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Abstract 

Investigating Electrical Activity Accompanying Functional Recovery of the Pyloric Circuit 

Following Isolation from Neuromodulatory Inputs 

By Rebecca Butterfield 

We use a simple, invertebrate neural circuit to study neural systems’ adaptive ability. The 

pyloric circuit of the stomatogastric ganglion is an example of a central pattern generator that 

controls muscles needed for food particle sorting in crustaceans. As a central pattern generator, 

the pyloric circuit controls an oscillatory behavior that must be maintained in the face of a 

changing environment. A well-studied property of this circuit is its ability to regain a stable 

activity rhythm after losing it for several days due to isolation from neuromodulatory inputs via 

decentralization. Previous research supports that this functional rhythm recovery results from 

readjustment of cells’ conductance parameters as both a direct response to loss of 

neuromodulatory inputs and an indirect response to changes in cells’ own electrical activity. We 

investigated the circuit’s electrical activity patterns following decentralization in order to gain a 

better understanding of the recovery process. We used continuous extracellular recordings of 

pyloric activity following decentralization in both untreated preparations and preparations treated 

with chondroitinase ABC, an enzyme known to delay or prevent reemergence of stable rhythm. 

We looked for differences in activity following decentralization between treatment groups and 

for aspects of post-decentralization activity that are predictive of the stable rhythm that is later 

regained. Across many measures used to quantify features of electrical activity, we did not find 

strong evidence that electrical activity following decentralization is predictive of adaptive ability.  

  



!
!

 

Investigating Electrical Activity Accompanying Functional Recovery of the Pyloric Circuit 
Following Isolation from Neuromodulatory Inputs 

 

 

By 

 

Rebecca Butterfield 

 

Astrid Prinz, PhD 

Adviser 

 

 

 

 

 

 

 

A thesis submitted to the Faculty of Emory College of Arts and Sciences 
of Emory University in partial fulfillment 

of the requirements of the degree of 
Bachelor of Sciences with Honors 

 

 

Neuroscience and Behavioral Biology 

 

2014 



!
!

Acknowledgements 

 

 Getting involved in research as an undergraduate has been one of my most rewarding and 

educational experiences. I’m extremely lucky to have been part of the Computational Neuroscience 

Training Grant at Emory and Georgia Tech. My research has benefited tremendously from the 

resources and community offered by this program. I’ve learned a great deal from the CNTG faculty 

and fellow students. In particular, thank you to Dr. Ilya Nemenman for your encouragement to apply 

to the program and for your excellent mentorship during my first lab rotation. 

 Astrid Prinz, thank your guidance and support during my time in your lab. I consider myself 

very fortunate to have had you as my advisor. I’ve gained an appreciation for science and research 

during my time in the Prinz lab that I couldn’t have gotten from any class. Amber Willett, thank you 

for being a great mentor. This research project would not have been possible without your data and 

guidance. Thank you also to Wafa Soofi for always being a friendly presence in the lab and for 

answering my random science-related questions. Ryan Hooper and Cengiz Gunay, you have helped 

me countless times with technical questions and computer issues. I really appreciate your time. 

 Thank you to Dr. Dirk Bucher for your suggestion to use spectrogram and autocorrelation 

analyses. Though a quick suggestion, it shaped a huge part of my research. Dr. Sam Sober, thank you 

for helping me as I was working out the kinks with my spectrogram analysis. To Dr. Ron Calabrese, 

Dr. Joe Manns, and Dr. Peter Wenner, thank you for contributing your time to this project by serving 

on my committee. Your fresh perspective upon hearing about my work has been invaluable. 

 Finally, to my parents, thank you for teaching me the value of curiosity, learning, and hard 

work. Thank you for your support and encouragement since day one to achieve my goals.  



!
!

Table of Contents 

 

List of Figures ...................................................................................................................................i 

List of Tables ....................................................................................................................................ii 

Introduction ......................................................................................................................................1 

Methods .............................................................................................................................................7 

Results ...............................................................................................................................................20 

Discussion .........................................................................................................................................33 

References .........................................................................................................................................39



i 
!

List of Figures 

 

Figure 1: The stomatogastric nervous system and pyloric circuit ..............................................2 

 

Figure 2: Recordings were downsampled before spectrogram and autocorrelogram 
analyses .............................................................................................................................................10 

 

Figure 3: P95Median metric was used to define presence of dominant frequency ...................13 

 

Figure 4: Quantifying pyloric rhythm regularity .........................................................................14 

 

Figure 5: Example autocorrelogram ..............................................................................................17 

 

Figure 6: IBI analysis ......................................................................................................................21 

 

Figure 7: tstable different across different treatment groups .........................................................23 

 

Figure 8: Pyloric rhythm regularity differs before decentralization and between stable and 
unstable epochs ................................................................................................................................25 

 

Figure 9: Long-term pyloric activity in two intact preparations ................................................27 

 

Figure 10: Correlations between activity measures during 2nd unstable epoch and 2nd stable 
epoch..................................................................................................................................................32 

 

 



ii 
!

List of Tables 

 

Table 1: Activity metrics .................................................................................................................9 

 

Table 2: Comparison of activity measures during hours 5-30 between treatment groups .......29 

 

Table 3: Correlation tests between activity measures during 1st unstable epoch and 1st 
stable epoch.......................................................................................................................................31 



1 
!!

INTRODUCTION 

 

 How neural circuits are able to maintain appropriate activity despite environmental 

changes is an important question in neuroscience. A biological system able to adapt to neuronal 

damage would thus be an interesting model in which to investigate successful adaptive ability. 

The pyloric circuit of the stomatogastric ganglion (STG) has proven to be such a system, able to 

resume its typical neuronal activity patterns after isolation from neuromodulatory inputs. The 

pyloric circuit is a central pattern generator (CPG) that controls the rhythmic dilation and 

constriction of muscles in the pyloric section of the stomach of decapod crustaceans. As a CPG, 

the pyloric circuit must remain appropriately active throughout the animal’s lifespan. In general, 

CPGs control behaviors that must remain stably active long-term, such as a heartbeat or 

breathing. A better understanding of how the pyloric circuit is able to regain its typical rhythmic 

activity following an environmental perturbation could inform about how long-term stability is 

possible in more complex mammalian CPGs and oscillatory systems. 

Anatomy of the pyloric circuit 

Electrical behavior of pyloric cells has been well characterized and synaptic connections 

comprising the circuit have been fully diagrammed, thus making the circuit ideal for research. 

The anatomy of the stomatogastric nervous system (STNS), which contains the STG, and a 

simplified schematic of the pyloric circuit are shown in figure 1A and 1B. The circuit consists of 

four cell types: the anterior burster interneuron (AB), pyloric dilator motoneuron (PD), lateral 

pyloric motoneuron (LP), and pyloric motoneuron (PY) neurons. The AB and PD neurons are 

electrically coupled and serve as the pacemaker for the network (Harris-Warrick et al., 1992). 

