB}, the
integers ag(n) are given by Equation (3.1.8). For g = 21A, we define
a21A(n) to be the Fourier coefficients of the unique modular form fwh21A

in M+,!
3
2

(Γ0(84), ψ21) whose Fourier expansion begins 6q−5− 2q4 + 4q7−
8q8 +O(q11). Similarly, we define a30AB(n) by setting

fwh30AB = 6q−5 +
∞∑
n>0

n≡0,3 (mod 4)

a30AB(n)qn (3.1.1)

where fwh30AB ∈ M+,!
3
2

(Γ0(120), ψ30) is the unique form with the Fourier

expansion 6q−5 + 3q3 + 3q8− 3q11 +O(q12). We will prove the existence
of fwh21A and fwh30AB in Lemma 3.1.4.

For each rational conjugacy class [g] we define Λg to be the set of all dg-tuples
λg := (λ

(1)
g , . . . , λ

(dg)
g ) ∈ Zdg and obtain the following proposition.

Proposition 3.1.1. Fix a rational conjugacy class [g] in Th. Then for each
λg ∈ Λg, the function

Fλ
g (τ) := 6q−5 +

∑
0<n

ag(n)qn + (λgMg + ng) · fg(τ) (3.1.2)



is a weakly holomorphic modular form that satisfies the following properties.

(a) It lies in M+,!
3
2

(Γ0(4|g|), ψg), i.e., Fλ
g (τ) has weight 3

2
, level 4|g| with char-

acter ψg, and satisfies the Kohnen plus space condition.

(b) It has a pole of order 5 at the cusp∞, a pole of order 5
4

at the cusp 1
2|g| if

|g| is odd, and vanishes at all other cusps.

(c) The Fourier coefficients of Fλ
g (τ) are integers.

Note that our multiplier system ψg is conjugate to the one used by [Griffin
and Mertens 2016] and [Harvey and Rayhaun 2015]. This is necessary for
Theorem 3.1.2 to be true, and is not unexpected since our functions are
weight 3

2
as opposed to the weight 1

2
forms in [Griffin and Mertens 2016]

and [Harvey and Rayhaun 2015].

We will prove Proposition 3.1.1 by constructing specific weakly holomorphic
forms fwhg (τ) = 6q−5 +

∑
0<n ag(n) ∈ M+,!

3
2

(Γ0(4|g|), ψg) using the theory of
Rademacher sums and eta-quotients. We will see from the explicit construc-
tion that each fwhg (τ) already satisfies properties (a) − (c) listed in Propo-
sition 3.1.1 even without the addition of any cusp forms. We need to add
the cusp forms fg(τ) not for Proposition 3.1.1, but instead for the following
theorem.

Theorem 3.1.2. Assume the above notation and let Λ be the set of functions
{λ : g 7→ λg ∈ Λg}. Then, for each λ ∈ Λ, there exists an infinite-dimensional
graded virtual Th-module

W λ :=
⊕
n>0

n≡0,3 (mod 4)

W λ
n (3.1.3)



such that for each rational conjugacy class [g] of Th, the corresponding
McKay–Thompson series,

6q−5 +
∑
n>0

n≡0,3 (mod 4)

tr
(
g|W λ

n

)
qn (3.1.4)

is the specific weakly holomorphic modular form Fλ
g (τ) ∈ M+,!

3
2

(Γ0(4|g|), ψg)
described in Proposition 3.1.1. Furthermore, for every infinite-dimensional
graded virtual Th-module W =

⊕
n>0Wn for which the McKay–Thompson

series,
Fg(τ) = 6q−5 +

∑
n>0

n≡0,3 (mod 4)

tr (g|Wn) qn (3.1.5)

satisfies the properties listed in Proposition 3.1.1, there exists a λ ∈ Λ for
which W = W λ described as above.

We will now construct the relevant spaces of modular forms required for the
proof of Proposition 3.1.1.

3.1.1 Using Rademacher Sums

For each rational conjugacy class [g] /∈ {21A, 30AB}, consider the function

fwhg (τ) = 6R
[−5],+
3
2
,4|g|,ψg

(τ) := 6
(
R

[−5]
3
2
,4|g|,ψg

| pr
)

(τ) (3.1.6)

where | pr is the projection onto the Kohnen plus-space (cf. Section 2.5).
Then by Lemma 2.4.1, Lemma 2.5.1 and Lemma 2.5.2, each fwhg (τ) is a
mock modular form in the plus-space of weight 3

2
, level |g|, and multiplier

ψg, has a pole of order 5 at the cusp at infinity, a pole of order 5
4

at the cusp
1

2|g| if |g| is odd (forced by the projection to the plus-space, cf. Lemma 2.5.1),
and vanishes at all other cusps. The only thing left to prove here is that



each fwhg (τ) is, in fact, weakly holomorphic (i.e., has vanishing shadow, cf.
Proposition 2.3.3).

Lemma 3.1.3. For each rational conjugacy class [g] /∈ {21A, 30AB} of the
Thompson group, the function fwhg (τ) (defined in eq. (3.1.6)) is in fact a
weakly holomorphic modular form, and has Fourier expansion given by

fwhg (τ) = 6q−5 +
∞∑
n>0

n≡0,3 (mod 4)

ag(n)qn, (3.1.7)

where for N = |g|, we have

ag(n) :=
−3π

N

(
−n
5

) 1
4
∞∑
c=1

1 + δodd(Nc)

c
K 3

2
,ψ(−5, n, 4Nc)I 1

2

(
π
√

5n

Nc

)
.

(3.1.8)

Here, I 1
2

is the modified Bessel function of the first kind of order 1
2
,

δodd(k) :=

1 k odd,

0 k even,
(3.1.9)

and K 3
2
,ψ is the twisted Kloosterman sum

K 3
2
,ψ(m,n, c) :=

∑
d (mod c)

ψ (( ∗ ∗c d ))
( c
d

)
ε3
de

(
md+ nd

c

)
. (3.1.10)

The sum here runs over primitive residue classes modulo c, and d̄ denotes
the multiplicative inverse of d modulo c.



Proof. We have already established that each fwhg (τ) is a mock modular form
of weight 3

2
for the group Γ0(4|g|, ψg) and by Proposition 2.3.3,

ξ 3
2
(fwhg ) ∈ S 1

2
(Γ0(4|g|), ψg) ⊂ S 1

2
(Γ0(4|g|hg)), (3.1.11)

where S 1
2
(Γ0(4|g|hg)) is the (usually) larger space whose dimension can be

computed using the built-in functions for spaces of modular forms in for
example MAGMA [Bosma et al. 1997]. In our case, it turns out to be zero-
dimensional for all g ∈ Th. Thus, each fwhg (τ) is in fact weakly holomor-
phic. Computing the coefficients of Rademacher sums in terms of Kloost-
erman sums and Bessel functions is a standard computation, see for ex-
ample [Cheng and Duncan 2014] (or Proposition 2.7 in [Duncan et al. to
appear].)

