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Abstract

Privacy-aware Task Management for Mobile Crowd Sensing
By Layla Pournajaf

Location-aware Mobile crowd sensing (MCS) has numerous applications in
a wide range of domains including syndromic surveillance, crime mapping,
tra�c monitoring, and emergency response. Preserving the privacy of par-
ticipants in such applications is one of the main challenges in developing ef-
fective task management solutions in MCS. Moreover, the inherent dynamic
environment of MCS characterized by continuous change and inaccurate
participant movement information pose further challenges for coordination
of tasks and participants. Therefore, in this dissertation, we propose novel
methods to build robust task management frameworks to handle uncertainty
and ensure privacy in MCS applications. Our solutions not only increase the
disposition of the participants to engage in data collection and sharing ac-
tivity, but also ultimately lead to more e↵ective MCS applications.
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Chapter 1

Introduction

1.1 Motivation

Mobile crowd sensing (MCS) [33] enables individuals to participate in a collective

data sensing paradigm using their smartphones or other computing devices (i.e.,

contributing pictures, videos, audios, location, or speed measurements). Similar to

the generic crowdsourcing models, MCS deals with a set of tasks (a.k.a jobs) which

are completed by a set of participants (a.k.a workers). A general structure of task

distribution in MCS is shown in Figure 1.1. Three main entities are identified as

follows.

1. Participants are entities that use a sensing device to obtain or measure the

required data about a subject of interest.

2. Applications or end users are the entities that request data through tasks and

then utilize the information acquired by participants.

3. Tasking entities are responsible for storage and distribution of tasks to partici-

pants who meet the requirements of applications. In certain architectures, end

users and participants can also act as tasking entities.

An interesting class of MCS (a.k.a. location-aware crowdsourcing) [4, 41, 50] deals

with spatial tasks which are defined as specific targets including objects, events, or
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Figure 1.1: General structure of the task flow in MCS

phenomena at particular locations. Examples of spatial tasks include monitoring and

reporting speed, tra�c, or road conditions while driving (i.e. bumps, inclination, and

elevation) [30, 42, 72]. Spatial tasks are considered opportunistic if they run in the

background with little or no involvement from the participant (e.g. speed detection).

In contrast, participatory tasks require the users to engage in data collection. For

example, participants can report location-based conditions such as potholes or the

quality of the road as they drive around in their normal commute [31, 90]. Par-

ticipants may be also asked to search for the best prices located at di↵erent stores

and report them to be shared with other users for finding the best prices in the

region [15,28].

As a crucial part of location-aware MCS, a task management framework is respon-

sible for storing, indexing, and sharing geo-spatial tasks, recruiting qualified mobile

participants, and acting as a coordinator between the users and applications. Task

management frameworks in MCS fall into two major approaches: i) autonomous task

selection, and ii) coordinated task assignment. In autonomous task selection, partic-

ipants select their tasks autonomously from a set of existing tasks received from a

task distribution entity. They might or might not inform the distributor about their



3

selection choices. Examples of these approaches may be found in [22, 27, 84]. Coor-

dinated task assignment aims at optimizing the process of data sensing by e�cient

assessment of available sensing resources to meet the requirements of applications.

The criteria for optimization of task assignment include sensing costs, coverage of

targets of interest, quality, and credibility of sensed data. Examples of this approach

can be found in [26, 50, 51, 79, 80, 85].

We identify two main challenges in spatial task management approaches in MCS.

These challenges are i) preserving the location privacy of participants, and ii) handling

the noise and uncertainty of dynamic MCS environments.

1.1.1 Participant Location Privacy

Participant location plays a crucial role in e↵ective task management since tasks

are assigned or selected by participants mainly based on their proximity to tar-

gets [50, 85]. In the presence of an untrustworthy task management server, privacy-

aware participants may conceal their identity by anonymous contribution of data,

however, their location may reveal their identity or other private attributes. There-

fore, In many applications, participants might be reluctant to share their location

with the task management framework due to privacy concerns. One promising ap-

proach to preserve location privacy is spatial cloaking which has been widely used

in location-based services [6, 12, 34, 40]. MCS participants can adopt this method

for location privacy, however, it introduces location uncertainty issues which the ex-

isting spatial task management approaches can not handle e↵ectively. To overcome

this problem, new privacy-aware spatial task assignment methods are necessary to

exploit the cloaked locations of participants for e�cient recruitment.

In addition to spatial cloaking, other notions of privacy such as di↵erential pri-

vacy [29] and private information retrieval (PIR) [103] are also increasingly utilized

in location-based services. In a recent work, di↵erential privacy is adopted for spatial

crowdsourcing task assignment [95] in which a trusted aggregator (e.g. a cell service

provider) computes di↵erentially private aggregated counts of participants in various
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(a) Exact Trajectories (b) Uncertain Trajectories

Figure 1.2: E↵ect of uncertainty on spatial task assignment with two participants P1

and P2, and a task T1.

spatial regions and provides them to tasking entities for task assignment. PIR-based

methods have also been adopted for location-based services recently [34,35,53]. They

guarantee cryptographic privacy by allowing data retrieval from a database without

revealing any information to the database server about the retrieved item. This

method is not utilized in spatial task management.

1.1.2 Dynamic MCS Environments

In addition to privacy concerns, the location of participants may become inaccurate

as a result of error in location-detection devices or noisy transmissions. Moreover,

participants may be constantly moving (e.g. commuters) and sensing tasks may be

updated (e.g. moving crowd in an event) resulting in a dynamic and constantly

changing environment.

Figure 1.2 illustrates an example of a spatial task assignment problem in dynamic

environments. Two participant trajectories are indicated as P1 and P2 respectively,

and the location of a spatial task is shown as T1 at current time (i.e. labeled as

now in the figure). Figure 1.2a includes exact trajectories as the sequence of lo-

cations and time stamps while Figure 1.2b only contains uncertain trajectories as

the sequence of location areas at each time point. Assume that a task assignment
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server has access to these trajectories, the location of the task, and an assignment

goal (which requires tasks to be assigned to the closest participants at each time

point). While it is intuitive to assign T1 to P1 at current time in Figure 1.2a using

exact locations, it might not be as straightforward in Figure 1.2b, which deals with

uncertain trajectories. Thus, there is an urgent need for dynamic task assignment

in MCS for maximized sensing coverage and minimized sensing cost, while adapting

in real-time to the dynamic and uncertain locations of participants and the sensing

requirements of the applications.

1.2 Research Contributions

In this dissertation, we propose a novel framework for location-aware task manage-

ment to handle uncertainty and ensure privacy in MCS applications while achieving

desired task coverage with minimal cost. In Chapter 3 and Chapter 4, we present

two spatial task assignment and selection methods to address the location privacy

concerns of the participants in our framework. Chapter 5 and 6 extend the task

management framework using an adaptive data-driven solution which deals with the

continuous change and the uncertainty of dynamic environments in MCS. The rest

of this section highlights the details of our contributions.

1.2.1 Privacy-aware Coordinated Spatial Task Assignment

(Chapter 3)

In this chapter, we consider the spatial task assignment problem in a coordinated

crowd sensing setting. We assume a tasking server is responsible for managing sensing

tasks among participants who share their cloaked locations rather than their exact

locations. Our goal is to e�ciently assign sensing tasks to participants based on

their cloaked locations to achieve a desired coverage objective with minimized cost

(i.e. the total distance that participants have to travel for their assigned tasks). To
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this end, we propose a novel approach for a privacy-aware coordinated spatial task

assignment with the following contributions.

First, we propose a two-stage optimization approach for the spatial task assignment

problem in the presence of cloaked locations. In the first stage, a global optimization

problem is solved at the task assignment server using cloaked locations. Our approach

addresses location uncertainty and can work with di↵erent spatial cloaking methods.

In the second stage, participants individually fine-tune their assignments using their

own exact locations. We formulate formal optimization objectives for each stage

and further show the optimization problems at each stage are NP-hard. Second,

we propose e�cient greedy algorithms to solve the optimization problem at each

stage. Finally, we implement our approach as a software and demonstrate, from

both synthetic and real data, that our methods achieve high sensing coverage with

low cost using cloaked participant locations.

1.2.2 Private Reverse K-Nearest Queries for Autonomous

Spatial Task Selection (Chapter 4)

This chapter investigates a solution for an e↵ective spatial task selection approach

which guarantees strong location privacy for MCS participants. First, we propose

a solution for reverse k nearest neighbor queries (RkNN) based on the concept

of PIR which strongly preserves the privacy of the query point by preventing the

location-based server from inferring any information about it. Then, we show that,

this solution can be utilized in a privacy-aware autonomous spatial task selection

approach for MCS to allow participants to retrieve tasks without compromising their

location privacy.

Since the computational cost of PIR queries is high, it is important to propose

solutions with minimum requirement of issuing PIR requests. While PIR based

approaches have been proposed for kNN queries [77], designing PIR based solutions

for RkNN presents unique challenges as the number of RkNN query answers can

be arbitrary and often require searching over a large area for potential candidates.
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We summarize our contributions below.

First, our solutions are optimized on the server-side by adopting proper data in-

dexing models for e�cient storage and e↵ective data retrieval carefully designed for

RkNN queries. Second, clients are provided with a summary of the distribution

of data in the form of aggregated counts. Such information when combined with

the state-of-the-art uncertain RkNN query processing methods, enable the clients

to e↵ectively prune the search space and compute the minimal necessary blocks of

data for their answer. Finally, to guarantee near zero disclosure of information, we

compute a query plan for each database which guarantees a fixed number of block

retrievals from each database. This can answer any query regardless of its location,

thus, the server does not learn any information about the query based on the number

of requests or the size of the retrieved data.

