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Abstract 

 

Aromatic compound metabolism and oxidative stress as potential mediators between 

ambient air pollution and hypertensive disorders of pregnancy--evidence from an 

MWAS study on Atlanta African American Maternal-Child Cohort 

By Haoran Cheng 

 

Hypertensive disorders of pregnancies (HDP) are the most common medical disorder 

of pregnancy and a leading cause of maternal and infant morbidity and mortality. 

Previous studies have established an association between exposure to ambient air 

pollution and the occurrence of HDP, but the underlying biological mechanism is 

unclear, impeding targeted intention strategies.  

 

329 individuals from the Atlanta African American (AA) Maternal-Child cohort were 

included in the study (68 with HDP including 42 gestational hypertension and 26 

preeclampsia). We employed liquid chromatography-high-resolution mass 

spectrometry to conduct metabolomics profiling on serum samples collected between 

8-14 weeks of gestation and developed a spatiotemporally resolved model to estimate 

exposure to three common ambient air pollutants (PM2.5, NO2, and O3) during four 

critical exposure windows (1yr prior to conception, 1st trimester, 1m and 1w prior to 

blood draw). We investigated overlapping features and pathways using a Meet-in-the-

Middle Approach (MITM) and High-Dimensional Mediation Analysis (HDMA).  

 

13,980 and 11,106 metabolic features were extracted from HILIC and C18 

chromatography columns. Several metabolites and pathways involved in oxidative 

stress and systemic inflammation are significantly associated with air pollutant 

exposures during critical exposure windows and HDP, including phenylalanine, 

indole, benzoate, LysoPC, degradation of the aromatic compound, and propionate 

metabolism. Biliverdin and porphyrin metabolism pathways are also associated with 

exposures and outcomes, indicative of potential hepatic impairment due to aromatic 

compound metabolism.  

 

Our findings suggest a potentially critical role of various aromatic compounds, 

indicative of oxidative stress, in the pathophysiology underlying the association 

between air pollution and HDP.  
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Introduction  

Hypertensive disorders of pregnancies (HDP), as a common type of pregnancy complication, 

is a leading cause of maternal and infant mortality, accounting for 14% of maternal death 

globally, with the highest burden in Africa1. HDP can be further categorified into 4 groups 

based on pathophysiology2. Chronic hypertension refers to hypertension onset prior to and 

continuously present during the pregnancy. Gestational hypertension (gHTN) is defined as 

new onset hypertension developed after 20 weeks of gestation, with systolic blood pressure 

greater than 140 mmHg and diastolic blood pressure greater than 90 mmHg. Preeclampsia 

(PE) is characterized by gestational hypertension and proteinuria. The last form is 

superimposed preeclampsia, with proteinuria as well as organ damage. The occurrence of 

HDP is closely related to the occurrence of several reproductive health problems, including 

intrauterine growth restrictions and preterm birth2.  

Air pollution has been recognized as a global public health risk factor, and influences 

different aspects of human health3,4. Common ambient air pollutants include ambient fine 

particulate matter (PM2.5), nitrogen dioxide (NO2), and Ozone (O3). Pregnant people and 

newborns are among the most vulnerable population to air pollution5. Maternal exposure to 

environmental stressors has been linked to adverse pregnancy complications and birth 

outcomes.5,60 Moreover, according to the Developmental Origins of Health Theory (DOHaD), 

these experiences during the early years of a child’s life have a long-lasting impact 

throughout their lifespan, increasing their risk of developing chronic disease later in life6,7. 
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Previous studies have established an association between exposure to ambient air pollution 

and the occurrence of HDP8,9, but the specific biological mechanism was unclear. An in-

depth understanding of the toxicity of various pollutant species is crucial for the development 

of interventions and policies to reduce the prevalence of HDP.  

 

High-resolution metabolomics has emerged as a powerful biomonitoring tool to examine the 

biological pathways that are influenced by environmental exposures and disease 

pathogenesis. Previous studies have identified oxidative stress and inflammatory response 

pathway perturbations as well as changes in maternal metabolome as a result of air pollution 

exposure10,11,12. Similarly, there have also been ongoing efforts using metabolomics to predict 

the occurrence of HDP13. By identifying the overlapping metabolites and pathways linking 

ambient air pollution exposure and HDP will contribute to revealing the mechanisms 

underlying the toxicity of air pollution on HDP. However, few study has used metabolomics 

together with mediation analysis in environmental reproductive health research.17,18,19  

Historically, most environmental epidemiology study in the US predominantly focuses on 

Caucasian populations. At the same time, however, African Americans suffer 

disproportionately from ambient air pollution and other psychosocial stressors, making them 

particularly susceptible and in need of further research14. To address these critical knowledge 

gaps, we conducted the study using the Atlanta African American Maternal-Child Cohort, a 

cohort established in 2014 to analyze the impact of environmental exposures on maternal and 

child health15,16,17,19,21. We aimed to use high-resolution untargeted metabolomics, meet-in-
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the-middle (MITM) approach, and high dimensional mediation analysis to identify 

metabolites and pathways that may potentially mediate the association between exposure to 

ambient air pollution and risk of HDP.  

Method 

Study population 

In this study, we included participants from the Atlanta African Maternal-Child Cohort15,16, a 

prospective cohort enrolling African American pregnant people in the Atlanta area at Emory 

University Hospital Midtown (Private) and Grady Memorial Hospital (Public). The inclusion 

criterion included ages between 18-40 years old, 8-14 weeks of gestation, singleton 

pregnancy, no chronic medical condition, and ability to communicate in English. Data 

collection includes a self-report questionnaire, information extraction for electronic medical 

records, and blood samples. For our analysis, we included 329 participants on whom we 

conducted metabolomics profiling. All samples are collected during the first prenatal visit 

and stored at -80C, until metabolomic profiling in 2020 to reduce the potential batch effect. 

This study was approved by Emory University Internal Review Board (IRB ID 1071) and 

signed informed consent was obtained from all study participants.  

 

Air pollution exposure assessment 

We used a previously validated ensemble model to estimate participants’ exposure to 3 

ambient air pollutant species, PM2.5, NO2, and O3
20. Specifically, the personal exposure to air 
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pollution was assessed based on the residential zip code of each participant. The ensemble 

model integrated multiple machine learning algorithms including neural network, random 

forest, and gradient boost, to yield pollutant concentrations with a spatial resolution of 1km x 

1km. We selected 4 different exposure windows, including 1-year prior to conception, the 

first trimester of pregnancy,1 month, and 1 week prior to a blood draw to represent short 

(1tri, 1m, 1w) and long-term (1y) exposure.   