3.1.2 Using Eta-Quotients.

For [g] ∈ {21A, 30AB}, we will use the eta-quotients E|g|(τ) in Lemma 2.6.1
to compute spaces of weakly holomorphic forms of the desired weight and
level. The main result of this section is the following lemma.

Lemma 3.1.4. For m ∈ {21, 30}, there exists a weakly holomorphic modular
form with integer Fourier coefficients in M !,+

3
2

(Γ0(4m,ψmA)) which has a pole

of order 5 at ∞, a pole of order 5
4

at the cusp 1
42

if m = 21, and vanishes at
all other cusps.

Note that if Lemma 3.1.4 is true, such a form satisfies all properties of Propo-
sition 3.1.1, and we can thus define fwh21A(τ) (resp. fwh30AB(τ)) to be the unique
such form with Fourier expansion 6q−5 − 2q4 + 4q7 − 8q8 + O(q11) (resp.
6q−5 + 3q3 + 3q8 − 3q11 +O(q12))



Remark. We could have written an analogous statement for each ratio-
nal conjugacy class [g] in the Thompson group and forgone the discussion
about Rademacher sums completely. This would not affect the proof of The-
orem 3.1.2 at all. However, we need an expression for fwhg (τ) for certain
classes [g] 6∈ {21A, 30B} in terms of Rademacher sums for the application to
elliptic curves. In particular, such expressions for g ∈ {14A, 19A} play key
roles in the proofs of Theorems 4.1.1 and 4.1.2.

Proof of Lemma 3.1.4. By Lemma 2.6.1, for each N > 0 we can construct an
eta-quotient EN(τ) that vanishes only at the cusp ∞. We use N = 21 and
N = 30 to get eta-quotients:

E21(τ) =
η(τ)η(21τ)21

η(3τ)3η(7τ)7
and E30(τ) =

η(2τ)2η(3τ)3η(5τ)5η(30τ)30

η(τ)η(6τ)6η(10τ)10η(15τ)15

(3.1.12)
of weight 6 and 4, respectively. Now, consider the cusp form space
S 15

2
(Γ0(84), ψ21A), and suppose for now that we can compute a basis for this

space explicitly. If so, we can divide each element of the basis by E21(4τ) to
get a generating set B21 of forms in M !

3
2

(Γ0(84), ψ21A) whose only (possible)
pole is at the cusp ∞. Then, we apply the projection operator to each ele-
ment of B21 to get a generating set of forms in M !,+

3
2

(Γ0(84), ψ21A) that are

holomorphic away from the cusps at∞ and 1
42

. This generating set turns out
to be non-empty.

We can now construct fwh21A(τ) as a suitable linear combination of ele-
ments of this space determined completely by its Fourier expansion 6q−5 −
2q4 + 4q7 − 8q8 + O(q11). The same argument works for fwh30AB(τ) if we
start with S 11

2
(Γ0(120), ψ30AB) instead. Here again, the set of forms in

M !,+
3
2

(Γ0(120), ψ30AB) which are holomorphic away from the cusp at∞ turns
out to be non-empty.



3.2 Proof of Proposition 3.1.1

We now describe how to compute the bases for S 15
2

(Γ0(84), ψ21A) and
S 11

2
(Γ0(120), ψ30AB) in some detail. We will essentially follow the method

described in Proposition 3.1 of [Griffin and Mertens 2016]. Let (m, k) ∈
{(21, 15

2
), (30, 11

2
)}. Let f ∈ Sk(Γ0(4m)), ψmA) and let

ϑ(τ) :=
∑
n∈Z

qn
2 ∈M+,!

1
2

(Γ0(4)). (3.2.1)

Then fϑ lies in Mk+ 1
2
(Γ0(4m), ψmA) ⊂ Mk+ 1

2
(Γ0(4mhg)). Using programs

(available at http://users.wfu.edu/rouseja/eta/) written by Rouse and
Webb one can verify that the space Mk+ 1

2
(Γ0(12m)) is generated by eta quo-

tients (hg = 3, for both values of m). Since we can explicitly compute
Fourier expansions of (g|kγ)(τ) for any eta-quotient g(τ) and γ ∈ SL2(Z)

(cf. Section 2.6), we can thus compute a basis for Mk+ 1
2
(Γ0(4m), ψmA) and

hence for Sk(Γ0(4m)), ψmA). Alternatively, we can also compute a basis for
Mk+ 1

2
(Γ0(4m), ψmA) using in-built functions in PARI/GP [PAR 2019]. This

concludes the proof of Lemma 3.1.4.

We now have an explicit description of fwhg (τ) for each rational conjugacy
class [g]. The next steps in the proof are showing that each fwhg (τ) (and thus
each Fλ

g (τ)) satisfies all properties listed in Proposition 3.1.1 (we do this in
Section 3.2.1), and that the only cusp forms we can add for Theorem 3.1.2
to be true are appropriate integer multiples of the elements of Sg for each
g ∈ Th, respectively (cf. Proposition 3.1.1). The latter will follow from our
work in Section 3.3.

http://users.wfu.edu/rouseja/eta/


3.2.1 Cusp forms

We begin by noting that the weakly holomorphic forms fwhg (τ) described in
Sections 3.1.1 and 3.1.2 satisfy the properties (a) − (c) listed in Proposi-
tion 3.1.1. Also, said properties uniquely determine a weakly holomorphic
form up to cusp forms [Duncan et al. to appear; Lemma 2.4]. Thus to spec-
ify the functions Fλ

g (τ) completely we have to compute the cusp form spaces
S+

3
2

(Γ0(4|g|), ψg) for each [g] in Th.

Lemma 3.2.1. For each rational conjugacy class [g] of Th, the corresponding
cusp form space Sg is spanned by the cusp forms given in Table A.3.1.

Proof. We use the same method as in the proof of Lemma 3.1.4 to compute
the cusp form spaces. Let f ∈ S+

3
2

(4|g|, ψg) be any cusp form. Then fϑ

lies in M2(4|g|, ψg) ⊂ M2(4|g|hg), where the larger space is spanned by eta
quotients for each [g]. This can be verified using MAGMA code written by Rouse
and Webb [Rouse and Webb 2015]. We can then use the modular properties
of the eta-quotients and the projection onto the plus-space to determine a
basis for M2(4|g|, ψg) and hence Sg = S+

3
2

(4|g|, ψg). The space Sg turns out to
be trivial for every

[g] 6∈ {12D, 14A, 18B, 19A, 20A, 21A, 24AB, 24CD, 28A, 30AB, 31AB, 39AB}.
(3.2.2)

The Fourier coefficients given in Table A.3.1 are enough to determine each
f

(i)
g (τ) completely for all other rational conjugacy classes [g].