The PD, LP, and PY motoneurons innervate their target muscles via the lateral ventricular nerve 

(lvn) and pyloric dilator nerve (pdn) (Selverston et al., 1976). The STG receives 
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Figure 1: The stomatogastric nervous system and pyloric circuit. (A) Diagram of the 
stomatogastric nervous system. Neuromodulatory inputs from paired CoGs and the OG 
feed into the STG through the stn nerve. The lvn nerve contains axonal projections from 
PD, LP, and PY cells and the pdn nerve from PD cells. Adapted from (Hudson et al., 
2010). (B) A schematic of the pyloric circuit. Filled circles represent glutamatergic 
inhibitory synapses, open circles represent cholinergic inhibitory synapses. (C) 
Intracellular (top) and extracellular (bottom) recordings showing triphasic bursting rhythm 
of the pyloric circuit. Panels B and C (top) adapted with permission from Macmillan 
Publishers Ltd: Nature Neuroscience (Prinz et al., 2004). 
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neuromodulatory inputs via the stomatogastric nerve (stn) from the paired commissural ganglia 

(CoGs) and esophageal ganglion (OG) located in the central nervous system (Harris-Warrick et 

al., 1992).  

Pyloric circuit activity and functional recovery following decentralization 

When the STNS is intact in vitro, pyloric cells burst in a triphasic pattern with a period of 

1-2 seconds (figure 1C&D). PD neurons initially fire a burst of action potentials, then the LP 

neuron, and finally the PY neurons. This in vitro pattern of activity closely resembles activity 

seen in vivo (Rezer and Moulins, 1983). When neuromodulator inputs from the CoGs and OG to 

the STG are removed by cutting of the stn (known as decentralization), the pyloric bursting 

rhythm slows or ceases, losing its coordinated periodicity between the PD, LP, and PY cells. 

Because of this dependence on neuromodulatory inputs for a rhythmic activity pattern, the 

pyloric circuit has been described as a conditional oscillator (Moulins and Cournil, 1982; Bal et 

al., 1988). However, long-term maintenance of the STNS in culture following decentralization 

has revealed that a slower yet pyloric-like rhythm usually resumes after 3-5 days (Thoby-Brisson 

and Simmers, 1998). This recovery of function represents a transition of pyloric cells from 

chemo-dependent oscillators to endogenous oscillators (Thoby-Brisson and Simmers, 2000). 

Evidence supports that shifts in pyloric cells’ intrinsic membrane conductances and 

synaptic strengths rather than a reorganization of pyloric circuitry underlie the recovery process 

(Thoby-Brisson and Simmers, 2000; Thoby-Brisson and Simmers 2002). These changes in 

intrinsic membrane properties could be either an indirect response to changes in electrical 

activity (Golowasch et al., 1999; Zhang and Golowasch 2007; Liu et al., 1998) or a direct 

response to loss of neuromodulatory input (Thoby-Brisson and Simmers, 1998). More recent 

work, however, suggests that activity-dependent and neuromodulator-dependent mechanisms 
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both play a role in the pyloric circuit’s ability to functionally recover following decentralization 

(Zhang et al., 2009; Zhang and Golowasch 2011). Long-term maintenance of conductance 

correlations has been linked with neuromodulatory regulation independent of activity feedback 

mechanisms, with many conductance pairs losing coordination following decentralization 

(Khorkova and Golowasch 2007; Temporal et al., 2012). It has also been shown that the 

extracellular matrix likely plays a role in pyloric recovery following decentralization (potentially 

through an activity-dependent mechanism), but not in generation of ongoing pyloric rhythm. 

When chondroitin sulfate, a primary component of perineuronal net extracellular matrix, is 

degraded by chondroitinase ABC (chABC), recovery is significantly delayed or prevented 

(Hudson 2013). Altogether, these findings indicate that a complex set of activity-dependent and 

neuromodulator-dependent changes in membrane properties and extracellular structure play a 

role in recovery. 

Relationship between conductances and electrical output 

 While a neuron’s particular set of membrane conductances form the basis of that 

neuron’s electrical activity, the relationship between ionic conductances and electrical activity is 

nontrivial. Electrical output of a single cell or neuronal network may be tightly constrained in 

order to maintain proper function, but the cell or network’s set of underlying conductances may 

vary greatly (Prinz et al. 2004; Schulz et al, 2006). The set of possible conductances that a cell 

can have is often described in terms of a multi-dimensional parameter space, in which specific 

subregions correspond to a given class of electrical activity (Foster et al., 1993; Goldman et al., 

2001; Golowasch et al., 2002; Prinz et al. 2003). Since alteration of cell’s conductance 

parameters is thought to underlie the pyloric circuit’s recovery process, knowledge of how 

cellular conductances shift within parameter space would inform about how recovery is 
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achieved. It is impossible to measure a cell’s complete set of ionic conductances continuously 

long-term, but we can continuously record electrical activity (Luther et al. 2003, Hudson 2013). 

Electrical activity type both arises from conductance parameters and acts as a feed-back 

mechanism that can further regulate cellular conductances – thus a better understanding of 

pyloric activity in response to decentralization could provide information about the recovery 

process. However, due to the intricate relationship between conductance and electrical activity 

and additional factors such as neuromodulators that also play a role in regulating conductances, 

we can only speculate on what observations about electrical activity mean in terms of 

conductances. 

Investigating electrical activity following decentralization 

While there are qualitative similarities in the activity patterns of different individuals in 

response to decentralization – loss or slowing of pyloric rhythm following decentralization and 

eventual reemergence of pyloric rhythm several days later – much variability exists between 

different individual’s recovery processes. Data collected for the Hudson 2013 study on the role 

of extracellular matrix in facilitating recovery has shown a large amount of variability among 

individual post-decentralization activity patterns. For example, some individuals remain 

continuously active following decentralization (albeit at a slower frequency), while others fall 

silent and remain inactive for hours or days. When and to what extent an individual achieves 

recovery is also highly variable. We believe that exploring the post-decentralization electrical 

activity across individuals could potentially inform about the underlying recovery process. 

Previous work has found that across individuals, many short spurts of high-frequency pyloric 

activity precede a stable rhythm recovery. It has been speculated that these short periods of 

rhythmic activity, called bouts, play a role in regulating pyloric activity following 
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decentralization, thus allowing for recovery (Luther et al., 2003). While bouting has been 

observed as an accompaniment of the recovery process, nothing about an individual’s specific 

bouting behavior has been found to be related to recovery time or recovery frequency (Luther et 

al., 2003; Hudson 2013). However, the activity bouts previously examined last only for seconds 

or minutes. A detailed exploration of individuals’ post-decentralization activity patterns aside 

from these bouts has not been done. 