 

Measure of HDP and covariates 

2 types of HDP including gHTN and PE were extracted from the electronic medical record 

system. Specifically, participants were considered to have gHTN if they had new-onset 

hypertension (systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 

mmHg at ≥20 weeks of gestation) in the absence of proteinuria or new signs of end-organ 

dysfunction, and PE if they met the same blood pressure criteria along with proteinuria or 

new signs of end-organ dysfunction. Covariates and confounding factors adjusted in the 

analysis are determined based on previous analysis and manifested using a directed acyclic 

graph (DAG). To better interpret the MITM results, we used the same set of covariates in the 

exposure-mediator and mediator-outcome model. Demographic information including 

maternal age and education level was obtained through a questionnaire. Infant sex, parity, 

gestational age, alcohol use, and other substance use (tobacco and marijuana) are extracted 

from the Electronic Health Record system. Maternal BMI was calculated using the weight 
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and height measured during their first visit, and the season of the conception of was 

calculated based on the time of the delivery in the system.   

 

High-resolution metabolomics 

Metabolomics profilings on non-fasting serum samples were conducted using high-resolution 

liquid chromatography coupled with mass spectrometry (HR-LCMS, Thermo Scientific™ Q- 

Exactive™ HF) using established protocols16,21. All samples, including actual study samples 

and quality control (QC) samples, were analyzed in triplicate in 2 chromatography columns, 

the hydrophilic interaction liquid chromatography (HILIC) with positive electrospray 

ionization (ESI) and C18 hydrophobic reversed-phase chromatography with negative ESI. 

Metabolic features including mass-to-charge ratio(m/z), retention time (rt), and relative 

intensity were extracted using the R package apLCMS and xMSanalyzer22,23, averaged, and 

then log-transformed for the following analysis. We also calculated the relative standard 

deviation (RSD) for each feature in the QC sample and missingness in the study and QC 

samples as part of the quality control process. Features with missingness in study sample 

<90% or RSD >50% and QC missingness of <10% were excluded. In total, 11,269 and 9,565 

metabolic features remained in the current analysis for the HILIC and C18 columns, 

respectively. Next, we utilized a second auxiliary feature that was correlated (with a Pearson's 

correlation greater than 0.5) to identify and separate missing values into two categories: those 

that were missing not at random (MNAR) and those that were missing at random (MAR). By 

using a correlated auxiliary feature, we assumed that we could gain an understanding of the 
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missing value patterns for a given feature by analyzing the non-missing observations of its 

auxiliary feature. The missing values of MNAR features were imputed by quantile regression 

imputation of left-censored data (QRILC), while those of MAR features were imputed by 

random forest (RF).25 

 

MWAS Analysis and Meet-In-The-Middle Approach 

We conducted MWASfor exposures and outcomes separately and then leveraged the MITM 

approach to identify the overlapping features associated with both exposures and outcomes26. 

Specifically, we use series of multiple linear regression (i.e., exposure-mediator) models and 

logistic regression (mediator-outcome) models to evaluate the association of metabolic 

features with exposures and outcomes, respectively, using the fowling equations: 

ln(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗) = 𝛽0𝑗
+ 𝛽1𝑗𝐴𝑃𝑖 + 𝛽2𝑗𝐴𝑔𝑒 + 𝛽3𝑗𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽4𝑗𝑆𝑒𝑥 + 𝛽5𝑗𝐵𝑀𝐼 +

𝛽6𝑗𝑆𝑒𝑎𝑠𝑜𝑛 + 𝛽7𝑗𝑃𝑎𝑟𝑖𝑡𝑦 + 𝛽8𝑗𝐴𝑙𝑐𝑜ℎ𝑜𝑙 + 𝛽9𝑗𝑇𝑜𝑏𝑎𝑐𝑜_𝑀𝑎𝑟𝑖𝑗𝑢𝑎𝑛𝑎 + 𝛽10𝑗𝐺𝐴_𝑆𝑎𝑚𝑝

 Eq. (1) 

 

𝐿𝑜𝑔𝑖𝑡(𝑃(𝐻𝐷𝑃)) = 𝜃0𝑗 + 𝜃1𝑗 ln(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗) + 𝜃2𝑗𝐴𝑔𝑒 + 𝜃3𝑗𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜃4𝑗𝑆𝑒𝑥 +

𝜃5𝑗𝐵𝑀𝐼 + 𝜃6𝑗𝑆𝑒𝑎𝑠𝑜𝑛+𝜃7𝑗𝑃𝑎𝑟𝑖𝑡𝑦 + 𝜃8𝑗𝐴𝑙𝑐𝑜ℎ𝑜𝑙 + 𝜃9𝑗𝑇𝑜𝑏𝑎𝑐𝑜_𝑀𝑎𝑟𝑖𝑗𝑢𝑎𝑛𝑎 +

𝜃10𝑗𝐺𝐴_𝑆𝑎𝑚𝑝 Eq. (2) 

 

Where ln (𝐹𝑒𝑎𝑡𝑢𝑟𝑒) refers to the log transformed intensity of metabolic feature 𝑗; 𝐴𝑃𝑖 is 

the averaged exposure of pollutant i in a specific window; 𝑆𝑒𝑥 is the sex of the child born; 
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𝑆𝑒𝑎𝑠𝑜𝑛 is the season of conception; 𝑃𝑎𝑟𝑖𝑡𝑦 is the times of previous pregnancies; 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 

is the use of alcohol; 𝑇𝑜𝑏𝑎𝑐𝑜_𝑀𝑎𝑟𝑖𝑗𝑢𝑎𝑛𝑎 is the use of either tobacco or marijuana, 

𝐺𝐴_𝑆𝑎𝑚𝑝 is the gestational age at sampling; 𝐻𝐷𝑃 denotes having gHTN or PE, and those 

without either condition was treated as a reference; Results were presented using Manhattan 

plots. All statistical analyses are conducted in R (Version 3.6) 

 

High-Dimensional Mediation Analysis  

In addition, we also employed the High-Dimensional Mediation Analysis (HDMA) method 

using the R package HIMA to uncover the potential mediators linking air pollution exposure 

to HDP27. This method is a complementary approach to previous studies that have developed 

a mediation analysis framework capable of handling multiple mediators and analyzing the 

indirect impact of each mediator28. In comparison to the MITM approach, HDMA can 

integrate several mediators into a single mediator-outcome model, allowing us to examine the 

relationship between specific indirect effects and mediators. HDMA extends the multiple 

mediator framework to the high-dimensional context by reducing the dimensionality of omics 

data. We used Benjamin-Hochberg (BH) corrected p-value to identify significant mediators. 