1.2.3 Dynamic Spatial Task Assignment using Uncertain Tra-

jectories (Chapter 5)

This chapter extends the coordinated task assignment problem for a more dynamic

environment with moving participants. We propose a dynamic data-driven frame-

work to deal with uncertain participant locations as a result of movement, noise,

or error of location sensing infrastructure. Our approach is based on the DDDAS

(Dynamic Data Driven Application Systems) [25] paradigm. The DDDAS concept

is crucial to address the such crowd sensing applications in order to steer and assign

the data collection tasks in targeted ways, adapting dynamically to application needs

and the dynamic and uncertain locations of participants.

Our proposed task assignment framework entails a synergistic feedback loop be-

tween application simulations and data collection: 1) based on assigned tasks, par-

ticipants report the collected data and possibly their current (uncertain) locations to

the application; 2) the collected data are dynamically integrated into an executing

simulation to augment or complement the application model (e.g. flood movement),

3) the reported (uncertain) locations are dynamically integrated into an executing
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mobility model to accurately track participants’ moving locations, and 4) conversely

the executing simulations update the data collection targets and requirements as

well as participants’ locations which are then used by the task assignment module

to make new task assignments and steer future data collection.

1.2.4 An Extensive Experimental Evaluation of Location Pre-

diction Models For Moving participants (Chapter 6)

As a part of our dynamic framework for task assignment, this chapter carries out an

extensive experimental evaluation for existing mobility modeling approaches. Several

location prediction approaches are proposed in literature for variety of location-based

services and social networks, however, it is still challenging to adopt the most suitable

algorithms for specific applications. While complex algorithms are developed every

year, yet simple Markov Chain algorithms has shown promising results [67] in location

prediction and remain as the main solution to many real-world applications. Existing

location prediction approaches target di↵erent applications with their parameters

tuned for certain data sets. Many of such approaches have not been studied in variety

of experimental settings with di↵erent data, thus, they lack an extensive evaluation to

show their strengths and limitations in di↵erent situations. Moreover, due to existing

of variety of spatial and temporal modeling of trajectories, several approaches are not

comparable directly [73], therefore, building a framework to evaluate and compare

such methods using the same data and test parameters remains as a challenge.

We perform an extensive evaluation of the existing state-of-the-art methods with

the following contributions.

• We identify di↵erent location prediction problems in literature and discuss their

similarities and di↵erences. We also give a formal definition of the general next

location prediction problem which is studied widely with applications in real-

world location-based services.

• We categorize the existing approaches for next location prediction problem
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based on several aspects including the level of personalization, the spatial and

temporal representation of trajectories, and the mobility behavior modeling

scheme.

• We study several state-of-the-art next location prediction algorithms and eval-

uate them extensively using both synthetic and real-world data sets. We design

a series of experiments to evaluate and compare these algorithms based on the

criteria of accuracy, e�ciency, and robustness using data with di↵erent features.

• We use theoretical limits of human mobility prediction [88] to estimate the

upper limits of predictability for our data sets. This feature allows us to identify

the areas for improvement of algorithms in this study while comparing them

to each other.
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Chapter 2

Related Works

2.1 Spatial Task Management in Mobile Crowd

Sensing

Spatial tasks require the participant to be at a specific place in order to fulfill a

task. With the increasing use of smart phones with integrated GPS, the number of

applications in which, tasks are assigned based on the location of participants has

also grown. Monitoring and reporting speed, tra�c, and road conditions are some

examples of spatial tasks. Some of these tasks are opportunistic; they run in the

background with little or no involvement from the participant which can be used

to detect tra�c speed, bumps, inclination, and elevation of the road [30, 42, 72]. In

contrast, participatory tasks may ask the users to report potholes or the quality of

the road as they drive around in their normal commute [31,90]. Spatial tasks are not

restrained to reporting road conditions. For example, a participatory spatial task

could require that the participants search for the best prices located at di↵erent stores

and report them to provide other users with the best prices in the region [15, 28].

Spatial task management in mobile crowd sensing can be categorized into two major

approaches: (i) Autonomous task selection, and (ii) Coordinated task assignment.

In autonomous task selection, participants select their tasks autonomously from a set

of existing tasks received from a task distribution entity. They might or might not
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inform the distributor about their selection choices. Examples of these approaches

can be found in [20–22, 27, 84]. Since the selected tasks in these methods are not

optimized globally, these approaches might not be e�cient with respect to sensing

cost or global utility. Our proposed task selection approach in Chapter 4 seeks to

overcome this shortcoming by utilizing RkNN queries to increase the global task

coverage while preserving privacy.

Coordinated task assignment aims at optimizing the process of data sensing by

e�cient assessment of available sensing resources to meet the requirements of ap-

plications. The criteria for optimization of task assignment include sensing costs,

coverage of targets of interest, quality, and credibility of sensed data. Examples of

this approach can be found in [26, 50, 51, 79, 80, 85]. Reddy et al. [79] proposed a

coverage-based task assessment that finds the least costly subset of participants to

achieve the coverage goal. Shirani-Mehr et al. [85] also proposed a coverage-based

task assignment method for assigning viewpoints to a group of moving participants.

Our proposed task assignment in Chapter 3 di↵ers from these approaches since we

use cloaked locations of participants for task assignments, thereby ensuring that the

server does not learn the exact location of the participants.

2.2 Participant Privacy in Spatial Task Manage-

ment

2.2.1 Location-based Privacy Attacks

Spatial tasks requested or accepted by participants might lead to disclosure of their

current location and eventually their sensitive locations such as home/work addresses

or even their identification through location-based attacks. Location-based attacks

are widely recognized in the context of location-based services (LBS), however, cer-

tain attributes of mobile crowd sensing make it more vulnerable to some of spatial

attacks. Here, we give a brief review of such attacks in MCS.



12

In frequent spatial tasks, even if the participant is using the application anony-

mously (e.g. using pseudonyms), her trajectory might reveal her sensitive loca-

tions or commutes [60] or eventually disclose her identity using location-based de-

anonymization attacks [32]. Krumm proposed several algorithms to identify a small

group of anonymous participants and the home address of a larger group through

location-based inference attacks [59]. They used the distribution of location traces

during time, the last destinations of the day and the distribution of stay times to

infer the home addresses of the participants. A location could be simply considered

as home if it is visited frequently by the same user at night [16]. Participant locations

can also be exploited using trajectory data mining algorithms [71] to identify their

significant locations. The trajectory data can be also used to infer the individuals’

life patterns (i.e. private schedules or lifestyles) [109]. Continuous or frequent spa-

tial tasks make MCS more prone to location-based inference attacks as more location

traces of participants are collected.

Kazemi et. al. [48, 49] defined a location-based attack in campaign-based Partici-

patory Sensing applications when participants used Spatial k-anonymity [91] to hide

their location. The location attack is defined as the identification of a participant by

an untrusted server by learning the location of her issued task query. They observed

that all participants of a campaign query spatial tasks from the server (a.k.a. all-

inclusivity property) asking for tasks closer to them than any other participants (a.k.a

range dependency property). These properties result in the server having spatially-

dependent requests from all participants, so they argued that participatory sensing is

more vulnerable to such location-based attack. Gonzalez et. al. showed that people

and their movements are highly correlated [38] making such attacks possible.

Another location-based attack targets applications that utilize the density distri-

bution of participants (i.e. aggregated number of participants) in a location for task

management [86]. This attack exploited by a group of terrorists can be used to

identify dense areas for explosive launches.
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2.2.2 Spatio-Temporal Privacy-preserving Methods

With the growing advance of location-based services, several spatio-temporal privacy

mechanisms have been developed recently (see recent surveys in [7,34,61]). Although

the context in mobile crowd sensing is di↵erent from location-based services, these

mechanisms can be used to address location privacy problems in such scenarios as

well. Since location and time are two crucial pieces of information in an e↵ective

task management model, applying the existing spatio-temporal privacy-preserving

techniques can be challenging. Here, we study some of the applicable methods in

MCS task management.

Spatial Cloaking

In some crowd sensing applications, a perturbed or cloaked location can be used for

spatial task management instead of exact locations. Spatial cloaking or perturba-

tion hides the participant location inside a cloaked region using spatial transforma-

tions [52], generalization (e.g. k-anonymity) [46,101], or a set of dummy locations [54]

in order to achieve location privacy. Some MCS applications do not require exact

locations (e.g. pollution or weather monitoring), but for the majority of the ap-

plications with utility depending on location accuracy, adopting cloaking methods

remains a challenge. In our proposed work in Chapter 3, participants share their

cloaked location to obtain a set of closest tasks. We developed probabilistic methods

to deal with uncertainty for a globally optimized task assignment.

Kazemi et. al. [48, 49] showed that spatial k-anoymity methods used in location-

based services are not directly applicable to Participatory Sensing. Therefore, they

proposed that a group of the representative participants ask for spatial tasks from

an untrusted server, and share their results with the rest of participants. They

would also adjust the spatial regions in queries to make queries independent from the

location of other participants. Vu et. al. [97] proposed a spatial cloaking mechanism

for Participatory Sensing based on k-anonymity and locality-sensitive hashing (LSH)

to preserve both locality and k-anonymity.
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While most traditional location cloaking methods rely on syntactic privacy models

and are subjective to inference attacks, recent works applied more rigorous privacy

notion based on di↵erential privacy. The work in [6] proposed a location perturbation

method based on a rigorous notion of indistinguishability, which is similar to the

di↵erential privacy concept. Another recent work [105] protects the exact locations

with di↵erential privacy in a proposed delta-location set, which is derived in Markov

model to denote the possible locations where a user might appear at any time.

Temporally Constrained Sharing

Some approaches share exact locations for tasking, however, they avoid or mitigate

the location based attacks to some extent by controlling the timing of disclosures.

For example, to avoid frequent revealing of location of participants in spatial tasks,

Krause et al. [58] use a spatial obfuscation approach. In their solution, they divide

the space into a set of regions, then with a certain probability distribution, a subset

of participants is selected in each region to report their exact location. Such methods

can be used in tra�c monitoring applications.

