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Abstract 

Enteric pathogen exposure and child health in low-income settings 

By Frederick G.B. Goddard 

Background. Infections with enteric pathogens impair gastrointestinal function, causing diarrheal disease 

and nutritional deficits, the burden of which is highest among young children in low-income countries. 

Methods to estimate exposure to enteric pathogens suffer from a number of shortcomings, including the 

use of indicators of fecal contamination as proxies for enteric pathogens and that most exposure 

assessments estimate aggregate exposure (i.e. at the household- or community-level) instead of personal 

exposure. This dissertation sought to generate evidence to inform method development for improved 

measures of enteric exposure. Methods. The first aim estimated enteric exposure-health outcome 

relationships using household-level indicators of fecal contamination. We used an individual participant 

data (IPD) meta-analysis approach by requesting data from research identified through a systematic 

review. The second aim evaluated potential sources of measurement error in these proxy measures of 

exposure, by adapting an air pollution epidemiology exposure measurement error framework to drinking 

water quality. The third aim assessed the utility of saliva to estimate past exposure by measuring salivary 

antibody concentrations and comparing them to enteric pathogens detected in matched stool samples. 

Findings. Our IPD analyses found that fecal contamination in drinking water is associated with both 

diarrhea and impaired linear growth, and also implicated contaminated hands in diarrhea and 

contaminated fomites in stunted growth. The measurement error simulations suggested that household-

level exposure assessments that do not consider exposure in the community may attenuate true water 

quality-diarrhea associations, particularly for older children. We also found that using single water quality 

measures, thereby not accounting for temporal variability in water quality, may attenuate the true effects 

of water quality on child growth. The saliva research found lower antibody concentrations in children 

experiencing higher numbers of concurrent enteric infections, and highlighted the need for further 

validation of salivary diagnostics for the detection of pathogen-specific antibodies. Conclusions. The 

findings from research conducted for this dissertation highlight the shortcomings of enteric exposure 

assessments. They also underline opportunities to improve methods used to estimate enteric exposure, 

which could subsequently contribute to informing policies and interventions designed to reduce the 

burden of enteric infections in underrepresented and underserved populations.  
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1 Chapter 1: Introduction  

1.1 Motivation  

Rapid population growth and urbanization have led to an increase of fecal loading in the environment in 

low-income countries.1 Conventional engineering solutions used in high-income countries to manage 

fecal sludge involve expensive and well-maintained infrastructure, including piped sewerage and 

centralized treatment. Resource constrained governments in low-income countries have often not been 

able meet the demand for this infrastructure, leading to inadequate sanitation coverage and substandard 

fecal sludge containment, transport and treatment that contribute to high fecal loading in the environment. 

Enteric infections associated with exposure to fecal contamination impair gastrointestinal function, 

causing diarrheal diseases and stunting due to poor nutrient absorption, the burden of which is highest in 

children under the age of five living in low-income settings.2 enteric infections represent the third leading 

cause of death among children under five, accounting for approximately 589,000 deaths in 2017.3 An 

estimated 151 million children were stunted in 2018, with 91% of those children living in low- or lower-

middle-income countries.4 An estimated 62% of diarrheal deaths and 16% of malnutrition among children 

under five are linked to enteric pathogen exposure from poor drinking water, sanitation and hygiene 

(WaSH) behaviors.5 

For the purpose of this dissertation, enteric pathogens are broadly defined as microorganisms transmitted 

via the fecal-oral route that can cause gastrointestinal infections, leading to acute (i.e. diarrheal disease) 

and chronic infectious disease outcomes (i.e. persistent intestinal inflammation, growth faltering, 

impaired cognitive ability).6 Enteric pathogens include bacterial, viral and protozoan pathogens, with 

fungi and helminths increasingly receiving more attention as neglected sources of tropical infectious 

disease.7,8 The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) estimated that the four 

leading aetiologies for diarrhea mortality in 2016 for children under the age of five were infections with 

Rotavirus, Shigella, Adenovirus and Vibrio cholerae.9 The Global Enteric Multicenter Study (GEMS), a 

matched case-control study that enrolled children aged 0-59 months in the Gambia, Mali, Mozambique, 
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Kenya, India, Bangladesh and Pakistan, found that most attributable cases of moderate-to-severe diarrhea 

were due to infections with Rotavirus, Cryptosporidium, Escherichia coli producing heat-stable toxin 

(ST-ETEC) and Shigella.10 The Etiology, Risk Factors, and Interactions of Enteric Infections and 

Malnutrition and the Consequences for Child Health and Development Project (MAL-ED), a birth cohort 

study with 24 month follow-up in Bangladesh, India, Nepal, Pakistan, South Africa Tanzania, Brazil and 

Peru, found that Norovirus, Rotavirus, Campylobacter spp and Astrovirus were associated with the 

highest attributable fraction of diarrhea in the first two years of life.11 These findings indicate that the 

disease severity from enteric pathogen infections depends in part on the specific pathogen, and evidence 

from GEMS and MAL-ED suggests that there is substantial variation in infections with specific 

pathogens by location and some variation in infections and attributable burdens of those infections by 

age.10,11 

Exposure to enteric pathogens is conditional on a complex source-to-host fecal-oral transmission 

pathway. This includes: 1) the shedding of enteric pathogens in human or animal feces (the source); 2) the 

migration and transformation of the pathogen in the environment leading to a specific concentration in 

different environmental reservoirs; 3) the host interacting with those reservoirs; and 4) the pathogen 

entering the host (i.e. through oral ingestion). Whether ingestion of enteric pathogens then leads to 

adverse infectious disease outcomes depends on a number of factors, including the infectivity of the 

ingested pathogens and the ability of the host to mount an immune response. Figure 1-1 provides a 

summary enteric exposure schematic, using viral source-to-host transmission through the drinking water 

pathway as an example. 
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Figure 1-1: Enteric pathogen exposure – Example of viral exposure through the drinking water pathway 
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Methods to characterize human exposure to enteric pathogens have not been advanced in the same way as 

they have in other areas of environmental health, such as exposure to air pollution or chemical toxicants, 

perhaps in part because the resources are not available in the settings where enteric infections carry a 

disproportionally high burden of disease. Exposure science was born out of a need to characterize 

industrial and occupational exposure to air pollutants and chemical toxicants.12 This need arose in high-

income countries after the industrial revolution led to a combination of rapid urbanization and 

proliferation of factories in urban centers exploiting processes involving combustion to fuel their 

productions. Perhaps one of the most notable examples of this sudden increase of population exposure to 

high levels of air pollution is the London smog incident, which caused an estimated 12,000 casualties in 

1952.13 Thereafter, air pollution exposure scientists developed methods that advanced exposure 

assessments, ranging from stationary equipment and satellite imaging to measure ambient exposures to 

portable air pollution monitors that can provide personal exposure data, both cumulative and in real 

time.14 In addition, these approaches can measure disease-causing agents, such as fine particulate matter 

and carbon monoxide, not indicators as proxies. Chemical exposure assessments have been advanced to 

include biomonitoring, i.e. using human biological matrices such as urine and serum with mass 

spectrometry-based methods, that have resulted in many population-based data reports on human 

chemical exposure in the United States, Canada and Korea.15–17 

Exposure data can be an effective tool to inform policy to reduce population health burdens from 

environmental contaminants, i.e. what gets measured gets managed.18 In the United States, for example, 

air quality data from ambient air-monitoring sites are used widely to establish regulatory limits on 

ambient air quality.19 The European Union uses chemical exposure assessments to conduct risk 

assessments for chemical toxicants and inform the European regulation on Registration, Evaluation, 

Authorization, and restriction of Chemicals (REACH).20 Method development for the monitoring of 

exposure to enteric pathogens has largely been focused on monitoring of recreational water quality and 

drinking water treatment processes for large, centralized drinking water supply systems.21 Methods to 
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characterize enteric pathogen exposure from a variety of possible exposure pathways in the household- or 

community-environment has arguably not received the same resources and attention, likely in no small 

part because populations that are most commonly exposed at this level and most vulnerable to these 

exposures are young children in low-income countries. 

Other reasons exposure assessments for enteric pathogens have not been advanced in the same way as 

they have for other contaminants, include the technological difficulties of detecting low numbers of 

diverse pathogens in different environmental compartments,22 and the mixed evidence of an association 

between indicators of fecal contamination and specific enteric pathogens.23,24 The pathogenicity, diversity 

and evolution differ by pathogen as well their ability to amplify and die-off both in the environment and 

inside the host.25 Enteric exposure assessments need to consider multiple possible fecal-oral transmission 

pathways, with common pathways represented by the F-diagram26 – fingers, flies, food, fluids (water 

sources) and fields (soil), with fomites an additional pathway often considered important.27–29 The 

biological relevance of enteric exposures is also complicated by host susceptibility mediating dose-

response relationships. Infection with a pathogen might alter future responses to that same infection due 

to acquired immunity,30 and the ability to mount an immune response to enteric infections is influenced 

by gastrointestinal health, such as the diversity of the gut microbiome31 and environmental enteric 

dysfunction (EED) from repeated enteric pathogen exposure.32 

1.1.1 The need for improved exposure methods: the WaSH example 

Systematic reviews of WaSH interventions, designed to demonstrate the health benefits of reducing 

enteric pathogen exposure, have generally found them to be protective against WaSH related diseases, 

including diarrhea,33 soil-transmitted helminthiasis,34 trachoma35 and malnutrition,36,37 however the 

evidence is mostly from observational studies. Recent experimental field evaluations of these 

interventions found either no evidence of health benefits,38–40 a reduction in diarrhea but no improvement 

in child growth,41 or improved growth but no impact on diarrhea.42,43 These mixed results have focused 

greater attention on the need for more rigorous exposure assessment, in part to explain why effects of 
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WaSH interventions are realized in some trials and not others. A recent consensus statement among 

researchers in WaSH recommends that interventions need to radically reduce fecal contamination in the 

environment to achieve more consistent child health benefits,44 though which microbes and pathways are 

most important – and the necessary reductions needed to achieve health impacts – may be highly context-

specific. Filling these gaps requires greater attention on more rigorous exposure assessment. 

The theory of change underlying the impact of WaSH interventions on enteric health outcomes is that an 

intervention will prevent disease if it a) is capable of reducing exposure to enteric pathogens, (b) is 

introduced into a vulnerable population, (c) achieves high levels of coverage and use, and (d) reduces 

population exposure to enteric pathogens. WaSH studies have traditionally measured some of the steps 

along this theory of change,45  but only a few have actually attempted to assess the impact of an 

intervention on enteric exposure along the transmission pathways targeted by the interventions. Some of 

the null findings from recent WaSH interventions are consistent with the WaSH theory of change, 

reporting null effects from potentially effective interventions delivered to a vulnerable population when 

coverage and uptake were low.38,40,46,47 However, other trials have reported null effects on diarrhea39,48 

and/or stunting39,41,48 despite higher levels of coverage and use, while others have reported protective 

effects on stunting (but not diarrhea) with high levels of coverage and use, especially from reductions in 

open defecation.42,43,49 

Results from exposure assessments included in a subset of these evaluations have raised important 

methodological questions about the utility of current methods for assessing child exposure to enteric 

pathogens (Figure 1-2). Evaluations led by Hartinger and Luby (sanitation arm) found positive 

intervention effects on child diarrhea, despite no reductions in measured household-level fecal 

contamination as a proxy for enteric pathogen exposure.41,50 An evaluation led by Reese found positive 

intervention effects on child linear growth, despite no evidence of a reduction in fecal contamination in 

drinking water or on child hands.51 A study led by Pickering also found positive intervention effects on 

child growth, despite no reduction in fecal contamination in drinking water; however, latrine fly presence 
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and observed human and animal feces did significantly decrease in the treatment group.42 Evaluations led 

by Null (water and combined water, sanitation and hygiene interventions) and Luby (water intervention), 

found no improvements in child diarrhea or linear growth even though they found reductions in fecal 

contamination.39,41 Evaluations led by Arnold, Clasen, Null (sanitation and hygiene arms) and Patil were 

consistent with the theory of change, in that they found no improvements in measured exposures and 

subsequently no improvements in primary health outcomes.38–40,47 The hygiene and combined water, 

sanitation and hygiene arms in an evaluation led by Luby also included findings that were consistent with 

the theory of change, finding a reduction fecal contamination and improvements in health outcomes.41  

 

Figure 1-2: Summary of intervention effects from recent evaluations on fecal contamination along common transmission 
pathways (drinking water, child hands, food, soil, fomites and food preparation area fly density) and child diarrhea and stunting. 

These exposure assessments measured fecal contamination along select transmission pathways using fecal 

indicators to estimate intervention effects on fecal contamination in the household and its surrounding 

environment. Whether these measures can serve as effective proxies for personal exposure to enteric 

pathogens depends on a number of assumptions. These assumptions include, but are not limited to, the (i) 

household-level exposure assessments are an effective proxy for individual-level exposure, (ii) fecal 

indicators are an effective proxy for enteric pathogens, (iii) key transmission pathways were captured in 
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the exposure assessment, and (iv) recovery of fecal indicators with the sampling and processing methods 

is reliable across different transmission pathways. 

The inconsistencies between fecal contamination in the household environment and subsequent health 

outcomes are not seen as a challenge to the theoretical role of environmental mediation of fecal exposure 

on enteric infection and related sequellae.52 However, the lack of a clear and consistent progression 

between exposure and health in several studies raises fundamental questions about current methods of 

exposure assessment, and especially the basic question about “how clean is clean enough” to realize 

reductions in infection and disease. 

With this background, this dissertation sought to assess the relationships between current proxy measures 

of environmental enteric exposure and adverse child health outcomes, and make contributions to inform 

enteric exposure method development moving forward. There are a number of applications that could 

benefit from improved measures of enteric exposure. These include 1) identifying the dominant sources 

of enteric pathogen transmission to inform intervention design; 2) enabling potentially faster evaluation of 

interventions; and 3) applying new approaches to environmental surveillance of human infection 

prevalence and environmental threats. 

1.2 Dissertation aims 

This dissertation fulfills three core research aims. The first aim attempted to quantify exposure-outcome 

relationships using proxy measures of environmental enteric exposure, the second aim evaluated potential 

sources of error in those proxy measures, and the third aim assessed the use of salivary antibodies to 

estimate past exposure to enteric pathogens. This dissertation also included a supplemental aim in 

collaboration with a working group of interdisciplinary researchers to review methods used to estimate 

exposure to enteric pathogens and make recommendations on how to move enteric exposure method 

development forward. This document draws on that supplemental aim during the introductory and 

concluding chapters. 
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1.2.1 Research Aim 1 

The first aim titled “Fecal contamination of the environment and child health - A systematic review and 

meta-analysis using individual participant data” sought to assess the relationship between household-

level fecal contamination, as a proxy for individual-level enteric exposures, and adverse child health 

outcomes by addressing the following research questions: 

1.1.  Are levels of fecal contamination in the environment associated with diarrheal disease 

prevalence in children under the age of 5?  

1.2. Are levels of fecal contamination in the environment associated with linear growth in 

children under the age of 5? 

1.2.2 Research Aim 2 

The second aim titled “Exposure measurement error and the characterization of child exposure to fecal 

contamination in drinking water” adapted an air pollution epidemiology exposure measurement error 

framework and evaluated potential sources of exposure measurement error from proxy measures of 

enteric exposure. The specific research questions for this aim were: 

2.1. Is there evidence of exposure measurement error from in household-level exposure 

assessments that do not consider exposure outside of the household in the community?  

2.2. Is there evidence of exposure measurement error from exposure assessments that estimate 

exposure at single time points compared to those with repeated longitudinal measures? 

1.2.3 Research Aim 3 

The third aim titled “Child salivary SIgA and its relationship to enteric infections and EED biomarkers in 

Maputo, Mozambique” sought to test the utility of saliva to both detect infections with specific pathogens 

as a measure of past exposure and more broadly as an alternative biological matrix to characterize 

gastrointestinal health. The research questions addressed by this aim were: 
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3.1. Are pathogen-specific acute salivary antibody responses associated with infection with 

those pathogens detected in matched stool samples? 

3.2. What is the relationship between non-specific acute salivary antibodies and enteric 

infections as well as biomarkers of gut inflammation detected in matched stool samples?   
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2 Chapter 2: Estimating enteric exposure: A review of approaches 

Manuscript authors: Frederick G.B. Goddard, Radu Ban, Dana Boyd Barr, Joe Brown, Jennifer Cannon, 

John M. Colford, Jr., Joseph Eisenberg, Ayse Ercumen, Helen Petach, Matthew Freeman, Karen Levy, 

Stephen P. Luby, Christine Moe, Amy J. Pickering, Jeremy A. Sarnat, Jill Stewart, Evan Thomas, Mami 

Taniuchi, Thomas Clasen 

2.1 Context 

This chapter presents a review of current approaches used to estimate human exposure to enteric 

pathogens. It draws from a draft manuscript titled “Measuring environmental exposure to enteric 

pathogens in low-income settings: review and recommendations of an interdisciplinary working group”, 

that we drafted with a an expert group of biomarker researchers, microbiologists, exposure scientists, 

environmental engineers, and epidemiologists after an enteric pathogen exposure workshop held at Emory 

University in September 2019. This workshop aimed to identify priorities for improved approaches to 

measuring enteric pathogen exposure by reviewing current and emerging enteric exposure assessment 

practices, and exploring potential lessons in exposure science from other areas of environmental health.  

2.2 External and internal exposure assessments 

Traditional exposure science uses numerous approaches to estimate human exposure to environmental 

contaminants. A recent National Research Council report, Exposure Science in the 21st Century, presented 

a summary of these approaches, ranging from those that measure environmental concentrations of 

contaminants to predict exposures before the contaminant reaches the human boundary, to those that 

estimate a dose after the contaminant has been taken up into the body (Figure 2-1).1 As exposure 

assessments move beyond the human boundary they provide internal measurements of exposure, 

providing potentially more relevant information on the exposure-outcome relationship, but also fail to 

capture information on the external sources and pathways of exposure that would enable mitigation or 
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inform policy. For this dissertation, I am using a similar approach to defining methods used to estimate 

exposure to enteric pathogens, by differentiating between external and internal exposure assessments.  

 

Figure 2-1: Conceptual framework for the levels of exposure assessments connecting source to outcome (adapted from 1) 

External enteric exposure assessments start by estimating concentrations of enteric pathogens in different 

environmental reservoirs. These external measures are usually pathway-specific, an important element for 

enteric exposure assessments, because they can distinguish between different fecal-oral transmission 

pathways. However, external measures provide no information on the magnitude of total exposure to 

measured pathogens which must be estimated or imputed, so can only be considered as an indirect proxy 

for actual exposure. These surrogate measures may be more proximal to actual exposure if they include 

data on human interactions with their environment, such as those published by the United States 

Environmental Protection Agency in the Exposure Factors Handbook.2 While the handbook is focused on 

chemical exposures in the United States, it demonstrates the types of frameworks that can be employed to 

inform assumptions for external exposure assessments, such as ingestion rates (drinking water, soil and 

food) and object mouthing.2  

Internal enteric exposure assessments seek to estimate the actual pathogen amount that has crossed the 

human boundary, typically via oral ingestion. In this respect, they address the main shortcoming of the 

external assessment. On the other hand, they provide little information about the source or transmission 

pathway that external assessments offer. They can, however, provide information on the presence, types 

and intensities of past exposure to enteric pathogens as well as indications of potential health impacts. 
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While the ingested dose of enteric pathogens is not typically measured, internal exposure can be inferred 

from serology, detection of pathogens in feces, and other biomarkers of exposure. 

2.3 Current approaches 

2.3.1 Criteria 

When considering different approaches to measuring exposure to enteric pathogens there are a number of 

criteria one might consider. These include: 

 External vs. internal: Is exposure characterized in the environment (external) and does it 

provide data on the source of exposure, or is it measured after the contaminant has 

crossed the human boundary (internal)? For external exposure assessments, is exposure 

characterized proximal to the human boundary or is it a more distal measure that requires 

modelling to estimate more proximal exposure? For internal exposure assessments, are 

the measures mediated by host susceptibility to infection? 