The detected features were annotated subsequently. Separate analyses were conducted for 

each column (HILIC positive ESI and C18 negative ESI). 

 

Pathway enrichment and chemical annotation 
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To predict the biological function of the significant unknown features identified from MITM 

and MDMA, we conducted pathway enrichment analysis using metapone. Metapone is an 

innovative bioinformatics tool that predicts functional biological activities using untargeted 

metabolomic data extracted in both positive and negative ESI modes29. It combines the Small 

Molecule Pathway Database (SMPDB) and mummichog database to create its own pathway 

database. The tool takes in metabolic features that are putatively annotated with weights 

based on uncertainty in metabolite-feature matching. The significance of enriched biological 

pathways is then tested, taking into account the weight schema. This approach allows for 

more accurate predictions of biological pathway activity. To minimize false positive 

discovery, we only included those pathways associated with either pollutant exposure or HDP 

at a raw p-value < 0.05, with more than 3 metabolites enriched. 

Finally, metabolic features that were significantly associated with exposure or outcome were 

annotated based on mz, rt, and extracted ion chromatographs (EIC) compared to the authentic 

chemical reference (confidence level 1).23 All analyses were completed in R (version 3.6). 

 

Results 

A total of 329 individuals from the Atlanta AA cohort were included in the current analysis 

and their demographic characteristics are described in Table 1, stratified by no HDP, gHTN, 

and PE. Among all participants, 42 (12.77%) have gHTN and 26 (7.9 % ) have PE. Those in 

gHTN and PE groups have less education beyond the college level compared to those without 
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HDP. They also have a higher proportion of the use of addictive substances, and higher BMI. 

The air pollution exposure concentration has been summarized in Table S1 and the 

correlation among different exposure windows are summarized in Figure S1. Of all 3 

pollutant species, NO2 has the highest correlation between 4 exposure windows. For O3, 

there’s an inverse relationship between long-term exposure and 3 short-term exposure 

windows.  

 

Metabolome-wide association analysis 

After quality assurance and control, 13,980 and 11,106 metabolic features were extracted 

from HILIC and C18 chromatography columns, respectively. The number of statistically 

significant (raw p<0.05 and FDR-corrected q<0.2) metabolic features associated with 

different air pollutant exposure windows or HDP outcomes were shown in Table S2, with 

Manhattan plots from each model in HILIC and C18 columns shown respectively in Figure 

S2 and S3. Overlapping features associated with at least one air pollution exposure and an 

adverse pregnancy complication outcome (raw p <0.05) have been summarized in Table S3. 

We were able to confirm a total of 15 features associated with at least one exposure or 

outcome with level 1 evidence from the 2 columns and the chemical identities of these 

features have been summarized in Table 2. Specifically, we identified Di (2-ethyl hexyl) 

phthalate (DEHP) as an overlapping feature that’s associated with 1tri and 1m exposure to 

PM2.5 and PE incidence. We have also identified various amino and derivatives, 

(phenylalanine, acetyl serine, glutamate, indole, cysteine, ketoleucine), lipids 
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(lysophosphatidylcholine or LysoPC), vitamins and cofactors (retinoate, biliverdin), and 

xenobiotics (benzoate, phthalic anhydride) associated with at least exposure or outcome. 

 

High-dimensional mediation analysis 

Details of the potential mediating features identified by HDMA for each model have been 

summarized in Table S4 and S5. In the HILIC column, HDMA has identified a total of 29 

potential mediating features, among which 27 features are also associated identified by in the 

same Exposure-Mediator model in MITM. However, only 2 features (mz= 391.2842, rt=22; 

mz = 91.9894, rt = 37.5) are identified in the Mediator-Outcome model. 4 features identified 

by HDMA in the HILIC were not identified by MITM in either exposure-mediator or 

mediator- outcome mode. No feature was identified only in the mediator-outcome model. 

Similarly, in the C18 column, HDMA has identified a total of 24 potential mediating features, 

among which 20 features are also associated identified by in the same Exposure-Mediator 

model. 5 features are also identified in the Mediator-Outcome model, among which one (mz 

= 455.248, rt = 23.2) is only identified in the Mediator-Outcome model in MITM. 3 features 

identified by HDMA in the C18 column were not identified by MITM in either exposure-

mediator or mediator-outcome mode. There is one feature recognized by both MITM and 

HDMA (mz= 391.2842, rt=22) as overlapping and we confirmed the identity of this feature 

to be DEHP with level 1 evidence. We were not able to match any other feature identified by 

HDMA with level 1 evidence. 
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Pathway Enrichment Analysis 

A total of 68 pathways are identified associated with at least one exposure window or 

outcome. Pathways include amino acid (glycine, serine, tryptophan, tyrosine, leucine), lipid 

(sphingolipid), vitamin and cofactor (Vitamin B6, purine), energy (pyruvate and 

gluconeogenesis) and xenobiotics (xylene, aromatic compound degradation). 24 of all 

pathways identified are associated with 1y O3 exposure. Overlapping features between 

exposure and outcomes include porphyrin metabolism associated with 1-m PM2.5, 1-y O3 

exposure, and PE; propanoate metabolism associated 1-y and 1-tri NO2 exposure and PE, 

degradation of aromatic compounds associated with all 4 exposure windows of NO2 and 

gHTN. While not associated with any outcome, there were several common pathways 

associated with multiple pollutant species, or exposure windows including tryptophan 

metabolism common to 1y PM2.5 exposure and 1tri NO2 exposure, and glycine and serine 

metabolism common to 1y PM2.5. and 1y O3 exposure. Details of such pathways have been 

summarized in Table S6.  