3.2.2 Integer Coefficients.

The last thing we need to check in order to prove Proposition 3.1.1 is that
the functions

Fλ
g (τ) = fwhg (τ) + (λgMg + ng) · fg(τ) (3.2.3)



constructed in the preceding section have integer coefficients. We will use
Sturm’s theorem [Sturm 1987] for this. Note that each of these functions
lies in M+,!

3
2

(Γ0(4|g|), ψg) ⊂ M+,!
3
2

(Γ0(4|g|hg)), thus if ν(τ) = q5 + O(q8) is a

cusp form with integer coefficients in S+
2k− 3

2

(Γ0(4|g|hg)), then, Fλ
g (τ)ν(τ) lies

in M2k(Γ0(4|g|hg)), so we can apply Sturm’s theorem to it. Thus, Fλ
g (τ) has

integer coefficients if the first k
6
[SL2(Z) : Γ0(4|g|hg)] coefficients of Fλ

g (τ)ν(τ)

are integers. The largest bound we have to check is less than 1200. The
author used PARI/GP [PAR 2019] to do this computation.

This concludes the proof of Proposition 3.1.1.

3.3 Proof of Theorem 3.1.2

To prove Theorem 3.1.2, we have to show that the Fλ
g (τ)’s we described in

Section 3.1 are indeed the McKay–Thompson series of a virtual module of
the Thompson group.

This is equivalent to proving that there exist integers mλ
1(n), ...,mλ

39(n) such
that if Fλ

g (τ) = 6q−5 +
∑

n≥3 α
λ
g (n)qn, then for each n ≥ 3 the Fourier coeffi-

cient αλg (n) can be written in the form,

αλg (n) =
39∑
j=1

mλ
j (n)χj(g), (3.3.1)

where χ1, . . . , χ39 are the irreducible rational characters of Th (See Sec-
tion 2.2 for a definition of rational character). We say that the function
ωλn : Th → C, defined by g 7→ αλg (n), is a virtual rational character of Th if
the above condition is satisfied. Thus, the goal of this section is to prove that
ωλn is a virtual rational character of Th for every n ≥ 3 and choice of λ ∈ Λ.



As explained in [Griffin and Mertens 2016], this is computationally infeasible
to prove directly using only Sturm bounds [Sturm 1987]. However, it can be
reduced to a finite computation using a variant of Thompson’s reformulation
(cf. [Smith 1985]) of Brauer’s characterization of generalized characters.
(For another example of a similar computation, see [Gannon 2016].) To
state the result, we first have to define a few things.

3.3.1 Generalized Characters

For the rest of this section, letG be a finite group and p a fixed prime dividing
the order of G. Let CG denote the set of all rational conjugacy classes of G.
We call [g] ∈ CG p-regular if the order of g is coprime to p. Let Kp denote the
set of all p-regular classes in G whose centralizer in G has order divisible by
p. For a fixed [g] ∈ Kp, we will let α denote the highest power of p dividing
the order of the centralizer of g in G. (This α should not be confused with
the αλg (n) of eq. (3.3.1).)

Let h ∈ G be any element in G and let |h| = n = pkm where k ≥ 0 and
(p,m) = 1. Then we can write h as a product h = ab, where a and b commute
and a has order m. (Both a and b can be expressed as powers of h.) We call
a the p-regular part of h. We note here that if h′ ∈ G is in the same rational
conjugacy class as h, then their corresponding p-regular parts a′ and a are
also in the same rational conjugacy class, i.e if h′ ∈ [h] then a′ ∈ [a]. This
allows us to make the following definition.

Definition 3.3.1. For a fixed p and [g] ∈ Kp as above, the p-regular section
Rp,g of [g] is the set of rational conjugacy classes [h] ∈ CG such that the
p-regular part of h lies in [g].

For G = Th, and for each prime p dividing |G|, Table A.2.1 lists the rational
conjugacy classes [g] in Kp, along with their p-regular section Rp,g and the



highest power α such that pα divides the order of the centralizer CG(g).

For a fixed group G, and prime p dividing |G|, fix a rational conjugacy class
[g] ∈ Kp. Let Z(p) = {a

b
: a, b ∈ Z, p - b} denote the localization of Z at the

prime ideal (p), and let I := pαZ(p). We define m := |Rp,g|, and let Mp,g

denote the set of all m-tuples (l1, l2, . . . , lm) ∈ Z⊕m(p) such that

m∑
i=1

liχ ([h]i) ≡ 0 (mod Im) (3.3.2)

for all irreducible rational characters χ ofG and all rational conjugacy classes
[h]i in Rp,g.

We are now ready to state the following important lemma.

Lemma 3.3.2. Assuming the above notation, an integer-valued class func-
tion c : G → Z of G is a virtual rational character of G if and only if for all
primes p and rational conjugacy classes [g],

m∑
i=1

lic ([h]i) ≡ 0 (mod Im) (3.3.3)

for all (l1, l2, . . . , lm) ∈Mp,g.

Proof. This is a direct application of [Smith 1985; Theorem 1.1].

Lemma 3.3.2 reduces the problem of checking whether the multiplicities are
integral to a p-local computation. We illustrate this with an example.

Example 1. Let p = 19. Then, K19 = {1A} and R19,1A = {1A, 19A}. We have
α = 1, and M19,1A is the set of ordered pairs (x, y) ∈ Z⊕2

(19) such that

xχ(1A) + yχ(19A) ≡ 0 (mod 19) (3.3.4)



for each irreducible rational character χ of the Thompson group. Plugging in
values for χ(1A) and χ(19A), we find that M19,1A = {(x, y) ∈ Z⊕2

(19) | x+ y ≡ 0

(mod 19)}. So in order to prove that ωλn : Th→ C is a virtual rational character
for each λ ∈ Λ and n ∈ Z, we need to check that for each (x, y) ∈M19,1A,

xαλ1A(n) + yαλ19A(n) ≡ 0 (mod 19) (3.3.5)

where Fλ
g (τ) = 6q−5 +

∑
n≥3 α

λ
g (n) (cf. eq. (3.3.1).) Thus, we have to show

that the following congruence is satisfied for every n ∈ N and λ ∈ Λ

αλ1A(n)− αλ19A(n) ≡ 0 (mod 19). (3.3.6)

This is a doubly infinite set of congruences (for each fixed λ ∈ Λ, we have a
congruence for every integer n), but we can get rid of the dependence on λ as
follows: Note that αλ1A(n) is independent of λ since the cusp form space S1A is
empty so we can write a1A(n) for αλ1A(n) (cf. Proposition 3.1.1 for notation).
Also by Proposition 3.1.1, αλ19A(n) = a19A(n)+(m19Aλ19A+n19A)b19A(n) where
b19A(n) is the nth coefficient of f19A(τ) ∈ S19A. From Table A.3.2, m19A = 18

and n19A = 19, so checking eq. (3.3.6) reduces to checking that

a1A(n) = a19A(n) + 18b19A(n) (mod 19) (3.3.7)

for all n ∈ N.