 Pathway-specific: Can the exposure assessment quantify the relative contribution to total 

exposure by different transmission pathways?  

 Granularity: How specific is the microbiological measure (e.g. indicator of fecal 

contamination versus specific pathogens )? Does the method characterize 

presence/absence or quantitative concentrations of the contaminant? Does the assay 

evaluate viability or infectivity of enteric pathogens? What are the limits of detection of 

the assay? Is exposure to contaminants assessed at the community or individual level? 

Can the source of microbiological contamination (i.e., humans vs. specific animals) be 

ascertained? How much variability and measurement error exists with the methods?  

 Logistical considerations: Can environmental contamination and human interaction with 

the environment be assessed at scale or is it constrained by cost or other factors? Are the 

measurement methods suitable for deployment in the field in low-resource or emergency 

settings? Does the assay require cold-chain transport or a consistent energy source? Are 
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the required materials bulky or dangerous to handle? How much training and material is 

required to collect samples, conduct analyses, and interpret results? Is it fast enough to 

provide actionable feedback to reduce exposures in a population of interest?  

 Variability: Does the exposure assessment account for temporal and spatial variability in 

enteric pathogen occurrence and concentration? Does the assessment consider variability 

in human behaviors?  

 Ethics: Are exposure assessment methods potentially burdensome on the communities 

and individuals where they are conducted? Do they require respondents to provide a 

substantial amount of their time and privacy? Do they provide interpretable information 

for end users? 

2.3.2 Measuring enteric pathogens in the environment 

Studies characterizing fecal exposure and some evaluations assessing the effectiveness of WaSH 

interventions, have mainly attempted to characterize external exposure by estimating household fecal 

contamination. A systematic review of the effects of sanitation interventions on fecal-oral transmission 

pathways identified the following approaches used: fecal pathogens or indicator bacteria in environmental 

samples (drinking water, hands, sentinel toys, food, household and latrine surfaces and soil); the presence 

or abundance of flies; and observations of human and animal feces.3 Other research has attempted to 

quantify relative contributions of fecal contamination from the different transmission pathways and from 

private vs. public domains, including a comparison of the contributions from hands and stored water,4 

measuring fecal contamination in open drains in communities with inadequate sanitation infrastructure5 

and testing for fecal contamination and a select number of diarrheal pathogens in soil, surfaces and 

produce.6 There are a number of factors to consider when measuring enteric pathogen occurrence in the 

environment, including environmental sampling strategies, the use of indicators as proxies for enteric 

pathogens, differentiating between human and animal sources of contamination, and selecting which 

specific pathogens to target. This section describes methods used to detect enteric pathogens in 



19 

 

 

environmental samples and provides a summary of these methods against the criteria listed above in 

Table 2-1.  

Sampling strategies  

The first decision when designing an external exposure assessment is along what fecal-oral transmission 

pathways to estimate enteric pathogen occurrence and where to collect samples for those pathways. For 

example, drinking water samples can be collected directly from the source, either at the community- or 

household-level, from the household storage container or from the vessel used to retrieve water for 

drinking from the storage container or source,7 each progressively more proximal to the human boundary. 

Hand contamination can be assessed through rinsing hands in sterile water and analyzing the rinse water8. 

Hand rinse samples can be collected either directly from children or from their caregivers, each providing 

information on contamination along different transmission pathways. Child exposure to fecal 

contamination from hands can be either direct, i.e. through hand mouthing, or indirect, i.e. through hands 

contaminating food prepared for children.9 Food samples can include items prepared at home or bought 

outside the home, for example from local markets or street food vendors.10 Surfaces can be sampled by 

swabbing, and soil by scraping topsoil from a designated area.11 The site of collection of surface swabs or 

soil is a key decision in sampling protocols. Sentinel toy rinses (i.e. using plastic toy balls) have been 

used as a proxy to characterize fecal contamination on fomites.12 The level of contamination estimated 

from toy rinses depends on the level of interaction of household members with the toy. Contamination 

from flies has been characterized using both fly density13 and by capturing flies and testing them for fecal 

indicators or specific pathogens.14 Fly sampling can be conducted at latrine entrances to estimate fly 

density at a source of fecal contamination, or in food preparation areas, which is more proximal to fecal-

oral transmission (i.e. through flies contaminating food).   

Fecal contamination in all of these reservoirs is highly variable temporally,15–17 seasonally,18,19 and 

spatially,20 and additional variability can be introduced by the methods used to analyze samples.21 Some 

strategies to address this variability include collecting longitudinal samples over time and focusing on key 
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times of exposure (e.g., measuring hand cleanliness before eating) to help account for some temporal 

and/or seasonal variability, and selecting sampling locations as proximally as possible to the assumed true 

external exposure for the target population to minimize the effects of spatial variability. Timing of sample 

collection can also be important when estimating exposure-outcome relationships. Environmental samples 

are commonly collected at the same time as health data, typically for logistical convenience. Collecting 

samples prospectively to ascertaining health endpoints, allows for an incubation period before onset of 

health outcomes.22–24 Estimating pathogen occurrence and health outcomes at the same time may be 

vulnerable to reverse causation (i.e. through changes in behavior due to illness such as increased drinking 

water treatment),25 obscuring true exposure-outcome relationships. 

Indicators of fecal contamination  

Fecal contamination in the environment is commonly estimated by using indicators of fecal 

contamination. These indicators have the advantage that they are easier and less expensive to measure 

compared to multiple specific pathogens and they can be indicative of a range of enteric pathogens.26 

They provide an indication of the presence of fecal matter in a sample, but do not confirm the presence or 

absence of pathogens, nor do they provide any indication on the infectivity or diversity of enteric 

pathogens in a sample. There are a number of indicators of fecal contamination, including chemical 

indicators (e.g., fecal sterols, caffeine, estrogen hormones)27,28 as well as microbial indicators such as 

fecal indicator bacteria (FIB). FIBs are often grouped into the coliform and streptococcal bacterial groups. 

Total coliforms (TC) include a broad spectrum of bacteria occurring in feces, but can also be found in 

non-fecal matter. Fecal coliforms (FC) or thermotolerant coliforms (TTC) are a group of bacteria that are 

more specific to fecal contamination, with the exception of Klebsiella.29 Escherichia coli (E. coli) is the 

most commonly found FC bacteria and is more specific to human and animal fecal matter. Fecal 

streptococci (FS) were identified as an alternative to TC in the 1950s when it became clear that TC was a 

non-specific indicator for fecal contamination, but the use of this indicator diminished once methods for 

FC and E.coli culturing were established.26 Enterococci are a subset of species of the FS group, more 

specific to fecal contamination than FS and more persistent in the environment.30 Coliphages and 
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crAssphages,, types of bacteriophages (viruses that infect bacteria), are also used as indicators of fecal 

pollution because of their similar morphological characteristics and ability to mimic the persistence of 

viral pathogens in the environment.31,32  

The use of fecal indicators was historically established to measure fecal contamination in drinking water 

and recreational waters26 and to monitor the performance of water treatment processes. As such, fecal 

indicators were designed to act as process indicators and are not optimized to characterize exposure to 

fecal contamination in various environmental reservoirs. In the United States, TC is still used by some 

municipalities as a conservative measure to monitor treatment efficacy and post-treatment contamination 

of drinking water supplies in accordance with the Total Coliform Rule, which requires the monitoring for 

the presence of TC in public water systems at a frequency proportional to the number of people those 

systems serve.33 E. coli and FC are presently the most commonly used FIB for fecal contamination 

monitoring in water. The World Health Organization (WHO) uses levels of E. coli and TTC to define 

microbial quality of drinking water.34 FIBs are increasingly used to characterize fecal contamination 

along other fecal-oral transmission pathways. For example, enterococci is a commonly used indicator for 

fecal contamination on hands and fomites.35,36  

Source tracking  

FIB and some other indicators of fecal contamination do not distinguish between different sources of 

contamination. Fecal source tracking aims to provide data on the source of fecal contamination by 

detecting signatures of specific sources (e.g., particular animals or particular geographies). In addition to 

humans as a source of fecal loading in the environment, animal fecal contamination is of particular 

interest in low-income settings where households often cohabitate with animals in confined spaces. A 

recent systematic review outlined the importance of animals as a source of fecal contamination to human 

health by synthesizing evidence suggesting an association between animal feces exposure and diarrhea, 

soil-transmitted helminth infection, EED, growth faltering and trachoma.37 
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A variety of source tracking methods have been described in the literature, ranging from the use of a fecal 

coliform/fecal streptococcus ratio (because human feces are associated with higher levels of fecal 

coliform, whereas animal feces are associated with higher level of fecal streptococcus) to the use of host-

specific molecular markers.38 Host-specific Bacteroidales are commonly used in high-income countries to 

complement the use of fecal indicators,39 and are seeing increased use in low-income settings.40–42 

However, fecal source tracking assays developed in one geographic location must be validated to be used 

in additional locations, due to geographic variation in human and animal fecal microbiomes. 

Bacteroidales can distinguish between sources of fecal contamination, because they adapt to their host 

differentially, allowing for the identification of host-specific fecal contamination.43 Host-specific 

Bacteroidales have been measured in Tanzania to characterize human-specific fecal contamination on 

hands and in drinking water,44 and test the relationship between human-specific fecal contamination and 

diarrhea.45 A nested study of a cluster-randomized controlled sanitation trial in Odisha, India utilized fecal 

source tracking to discern the effectiveness of a sanitation intervention on the reduction of human-specific 

Bacteroidales compared to animal-specific Bacteroidales.46  

Enteric pathogen detection in the environment 

Specific pathogen occurrence or concentration, instead of the use of indicators as proxies, are less 

commonly measured in the environment although they may be more representative of the actual health 

risk associated with exposure. Pathogen detection in environmental samples is more likely to yield 

positive results in areas where there is high prevalence of infection with enteric pathogens and more 

pathogens entering the environment, but rarer pathogens will be harder to detect. Exposure assessments 

that measure specific pathogens need to consider not only the diversity of potential pathogens occurring 

in the environment but relevance of each included pathogen for health outcomes of interest, which is 

highlight context specific, including whether specific pathogen are associated with symptomatic or 

asymptomatic infections. The possibility for improved specificity from measuring specific pathogens 

instead of indicators of fecal contamination may come at a loss of sensitivity, since selected pathogens 

may not be representative of all possible pathogens in the environment. 
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Monitoring water supplies for pathogens can be prohibitively resource intensive due to the array of 

pathogens to assay for and the low concentrations of specific pathogens in the environment. The WHO 

estimates that concentrations of pathogens in water corresponding to 10−6 Disability-Adjusted Life Years 

(DALYs) per person per year are typically less than 1 organism per 104–105 liters.34 Testing for pathogens 

in water is achieved by concentrating the water sample, such as filtering large quantities of water, on the 

order of 1 to 1,000 liters, followed by using culture-dependent or culture-independent methods to 

enumerate the occurrence and density of pathogens.47 Filters that work for viruses may not work for 

protozoa and bacteria due to the size difference in pathogens, making it difficult to test for multiple 

pathogens simultaneously.47 Culture-dependent methods are also limited by their low sensitivity and their 

resource intensity. Furthermore, some enteric pathogens (Salmonella Typhi, Vibrio cholerae, 

Campylobacter spp., and others) enter a viable but non-culturable state in the environment that may 

require special resuscitation steps or molecular methods to detect.48  

Culture-independent molecular methods have been developed for many enteric pathogens, but they 

require extensive laboratory equipment and highly skilled technical staff.49 These methods have the 

advantage that they can rapidly detect multiple pathogens in a sample and they circumvent the need to 

grow microorganisms in laboratory culture and thus can detect non-culturable organisms.50 For example, 

polymerase chain reaction (PCR) based assays have become lower-cost, easier to multiplex, and more 

robust to inhibitors in environmental samples. A number of studies have successfully detected bacterial, 

viral, helminth, and protozoan pathogens in drinking water, on hands, and in soil in low-resource 

settings.6,44,46,51,52 Liu et al. developed the customizable Taqman Array Card (TAC), an emerging method 

for quantitative detection of multiple enteric pathogens encompassing viral, bacterial, protozoal, and 

helminth targets for enteric infections.53 Recent applications of the TAC method include the simultaneous 

detection of a number of enteric pathogens in surface water, soil and infant weaning food in Kenya.54,55  

However, molecular methods cannot be used to establish viability of the organism and can be 

prohibitively costly. Resource-intensive field collection and lab processes mean these methods are 
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challenging to deploy in low- and middle-income country settings where resources are limited. In 

addition, multi pathogen exposure assessments raise questions about the statistical analyses and 

interpretation of these data.56 

Metagenomics, the sequencing and analysis of all DNA in environmental samples, circumvents the 

problem that many enteric pathogens cannot be easily cultured57 and metagenomic data can provide 

information on the abundance and diversity of microorganisms in environmental samples. Unlike PCR 

methods, it does not require pre-specification of targets, allowing the user to probe for all potential enteric 

pathogens present in a sample. Reduced sequencing costs over time as well as recent advances in 

sequencing technologies and bioinformatics pipelines will continue to open up opportunities for enteric 

pathogen detection. Metagenomics can be used to characterize both pathogens in environmental samples 

and in human stool samples. Environmental metagenomics has recently been used to profile viral 

pathogen diversity in environmental waters,58 and to demonstrate exchange of antibiotic resistance genes 

between soil bacteria and clinical pathogens.59 Limitations of metagenomics include poor sensitivity if 

enteric pathogens are at low prevalence in the microbial community or when sequencing depth is low, 

high cost, required bioinformatics expertise, and the need for improved analysis pipelines for identifying 

pathogens.
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Table 2-1: Summary of methods to measure enteric pathogens and indicators of fecal contamination in the environment 

Tool Source 
information 

Proximity to 
outcome 

Specific 
targets 

Presence/ absence vs. 
concentrations 

Single vs. 
multiple targets 

Developmental 
stage 

Environmental 
samples: 

      

Indicators (culture-
based) 

None 

Mixed evidence on 
the associations 

between indicators 
and health 
outcomes 

 Some 
indicators 
include 
specific 

targets, such 
as E. coli and 
enterococci 

Presence/ absence and 
concentration both 

possible 
Single 

Assays available 
and extensively 

used globally with 
increased use for 

environmental 
samples other 

than water 

Specific pathogens       

Culture-based  
None 

Limited or no 
evidence between 

pathogens in 
environmental 
samples and  

health outcomes, 
except for 
outbreak 

investigations 

Yes 
Presence/ absence and 

concentration both 
possible 

Single 

Assays available 
but currently 

limited use on 
environmental 

samples in low-
income settings 

Molecular methods 

None 
Yes but need 
to pre-specify 

targets 

PCR is limited to 
presence/ absence but 
density data possibly 

with qPCR 

Single and 
multiple possible 

Metagenomics 

None 

Yes, targets 
do not need to 

be pre-
specified but 
depend on 
reference 

library 

Abundance and diversity 
of microbial populations,  

concentrations data 
more limited with current 

methods 

Multiple 

Fecal source tracking       

Molecular methods 
Human vs. 

animal 

Limited or no 
evidence between 

fecal source 
markers in 

environmental 
samples and  

health outcomes 

Yes 

PCR is limited to 
presence/ absence but 

concentration data 
possibly with qPCR 

Single and 
multiple possible 

Assays available 
but validation work 

on-going to 
distinguish 

between specific 
animals 

Metagenomics Human vs. 
animal 

Yes 
Concentration data 

possible 
Multiple 
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2.3.3 Measuring host interaction with the environment 

Exposure to enteric pathogens is not only conditional on pathogen presence in different environmental 

reservoirs, but also on host interaction with those reservoirs. Collecting data on host interaction with the 

environment is critical for exposure assessments and in the analysis of exposure data, as has been done in 

estimating human exposure to other environmental pollutants.60 Survey data on self-reported behaviors or 

observational data on practices can enable exposure assessments in targeting environmental reservoirs and 

locations where the study population is predominantly exposed. Quantitative observational data can be 

combined with environmental measurements of enteric pathogens to estimate pathogen ingestion rates.  

SaniPath, is an exposure assessment approach designed for low-income urban environments that 

examines exposure to fecal contamination in the public domain via ten pathways, including: drinking 

water, bathing water, contact with surface waters and marine waters, flood waters and open drains, 

ingestion of uncooked produce and street food, contact with public toilets, and soil. The SaniPath tool 

combines environmental sample collection and analyses for E. coli  with surveys of behavior to better 

estimate exposure.61 SaniPath highlighted the potential for microbiological and observational tools to be 

used in concert to estimate both fecal contamination in the environment and inform assumptions on where 

and how the study population is exposed. To date, the SaniPath tool has been used in ten cities in nine 

countries (http://sanipath.org/ ) to identify the major pathways of exposure to fecal contamination in the 

urban environment and provide evidence for urban sanitation policies and investments. 

This section provides a summary of methods used to characterize human interaction with their 

surrounding environment and outlines methods against the criteria listed above in Table 2-2. 

Surveys and self-reports 

Surveys have been used as rapid and cost-effective tool to collect information on a range of self-reported 

behaviors that serve as proxies for exposure patterns. While surveys carry the risk of various types of 

bias, such as recall bias, courtesy bias, and reporting bias associated with self-report of socially desirable 

behaviors,62,63 surveys are nonetheless a useful tool to obtain information on neutral behaviors that do not 

http://sanipath.org/
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trigger these biases. There are multiple approaches for collecting self-reported data. Many studies have 

used household surveys with the head of household or primary caregiver for young children. One major 

limitation of this approach is that the reported behavior for the respondent is often incorrectly seen as a 

proxy for behaviors for the entire household, thus risk misrepresenting exposure risk. Community 

participatory surveys and surveys in school classrooms, that combine some discussion of the behavior 

with a method for the participants in the group to confidentially report their own behavior, such as pocket 

voting, have also been used to identify high-risk behaviors.61 Surveys and self-reports can also be used to 

inform sampling locations (e.g., where a household obtains their drinking water, prepares their food etc.). 

Observations  

Spot-check observations can capture WaSH infrastructure and behaviors that result in risk of exposure 

(e.g., latrine cleanliness, presence of a handwashing station, handwashing at key moments, washing raw 

produce before consumption) that can be difficult to elicit by self-report due to biased reporting. More 

structured observations,64,65 including the use of videography,66,67 offer an opportunity to gather 

information on complex behaviors – including recording the frequency, duration, and type of interaction 

with the environment, which could subsequently be used to estimate ingestion rates. However, they are 

resource intensive at scale and suffer from high heterogeneity of within- and between-host behavior.68 

There are questions about whether this heterogeneity may introduce prohibitive amounts of uncertainty 

into ingestion rate estimates. Observations can also cause reactivity in participants where the presence of 

an outside observer leads individuals to alter their behaviors while observed.69 Sensors have been used to 

compare observed behaviors to reported behaviors with some studies indicating that reported behaviors 

are inconsistent with sensor measured use.70–73 Sanitary surveys, i.e. survey-based inspections of water 

systems, have been designed and promoted, often in combination with periodic water quality testing, as 

screening and risk assessment tools for fecal contamination exposure. However, recent studies have 

shown a poor correlation between sanitary inspection scores and actual fecal contamination in drinking 

water supplies.74 
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Location tracking 

Personal global positioning system (GPS) tracking can inform where a host is spending time and can thus 

provide data on where to collect environmental samples, for example by identifying potential hot spots in 

communities where community members may be experiencing frequent exposures. The use of GPS 

devices has broadly been validated for exposure assessments,75 and has been used to inform air pollution76 

and chemical exposure assessments.77 A study in Brazil found that GPS tracking was an effective tool to 

quantify personal movements of urban slum residents and evaluate exposure sources of environmental 

leptospirosis transmission.78 

Tracers 

Tracers, substances introduced into the environment so that their distribution can be detected from their 

distinctive properties, can provide data on where and how hosts are interacting with their environment. 