 

Discussion 

In this study, we employed a parallel strategy of MITM and HDMA to investigate the 

metabolomics perturbation in the maternal blood serum associated with ambient air pollution 

exposure and HDP incidence in the Atlanta African American Maternal Child cohort. We 

also identified several metabolomics perturbations unique to each pollutant exposure and 
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health endpoint, related to systemic inflammation and oxidative stress. Our findings suggest 

a potentially critical role of various aromatic compounds, indicative of oxidative stress, in the 

pathophysiology underlying the association between air pollution and HDP.  

 

Oxidative Stress as Underlying Pathophysiology 

Phthalate and Oxidative Stress 

Phthalates are a group of plasticizers used in hundreds of products and have very large 

consumption around the world. As of 2016, Di(2-ethylhexyl) phthalate (DEHP) was the most 

frequently used plasticizer world30. PMs, on the other hand, are a complex mixture of tiny 

solid and liquid particles composed of a variety of materials such as dust, soot, smoke, 

organic compounds, and metals. The presence of phthalates in PM2.5 may be due to their use 

in consumer products such as plastics, cosmetics, and personal care products, which can 

release phthalates into the air as a result of product use or disposal.31,32 The metabolism of 

phthalate in humans mainly takes place in the liver by various enzymes including the 

Cytochrome P450, and is eventually excreted from the urine or bile after enterohepatic 

circulation33.  

 

A previous MWAS study from the same cohort has confirmed metabolomics perturbations 

following phthalate exposure34. Specifically, the perturbed metabolites are tyramine, 

phenethylamine, and bilirubin, each corresponding to potential adverse effects including pre-

term birth, oxidative stress, and neurotoxicity. Perturbed pathways include tyrosine 
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metabolism and porphyrin metabolism. In our analysis, bilirubin is enriched in porphyrin 

metabolism for both exposure and outcome models. Bilirubin is a yellow-orange pigment that 

is formed as a byproduct of the breakdown of hemoglobin in red blood cells. It is produced 

mainly in the liver and is excreted from the body through bile. In the normative aging study 

(NAS) focusing entirely on the elderly Caucasian population, bilirubin, and porphyrin 

metabolism pathway were found to be significantly associated with long-term (annual) PM2.5 

exposure46. While the population and exposure windows are different, our findings confirmed 

the association between PM2.5 exposure and these metabolites and pathways. 

 

While our analysis didn’t directly identify bilirubin in any models, we did discover biliverdin, 

a green tetrapyrrole pigment right upstream of bilirubin in the hemoglobin metabolism 

pathway to be associated with gHTN. Biliverdin is also enriched in the porphyrin metabolism 

pathway for 1m PM2.5 exposure. Comparing our results with previous studies published based 

on the cohort on different exposures, we found that bilirubin is significantly associated with 

Bisphenol A (BPA), another type of plasticizer, while biliverdin is significantly associated 

with nicotine exposure18,19. Phthalate, BPA, and tobacco are all xenobiotics with aromatic 

rings in their structure and are metabolized through liver cytochrome P450. A systemic 

review has confirmed that exposure to PM2.5 is associated with increased enzymatic activity, 

a sign of liver damage40. The oxidation potential of PM and O3 has been confirmed in several 

previous studies.58,59 Bilirubin and biliverdin have several important roles in the body, 

including serving as antioxidants and markers of liver function35,36. Therefore, it’s reasonable 
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to hypothesize the association of bilirubin and biliverdin with environmental exposures may 

indicate maternal hepatotoxicity and liver damage from excessive oxidative stress when 

metabolizing these aromatic compounds.   

 

NO2 and oxidative stress 

While NO2 exposure is not significantly associated with phthalate or porphyrin metabolism, 

all 4 exposure windows and gHTN incidence are significantly (raw p<0.05) associated with 

the degradation of aromatic compounds. 3 short-term exposure windows are all associated 

(p<0.05) with xylene degradation, among which 1tri and 1w exposure is significant even at 

q<0.2. Metabolites enriched in the aromatic compound metabolism pathway include 

benzaldehyde, acetophenone, xylene, and ethylbenzene. Previous studies have suggested 

exposure to NO2 can affect the metabolism of aromatic compounds in the body through 

oxidative stress and changes in gene expression39. While Cytochrome P450 is mainly 

responsible for the metabolism of aromatic compounds, a significant portion of such aromatic 

compounds is metabolized by microorganisms, and other studies have also detected the 

metabolite from microorganism metabolism in human bodies.41 Our results shed light on the 

interaction of host and microbiomes in xenobiotics metabolism, and a more flexible, 

interdisciplinary approach that combines blood metabolomics with, gut metabolomics or even 

microbiomics has the potential to generate more insightful results.  
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Another piece of evidence we observed in support of NO2's contribution to oxidative stress 

was the identification of several LysoPCs positively associated with 1 long-term and 2 short-

term NO2 exposure windows. LysoPC is a type of phospholipid that is found in cell 

membranes and plays a role in various physiological processes. One of its main functions is 

as a signaling molecule that regulates inflammation and immune responses in the body. An 

increase in LysoPC is positively associated with an increase in cardiovascular and 

neurodegenerative diseases, including hypertension.53,54 

 

gHTN and PE pathophysiology 

Molecules for Maternal Morbidity 

While gHTN itself is not directly associated with increased risk for maternal and fetal 

complications, gHTN is associated with increased risk for PE, and PE is associated with 

various complications like hemolysis, elevated liver enzymes, low platelet count (HELLP) 

syndrome, fetal growth restriction (FGR).37,56 While the pathophysiology of pre-eclampsia is 

not entirely clear yet, commonly considered factors include abnormal development and 

remodeling of the placenta, oxidative stress, and inflammation which are all associated with 

air pollution 37,56,57 Inadequate trophoblast extravillous trophoblast invasion and spiral artery 

remodeling reduce blood flow to the placenta, resulting in placental hypoxia and placental 

ischemia, and reperfusion injury, causing syncytiotrophoblast stress. 37,56 The same reason 

also gives rise to FGR, explaining why the 2 conditions mostly occur concurrently. Abnormal 

placental development leads to an imbalance in the production of certain proteins and 
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hormones, such as angiogenic factors, which can cause damage to the endothelial cells that 

line the blood vessels in the mother's body. 

 

Previous studies have considered gHTN as a subclinical stage of PE from angiogenesis-

related factors38, and our results discovered similar results from a metabolite perspective. 