Another method [58] assigns spatial tasks to participants in a way that the num-

ber of tasks for each participant is minimized. In such an approach, there will be

longer intervals between each location disclosure, mitigating location-based inference

attacks. This scheme can be further controlled by participants by setting explicit

policies regarding the intervals in which they prefer to share their location.

Aggregated Location with Di↵erential Privacy

Di↵erential Privacy [29] is a promising privacy-preserving approach with a strong

protection guarantee. This method is adopted in privacy-preserving publishing of

statistical information about location-based datasets [34] guaranteeing that indi-

vidual location information disclosure does not occur. It can also prevent privacy

attacks on the aggregated number of participants in a location as discussed in 2.2.1.

In a recent work, di↵erential privacy is adopted for spatial crowdsourcing task as-
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signment [95] in which a trusted aggregator (e.g. a cell service provider) computes

di↵erentially private aggregated counts of participants in various spatial regions and

provides them to tasking entities for task assignment.

Private Information Retrieval

Private information retrieval (PIR) protocol is a mechanism to ensure that location

based services are unable to infer any information about user requests [35,53]. Among

existing implementations of PIR protocol, hardware secure PIR accounts as the only

practical PIR method [103]. This method relies on secure co-processor (SCOP) that

is trusted by client and located in database servers. SCOP acts as a mediator between

the client and the server by handling the clients’ requests of data blocks, obliviously

retrieving them from the databases on the server and returning the fetched data back

to the client.

PIR approach has been recently used for answering private queries in Location-

based services. Khoshgozaran et al. [53] proposed the use of SCOP to partially

preserve the privacy of kNN queries. Since their approach allowed di↵erent number

of PIR requests for di↵erent queries, it could lead to information leakage about

the location of clients. Papadopoulos et al. [77] proposed a novel approach which

ensures strong location privacy for kNN requests by assuming each query retrieves

the same number of blocks from each database and the size of retrieved blocks are

the same. This method is considered a practical technique that guarantees strong

location privacy for kNN queries [77]. In Chapter 4, we adopt a similar approach

to answer private RkNN queries. However, given that RkNN query is a more

complex query type compared to kNN , private RkNN queries introduce unique

challenges. They not only require a di↵erent query answering approach, but also

demand di↵erent indexing methods and query plan design. Moreover, the size of

RkNN query answers are not bounded like kNN queries (i.e. kNN queries always

yield k answers) which makes it even more challenging. Other works have adapted

this solution to other spatial queries such as shortest path queries [76], bichromatic
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RNN (BRNN) [99] and kNN over road networks [98]. BRNN [99] counts as the

closest query type to our solution since it also handles reverse nearest neighbor

queries, however, monochromatic queries are inherently di↵erent from bichromatic

queries, so the Voronoi-based method which is used in their approach can not be

adopted for them.

2.3 Reverse k-nearest neighbor (RkNN) queries

A considerable amount of research has been conducted to study di↵erent types of

RkNN queries including snapshot RkNN queries [57], continuous RkNN queries [18],

and probabilistic or uncertain RkNN queries [17]. In this section, we provide a brief

overview of techniques that address RkNN queries in location-based services for both

exact and uncertain data.

2.3.1 RkNN Queries in Exact Databases

RNN query was first introduced by Koren et al. [57]. They proposed a method to

solve RNN query by pre-computation of NN circles for all data points. Techniques

that do not utilize pre-computation are considered more e↵ective in location-based

services. Some of these techniques are six regions [89], TPL [93], [94], FINCH [104],

VoR-tree [83], InfZone [18] and SLICE [107]. Most of these techniques utilize a

pruning and verification framework to reduce the search space significantly. Pruning

techniques are categorized into regions-based pruning [89,107] and half-space pruning

methods [18, 93, 94, 104]. Stanoi et. al [89] answer RkNN queries by dividing the

whole space centered at the query point q into six equal regions and find the kth

nearest neighbor in each region. Any points that are located further from kth nearest

neighbor of query point q in each region is pruned from the search space. Tao et.

al [93, 94] propose TPL that utilizes the property of perpendicular bisectors to split

the space between the query point q and any point p into two half-spaces. Any point

located in the space that is contained by k half-spaces of other points is pruned.
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2.3.2 RkNN Queries on Uncertain Data

The aforementioned approaches are not applicable to RkNN queries over uncertain

data. Lian et al. [66] proposed a method based on spatial pruning to solve RkNN

queries on probabilistic data objects. In their method, continuous probabilistic data

are summarized into spheres which are used for pruning. Cheema et al. [17] designed

a complex pruning method for uncertain RNN queries which consists of probabilis-

tic pruning, half-space pruning, and dominance pruning followed by an optimized

probabilistic verification method. Bernecker et al. [11] proposed an e�cient pruning

method on probabilistic data objects represented as discrete functions. Their ap-

proach utilizes two pruning strategies, spatial and probabilistic pruning. The spatial

pruning phase uses Minimum distance-Maximum distance pruning and the proba-

bilistic pruning phase applies a decomposition technique on uncertain data. Li et

al. [65] developed a novel pruning algorithm for answering RkNN queries on uncertain

data. They utilized two pruning strategies, spatial pruning in which pruned regions

are computed by calculating the distance and the angular range between uncertain

data, and the probabilistic method in which the upper bound for the probability of

pruning more data is retrieved.

In Chapter 4, we adopt several such pruning approaches including Minimum distance-

Maximum distance pruning method [11] and spatial pruning techniques based on

half-spaces [17] and regions [65] for client side query processing based on the sum-

mary data (before retrieving exact data), in order to reduce the search space and

minimize the PIR requests.

2.4 Participant Mobility Modeling and Prediction

Location is one of the most commonly used attribute in present databases. From a

simple zipcode in U.S. Census data to GPS coordinates in navigation applications

such as Google Maps, location data is collected everyday providing a rich source of

information for a broad range of applications in transportation, epidemiology and
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health-care, economic development, and marketing. An emerging family of such

applications exploit the predictive property of human mobility. Location-based re-

minders/planners, cellular-user tracking [9], tra�c prediction, epidemic prevention,

and event prediction [114] are few examples of such applications. In Chapter 6, we

present an extensive empirical evaluation of location prediction methods. To this

end, we classify and review next location prediction approaches according to four

di↵erent aspects: personalization, temporal representation, spatial representation,

and mobility learning scheme.
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Chapter 3

Spatial Task Assignment for

Crowd Sensing with Cloaked

Locations

In this chapter, we consider the spatial task assignment problem in a coordinated

crowd sensing setting in which a tasking server is responsible for managing sensing

tasks among participants who share their cloaked locations rather than their exact

locations. Our goal is to e�ciently assign sensing tasks to participants based on

their cloaked locations to achieve a desired coverage goal with minimized cost, i.e.

the total distance that participants have to travel for their assigned tasks.

3.1 Two-Stage Optimization Approach

In this section, we first define the spatial task assignment (STA) problem and then we

formulate a version of STA which deals with cloaked locations (STAC) as a two-stage

optimization problem.

3.1.1 Problem Definition

Figure 3.1 illustrates a high-level design for task management in a crowd sensing

architecture. In our work, we focus on three main components of this architecture
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including participants, applications and the tasking server. The applications are re-

questers of the data acquired via sensors carried/operated by participants. Our task

management service referred to as the tasking server recruits suitable participants for

applications. To this end, the applications upload their required tasks to the tasking

service. A task includes a set of targets of interest and required sensing specifications

such as type of sensing, required equipment, and sampling frequencies. Similarly,

participants who are registered to this service via a trusted third-party anonymizer,

provide their attributes including their capabilities such as their smart-device spec-

ifications, their spatial availability as cloaked areas, their temporal availability, and

other restrictions such as their mobility limitations.

Figure 3.1: Task assignment in a crowd sensing architecture

In this section, we provide a more formal description of the spatial task assignment

problem with cloaked locations. The summary of notations is presented in Table 3.1.

First, we formally define, who is a participant, and what is a cloaked area.

Definition 3.1. (Participant) A participant pi is an anonymously registered user who

has a limited travel budget bi, i.e. the maximum distance a participant can travel.

The participant shares this information as well as her cloaked area ai (defined later in

this section) and her desired sensing time with the tasking server. The participant’s



21

Table 3.1: Notations

pi Participant i

tj Target j

n Number of participants

m Number of targets

bi Travel distance budget of participant i

li Location of the participant i

ai Cloaked area of participant i

kj Required coverage for target j

g Required fraction of task coverage

di,j Distance between the participant i and target j

x First stage assignment matrix

y Second stage assignment matrix

d̂ Expected distance matrix

true location li is considered private and is not shared with the server.

Definition 3.2. (Cloaked Area) A cloaked area for a participant is a pair hai, fii,
where ai is a spatial region and fi is the probability density function of the participant

at each point in ai. For simplicity, we refer to the cloaked area as ai in this chapter.

Each participant is able to perform tasks that meet their restrictions. The following

definitions describe what is a task, its assignment, and its coverage.

Definition 3.3. (Task) A task specifies a set of targets for data collection, the lo-

cation of each target, the required coverage for each target (kj) (i.e. the number of

participants to cover target tj), and the overall coverage goal g (the required portion

of the task coverage defined later in this section).

Definition 3.4. (Task Assignment) Task assignment is a mapping of participants

to targets in a task shown by a matrix x where xi,j = 1 if target j 2M is assigned to
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participant i 2 N , otherwise xi,j = 0. N := {1, . . . , n} is a collection of row indexes

(or participants), M := {1, . . . ,m} is a collection of column indexes (or targets).

Definition 3.5. (Task Coverage) Coverage for a target is defined as the number of

participants assigned to it, normalized by the required coverage of the target kj (e.g.

for a target which requires two users to cover it kj = 2, if only one user covers it, the

target coverage would be 0.5). Task coverage (TU) is defined as the sum of coverage

for all the targets in the task shown in (3.1). The maximum value of TU for full

coverage is m. Coverage goal for a task denoted as g indicates the required fraction

of task coverage with g 2 (0, 1].