They have been used in air pollution epidemiology to differentiate between indoor and outdoor 

exposures79 and a study in China estimated child soil ingestion by measuring concentrations of tracer 

elements in soil.80 Challenges with using tracers include that seeding several common fecal-oral 

transmission pathways simultaneously to quantify relative exposure contributions from different 

pathways may be impractical beyond certain microenvironments, and tracers are needed that do not 

degrade in the environment and pose no risk to human or environmental health. 

Table 2-2: Summary of methods to characterize interaction with the environment  

 

Tool Source 
information 

Pathway 
incrimination 

Granularity 
(Community vs. 

individual) 

Risk of 
bias 

Surveys 
Limited Limited 

Community and 
individual possible 

High 

Self-reports Limited Limited Individual High 

Structured/unstructured observations Possible Possible Individual High 

Video observations Possible Possible Individual Medium 

GPS tracking None No Individual Low 

Tracers 

None 

Theoretically 
possible but no data 
available on tracers 
being implemented 

in practice. 

Individual Low 
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2.3.4 Measuring enteric pathogens in humans 

Measuring internal exposure to enteric pathogens can provide data on past exposure, although findings 

from these measures are complicated by internal human biological mechanisms and host immunity. These 

data can be employed to evaluate how well interventions reduce exposure to specific pathogens and 

which pathogens humans are exposed to in their community. Data generated for epidemiological studies 

and for surveillance has benefited from advances in enteric pathogen detection methodologies to estimate 

the burden of disease, disease severity, and attributing health outcomes to pathogens and pathogens to 

exposure pathways.73 These data facilitate hazard characterization, the first step of risk assessment. 

Exposure assessments can take into account the hazard characterization information derived from 

epidemiologic studies to focus on pathogens that cause the greatest disease burden in the region of 

interest, taking a more narrowed approach to exposure assessments, for example by focusing on specific 

pathogen-source pairs. This section describes methods used to detect enteric pathogens in human 

biological samples and provides a summary of these methods against the criteria listed above in Table 2-

3. 

Pathogen shedding in stool 

Methods to detect enteric pathogens in stool samples range from using microscopy82 or enzyme-linked 

immunosorbent assays83 to detect single pathogens, to using molecular or metagenomics methods to 

characterize multiple pathogens in a sample. Multiplex PCR is a technique that has been widely employed 

in enteric disease surveillance (sporadic and outbreak) and epidemiological studies such as in multi-

country case-control84 and longitudinal birth cohort studies,85 as well as in recent studies measuring health 

impacts of WaSH interventions.86,87 Metagenomic approaches have also been employed, for example to 

distinguish between foodborne disease outbreak strains of Salmonella,88, and to identify the likely causes 

of diarrheagenic E. coli in Ecuador.89 The advantage of these internal measures providing enteric 

infection data is that they provide evidence of actual ingestion of enteric pathogens. The limitation of 

these techniques is not only the intensive resources they require, but it can also be difficult to attribute a 

specific pathogen to a disease outcome when multiple enteric pathogens are detected in stool 
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simultaneously or when asymptomatic infections are common. Additionally, the sensitivity of these 

methods can vary, so it is critical to define upper and lower limits of detection. These methods detect 

infections, and pathogens may only be shed by an infected person for a short period of time (days, weeks) 

or shed intermittently, so infections between sampling events would be missed. Furthermore, the duration 

of shedding after infection is highly pathogen-specific, so these methods can be biased towards persistent 

pathogens that shed for a longer period of time compared to more transient pathogens.  

Pathogen-specific immunoassays 

Another way of estimating past exposure to enteric pathogens is through immunological assays detecting 

pathogen-specific antibodies in serum or saliva, which can be multiplexed to detect exposure to  multiple 

enteric pathogens.90 For these immunological methods, the timeline of exposure can be difficult to ascribe 

as low levels of pathogen-specific antibodies (Immunoglobulin (Ig)A, and particularly IgG) can be 

present in saliva and serum for weeks to years after infection.91 This can also be an advantage, as the 

methods can be used to integrate prior exposure over longer periods of time, rather than relying on 

pathogen shedding in stool. Exposure data without regard to history of infection can be useful for some 

applications, such as to determine if a population has been exposed to a rare or emerging pathogen or 

particular microbial strain, which could be important for focusing exposure assessment approaches. Sero-

epidemiology is a promising approach to measurement of force of infection of enteropathogens across 

entire populations.92–94 However, one’s immune response depends on a number of host-specific factors 

including history of previous exposure (acquired immunity95), nutritional status,96 genetics,97 composition 

of the gut microbiome,98 underlying disease such as HIV infection,99 and age (antibodies can appear in 

low concentrations in young children, particularly in saliva).100 
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Table 2-3: Summary of methods to estimate internal exposure  

Tool Source 
information 

Proximity to 
outcome 

Specific targets Presence/ absence 
vs. concentrations 

Single vs. 
multiple 
targets 

Developmental stage 

Human samples:        

Stool-based assays: 

None 

Measure of 
infection as a 

proxy for 
internal 

exposure  
More proximal 
to outcomes 
of interest 

than 
environmental 

measures 

    

Microscopy Yes, but typically 
limited to 
protozoan 

pathogens and soil 
transmitted 

helminths (STH)  

Presence/ absence Single and 
multiple 

possible for 
protozoan 
pathogens 
and STHs 

Commonly used as a well-
established method 

Culture-based Yes Presence/ absence 
and concentration 

both possible 

Single Assays available for 
different pathogens 

Molecular methods Yes PCR is limited to 
presence/ absence 
but concentration 
data possibly with 

qPCR 

Single and 
multiple 
possible 

Assays recently used in 
large scale cohort studies 

and intervention 
evaluations in low-income 

settings 

Metagenomics Yes Concentration data 
possible 

Multiple Limited data on 
metagenomics approaches 

used for pathogen 
detection in stool in low-

income settings 

Enzyme-linked 
immunosorbent assays 

Yes Concentration data 
possible but difficult 

to compare 

Single and 
multiple 
possible 

Assays available to detect 
immunological responses 
in serum and saliva, and 
for antigen detection in 

stool  
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2.4 Limitations of current approaches 

The approaches presented both for external and internal measures of exposure highlight that these 

methods are limited to providing proxy estimates of exposure, i.e. there is no gold standard approach to 

estimating external exposure to enteric pathogens from various fecal-oral transmission pathways or to 

quantify the ingested dose. One of the primary limitations of external measures of exposure is from the 

use of fecal indicators to estimate fecal contamination at the household level. While the measurement of 

fecal indicators may be valuable as an indication of the fecal load in environmental samples and to 

provide a common metric for comparison with previous studies, the shortcomings of indicators when they 

are used for purposes other than their original intended use of monitoring water supply systems, have 

been well documented,101 including reports of E. coli detection in pristine areas of tropical and even 

temperate environments.102–107 If measures of external exposure include survey and observational tools, 

exposure assessments can move from the household-level to being more proximal to estimating 

individual-level exposures, for example by providing data to estimate individual ingestion rates. 

However, challenges associated with observational methods include characterizing the variability of 

human interaction with different environmental reservoirs, so the heterogeneity of data output from these 

methods may introduce prohibitive amounts of uncertainty into ingestion rate estimates. 

Findings from recent evaluations WaSH interventions highlight the limitations of using household-level 

estimates of fecal indicators. Luby and colleagues reported protective effects on diarrhea from the tested 

WaSH interventions except water treatment with chlorine, even though reductions in FIB were found in 

both stored drinking water and food,108 suggesting that the chlorine-susceptible bacteria used to measure 

fecal contamination were not representative of chlorine-resistant pathogens, such as protozoa, 

contributing to waterborne disease. This is consistent with the trial’s findings of reductions in Giardia 

infection in all WaSH arms but the water treatment in households from this arm.
109 The same evaluation 

also found protective effects on diarrhea and infections with protozoa and soil-transmitted helminths in 

the sanitation-only arm,109,110 even though there was no evidence of a change in FIB in water, food, soil, 



33 

 

 

on hands or a change in fly density,
111 suggesting reductions in disease transmission not captured by the 

FIB measurements. Reese and colleagues reported no impact on diarrhea but reduced stunting from a 

water supply and sanitation intervention despite no evidence of a reduction in fecal contamination of 

drinking water or hands.112 Pickering and colleagues also found no effect of a community-led sanitation 

intervention on diarrhea but an improvement in child growth, despite no reduction in fecal contamination 

in drinking water; however, latrine fly presence and observed human and animal feces did significantly 

decrease in the treatment group.113 

The shortcomings of using fecal indicators are amplified by the limited association between indicators 

and the presence of enteric pathogens.114,115 Indicators have been commonly used for environmental 

samples in part because of the challenges associated with detecting specific pathogens using traditional 

approaches, such as the need for large sample volumes, different detection methods depending on the 

pathogen and resource-intensive field collection and lab processes. As a result, detecting specific 

pathogens in environmental samples can be challenging in low- and middle-income country settings 

where resources are limited, contamination with multiple different pathogens is common and household 

water can be a scarce commodity. However, recent advances in environmental metagenomics57 and 

multiplex molecular methods53 mean that detecting multiple specific pathogens in environmental samples 

may soon be possible at scale.  

Using various human biological matrices to characterize internal exposure, such as stool, serum or saliva, 

does not estimate the ingested dose directly but rather provides an indication of past exposure. 

Furthermore, even when specific pathogens are not detected in biological samples, a host may still have 

been exposed to those pathogens. There is limited evidence on how much of an ingested dose reaches the 

target cells and is capable of inducing infection. Animal models often do not exist for enteric pathogens or 

do not cause the same health outcomes as in humans. Dose-response data are limited because human 

challenge studies are difficult, expensive, usually single-pathogen focused, primarily performed among 

adults in high-income countries, cannot control for previous exposures and differences in immune 
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responses to infection, and may be at odds with acceptable ethical standards.116 In addition, one’s immune 

response depends on a number of host-specific factors including history of previous exposure (acquired 

immunity),95 nutritional status,96 genetics,97 composition of the gut microbiome,98 underlying disease such 

as HIV infection,99 and age (antibodies can appear in low concentrations in young children, particularly in 

saliva).100 For stool samples, pathogens may only be shed by an infected person for a short period of time 

(days, weeks) or shed intermittently,117 making collection of relevant stool samples more complex. It can 

also be difficult to attribute a specific pathogen to a disease outcome when multiple enteric pathogens are 

detected in stool simultaneously or when asymptomatic infections are common.  

2.5 Lessons from other areas of environmental health 

2.5.1 Measurement error  

Analytical frameworks have been introduced to assess the impact of exposure measurement error or the 

effect of using proxy measures of external exposure in health effects models. There is now a large body of 

research on measurement error introduced by assigning exposure using stationary outdoor air-monitoring 

sites, a method that is used widely to establish regulatory limits on ambient air quality,118 as surrogates of 

actual individual-level exposures.119 This research has elucidated the presence and effects introduced by 

these proxy measures within many types of epidemiologic models. Although the nature of measurement 

error when estimating exposure to environmental contaminants may be complex and multifactorial, 

studies have shown that some forms of error may lead to biases and greater uncertainties in estimating a 

true exposure-outcome relationship.120  

2.5.2 Air quality  

In air pollution epidemiology, moving from population-level measures of exposure to measures that better 

reflect exposure at the individual level, and thus reduce exposure measurement error, has been a focus of 

research for the past two decades. For example, in 1999, the National Research Council Committee on 

Research Priorities for Airborne Particulate Matter outlined the quantification of the difference between 

proxy and personal measures of exposure as a key research priority for better understanding differences in 
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observed health risk estimates across individuals and locations.121 Since then, new approaches have been 

designed to measure an individual’s inhalation exposure to particulate matter in air, using personal 

breathing zone samplers. To characterize exposures to cookstove emissions, in particular, new devices, 

such as the Enhanced Children's MicroPEM (ECM)122 and the Ultrasonic Personal Air Sampler 

(UPAS),123 have been developed to provide more precise measurements for use in public health research 

applications in low-income countries. Personal exposure monitors have not been developed to estimate 

exposure to enteric pathogens, perhaps in part because of some of the differences between characterizing 

exposure to particulate matter and pathogens. These include, that pathogens can be transmitted via 

multiple pathways and the challenges associated with real-time detection of a potentially diverse set of 

pathogens found in low concentrations in the environment. 

Measuring long-term exposures to air pollution, a known driver for a range of chronic adverse health 

effects, necessitates alternative approaches for characterizing exposure, and often employ hybrid methods, 

which combine both modeling and personal monitoring. A promising, and increasingly common approach 

for estimating spatiotemporally-resolved long-term exposures to particulate matter and several gaseous 

pollutants comes from satellite remote sensing.124 These methods have the ability to use satellite optical 

instrumentation, calibrated with ground-level ambient monitoring data, to create long-term global 

exposure surfaces.125 Some water quality parameters can be measured via remote sensing (e.g., 

chlorophyll-a, nutrient concentrations), but these methods apply more to large water bodies than to 

individual glasses of water consumed by humans.126 Other methods integrate human activity patterns, 

questionnaires related to sources of exposure, and actual measurements conducted within defined settings 

(i.e., microenvironments) to predict individual level air pollution exposures over short- and long-term 

periods. The Air Pollution Exposure Model (APEX) is an example of this class of air pollution exposure 

model, which was developed in response to prior limitations related to air pollution exposure and which 

may offer insights for novel, combined approaches for characterizing exposures to enteric pathogens as 



36 

 

 

well.60 Similarly, there are analogous hydrological water quality models that have been developed for 

estimating exposures to water pollution for surface water bodies. 

2.5.3 Chemical Toxicants  

Chemical toxicant exposure assessments, the measurement of a chemical, or its metabolite, degradate, 

reaction product or surrogate, include external and internal exposure assessments. External chemical 

exposure assessments can be pathway-specific (e.g., water, air) and route-specific (e.g., ingestion, 

inhalation) while internal assessments integrate all pathways and routes of exposure through which a 

chemical has entered the body. For example, assessment of dermal chemical exposures includes the use of 

hand wipes, patches and body suits as dosimeters of exposure. The dosimeters are removed after exposure 

and chemical concentrations are measured in them, estimating dermal exposure.127 Similarly, personal air 

space pumps or patches are used to estimate inhalational exposures and duplicate diet or food or water 

measurements may be used to estimate ingestion exposures.2 Emerging techniques such as the use of 

silicon wristbands to absorb airborne contaminants have also been used as efficient means to capture 

exposure to up to 150 contaminants in air, including polychlorinated biphenyls, pesticides, flame 

retardants, polycyclic aromatic hydrocarbons and volatile organic chemicals.128 Advances in exposomics 

using high-resolution metabolomics have created advanced methods of internal exposure assessments 

with the simultaneous detection of numerous endogenous and exogenous chemical metabolites in human 

biological samples.129 Biomonitoring is also seeing application in air pollution exposure assessments in 

low-income settings, for example with the detection of polycyclic aromatic hydrocarbons in urine to 

quantify household air pollution exposure.130  
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3 Chapter 3 – Research Aim 1: Fecal contamination of the 

environment and child health: A systematic review and meta-analysis 

using individual participant data 

Manuscript authors: Frederick G.B. Goddard, Amy J. Pickering, Ayse Ercumen, Joe Brown, Howard H. 

Chang, Thomas Clasen 

3.1 Context 

The mixed impact of WaSH interventions on child health outcomes could indicate that interventions did 

not sufficiently reduce exposure to fecal contamination, or that household fecal contamination as a proxy 

for individual-level exposure to enteric pathogens is not sufficiently associated with adverse child health 

outcomes. For the first research aim of this dissertation we built a database of household-level fecal 

contamination data along common fecal-oral transmission pathways as proxies for external enteric 

exposure, and matched those data to child health outcomes. These data were collected under the umbrella 

of WaSH intervention evaluations, and we employed them here to estimate enteric exposure-health 

outcome relationships.   

3.2 Background 

Traditional WaSH approaches have focused on reducing open defecation, promoting improved sanitation, 

encouraging handwashing with soap and improving the quality of and access to water. While reducing 

fecal contamination and subsequent occurrence of enteric pathogens in the household environment is an 

essential condition for WaSH interventions to improve infectious disease burdens, few studies actually 

measure the association between fecal contamination and health or the effects of interventions on fecal 

exposure. Those that do are largely confined to measurements of drinking water quality, one of multiple 

possible sources of exposure. Pooled analyses of these studies have been limited to quantifying the 

relationship between fecal contamination in drinking water and diarrhea, and have yielded differing 

results. Gundry et al. reported no association between three FIB and diarrhea (OR: 1.12, 95% CI 0.85, 

1.48);1 Gruber et al. found a significant association between levels of E. coli in drinking water and 
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diarrhea (RR: 1.54, 95% CI 1.37, 1.74) but not for fecal coliforms (RR: 1.07, 95% CI 0.79, 1.45);2  Hodge 

et al., the only study using individual participant data (IPD), showed a higher odds of diarrhea with 

increasing levels of fecal coliforms in drinking water (OR: 1.18, 95% CI 1.11, 1.26), but was limited to 

seven studies.3  

A study by Pickering, Ercumen et al. in rural Bangladesh investigated the relationship between household 

fecal contamination along multiple pathways (water, soil, food, hands and flies) and WHO- and caregiver 

defined diarrhea as well as bloody stool, measured concurrently and prospectively.4 Results from this 

study were mixed, finding evidence of an association between E. coli levels on child hands and WHO- 

and caregiver defined diarrhea (IRR 1.23, 95% CI 1.06, 1.43; IRR 1.31, 95% CI 1.11, 1.55) and between 

E. coli in food and bloody stool (IRR 1.34, 95% CI 1.07, 1.68) when samples were collected 

prospectively. This study also found an association between E. coli levels in flies and soil and caregiver-

defined diarrhea (PR 1.15, 95% CI 1.04, 1.26; PR 1.16, 95% CI 1.02, 1.32) when samples were collected 

concurrently with diarrhea data.  

Mixed results from these studies and findings from recent WaSH evaluations have raised questions about 

the relative contribution of different fecal-oral transmission pathways to adverse acute enteric health 

outcomes, such as diarrhea, and the relationship between fecal contamination and child linear growth. Our 

aim was to conduct a systematic review and meta-analysis using IPD to examine the relationship between 

fecal contamination and child health. Specifically, we sought to test whether fecal contamination along 

common transmission pathways, as measured by FIB and fly densities, is associated with diarrhea and 

linear growth in children under the age of five in low- and middle-income countries. Unlike a 

conventional meta-analysis that pools available estimates of effect from eligible studies, the use of IPD 

offered the opportunity to implement consistent analytical approaches across individual studies, as well as 

assess these relationships between child health and fecal contamination along common exposure 

pathways even when individual studies did not publish the effect estimates of interest.5  
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3.3 Methods 

3.3.1 Search strategy and selection criteria 

We searched the PubMed, Web of Science and Embase databases using the search strings specified in 

Appendix A. The search was conducted on May 21, 2018 and included all study designs. We included 

published studies, studies with a published protocol and studies identified from conference abstracts. 

During the initial title/abstract screening, studies were included for further review if they measured 

diarrheal disease prevalence or child linear growth. Studies were excluded if they 1) were set in high-

income countries; 2) were conducted in the public domain (i.e. schools, hospitals, child care centers); 3) 

did not include data on children under the age of five; or 4) pertained to reviews, commentaries, progress 

reports or studies that used large national demographic survey data (i.e. studies that conducted no original 

data collection). For the diarrhea analysis, all diarrhea definitions were eligible but due to risk of recall 

bias studies were excluded if they used a recall period longer than seven days.6 For the linear growth 

analyses, cross-sectional studies were excluded, due to the lack of longitudinal environmental 

contamination data measured prior to the growth outcomes. Full texts included after title/abstract review 

were reviewed against the same inclusion and exclusion criteria. In addition, studies were excluded during 

full text review if they did not measure FIB concentrations along at least one of the major fecal-oral 

transmissions pathways. FIB concentrations are less commonly measured fFor flies, so we included 

studies that measured fly density in with fly traps in food preparation areas over a period of time 

(typically 24 hours) as a proxy for the transmission of fecal contamination on to household food. 

Title/abstract screening and full text reviews were duplicated by FG and a research assistant. The search 

was conducted in English but full texts published in French, Portuguese and Spanish were also reviewed. 