While There’re no overlapping pathways or metabolites discovered between gHTN and PE, 2 

metabolites identified as associated with gHTN, phenylalanine, and indole, both have an 

aromatic ring in their structure. Indole is formed from tryptophan metabolism, with 

kynurenine being another product. Kynurenine was found to be significantly positively 

associated with PE compared to gHTN in a previous study on the same cohort but with a 

smaller sample size.39 In our analysis, we found indole to be positively associated with gHTN 

compared to those without HDP. Both tryptophan and phenylalanine are associated with 

cardiovascular disease risks. Tryptophan is known to exert regulatory effects on the 

development of atherosclerosis while plasma phenylalanine is positively related to 

hypertension. 51, 52  

 

Molecules for Child Morbidity 

Amino acids play an important role in fetus growth and development. Most directly, the 

inability to metabolize phenylalanine is an inborn error of metabolism called phenylketonuria 

(PKU), causing intellectual disability and other serious health problems.55 Amino acid 

imbalance during gestation may produce long-term morphological or functional changes in 
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offspring, such as an increased risk of developing hypertension in the later life of the child, 

known as the developmental origins of hypertension.43,6,7 Perturbations of tryptophan 

metabolism are further associated with chronic kidney disease (CKD) in later life44. From 

here, we can see the double burden of aromatic compound metabolism in maternal and child 

health—both on the mother herself as well as the child. In our result, both short-term and 

long-term air pollution are associated with perturbations in various amino acid pathways, 

including tryptophan metabolism, tyrosine metabolism, aspartate, and asparagine metabolism, 

alanine and aspartate metabolism, many of which are aromatic amino acid pathways.  

 

In addition to DEHP, another metabolite that is significantly associated with PE in our 

analysis is retinoate. In our analysis, retinoate is negatively associated with PE, which is 

contradictory to the previous study suggesting a positive association between retinoate and 

PE42. Retinoate is involved in the regulation of cell growth and differentiation, particularly in 

the development of various tissues and organs such as the eyes, skin, and central nervous 

system 47. Given that PE is associated with fetal growth restriction and retinoate is an 

important messenger for growth, the negative relationship makes more sense. Further 

research on the association between retinoate and PE is needed.  

 

Inflammation as Underlying Pathophysiology 

Propanoate metabolism is another overlapping pathway shared by 1y, 1tri NO2 exposure, and 

PE. Propanoate is a microbial-derived short-chain fatty acid that plays important roles in 
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energy metabolism, immune regulation, appetite, and food intake. In a different cohort study 

on gut metabolome, they identified the role of propionate and short-chain fatty acid in 

reducing the risk of preeclampsia by suppressing inflammation43. The discovery of 

propanoate metabolism also highlights the importance of integrating metabolomics with 

microbiomics to further investigate the molecular interactions of environmental perturbations 

on human health. 

 

Analytic Strategies for Mediation Analysis 

The HDMA is much more conservative compared to MITM when identifying overlapping 

features, given that it generates much fewer overlapping features for each model. It’s quite 

surprising to see the big discrepancies in the overlap of MITM and HDMA results for 

exposure and outcome models. While FDR-corrected q of the features identified by HDMA 

are all smaller than 0.1 most of the FDR-corrected q in their MITM model is greater than 0.2, 

making these findings nonsignificant. The discrepancies here warrant that we should not 

overtly rely on p values to differentiate significant from nonsignificant findings.  

 

Strengths & Limitations 

Our analysis has several unique strengths. To begin with, it is one of the first studies that use 

untargeted high-resolution metabolomics to investigate perturbations associated with both 

environmental exposure and HDP. Our exposure assessment is conducted using a well-

validated ensemble spatiotemporally resolved model and includes 3 pollutant species. 
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Additionally, we used an innovative parallel analysis strategy, leveraging 2 different 

mediation analysis approaches at the same time, and both discover phthalate as overlapping 

metabolite, making the result much more robust. To our knowledge, this is also the first study 

to discover porphyrin and aromatic compound metabolism a potentially important but 

underestimated pathway explaining the contribution of ambient pollution to the 

pathophysiology of HDP. What’s more, we focused on African Americans, a population that 

has been historically underrepresented in biomedical and epidemiological research. Our 

cohort is one of the largest cohorts nowadays focusing on the reproductive outcome of 

African American populations and our results shed light on the persistent health disparities in 

the risk of HDP in the U.S. Finally, the workflow of the untargeted metabolomics profiling 

was well-established and has been shown to successfully analyze many non-fasting samples 

previously.18,45 

 

This study also has several limitations. Firstly, while the total sample size is moderate, the 

sample size of those with PE is still relatively small (n= 26). This may give rise to relatively 

high variability of the results. Secondly, even though we’re able to confirm phthalate as an 

overlapping metabolite, this result is not significant at FDR q< 0.2, suggesting the robustness 

of such results needs further validation. Given the aim of the study is hypothesis-generating, 

we lowered the threshold to include more positive results. However, we were only able to 

annotate a subset of all features identified, and that may leave out potentially important 

molecules. The association also does not imply a causal relationship given the cross-sectional 
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study design. Thirdly, similar to most air pollution epidemiological studies, ambient air 

pollution exposure was estimated based on the residential address of pregnant people, which 

did not consider daily mobility patterns and could be subject to exposure misclassification. 

Lastly, given this study specifically focuses on African American populations, the results 

might not be applicable to a more generalized population that is ethnically and socio-

economically more heterogeneous. 

 

This is a lot of variability and uncertainty in the composition of PM2.5, making research on its 

health effects difficult. The study warrants further research to study the impact of ambient air 

pollutant species, particularly PM by breaking down their specific compositions. While 

Perfluoroalkyl Substances (PFAS) have long been known as one of the most ubiquitous 

substances in the environment and have been related to various health risks61, the repetitive 

appearance of phthalate in our results suggests phthalate might become “the next PFAS” and 

further research on phthalate is urgently needed. At the same time, while there’s not a 

consensus yet on the way to perform high-dimensional mediation analysis as well as multi-

omics cross talk, methodological innovations to come up with methods that are more flexible 

and robust would be greatly appreciated.  