We aimed to look for any aspect of electrical activity following decentralization which is 

somehow predictive of the stable rhythm that is (usually) eventually achieved. For our analysis 

we used data collected in the Hudson 2013 study. These data include stomatogastric nervous 

systems (STNSs) in vitro that were treated with chABC in order to degrade extracellular 

perineuronal nets as well as controls that were treated with denatured chABC (DNchABC) or 

received no treatment. Rather than describing individual STNSs as “recovered”, we 

quantitatively defined stable epochs. While the term “recovery” implies the reemergence of a 

stable pyloric rhythm that continually persists, we often observed that an individual would enter 

a time range of stability lasting several hours, possibly losing stability thereafter. These stable 

epochs can occur multiple times, separated by hours of inactivity or unstable activity. Instead of 

defining a single time after which an individual is considered “recovered”, we defined time 

ranges which meet our definition of a stable rhythm (stable epochs) and analyzed the relationship 

between electrical activity during the time leading up to these stable epochs and the stable 

epochs themselves. We looked for activity patterns that are predictive of when and to what extent 

stability is achieved. Because chABC treatment is known to delay or prevent onset of stable 

rhythm following decentralization, we also looked for features of activity which differed 

between treatment groups. Although findings from our analysis cannot directly reveal underlying 
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biological mechanisms, electrical activity nevertheless has the potential to provide further 

information about the circuit’s ability to adapt to loss of neuromodulatory inputs. 

A large part of our research has focused on developing techniques to quantify different 

features of pyloric activity. We wished to define metrics for rhythm speed, activity level, and 

rhythm regularity. Quantifying rhythm regularity was of particular interest because highly 

organized pyloric rhythm is lost following decentralization. Prior to quantifying activity level or 

regularity, we first needed a way to describe the circuit’s bursting behavior over time, for 

example using a list of detected burst times. Our data consist of many continuous, multi-day 

extracellular nerve recordings. While we were able to perform spike and burst detection on 

several recordings, others proved difficult to analyze in this way. Thus we have used 

spectrograms and autocorrelograms, which can be generated for any of our continuous 

recordings, in order to expand our data set. Each analysis technique offers a distinct visualization 

of long-term pyloric activity. Additionally, for each technique we developed a unique set of 

metrics with which to characterize changes in pyloric activity over time. 

 

METHODS 

 

Animals and electrophysiology 

 Electrophysiological data used in the present study were collected previously by Amber 

Hudson (Hudson 2013). Long-term extracellular recordings were taken in vitro from the lvn and 

pdn nerves of the intact STNS of Cancer borealis. The STG was treated with chABC in media, 

DNchABC in media (control), or media alone (control). Preparations were then left undisturbed 

for 12-18 hours, after which enzyme was removed. At this point, the STG was decentralized by 
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cutting the stn. Extracellular recordings ran continuously for at least 5 days following 

decentralization. Media supplemented with glucose, penicillin, and streptomycin was replaced 

every 12-18 hours. In several experiments the stn was left intact as a control to measure the 

effect of enzymatic treatment on ongoing pyloric rhythm. Further details of the organ culture and 

electrophysiological set up have been described previously (Hudson 2013). The present study 

includes 19 decentralized preparations, including chABC treated (n = 8), DNchABC treated (n = 

6), and media-only preparations (n = 5). 

Analyzing long-term pyloric activity 

 Continuous, multi-day recordings of pyloric activity were analyzed in one of three ways: 

either as a list of burst times and their corresponding interburst intervals, as a spectrogram, or as 

an autocorrelogram. Activity metrics associated with each technique are listed in table 1. We 

define a “stable epoch” differently depending on the analysis method used, but in each case 

search for stable epochs began 15 hours following decentralization. For every long-term 

visualization of a decentralized preparation presented in this paper, time 0 corresponds to 

decentralization. 

 As a precursor to spectrogram and autocorrelogram analysis, lvn and pdn recordings were 

smooth rectified using an order 8 Chebyshev Type I low-pass filter with a 30 Hz cutoff 

frequency. Recordings were then downsampled from 2000 Hz to 80 Hz in order to make analysis 

more computationally manageable. Downsampled data lost information about fast spiking 

dynamics, but captured the slow (< 3 Hz) rhythm of the pyloric circuit that we were interested in. 

An example of a raw and downsampled lvn recording are shown in figure 2. Interburst interval 

analysis did not require smooth rectification or downsampling. 
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Name Measured feature of 
activity 

Computed from 

IBI Speed List of ISIs 
!ibis Variability List of IBIs 
Frequency* Speed Spectrogram 
ppeaks/ptotal* Regularity Spectrogram 
p10 Activity level Spectrogram 
p3 Activity level Spectrogram 
p3/p10 Activity level Spectrogram 
lagpeak1* Speed Autocorrelogram 
ACFpeak1* Regularity Autocorrelogram 
P95median Presence of dominant 

frequency or lag 
Spectrogram and 
autocorrelogram 

Table 1: Activity metrics. List of activity metrics, what they attempt to measure, and 
which analysis technique they are computed from. 

*Metric only computed for times when P95Median above threshold. 
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1 s 

Figure 2: Recordings were downsampled before spectrogram 
and autocorrelogram analyses. Sample lvn recording before 
smooth rectification and downsampling (top) and after (bottom) 
from a control (no-treatment) preparation before decentralization. 
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Interburst interval analysis 

 Custom MATLAB scripts were used to extract spike times from extracellular recordings. 

Spike detection was performed on recordings from the pdn whenever available, otherwise on 

recordings from the lvn. Further analysis was done only on activity from the PD neurons, which 

we used as a readout of pyloric activity. From our lists of PD spike times for each preparation, 

we generated corresponding lists of interspike intervals (ISIs). To visualize how the distribution 

of ISIs change over time, we divided our lists of ISIs spanning multiple days into 30 minute bins. 

Within these 30 minute time bins, we further grouped ISIs of similar length using 0.01 second 

time bins. Histograms were created from these binned data with time bins represented along the 

x-axis, ISI-bins along the y-axis, and the number of ISIs falling in a given ISI bin within a given 

30-minute time window represented by color. To focus on timing of PD bursts, we defined a 

cutoff ISI for each preparation above which ISIs corresponded to intervals between bursts. We 

refer to the ISIs falling above this cutoff as “interburst intervals” (IBIs). For decentralized 

preparations, a stable epoch was defined in terms of IBIs as a window of at least four hours 

during which the median filtered (order 5) IBIs stayed below 5 seconds. 

 The IBI analysis was used to analyze activity variability. To quantify how local 

variability changes over time, we used a rolling 2 hour window in which we computed the 

standard deviation of IBIs. We call this metric “!IBIs”. Because of limitations in our spike 

detection algorithm, IBI analysis was performed only on a subset (n = 7) of our total 

decentralized sample: one chABC treated, one DNchABC treated, and 5 media-only 

preparations. 