For studies determined to be eligible after full text review, we sought IPD from corresponding authors 

and extracted relevant summary information from the manuscripts. Studies for which IPD were not 

available were not included in a parallel conventional meta-analyses, because studies typically did not 

report fecal exposure-health outcome associations. This study was registered with PROSPERO 
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(CRD42018102114) and the study protocol with a pre-specified analysis plan was made publicly 

available on the Open Science Framework (OSF) (https://osf.io/G6AKD/) before the beginning of data 

analysis. Updates to the search strategy and analysis plan since publication of the original protocol are 

also publicly available on the OSF. 

3.3.2 Data analysis 

We requested caregiver-reported diarrhea and height/length measurements at the individual level, along 

with child age, gender and survey date. At the household level we requested FIB concentrations in 

drinking water, soil, food, fomite and hand rinses, as well as fly densities in food preparation areas, 

treatment status and environmental sample collection date. These reflect the expected common pathways 

of fecal exposure.7 As clustering variables, we requested unique identifiers for each child, household and 

community to allow for adjustment of clustered health outcomes. These data were anonymized prior to 

analysis. We did not require additional institutional review board approval for use of these data. We 

extracted information on study location, study design, FIB used and whether study communities were 

urban or rural from study protocols or manuscripts. To control for the effects of precipitation on 

exposure,8 our model included a term differentiating between wet and dry season months based on the 30-

year average monthly precipitation for each included study from the WorldClim dataset.9  

We then matched household-level fecal contamination data to individual-level health data for all children 

under the age of five. For the diarrhea analyses, single time-point environmental samples collected on the 

same day or up to seven days before diarrhea data collection were matched to caregiver-reported diarrhea. 

For the linear growth analyses, we matched all available environmental samples collected during a child’s 

life up to the day anthropometric measurements were taken and calculated the median. We transformed 

FIB concentrations and fly densities into categorical variables based on a log10 scale with four levels of 

contamination as our exposure variables: <1, 1-10, 11-100 and >100 colony-forming unit (CFU) or most 

probable number (MPN) for FIB (per 100ml for hand and fomite rinses, and drinking water; per dry g for 

food; per dry mg for soil) and <1, 1-10, 11-100 and >100 flies per 24 hrs for fly densities. We generated 

http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018102114
https://osf.io/G6AKD/
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height-for-age Z-scores (HAZ) with the height/length, age and gender data using the World Health 

Organization (WHO) growth standards.10 For precipitation, we classified a month as a wet season month 

if average precipitation was >60mm, and as a dry season month if average precipitation was <60mm, 

based on the Köppen–Geiger climate classification system.11 

We conducted our analyses using multilevel generalized mixed effects models. Primary outcomes were 

diarrhea and HAZ scores, and parameters of interest were the odds ratio (OR) for diarrhea and change in 

HAZ scores associated with a 1-log10 difference in measures of fecal contamination along different 

transmission pathways, indexed by p below. We also included the odds of stunting (HAZ score less than -

2) as a secondary outcome (not pre-specified). We modeled each study individually using the following 

models for the primary outcomes:   

𝑙𝑜𝑔𝑖𝑡 (𝑑𝑝,𝑖𝑗𝑘) =  𝑢𝑖𝑗𝑘 + 𝑢𝑗𝑘 + 𝑢𝑘 +  𝛽1𝐹𝐶𝑝,𝑗𝑘 + 𝛽2𝐴𝑔𝑒𝑖𝑗𝑘 + 𝛽3𝑇𝑟𝑒𝑎𝑡𝑗𝑘 + 𝛽4𝑅𝑒𝑠𝑖𝑑𝑘 + 𝛽5𝑆𝑒𝑎𝑠𝑜𝑛𝑘  

ℎ𝑎𝑧𝑝,𝑖𝑗𝑘 =  𝑢𝑗𝑘 + 𝑢𝑘 +  𝛽1𝐹𝐶𝑝,𝑗𝑘 + 𝛽2𝐴𝑔𝑒𝑖𝑗𝑘 +  𝛽3𝑇𝑟𝑒𝑎𝑡𝑘 + 𝛽4𝑅𝑒𝑠𝑖𝑑𝑘 

FC represents the log10 categories of fecal contamination (0, 1, 2 and 3),  based on a single time-point 

sample in the diarrhea model and based on the median of longitudinal samples in the linear growth model. 

We controlled for child age (in years), treatment status (any intervention versus no intervention) and 

residence (urban versus rural). For the diarrhea model we also controlled for season (wet versus dry). In 

studies that had multiple children within households or communities, we controlled for clustering at 

household-level j and community-level k. For the diarrhea model we also controlled for clustering at 

child-level i in longitudinal studies that had repeated matched individual-level diarrhea reports and 

environmental samples. We combined effect estimates from each study in a meta regression using a 

random effects model to account for between-study heterogeneity. We characterized between-study 

heterogeneity using I2 to describe the percentage of total variation across studies that is due to 

heterogeneity rather than chance.12 
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We conducted subgroup analyses for pathways with sufficient data by stratifying the analyses by child 

age, by each log10 category compared to no contamination, treatment status, FIB type and urban versus 

rural communities. Age stratification was based on the US EPA Guidance for Selecting Age Groups for 

Monitoring and Assessing Childhood Exposures to Environmental Contaminants: Birth to <3 months, 3 

to <6 months, 6 to <12 months, 1 to <2 years and 2 to <5 years.13 Stratification by log10 category and FIB 

type was not pre-specified in our analysis plan and was added in order to test how FIB used modified the 

exposure-outcome associations and to compare effect sizes for different levels of fecal contamination to 

no measured contamination. For the diarrhea analyses we also stratified by wet versus dry season and 

timing of environmental and diarrhea data collection. We stratified timing of data collection by cross-

sectional (diarrhea and environmental data collected on the same day) versus prospective (diarrhea data 

collected 1-7 days after environmental data) data collection. We used the same statistical analysis 

methodology for all subgroup analyses as we did for the main outcomes, except for age and log10 category 

stratification where we pooled from all studies in the same model due to data sparsity and controlled for 

clustering at the study and community levels. To consider the effects of transforming the exposure 

variables in to four categories of fecal contamination, we conducted sensitivity analyses that both 

expanded to six log10 categories (i.e. <1, 1-10, 11-100, 101-1000, 1001-10,000, and +10,000) and used a 

continuous log10 transformation.  All analyses were completed in R version 3.6.14  

We assessed the risk of bias for the participating studies for each outcome and fecal-oral transmission 

pathway separately. We used a modified version of the Liverpool Quality Assessment Tool (LQAT), an 

adaptation of the Newcastle-Ottowa scale.15 We chose the LQAT because it was adaptable to different 

study designs and considers the risk of bias in both exposure and outcome measures.16 We assessed risk 

of selection, response rate and follow-up bias by examining how households were chosen for 

environmental sample collection and the integrity of collected environmental data. We also assessed risk 

of bias from data collection methods for exposure and outcome assessment, as well as from blinding.  
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3.4 Results 

We screened 2,318 studies and sought IPD from 73 eligible studies (Figure 3-1). We received IPD from 

30 studies, 10 of which did not meet all eligibility criteria after review of the data. Twenty studies were 

included in the meta-analyses,17–36 of which all had diarrhea data and seven had linear growth data. Of the 

42 studies we were not able to acquire IPD for, only six estimated fecal contamination along pathways 

other than drinking water and eight measured linear growth. Tables 3-1 and 3-2 present a summary of 

study characteristics and outlines what fecal-oral transmission pathways studies provided data for. We 

matched health outcome observations (diarrhea or linear growth) to fecal contamination data in drinking 

water (N = 54,225), followed by child hand rinses (N = 10,732), kitchen fly densities (N = 10,514) and 

fomites (N = 5,913). Fecal contamination on fomites was characterized using sentinel toy rinses. Toys are 

a fomite young children readily interact with and thus is used to characterize fomite fecal contamination.37 

For food and soil we only received data from one study, so we were not able to conduct pooled meta-

analyses. We received data from countries in South America, Sub-Saharan Africa, South and South-East 

Asia. Most of the data originated from rural settings and FIB used were E. coli and fecal coliforms, both 

of which are designated by the WHO as indicators for fecal contamination.38 
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Figure 3-1: Study selection 
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Table 3-1: Study summary characteristics for the diarrhea analyses 
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Table 3-2: Study summary characteristics for the linear growth analyses 

 

We found higher odds of diarrhea with 1-log10 higher FIB concentrations in drinking water (OR: 1.09; 

95% CI 1.04, 1.13; p = 0.0002; I2 = 34%) and on child hands (OR 1.11; 95% CI 1.02, 1.22; p = 0.021; I2 = 

0%). There was no evidence that FIB on fomites (OR 1.05; 95% CI 0.94, 1.16; p = 0.40; I2 = 0%) or food 

preparation area fly density (OR 0.95 95% CI 0.82, 1.11; p = 0.54; I2 = 10%) was associated with diarrhea 

(Figure 3-2).  

 

Figure 3-2: Odds of diarrhea for 1-log10  higher fecal contamination by fecal-oral transmission pathway  

For the linear growth analyses, matched median fecal contamination was derived from 1-8 samples, 

depending on data availability. We found lower HAZ scores with 1-log10 higher median FIB 

concentrations in drinking water (HAZ -0.04; 95% CI -0.06, -0.01; p = 0.0054; I2 = 19%) and on fomites 

(HAZ -0.06; 95% CI -0.12, 0.00; p = 0.044; I2 = 57%). There was no evidence that FIB on child hands 
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(HAZ -0.02; 95% CI -0.09, 0.04; p = 0.49; I2 = 61%) or food preparation area fly density (HAZ 0.03; 

95% CI -0.04, 0.11; p = 0.41; I2 = 26%) was associated with linear growth (Figure 3-3).  

 

Figure 3-3: Difference in HAZ score for a median 1-log10  higher fecal contamination by fecal-oral transmission pathway 

For child stunting, we found higher odds of stunting with 1-log10 higher median FIB concentrations on 

child hands (OR: 1.08; 95% CI 1.02, 1.15; p = 0.0055; I2 = 0%) and fomites (OR 1.10; 95% CI 1.03, 1.19; 

p = 0.0086; I2 = 0%). There was weaker evidence for an association between median FIB concentrations 

in drinking water and stunting (OR 1.05; 95% CI 1.00, 1.11; p = 0.062; I2 = 30%) (Appendix B, Figure B-

1). Sensitivity analyses suggested similar findings for both the diarrhea and linear growth analyses after 

using different transformations of exposure variables using both six log10 categories and continuous log10 

(Figures B2-B5). Forest plots detailing the meta-analyses for diarrhea and linear growth and stunting with 

single-study findings are provided in Appendix B, Figures B-6, B-7 and B-8. 

Secondary analyses that stratified by level of fecal contamination suggested that the odds of diarrhea with 

FIB concentrations in drinking water and on child hands, and the lower HAZ scores with FIB 

concentrations in drinking water and on fomites was driven by high levels of measured contamination 

above 10 CFU/MPN per 100ml sample and was less evident for 1-10 CFU/MPN (Figures B-9 and B-10). 

Age-stratified analyses of the pooled data suggested that the higher odds of diarrhea associated with 

higher FIB concentrations in drinking water affected all children except those under six months (Figure 

B-11). For child hand and fomite rinses, a higher odds of diarrhea was observed for children aged 12-24 
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months. For child linear growth, we found lower HAZ scores for children aged 6-24 months and >12 

months with higher median FIB levels in drinking water and on fomites, respectively (Figure B-12).  

Other stratified analyses suggested that there may be a stronger relationship between fecal contamination 

in water and diarrhea in urban compared to rural communities (Urban: OR 1.25; 95%CI 1.12, 1.40, Rural: 

OR 1.07; 95%CI 1.02, 1.11) (Tables 3-3 and 3-4). For diarrhea, we found no other differences by 

treatment status, FIB used, urban versus rural communities, dry versus wet season and prospective versus 

cross-sectional diarrhea data collection. Other stratified analyses for linear growth showed no differences 

between strata. 
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Table 3-3: Results from the stratified diarrhea analyses 
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Table 3-4: Results from the stratified linear growth analyses 
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Findings from our risk of bias assessment suggest that the greatest risk of bias for both the diarrhea and 

linear growth analyses originates from the outcome assessments, in large part because it is not possible to 

blind respondents or data collection staff from most WaSH interventions (Appendix C). This may 

introduce bias in to the analyses, for example if interventions reduced levels of household fecal 

contamination and members of those households were also less likely to report diarrhea. This may 

introduce bias in to the analyses, for example if interventions affected levels of household fecal 

contamination and members of those households were also less likely to report diarrhea. Our analyses 

also included studies that carried possible risks of selection, response rate and follow-up bias, primarily 

where environmental assessments were tertiary outcomes, so study design was not tailored towards 

optimal environmental sample collection. 

3.5 Discussion 

In contrast to mixed results from individual studies and meta-analyses using summary estimates, this 

analysis of nearly ninety thousand individual participant data points from 20 studies suggests that 

household FIB concentrations are associated with child diarrhea and impaired linear growth. Evidence of 

associations varied by exposure pathway as did data availability, with FIB concentrations in drinking 

water representing over half of the included environmental data, whereas food and soil were sampled in 

only one study. In our analyses we were not able to control for all potential confounders, so our findings 

should be interpreted with caution. We also found low to moderate between-study heterogeneity in some 

meta-analyses. These results are the first to pool data from a number of settings to find that fecal 

contamination in the household environment is associated with impaired child linear growth, and that 

fecal contamination along pathways other than drinking water can have adverse effects on child health. 

The findings support a recent consensus statement by WaSH researchers recommending that interventions 

focus more closely on the need to reduce fecal contamination in the domestic environment to achieve 

consistent child health benefits.39 
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In our age-stratified analyses, we found that interventions may be more effective if targeted towards 

specific age groups. Water quality interventions may have limited effects on children under the age of six 

months, possibly because infants are experiencing limited exposure to household drinking water before 

weaning.40 Interventions that reduce exposure from hand- and/or object-mouthing may be targeted at 

children aged 12-24 months, where we found the strongest associations between fomite rinses and 

diarrhea and linear growth, and hand rinses and diarrhea. Our log-stratified analyses indicated that 

diarrhea and linear growth burdens were driven by high levels of fecal contamination. It is important to 

note, that this does not necessarily suggest low levels of fecal contamination are unimportant for child 

health, since this finding may have resulted from misclassification of exposure due to limits of detections 

at low FIB concentrations. In other stratified analyses we found no differences by FIB used, in contrast to 

a prior systematic review that found a significant association between levels of E. coli in drinking water 

and diarrhea but not for fecal coliforms.2 We found that overall effect estimates were driven by high 

levels of fecal contamination, but note that this finding could in part be induced by limits of detection at 

low levels of fecal contamination leading to misclassifications of exposure.  

The limitations of this study reflect shortcomings in enteric exposure assessments in WaSH research. 

First, despite the vast number studies attempting to evaluate the impact of WaSH on health, few actually 

measure fecal contamination in the environment despite the fact that fecal exposure is a necessary 

intermediate step along the pathway to health effects. Those that do are largely confined to drinking water 

despite evidence suggesting that food and exposures along other pathways, such as soil, are likely 

contributors to overall enteric exposure.41,42 Second, we were not able to obtain sufficient IPD for some of 

the pre-specified stratified analyses. We found a stronger effect from fecal contamination in drinking 

water on child diarrhea in urban areas, but most available datasets had limited IPD for urban settings, 

except for drinking water and diarrhea and a small amount of urban data for child hands and diarrhea. 

Understanding the relationship between fecal contamination and child health is a priority in rapidly 

urbanizing low-income countries. We also had limited data for young children under the age of six 
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months, resulting in either no estimates or estimates with high levels of uncertainty for this age group. 

Third, there is risk of bias from the outcome assessments because of reliance on caregiver reported 

diarrhea and anthropometric measurements. Reported diarrhea is subject to courtesy and recall bias,6,43 

and anthropometric measurements are also prone to measurement error, particularly when data collection 

staff are not blinded to interventions.44 Fourth, studies generally use FIB data rather than actual pathogens 

as a proxy for health-related fecal contamination, an indicator with well documented shortcomings.45 

Fifth, none of the included studies estimated fecal contamination along all included pathways, so we were 

limited to modeling each pathway individually without adjusting for fecal contamination along the other 

pathways in our models. While these factors limit the inferences that can be drawn from the data, they 

also suggest the need for significant improvements in the manner in which WaSH research assesses the 

impact of interventions on fecal exposure. 

Even though our findings provide evidence of associations between fecal contamination and adverse child 

health outcomes, we were not able to control for all possible factors that could affect the modeled 

exposure-outcome associations, so there is risk of uncontrolled confounding in our results. It is also 

important to note that we used measured household-level FIB concentrations and fly density as a proxy 

for individual-level exposure with no data on the extent to which children are actually exposed to specific 

disease-causing pathogens. These type of proxy measures are prone to introducing heterogeneity to 

exposure-outcome effect estimates as well as bias the associations, commonly towards the null.46 So 

while we found associations between domestic fecal contamination and adverse child health outcomes, 

improved measures of exposure – including direct measures of known or suspected enteric pathogens – 

would better characterize exposure-outcome relationships, and could inform intervention design and 

evaluation through this characterization.  
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4 Chapter 4 – Research Aim 2: Exposure measurement error and the 

characterization of child exposure to fecal contamination in drinking 

water 

Manuscript authors: Frederick G.B. Goddard, Howard H. Chang, Thomas Clasen, Jeremy A. Sarnat 

4.1 Context 

The second research aim of this dissertation built on the findings from the first aim by critically 

evaluating the evidence generated using exposure measurement error frameworks more commonly 

employed in other areas of environmental health, including air pollution epidemiology. We used the 

extensive water quality database we compiled for the first aim and sought to describe how random 

exposure measurement error, i.e. the difference that is not systematically biased in a particular direction 

between the observed exposure using proxies such as household-level fecal contamination and the true 

exposure, might affect estimated exposure-outcome effect estimates. 

4.2 Background 

Methods to characterize exposure to fecal contamination from contaminated drinking water in low- and 

middle-income settings have typically been limited to estimating fecal loading in the environment using 

indicators of fecal contamination.1 These are proxy measures, in the sense that rather than measuring the 

actual ingestion of enteric pathogens associated with fecal contamination, they infer exposure by 

measuring fecal indicator bacteria (FIB) concentrations in the environment and are heavily based on 

assumptions on the interactions of individuals with that environment. In addition to the well-documented 

shortcomings of using FIB as a proxy for enteric pathogens,2 the difference between the observed 

exposure, i.e. the exposure assigned from these proxy measures, and the true exposure represents a 

potential form of exposure measurement error. Other areas of environmental health have detailed how 

exposure measurement error may introduce bias and uncertainty in estimated exposure-outcome 

relationships, thereby obscuring true associations.3 Correspondingly, fields such as air pollution 
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epidemiology have seen increased emphasis on understanding errors associated with differences between 

individual or personal exposures and other proxy exposure measures used in health effects modeling.4 

The findings from the first research aim of this dissertation suggest that household-level FIB 

concentrations in drinking water, as a proxy measure of individual-level enteric pathogen ingestion from 

drinking water, are associated with both reported diarrhea (OR 1.09; 95%CI 1.03, 1.15) and lower height-

for-age Z (HAZ) scores (HAZ -0.04; 95%CI -0.06, -0.01). Notably, we also observed moderate 

heterogeneity among studies in the strengths of association for both the diarrhea (I2= 34%; 95% CI 0 – 

62%) and growth analyses (I2= 19%; 95% CI 0 – 63%). A primary limitation of this analysis was 

potential error in outcome measurement. In these studies, most of the data were collected for non-blinded 

intervention evaluations where caregiver reported diarrhea and linear growth measures are subject to 

participant and enumerator bias.5–7 Another possible source of bias and uncertainty in our analysis may be 

in part due to errors in the assigned exposure. Prior research studying the effects of exposure 

measurement error from proxy measures of exposure in air pollution epidemiology suggest that these 

proxy measures can introduce uncertainty and bias risk estimates towards no observed effect.8–10 Similar 

effects of exposure measurement error have also been shown in other areas, such as chemical exposures11 

and diastolic blood pressure measurements.12 It is possible that findings from our IPD analysis may 

exhibit similar uncertainty and bias due to exposure measurement error from the use of FIB 

concentrations in household drinking water as a proxy for personal exposure to enteric pathogens.  