 



21 

Conclusion 

Our study confirms the great potential of untargeted high-resolution metabolomics in 

unraveling the mechanistic pathways linking environmental exposures and maternal and child 

health outcomes. The discoveries of various aromatic compounds and metabolic pathways 

suggest that it is crucial to consider pollutant compositions when studying the toxicity of air 

pollutants. The findings also suggest a potentially critical role of aromatic compounds 

indicative of oxidative stress, in the pathophysiology underlying the impact of air pollution 

on HDP. Further hypothesis testing research is warranted to replicate and validate these 

findings, using methods like the mixture analysis approach and multi-pollutant models.  
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Tables and Figures 

Table 1. Selected population characteristics by birth outcomes among the subjects enrolled in 

Atlanta African American Maternal-Child Cohort study, 2014-2018 (N = 329). 

  
No gHTN Preeclampsia 

(N=261) (N=42) (N=26) 

Age       

Mean (SD) 25.2 (4.74) 23.5 (4.90) 24.6 (4.70) 

Median [Min, Max] 24.0 [18.0, 39.0] 22.0 [18.0, 40.0] 24.0 [18.0, 33.0] 

Highest education    

Less than high school 39 (14.9%) 10 (23.8%) 5 (19.2%) 

High school 91 (34.9%) 18 (42.9%) 14 (53.8%) 

Some college or more 131 (50.2%) 14 (33.3%) 7 (26.9%) 

Sex    

Male 132 (50.6%) 19 (45.2%) 13 (50.0%) 

Female 129 (49.4%) 23 (54.8%) 13 (50.0%) 

Season of conception    

fall 62 (23.8%) 5 (11.9%) 5 (19.2%) 

spring 69 (26.4%) 10 (23.8%) 4 (15.4%) 

summer 78 (29.9%) 18 (42.9%) 10 (38.5%) 

winter 52 (19.9%) 9 (21.4%) 7 (26.9%) 

Parity    

Nulliparity 109 (41.8%) 22 (52.4%) 17 (65.4%) 

Primiparity 74 (28.4%) 10 (23.8%) 6 (23.1%) 

Multiparity 78 (29.9%) 10 (23.8%) 3 (11.5%) 

Tobacco or Marijuana Use    

No 156 (59.8%) 20 (47.6%) 12 (46.2%) 

Yes 105 (40.2%) 22 (52.4%) 14 (53.8%) 

Alcohol use    

No 240 (92.0%) 35 (83.3%) 21 (80.8%) 

Yes 21 (8.0%) 7 (16.7%) 5 (19.2%) 

BMI    

Mean (SD) 27.7 (7.15) 31.2 (7.45) 33.0 (10.2) 

Median [Min, Max] 25.6 [17.1, 54.1] 30.6 [20.5, 46.9] 32.1 [18.7, 51.4] 

GA at sampling    

Mean (SD) 11.6 (2.18) 11.0 (2.21) 10.5 (1.99) 

Median [Min, Max] 11.9 [6.00, 17.9] 10.9 [7.43, 17.0] 10.5 [6.86, 14.9] 
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Table 2. Chemical identity of the metabolites significantly associated with air pollution 

exposure or HDP outcomes (raw p<0.05).  

mz Time Compound Name Preferred Adduct Model 

HILIC Column 

137.0458 40.7 HYPOXANTHINE M+H pm25_1y 

391.2842 22 BIS(2-ETHYLHEXYL)PHTHALATE M+H pm25_1tri, pm25_1m, PE 

504.3067 28.6 LYSOPE(20:3) M+H pm25_1m 

522.3558 31 LYSOPC(18:1) M+H no2_1y, no2_1tri, no2_1m 

480.344 30.3 LYSOPC(O/P-16:1) M+H no2_1tri 

524.3691 29.9 LYSOPC(18:0) M+H no2_1tri, no2_1m 

149.0232 22.3 PHTHALIC ANHYDRIDE M+H no2_1m 

468.3082 31.6 LYSOPC(14:0) M+H no2_1m 

195.0877 28.9 CAFFEINE M+H o3_1y 

284.2947 22.5 HEXADECANOL M+ACN+H o3_1tri 

241.0312 186.9 L-CYSTINE/CYSTINE M+H o3_1tri 

343.1241 95.3 SUCROSE M+H, M-H2O+H o3_1m 

343.1241 95.3 MELIBIOSE M+H o3_1m 

301.2162 79.5 RETINOATE M+H PE 

166.0863 40.5 L-PHENYLALANINE M+H ghtn 

148.0604 63.8 L-GLUTAMIC ACID M+H ghtn 

148.0604 63.8 N-METHYL-D-ASPARTIC ACID M+H ghtn 

148.0604 63.8 ACETYLSERINE M+H ghtn 

118.0652 32.9 INDOLE M+H ghtn 

C18 Column    

162.0196 26.6 ACETYLCYSTEINE M-H, 2M-3H pm25_1y 

167.0348 194.8 VANILLIC ACID M-H pm25_1tri 

167.0348 194.8 HYDROXYMANDELIC ACID M-H pm25_1tri 

301.2387 24.2 RAC-GLYCEROL 1-MYRISTATE M-H pm25_1m 

121.0295 20.3 BENZOATE M-H no2_1y 

129.0558 21.1 KETOLEUCINE/KETOISOLEUCINE M-H no2_1w 

581.2347 221 BILIVERDIN M-H ghtn 

 

 

 

 

 

 

 

 

 

  



28 

Table S1. Statistics of 3 pollutants (PM2.5, NO2, O3) exposure for the four exposure windows 

among 329 pregnant people in the Atlanta African American Maternal-Child Cohort, 2014-

2018. 

 

Pollutant Window Q1 Q3 IQR Median Mean 

PM2.5
* 

1-yr 9.813 10.951 1.138 10.389 10.339 

1-tri 9.136 11.736 2.6 10.306 10.571 

1-w 8.185 12.037 3.852 9.936 10.37 

1-m 8.66 11.726 3.066 10.122 10.48 

NO2
# 

1-yr 20.56 27.215 6.655 24.318 23.776 

1-tri 18.754 26.712 7.958 23.558 22.774 

1-w 17.791 28.818 11.027 23.051 23.114 

1-m 18.635 27.338 8.703 23.357 22.668 

O3
# 

1-yr 36.92 38.44 1.52 37.59 37.79 

1-tri 36.12 45.89 9.77 42.66 40.42 

1-w 32.13 47.22 15.09 39.8 39.62 

1-m 32.94 45.8 12.86 41.31 39.85 

 