Spectrogram analysis 

 Spectrograms were created using MATLAB’s spectrogram function with a 20 minute 

Hamming window and 50 percent overlap between successive segments. A spectrogram for a 
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given preparation was generated either entirely from the lvn recording, or entirely from the pdn 

recording. Each column of a spectrogram contains the power spectral density of frequency 

content during the temporal window corresponding to that column. As measures of overall 

activity level, we summed the total power up to 3 Hz and up to 10 Hz for each column of our 

spectrograms. We refer to these metrics as “p3” and “p10”, respectively. To quantify the relative 

fraction of power that falls in the 0-3 Hz range, which would include typical pyloric rhythm 

frequencies, we also computed total power in the 0-3 Hz band divided by total power in the 0-10 

Hz band. We call this metric “p3/p10”. Additionally, for each spectrogram column we subtracted 

the median power from the 95th percentile of power. We call this metric “P95Median”. A higher 

P95Median value indicates the presence of a dominant frequency, while a lower value indicates a 

flatter power spectrum. This metric more directly measures the presence of a dominant frequency 

as opposed to the overall power level across many frequencies measured by our activity-level 

metrics. We defined a P95Median threshold above which we considered a dominant frequency to 

be present (figure 3). The same threshold was used for all preparations. For times at which 

P95Median fell above this threshold, we further computed pyloric frequency and regularity. 

Pyloric frequency was found by first determining a subset of frequencies corresponding to the 

highest amplitude peaks in the power spectrum. Pyloric frequency was defined as the minimum 

frequency from this subset. To quantify regularity of the pyloric rhythm, we measured the 

fraction of total power that is accounted for by the previously computed pyloric frequency and its 

harmonics (figure 4). We call this metric “ppeaks/ptotal”. This metric’s validity in quantifying 

regularity is illustrated by its appropriate quantification of activity regularity for two sine waves 

with equal mean period length, but different period length variability (figure 4 A&B). The power 

spectra for these sine waves contain a single peak, thus in our regularity metric the power under  
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Figure 3: P95Median metric was used to define presence of dominant frequency. 
Spectrogram for a decentralized control (no-treatment) preparation (top) and corresponding 
trace of P95Median over time (middle). Bottom: P95Median trace highlighting hours 0-90. 
Threshold used to define presence of dominant frequency shown in red. Vertical grey line 
indicates decentralization. 
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Figure 4: Quantifying pyloric rhythm regularity. (A) Sample artificial data used to illustrate 
validity of rhythm regularity metric. Sine waves were generated where each cycle period was 
drawn from a normal distribution. µ Period = 1 s and !Period was varied. Top: !Period = 0.02 s. 
Bottom: !Period = 0.2 s. (B) Power spectra of sine waves with !Period = 0.02 s (left) and !Period = 
0.2 s (right). Red lines indicate bandwidth over which to sum power for “ppeaks”. “ptotal” was 
summed from 0 to 10 Hz. Rhythm regularity, defined by ppeaks/ptotal, is higher for the sine wave 
with lower period variability. (C) Spectrogram for a decentralized control (no treatment) 
preparation. Blue line traces pyloric frequency over time and black lines indicate bandwidth 
over which to sum for “ptotal” quantity in ppeaks/ptotal metric. This bandwidth scales according to 
changing pyloric frequency so that regularity measured by ppeaks/ptotal is not confounded by 
changes in pyloric rhythm speed. Vertical grey line indicates decentralization. 
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this peak was divided by total power summed over the same bandwidth for each sine wave (0-10 

Hz). This metric’s application to pyloric rhythm is illustrated in figure 4C. Because the power 

spectra from our nerve recordings contain peaks at the pyloric rhythm frequency and its 

harmonics, we compensated for changes in frequency over time by scaling the “ptotal” quantity in 

our metric according to the current pyloric frequency, thus ensuring that regularity as measured 

by ppeaks/ptotal was not confounded by changes in activity speed. We defined a frequency range 

from pyloric frequency F – 0.25F to 3F + 0.25F. We then found the 3 frequencies (F1, F2, F3) 

within this range with the highest amplitude peaks in the power spectrum. We summed the 

power from Fi-0.25F to Fi+0.25F for each of the 3 frequencies. F1, F2, and F3 were chosen such 

that there was no overlap between each range Fi-0.25F to Fi+0.25F. The total power accounted 

for by F1, F2, and F3 was divided by the total power from F – 0.25F to 3F + 0.25F, giving a value 

between 0 and 1 for ppeaks/ptotal that quantifies the regularity of pyloric rhythm at the current time 

point. Our p3, p10, p3/p10, and P95Median metrics were smoothed using median filtering. 

Frequency and ppeaks/ptotal were processed using LOWESS smoothing. For decentralized 

preparations, a stable epoch was defined in terms of our spectrogram analysis as a window of at 

least four hours during which a dominant frequency was present and stayed above 0.2 Hz.  

Autocorrelogram analysis 

 The autocorrelation function (ACF) gives the similarity of observations as a function of 

the time lag between them. The ACF at lag k is the cross correlation of a signal with the same 

signal shifted temporally by lag k. Given a signal ! with length !, mean !, and sample variance 

!!, the ACF at lag ! is given by 

!"#! !
!!
!!

 

where  
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The ACF can range from -1, indicating perfect anticorrelation, to 1, indicating perfect 

correlation. Since a signal is always perfectly correlated with itself without any temporal lag, 

ACF0 always equals 1. The ACF provides information about the periodicity of a signal. The ACF 

for a periodic signal with period T would have peaks when lag = T, lag = 2T, lag = 3T, etc. For a 

perfectly periodic signal, the amplitude of peaks in the ACF would remain constant with 

increasing lag. If a signal’s period is variable, the amplitude of the first peak in the ACF will 

decrease to a value less than one and the amplitude of subsequent peaks will attenuate more 

rapidly.  

To visualize changes in pyloric activity over time, we created autocorrelograms with time 

represented on the x-axis, temporal lag on the y-axis, and the ACF value represented by color. 

The ACF was computed every 4 minutes on the subsequent 20 minutes of data. For each column 

of our autocorrelograms, the ACF was computed up to a temporal lag of 3 minutes. An example 

autocorrelogram is shown in figure 5. An autocorrelogram for a given preparation was generated 

either entirely from the lvn recording, or entirely from the pdn recording. As with our 

spectrogram analysis, we used a P95Median metric to detect the presence of a dominant 

temporal lag. For each column of our autocorrelograms, we subtracted the median ACF value 

from the 95th percentile ACF value. We defined a threshold above which we considered there to 

be a dominant lag. For time points with P95Median falling above this threshold, we computed 

the first lag > 0 where there was a peak in the ACF, corresponding roughly to pyloric period. 

This metric, which we call “lagpeak1”, was computed by finding the highest 8 peaks in the ACF 

!  
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Figure 5: Example autocorrelogram. Autocorrelogram for a decentralized 
DNchABC-treated preparation. Vertical grey line indicates decentralization. 
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and their corresponding lags. We then selected the smallest lag from this subset. We quantified 

pyloric periodicity according the magnitude of the ACF at this selected lag. We call this value 

“ACFpeak1”. Lagpeak1 and ACFpeak1 metrics were processed using LOWESS smoothing. For 

decentralized preparations, a stable epoch was defined in terms of our autocorrelogram analysis 

as a window of at least four hours during which a dominant lag was present and stayed below 5 

seconds. 