One way of broadly categorizing types of exposure measurement error is to assess the distribution of error 

around the measurement of interest. These distributions are typically referred to as being either Berkson 

or classical, and may contain elements of both.13 Briefly, classical measurement error occurs when the 

error is independent from true exposure and will generally originate from misclassification of individual-

level exposure. In contrast, Berkson measurement error is independent from the observed exposure, or 

exposure indicator used in an epidemiologic model, and typically originates from assigning aggregate or 

mean exposure values in place of individual-level data. In general, classical error has been shown to lead 
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to increased uncertainty and an attenuation of the dose-response relationship, leading to biased effects 

towards a null hypothesis. This is also known as regression dilution bias. Berkson error typically does not 

introduce bias, but can lead to an increase in uncertainty and a subsequent loss in power to detect 

association where they truly exist. These types of measurement errors are random, in the sense that the 

difference between observed and true exposure averages out to zero and is not consistently biased in a 

particular direction.14  

Theoretically, there are a number of different potential sources of error in fecal exposure assessments that 

could introduce Berksonian and/or classical-type errors. Some examples include 1) temporal or spatial 

variability in water quality; 2) assigning household- or community-level water quality to individuals; 3) 

the use of FIBs as proxies for enteric pathogens; 4) processing errors (i.e. during sample collection, 

transport or laboratory instrumentation errors). This is not an exclusive list of sources of error and each 

source could be further broken down in to underlying sources of error. Here, we introduce a 

conceptualized model of potential sources of measurement error using a formal measurement error 

framework.15 We demonstrate how such a framework might be evaluated and its ability to quantify the 

relative contributions of measurement error, using empirical data of drinking water across several global 

low- and middle-income settings.  

4.2.1 Exposure measurement error framework 

Although quite limited, prior research on the effects of exposure measurement error on waterborne 

disease epidemiology has found preliminary evidence of regression dilution bias between 14 and 57% 

from the use of FIB on the relationship between fecal contamination in recreational water and swimming-

associated illness.16 Another study found attenuation between 35 and 45% from spatiotemporal variability 

in rainfall data in subsequent associations between heavy rainfall and diarrhea.17 However, these studies 

focused on single components of error, and we did not find any formal discussions pertaining to multiple 

sources of exposure error for enteric pathogen exposure in the peer-reviewed literature. Here, we 

introduce an exposure measurement error framework to conceptualize multiple possible components of 
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error. We adapt a framework for fecal contamination exposure in drinking water based on an approach 

presented in Zeger et al. to distinguish sources of exposure measurement error.15 While our analysis 

borrows from extensive work examining air pollution health effects, we intend that this research aim 

serves as an initial step for discussing ways of incorporating estimates of error for enteric exposures in a 

low-income setting context.  

Zeger et al. consider sources of error in the assignment of ambient air quality to a population from central 

monitoring sites, a more distal measure of exposure than attempting to quantify personal exposures. 

While this framework is contextual to time series studies of air pollution health effects, here, we use this 

approach to identify and conceptualize sources of measurement error from drinking water fecal 

contamination exposure assessments. We see parallels in the proxy measures commonly used for fecal 

contamination exposure assessments to central-site air pollution exposure assessments, although we do 

not claim this framework includes all possible sources of error for water quality applications. In the 

current example involving fecal contamination exposure and response, as in the air pollution design 

settings that Zeger et al. used, technical and logistical constraints as well as limited resources lead to an 

inability to obtain measures of true personal exposure x for individual i at time t. Instead, exposure may 

be estimated by measuring household FIB concentrations z at time t. In Figure 4-1 we summarize the 

differences between measured FIB concentrations zt, the only component in this framework that is 

actively measured, and true personal exposure to fecal contamination xit, as a proxy for enteric pathogen 

exposure. 
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Figure 4-1: Fecal contamination in drinking water exposure measurement error framework (adapted from15) 

There is a difference between measured FIB concentrations in household drinking water zt and true 

personal exposure to fecal contamination xit – the exposure measurement error – which we split in to three 

components of error in accordance with the Zeger et al. framework (Equation 4-1).  

𝑥𝑖𝑡 =  𝑧𝑡 + (𝑥𝑖𝑡 − �̅�𝑡) + (�̅�𝑡 −  𝑧𝑡
∗) + (𝑧𝑡

∗ −  𝑧𝑡)       (4-1) 

where ( xit - x̅t ) (xit-x̅t)describes error from the difference in aggregate fecal contamination exposure 

across a population x̅t (i.e. members of a household) and personal exposure xitxit; ((x̅t-zt
*) x̅t – z*

t ) 

describes measurement error from assigning household water fecal contamination zt
* as the exposure and 

not considering other exposures, such as exposure to fecal contamination experienced in the community 

wt
* that may make up the aggregate exposure x̅t x̅tacross a population; and ( z*

t - zt ) describes 

measurement error from the difference in measured household water FIB concentrations zt as an indicator 

of fecal contamination and the true levels of fecal contamination in household drinking water zt
*.  

Our current analysis sought to address the second and third components of this framework with the goal 

of examining how they may affect exposure-outcome relationships for exposure to fecal contamination in 

drinking water. This analysis does not seek to validate any single exposure characterization method, but 

rather to describe potential sources of error in current methods to help inform future methods 

development. In conducting this analysis, we sought to assess evidence and magnitude of exposure 

measurement error from: 1) from assigning household-level FIB concentrations zt
* as the exposure and 
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not considering community-level FIB concentrations wt
* (component 2) in the FIB-diarrhea relationship; 

and 2) from using single FIB measures zt ztcompared to repeated longitudinal measures zt
* (component 3) 

in the FIB-linear growth relationship.  

4.3 Methods 

4.3.1 Data 

We used data from 19 studies conducted in South America, Sub-Saharan Africa, South and South-East 

Asia.18–36 We requested permission from data owners for use of these data for this study. Eligible datasets 

included variables describing FIB concentrations in household drinking water, child age and intervention 

status. We included children aged 0-72 months. Datasets also included unique identifiers for each 

community, household and child. For the diarrhea analysis, we defined community water fecal 

contamination levels for a given household on a specific day as the median household water FIB 

concentrations of all other households in its community on the same day. We generated a variable for 

each city, or collection of communities in rural areas, describing whether water quality data was collected 

in a wet or dry season month using the same methodology as for Research Aim 12atching single 

household water FIB concentration observations zt to child survey data if they were collected on the same 

day or up to seven days before the survey was conducted, and then generated different scenarios for the 

aggregate fecal contamination x̅t by incorporating the median community water fecal contamination. For 

the growth analysis we used household water FIB concentrations data in wide format by matching all 

available water samples collected over the course of a child’s life up to the day anthropometric 

measurements were taken. 

4.3.2 Analytical approach 

We used a two-tiered analytical approach to examine evidence and magnitude of random exposure 

measurement error. First, in a simulated analysis we randomly assigned health outcomes (diarrhea cases 

and HAZ scores) to each observation with an estimated exposure and then regressed those outcomes on 

the error-prone exposure variables, represented by the measured proxies of exposure. Exposure was 
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assigned based on household water FIB concentration measurements, so the simulations retained existing 

correlations between communities, households and individuals. Evidence and magnitude of exposure 

measurement error was assessed by estimating the attenuation factor associated with the error-prone 

exposure variable.37 Second, we evaluated findings from our simulations by using empirical health 

outcome data from the same datasets and regressing it on both the estimated exposure and error-prone 

exposure variables. All analyses were conducted in R version 3.6.38 

Household versus Community Exposure 

Phase I: We simulated the effect of exclusively assigning household water fecal contamination zt
* for 

individual exposure, if estimated exposure is actually a combination of both household and community 

water fecal contamination wt
*wt

*, by: 

1. Randomly generating diarrhea cases for each included child with a combination of household- 

and community-level drinking water fecal contamination as the aggregate drinking water fecal 

contamination x̅t experienced by a child, using the Bernoulli distribution where the log odds of 

diarrhea 𝑑𝑖𝑗𝑘𝑙 for child i in household j in community k and study l is given by: 

 

2. Assuming that 1) community-level drinking water fecal contamination is represented by the 

median household water FIB concentrations in all other community households; 2) baseline odds 

of diarrhea β0 β0for this population is 0.15; 3) odds of diarrhea for 1-log10 higher FIB 

concentrations in drinking water β1 β1is 1.5; and 4) odds of diarrhea for children receiving an 

intervention β2β2, child age β3 (in years) and for data collected in the wet compared to the dry 

season β4β4 are 0.9, 0.8 and 1.2, respectively. Effect estimates were broadly based on model 
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outputs from our IPD analyses, although we assumed higher odds of diarrhea for FIB 

concentrations in drinking water because we hypothesize that the effect estimate for the exposure-

outcome relationship in our IPD analysis may have been suffering from regression dilution bias14. 

The model  accounted for clustering at the study-level μijkl and community-level μijk.μijk. 

3. Fitting multilevel generalized mixed effects models with the assigned diarrheal cases and 

replacing the combined household and community drinking water FIB concentrations x̅t with 

household-level FIB concentrations zt
* exclusively as the error-prone exposure variable.  

4. Calculating the attenuation associated with the estimated log odds of diarrhea (β1
*) from 

assigning household-level FIB concentrations zt
* exclusively as the error-prone exposure variable, 

compared to the assigned log odds of diarrhea (β1 = log(1.5)) if combined household and 

community drinking water FIB concentrations x̅t x̅t represent the exposure: α =  
𝛽1∗ 

𝛽1

=  
𝛽1∗ 

log (1.5)
 

5. Repeating simulations for a range of exposure scenarios by adding community water fecal 

contamination wt
* in 10% increments, starting with 100% household water fecal contamination 

and ending with 100% community water fecal contamination representing the estimated 

exposure. 

6. Stratifying the combined analysis: As reported under Research Aim 1, estimated odds of diarrhea 

for a 1-log10 increase in FIB concentrations in drinking water was higher in urban compared to 

rural settings, so we stratified the simulation by urban versus rural areas to differentiate whether 

exclusively assigning household drinking water fecal contamination zt
* may introduce more error 

in one setting compared to the other. 

7. Conducting sensitivity analyses: Assessed the effects our assumptions had on the simulation 

findings by repeating the simulations with a) higher and lower assumed odds of diarrhea for 

higher FIB concentrations in drinking water and; b) using the highest and lowest community 

water FIB concentrations instead of the median.   

Phase II: To evaluate findings from the simulations we applied empirical diarrhea data, by: 
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1. Beginning with household water fecal contamination zt
*zt

* as the estimated exposure and fitting a 

multilevel generalized mixed effects model to estimate the odds of diarrhea for 1-log10 higher FIB 

concentrations in household drinking water. 

2. Replacing household water fecal contamination zt
*zt

* with community water fecal contamination 

wt
* in 10% increments and fitting the same regression model with each new exposure assignment. 

3. Calculating the attenuation associated with the log odds of diarrhea (β1
*) from assigning 

household-level FIB concentrations exclusively as the error-prone exposure variable, compared to 

effect estimates that combine household/community water fecal contamination (β1). 

4. Stratifying the analysis: In addition to stratifying by rural versus urban areas, we also stratified by 

children aged 0-23 and 24-72 months, to consider how child mobility may modify the effect of 

assigning community water quality to exposure. We hypothesized that children aged 0-23 months 

are mostly non-ambulatory and spend the majority of their time within the confines of their home, 

and pre-school children aged 24-72 months are ambulatory and spend their time both in their 

home and within the confines of the community.  

4.3.3 Single versus Multiple Samples  

Phase I: We simulated the effect of assigning a single measure of FIB concentrations in drinking water zt 

as the error-prone exposure variable, by 

1. Randomly generating expected HAZ scores with the estimated household water fecal 

contamination zt
* represented by the median household water FIB concentrations from repeat 

samples, using the using the following model where the difference in HAZ-scores HAZijkl for 

child i in household j in community k and study l is given by: 
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2. Assuming that the 1) mean baseline HAZ score β0 in this population is -1.6; 2) difference in HAZ 

score for 1-log10 higher median FIB concentrations β1β1 is -0.2; 3) difference in HAZ score for 

children receiving an intervention β2β2 and for child age β3β3 (years) are 0.1 and -0.05; and 4) 

HAZ scores follow a normal distribution. The model accounted for clustering at the study-level 

μijklμijkl. 

3. Fitting multilevel generalized mixed effects models with the assigned HAZ scores and replacing 

the estimated household water fecal contamination zt
* represented by the median household water 

FIB concentrations from repeat samples with a randomly chosen single measure of household 

water FIB concentrations zt ztas the error-prone exposure variable.  

4. Calculating the attenuation associated with the estimated difference in HAZ score (β1
*) from 

randomly choosing a single measure of water quality zt as the error-prone exposure variable, 

compared to the assigned difference in HAZ score (β1  = -0.2), if the estimated exposure is 

represented by repeat samples of household water fecal contamination zt
* α =  

𝛽1∗ 

𝛽1

=  
𝛽1∗ 

−0.2
  

5. Repeating the simulations for children with at least two, three or four matched household water 

FIB concentration measures making up the median household water fecal contamination zt
*. We 

did not have sufficient data to conduct these simulations with more than four matched water 

samples. 

6. Stratifying the analysis: Previous research has found that fecal contamination in drinking water 

sources in low-income countries is higher in the wet season compared to the dry season,39 so we 

stratified these simulations by season to examine whether error introduced from variability in 

water quality is greater in wet season months compared to dry season months.  

7. Conducting sensitivity analyses: Assessed the effects our assumptions had on the simulation 

findings by repeating the simulations with a) higher and lower assumed difference in HAZ scores 
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for higher FIB concentrations in drinking water and; b) using the highest and lowest drinking 

water FIB concentrations from the repeat samples instead of the median.   

Phase II: To evaluate findings from the simulations we applied empirical linear growth data for a subset 

of children in our dataset where HAZ scores were available, by: 

1. Beginning by fitting multilevel generalized mixed effects models with the median household 

water fecal contamination zt
* from repeated measures of household FIB concentrations as the 

exposure variable. Repeating this for two, three and four repeat measures.  

2. Fitting the same models after randomly selecting a single measure of household water FIB 

concentrations zt as the error-prone exposure variable from the repeat measures. 

3. Calculating the attenuation associated with the estimated difference in HAZ score (β1
*) from 

randomly selecting a single measure of household water FIB concentrations zt as the error-prone 

exposure variable, compared to effect estimate (β1)  from the median of repeat samples of 

household water fecal contamination zt
* as the exposure variable. 

4. Stratifying the analysis: We conducted the same stratification by season as we did for the 

simulations.  

4.4 Results 

The dataset we compiled included studies of varying sizes with FIB data for drinking water available 

from 98 to 2,137 households per study (Table 4-1). Four studies included only cross-sectional water 

sample collection, but most had collected repeated water samples over time with samples typically being 

collected monthly, quarterly or annually. To evaluate findings from our simulations, matched diarrhea 

data were available from all included studies and matched growth data were available from seven studies.  
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 Table 4-1: Summary Characteristics of included studies 

Study ID Country Nr. of 
households 

sampled 

Samples 
per 

household 

Matched 
diarrhea data  

Matched 
growth data 

Arnold, 2010 India 139 1 – 3 X X 

Benjamin-Chung, 2018 Bangladesh 959 1 X  

Boisson, 2010 DRC 102 1 X  

Boisson, 2013 India 2,100 1 – 4 X  

Brown, 2008 Cambodia 177 1 – 11 X  

Clasen, 2005 Colombia 98 1 – 5 X  

Clasen, 2014 India 2,137 1 – 8 X X 

Davis, in prep. Tanzania 1,207 1 – 6 X  

Ercumen 2015 Bangladesh 907 1 – 3 X  

Kirby, 2017 Rwanda 265 1 – 2 X  

Kirby, Nagel, 2019 Rwanda 1,568 1 – 3 X  

Luby, 2015 Bangladesh 810 1 – 7 X  

Patil, 2015 India 783 1 X X 

Peletz, 2011 Zambia 232 1 X  

Peletz, 2012 Zambia 116 1 – 12 X  

Pickering, Ercumen, 2018 Bangladesh 1,807 1 – 3 X X 

Pickering, 2019 Kenya 1,986 1 – 2 X X 

Reese, 2019 India 765 1 – 4 X X 

Sinharoy, 2017 Rwanda 1,744 1 – 2 X X 

 

Household versus Community Exposure 

The simulations comparing household to community exposure included 37,119 observations (82% rural, 

18% urban) from 16 of the included studies, with between one and 12 observations per child. Studies by 

Arnold et al., Brown et al. and Pickering, Ercumen et al. were excluded from these simulations because 

the data were not compatible for estimating median community water FIB concentrations (i.e. specific 

sample collection dates were not available or only one sample was collected in every community). The 

simulations found that if children experienced exposure to fecal contamination in drinking water outside 

of their household, then using household FIB concentrations zt
* exclusively as the error-prone exposure 

variable may lead to an attenuation in the observed FIB-diarrhea relationship even at low levels of 

community exposure (Figure 4-2). If the aggregate exposure x̅t was represented by 90% household and 

10% community exposure, we found that the estimated odds of diarrhea for 1-log10 higher FIB 
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concentrations in drinking water, using household FIB concentrations in drinking water zt
*zt

* as the error-

prone exposure variable, were OR = 1.32 compared to the assigned odds of diarrhea OR = 1.50 (α= 0.69). 

This trend continued as the assumed aggregate exposure x̅t consisted of increasing levels of community 

exposure wt
*. If the aggregate exposure was represented by 100% community exposure, we found that the 

estimated odds of diarrhea, using household water as the error-prone exposure variable, were OR = 1.06 

(α= 0.15). Our findings were consistent between urban and rural areas. Findings from the sensitivity 

analyses are provided in Appendix D (Tables D-1 and D-2). 

 

          

Figure 4-2: Estimated odds of diarrhea for 1-log10 higher FIB concentrations in drinking water when only household water FIB 
concentrations zt

* was used as the exposure variable for different household-community exposure scenarios and the 
corresponding attenuation factors. Exposure scenarios begin with 100% of exposure assumed to be within the household and 
subsequently replacing household exposure with community exposure wt

* in 10% increments.  

For the evaluation with empirical diarrhea data we used the same dataset as we did for the simulations, 

with the exception of using field reported diarrhea instead of assigning diarrhea cases. In the combined 

analysis, we found that household water fecal contamination zt
* assigned exclusively as the error-prone 

exposure variable attenuated the association between FIB concentrations in drinking water and diarrhea in 

comparison to a mixture of household and community water fecal contamination up to assigning 20% 

household and 80% community water FIB concentrations (Figure 4-3). However, this attenuation was not 
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as pronounced as suggested in the simulations, with the greatest attenuation factor found to be α= 0.79 

(60% household, 40% community exposure). The stratified results suggested that in urban areas the 

attenuation from using household water fecal contamination zt
* was limited to scenarios up to 70% 

household and 30% community water quality, and in rural areas it extended to 10% household and 90% 

community water fecal contamination .  

 

          
Figure 4-3: Estimated odds of diarrhea for 1-log10 higher FIB concentrations in drinking water for different household-community 
exposure assignments and the corresponding attenuation factors for estimates derived from 100% household exposure 
compared to the community assignments. 

After stratifying by age, the odds of diarrhea for 1-log10 higher FIB concentrations in drinking water for 

children aged 0-23 months were similar to the odds of diarrhea for children aged 24-72 months when 

household water fecal contamination zt
* was assigned as the exposure variable. However, when replacing 

household water fecal contamination with community water fecal contamination wt
*wt

* in 10% 

increments, there was a trend of higher odds of diarrhea for children aged 24-72 months but not for 

children aged 0-23 months for up to 20% household and 80% community water exposure (Figure 4-4).  
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Figure 4-4: Estimated odds of diarrhea for 1-log10 higher FIB concentrations in drinking water for different household-community 
exposure assignments, stratified by non-ambulatory and ambulatory pre-school aged children, and the corresponding 
attenuation factors for estimates derived from 100% household exposure compared to the community assignments.  