*: The unit for PM2.5 is  

#: The unit for NO2 and O3 are ppb 
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Table S2.  Number of statistically significant metabolic features associated with at least one 

pollutant exposure window or HDP outcome under different cutoff p-values, the Atlanta 

African American Maternal-Child cohort (2014-2016) 

Exposure 

  HILIC+ C18 

Exposure 

Window 

FDR RAW FDR RAW 

0.2 p<0.05 0.2 p<0.05 

PM2.5  

1-yr 2 929 0 555 

1-tri 6 891 0 573 

1-w 20 428 19 383 

1-m 1 570 0 562 

NO2  

1-yr 0 573 0 480 

1-tri 0 659 0 512 

1-w 0 553 0 351 

1-m 0 647 0 563 

O3 

1-yr 5 813 5 578 

1-tri 9 950 2 713 

1-w 0 549 0 477 

1-m 0 525 0 431 

HDP 
gHTN 0 756 0 413 

PE 0 605 0 561 

 

Note: Both Benjamini-Hochberg false discovery rate (FDR) procedure and raw p-value were used to identify a 

reasonable number of significant metabolic features. 

Abbreviations:  

gHTN: gestational hypertension, PE: preeclampsia 

a Those without hypertensive disorders of pregnancy are used as a reference group to compare with gHTN and PE. 
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Table S3.  Number of statistically significant metabolic features associated with at least one 

pollutant exposure window and one HDP outcome under raw p-values <0.05 , the Atlanta 

African American Maternal-Child cohort (2014-2016) 

Exposure Exposure Window 
HILIC C18 

gHTN PE gHTN PE 

PM2.5 

1-yr 54 53 27 39 

1-tri 50 53 31 40 

1-w 25 24 12 21 

1-m 27 33 13 37 

NO2 

1-yr 56 26 20 39 

1-tri 62 26 24 25 

1-w 41 23 17 21 

1-m 53 26 24 27 

O3 

1-m 59 38 27 48 

1-yr 52 52 35 64 

1-w 45 23 25 19 

1-m 41 31 21 19 

 

Abbreviations:  

gHTN: gestational hypertension, PE: preeclampsia 

a Those without hypertensive disorders of pregnancy are used as a reference group to compare with gHTN and PE. 
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Table S4. Model statistics of metabolic features in the HILIC column identified by HDMA as 

mediating features between different exposure and outcome among 329 pregnant people in the 

Atlanta African American Maternal-Child Cohort, 2014-2018.c 

 

mz rt Indirect Effect BH.FDR model 

589.1548 87.9 -0.066  0.038  gHTN ~ pm25_1y 

170.9852 55.8 -0.028  0.005  gHTN ~ pm25_1w 

1069.7144 30.2 0.036  0.028  gHTN ~ pm25_1m 

193.5697 83 -0.235  0.006  
PE~ pm25_1y 

456.1238 61.5 0.146  0.053  

600.1729 69.9 0.065  0.030  PE ~ pm25_1tri 

175.96 77.8 0.138  0.015  

PE ~ pm25_1m 

193.8944 111.5 0.110  0.068  

228.904 126.2 0.133  0.015  

302.1385 23.4 0.133  0.015  

391.2842b 22 0.087  0.061  

415.357 21.1 -0.103  0.021  

741.9338 59.7 -0.163  0.026  

861.5489 32.6 0.008  0.033  gHTN ~ no2_1y 

861.5489 32.6 0.000  0.079  gHTN ~ no2_1w" 

861.5489 32.6 0.002  0.051  gHTN ~ no2_1m 

91.9894b 37.5 -0.031  0.028  
PE ~ no2_1tri 

687.6077 46.5 0.029  0.028  

111.0918 238.5 0.002  0.029  PE ~ no2_1w 

91.9894 37.5 -0.042  0.005  

PE ~ no2_1m 161.0961 21.2 -0.041  0.005  

518.7669 51.9 0.017  0.045  

236.8852 116.6 -0.081  0.046  
gHTN ~ o3_1y 

606.316 23.1 0.087  0.046  

284.9951 186.6 -0.025  0.010  
gHTN ~ o3_1tri 

788.2795 46.4 0.018  0.020  

161.9053 43.4 0.003  0.004  gHTN ~ o3_1m 

392.8422 92.2 -0.049  0.062  PE ~ o3_1y 

415.357 21.1 -0.002  0.074  PE ~ o3_1m 
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Table S5. Model statistics of metabolic features in the C18 column identified by HDMA as 

mediating features between different exposure and outcome among 329 pregnant people in the 

Atlanta African American Maternal-Child Cohort, 2014-2018.c 

mz rt Indirect Effect BH.FDR model 

278.1593 23.4 0.027  0.039  gHTN ~ pm25_1tri 

145.0698 176.9 -0.010  0.013  gHTN ~ pm25_1w 

472.1447 201.1 0.045  0.008  
gHTN ~ pm25_1m 

708.3493 233.8 -0.040  0.008  

175.0989 282.5 -0.346  0.028  

PE ~ pm25_1y 

414.2011 224.4 -0.452  0.009  

429.298 285.1 0.616  0.009  

447.1342 222.9 -0.593  0.011  

455.2476b 23.2a 0.340  0.009  

461.3483 263.4 0.387  0.023  

573.3494b 41.2 -0.460  0.009  

557.4575a 269.3 0.018  0.004  PE~ pm25_1tri 

721.9594 41.1 0.047  0.041  
PE ~ pm25_1m 

803.9812b 46.9 -0.070  0.033  

490.4301 30.6 0.002  0.034  gHTN ~ no2_1tri 

786.8853 30.6 0.004  0.075  gHTN ~ no2_1w 

490.4301 30.6 0.000  0.046  gHTN ~ no2_1m 

397.0174a 20.6 -0.022  0.013  PE ~ no2_1y 

572.6175b 23.1 -0.017  0.005  PE ~ no2_1w 

432.1745a 199.7 0.079  0.034  gHTN ~ o3_1y 

485.1568 209.7 0.003  0.063  gHTN ~ o3_1m 

776.0182b 45.7 0.056  0.001  PE ~ o3_1tri 

213.113 227.8 -0.004  0.174  PE ~ o3_1w 

803.9812b 46.9 -0.003  0.019  PE ~ o3_1m 

 

a: This feature is not identified by either the exposure-mediator model or mediator-outcome model in MITM 

b: This feature is identified by the same mediator-outcome model in MITM 

c: Unless otherwise specified, all features are identified by the same exposure-mediator model in MITM 