We can do the same thing for every pair (p, [g]) where [g] ∈ Kp, and get a list
of congruences that we need to check in order to show that the function ωλn
is a virtual rational character in every case. An inspection of Table A.3.2 and
Table A.3.1 confirms that we can always get rid of the dependence on λ. This
still isn’t a finite computation because at the moment, we need to check each
congruence for all positive integers n. However, that can be easily resolved



in the following way: Let υ(τ) be the unique cusp form in S+
37
2

(Γ0(4)) whose

Fourier expansion is of the form q5 − 56q8 + O(q9). Then for each [g] and
λ, Fλ

g (τ)υ(τ) is a holomorphic modular form of weight 20 and level |g|hg
so Sturm’s theorem [Sturm 1987] applies. Thus, it suffices to check that
the congruences hold for the first M Fourier coefficients of the holomorphic
modular form where M is the Sturm bound which in the worst case is just
shy of 4000. As before, we used [PAR 2019] to check these.

We conclude this section with another example of this procedure, for clarity.

Example 2. Let p = 3, then K3 = {1A, 2A, 4A, 4B, 5A, 7A, 8A, 8B, 10A, 13A}.
Pick [g] = 1A. Then, α = 10, Rp,g = {1A, 3A, 3B, 3C, 9A, 9B, 9C, 27A, 27BC}
and M3,1A is the set of 9-tuples (y1, y2, . . . , y9) in Z⊕9

(3) such that

y1χ(1A) + y2χ(3A) + · · ·+ y9χ(27BC) ≡ 0 (mod 310)

for each irreducible rational character χ of the Thompson group. As before, in
order to prove that ωλn : Th→ C is a virtual rational character for each λ ∈ Λ

and n ∈ Z, we need to check that for each (y1, . . . , y9) ∈M3,1A we have,

y1α
λ
1A + y2α

λ
3A + · · ·+ y9α

λ
27BC ≡ 0 (mod 310). (3.3.8)

This is easier to manage as a matrix computation. We let X denote the 39 × 9

matrix
X = [χi(h)]0<i≤39,h∈Rp,g ,

and let a := (a1A, a3A, a3B, . . . , a27BC). For each (y1, . . . , y9) ∈M3,1A, we denote
by y the corresponding column vector whose entries are y1, y2, . . . , y9.

Note that for all rational conjugacy classes [g] in R3,1A the corresponding cusp
form space Sg is empty, so we can in fact reduce to checking that a · y ≡ 0

(mod 310) for all y such that Xy ≡ 0 (mod 310). In order to check this, we



first compute a basis for the Z(3)-span of the row vectors of X. We can use the
GAP [GAP] command BaseIntMat to do this computation. It turns out that the
Z(3)-span of the row vectors of X is the same as that of the row vectors of the
following 9× 9 matrix:

M :=



1 1 1 1 1 1 1 1 1

0 9 1944 72 0 45 24 0 15

0 0 2187 0 0 27 0 3 3

0 0 0 81 0 27 0 0 0

0 0 0 0 27 27 0 3 3

0 0 0 0 0 81 9 6 15

0 0 0 0 0 0 27 0 18

0 0 0 0 0 0 0 9 9

0 0 0 0 0 0 0 0 27


. (3.3.9)

We can solve My ≡ 0 (mod 310) for y and then compute a.y modulo 310 to see
that the congruences we need to check are:

a1A − a3A ≡ 0 (mod 32)

a1A − a9A ≡ 0 (mod 33)

7a1A − 8a3A + a3C ≡ 0 (mod 34)

215a1A − 216a3A + a3B ≡ 0 (mod 37)

a1A + 27a3A − a3B − 27a3C − 81a9A + 81a9B ≡ 0 (mod 38)

1214a1A − 1971a3A + a3B + 27a3C + 81a9A − 81a9B + 729a9C ≡ 0 (mod 39)

2591a1A − 594a3A + a3B − 54a3C + 81a9A + 162a9B − 2187a27A ≡ 0 (mod 39)

1214a1A + 216a3A + a3B + 27a3C + 81a9A − 81a9B − 1458a9C + . . .

−2187a27A + 2187a27BC ≡ 0 (mod 310).

(3.3.10)



(Alternatively, we can use GAP to check that any given vec-
tor a is in the aforementioned span, by using the following code:
IsContainedInSpan(MutableBasis(Integers,M),a mod 310).)

As in Example 1, we can use PARI [PAR 2019] to check these congruences up to the
Sturm bound, which in this case comes out to be less than 1100.

We can continue in this manner and check that all multiplicities are integral
and hence for each Fλ

g (τ) as described in Proposition 3.1.1, there exists a
virtual Th-module W λ such that for each [g] in Th,

Fλ
g (τ) = 6q−5 +

∑
n>0

n≡0,3 (mod 4)

tr
(
g|W λ

n

)
qn (3.3.11)

This proves Theorem 3.1.2.
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Chapter 4

Elliptic Curves

4.1 Statements of Theorems

Now that we have proven the existence of the Thompson modules, we use
their properties to help detect the non-triviality of Mordell–Weil, Selmer,
and Tate–Shafarevich groups of quadratic twists of certain elliptic curves (cf.
Theorems 4.1.1 and 4.1.2).

To state our main results, we let

F(τ) = 6(q−5 + 85995q3 − 565760q4 + 52756480q7 − 190356480q8 +O(q11))

(4.1.1)
be the unique weakly holomorphic modular form of weight 3

2
and level 4 in

the plus space whose Fourier expansion is of the form F(τ) = 6q−5 + O(q).

(Note that F(τ) is relevant for us because for each of the graded Th-modules
W =

⊕
n>0Wn described in Theorem 3.1.2, the graded dimension of W is

F(τ).) We denote by
(
m
n

)
the usual Kronecker symbol [Cohen 1993], then

we have the following theorem.



Theorem 4.1.1. Let d < 0 be a fundamental discriminant which satisfies(
d
19

)
= −1. Let E be an elliptic curve of conductor 19, and let Ed denote the

dth quadratic twist of E. Let c(d) denote the coefficient of q−d in the Fourier
expansion of F(τ). If c(d) 6≡ 0 (mod 19), then the Mordell–Weil group Ed(Q)

is finite.