Single versus Multiple Samples 

The simulations comparing the effects of defining exposure with a single water sample compared to 

multiple samples included 24,806 unique children from the 19 included studies that had one or more 

matched FIB estimates in drinking water. These simulations indicated that using FIB concentrations from 

single water samples zt ztcompared to the median of multiple samples attenuated estimated differences in 

HAZ scores associated with fecal contamination in drinking water, with similar findings between wet and 

dry season months (Figure 4-5). If the household water fecal contamination zt
* was represented by the 

median of two samples, then randomly selecting one of the two samples almost halved the observed 

difference in HAZ scores associated with FIB concentrations in drinking water from the assigned HAZ = 

-0.20 to HAZ = -0.11 (α= 0.56). This finding was more pronounced when household water fecal 

contamination zt
* was represented by three (HAZ = -0.10; α= 0.52) or four samples (HAZ = -0.09; α= 

0.43). Findings from the sensitivity analyses are detailed in Appendix D (Tables D-3 and D-4). 
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Figure 4-5: Estimated difference in HAZ scores for 1-log10 higher FIB concentrations in drinking water when only a single water 
sample zt zt was used as the exposure variable for four scenarios if 1, 2 3 or 4 samples represented the household water fecal 
contamination zt

* and the corresponding attenuation factors. 

For the evaluation of these simulations we were limited by empirical linear growth data availability, with 

linear growth data available for 3311, 743 and 233 children with two, three and four or more matched 

water samples, respectively. As a result, we were not able to stratify this analysis by season as we did 

with the simulations, and the baseline effect estimates and corresponding uncertainties around these 

estimates vary by group because they represent different samples (Figure 4-6). The difference in HAZ 

scores associated with higher FIB concentrations in drinking water was consistently closer to zero (i.e., no 

effect) when using a single sample zt ztcompared to the median of multiple samples. Similar to findings 

from the simulations, using a single sample compared to the median of two samples approximately halved 

the estimated difference in HAZ scores associated with FIB concentrations in drinking water (α = 0.56), 

and this was more pronounced for the median of three or four samples (α= 0.54; α = 0.38).  
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Figure 4-6: Estimated difference in HAZ scores for 1-log10 higher FIB concentrations in drinking water when only a single 
household water fecal contamination zt was used as the exposure variable if 1, 2 3 or 4 samples were available, and the 
corresponding attenuation factors. 

4.5 Discussion 

We adapted and introduced a framework to assess measurement error when characterizing child exposure 

to fecal contamination in drinking water, i.e. the difference between exposure assigned by proxy measures 

of exposure and the true exposure experienced by an individual. These frameworks can help prioritize 

current research gaps by identifying areas within fecal exposure assessments that are limited or missing, 

and by quantifying components of error that are most critical to biases in waterborne disease 

epidemiology. Ideally, generating improved exposure data can lead to a better understanding of the true 

associations between fecal contamination along different pathways and child health. This analysis 

primarily serves as an initial effort to apply an exposure measurement error framework within the field of 

enteric exposure science. In so doing, we aspire to understand the presence and magnitude of several 

sources of measurement error. Our analyses showed how components of error may attenuate estimated 

exposure-outcome relationships using empirical data from an extensive dataset of studies collected in 

low- and middle-income settings. Our findings provide indication that the previously reported odds of 
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diarrhea and reduction in HAZ scores associated with fecal contamination in drinking water reported in 

Research Aim 1, may be prone to regression dilution bias and thus may be underestimating true exposure-

outcome relationships.  

We introduced three different components of exposure measurement error. The first component may 

emerge from assigning household water fecal contamination data to individual household members who 

interact with their environment differently. Substantial heterogeneity of between-child interactions with 

their domestic environment has been shown in both urban and rural settings for different age groups in the 

0-5 year age range.40,41 Additionally, differential drinking water ingestion rates by age can lead to 

heterogeneity in the ingested doses of fecal contamination,42 and infants may experience very limited 

exposure to household water from ingestion before weaning.43 This may lead to a differences in dose-

response between members of the same household. To test how the first component of this exposure 

measurement error framework can be applied, small controlled panel studies are needed to generate 

estimates of personal exposure and compare those to household-level estimates.8 

The second component of error may occur when exposure to fecal contamination in drinking water 

outside of the household is not incorporated in to exposure assessments. A recent study characterizing 

fecal exposure in Accra, Ghana as part of the SaniPath research program, reported widespread fecal 

contamination in both domestic and public domains.44 Measurement error from assigning household water 

fecal contamination as the exposure does not only depend on the presence of fecal contamination in the 

public domain but the study population’s interaction with water in that domain. To our knowledge, no 

published studies have quantified child exposure to contaminated water in different microenvironments in 

the domestic and public domains, but time-activity analyses in air pollution studies have long been 

conducted for exposure assessments,45 and have shown that children spend extensive amounts of time 

outside of their domestic environment.46 

Findings from our diarrhea simulations suggest that if children are experiencing exposure to fecal 

contamination in drinking water outside of their households, then using household water FIB 
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concentrations as a proxy for their overall exposure may result in attenuated FIB-diarrhea effect 

estimates. While evaluating these results, we found that this attenuation may be more pronounced in 

children above the age of two. This suggests that children under the age of two may be experiencing most 

of their exposure within the confines of their homes, so household-level exposure assessments may be 

appropriate for this age group. However, for older ambulatory children exposure outside of the home 

might be more readily considered. 

The third component of error may emerge from limited precision associated with methods to characterize 

FIB concentrations,47,48 i.e. from variability in water quality measurements due to sampling and laboratory 

processing methods, but can also stem from temporal differences in water quality. FIB levels in 

household water can vary on a weekly, daily and even hourly basis.49 For an outcome such as diarrhea 

that is normally acute, the biologically-relevant household water fecal contamination levels might be 

representative of the fecal contamination levels during the incubation period of enteric pathogens found in 

water, which depending on the pathogen can vary from a matter of hours to up to a month.50
 If water 

samples are collected on the same day as diarrheal disease data, the measured FIB concentrations on that 

day may not be representative of the biologically-relevant fecal contamination in the lead up to a diarrhea 

episode. These discrepancies could be due to environmental factors, such as short term weather changes 

like extreme rainfall events,51 or human factors, such as water treatment behavior change in response to a 

diarrhea episode.21,52 For chronic outcomes such as child growth, the biologically-relevant household 

water fecal contamination likely needs to consider longer term fecal contamination exposure , which may 

not be adequately represented by single or a few repeat measurements of household water fecal 

contamination, due to short term and seasonal variability in fecal contamination in drinking water.53 

Our simulations suggest that long-term household water fecal contamination may not be adequately 

represented by a single sample and hence can result in attenuations of the FIB-growth relationship. These 

results were consistent with our evaluations using empirical growth data. While our previously reported 

IPD analysis found a significant association between fecal contamination and child linear growth, 70% of 
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the sample population only had a single matched water quality measure available to characterize 

exposure. The findings from this analysis imply that the reported effect sizes may be attenuated, and fecal 

exposure assessments may consider characterizing fecal contamination using multiple longitudinally 

samples to estimate more biologically-relevant exposure.  

The results from our analyses need to be interpreted with caution. First, due to data availability we were 

limited to applying this framework to two sources of error. There are many more possible sources of error 

that we were not able to consider here, such as assigning household-level exposures to individuals and the 

use of FIB as proxies for enteric pathogens. Second, this analysis was limited to quantifying the effects of 

measurement error on the magnitudes of health effects and not on the precision of those effect estimates. 

Uncertainty in health effect estimates introduced by exposure measurement error may obscure 

associations where they exist, thus increasing the likelihood of false-negative findings in the exposure-

outcome relationship. Third, the current framework is limited to drinking water, but there are a number of 

other important fecal-oral transmission pathways, such as hands, food, soil, fomites and flies. Findings 

from our IPD analysis suggest that fecal contamination along select pathways is associated with child 

diarrhea and growth, so a similar framework could be applied to other pathways to test whether those 

findings may have suffered from regression dilution bias. Fourth, we did not have access to repeated 

water samples within the shorter timeframe of pathogen incubation periods for acute gastroenteritis, so 

were not able to quantify measurement error in the FIB-diarrhea relationship from the use of single 

samples used to estimate household water fecal contamination. 

Our results suggest that exposure measurement error can contribute to attenuated fecal exposure-outcome 

relationships for outcomes that are typically acute, such as diarrhea, as well as for more chronic outcomes 

such as linear growth. Fecal exposure assessments in drinking water may consider exposure outside of the 

household as well as attempting to characterize fecal contamination with repeat samples to account for 

variability in water quality. They may leverage measurement error frameworks to design exposure 
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assessments that are more proximal to the true exposure experienced by individuals, which in turn may 

inform the design of more effective interventions to reduce waterborne disease burdens. 
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5 Chapter 5 – Research Aim 3: Child salivary SIgA and its 

relationship to enteric infections and EED biomarkers in Maputo, 

Mozambique 

Manuscript authors: Frederick G.B. Goddard, Jackie Knee, Trent Sumner, Rassul Nalá, Thomas Clasen, 

Joe Brown 

5.1 Context 

Research Aims 1 and 2 of this dissertation have focused on proxy methods of external enteric exposure, 

i.e. exposure that is assessed before enteric pathogens cross the human boundary, and their biological 

relevance to health outcomes of interest. This chapter goes beyond the human boundary to pilot methods 

to estimate internal exposure, i.e. characterizing exposure after ingestion of enteric pathogens. 

Specifically, we measured acute antibody responses in saliva, a biological matrix that may represent a 

promising alternative for infectious disease surveillance, and investigated associations with enteric 

infections and biomarkers of environmental enteric dysfunction (EED) found in matched stool samples. 

5.2 Background 

In low- and middle-income countries, children experience high prevalence of enteric infections1,2 and 

subsequently suffer disproportionally from diarrheal disease morbidity.3 Enteric infections are also 

associated with chronic gastrointestinal health outcomes, such as EED induced from repeated infections.4 

EED is a subclinical disorder associated with intestinal inflammation and a reduced ability to absorb 

nutrients.5 Findings from a recent systematic review suggest that intestinal inflammation is linked to child 

stunting,6 the burden of which is greatest in low- and middle-income countries.7 

Characterizing enteric infections often relies on the collection of stool samples to use culture-based or 

molecular methods to detect enteric pathogen shedding,8 or immunoassays to measure immunological 

responses to specific pathogens and concentrations of EED biomarkers.9 Collecting, transporting and 

storing stool specimens can be resource intensive, so the use of stool can be especially challenging for 

epidemiological studies in resource-constrained settings.10 Serum or saliva as alternative biological 
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matrices in immunological assays may present a promising alternative.11 Serum has the disadvantages that 

sample collection requires trained individuals and its invasive procedure may lead to low response rates, 

especially among children,12 and there is a non-zero risk of blood-borne pathogen transmission from 

respondents to sample collectors.13 In contrast, saliva collection is non-invasive and requires only minimal 

training,14 facilitating sample collection in large study populations of young children.15 

One class of biomarkers that can be measured in saliva and may be of interest for gastrointestinal health 

are salivary antibodies. There are different antibody isotypes with varying functions in the response to 

gastrointestinal infections. Broadly, immunoglobulin A (IgA) and IgM are produced in response to acute 

infections, whereas IgG is typically produced later and can be indicative of chronic or historical 

infections.16 Saliva has a very low concentration of IgM and IgG antibodies in comparison to IgA.17 IgA 

is produced by plasma cells and released in secretory fluids, such as saliva, as secretory IgA (SIgA).18 The 

amount of IgA that humans release is linked to the development of the systemic immune system, which 

evolves over the course of human life, beginning as an immature immune system during infancy that 

matures during childhood.19 Accordingly, previous research on SIgA concentrations in saliva with age 

suggest a rapid increase during infancy,20 followed by more gradual increases during early childhood, and 

a stabilization at adult levels during adolescence.21  

The biological mechanisms underlying SIgA-mediated immunity are convoluted, with three separate 

immunological mechanisms active in protecting the intestinal epithelium from enteric infections. The first 

prevents pathogens from attaching to the intestinal epithelial cell barrier, most commonly by a process 

called immune exclusion.22 Humans release three grams of SIgA in to the intestinal lumen every day,23 

where it acts as the first line of defense to protect the intestinal epithelium against pathogenic organisms.24 

SIgA is transported across the intestinal epithelium and into the lumen by binding to the polymeric 

immunoglobulin receptor (pIgR), where it binds to the pathogen and neutralizes its ability to attach to the 

intestinal epithelium and cause infection.25 The second is specifically targeted at viruses, by neutralizing 

viruses inside the epithelial cell and preventing assembly/disassembly and exit from the epithelial cell.25 
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Third, if damage to the epithelial cell barrier has allowed pathogen invasion in to the lamina propria, 

SIgA can bind to the pathogen and transport it back across the epithelial boundary using the pIgR for 

excretion.26 

Under the umbrella of the Maputo Sanitation trial (MapSan) in Maputo Mozambique, this chapter sought 

to estimate the differences in total salivary acute antibody responses among children experiencing 

concurrent enteric infections and concentrations of EED biomarkers detected in matched stool samples. 

We also compared salivary pathogen-specific acute antibody responses to the detection of specific 

pathogens in matched stool samples. Specifically, we quantified total non-specific SIgA in saliva to 

estimate differences in acute systemic immune responses in young children experiencing varying numbers 

of concurrent enteric infections, as well as different concentrations of biomarkers of local gut 

inflammation and permeability. We also compared anti-Campylobacter jejuni (C. jejuni) and anti-Giardia 

salivary SIgA concentrations in children with and without matched Giardia- or Campylobacter-positive 

stool samples. 

5.3 Methods 

5.3.1 Study setting and participants 

MapSan was a controlled, before-and after trial of an urban sanitation intervention to reduce enteric 

infections and improve other health metrics in children in Maputo, Mozambique.27 The study was located 

in informal settlements and enrolled children aged one to 48 months during the baseline phase between 

February 2015 and February 2016 and subsequently conducted 12- and 24-month follow-up surveys. 

Enrollment in MapSan was progressive, and all eligible, consenting children were enrolled during each 

survey phase (children aged one to 60 months at 12- or 24-month follow-up). MapSan enrolled 993 

children at baseline, 320 at 12-month follow-up, and 304 at 24-month follow-up.28 For this sub-study, we 

analyzed one saliva sample per child from a subset of 244 children collected at either 12- or 24-month 

follow-up.  
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Saliva samples assayed for total non-specific salivary SIgA were selected based on sufficient sample 

volume (>10μL), child age, availability of a matched stool sample, and the number of infections detected 

in that stool sample. We excluded samples from children under the age of 12 months due to the presence 

of maternal antibodies and lack of crevicular fluid (saliva excreted between the teeth and gums enriched 

with Ig).29 Saliva samples were eligible if they were collected within ten days of matched stool samples. 

Due to the high prevalence of enteric infection in the MapSan cohort,28 we selected all available saliva 

samples from children where no infections were detected in matched stool samples, if they also met the 

other eligibility criteria. A subset of the samples assayed for total SIgA were selected for the anti-C. jejuni 

and anti-Giardia SIgA assays, by selecting a balance of ‘case’ samples, i.e. samples that were positive for 

Campylobacter or Giardia, and ‘control’ samples i.e. samples that were negative for Campylobacter or 

Giardia. 

5.3.2 Procedures 

Saliva samples were collected during three cross-sectional household survey visits at the baseline, 12- and 

24-month assessments of the MapSan study. Baseline samples were collected with cotton swabs and were 

subsequently not eligible for this study due to insufficient sample volume. During the 12- and 24-month 

assessments saliva samples were collected by rubbing Oracol saliva swabs (Malvern Medical 

Developments, Worcester, United Kingdom), along the child’s gum for one minute to collect crevicular 

fluid. Samples were transported in a cooler and frozen at -80 °C until processed. To prepare samples for 

processing, we centrifuged saliva swabs at 2,000rcf for 10 minutes, before removing saliva from the 

sample collection tubes and recording sample volume. We excluded saliva samples visibly contaminated 

with serum.  

We used enzyme-linked immunosorbent assays (ELISA) to process samples for total non-specific SIgA, 

anti-C. jejuni and anti-Giardia SIgA. Total SIgA was assayed in accordance with the manufacturer’s 

directions (Salimetrics, Carlsbad, CA, USA). For anti-Giardia and anti-C. Jejuni SIgA we used 

commercially available ELISA kits validated for use with serum (IBL, Minneapolis, MN, USA and 
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Epitiope Diagnostics Inc., San Diego, CA, USA) and adapted these kits for use with saliva. Due to lower 

concentrations of SIgA in saliva compared to serum, we adapted the ELISA kits by changing sample 

dilutions. We processed samples for anti-C. jejuni SIgA at dilutions ranging from 1:2 to 1:6, and diluted 

samples assayed for anti-Giardia SIgA from 1:2 to 1:10, depending on sample availability. We made no 

other adaptations to the ELISA kits and tested anti-C. jejuni and anti-Giardia SIgA in accordance with the 

manufacturer’s directions. We processed 70% of samples in replicate for total SIgA, and 100% in 

replicate for anti-C. jejuni and anti-Giardia. For replicate samples we excluded results where individual 

replicates were not within 20% of the replicate mean.  

Laboratory methods to detect enteric pathogens and EED biomarkers in matched stool samples are 

reported elsewhere.30 Briefly, stool samples collected for the MapSan study were analyzed for detection 

of 14 enteric pathogens using the molecular-based Luminex Gastrointestinal Pathogen Panels (GPP). The 

GPP included bacterial pathogens (Campylobacter (C. jejuni, C. coli, and C. lari) , Clostridium difficile 

(C. difficile), Escherichia coli (E. coli) O157, Enterotoxigenic E. coli (ETEC), Shiga-like toxin producing 

E. coli (STEC), Shigella, Vibrio cholerae (V. cholerae) and Yersinia enterocolitica (Y. enterocolitica)), 

protozoan pathogens (Giardia, Cryptosporidium and Entamoeba histolytica (E. histolytica)) and viral 

pathogens (Adenovirus 40/41, Norovirus GI/GII, and Rotavirus A). The same stool samples were 

analyzed for biomarkers of gut inflammation using ELISA assays. Biomarkers included myeloperoxidase 

and fecal calprotectin, both markers of neutrophil activity,31 alpha-1 antitrypsin, a protein released during 

inflammation and marker of gut permeability,32 and neopterin, a marker of T helper cell derived immune 

activation.33 

5.3.3 Statistical analysis 

We matched total SIgA measured in each saliva sample to individual data on enteric pathogens and EED 

biomarkers detected in stool samples collected within ten days of saliva samples. Most stool and saliva 

samples were collected on the same day or within 24 hours of each other, and all were modeled as cross-

sectional matched samples. To account for non-normality of the data, we log-transformed all SIgA and 
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EED biomarker data. For our primary analyses, we used multilevel linear models to account for potential 

confounders and model cross-sectional associations between 1) total non-specific salivary SIgA 

concentrations and the number of concurrent enteric infections experienced by a child, 2) total non-

specific salivary SIgA and concentrations of EED biomarkers, and 3) anti-C. Jejuni or anti-Giardia SIgA 

and presence of those pathogens in matched stool samples: 

 

Evidence in the literature suggests that salivary SIgA levels are affected by age,34 salivary flow rate35 and 

seasonality,36 so we controlled for child age (in months), sample volume (in μL) and seasonality in all of 

our models. We controlled for seasonality by splitting cumulative rainfall during the 30 days before saliva 

sample collection in to terciles, where the first tercile (least rain) represents the reference level in our 

models. Rainfall data were obtained from the National Oceanic and Atmospheric Administration’s 

National Centers for Environmental Information (https://www.ncdc.noaa.gov/cdo-

web/datatools/findstation). We also controlled for the number of concurrent enteric infections in our EED 

analyses, and for the number of concurrent infections and total non-specific SIgA in our pathogen-

specific SIgA analyses. EED biomarkers, indexed by b in the model, were modeled individually, and so 

were the pathogen-specific SIgA results for each pathogen p (Giardia and C. jejuni).  