Statistical Analyses 

 Each of our metrics was computed over time for each preparation, quantifying how 

different aspects of pyloric activity vary over the hours following decentralization. Unstable 

epochs were defined as the time preceding distinct stable epochs. The first unstable epoch was 

defined to start 5 hours following decentralization. If two separate time ranges met our definition 

for stability and were separated by less than 4 hours, they were combined and analyzed as a 

single stable epoch. Thus each stable epoch was preceded by an unstable epoch of at least 4 

hours. We refer to the onset time of the first stable epoch as “tstable”. We define preparations as 

having achieved stability if they enter at least one stable epoch following decentralization. The 

mean pre-decentralization value of a metric was defined as the mean value of that metric during 

the 10 hours preceding decentralization. In boxplots shown, outer edges of the box define the 

interquartile range (IQR). The red line in the middle of the box denotes the median. Whiskers 

extend to data points outside the IQR. Values more than 1.5(IQR) away from the 25th or 75th 

percentile are shown as individual points. All group means are reported as mean +/- standard 

error. 

 Among preparations that achieved stability regardless of treatment group, we computed 

the maximum average ppeaks/ptotal and maximum average ACFpeak1 that was attained during the 10 
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hours preceding decentralization, during unstable epochs, and during stable epochs. The 

maximum average was defined as the maximum value of a 4-hour moving average which 

scanned from beginning to end of an epoch. For preparations with two unstable or stable epochs, 

we computed the maximum average during both unstable epochs and both stable epochs and 

used the maximum from each epoch type. Maximum averages were only computed on windows 

where the P95Median was above its threshold for at least 25% of the window. Individuals 

without any qualifying 4-hour window during any unstable epoch were excluded from this 

analysis. Total sample size after excluding these individuals was 13 (no-treatment: n = 4; 

DNchABC: n = 5; chABC: n = 4). The maximum averages for each class of activity were 

compared using repeated measures ANOVA and Student’s t-test with Bonferroni correction. 

 Among preparations that achieved stability, we compared tstable between treatment groups 

(no-treatment: n = 5; DNchABC: n = 5; chABC: n = 4). For all preparations including those that 

did not achieve stability, we compared across treatment groups various measures of activity 

during hours 5-30 following decentralization. No preparation entered a stable epoch before hour 

30. Individuals whose P95Median metric was above threshold for less than 25% of this time 

range were excluded from analyses that compared activity-dependent measures (frequency, 

ppeaks/ptotal, lagpeak1, ACFpeak1). Total sample size after excluding these individuals was 16 for 

spectrogram-based activity-dependent measures (no-treatment: n = 4; DNchABC: n = 6; chABC: 

n = 6) and 13 for autocorrelogram-based measures (no-treatment: n = 3; DNchABC: n = 5; 

chABC: n = 5). All measures were normalized against their mean pre-decentralization values. 

Comparisons across treatment groups were made using one-way ANOVA and Tukey-Kramer 

tests. 
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Among preparations that achieved stability regardless of treatment group, we perform 

correlation analyses on measures summarizing activity during an unstable epoch with measures 

of activity during the subsequent stable epoch. Measures from the first unstable epoch are 

compared against measures from the first stable epoch. Measures from the first unstable epoch 

are also compared against tstable. Among preparations that enter a second stable epoch, measures 

from the second unstable epoch are compared against measures from the second stable epoch. 

All measures were normalized against their mean pre-decentralization values. Individuals whose 

P95Median metric was above threshold for less than 25% of a given unstable epoch were 

excluded from analyses that compared activity-dependent measures (frequency, ppeaks/ptotal, 

lagpeak1, ACFpeak1) between that epoch and the following stable epoch. Correlation was measured 

using Pearson’s correlation coefficient, R. 

 

RESULTS 

 

IBI analysis inconclusive regarding activity variability and onset of stable epoch 

 Seven preparations were analyzed in terms of burst times and IBIs. One individual’s 

activity following decentralization is displayed in terms of ISI length distribution over time in a 

histogram in figure 6B. This particular individual remained active following decentralization 

until onset of stable activity at hour 106. Local standard deviation of IBIs (!IBIs) is traced over 

time for the same individual in figure 6C. For this individual, !IBIs is maximized at hour 47. 

Hypothesizing that reaching maximal activity variability earlier might be conducive to achieving 

stability earlier, we next looked at the relationship between time of maximum !IBIs and tstable 

across all seven individuals (figure 6D). No significant correlation was found between these two  
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A 

Figure 6: IBI analysis. (A) Sample from pdn recording before decentralization (I), 60 
hours after decentralization (II), and during stable epoch (III). (B) Histogram of ISI lengths 
over time for individual control preparation (left) and expansion of same histogram 
illustrating cutoff ISI used to define IBIs (right). Vertical gray line indicates 
decentralization and vertical green line indicates tstable. (C) Trace of standard deviation of 
IBIs over time for same individual shown in A. (D) tstable versus time of max !IBIs (R = 
0.63, p = 0.13). Black dots indicate no-treatment preparations. Orange dot indicates 
DNchABC-treated and green dot indicates chABC-treated. 
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measures (p = 0.13). We moved on to use spectrogram and autocorrelgoram analyses which 

allowed us to study a greater number of individuals. 

Chondroitinase treated preparations show late onset of stability 

 In order to compare our definitions of stability with definitions of pyloric recovery used 

previously (Hudson 2013), we compared tstable between treatment groups using both our 

frequency definition based on spectrogram analysis and our lagpeak1 definition based on 

autocorrelogram analysis (figure 7A). Based on previous work, we expected to observe a delayed 

tstable in the chABC group (Hudson 2013). According to our lagpeak1-based definition, one chABC 

treated individual entered a stable epoch (lasting ~4 hours) 28 hours following decentralization. 

Inspection of extracellular recording at this time revealed short bursts of fast pyloric activity 

lasting ~10 seconds followed by prolonged periods of silence lasting ~15 minutes. This stable 

epoch was not identified according to our frequency-based definition. Inspection of all other 

identified stable epochs for each preparation revealed consistent pyloric activity throughout the 

identified stable time range. The stable epoch identified at 28 hours was excluded and the next 

identified stable epoch (occurring at 134 hours) was used as tstable for this individual. Among 

preparations that achieved stability, the mean tstable in hours following decentralization was 65.3 

+/- 14.9 (frequency definition) or 65.1 +/- 15.0 (lagpeak1 definition) for no-treatment preparations, 

68.6 +/- 6.8 (frequency definition) or 66.0 +/- 9.2 (lagpeak1 definition) for DNchABC 

preparations, and 156.0 +/- 27.4 (frequency definition) or 140.0 +/- 20.4 (lagpeak1 definition) for 

chABC preparations. One-way ANOVA revealed a significant difference in tstable between the 

three treatment groups according to both the frequency-based definition (p <0.01) and the lagpeak1 

definition (p < 0.01). Further, Tukey-Kramer tests revealed a significant delay in tstable between 

the chABC group and both the no-treatment and DNchABC groups according to the frequency- 
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Figure 7: tstable different across different treatment groups. (A) tstable according to 
frequency-based definition (black) and lagpeak1 definition (grey) across three different treatment 
groups. (B) chABC-treated individual that achieved stability (left) and chABC-treated 
individual that did not achieve stability (right). Vertical grey lines indicate decentralization, 
green lines indicate start of stable epoch, red lines indicate end of stable epoch. 
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based definition of stability (no-treatment: p < 0.01, DNchABC: p < 0.05). The lagpeak1 definition 

of stability also revealed a significant delay in tstable among chABC preparations compared to 

controls (no-treatment: p < 0.05, DNchABC: p < 0.05). No significant difference in tstable was 

observed between no-treatment and DNchABC groups according to either definition (frequency-

based: p = 0.99, lagpeak1-based: p = 0.99). These results are based on the same data used in the 

Hudson 2013 study, which previously reported chABC to delay tstable, and are included here only 

to illustrate the effectiveness of our two definitions of stability. Among all preparations included 

in the present study, 5/5 no-treatment individuals, 5/6 DNchABC individuals, and 4/8 chABC 

individuals achieved stability. These results are consistent across both definitions of stability. 