TU =
X

j2M

P

i2N xi,j

kj
(3.1)

Definition 3.6. (Task Cost) The sensing cost for a pair of participant and target

can be defined based on the travel distance, sensing duration or the complexity of each

sensing. Since the participants may need to travel to the target location, we define a

cost model which is simply the Euclidean distance between the participant’s original

location and assigned targets shown as a matrix d. Task cost (TC) is defined as the

sum of all sensing costs for all targets in the task. Our cost model can be substituted

by any other distance-based cost model without a↵ecting the problem definition.

TC =
X

j2M

X

i2N

xi,jdi,j (3.2)

Given a set of participants and a task, we can define the task assignment problems

as follows.

Definition 3.7. (STA: Spatial Task Assignment) For a set of participants and the

set of targets in a task, the spatial task assignment problem (STA) formulated below

aims at achieving the task coverage goal with the minimum cost by assigning targets

to qualified participants using their exact locations.
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min
x

X

i2N

X

j2M

di,jxi,j (3.3)

s.t.
X

j2M

P

i2N xi,j

kj
� gm

8i2N
X

j2M

xi,jdi,j  bi

where the minimization objective is to minimize the task cost TC, defined in (3.2).

The first constraint indicates that the task coverage TU, defined in (3.1), has to

be greater than or equal to the required task coverage gm. The second constraint

represents the travel budget of each participant (i.e. the total travel distance for

participant pi can not exceed her travel budget bi).

Definition 3.8. (STAC: Spatial Task Assignment with Cloaked Locations) For a set

of participants and the set of targets in a task, STAC aims at achieving the task

coverage goal with minimum cost by assigning targets to the qualified participants

using their cloaked locations. We formulate this problem as a two-stage optimization

objective in Section 3.1.2.

3.1.2 Formal Two-stage Optimization Objective

In spatial task assignment with cloaked locations (STAC), since exact locations of

the participants are not provided to the server, the distance between targets and

participants described by matrix d, used as the sensing cost matrix, is unavailable

to the tasking server. Therefore the server is required to deal with location uncer-

tainty and estimate the values of d as an expected distance matrix d̂. Then, the

server can utilize these expected values to perform the task assignment, however, this

uncertainty introduces inaccuracy in distance estimations and subsequently in task

assignments. Hence, we propose a two-stage optimization solution to solve STAC.

The first stage optimization problem is a global task assignment problem (G-STAC)
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based on uncertain locations solved at the tasking server, while the second is a local

task assignment problem (L-STAC) solved by each participant. Dividing the assign-

ment task into two separate problems utilizes participant location data locally while

preserving participant privacy. The goal of the second stage is to refine and optimize

task assignment results of the first stage by each participant using her exact location.

In this section, we describe each stage in detail and then propose a formal objective

for each problem.

G-STAC : First stage optimization objective

The first stage deals with uncertain locations which leads to uncertain distances for

participant-target pairs. Assuming we had exact locations, the first-stage optimiza-

tion objective would be as shown in (3). In absence of exact locations, we need

to estimate distances as d̂. We discuss the estimation process with more details in

Section 3.2.1.

L-STAC : Second stage optimization objective

Our second stage optimization runs in the participant’s device locally using the given

assignment from the first stage. Since new information is introduced in the second

stage (i.e., exact locations available in each participant’s device), these assignments

can be adjusted and refined for more coverage and/or lower distance/cost. The

reason is that (i) some targets might have been assigned to the participant by the

server based on the estimated distance, but they are not actually accessible to the

participant as the exact distance may exceed her travel budget; (ii) some targets

are very close to the participant but have been estimated as being farther and not

assigned. If each participant simply selects the closest targets in the second stage,

over-coverage may occur for some of the targets meaning they might be covered more

than required. Therefore, in addition to minimize the total travel distance with the

exact location in the second stage, we would like to keep the assignments of the

first stage unchanged as much as possible because they have been globally optimized
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for the global coverage goal and cost. The objectives of second stage assignment

optimization of each participant pi, i 2 N is shown in (3.4).

min
y

X

j2M

di,jyi,j (3.4)

s.t. |yi � xi| < ✏
X

j2M

yi,j
kj
�

X

j2M

xi,j

kj
X

j2M

yi,jdi,j  bi

where for each participant pi, xi is the first stage assignment vector, yi is the second

stage assignment vector, di is the distance vector, bi is the participant’s travel bud-

get, |yi � xi| is the Hamming distance between two binary vectors xi and yi which is

constrained using a small threshold ✏ in favor of keeping the first-stage assignments

unchanged as much as possible. The second constraint guarantees that pi’s contri-

bution to the task coverage is at least equal to the coverage share assigned to her in

the first stage. The last constraint guarantees that her travel distance is within her

budget.

3.1.3 Complexity Analysis

In this section we show that our global and local problems are NP-hard, by reducing

the minimum set cover problem to G-STAC and L-STAC. The minimum set cover

problem is a well studied NP-hard problem defined as follows.

Definition 3.9. (Minimum Set Cover Problem [96]) Given a universe W , a col-

lection S of subsets of W , and a cost function c : S ! R+ find a minimum cost

sub-collection of S that covers each element of W .

Theorem 3.10. The G-STAC is an NP-hard optimization problem.

Proof. To prove that G-STAC is NP-hard we show a polynomial reduction of the

minimum set cover problem (Definition 3.9) to our problem.
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Consider a minimum set cover problem with W = {p1, . . . , pn, p;, t1, . . . , tm, t;} and

S being a set of two-element subsets of W , i.e., S = {{pi, tj} : pi 2 W, tj 2 W}. Let
k > 0 and c : S ! R+ be a cost function such that c({pi, tj}) = d̂i,j (pi 6= p; and

tj 6= t;) is an expected distance between tj and pi. For remaining elements of S the

cost function is defined as follows: c({pi, t;}) = 0 and c({p;, tj}) = D, where tj 6= t;

and D >
P

i2N,j2M c({pi, tj}).
We reduce such instance of the minimal set cover problem to the G-STAC problem

as follows. Let P = {pi : i = 1, . . . , n} be a set of participants and T = {tj : j =

1, . . . ,m} be a set of targets. A distance between tj and pi is equal to di,j = c({pi, tj}).
We assume G-STAC has an optimal solution xOPT with minimum cost and full

coverage (when setting g = 100% and k = 1). We derive SOPT ⇢ S from xOPT for

the minimal partial set cover problem as follows. If tj is assigned to pi in xOPT , i.e.

xi,j = 1, then {pi, tj} 2 SOPT . If tj is not assigned to any participant in xOPT , then

{p;, tj} 2 SOPT . If pi has no target assigned to it in xOPT , then {pi, t;} 2 SOPT . If

all targets have been assigned and each participant has at least one target assigned

to it in xOPT , then {p;, t;} 2 SOPT .

We show by contradiction that SOPT covers set W with the minimal cost, i.e., any

other solution would not have lower cost. Let us assume by contradiction that there

is S 0 that covers W with lower cost. Elements of S 0 can be mapped to assignment

pairs of participants to targets, therefore they define a solution x0 for the G-STAC

problem. Since S has a lower cost than SOPT , then x0 has a lower cost than xOPT .

This is a contradiction with xOPT being the optimal solution of G-STAC.

Similarly, we can show that L-STAC is NP-hard by a polynomial reduction of the

minimum set cover problem (Definition 3.9) to it.

3.2 Algorithms

In this section, we propose e�cient greedy algorithms to approximate the optimiza-

tion objectives for both G-STAC and L-STAC.
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3.2.1 First Stage: G-STAC

We first present two methods to deal with location uncertainty in the first stage,

then we propose an e�cient greedy algorithm to approximate the optimization ob-

jective for G-STAC based on the greedy solution proposed in [87] for partial set cover

problem.

Distance Estimation

As mentioned earlier, we use a distance-based cost model in our work which de-

fines the sensing cost as the Euclidean distance between participants and targets.

Therefore, our tasking server is required to deal with the location uncertainty of

the participants to estimate distances. Queries over uncertain spatio-temporal data

have been extensively studied with many algorithms to handle queries such as near-

est neighbors, top-k, and range queries [102]. Most of these methods aim at ranking

the query answers, thus cannot be directly adopted in our work which requires actual

distances to optimize the sensing cost. Having the cloaked areas (as the pair of the

area and the probabilistic density function ha, fi), we propose two simple methods

to calculate the expected distances.

i) Centroid-point: In this baseline method, we calculate the centroid of all points

in the cloaked area z 2 a as the expected location of the participant and use it to

calculate the expected distances d̂i,j.

d̂i,j = dist(

Z

z2ai
zfi(z)dz, lj)

where lj is the location of the target j and the function dist is the Euclidean distance

between two points.

ii) Expected-probabilistic: In this method, for each pair hi, ji of participant-
target, we first calculate the probability of the target j being accessible by the par-

ticipant i as ⇢i,j (i.e., the probability that target j is within the travel budget of the
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participant i). To calculate this probability, we apply a simple pruning approach

for each participant-target pair and shrinks the cloaked area ai to a0i which is the

area of intersection between ai and the circle centered at target j with radius bi (i.e.

the distance budget of participant i). Then, having the probability density function

fi, we calculate the probability of the participant being in a0i which is equal to the

probability of the target j being within the travel budget of participant i (⇢i,j).

⇢i,j =

Z

z2a0i
fi(z)dz

Finally, we compute d̂i,j as the expected distance between the target and the inter-

section area a0i with probability ⇢i,j.

d̂i,j =

R

z2a0i
dist(z, lj)fi(z)dz
R

z2a0i
fi(z)dz

The above estimation methods can work with any cloaking area or can be discretized

to work with a set of perturbed locations associated with probabilities. Figure 3.2 il-

lustrates our estimation approaches when participant location is cloaked in a circular

region with uniform probability distribution function.