For our secondary analyses, we did sensitivity analyses for the first two models to estimate the effects 

outliers had on our findings by excluding observations (for both total SIgA and EED biomarkers) that 

were 1.5 interquartile ranges below the lower quartile or above the upper quartile. We also conducted 

threshold analyses with the pathogen-specific SIgA data to detect potential positive anti-C. jejuni or anti-

Giardia immune responses when Campylobacter or Giardia were detected in matched stool samples, 

where observations above the threshold suggest a positive immune response to the specific pathogen. We 

https://www.ncdc.noaa.gov/cdo-web/datatools/findstation
https://www.ncdc.noaa.gov/cdo-web/datatools/findstation
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defined an immunopositive threshold as the mean anti-C. jejuni or anti-Giardia SIgA concentration of the 

control samples used in the respective assays plus three standard deviations.37  

5.3.4 Ethics 

Field data collection staff obtained written informed consent from the parent or guardian of each study 

participant. The study protocol was approved by the Comité Nacional de Bioética para a Saúde (CNBS), 

Ministério da Saúde (333/CNBS/14), the Ethics Committee of the London School of Hygiene and 

Tropical Medicine (reference #8345), and the Institutional Review Board of the Georgia Institute of 

Technology (protocol #H15160). The MapSan study is registered at ClinicalTrials.gov (NCT02362932). 

5.4 Results 

5.4.1 Summary characteristics 

We extracted 244 saliva samples with 216 samples presenting with sufficient sample volume and no 

visible blood to be eligible for testing (Table 5-1). Most of our saliva samples (89%) were collected 

within one day of stool sample collection. Child age ranged from 1 to 6.7 years with a median age of 2.5 

years, with most of our data coming from children aged 1-2 years (63%) and less data for children aged 3-

6 years (37%). Two samples were excluded from our analyses due to replicate rejection, but otherwise we 

found acceptable coefficients of variation between replicate samples. We found median total salivary 

SIgA levels of 54 μg/ml (IQR: 34, 85 μg/ml) in this study population, and total salivary SIgA was similar 

between children of different ages (Figure 5-1).  
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Table 5-1: Summary Characteristics. 

 

Total SIgA Anti-C. jejuni 
SIgA 

Anti-Giardia 
SIgA 

Number of saliva samples:     

Extracted 244 - - 

Excluded due to insufficient volume  13 - - 

Excluded due to visible serum 15 - - 

Excluded due to replicate rejection 2 - - 

Included in analysis 214 66 64 

Male child (%) 50 45 50 

Child age in years – Median (IQR) 2.5 (1.8, 3.7) 2.5 (2.0, 3.5) 2.5 (1.8, 3.6) 

Difference in days between saliva and stool sample 
collection – Median (IQR) 

0 (-1, 1) 1 (-1, 1) 1 (0, 1) 

Sample volume available in μL – Median (IQR) 175 (100, 300) 200 (150-300) 188 (100-300) 

Total salivary SIgA levels in μg/ml – Median (IQR) 54 (34, 85) 55 (38, 84) 52 (28, 87) 

Coefficient of variation between duplicate samples (%) 6.4 5.3 7.3 

 

 

Figure 5-1: Total non-specific salivary SIgA concentrations (log μg/ml) by age 

5.4.2 Total SIgA and enteric infections 

This was a non-random sample, so the distribution of infections with specific pathogens for this sub-

sample was not representative of the distribution found in the MapSan cohort (Figure 5-2). We did not see 
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a trend in higher total salivary SIgA from children experiencing none, one, two, three, or four to five 

concurrent infections detected in matched stool samples (Figure 5-3). 

 
Figure 5-2: Prevalence of specific pathogens detected in stool samples in the MapSan saliva study sub-sample  

 

Figure 5-3: Total salivary SIgA concentrations stratified by children experiencing different numbers of concurrent infections. 

Results from our statistical analysis suggested lower total salivary SIgA -0.04 log μg/ml (95% CI: -0.08 to 

-0.005 log μg/ml) for higher numbers of concurrent infections, although this association was weaker after 
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removing outliers (Table 5-2). Sample volume was also significantly negatively associated with total 

salivary SIgA, whereas we found no statistical difference of total salivary SIgA with child age or higher 

cumulative rainfall in the same model.  

Table 5-2: Difference in total non-specific salivary SIgA with a higher number of concurrent infections, after controlling for age 

(in months), sample volume (in μL) and 30-day rainfall (in terciles).  

 All samples (N = 214) After removing outliers (N = 206) 

 Difference 
in total 

SIgA (log 
μg/ml) 

95% CI p-value Difference 
in total 

SIgA (log 
μg/ml) 

95% CI p-
value 

Number of infections -0.04 (-0.08, -5x10-3) 0.03 -0.03 (-0.06, 2x10-3) 0.07 

Age (in months) 4x10-4 (-2x10-3, 3x10-3) 0.79 1x10-3 (-1x10-3, 3x10-3) 0.31 

Sample volume (in μL) -1x10-3 (-9x10-4, -3x10-4) <0.001 -6x10-4 (-8x10-4, -3x10-4) <0.001 

Rainfall (terciles) 0.03 (-0.02, 0.08) 0.29 0.04 (-4x10-3, 0.08) 0.07 

 

5.4.3 Total SIgA and EED biomarkers  

We found no association between total salivary SIgA and EED biomarkers of inflammation and 

permeability, in models including all samples and after removing outliers (Table 5-3).  

Table 5-3: Difference in salivary SIgA for a unit difference in EED biomarkers found in stool, after controlling for age, sample 
volume, 30-day rainfall, and number of concurrent infections. 

 

 All samples After removing outliers 

EED Biomarker N Difference 
in total 

SIgA (log 
μg/ml) 

95% CI p-
value 

N Difference 
in total 

SIgA (log 
μg/ml) 

95% CI p-
value 

Neopterin 

(log nmol/l) 

188 0.02 (-0.09, 0.13) 0.75 180 -0.02 (-0.12, 0.07) 0.61 

Myeloperoxidase 

(log ng/ml) 

213 0.02 (-0.07, 0.12) 0.64 201 0.04 (-0.05, 0.12) 0.39 

Calprotectin 

(log ng/ml) 

211 0.02 (-0.06, 0.10) 0.68 202 4x10-3 (-0.07, 0.07) 0.91 

Alpha-1 antitrypsin 

(log ng/ml) 

207 -0.08 (-0.17, 4x10-3) 0.06 196 -0.02 (-0.1, 0.06) 0.62 
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5.4.4 Pathogen-specific SIgA 

The results for anti-Giardia and anti-C. jejuni SIgA are presented in arbitrary units, because the ELISAs 

we used established values of assay calibrators in arbitrary units (U/mL) due to a lack of gold standard 

concentrations for these assays. We found higher anti-Giardia SIgA in children with matched Giardia-

positive stool samples compared to those with matched Giardia-negative stool samples 0.32 log U/ml 

(95% CI: 0.04 to 0.6 log U/ml)  (Table 5-4). We found weaker evidence of higher anti-C. jejuni SIgA in 

children with matched Campylobacter-positive stool samples compared to those with matched 

Campylobacter-negative stool samples 0.27 log U/ml (95% CI: -0.04 to 0.57 log U/ml).  

Table 5-4: Difference in anti-C.jejuni and anti-Giardia salivary SIgA in children with Giardia- or C. jejuni-positive matched stool 
samples compared to children with negative Giardia or C. jejuni stool samples, after controlling for age (in months), sample 

volume (in μL), 30-day rainfall (in terciles), number of concurrent infections and total SIgA (in log μg/ml) . 

 C. Jejuni Giardia 

 Difference in 
anti-C. Jejuni 

SIgA (log 
U/ml) 

95% CI p-
value 

Difference in 
anti-Giardia 

SIgA (log 
U/ml) 

95% CI p-
value 

Positive GPP result  0.27 (-0.04, 0.57) 0.09 0.32 (0.04, 0.6) 0.03 

Age (in months) 8x10-3 (-1x10-3, 0.02) 0.10 -3x10-3 (-0.01, 6x10-3) 0.52 

Sample volume (per 
unit increase in μL) 

-7x10-5 (-1x10-3; 1x10-3) 0.90 1x10-3 (-4x10-5, 2x10-3) 0.06 

Rainfall (terciles) -0.12 (-0.29, 0.05) 0.16 0.08 (-0.08, 0.23) 0.33 

Number of infections -0.08 (-0.23, 0.08) 0.34 0.09 (-0.11, 0.29) 0.38 

Total SIgA (per unit 
increase in log μg/ml) 

0.59 (0.16, 1.0) 0.01 1.6 (1.1, 2.0) <0.001 

 

In our threshold analyses, we found one positive immune response from the anti-C. jejuni SIgA assay 

among children with matched Campylobacter-positive stool samples, and one positive immune response 

among children with Campylobacter-negative stool samples (Figure 5-4). For the anti-Giardia SIgA 

assay we found two positive immune responses among children with matched Giardia-positive stool 

samples, and one positive immune response among children with Giardia-negative stool samples. 
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Figure 5-4: Anti-C. jejuni and anti-Giardia SIgA concentrations (log U/ml) stratified by children with negative and positive 
matched Campylobacter or Giardia stool samples.  

5.5 Discussion 

This study measured total non-specific salivary SIgA and tested its association with enteric infections and 

biomarkers of gastrointestinal inflammation and permeability found in matched stool samples from 

children aged one to six years in informal settlements in Maputo, Mozambique. We found no differences 

in total salivary SIgA concentration between children of different ages and lower total SIgA with higher 

numbers of concurrent infections detected in matched stool samples. We found no relationship between 

total SIgA and EED biomarkers, suggesting that systemic immune responses in this population were not 

associated with local gut inflammation or permeability. 

The negative association between total SIgA levels in saliva and the number of concurrent infections 

experienced by a child, detected in matched stool samples, was unexpected. Since IgA is secreted in 

response to pathogenic organisms, we expected to find a positive relationship between SIgA levels and 

the number of concurrent infections. One possible hypothesis that could explain why we found the 

contrary, is that the number of concurrent infections with enteric pathogens may contribute to child 
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malnutrition38,39 and severe malnutrition is associated with lower levels of SIgA in children.40 So in this 

study population, high prevalence of infection and concurrent infections may be linked to a suppression of 

the immune system. It is notable that in addition to finding a negative relationship between total SIgA and 

the number of concurrent infections, we also found no difference in total SIgA concentrations between 

children of different ages. Age (in months) was not a significant confounder in any of our models, and we 

also did not see a trend of higher median total salivary SIgA concentrations after stratifying on age (in 

years). This is in contrast to previous findings from other studies. Evidence from Estonia, Sweden, 

Iceland and Israel suggests that total salivary SIgA levels are three to four times higher in children aged 

five to six years compared to one-year old children.21,41,42 Taken together, these findings suggest that 

immunological development in this study sample of children living in an urban slum in Maputo, 

Mozambique, experiencing high rates of enteric infections may be inhibited during early life stages. 

We are limited in the conclusions we can draw from our anti-C. jejuni and anti-Giardia SIgA findings. 

We found associations between anti-Giardia SIgA and Giardia detected in matched stool samples, 

consistent with prior studies that compared mean salivary SIgA for individuals with microscopy-detected 

Giardia in matched stool samples to those without,43,44 and weaker associations between anti-C. jejuni 

SIgA and Campylobacter in matched stool samples. The results from our threshold analyses indicated 

limited immunopositive pathogen-specific SIgA responses when those pathogens were detected in 

matched stool samples. There are biologically plausible reasons for these results. One reason, is that high 

rates of asymptomatic infections have been documented for both Giardia and C. jejuni,1,2,45 and 

asymptomatic infections may result in a lack of an elevated immune response even though the pathogens 

were detected in matched stool samples. Another reason, is that SIgA for specific pathogens may be 

elevated for longer periods than shedding of those pathogens in stool, potentially leading to higher 

population mean pathogen-specific SIgA concentrations in children whose stool samples were negative 

for those pathogens and resulting in a higher immunopositive threshold. For example, for C. jejuni 

elevated IgA responses can last for up to 11 weeks after infection,46 but shedding of C. jejuni has been 
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documented to last as little as two to three or two to ten weeks.47,48 It is also important to note, that we 

measured anti-C. jejuni SIgA whereas the Campylobacter detection in stool included C. jejuni, C. coli, 

and C. lari. However, because we used serum assays and adapted them for use with saliva, we cannot 

discern whether these results are due to biological mechanisms or poor assay performance, since the 

assays are not validated for use with saliva. While we adapted the dilutions used in the assays to account 

for lower SIgA concentrations in saliva compared to serum,44,49 there are other potential issues with the 

use of saliva in serum assays, including the differences in composition between the two matrices leading 

to possible interference with the ELISA assays when using saliva.50 

The findings from our study need to be interpreted with its limitations in mind. We used a cross-sectional 

study design so were not able to make comparisons of salivary SIgA between the same population of 

children at different time points. We found high variability in our total SIgA estimates and the negative 

association between total SIgA and the number of concurrent infections was no longer significant after 

removing outliers. We were limited by sample size for children with no detected enteric infections in 

matched stool samples, given the high prevalence of any enteric infection (infection with ≥1 enteric 

pathogen) in the parent study, especially among children older than one year.30 Approximately two-thirds 

of our study population was for children aged 1-2 years, with a smaller sample of children aged 3-6 years. 

The challenge associated with high variability of SIgA concentrations in whole saliva between- and 

within-individuals has previously been documented.36 There are a number of external factors that could 

affect salivary SIgA concentrations that we were not able to control for in our model. These factors 

include psychological stress,51 diurnal variations,52 child behavior like restlessness and crying 53 and 

dental health.54 It is also important to note that we defined infections with enteric pathogens as those 

detected by the GPP in the MapSan analysis of matched stool samples. Children in our cohort may have 

been experiencing infections with other pathogens not included in the GPP, recent infections where 

pathogens had not yet begun shedding in stool and thus were not detectable in the matched stool samples, 
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past infections with continued shedding but no active symptoms, or passage of pathogens detected in the 

GPPs that did not result in active infection.  

In summary, we found that children in a low-income urban slum experiencing high prevalence of enteric 

infections did not show differences in salivary SIgA with age found in high-income countries, and may be 

experiencing a suppression of immunological development during early life stages. Particularly notable 

were the lower total salivary SIgA concentrations with increasing numbers of concurrent infections 

combined with similar concentrations of total salivary SIgA between infants and pre-school aged 

children, a life stage where the immune system is developing and where SIgA levels are expected to 

increase. We also found some evidence of associations between anti-Giardia and anti-C. jejuni SIgA in 

saliva and the detection of those pathogens in matched stool samples, but evidence of immunopositive 

immune responses was limited. Due to the limitations of salivary SIgA diagnostics, including high 

variability of SIgA levels and a number of external factors we were not able to control for in our analyses, 

as well as the methodological issues with the pathogen-specific ELISA assays, our findings need to be 

interpreted with caution. Future directions for this research could include sampling the same children at 

multiple time points to analyze changes in salivary SIgA over time, in a setting where infections with 

enteric pathogens are common. Other next steps for this research could include further exploration of 

pathogen-specific salivary SIgA as biomarkers to estimate specific infections,55 and compare those to 

enteric pathogen detection in matched stool samples, a research need that has also been outlined by 

researchers at the US EPA.56 
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6 Chapter 6: Summary, implications, future research and conclusion  

6.1 Summary of findings 

To quantify associations between proxy measures of external enteric exposure and adverse child health 

outcomes, we compiled over 90,000 individual participant data points from twenty studies across a range 

of low- and middle-income settings for the first research aim. We found strong evidence of an association 

between household-level fecal contamination in drinking water and both diarrhea and impaired linear 

growth in children. Our analyses also implicated contaminated child hands in diarrhea and contaminated 

fomites in linear growth. The study highlighted the paucity of evidence along common exposure 

pathways other than drinking water, especially food and soil. Secondary analyses found differences in 

effect sizes by child age and between rural and urban settings, although data for urban areas was limited 

to drinking water and diarrhea. Secondary analyses also indicated that diarrhea and linear growth burdens 

were driven by high levels of fecal contamination. While this finding could be interpreted by suggesting 

low levels of fecal contamination have lower overall adverse effects on child health outcomes, it could 

also have resulted from misclassification of exposure due to limits of detections at low FIB 

concentrations.  

For the second research aim we set out to evaluate these proxy measures of external exposure by adapting 

an exposure measurement error framework previously published for time-series studies of air pollution 

epidemiology, to estimate whether enteric exposure proxies used in the analyses of the first aim bias true 

fecal exposure-health outcome associations. We employed the extensive drinking water quality and child 

health datasets compiled for the first aim and found that household-level exposure assessments that do not 

consider potential exposure in the community may attenuate true water quality-diarrhea associations, 

particularly for older children. We also found that using single water quality samples that do not account 

for temporal variability in water quality, instead of an aggregate of multiple longitudinally collected 

samples, may attenuate the true effects of water quality on child growth.  
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We considered an emerging measure of internal exposure for the third aim, by comparing salivary 

antibody levels in saliva to enteric pathogens and EED biomarkers found in matched stool samples in a 

sample of children enrolled in the MapSan trial in Maputo, Mozambique. We found that total non-specific 

salivary SIgA was lower in children experiencing a higher number of enteric infections, and found no 

association between salivary SIgA and child age. Taken together, these findings may indicate that high 

prevalence of enteric infection can lead to a suppression of immunological development in children aged 

one to six years, a life stage where the immune system is developing and where SIgA levels are expected 

to increase. We also found limited association between pathogen-specific salivary SIgA for C. jejuni and 

Giardia with the detection of Campylobacter and Giardia in matched stool samples. 

6.1.1 Limitations 

While much of this dissertation was intended to describe the deficiencies of current approaches for 

measuring exposure to enteric pathogens and explore potential alternatives, the first research aim 

employed data generated precisely from these approaches and as a systematic review relied on previous 

research. Although we identified an association between certain exposure measures and child health, the 

data was largely limited to the drinking water pathway. Moreover, our assessment of the potential for 

measurement error for the second research aim suggests that these results may underestimate the true 

relationship. As such, except for select secondary subgroup analyses, we were limited to drawing general 

conclusions on the associations between fecal contamination and health. We were not able to make more 

specific contributions, such as whether in certain areas or regions select pathways of exposure are more 

dominant compared to others, or whether pathway-specific exposure-outcome associations are modified 

by overall levels of exposure experienced by individuals. None of the included studies measured fecal 

contamination along all six pathways included in the analyses, so we were not able to model all pathways 

simultaneously to tease apart the relative contributions from different pathways to child diarrhea and 

impaired linear growth. In addition, our findings need to be interpreted with caution due to risk of 

uncontrolled confounding in our analyses. The limited data along some common transmission pathways, 
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such as soil and food, meant we were limited in the conclusions we could draw on the associations 

between fecal contamination along all six included pathways and diarrhea and growth. 

The second aim was limited to evaluating two potential sources of random exposure measurement error in 

external enteric exposure assessments. There are many other potential sources of error, such as assigning 

household- or community-level exposure measures to individuals and environmental sample processing 

errors (i.e. during sample collection, transport, or analyses) that can lead to under- or over-estimates of 

concentrations of enteric pathogens or fecal indicator organisms in different environmental reservoirs or 

to false negative or false positive results. We also did not extend this study beyond the drinking water 

pathway, because we were limited by data availability for the other common fecal-oral transmissions 

pathways. Each pathway has its own sampling decisions that need to be made when designing an 

exposure assessment, such as the location, frequency of sampling and sample type, which can all 

influence errors in estimating exposure differentially.  

The third aim was limited to a cross-sectional sample of children for whom we processed saliva samples. 