Examples of chABC treated preparations that did and did not achieve stability are shown in 

figure 7B. 

Activity regularity decreases following decentralization, but increases significantly during 

stable epochs 

 In our IBI analysis, we quantified activity variability. In our spectrogram and 

autocorrelogram analyses, we quantify activity regularity. Because in our IBI analysis we looked 

for a potential relationship between time of maximum activity variability and tstable, it would be 

logical to analyze the relationship between time of minimum activity regularity and tstable. 

However, after observing traces of ppeaks/ptotal and ACFpeak1 over time, no common temporal 

pattern in these two measures of regularity was observed across individuals. Multiple similar-

magnitude minima in activity regularity would often be observed separated by hours of time, 

thus making identification of a single time of minimal activity regularity arbitrary and not 

meaningful. Example traces of ppeaks/ptotal and ACFpeak1 are shown for a DNchABC-treated 

individual in figure 8A and 8B.  
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Figure 8: Pyloric rhythm regularity differs before decentralization and between stable 
and unstable epochs. (A) Spectrogram for DNchABC-treated preparation with corresponding 
trace of ppeaks/ptotal over time. Color scale represents 10log10(power). (B) Autocorrelogram for 
same individual as in A with corresponding trace of ACFpeak1 over time. Color scale represents 
ACF value. Vertical grey lines indicate decentralization, green lines indicate start of stable 
epoch, red lines indicate end of stable epoch. (C) Max average ppeaks /ptotal (left) and max 
average ACFpeak1 (right) across three different classes of pyloric activity. Includes individuals 
that achieved stability, regardless of treatment group (n = 13). 
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To quantify how activity regularity relates to class of pyloric activity, we compared the 

maximum average activity regularity before decentralization, during unstable epochs, and during  

stable epochs (figure 8C). Among individuals that achieved stability regardless of treatment 

group, repeated measures ANOVA revealed a significant difference between maximum average 

regularity during these three types of pyloric activity (ppeaks/ptotal: < 0.001,  ACFpeak1: p < 0.001). 

Pairwise comparisons using Bonferroni t-test revealed pre-decentralization max avg ppeaks/ptotal 

(0.975 +/- 0.005) to be significantly higher than unstable max avg ppeaks/ptotal (0.819 +/- 0.016, p 

< 0.001) and stable max avg ppeaks/ptotal (0.906 +/- 0.023, p < 0.01). Unstable max avg ppeaks/ptotal 

was also significantly lower than stable max avg ppeaks/ptotal (p < 0.001). Similarly, pre-

decentralization max avg ACFpeak1 (0.590 +/- 0.041) was significantly higher than unstable max 

avg ACFpeak1 (0.091 +/- 0.032, p < 0.001) and stable max avg ACFpeak1 (0.249 +/- 0.042, p < 

0.001). Unstable max avg ACFpeak1 was also significantly lower than stable max avg ACFpeak1 (p 

< 0.01). The same trends in mean maximum average regularity (pre-decentralization max avg 

regularity > stable max avg regularity > unstable max avg regularity) were seen within treatment 

groups (no-treatment: n = 4; DNchABC: n = 5; chABC: n = 4) for both ppeaks/ptotal and ACFpeak1, 

however these differences were not consistently significant for either ppeaks/ptotal or ACFpeak1. 

Long term visualizations of two intact (not decentralized) individuals and corresponding traces 

of ppeaks/ptotal and ACFpeak1 over time are shown in figure 9. For both individuals, speed of pyloric 

rhythm and activity regularity decrease over time, possibly explaining the decreased max 

average ppeaks/ptotasl and ACFpeak1 observed in stable epochs compared to pre-decentralization 

values. It has been speculated that the gradual slowing of the pyloric rhythm in vitro may 

represent a shift toward a rhythm speed typical of a live, unfed animal. The rhythm speed  
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Figure 9: Long-term pyloric activity in two intact preparations. (A) Spectrograms 
of two untreated, intact preparations (top) and corresponding trace of ppeaks/ptotal over 
time (bottom). Color scale represents 10log10(power).  (B) Autocorrelograms for same 
two preparations as in A (top) and corresponding trace of ACFpeak1 over time (bottom). 
Color scale represents ACF value. 

Fr
eq

ue
nc

y 
(H

z)
 

p p
ea

ks
/p

to
ta

l 

A 

Time (hours) Time (hours) 

Te
m

po
ra

l L
ag

 (s
ec

on
ds

) 
A

C
F p

ea
k1

 

B 
Time (hours) Time (hours) 



28 
!

observed immediately following excision of the STNS may be unusually fast due to removal of 

potentially suppressive inputs from the brain and sensory systems (Golowasch et al., 2009). 

No significant differences found in activity following decentralization between treatment 

groups 

 In order to identify features of activity following decentralization that are predictive of an 

individual’s ability to achieve stability, we compared various summary measures of activity 

during hours 5-30 following decentralization between treatment groups. ChABC is known to 

either delay or prevent the pyloric circuit from regaining stable rhythm following 

decentralization (Hudson 2013), so features of activity unique to chABC-treated preparations 

could provide information about how stability is achieved. We normalized all measures of 

activity by their mean pre-decentralization values in order to focus on how an individual’s post-

decentralization activity changes relative to its activity when the stn was intact. For example, 

“mean frequency” refers to the mean frequency during hours 5-30 normalized by the mean 

frequency in the 10 hours preceding decentralization for that individual. “Min frequency” refers 

to the minimum frequency during hours 5-30 normalized by the mean frequency in the 10 hours 

preceding decentralization. A complete list of compared measures is listed in table 2. One-way 

ANOVA did not reveal any significant differences between treatment groups for any measure 

tested (all p-values >= 0.18). 