Here, E(Q) denotes the set of Q-rational points on E.We can state a stronger
result for elliptic curves of conductor 14, one which depends on a local ver-
sion of the strong form of Birch and Swinnerton-Dyer Conjecture.

Let E be an elliptic curve over Q, and for each d < 0 a fundamen-
tal discriminant, let Ed denote the dth quadratic twist of E. As we prove
in Theorem 3.1.2, there exists an infinite-dimensional graded Th-module
W =

⊕
n>0Wn whose McKay–Thompson series Fg(τ) satisfy properties (1)

and (2) as above. Then we have the following theorem.

Theorem 4.1.2. Let d < 0 be a fundamental discriminant for which
(
d
7

)
=

−1 and
(
d
2

)
= 1. Let E be an elliptic curve of conductor 14, and let g denote

an element of order 14 in Th. If tr(g|W|d|) 6≡ 0 (mod 49), then the Mordell–
Weil group Ed(Q) is finite and X(Ed)[7] is trivial. If, on the other hand,
tr(g|W|d|) ≡ 0 (mod 49) and tr(g|W4) 6≡ 43 (mod 56), then Sel7(Ed) is non-
trivial, and if LEd(1) is non-zero then so is X(Ed)[7].

This is akin to Theorem 1.4 of [Duncan et al. to appear], and our proof will
follow along similar lines. One notable difference is that there is no depen-
dence on (generalized) class numbers in the corresponding congruences in
our case. We can also write down an analogous statement for elliptic curves
of conductor 19, but the techniques we use to prove Theorem 4.1.2 do not
apply in this case (cf. Theorem 4.5.1), so it is conditional upon the (strong
form of the) Birch and Swinnerton-Dyer Conjecture.



We now describe a sketch of the proof of Theorems 4.1.1 and 4.1.2. Let
p ∈ {7, 19} be the relevant prime in either statement and fix W =

⊕
n>0Wn

to be a virtual Thompson module whose McKay–Thompson series Fg(τ) sat-
isfies the properties listed in Theorem 3.1.2. We then write each Fg(τ) for
[g] ∈ {14A, 19A} as a sum of traces of singular moduli (cf. Section 4.2) and
weight 3

2
cusp forms. This expression combined with the condition on d in

the statement of Theorem 4.1.1 gives us that the congruence in the state-
ment holds if and only if the relevant cusp form coefficient is divisible by
p = 19. Thus, if the congruence in the statement of Theorem 4.1.1 does not
hold, then the cusp form coefficient is not divisible by 19, and we can em-
ploy a corollary (cf. Lemma 4.3.1) of Kohnen’s work [Kohnen 1985] to show
that this means LEd(1) 6= 0. Finally, Kolyvagin’s work shows that Ed(Q) is fi-
nite. This completes the proof of Theorem 4.1.1. For Theorem 4.1.2, we first
consider the case that tr(g14|W|d|) 6≡ 0 (mod 49). The expression for Fg(τ)

in terms of traces of singular moduli and cusp forms implies that the rele-
vant cusp form coefficient is not divisible by p = 7. We can utilize Kohnen’s
work again to conclude that ordp(

L
Ed

(1)

Ω(Ed)
) > 0. At this point, we use work of

Skinner and Urban (cf. Theorem 4.5.1) which connects ordp(
L
Ed

(1)

Ω(Ed)
) to the

non-triviality of the p-Selmer and Tate-Shafarevich groups of Ed to prove
the theorem. A similar argument applies if we assume that tr(g14|W|d|) ≡ 0

(mod 49) and tr(g14|W|4|) 6≡ 43 (mod 49).

The family of Th-modules that we get from Theorem 3.1.2 encodes arith-
metic information about quadratic twists of elliptic curves with conductors
14 and 19. This is the content of Theorems 4.1.1 and 4.1.2. We will prove
these theorems in this section, but first, we have to develop some back-
ground. We recall next some basic notation and facts about traces of singular
moduli, which were studied by Zagier in [Zagier 2002] and have since been
examined extensively.



4.2 Traces of Singular Moduli

Let Q(N)
D be the set of positive definite quadratic forms Q = [a, b, c] := ax2 +

bxy + cy2 of discriminant −D = b2 − 4ac < 0 such that N |a. Then, Γ0(N)

acts on QN
D with finitely many orbits. For Q = [a, b, c] ∈ Q

(N)
D , we denote

by τQ := −b+i
√
D

2a
the unique root of Q(x, 1) in the upper half-plane H. Let

f : H → C be a function invariant under the action of Γ0(N), and n ≡ 0, 3

(mod 4) be a positive integer. Then we can define,

Tr
(N)
D (f ;n) :=

∑
Q∈Q(N)

nD /Γ0(N)

χD(Q)
f(τQ)

ω(N)(Q)
, (4.2.1)

where ω(N)(Q) is the order of the stabilizer of Q in Γ0(N)/{±1} and χD(Q)

is the genus character for positive definite binary quadratic forms whose
discriminants are multiples of D, defined as follows (see for example [Miller
and Pixton 2010]):

χD([a, b, c]) =

0 if (a, b, c,D) > 1(
D
r

)
if (a, b, c,D) = 1 and Q represents r with (r,D) = 1.

(4.2.2)
For N ∈ {14, 19}, let J (N,+) be the normalized Hauptmodul for the group
Γ+

0 (N). (We know this exists because the corresponding modular curve
X

(+)
0 (N) has genus 0. See [Ford et al. 1994], or [Duncan et al. to appear;

Table 5.2].)

Proposition 4.2.1. Let N ∈ {14, 19} and let J (N,+) as above. Then,

R
[−5],+
3
2
,4N

(τ) = q−5 +
−2

3
√

5

∑
n>0

n≡0,3 (mod 4)

Tr
(N)
5 (J (N,+);n)qn (4.2.3)



Proof. This is a direct application of Corollary 1.3 of [Miller and Pixton
2010].

In particular, this means that fwhg (τ) for o(g) = N ∈ {14, 19} is given by

fwhg (τ) = 6q−5 +
∑
0<n

ag(n)qn = 6q−5 − 4√
5

∑
n>0

n≡0,3 (mod 4)

Tr
(N)
5 (J (N,+);n)qn.

(4.2.4)
Writing fwhg (τ) in the above form turns out to be essential for the proofs of
Theorems 4.1.1 and 4.1.2. We give here another key lemma which we will
use in both proofs.

Lemma 4.2.2. Let N ∈ {14, 19} and let d < 0 be a fundamental discriminant
that satisfies the respective conditions of Theorems 4.1.1 and 4.1.2; then

Tr
(N)
5 (f, |d|) = 0 (4.2.5)

for any Γ0(N) invariant function f, and hence, in particular, for f =

J (N,+)(τ).