Greedy Algorithm

Algorithm 1 represents the pseudocode for an e�cient greedy algorithm to approx-

imate the solution of our first stage objective. It iteratively picks the most cost-

e↵ective participant-target pair and updates the current coverage for the target, until

either the coverage goal is met or all travel budgets of participants are exhausted.

Since both the number of targets to be assigned and all travel budgets do not in-

crease in time and always have non-negative values, the number of updates is finite.

In each iteration, the algorithm finds the most cost-e↵ective participant-target pair

and assigns them to each other. For a participant pi, i 2 N and target tj, j 2M , the

cost-e↵ectiveness of assigning them to each-other is calculated as �(1)
i,j which is the

ratio of expected distance d̂i,j (cost) to the expected coverage contributed by this
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Figure 3.2: (a) Centroid-point method, (b) Expected-probabilistic method

participant.

�(1)
i,j =

d̂i,j
min(1� u+

j ,
1
kj
) + ✏

u+ is the vector of current covered portions of the targets which is initially all zero. If

a target is fully covered, the corresponding value of this target in u+ becomes 1. The

expected coverage contributed by participant pi for target tj is hence min (1� u+
j ,

1
kj
),

the minimum of remaining required coverage of tj and the coverage pi can o↵er for

tj. Finding the minimum aims at preventing over-coverage. The small positive value

✏ is added to avoid overflow when the expected coverage by the participant is zero.

Since one of our distance estimation methods is probabilistic, Algorithm 1 is de-

signed to select the most cost-e↵ective pair of participant-target hi, ji with probabil-

ity ⇢i,j. For the Centroid-point method, these probabilities are calculated as

⇢i,j =

(

1 d̂i,j  bi

0 d̂i,j > bi

)

For the probabilistic method, ⇢i,j is calculated as described in Section 3.2.1. Al-
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gorithm 1 finds the answer in one pass through all participant-target pairs for the

centroid-point method because the probabilities are either 0 or 1. For the expected-

probabilistic method an upper-bound threshold R is used in the algorithm to stop

the algorithm after R passes through all possible pairs. While the algorithm will

converge after su�cient number of passes, we use R mainly for experiment purposes

and enhanced e�ciency. At the end of the first stage, the covered proportion of

targets is updated in u+ based on the first stage assignments. Therefore, we refer to

it as the expected coverage vector which is passed to the participant in the second

stage along with her first stage assignment and the set of her accessible targets.

Time Complexity. The time complexity of our distance estimation methods are

O(nms) where n is the number of participants, m is the number of targets, and s is

the number of points (sampling points when fi is continuous) in each participant’s

cloaked area. Algorithm 1 runs in O(nm) for the centroid-point method because

the probabilities are either 0 or 1, so the algorithm finds the answer in one pass

through all participant-target pairs. For the expected-probabilistic approach, the

algorithm will run no more than R rounds for all participant-target pairs, so the the

time complexity is O(Rnm).

3.2.2 Second Stage: L-STAC

Due to the uncertainty of locations used in the first stage, a participant might be

assigned to targets that are not accessible while not being assigned to targets that

are accessible. The main goal of the second stage is for each participant to fine-tune

the assignment using her exact location while maintaining the overall coverage goal.

The main pitfall in the second stage is over-coverage of some targets at the cost of

under-coverage of others, i.e. more participants are assigned to some targets than

required, if each participant simply optimizes its cost by selecting the closest targets

in the second stage. Hence, we have an additional constraint to bound the overall

changes in the assignments implemented by several heuristics in order to maintain

the overall coverage goal without incurring additional cost. The server provides the
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Algorithm 1 A greedy algorithm for the first stage task assignment problem

Input: P (set of participants), T (set of targets), b (vector of travel budgets), d̂ (matrix of expected

distances), k (vector of required coverage for targets), g (task coverage goal), ⇢ (matrix of the

access probabilities), R (threshold on running rounds)

Output: x (matrix of task assignments), u+ (vector of covered portion of targets)

1: All elements of x and u+ are initialized to 0.

2: TC  � 0

3: r  � 0

4: while (TC  gm) and (r < R) do

5: if a remaining probable pair exists then

6: Select the most cost-e↵ective target-participant pair from the remaining pairs, say indexed

at i and j with the probability ⇢

i,j

.

7: if a pair is selected then

8: Assign the selected pair as x
i,j

 � 1

9: TC  � min(1� u

+
j

,

1
kj
) + TC

10: u

+
j

 � min(1� u

+
j

,

1
kj
) + u

+
j

11: b

i

 � b

i

� d̂

i,j

12: if u

+
j

= 1 then

13: T  � T \ T
j

14: end if

15: if b

i

= 0 then

16: P  � P \ P
i

17: end if

18: else

19: r  � r + 1

20: end if

21: else

22: Break

23: end if

24: end while

expected coverage vector, the final u+ at the end of G-STAC to all participants.

Hence, the u+ at the beginning of second stage optimization is initialized with the

given values from the server.
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Algorithm 2 presents the pseudo code for our greedy approach to approximate

the solution of our second stage objective. This algorithm runs locally on each

participant’s device pi 2 P , so it has access only to the corresponding participant’s

attributes including her exact location, and the information provided by the server

including the set of candidate targets ⌧ that may be accessible by the participant

(the server can prune the targets that are not accessible by the participant if the

minimum possible distance between a participant and a target is larger than bi),

and the result of the first stage assignment for this participant xi. The result of

assignments in this algorithm is stored in yi.

The algorithm at participant pi first initializes all elements of its assignment vector

to 0 (no assignment) and updates u+ so it only contains the coverage contributed by

all other participants, i.e. by removing the current targets assigned to pi from the

first stage (line 1-8). Similar to Algorithm 1, the algorithm then iteratively picks the

most cost-e↵ective target and assigns it to pi with some probability which is designed

to avoid over-coverage. In contrast to Algorithm 1, since we want to satisfy the the

first constraint of (3.4), we penalize each new assignment which is di↵erent from xi,j.

Therefore, the cost-e↵ectiveness score of each assignment in this stage is calculated

as �(2)
i,j .

�(2)
i,j =

di,j
bi

+ |xi,j � 1|
min(1� u+

j ,
1
kj
) + ✏

which is the ratio of second stage cost (i.e., the sum of normalized distance and

change penalty) to the expected coverage contributed by this participant for target

tj 2 ⌧ . The expected coverage contributed by the participant is computed the same

as in the first stage. The other di↵erence of our second stage algorithm from the first

stage concerns the probabilities which are used to assign targets to participants. For

a target j, ⇢i,j is calculated as follows,

⇢i,j = 1�
�(2)
i,j

max
n

�i,j
(2)
o

Using this probability, we aim at avoiding over-coverage of the targets, but at the
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same time reducing the chances of costly assignments. Without this probability, par-

ticipants would repeatedly assign targets until their travel budget is exhausted. Com-

pletely expending the travel budget by all participants can result in over-coverage

with high cost. This e↵ect can be seen easily in the autonomous task selection

methods discussed in Chapter 2. Using �(2) to calculate this probability favors more

cost-e↵ective assignments by giving them a higher probability. Similar to Algorithm

1, for e�ciency purposes, an upper-bound threshold R0 is used in the algorithm to

stop the algorithm after R0 passes through all targets in ⌧ .

Time Complexity. Algorithm 2 runs no more than R0 rounds of passing through

all targets in ⌧ , so having the number of all targets as m, the time complexity is

O(R0m).
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Algorithm 2 A greedy algorithm for the second stage task assignment problem

Input: p

i

, i 2 N (the participant), ⌧ (set of accessible targets for p
i

), x
i

(first stage assignments

for p

i

), b
i

( p

i

’s travel budget), k (vector of required coverage values for targets), g the task

coverage goal, u+ (vector of covered portion of targets), R0 (threshold on running rounds)

Output: y
i

(vector of task assignments for p
i

)

1: All elements of y
i

are initialized to 0.

2: LC  � 0 (Local task coverage). AC  � 0(Assigned task coverage to this participant)

3: r  � 0

4: for all the targets in ⌧ do

5: u

+
j

 � u

+
j

� xi,j

kj

6: AC  � AC +
xi,j

kj

7: end for

8: while (LC < AC) and (b
i

> 0) and (r < R

0) do

9: if a remaining probable target exists in ⌧ then

10: if target j is selected then

11: if d

i,j

 b

i

then

12: Assign the selected target as y
i,j

 � 1

13: TC  � TC +min(1� u

+
j

,

1
kj
)

14: u

+
j

 � u

+
j

+min(1� u

+
j

,

1
kj
)

15: b

i

 � b

i

� d

i,j

16: ⌧  � ⌧ \ ⌧
j

17: end if

18: else

19: r  � r + 1

20: end if

21: else

22: Break

23: end if

24: end while

3.3 Experimental Results

In this section, we evaluate our task assignment methods experimentally using both

real and synthetic datasets. First we discuss the details of our experiment settings,

then we present and analyze the results.
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3.3.1 Settings

Datasets. We used a real dataset from Gowalla [1] which contains check-in infor-

mation of users of a location-based social network. The check-ins consist of time and

location coordinates of users at di↵erent positions. For our experiments, we used user

and position information during October 2010 in New York city. We used each day

as a snapshot for our task assignment experiment. In all experiments, participants

are selected uniformly from all Gowalla users on each given day, while targets are

picked randomly from all the spots.

We also used Brinkho↵’s Network-based Generator of Moving Objects [13] to create

a set of synthetic dataset of moving objects (OLE) to test our methods and algo-

rithms. The map of the city of Oldenburg in Germany is used as the input to the

generator. In OLE, at each time snapshot, the set of participants is chosen uniformly

from the set of moving objects in the map. In the same way, targets are selected

from the nodes of the road graph of the map.