Testing for correlation between activity features in stable epoch and preceding unstable 

epoch 

In addition to comparing post-decentralization activity features between treatment 

groups, we analyzed relationships between activity during a stable epoch and the preceding 

unstable epoch, looking for features of unstable activity that are predictive of features of stable  
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Normalized measure p-value (One-way ANOVA) 
Mean frequency* 0.65 
Min frequency* 0.18 
Mean ppeaks/ptotal* 0.76 
Min ppeaks/ptotal* 0.92 
Max ppeaks/ptotal* 0.90 
Mean p10 0.55 
Mean p3 0.75 
Mean p3/p10 0.80 
Mean ACFpeak1* 0.68 
Min ACFpeak1* 0.61 
Max ACFpeak1* 0.67 
Mean lagpeak1* 0.28 
Max lagpeak1* 0.25 

Table 2: Comparison of activity measures during hours 5-30 between treatment 
groups. All measures were normalized by their mean pre-decentralization value.  

* Comparisons involving P95Median-dependent metrics exclude individuals whose 
P95Median metric was above threshold for less than 25% of the hour 5 – hour 30 time range 
(excludes 3 individuals for frequency and ppeaks/ptotal measures, 6 individuals for lagpeak1 and 
ACFpeak1 measures). 
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activity. All measures were normalized by their mean pre-decentralization value. Only measures 

derived from the same type of analysis (either spectrogram or autocorrelogram) were compared. 

Among preparations that achieved stability regardless of treatment group, we compared activity 

measures from the first unstable epoch to measures from the first stable epoch. We additionally 

tested for correlation between activity during the first unstable epoch and tstable. A complete list 

of all comparisons and their corresponding p-value for correlation tested using the Pearson 

correlation coefficient is shown in table 3. No significant correlations were found. 

Across individuals, the first stable epoch had an average duration of 20 hours with a 

standard deviation of 25 hours (frequency-based stability definition) or an average duration of 21 

hours with a standard deviation of 24 hours (lagpeak1-based stability definition). For each 

definition of stability, 6/14 individuals had two stable epochs. Among these individuals, the 

second stable epoch had an average duration of 27 hours with a standard deviation of 23 hours 

(frequency-based stability definition) or an average duration of 19 hours with a standard 

deviation of 10 hours (lagpeak1-based stability definition). We further tested for correlation 

between activity during the second unstable epoch and second stable epoch among these six 

individuals. Several measures were significantly correlated at the " = 0.05 level of significance 

(figure 10). Figure 10A&B indicates a relationship between activity level during the unstable 

epoch and minimum activity regularity in the following stable epoch. However, these 

correlations appear highly dependent on a single data point. Due to the small sample size (n = 6), 

the robustness of this correlation is unclear. Figure 10 D&E indicate a correlation between 

maximum activity regularity during the unstable epoch and maximum or mean activity regularity 

during the stable epoch. These correlations seem especially strong, however for 3/5 individuals, 

the unstable max ACFpeak1 occurred within 1 hour of either the end of the previous stable epoch 
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 Mean 
freq* 

Max 
freq* 

Mean 
ppeaks/ptotal
* 

Min 
ppeaks/ptotal
* 

Max 
ppeaks/ptotal
* 

Mean 
lagpeak1
* 

Min 
lagpeak1* 

Mean 
ACFpeak1* 

Min 
ACFpeak1
* 

Max 
ACFpeak1* 

tstable 

Mean freq* 0.92 0.36 0.96 0.76 0.58      0.62 
Min freq* 0.56 0.69 0.55 0.23 0.39      0.23 
Mean 
ppeaks/ptotal* 0.72 0.69 0.53 0.21 0.29 

     
0.09 

Min 
ppeaks/ptotal* 0.60 0.95 0.28 0.12 0.15 

     
0.41 

Max 
ppeaks/ptotal* 0.79 0.22 0.25 0.40 

0.05 
(0.053) 

     
0.80 

Mean p10 0.60 0.98 0.30 0.84 0.80      0.65 
Mean p3 0.18 0.29 0.86 0.21 0.97      0.46 
Mean p3/p10 0.18 0.22 0.99 0.22 0.98      0.54 
Mean  lagpeak1*      0.65 0.58 0.19 0.80 0.61 0.42 
Max lagpeak1*      0.81 0.88 0.93 0.88 0.88 0.09 
Mean 
ACFpeak1* 

     
0.47 0.55 0.96 0.29 0.90 0.62 

Min ACFpeak1*      0.25 0.36 0.74 0.73 0.91 0.77 
Max  ACFpeak1*      0.81 0.90 0.53 0.49 0.47 0.98 

Table 3: Correlation tests between activity measures during 1st unstable epoch and 1st stable epoch. All measures were 
normalized by their mean pre-decentralization value. Entries in table indicate p-values for Pearson correlation test between 
indicated measures.  

* Correlations involving P95Median-dependent metrics exclude individuals whose P95Median metric was above threshold for 
less than 25% of any epoch (excludes 1 individual for frequency and ppeaks/ptotal measures, 3 individuals for lagpeak1 and 
ACFpeak1 measures). 
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Figure 10: Correlations between activity measures during 2nd unstable epoch and 2nd 
stable epoch. All measures were normalized by their mean pre-decentralization value. (A) R = 
0.86, p = 0.03. (B) R = 0.83, p = 0.04. (C) R = -0.90, p = 0.04. (D) R = 0.96, p = 0.003. (E) R = 
0.98, p = 0.004. 
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or start of the subsequent stable epoch, suggesting that these correlations may in reality indicate a 

relationship in activity regularity between two stable epochs in the same individual, which is not 

surprising. Figure 10C indicates that as maximum activity regularity increases during the 

unstable epoch, the mean lagpeak1 in the subsequent stable epoch decreases. Regardless of when 

the unstable max ACFpeak1 occurred, this could indicate higher previous activity regularity 

correlates with slower eventual stable rhythm. When considering the correlations presented in 

figure 10, it is important to note that we tested for more than 60 potential correlations. While a  

Bonferroni correction for this large number of tests would be too conservative, a Bonferroni 

correction for only 3 comparisons would set ! = 0.017, at which level the correlations presented 

in figure 10A, 10B, and 10C would not be considered significant. 

 We did not test for correlations within treatment groups. For activity-dependent measures 

such as pyloric frequency or lagpeak1 in which we excluded individuals whose P95Median value 

was not above threshold for at least 25% of a given epoch, our sample size dropped to n = 3 for 

controls and n = 3 for chABC-treated preparations. A correlation analysis on such a low sample 

size would not give convincing evidence for or against a relationship between two activity 

measures. 

 

DISCUSSION 

 

 The objective of this study was two-fold. First, we aimed to study the pyloric circuit’s 

ability to functionally recover after being isolated from neuromodulatory input. In particular, we 

aimed to conduct an in-depth study of the pyloric circuit’s electrical activity in response to 

decentralization. The reemergence of stable pyloric rhythm following decentralization takes 
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several days. We were particularly interested in the unstable activity that follows decentralization 

and whether or how it relates to stable activity that may or may not be achieved later. Because 

degradation of extracellular matrix via chABC treatment is known to delay or prevent 

reemergence of stable activity, we also looked for potential differences in activity across 

treatment groups during the 30 hours following decentralization. Our goal of studying pyloric 

activity in detail across multiple days motivated our second aim: to develop multiple ways of 

visualizing long-term neuronal activity and to quantify how different features of activity change 

over time. 