Proof. For N ∈ {14, 19}, the conditions of the theorems ensure that 5d is not
a square mod 4N, which means that there are no quadratic forms [a, b, c] of
discriminant b2 − 4ac = 5d such that N |a. Thus Q

(N)
|5d| is empty for all such d

and thus
Tr

(N)
5 (f ; |d|) =

∑
Q∈Q(N)

|5d|/Γ0(N)

χ5(Q)
f(τQ)

ω(N)(Q)
= 0 (4.2.6)

for any function f that is Γ0(N) invariant.

We now recall facts about elliptic curves that we will use in order to prove
Theorems 4.1.1 and 4.1.2.



4.3 Background on Elliptic Curves

To prove our main results, we let E be an elliptic curve over Q. For d < 0

a fundamental discriminant, we let Ed denote the dth quadratic twist of E.
We let N denote the conductor, Ω(E) denote the real period and Reg(E)

denote the regulator of E. We refer the reader to standard texts on elliptic
curves, e.g. [Silverman 2009] for the definitions of these invariants. We
let LE(s) denote the L-function associated to E. Then, by the modularity
theorem [Breuil et al. 2001] (see also [Wiles 1995; Taylor and Wiles 1995]),
there exists a unique weight 2 newform GE =

∑∞
n=1 aE(n)qn of level equal

to the conductor of E such that

LE(s) =
∞∑
n=1

aE(n)n−s, (4.3.1)

where the right-hand side extends to a holomorphic function on C [Atkin and
Lehner 1970]. We let gE(τ) =

∑∞
n=3 bE(n)qn ∈ S+

3
2

(Γ0(4N)) be the weight 3
2

cusp form associated to GE under the Shintani lift (see [Hofmann 2017]
for an overview of the Shintani lift). For N ∈ {14, 19} the dimension of
S+

3
2

(Γ0(4N)) is 1, so for an elliptic curve of conductor N, the weight 3
2

cusp
forms gE(τ) defined as above are the same as the cusp form fg(τ) associated
to g ∈ {14A, 19A} in Section 3.1. This is the key fact that we employ in order
to prove Theorems 4.1.1 and 4.1.2.

Let E/Q be an elliptic curve with square-free conductor N, and for each `|N,
let ω` denote the eigenvalue of the newform GE ∈ S2(Γ0(N)) associated to
E and the Atkin–Lehner involution W`.

Then we have the following lemma of Duncan, Mertens, and Ono, [Dun-
can et al. to appear] (based on results due to Agashe [Agashe 2010] and
Kohnen [Kohnen 1985], and the generalization of Kohnen’s work by Ueda



and Yamana [Ueda 1988; Ueda and Yamana 2010]) which connects the p-
divisibility of the cusp form coefficient to LEd(1).

Lemma 4.3.1. (see [Duncan et al. to appear; Lemma 6.5]) Assume the nota-
tion above, and let p ≥ 3 be a prime. Let d < 0 be a fundamental discriminant
satisfying

(
d
`

)
= ω` for each `. Denote by d0 the smallest such discriminant.

Then we have that

ordp

(
LEd(1)

Ω(Ed)

)
= ordp

(
LEd0 (1)

Ω(Ed0)

)
+ ordp

(
bE(|d|)2

)
, (4.3.2)

where Ed denotes the dth quadratic twist of E.

Both our proofs of Theorems 4.1.1 and 4.1.2 depend on the above lemma.
We are now ready to prove Theorem 4.1.1.

4.4 Proof of Theorem 4.1.1

Fix W = W λ to be an infinite-dimensional graded Th-module that satisfies
all the properties listed Theorem 3.1.2. Then, for g an element of order 19
in Th, we can combine Proposition 3.1.1 and Proposition 4.2.1 to get the
following expression for the coefficients of F19A(τ) :

tr(g|Wn) ≡ −4√
5

Tr
(19)
5 (J (19,+);n) + (n19A + λ19Am19A)b19A(n), (4.4.1)

where b19A(n) denotes the nth coefficient of the weight 3
2

cusp form f19A ∈
S19A. Since W is a virtual module for the Thompson group, we know the
following congruence holds for each p|#Th (and in particular for p = 19)
and for all n > 0 (cf. Section 3.3)

dim(Wn) ≡ tr(gp|Wn) (mod p). (4.4.2)



where gp denotes an element of order p. Plugging in the values of ng and mg

from Table A.3.2, we get,

dim(Wn) ≡ −4√
5

Tr
(19)
5 (J (19,+);n) + 18b19A(n) (mod 19). (4.4.3)

Thus for n = |d| where d is a fundamental discriminant that satisfies the
properties of Theorem 4.1.1, we use Lemma 4.2.2 to get:

dim(W|d|) ≡ tr(g19|W|d|) ≡ 18b19A(|d|) (mod 19). (4.4.4)

This shows that the congruence in the statement of our theorem holds if and
only if 19|b19A(|d|), or by Lemma 4.3.1, if and only if

ord19

(
LEd(1)

Ω(Ed)

)
> ord19

(
LEd0 (1)

Ω(Ed0)

)
. (4.4.5)

A quick MAGMA computation for d0 = −4 shows that the right-hand side is
0. Thus, if dim(W|d|) 6≡ 0 (mod 19), then LEd(1) 6≡ 0 (mod 19), and in par-
ticular, LEd(1) 6= 0. By Kolyvagin’s work [Kolyvagin 1989], this means that
Ed(Q) is finite. This completes the proof of Theorem 4.1.1.

4.5 Proof of Theorem 4.1.2

We need to develop some more background before proving Theorem 4.1.2.
For ` prime, we let c`(E) denote the Tamagawa number of E at `, defined as
the finite index

c` = [E(Q`) : E0(Q`)], (4.5.1)

where E0(Q`) is the subgroup of points which have good reduction at `. If
E has good reduction at `, then E(Q`) = E0(Q`) and c` = 1. In particular



for a general elliptic curve defined over Q, we have that c` = 1 for all but
finitely many primes `. The following result of C. Skinner (see also [Skinner
and Urban 2014]) gives a local version of the Birch and Swinnerton-Dyer
Conjecture for certain elliptic curves.

Theorem 4.5.1 ([Skinner 2016], Theorem C). Let E/Q be an elliptic curve
and p ≥ 3 a prime of good ordinary or multiplicative reduction. Assume
that the Gal(Q/Q)-representation E[p] is irreducible and that there exists a
prime p′ 6= p at which E has multiplicative reduction and E[p] ramifies. If
LE(1) 6= 0, then we have that

ordp

(
LE(1)

ΩE

)
= ordp

(
#X(E)

∏
`

c`(E)

)
. (4.5.2)

If LE(1) = 0, then we have Selp(E) 6= {0}.