Evaluation Metrics. Task cost (TC) and task coverage (TU) are calculated as

described in Section 3.1. In many settings, the desired coverage goal (g) may not

be achievable, even given exact locations of the participants, due to the limited

number of participants or travel budgets of the participants. Hence, we also present

a combined cost metric that adds the task cost (TC) and uncovered targets (gm�TU)

and normalizes the sum to the range of [0,1] using min-max method. We refer to

this normalized value as penalized cost (PC):

PC =
(gm� TU) + TC

gm+
P

i bi

The denominator is used for normalization and is equal to the maximum possible

value for the sum of uncovered portion of the task and the task cost. Thus, a smaller

value of PC represents higher coverage and lower cost, which is considered a better

result. In our experiments, we study the e↵ect of di↵erent parameters such as the

number of participants/targets, coverage goal, and cloaking size on the task cost and

coverage.
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Parameters. Table 3.2 shows the parameter settings for our simulations with de-

fault settings highlighted. In all experiments, we selected the travel budget of the

participants for walking randomly in the range of 1%-3% of the map size. We ex-

perimented with di↵erent cloaking models such as circular and rectangular areas,

continuous/discrete instance sampling, and uniform/normal probability distribution

of the instances, however, since the results were very similar for di↵erent cloaking

models, we only present results for a circular model with continuous uniform dis-

tribution of instances. The size of the cloaking area for each participant is roughly

selected uniformly in the range of 0.01%-1% of the map area. For all of our experi-

ments with the OLE dataset, we used a part of the map of Oldenburg highlighted in

Figure 3.3. The reason of this selection is to provide a more crowded map, compared

to Gowalla which is a sparse dataset with a maximum of 235 participants in each

snapshot. The required coverage of each target (k) is set to one in all experiments

because varying the required target coverage has a similar e↵ect as varying number of

targets. The coverage goal g is selected between 10%-100% of the number of targets,

with a default value of 100%. R and R0 vary depending on the size of the cloaking

area, but in general they are selected in the range of [50,200]. We repeated each

experiment for 100 times and obtained their average as our final results.

Comparisons. We report the results of the following methods based on the com-

bination of di↵erent distance estimation model of the G-STAC (Centroid-point or

Expected-probabilistic) and the optimization stages (one-stage G-STAC-only or two-

stage G-STAC/L-STAC combination).

• CPA1 (baseline): one-stage centroid-point based approach as a baseline,

• CPA2: two-stage centroid-point based approach to demonstrate the benefit of

the two-stage optimization compared to the baseline one-stage optimization

approach,

• EPA1: one-stage expected-distance approach to demonstrate the benefit of

probabilistic distance estimation over the baseline centroid approach,
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Figure 3.3: The map of Oldenburg, Germany generated by [13]. The employed

section is framed.

• EPA2 (complete proposed solution): two-stage expected-probabilistic approach,

• NPA (reference solution): we utilized our first stage optimization solution with

zero level of privacy as a reference solution with no privacy constraint (NPA).

In NPA, we assume the tasking server has access to exact locations of the

participants, therefore it runs only on the server.

Table 3.2: Experimental settings with highlighted default values

Parameter Value

Number of Participants 50, 100, 150, 200, 300, 400, 500

Number of Targets 50, 100, 150, 200, 300, 400, 500

Travel Budget 1% - 3% of Map Size

Coverage Goal 10%-100%

Cloaking Model Circular, Rectangle

Cloaking Area 0.01% - 1% of Map Area



38

3.3.2 Results

In this section, we report the results of each experiment for the two datasets in terms

of task cost, coverage, and penalized cost. The scales for the task coverage and cost

are di↵erent for the two datasets due to their di↵erent map sizes and level of sparsity.

Impact of Numbers of Participants and Targets

In these experiments, we study the impact of increasing the number of participants

and targets on the task cost and coverage by: (a) varying the number of participants

while the number of targets is fixed; and (b) varying the number of targets while the

number of participants is fixed.
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Figure 3.4: Task coverage vs cost for di↵erent number of participants, and m = 200

using datasets (a) OLE (b) Gowalla

Figure 3.4 shows the task coverage versus cost in both datasets for increasing

number of participants with a fixed number of targets using the default settings.

Overlapping points in some approaches such as baseline indicate that increasing the

number of participants does not a↵ect the task cost or coverage in some cases. In

both datasets, our two-stage approaches (CPA2 and EPA2) achieve a significantly

higher coverage compared to the one-stage approaches (CPA1 and EPA1). Thanks

to the local optimization at the second stage, they are able to get much closer to the

coverage goal while the ratio of cost and coverage stays roughly the same. Moreover,
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the expected-probabilistic approaches outperform their corresponding centroid-point

methods which is more apparent for CPA2 and EPA2. In OLE, EPA2 achieves more

coverage with the same coverage/cost ratio as CPA2, but in Gowalla, this ratio is

higher for CPA2, which means by using EPA2, more coverage is obtained at the

expense of slightly higher cost per additional coverage due to the sparsity of the

dataset.
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Figure 3.5: Penalized cost for di↵erent number of participants, and m = 200 using

datasets (a) OLE (b) Gowalla

Figure 3.5 shows the penalized cost in both datasets for increasing number of par-

ticipants with a fixed number of targets using the default settings. Increasing the

number of participants results in higher task coverage which causes lower penalized

costs for all of the approaches. In both datasets, for all combinations of the par-

ticipants and targets, the expected-probabilistic approaches outperform their corre-

sponding centroid-point approaches. This result is more clear in the OLE dataset due

to higher task coverage being possible. On the other hand, regardless of the distance

estimation methods, both two-stage methods outperform the one-stage methods.

Figure 3.6 shows task coverage versus cost in both datasets for increasing numbers

of targets with a fixed number of participants using the default settings. Overlapping

points in some approaches such as baseline indicate that increasing the number of

targets does not a↵ect the task cost or coverage in some cases. In both datasets,
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Figure 3.6: Task coverage vs cost for di↵erent number of targets, and n = 200 using

datasets (a) OLE (b) Gowalla

our two-stage approaches (CPA2 and EPA2) achieve higher coverage compared to

the one-stage approaches (CPA1 and EPA1). Moreover, for the same number of

targets, the expected-probabilistic approaches achieve higher coverage compared to

their corresponding centroid-point methods. All methods are robust preserving a

constant coverage/cost ratio, however, while CPA2 keeps a ratio comparable to NPA,

EPA2 achieves more coverage at the expense of higher cost per additional coverage.

50 100 150 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Targets

P
e
n
a
liz

e
d
 C

o
st

 

 

NPA

CPA1

EPA1

CPA2

EPA2

(a)

50 100 150 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Targets

P
e
n
a
liz

e
d
 C

o
st

 

 

NPA

CPA1

EPA1

CPA2

EPA2

(b)

Figure 3.7: Penalized cost for di↵erent number of targets, and n = 200 using datasets

(a) OLE (b) Gowalla

Figure 3.7 shows the penalized cost in both datasets for increasing numbers of
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targets with a fixed number of participants using the default settings. In both

datasets, for all combinations of participants and targets, the expected-probabilistic

approaches outperform their corresponding centroid-point approaches and similarly,

both two-stage methods outperform the one-stage methods. For the same experi-

ment settings in OLE and Gowalla, the di↵erence between penalized cost of di↵erent

methods including NPA is smaller in Gowalla.

Impact of Coverage Goal

Figure 3.8 shows task coverage in both datasets for increasing coverage goal with

a fixed number of participants and targets using the default settings including 200

participants and 200 targets. In both datasets, our two-stage approaches (CPA2 and

EPA2) achieve higher coverage compared to the one-stage approaches (CPA1 and

EPA1). Moreover, for the same coverage goal, the expected-probabilistic approaches

achieve higher coverage compared to their corresponding centroid-point methods.

Comparing the real dataset Gowalla to synthetic OLE, all methods achieve higher

coverage in OLE which can be explained by higher density and lower sparseness of

participants.
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Figure 3.8: Relative task coverage for di↵erent coverage goal (relative), n = 200, and

m = 200 using datasets (a) OLE (b) Gowalla

Figure 3.9 shows task coverage versus cost for the same experiment setting. In
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Figure 3.9: Task coverage vs cost for di↵erent coverage goal (relative), n = 200, and

m = 200 using datasets (a) OLE (b) Gowalla

both datasets, EPA2 achieves a higher task coverage for the same coverage goals,

with a coverage/cost ratio very similar to other methods. Overlapping points in

each approach indicate that changing the coverage goal does not a↵ect the task cost

or coverage in some cases.
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Figure 3.10: Penalized cost for di↵erent coverage goal (relative), n = 200, and m =

200 using datasets (a) OLE (b) Gowalla

Finally, Figure 3.10 shows the impact of coverage goal on penalized cost. EPA2

outperforms the other methods for all values of coverage goal.
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Impact of Cloaking Size

Figure 3.11 shows the impact of cloaking size on task coverage for a fixed number

of participants and targets. The cloaking size is shown as a percentage of the map

area. By increasing the cloaked size, in both datasets, EPA2 shows more robustness

compared to CPA2 as well as the one-stage methods, indicating that EPA2 is not

a↵ected by cloaking size as much as the other methods. Figure 3.12 shows the impact

of cloaking size on cost and coverage for the same experiment. Similarly, in both

datasets, CPA1, EPA1, and CPA2 are more a↵ected by cloaking size. Overlapping

points in some approaches such as NPA indicate that changing the cloaking size does

not a↵ect the task cost or coverage in some cases. Finally, Figure 3.13 shows the

impact of cloaking size on penalized cost. EPA2 outperforms the other methods for

all cloaking sizes.
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Figure 3.11: Task coverage for di↵erent sizes of cloaking area, n = 200, and m = 200

using datasets (a) OLE (b) Gowalla
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Figure 3.12: Task coverage vs cost for di↵erent sizes of cloaking area, n = 200, and

m = 200 using datasets (a) OLE (b) Gowalla
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Figure 3.13: Penalized cost for di↵erent sizes of cloaking area, n = 200, and m = 200

using datasets (a) OLE (b) Gowalla
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Chapter 4

Private Reverse K-Nearest Queries

for Autonomous Spatial Task

Selection

In this chapter, we investigate a solution based on the notion of private information

retrieval (PIR) to be utilized in an autonomous spatial task selection method in

which participants retrieve tasks without compromising their location privacy. This

approach di↵ers from our privacy-aware spatial task assignment solution discussed

in Chapter 3 since i) it follows a task selection paradigm which does not require

coordination, thus, tasks are retrieved autonomously by participants from a task

server, and ii) participants do not share any information with the server as they

utilize PIR for retrieving tasks without the server learning which tasks are accessed

and downloaded.