Three ways of analyzing pyloric activity 

 We analyzed long-term pyloric activity in three ways: as burst times and interburst 

intervals, which we visualized in a histogram, as a spectrogram, and as an autocorrelogram. For 

each technique, we developed a set of metrics that can be used to describe different aspects of 

neuronal activity. Several different metrics described the same or related features of activity. For 

example, we used both ppeaks/ptotal and ACFpeak1 to describe activity regularity and "IBIs to 

describe activity variability. In general, variability and regularity are measures that can be 

defined in many ways. Finding multiple definitions to apply to neuronal activity has thus 

strengthened our analysis.  

Our IBI analysis was based on spike detection, one of the most common ways in 

neuroscience to study neuronal activity. Accurate spike detection can allow for a detailed 

analysis of activity on small timescales and can often distinguish between different neuron types. 

When working with long-term extracellular recordings, however, accurate spike detection 

becomes challenging. Spectrograms and autocorrelograms can be generated from raw waveforms 

without any intermediate spike detection step. This allows for easy visualization of long-term 
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processes without first having to optimize a spike detection algorithm. However, error is 

introduced when extracting features such as frequency from a spectrogram or first nonzero peak 

from an autocorrelogram.  Additionally, our spectrograms and autocorrelograms were generated 

on relatively course timescales and thus do not give a good representation of fast changes in 

neuronal activity. For example, pyloric bouting can occur in which several short spurts of fast 

activity are separated by longer periods of slow activity or silence. If these dramatic shifts in 

activity speed occurred within the temporal window of a spectrogram or autocorrelogram, the 

timing of shifts between these two distinct activity types could not be detected. Our spectrograms 

and autocorrelograms, which use temporal windows on the order of minutes, are thus better 

equipped to detect more gradual changes in activity. Each of our three analysis techniques has its 

strengths and weaknesses. Spectrograms and autocorrelograms are particularly powerful tools to 

provide a big-picture description of long-term electrical activity. 

Activity regularity decreases following decentralization and increases upon reemergence of 

stable activity 

 Because our definitions of stability required only a sufficiently fast rhythm with no 

minimum requirement for activity regularity, we quantified maximum average activity regularity 

during three types of pyloric activity: pre-decentralization, unstable, and stable. Among all 

individuals that achieved stability, we found that activity regularity is significantly higher during 

stable epochs as compared to unstable epochs, but significantly lower than before 

decentralization. This result was consistent across both definitions of regularity. However, these 

differences in maximum average activity regularity were not consistently significant within 

treatment groups for either definition of regularity. This lack of observable difference may be 

due to small within-treatment group size. Further data would need to be collected to draw a 



36 
!

strong conclusion. Nevertheless, that maximum average regularity increases significantly during 

time ranges we define as stable would not be surprising biologically. For our stable epochs to 

truly represent a functional recovery, the pyloric circuit would need to regain the regularity that 

was lost following decentralization. As a central pattern generator, the pyloric circuit must 

maintain a highly periodic rhythm in order to serve its biological function. 

Lack of evidence for post-decentralizaton activity features that are predictive of stable 

activity 

In an effort to better understand the pyloric circuit’s ability to adapt following 

decentralization, we attempted to identify any feature of activity following decentralization that 

either differed significantly between treatment groups or was predictive of some quality of 

stability achieved later. Because chABC treatment is known to affect the pyloric circuit’s ability 

to functionally recover following decentralization without affecting ongoing activity when the 

stn is left intact (Hudson 2013), we first looked for features of activity that differed significantly 

across treatment groups in the 30 hours following decentralization. No measure we tested was 

found to be significantly different between groups, suggesting that the underlying mechanism 

responsible for chABC’s effect is not evident from electrical activity alone. We only tested for 

differences in activity during hours 5-30 following decentralization in order to compare over 

time ranges of equal length in which no individual had entered a stable epoch. However, gene 

transcription in the hours immediately following decentralization has been shown to be critical 

for eventual rhythm recovery. Functional recovery can be prevented by application of an RNA-

synthesis inhibitor at the time of decentralization (Thoby-Brisson and Simmers 2000). Given this 

evidence for the importance of the time following decentralization at a gene-transcription level, it 
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is interesting that no differences in electrical activity between treatment groups were observed 

during a similar time window.  

 Among individuals that achieved stability regardless of treatment group, we additionally 

tested for correlation in activity patterns between an unstable epoch and the following stable 

epoch. Our analysis on the relationship between activity during unstable epoch one and stable 

epoch one revealed no significant correlations. The same analysis conducted on unstable epoch 

two and stable epoch two (among individuals that entered two stable epochs) revealed several 

correlations that were significant at the ! = 0.05 level of significance. Further analysis of the 

strongest two correlations indicate that they represent a relationship between activity during the 

first and second stable epoch rather than between activity during unstable epoch two and stable 

epoch two. The remaining correlations identified would not be considered significant with an !-

level adjusted for as few as three comparisons using the Bonferroni correction.  

How to look for activity qualities that are predictive of activity during a second stable 

epoch was not immediately clear. We chose to test for potential correlations between unstable 

epoch two and stable epoch two as a distinct group since activity measures for these epochs are 

not independent of measures describing earlier epochs. However, our analysis could have missed 

potentially predictive features of activity preceding unstable epoch two. Given that the vast 

majority of correlations tested were not significant at even the ! = 0.05 level of significance, we 

do not find strong evidence that features of activity during stability can be predicted by features 

of activity during preceding unstable activity. 

Significance and future directions 

 Our results altogether do not indicate electrical activity following decentralization to be a 

clear indicator of whether stability is eventually achieved or the regularity or speed of 
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reemerging stable pyloric rhythm. These results may seem surprising given that electrical 

activity is a known feedback mechanism for regulating membrane properties such as cellular 

conductance (Le Masson et al., 1993; Turrigiano et al.,1994; Liu et al., 1998; Golowasch et al. 

1999). Evidence that neuromodulator-dependent mechanisms also regulate ion channel densities 

and play a key role in the recovery process (Zhang et al., 2009; Zhang and Golowasch 2011; 

Khorkova and Golowasch 2007; Temporal et al., 2012) may explain why electrical activity alone 

cannot predict features of the circuit’s adaptive ability. Bouting behavior has previously been 

found not to be predictive of recovery (Luther et al., 2003). It has been speculated that variability 

in bouting behavior may be explained by differential states of cellular conductances before 

decentralization (Luther et al., 2003). Our results thus extend further to suggest that more 

gradual-long term electrical activity dynamics are also not predictive of later activity stability. 

Experimental evidence suggests that post-decentralization activity patterns and onset of time of 

stable activity can be altered by manipulating the activity and neuromodulator environment of 

the pyloric circuit prior to decentralization (Zhang et al., 2009). Thus while the present study 

focused on differential post-decentralization activity across individuals, it would be interesting in 

the future to assess the relationship between pre-decentralization activity and post-

decentralization stability. Our results suggest that analysis of post-decentralization activity alone 

may not provide information about the ability of the pyloric circuit to achieve stability following 

decentralization. 
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