In order to use Theorem 4.5.1 in our proof of Theorem 4.1.2, we first show
that each elliptic curve E of conductor 14 satisfies the hypotheses of Theo-
rem 4.5.1 in the following lemma.

Lemma 4.5.2. Let d < 0 be a fundamental discriminant for which
(
d
7

)
= −1

and
(
d
2

)
= 1; then for each elliptic curve E of conductor 14 the following are

true:

(a) The dth quadratic twist of E has multiplicative reduction at p ∈ {2, 7};

(b) The Gal(Q/Q)-representation Ed[7] is irreducible; and

(c) Ed[7] ramifies at 2.

Proof. Let E/Q be an elliptic curve given by a minimal Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (4.5.3)



and define the discriminant of E by the equation

∆(E) := −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6, (4.5.4)

where b2 := a2
1 + 4a4, b4 := 2a4 + a1a3, b6 := a2

3 + 4a6 and b8 := a2
1a6 +

4a2a6 − a1a3a4 + a2a
2
3 − a2

4. Then E has multiplicative reduction at p if and
only if p divides the discriminant of E but not the quantity c4(E) := (a2

1 +

4a4)2 − 24(2a4 + a1a3). For each elliptic curve of conductor 14, we have that
a1 = a3 = 1, a2 = 0 and a3 ∈ {−2731,−171,−36,−11,−1, 4} (cf. [The
LMFDB Collaboration 2013; Elliptic Curve 14.a]). Thus, for each elliptic
curve E of conductor 14, E has multiplicative reduction at p ∈ {2, 7}. Since
twisting by a fundamental discriminant d only changes ∆(E) and c4(E) up
to a power of d, and d is coprime to 14, this proves part (a).

Part (b) follows from a lemma of Serre [Serre 1971] which shows that the
Galois representation Ed[7] is surjective and hence irreducible. Finally, part
(c) follows from part (b) and (the contrapositive of) Theorem 1.1 of [Ribet
1990].

We are now ready to prove Theorem 4.1.2.

Proof of Theorem 1.3. Fix W = W λ to be an infinite-dimensional graded Th-
module that satisfies all the properties listed Theorem 3.1.2. Let g denote an
element of order 14 in Th. As before, we can combine Proposition 3.1.1 and
Proposition 4.2.1 to get the following expression for the trace of g on W :

tr(g|Wn) =
−4√

5
Tr

(14)
5 (J (14,+);n) + (n14A + λ

(1)
14Am14A)b14A(n). (4.5.5)

Here, b14A(n) denotes the nth coefficient of the weight 3
2

cusp form f14A ∈
S14A. By Lemma 4.2.2, we get that for n = |d| where d is a fundamental

http://www.lmfdb.org/EllipticCurve/Q/14/a


discriminant that satisfies the properties of Theorem 4.1.2, the first term on
the right-hand side of the above equation is 0. Plugging in values of n(1)

g and
m

(1)
g from Table A.3.2, we get the following congruence

tr(g|W|d|) =
(

42 + 56λ
(1)
14A

)
b14A(|d|) (mod 49). (4.5.6)

Suppose first that tr(g|W|d|) 6≡ 0 (mod 49). Then, b14A(|d|) 6≡ 0 (mod 7). By
Lemma 4.3.1, this means that

ord7

(
LEd(1)

Ω(Ed)

)
= ord7

(
LEd0 (1)

Ω(Ed0)

)
. (4.5.7)

As before we can use MAGMA to check that the right-hand side of the above
equation is 0 for each E of conductor 14. Thus, if tr(g|W|d|) 6≡ 0 (mod 49)

then ord7

(
L
Ed

(1)

Ω(Ed)

)
= 0 and in particular, LEd(1) 6= 0. By Lemma 4.5.2 and

Theorem 4.5.1, we have that

ord7

(
#X(Ed)

∏
`

c`(E
d)

)
= 0. (4.5.8)

Thus, X(Ed)[7] is trivial. Furthermore, the Mordell–Weil group Ed(Q) is
finite [Kolyvagin 1989].

We now consider the case that tr(g|W|d|) ≡ 0 (mod 49) and assume that
tr(g|W4) 6≡ 43 (mod 49).We can once again use Proposition 3.1.1 and Propo-
sition 4.2.1 to write

tr(g|W4) =
−4√

5
Tr

(14)
5 (J (14,+); 4)+

(
42 + 56λ

(1)
14A

)
b14A(4) = −6+(42+56λ

(1)
14A).

(4.5.9)
Our assumption on tr(g|W4) gives us the congruence (42 + 56λ

(1)
14A) 6≡ 0

(mod 49) and hence by Equation (4.5.6) we get that 7 | b14A(|d|). By



Lemma 4.3.1 we get

ord7

(
LEd(1)

Ω(Ed)

)
> 0. (4.5.10)

First suppose that LEd(1) = 0, then Selp(E) 6= 0 by Theorem 4.5.1. So we can
reduce to the case where LEd(1) 6= 0. In that case, again by Theorem 4.5.1,
we get,

ord7

(
#X(Ed)

∏
`

c`(E
d)

)
> 0. (4.5.11)

Thus the only thing left to check is that 7 does not divide any of the Tam-
agawa numbers c`(Ed) for any choice of E and d. By Theorem VII.6.1 in
Silverman I [Silverman 2009], c`(Ed) ≤ 4 for most of these cases. The only
other possibility is when Ed has split multiplicative reduction at `, in which
case, c`(Ed) = ord`(∆(Ed)) = ord`(|d|6∆(E))). The conditions on d in the
theorem imply that |d| is square-free and coprime to ∆(E) for all E of con-
ductor 14. Thus, if 7 | c`(Ed), for some ` then ` lies in {2, 7} and 7 divides
ord`(∆(E)) which is independent of d. A quick check reveals that this is never
the case for an elliptic curve of conductor 14.
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Tables

A.1 Multipliers

[g] 1A 2A 3A 3B 3C 4A 4B 5A 6A 6B
v, h 0,1 0,1 1,3 0,1 2,3 0,1 1,2 0,1 1,3 2,3

[g] 6C 7A 8A 8B 9A 9B 9C 10A 12AB 12 C
v, h 0,1 0,1 1,2 1,4 0,1 0,1 1,3 0,1 1,3 0,1

[g] 12D 13A 14A 15AB 18A 18B 19A 20A 21A 24AB
v, h 1,6 0,1 0,1 1,3 0,1 2,3 0,1 1,2 1,3 1,6