To this end, first, we propose a solution for answering private reverse k-nearest

neighbor queries (RkNN) based on the concept of PIR which strongly preserves the

privacy of the query point by preventing the location-based server from inferring any

information about it. Then, we show that this method can be utilized in autonomous

task selection in MCS.
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Figure 4.1: System model

4.1 Problem Definition: Private RkNN Queries

In this section, we provide an overview of the system model and formally define our

problem. Our high-level system model is illustrated in Figure 4.1. We utilize secure

co-processor PIR protocol (SCOP) [103] to answer private RkNN queries. PIR co-

processor is installed in the server and is trusted by the client while the server is not

trusted. We define RkNN query and the problem of private RkNN query answering

as below.

Definition 4.1. For a set of data points P and a query point q, RkNN query retrieves

every points p 2 P for which Dist(q,p)  Dist(p,pk) where pk is the kth nearest point

to p in P � {q}.

Definition 4.2. For any query point q, Private RkNN Query Answering ensures

RkNNq is computed in a manner that an untrusted data service provider does not

learn about the query answer and cannot distinguish between the query point and any

other point.

In our model, a private RkNN query answer is retrieved by the client through several

rounds of accessing di↵erent database layers. In each round the client issues a set of

block retrieval requests through SCOP. SCOP uses PIR protocol to obliviously access

blocks of information and fetch the requested blocks of data from the requested layer

in the server. Then, SCOP returns the fetched data to the client. This data is used

by client to partially answer the query and also determine the required data from
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the next layer. This procedure repeats for every data layer until RkNN query is

completely answered. The number of rounds is determined by the number of data

layers and the size of PIR requests from each layer is pre-computed by the server as

a query plan when databases are built.

Definition 4.3. For a set of database layers DB1, DB2,...,DBn, a query plan is

a tuple qp =< cnt1, cnt2, ...cntn > which indicates the number of data blocks that

should be retrieved from each layer respectively in the given order.

One major requirement of the query plan is that the order of access to the database

layers and the number of PIR requests to each layer should be the same for any query

point. This guarantees the server does not learn any information about the query

based on the number of requests or the size of the retrieved data. This is a key

attribute of our model that should be followed strictly. Due to this requirement, the

query plan is pre-computed by the server and shared with the client before she issues

a query.

We propose two solutions RkNN-HG and RkNN-HRT for answering private RkNN

queries through PIR. Our solutions involve three major parts; 1) Server-side data

storage and indexing, 2) Client-side query processing, and 3) Query plan pre-computation.

Our solutions are discussed in detail in the next sections.

4.2 Server-side Indexing

In this section, first, we describe a naive approach for indexing data using the meth-

ods proposed in [77]. This approach is based on a fixed grid structure for indexing and

storing data points in the server. Then, we introduce two improved indexing meth-

ods RkNN-HG and RkNN-HRT which optimize query answer retrieval through PIR

for RkNN queries. In Section 4.3, we propose a client-side query processing method

which is applicable to both of our indexing methods with some modifications.
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Figure 4.2: DB structure of naive solution

4.2.1 Naive Indexing

Figure 4.2 shows the server-side database structure for a sample dataset. For indexing

the data points, a grid G is built and stored as two databases DBloc and DBdtl.

DBloc stores the coordinates of data points by allocating one disk block per grid cell

c. For example, the points in cell c1,1 are stored in block B1,1. The coordinates of

each point p is stored in the form of < p.id, p.x, p.y, p.ptr > where p.id indicates

the unique identifier of p, p.x and p.y are the location coordinates of it, and p.ptr

indicates a pointer to DBdtl where the rest of the information about p is stored.

Since the points in one cell may underflow or overflow a block of disk space, we use

the following strategies. In the case of an underflow, we fill the empty space with

dummy points shown as d. For overflow, we allocate a new block of data and store a

pointer to it at the end of the overflown block. The second database, DBdtl stores the

extra information associated with each data point in the form of < p.id, p.detail >.

This approach has two weaknesses that should be addressed. Since it needs to store

the information of each cell in one block, a skewed distribution of data would result in

a larger database with wasted space. Furthermore, retrieving dummy data through

expensive PIR requests can a↵ect the run time of queries significantly. Therefore,
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we propose a more e�cient indexing method RkNN-HG.

(a)

(b)

Figure 4.3: DB structures in RkNN-HG (a) fixed grid with Hilbert-Curve filling, and

(b) databases

4.2.2 RkNN-HG: Hilbert Grid Indexing

For more e�cient data storage and retrieval, the fixed regular grid structure can be

improved by incorporating Hilbert curve filling method as proposed in [77] to solve

private kNN queries. In this section, we adopt their indexing approach on the server-

side in our RkNN-HG method. For every grid cell, we compute a Hilbert score which

is then used to determine the index of the block to store its enclosed data points and

their coordinates. Using Hilbert curve assures that the locality of data is preserved
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(i.e. data points in adjacent cells are more likely to be stored in the same or adjacent

blocks of database). It also eliminates the need for storing dummy data, therefore,

it saves space significantly.

Figure 4.3 depicts a Hilbert curve with granularity 8 ⇥ 8 for indexing an example

database DB into three database layers DBcnt, DBloc and DBdtl constructed by

the server. DBcnt records a tuple < c.pre, c.count > for every cell c in the grid in

the order of Hilbert space-filling curve [82]. These parameters, c.pre and c.count,

respectively indicate the number of preceding data points and the number of points

in the cell c. The intuition behind computing this aggregated meta-data about each

cell is to provide clients with enough information to prune unnecessary cells before

retrieving required data using PIR. In our experiments, we observed that unlike kNN,

a RkNN query may require the aggregated number of data points in every grid cell

in the map to be able to compute its answer, therefore, we share DBcnt with clients

and do not store them in the databases that are accessed through PIR.

The second database DBloc stores the location coordinates of all points using the

same order as DBcnt for each data point. This means DBloc stores a tuple

< p.id, p.x, p.y, p.ptr > for every point p where p.id is the unique identifier of p,

< p.x, p.y > represents the location coordination of p, and p.ptr refers to the pointer

to access the actual data in DBdtl. Finally, DBdtl stores detailed information of each

data point in which each entry has < p.id, p.detail > which represents additional

data associated with it.

4.2.3 RkNN-HRT: Hilbert R-Tree Indexing

The RkNN-HG technique described in the previous section stores the aggregated

counts of data for every cells of the fixed grid structure. The RkNN query processing

algorithm (as we will explain in Section 4.3.2) examines each cell against RkNN

candidates and uses pruning to avoid retrieval of data points from the cells that

do not contain RkNN results. Therefore, for a high resolution grid structure, the

number of cells increases resulting in a larger DBcnt data and higher computational
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Figure 4.4: Structure of Hilbert R-tree.

cost during pruning phase. To overcome this problem, we propose a new method

using Hilbert R-tree [47]. Kamel et al. [47] proposed Hilbert R-tree indexing method

which is a hybrid structure based on B+-tree and R-tree. It uses Hilbert curve to

keep the locality of spatial data points. By adopting an object-based indexing using

minimum bounding rectangles rather than a space-based method using fixed grid

cells, we overcome the problems associated with non-uniform distributions of data

including ine↵ective pruning of sparse regions. Moreover, it may reduce the DBcnt

data size that needs to be shipped to the client.

Figure 4.4 illustrates the Hilbert R-tree for our sample data points. Internal nodes

of Hilbert R-tree consist of entries in the form of < lhv,mbr, count, ptr > where

lhv refers to the largest Hilbert value of all corresponding children of the node, mbr

indicates the minimum bounding rectangle (MBR) that covers all of the points in

the corresponding sub-tree, count is the number of data points enclosed in the mbr,

and ptr presents the pointer to the next level. Hilbert R-tree uses the largest Hilbert

value of the MBR to determine internal node splitting instead of considering the area

or the distance between MBRs like R-tree. Entries in the leaf nodes are in the form

of < mbr, pid >, where mbr represents the MBR of the point and pid indicates the

leaf identifier. In addition to keeping the locality of points by using Hilbert-based

B+-tree, another important feature of Hilbert R-tree is that nodes at each tree level
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are also ordered based on their Hilbert values; consequently, points in the leaves are

stored in the order of their Hilbert values too.

We follow the same database design for storing data as RkNN-HG method with

minor modifications. After building the Hilbert R-tree structure for a dataset, DBcnt

is constructed as a set of tuples including the metadata summarizing the information

of leaf nodes. For every leaf l a tuple is stored as < l.mbr, l.lhv, l.count >, where,

l.mbr represents the boundary of the rectangle that includes all of the data points of

the corresponding leaf, l.lhv is the largest Hilbert curve value of the data points in

the leaf, and l.count is the number of points enclosed at the leaf MBR. DBloc and

DBdtl are built in the same manner as RkNN-HG method.