Accordingly, we were limited to considering differences between groups in our analyses and were not 

able to investigate changes in salivary antibody levels over time. Analyzing samples of the same children 

longitudinally over time would have been especially valuable due to our unexpected findings of consistent 

salivary SIgA concentrations between children of different age groups. Given the infancy of salivary 

antibody diagnostics, we were also limited by the conclusions we could draw from our pathogen-specific 

SIgA assays. More validation of the ELISA assays designed for use with serum or plasma is needed 

before the limited association between anti-C. jejuni and anti-Giardia salivary antibodies and positive 

PCR results for these pathogens in matched stool samples can be confirmed.  

6.2 Implications 

Despite uncertainty from individual studies and prior reviews, the findings from the first research aim 

confirmed the fundamental association between fecal contamination at the household level and diarrhea. 

The study also provided evidence of the effects of fecal contamination on impaired linear growth, a 
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hypothesized outcome that recent trials designed to improve health by reducing fecal contamination have 

been unable to confirm. These results suggest that the inability of WaSH interventions to achieve 

consistent improvements in measured health outcomes may be due to their failure to adequately reduce 

fecal contamination. However, policy makers and program implementers may question the value of 

WaSH infrastructure investments to reduce fecal contamination and subsequently improve child health 

given the relatively small effect sizes we found in this study. For example, for children experiencing 1-

log10 higher FIB concentrations in drinking water, i.e. an order of magnitude more fecal contamination, 

the odds of diarrhea were 1.09 (95% CI: 1.04, 1.13) and the difference in HAZ score was -0.04 (95% CI: -

0.06,  -0.01). Therefore, there may be questions about the biological importance of fecal contamination as 

it pertains to the measured health outcomes when using these proxy measures of external exposure to 

estimate enteric exposure-health outcome relationships.  

To address these questions and provide more context to the findings from the first aim, the second aim 

demonstrated how measurement error frameworks can be used to better understand the true contribution 

of fecal contamination to adverse child health outcomes. Our analyses found substantial regression 

dilution bias from just two potential sources of error, suggesting that the proxy measures of external 

exposure used in the first aim may have suffered from random exposure measurement error and the true 

exposure-outcome relationships may be stronger than what the findings from our analyses suggested. The 

broader contribution of this study is an initial effort to apply an exposure measurement error framework to 

questions surrounding methods of external enteric exposure. Approaching the design of exposure 

assessments with a perspective of limiting potential sources of measurement error can help design enteric 

pathogen exposure assessments that are more biologically relevant to health outcomes of interest.  

The third aim of this dissertation considered antibody concentrations in saliva as a potential measure of 

past exposure to enteric pathogens. Implications from this study include that saliva may be a promising 

biological matrix based on the relative ease of sample collection in a resource-constrained field setting, 

especially compared to collecting stool samples. However, questions remain about the utility of salivary 
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antibodies to characterize gastrointestinal health and past exposure to enteric pathogens. The challenges 

associated with antibody detection in saliva mean more assay development and validation are still needed 

before salivary antibodies can be measured reliably at scale to estimate past exposure to enteric 

pathogens.  

6.3 Future research 

There is a need to dedicate resources and research to characterizing environmental exposures in 

underserved and underrepresented populations. Advanced methods to estimate enteric pathogen exposure 

are needed to inform the design of improved interventions to reduce infectious disease burdens, 

particularly among young children living in low-income countries. There is an opportunity to move 

enteric exposure science forward through cross-sectoral collaboration that combines modeling, 

observational, microbiological, epidemiological and social/behavioral tools for improved measures of 

exposure. Such improved measures might enable the WaSH sector to “fail-fast” by evaluating 

interventions based on whether they reduce exposure to enteric pathogens instead of more distal and 

perhaps more slow-developing health outcomes. Improved measures of exposure could also be used for 

results-based financing of intervention implementation, i.e. if implementers were paid for performance, 

and defining performance as reducing exposure, instead of being rewarded for increasing coverage for 

WaSH services with no regard to whether or not they actually reduce exposure. 

Best practices for microbiological and observational methods used for exposure assessments need to be 

standardized to enable better comparisons across different studies and settings. Developing a database 

framework with uniform data reporting standards to allow for pooling of data across multiple studies 

would allow for better evaluation and generalizability of strengths and weaknesses of exposure methods. 

The IPD analyses conducted for this dissertation demonstrated the value of pooling data from a number of 

studies to quantify exposure-outcome relationships, but further research could explore opportunities to 

continue to pool data to estimate other common exposure-response relationships, including neglected 

fecal-oral transmission pathways such as food and soil, and aerosolized pathogens (an additional pathway 
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now getting more attention), to provide a more complete picture of exposure along different transmission 

pathways.  

The IPD analyses were limited to using indicators of fecal contamination as proxies for enteric pathogen 

exposure, largely because environmental pathogen data are limited. However, emerging pathogen 

detection methods are making it possible to detect multiple enteric pathogens in environmental samples at 

scale. The Taqman Array Card (TAC), a real-time multiplex PCR assay, can detect multiple enteric 

pathogens simultaneously encompassing viral, bacterial, protozoal, and helminth targets for enteric 

infections.1 Examples of recent environmental applications of the TAC method include the simultaneous 

detection of a number of enteric pathogens in surface water, soil and infant weaning food in Kenya2,3. One 

limitation of PCR-based methods is the need to pre-specify targets, which can be especially challenging 

for pathogen detection given the potential diversity of pathogens in the environment. Environmental 

metagenomics, the sequencing and analysis of all DNA in environmental samples, can circumvent this 

problem.4 For example, metagenomic approaches were recently used to distinguish between foodborne 

disease outbreak strains of Salmonella5, and to identify the likely causes of diarrheagenic E. coli in 

Ecuador6. Limitations of metagenomics include poor sensitivity if enteric pathogens are at low prevalence 

in the microbial community, high cost, required bioinformatics expertise, and the need for improved 

analysis pipelines for identifying pathogens.  

Instead of using laboratory intensive approaches to estimate pathogen occurrence in the environment, 

there is room for innovation to detect enteric pathogens on-site in environmental compartments by using 

biosensing technologies that are in development.7 Such methods could be used to rapidly detect pathogens 

in different environmental reservoirs and thus provide more complete data on enteric pathogen 

concentrations along different fecal-oral transmission pathways. If developed further, biosensing methods 

have the advantage that they can be deployed in resource-constrained and remote settings, because they 

remove the need for sample collection, transport, and intensive laboratory processing. As a result, the 



115 

 

 

potential of these tools reach beyond generating research data, and could empower local stakeholders to 

conduct independent environmental surveillance.  

Questions that this dissertation was not able to comprehensively address due to the lack of pathogen-

specific environmental data and because few studies have measured exposure via multiple transmission 

pathways simultaneously, pertain to the teasing apart of the (likely context-specific) dominant risks of 

exposure. Specific future research questions include:  

 What are the primary modes of enteric pathogen transmission? 

 What are the relative contributions to enteric health burdens from different modes of 

transmission? 

As more environmental data on pathogen occurrence becomes available, the interpretation and statistical 

analysis of these data will need to become a research priority to quantify enteric pathogen-infectious 

disease outcome relationships. In addition, research on the temporal and spatial variability of enteric 

pathogens in environmental matrices is needed to inform sampling strategies. The exposure measurement 

error simulations conducted for this dissertation, demonstrated the potential value of approaching 

exposure assessments from a perspective of biological relevance as it pertains to infectious disease health 

outcomes. There is a need for longitudinal studies to provide rigorous evidence on relative contributions 

from specific transmission pathways and pathogens to adverse health outcomes, and the design of those 

studies should employ exposure measurement error frameworks to reduce error between measured and 

true exposure and design more biologically-relevant exposure assessments.  

Since the second aim of this dissertation was limited to considering just two possible components of error 

and did not evaluate how to practical it is to reduce these errors, future research questions include: 

 Do other components of error introduce exposure measurement error in to health effect estimates? 

 How cost-effective is attempting to reduce these errors in enteric exposure assessments? 
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To inform external exposure assessment design, measures of internal exposure can be useful since they 

provide data on past exposure to help frame external exposure assessments. Characterizing internal 

exposure using stool samples can be resource intensive, especially for epidemiological studies in 

resource-constrained settings,8 so there is opportunity for further research with alternative biological 

matrices. We piloted the use of salivary antibodies with singleplex immunoassays for this dissertation, 

and compared salivary SIgA concentrations to enteric infections found in stool. More method 

development and validation is needed to use saliva in immunoassays at scale. The US EPA is at the 

forefront of recent methodological developments to test for salivary antibody response to multiple 

specific pathogens simultaneously using Luminex-based immunoassays.9,10 Another approach seeing 

increased attention as a way to avoid collecting individual stool samples, is fecal sludge surveillance. 

Most prominently, sewage is used for poliovirus detection in global eradication efforts,11 but it has also 

seen application in advanced warning of viral outbreaks.12,13 Fecal sludge is attractive because it is non-

invasive, logistically easier to collect than stool samples and can serve as a composite sample of an entire 

community’s feces and can thus indicate past exposure at the community level.  

Since the third aim of this dissertation was limited to measuring salivary IgA in a cross-sectional sample 

of children, there are future research questions that came out of this aim that follow-up studies might 

address by collecting longitudinal samples and measuring different salivary biomarkers:  

 How does salivary IgA change over time in children experiencing high prevalence of enteric 

infection? 

 How does salivary IgA compare to other biomarkers of antibody response? 

6.4  Conclusion 

This dissertation sought to answer questions surrounding the characterization of exposure to enteric 

pathogens, with a focus on populations that are most commonly exposed and most vulnerable to these 

exposures: young children in low-income countries. We approached these questions from various angles, 
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drawing on different disciplines of environmental health. We started by compiling a large dataset of 

secondary data to estimate enteric exposure-child health outcome relationships, finding that commonly 

used proxies of exposure are associated with child diarrhea and linear growth although the strength of the 

associations as well as the evidence available varied by fecal-oral transmission pathway. We critically 

evaluated those findings by employing statistical measurement error frameworks, finding that these proxy 

measures of exposure may be suffering from substantial regression dilution bias, attenuating true 

exposure-outcome relationships towards no effect. This dissertation also included bench research at the 

Georgia Institute of Technology to pilot the use of salivary antibodies as an alternative biological matrix 

for internal exposure assessments, indicating that concurrent enteric infections may be suppressing 

immune system development in young children, although further validation of salivary diagnostics is 

needed to confirm this result. The findings from each of the research aims contribute to the scientific 

endeavor of estimating enteric exposure and its effect on adverse child health outcomes. Each aim also 

underlines opportunities for further progress in this area of research. These opportunities along with 

others highlighted by an interdisciplinary working group of biomarker researchers, microbiologists, 

exposure scientists, environmental engineers, and epidemiologists are being published as part of this 

dissertation, to provide a review and recommendations on enteric exposure methods to move this field of 

research forward.   
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7 Appendices  
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7.1 Appendix A – Research Aim 1: Search Strings  

Generic Search String: ((intervention OR programme OR program OR evaluation) AND (wash OR 

water OR sanitation OR hygiene)) AND ((diarrhea OR diarrhoea OR “diarrheal disease” OR “diarrhoeal 

disease” OR growth OR anthropometry OR anthropometrics OR HAZ OR LAZ OR “height-for-age” OR 

“height for age” OR “length-for-age” OR “length for age”) AND (child OR children OR infant)) 

PubMed: ((intervention[tw] OR programme[tw] OR program[tw] evaluation[tw]) AND (wash[tw] OR 

water[tw] OR sanitation[tw] OR hygiene[tw])) AND ((diarrhea[tw] OR diarrhoea[tw] OR “diarrheal 

disease”[tw] OR “diarrhoeal disease”[tw] OR growth[tw] OR anthropometry[tw] OR anthropometrics[tw] 

OR HAZ[tw] OR LAZ[tw] OR “height-for-age”[tw] OR “height for age”[tw] OR “length-for-age”[tw] 

OR “length for age”[tw]) AND (child[tw] OR children[tw] OR infant[tw])) 

Web of Science: TS = ((intervention OR programme OR program OR evaluation) AND (wash OR water 

OR sanitation OR hygiene)) AND TS = ((diarrhea OR diarrhoea OR "diarrheal disease" OR "diarrhoeal 

disease" OR growth OR anthropometry OR anthropometrics OR HAZ OR LAZ OR "height-for-age" OR 

"height for age" OR "length-for-age" OR "length for age") AND (child OR children OR infant)) 

EMBASE: ((intervention:ti,ab,kw OR programme:ti,ab,kw  OR program:ti,ab,kw  OR 

evaluation:ti,ab,kw) AND (wash:ti,ab,kw OR water:ti,ab,kw OR sanitation:ti,ab,kw OR 

hygiene:ti,ab,kw)) AND ((diarrhea:ti,ab,kw OR diarrhoea:ti,ab,kw OR ‘diarrheal disease’:ti,ab,kw OR 

‘diarrhoeal disease’:ti,ab,kw OR growth:ti,ab,kw OR anthropometry:ti,ab,kw OR 

anthropometrics:ti,ab,kw OR HAZ:ti,ab,kw OR LAZ:ti,ab,kw OR ‘height-for-age’:ti,ab,kw OR ‘height 

for age’:ti,ab,kw OR ‘length-for-age’:ti,ab,kw OR ‘length for age’:ti,ab,kw) AND (child:ti,ab,kw OR 

children:ti,ab,kw OR infant:ti,ab,kw)) 
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7.2 Appendix B – Research Aim 1: Supplementary Figures  

 

Figure B-1: Odds of stunting for a 1-log10 higher median fecal contamination by fecal-oral transmission pathway  

 

Figure B-2: Odds of diarrhea a 1-log higher fecal indicator bacteria concentrations in drinking water, on child hands, on fomites, 
in soil, and food, and a 1-log higher in kitchen fly density, using six log10 categories (<1, 1-10, 11-100, 101-1,000, 1,001-10,000, 
10,000+) instead of four as the explanatory variable.   
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Figure B-3: Odds of diarrhea a 1-log higher fecal indicator bacteria concentrations in drinking water, on child hands, on fomites, 
in soil, and food, and a 1-log higher kitchen fly density, using a continuous log10 transformation as the explanatory variable 
instead of log10 categories. 

 

Figure B-4: Difference in height-for-age Z score for 1-log higher median fecal indicator bacteria concentrations in drinking water, 
on child hands, on fomites, in soil, and food, and 1-log higher median kitchen fly density, using six log10 categories (<1, 1-10, 11-
100, 101-1,000, 1,001-10,000, 10,000+) instead of four as the explanatory variable.   
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Figure B-5: Difference in height-for-age Z score for 1-log higher median fecal indicator bacteria concentrations in drinking water, 
on child hands, on fomites, in soil, and food, and 1-log higher median kitchen fly density, using a continuous log10 transformation 
as the explanatory variable instead of log10 categories 
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Figure B-6: Odds of diarrhea for 1-log10 higher fecal indicator bacteria concentrations in drinking water, on child hands, and on 
fomites, and 1-log10 higher kitchen fly density.  
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Figure B-7: Difference in HAZ scores for a 1-log10 higher median fecal indicator bacteria concentrations in drinking water, on 
child hands, and on fomites, and a 1-log10 higher median kitchen fly density.  
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Figure B-8: Odds of stunting for 1-log10 higher median fecal indicator bacteria concentrations in drinking water, on child hands, 
and on fomites, and a 1-log10 higher median kitchen fly density.
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Figure B-9: Odds of diarrhea for 1-log10 higher fecal contamination, stratified by log category compared to the reference level of no measured contamination  
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Figure B-10: Difference in HAZ score for a 1-log10 median higher fecal contamination, stratified by log category compared to the reference level of no measured contamination  



129 

 

 

 

Figure B-11: Odds of diarrhea for 1-log10 higher fecal contamination, stratified by age  
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Figure B-12: Difference in HAZ score for a 1-log10 higher median in fecal contamination, stratified by age
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7.3 Appendix C - Research Aim 1: Risk of Bias Assessments 

 

Figure C-1: Results from the risk of bias assessments for the diarrhea analyses  
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Figure C-2: Results from the risk of bias assessments for the linear growth analyses  
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7.4 Appendix D – Research Aim 2: Sensitivity Analyses 

Household versus Community Exposure 

The sensitivity analyses suggested that the attenuation estimates remained stables with both higher and 

lower assumptions for the odds of diarrhea for 1-log10 higher FIB concentrations in drinking water (Table 

D-1). They also indicated stronger attenuation when the maximum or minimum community water FIB 

concentrations were selected as the exposure, instead of the median (Table D-2).  

Table D-1: Estimated attenuation factors for the odds of diarrhea for 1-log10 higher fecal indicator bacteria concentrations in 

drinking water when only household water fecal indicator bacteria concentrations 𝑧𝑡
∗ was used as the exposure variable for 

different household-community exposure scenarios, comparing higher and lower assumed odd to those used in the model (in 
bold).  

 Household water Zt* /  community water fecal contamination Wt assignments  

OR 100/0 90/10 80/20 70/30 60/40 50/50 40/60 30/70 20/80 10/90 0/100 

2.0 1 0.69 0.62 0.57 0.53 0.49 0.44 0.41 0.39 0.32 0.13 

1.5 1 0.69 0.61 0.57 0.52 0.51 0.45 0.42 0.39 0.34 0.14 

1.1 1.02 0.71 0.68 0.55 0.56 0.52 0.45 0.41 0.41 0.36 0.17 

 

Table D-2: Estimated attenuation factors for the odds of diarrhea for 1-log10 higher fecal indicator bacteria concentrations in 

drinking water when only household water fecal indicator bacteria concentrations 𝑧𝑡
∗ was used as the exposure variable for 

different household-community exposure scenarios, comparing the use maximum and minimum community water fecal 
indicator bacteria concentration to the median used in the model (in bold). 

 Household water Zt* /  community water fecal contamination Wt assignments  

Community WQ 100/0 90/10 80/20 70/30 60/40 50/50 40/60 30/70 20/80 10/90 0/100 

Max 0.99 0.35 0.25 0.23 0.20 0.18 0.16 0.14 0.13 0.11 0.07 

Median 1 0.69 0.61 0.57 0.52 0.51 0.45 0.42 0.39 0.34 0.14 

Min 1.01 0.44 0.39 0.36 0.34 0.32 0.28 0.26 0.22 0.14 0.02 

 

Single versus Multiple Samples 

Similarly to the household versus community exposure analysis, the sensitivity analyses for the single 

versus multiple samples suggested that the attenuation estimates remained stable with both higher and 

lower assumptions for the difference in HAZ scores for 1-log10 higher FIB concentrations in drinking 

water (Table D-3). They also indicated stronger attenuation when the maximum household water FIB 

concentrations was used for multiple samples instead of the median, with more similar attenuation factors 

when the minimum was used (Table D-4). 
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Table D-3: Attenuation factors for the estimated difference in HAZ scores for 1-log10 higher fecal indicator bacteria 
concentrations in drinking water when only a single water sample 𝑧𝑡  was used as the exposure variable for four scenarios if 1, 2 

3 or 4 samples represented the household water fecal contamination 𝑧𝑡
∗, comparing higher and lower assumed differences in 

HAZ scores to those used in the model (in bold). 

 Number of samples representing household water fecal contamination Zt*  

HAZ 1 2 3 4 

-0.4 1  0.56 0.52 0.45 

-0.2 1 0.56 0.52 0.43 

-0.1 1  0.56 0.53 0.44 

 

Table D-4: Attenuation factors for the estimated difference in HAZ scores for 1-log10 higher fecal indicator bacteria 
concentrations in drinking water when only a single water sample 𝑧𝑡  was used as the exposure variable for four scenarios if 1, 2 

3 or 4 samples represented the household water fecal contamination 𝑧𝑡
∗, comparing the use maximum and minimum household 

water fecal indicator bacteria concentration from repeat samples to the median used in the model (in bold). 

 Number of samples representing household water fecal contamination Zt*  

WQ 1 2 3 4 

Max 1.01 0.52 0.33 0.30 

Median 1 0.56 0.52 0.43 

Min 1  0.61 0.40 0.39 

 