[g] 24CD 27A 27BC 28A 30AB 31AB 36A 36BC 39AB
v, h 1,12 1,3 1,3 0,1 2,3 0,1 0,1 0,1 1,3

TABLE A.1.1: Multipliers for each rational conjugacy class.
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A.3 Cusp forms

f12D(q) =
q4 − 2q8 + 2q20 − 2q40 − 2q52 + 4q56 − 2q68 + 4q88 − q100 − 6q116 +

2q136 + 4q148 +O(q150)

f14A(q) =

q4 − q7 − q8 + 2q15 − q16 + q28 + q32 − q36 − 2q39 + q56 − 2q60 + q63 +

q64 − 2q71 + 3q72 + 2q79 − 2q84 − 2q88 + 2q95 − q100 − q112 + 2q119 +

2q120 − 4q127 − q128 − 4q135 + q144 + 4q148 +O(q151)

f18B(q) =
q4 + q7 − q16 − q28 − 3q31 + q40 − 2q52 + q55 + q64 + 2q79 + q88 + 2q100 +

2q103 + q112 + 3q124 − q127 − 4q136 − 2q148 +O(q150)

f19A(q) =

q4 − q7 − q11 + q19 + q20 − 2q24 + q28 + q35 − q36 + 2q39 − q43 − q44 +

q47 − q55 + q63 − 2q64 − q68 + q76 − q95 + 3q99 + 2q100 − 2q111 + 2q112 −
2q115 − q119 + 2q120 − 2q123 + q131 − 3q139 + q140 +O(q151)

f
(1)
20A(q) = q4− q20− 2q24− q36 +2q40 +2q56 +2q84− q100− 2q120− 4q136 +O(q151)

f
(2)
20A(q) = q7 − q15 − q23 + q47 + q63 − 2q87 + 2q95 + q103 − 3q127 − 2q143 +O(q151)

f
(1)
21A(q) =

q4− q11− q16 + q23− q28− q32 + q35 + q44 + q56 + q64 +2q67− q71−2q79−
2q91 − q92 + q100 − q107 + q112 − q116 − q119 + 2q127 − 2q148 +O(q150)



f
(2)
21A(q) =

q7 + q8 − q11 − 2q16 − q23 + q32 + 2q43 + q56 − q71 − 2q88 − 2q91 − 2q92 +

2q95 + 4q100 + q107 − 2q116 − 4q127 + q128 − 2q140 +O(q150)

f24AB(q) =
q4 − q8 − q20 + 2q40 − 2q52 + 2q56 + q68 − 4q88 − q100 + 3q116 − 2q136 +

4q148 +O(q150)

f
(1)
24CD(q) = q4 − q100 +O(q150)

f
(2)
24CD(q) = q7− 2q15− q31 +4q39− 2q63− 3q79 +2q87 + q103 + q127− 2q135 +O(q150)

f
(3)
24CD(q) = q16 + q20 − 2q32 − q52 + q68 + 2q80 − 3q116 + 2q148 +O(q150)

f
(1)
28A(q) =

q4−q8−q16+q28+q32−q36+q56−2q60+q64+3q72−2q84−2q88−q100−
q112+2q120−q128+q144+4q148+2q156−2q168−4q184+q196−q200+O(q201)

f
(2)
28A(q) = q7−2q15+2q39−q63+2q71−2q79−2q95−2q119+4q127+4q135+O(q151)

f
(1)
30AB(q) =

q4 + 2q15 − q16 + 2q24 − 2q36 − 4q39 − q40 + 2q55 − 2q60 + q64 − 4q79 +

4q84 − 2q96 − q100 + 4q111 − 4q120 + 2q135 + 2q136 + 2q144 +O(q150)

f
(2)
30AB(q) =

q7 + q8 + q20 − q28 − q32 − q40 − 2q47 + q52 − q55 − 2q68 − q80 + q88 +

2q95 − q103 + q112 − q127 + q128 + 2q143 + q148 +O(q150)



f
(3)
30AB(q) =

q11 − q15 + q16 − q19 − q20 − q24 + q35 + q36 + 2q39 + q44 − q55 − q56 −
3q59 + q60 − q76 + 2q79 − q80 − 2q84 + q91 + q96 + 3q104 − 2q111 + 2q115 +

2q120 − q131 − q135 − 3q136 + q140 − q144 +O(q150)

f
(1)
31AB(q) =

q4 − q8 − q20 − q28 + q32 + 2q35 + q36 − 2q39 + q40 − 2q51 + q56 − 2q59 +

2q63 − q64 + 2q67 + 2q71 − q72 − q76 + 2q87 − 2q95 − 2q103 − 2q107 +

q124 + 2q128 − 2q132 + q140 − 2q144 +O(q151),

f
(2)
31AB(q) =

q7− q8− q16 + q19− q31 + q35 +2q36− q40− 2q51 + q56− q59− q63− q64 +

q71+q72+2q76+q80−q95+q103−q107−2q111−q112+q128+q144+O(q151)

f
(1)
39AB(q) =

q7 − q19 + q20 − q31 − q32 − q44 − q59 + q67 + q71 + q80 + q83 + q91 +

q104 − q119 − 2q124 + 2q136 − q143 + 2q148 +O(q150)

f
(2)
39AB(q) =

q8+q15−q19−q24−q28+q31−q39−q44−q47+q52+q72+q76−q80+q83+

2q84− q96− q99 + q112 +2q115 + q119 + q123− q124− q135− q136 +O(q150)

f
(3)
39AB(q) =

q11 − q15 − q19 + q24 − q28 + q31 − q32 + q39 + q44 + q52 − q59 − q71 −
q72 + q76 − q80 − 2q84 + q96 + q99 + q104 + q112 + 2q115 − q119 − q123 −
q124 + q128 + q135 − q136 + q143 +O(q150)



TABLE A.3.1: List of non-zero cusp forms in Sg for each ratio-
nal conjugacy class [g] of Th.

f
(i)
g n

(i)
g m

(i)
g f

(i)
g n

(i)
g m

(i)
g f

(i)
g n

(i)
g m

(i)
g f

(i)
g n

(i)
g m

(i)
g

f12D 12 24 f14A 42 56 f18B 0 18 f19A 18 19

f
(1)
20A 0 20 f

(2)
20A 0 20 f

(1)
21A 9 21 f

(2)
21A 17 21

f
(1)
24AB 0 48 f

(1)
24CD 0 12 f

(2)
24CD 0 12 f

(3)
24CD 0 12

f
(1)
28A 0 14 f

(2)
28A 0 28 f

(1)
30AB 3 30 f

(2)
30AB 15 30

f
(3)
30AB 21 30 f

(1)
31A 2 31 f

(2)
31A 19 31 f

(1)
39AB 21 39

f
(2)
39AB 6 39 f

(3)
39AB 6 39

TABLE A.3.2: Integers n(i)
g and m

(i)
g associated to each cusp

form f
(i)
g (τ).
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