 

 

 

 

 

 

 

 

 



33 

 

Table S6. Metapone output of pathway analysis of Exposure-mediator, and Mediator-

Outcome Models 

 

Model Pathway Name p_value  
significant  

metabolites 

total 

metabolites 
adjust.p 

pm25_1y 

glycine and serine metabolism 0.032 4.796  56 0.407  

amino sugar metabolism 0.029 3.509  46 0.407  

purine metabolism 0.002 8.945  108 0.284  

tryptophan metabolism 0.044 5.677  94 0.407  

vitamin b6 metabolism 0.009 3.498  30 0.407  

pm25_1tri tyrosine metabolism 0.038 6.163  133 0.647  

pm25_1w bile acid biosynthesis  0.006 3.773  79 0.204  

pm25_1m  

porphyrin metabolism 0.005 3.942  47 0.600  

abc transporters 0.049 4.410  73 0.636  

c21-steroid hormone biosynthesis  

and metabolism 
0.007 5.192  77 0.600  

no2_1y 

degradation of aromatic compounds 0.047 4.338  93 0.450  

gluconeogenesis 0.005 3.385  35 0.181*  

propanoate metabolism 0.01 3.921  64 0.253  

pyruvate metabolism 0.031 3.207  59 0.386  

warburg effect 0.024 3.308  60 0.357  

no2_1tri 

2-oxocarboxylic acid metabolism  0.004 4.178  49 0.166*  

degradation of aromatic compounds <0.001 7.473  93 <0.001* 

propanoate metabolism 0.035 3.565  64 0.443  

tryptophan metabolism  0.017 5.324  94 0.374  

valine, leucine, and isoleucine degradation 0.021 3.192  67 0.407  

xylene degradation <0.001 3.667  22 <0.001* 

no2_1w 
degradation of aromatic compounds 0.019 4.589  93 0.842  

xylene degradation  0.001 3.180  22 0.100*  

no2_1m 

degradation of aromatic compounds 0.011 6.153  93 0.322  

pyruvate metabolism 0.04 3.420  59 0.624  

xylene degradation 0.003 3.471  22 0.276  

bile secretion 0.011 5.039  80 0.322  

o3_1y 

alanine and aspartate metabolism 0.005 4.692  48 0.127*  

alanine, aspartate and glutamate metabolism 0.001 3.169  25 0.101*  

glutamate metabolism 0.007 3.779  50 0.148*  

glycine and serine metabolism 0.002 5.959  56 0.101*  

glycine, serine and threonine metabolism <0.001 5.476  41 <0.001* 
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glycine, serine, alanine and  

threonine metabolism 
0.013 6.780  86 0.219  

glyoxylate and dicarboxylate metabolism 0.004 4.104  45 0.127*  

amino sugar metabolism 0.032 3.307  46 0.225  

methionine and cysteine metabolism 0.049 5.768  81 0.258  

methionine metabolism 0.023 3.921  43 0.225  

phosphotransferase system (pts) 0.012 3.029  28 0.217  

porphyrin metabolism 0.003 3.982  47 0.127*  

protein digestion and absorption 0.009 4.269  43 0.175*  

pyrimidine metabolism 0.027 7.126  95 0.225  

abc transporters 0.027 5.315  73 0.225  

selenoamino acid metabolism 0.023 3.356  34 0.225  

urea cycle/amino group metabolism 0.029 4.779  71 0.225  

valine, leucine, and isoleucine  

degradation 
0.03 3.220  67 0.225  

aspartate and asparagine metabolism 0.037 5.371  82 0.231  

biosynthesis of amino acids 0.035 6.366  92 0.227  

biosynthesis of antibiotics 0.041 9.480  207 0.231  

carbon metabolism 0.005 5.821  87 0.127*  

central carbon metabolism in cancer 0.029 3.164  36 0.225  

cyanoamino acid metabolism 0.026 3.058  29 0.225  

o3_1w sphingolipid metabolism 0.014 3.649  48 0.788  

 gHTN 

degradation of aromatic compounds <0.001 7.343  93 <0.001* 

carbon metabolism  0.008 4.936  87 <0.001* 

chloroalkane and chloroalkene degradation 0.011 3.130  25 0.298  

PE 

porphyrin and chlorophyll metabolism 0.005 3.278  40 0.322  

porphyrin metabolism  0.008 3.308  47 0.322  

propanoate metabolism  0.018 3.810  64 0.517  
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Figure S1. The correlations among different air pollutant exposures for the four exposure windows   
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Figure S2. Manhattan plots of metabolome-wide association analysis in the HILIC column. A. Associations between air pollution 
exposures and changes in intensities of metabolic features; B. Associations between changes in intensities of metabolic features and 
gHTN or PE. X-axis denotes the retention time (in seconds) of the metabolic features, and Y-axis denotes the negative log10 of p-
values. Red dots indicated significant associations at FDRB-H < 0.2, and blue indicated associations at raw p-values < 0.05. 
Abbreviations: HILIC, hydrophilic interaction liquid chromatography; PM2.5, fine particulate matter; NO2, nitrogen dioxide, O3, ozone, 
gHTN, gestational hypertension; PE, preeclampsia; FDRB-H, Benjamini-Hochberg adjusted p-values.
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Figure S3. Manhattan plots of metabolome-wide association analysis in the C18 column. A. Associations between air pollution 
exposures and changes in intensities of metabolic features; B. Associations between changes in intensities of metabolic features and 
gHTN or PE. X-axis denotes the retention time (in seconds) of the metabolic features, and Y-axis denotes the negative log10 of p-
values. Red dots indicated significant associations at FDRB-H < 0.2, and blue indicated associations at raw p-values < 0.05. 
Abbreviations: C18, hydrophobic reversed-phase chromatography; PM2.5, fine particulate matter; NO2, nitrogen dioxide; O3, Ozone; 
gHTN, gestational hypertension; PE, preeclampsia; FDRB-H, Benjamini-Hochberg adjusted p-values
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Figure S4. The extracted ion chromatograph of identified chemicals. The metabolites were considered to be acceptable for chemical 

identification that had one or multiple pure peaks. 
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Note: Pure peak refers to exhibiting clear gaussian peak shapes and signal-to-noise ratio above 3:1. 
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