4.3 Client-side Query Processing

Given the server-side indexing of the data, users issue RkNN queries to the SCOP

using the information provided by the server including the indexing parameters such

as grid granularity g or hilbert resolution h, and a fixed query plan qp. The query plan

is a tuple qp =< cntloc, cntdtl > which is pre-computed in the server and indicates

the number of blocks that should be retrieved from DBloc and DBdtl respectively.

We describe the required pre-computations in Section 4.4. The reason for using a

query plan is that regardless of the location of client, she should be able to answer

her RkNN query using a fixed number of data blocks. In this way, queries cannot be

di↵erentiated by DB server based on the number or size of retrieved blocks. In order

to guarantee that every user receives enough blocks of data for an accurate answer,

cntloc, and cntdtl constitute upper bounds for the number of blocks needed by any

possible query point. In addition to the query plan, clients are provided with DBcnt,

so they are able to prune unwanted cells before retrieving actual coordinates from

DBloc. The size of DBcnt is data-independent and only varies by g while both DBloc

and DBdtl are data-dependent.



53

Algorithm 3 RkNN query answer retrieval algorithm

Input: q (query location coordinate), k (parameter of RkNN query), qp (query plan), g (grid

granularity), DB

cnt

(aggregated count data), map (map dimensions)

Output: RkNN

q

(RkNN answer set)

1: RkNN

q

, CND

c

(set of candidate cells) and CND

p

(set of candidate points) initialized to ;
2: Q � locateQueryCell(q,map,g)

3: if Q.count > 0 then

4: Add Q to CND

c

5: Q.INF

c

 � findInfluenceCells(Q)

6: end if

7: while not {all cells in a layer around Q are pruned k times} do

8: for every unvisited cell c in the closest layer of cells around Q do

9: c.visited � 1

10: for every cell cnd in CND

c

do

11: if prune(cnd,c) then

12: c.pruned � c.pruned+ cnd.count

13: end if

14: end for

15: if c.pruned < k then

16: Add c to CND

c

17: c.INF

c

 � findInfluenceCells(c)

18: end if

19: end for

20: end while

21: for every cell cnd in CND

c

do

22: if prunedByInfluenceCells(cnd) then

23: remove cnd from CND

c

24: end if

25: end for

26: CND

p

, INF

p

 � retrievePIRData(DB

loc

, CND

c

, INF

c

)

27: for every point cnd in CND

p

do

28: if prunedByInfluencePoints(cnd) then

29: remove cnd from CND

p

30: end if

31: end for

32: RkNN

q

 � retrievePIRData(DB

dtl

, cnd points)
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The key to the query processing algorithm is to minimize the number of PIR

requests (block retrievals) and hence reduce the overall query cost. Our main idea

is to use the summary information (DBcnt) to prune cells or regions that do not

contain query answers as much as possible, hence avoid unnecessary retrievals. Our

query answering algorithm is presented in Algorithm 3 based on RkNN-HG indexing

method. This algorithm can be also applied on RkNN-HRT with minor modifications

discussed in Section 4.3.5. Our approach entails two phases, pruning (line 3-25 of

the algorithm) and verification (line 27-31). The pruning phase restricts the search

space of finding the answer while the verification phase utilizes the actual location

of points in the restricted space to answer the query.

When a user issues a RkNN query, she locates the query cell Q based on the query

location q and the grid/map specifications provided by the server (line 2). The rest of

the algorithm can be summarized as follows. First, the user utilizes the information

in DBcnt to select the cells that may include her answer (line 3-25). She computes

the indexes of the data inside her chosen cells in DBloc and pads her request with

dummy indexes if necessary, so she can retrieve cntloc blocks of location coordinates

from DBloc (line 26). After that, using the retrieved location coordinates of data

points, she refines the set of reverse k-nearest neighbors for her query location q (line

27-31 of the algorithm). Finally, she retrieves the additional information about her

answer set from DBdtl using the pointers provided in DBloc. Once again, she may

need to pad her request with dummy indexes to be able to obtain cntdtl blocks from

DBdtl (line 32). In the rest of this section, we present the details of our approach to

answer RkNN queries based on Algorithm 3.

4.3.1 Pruning Strategies

The most important part of our algorithm is the pruning phase which shrinks the

search space into cells that might include the answer of the RkNN query (i.e. candi-

date cells), or might influence them (i.e. influence cells). To exploit the information

provided inDBcnt, we utilize three state-of-the-art uncertain pruning strategies which
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are able to prune the search space using aggregated counts of data in each cell. These

methods include i) Min-Max [10], ii) 60-degree [66], and iii) Half-plane [17] which are

applied in the order of their e�ciency and the reverse order of their pruning power.

We use such ordering because Min-Max is simple and more e�cient, however it has

less pruning ability compared to 60-degree method, so if Min-Max fails to prune a

cell, we apply 60-degree method; similarly, half-plane may substitute 60-degree for

the same reasons. In all of these methods, if an object B is pruned by another object

A with regard to a query q, it means that B cannot be an answer for q as a result of

A.

(a) Min-Max pruning (b) Self pruning

Figure 4.5: Uncertain Min-Max pruning methods

Min-Max Pruning In Min-Max method [10], for a given query q, an object A

can prune another object B if

MaxDist(A,B) < MinDist(B, q)

Figure 4.5a illustrates an example of Min-Max method. A special type of Min-

Max pruning is called Self-pruning in which a cell is pruned by itself as shown in

Figure 4.5b.
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Self-pruning For an uncertain object A and query point q, if the number of points

in A is greater than k, and

MaxDist(A) < MinDist(A, q)

then A is self-pruned [100]. MaxDist denotes the maximum distance between any

possible points in A (e.g. diameter in a rectangle) and MinDist denotes the minimum

distance between A and the query point q.

Figure 4.6: Uncertain 60-Degree pruning

60-Degree Pruning Li et.al [65] developed a 60-degree pruning technique for

uncertain data. Given two uncertain objects A, and B, and a query point q, B can

be pruned by A if i) for each point a 2 A and b 2 B, Dist(a, q) < Dist(b, q), ii)

the angle range of A w.r.t q is less than 60�, and iii) the angle range of B w.r.t q is

contained in the the angle range of A w.r.t q. An example of 60-degree method is

shown in Figure 4.6.

Half-plane Pruning In exact half-plane method [93], the data space between a

query q and data point p is divided into two planes by the perpendicular bisector

HPq,p; The half-plane HPp(q, p) contains p and HPq(q, p) contains q. This strategy

is depicted in Figure 4.7a, any points falling into the half-plane in the side of p (i.e.

HPp(q, p)) is pruned with regard to q since they are closer to p than q.
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(a) Exact method

(b) Uncertain method

Figure 4.7: Half-plane pruning methods
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Figure 4.8: Order of access to cells around q

In a situation where the exact locations of data points are not known like grid

cells in our method, half-plane method is extended to be able to prune uncertain

regions [17]. Given an uncertain region A and a query point q, the boundary of

pruned area can be computed as intersection of the four bisectors between q and

each vertexes of region A.

Figure 4.7b illustrates the uncertain half-plane pruning method which divides the

space into two half-planes for each vertex of cell < 5, 4 >. The intersection of four

half-planes prunes all of the gray cells.

4.3.2 Pruning Algorithm

The cells that need to be retrieved from the server after pruning consists of 1) can-

didate cells which may include the RkNN answers, and 2) influence cells for each

candidate cell in order to verify if the points in the candidate cells are indeed the

RkNN answers. We describe in detail below how to compute the candidate cells and

influence cells for each candidate cell.

Candidate cells are all non-empty cells that may include the answer to a RkNN

query if the actual coordinate of points in them become available.

As illustrated in Figure 4.8, our pruning phase accesses the cells around the query

in clockwise order and checks each cell against a set of candidate cells to see whether
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(a) (b)

(c)

Figure 4.9: Computing influence cells for the candidate cell < 5, 4 >
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they are pruned (line 7-25 of the Algorithm 3). At the beginning, the candidate set

CNDc is empty or includes the query cell Q if it is non-empty. As pruning phase

continues, any cell which is not pruned k times by candidate cells is added to the set.

We keep track of the number of times a cell is pruned by incorporating the number

of data points in pruning cells. It means, if a candidate cell cnd which has 3 points

prunes c with regard to the query q, we record c is pruned 3 times (c.pruned = 3).

If all of the cells in a layer around the query are pruned k times, the search stops,

otherwise, pruning phase continues to assess upper layers. After retrieving all of

candidate cells, the pruning phase is continued by computing influence cells.

Influence cells for every candidate cell is the set of all non-empty cells that do

not prune candidate cells, however, if the actual coordinate of points in them are

realized, they may prune the points in the candidate cell.

We compute a set of influence cells INFc for every candidate cell cnd as follows.

First, we probe the cells around cnd and retrieve every cell c that does not prune

the candidate cell, but satisfies the following condition [65].

MaxDist(q, cnd) �MinDist(c, cnd) (4.1)

We add c to a set called INF1. This means, c may include points which are closer

to q compared to cnd. Figure 4.9a illustrates the cells in INF1 for the candidate

cell cnd =< 5, 4 > when k = 1. It can be easily computed as the area surrounding

the cell < 5, 4 > with distance Maxdist1 from every possible point in the cell where

Maxdist1 = MaxDist(q, cnd). While INF1 assures the inclusion of all possible

influence cells [65], it might be redundant in certain situations. To further refine the

influence cells, we can remove any influence cell that does not belong to the possible

set of kNN neighbors of the cell cnd. In other words, any cell c that doesn’t satisfy
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the following condition cannot be an influence cell for cnd.

6 9R ⇢Cells,

max
r2R

(MaxDist(r, cnd)) < MinDist(c, cnd) (4.2)

and
X

r2R

r.count � k

which means there are a subset of cells R which are all closer to the candidate

cell cnd compared to c and they have at least k points combined. The intuition is

that, the cells in R are among k nearest neighbors of the candidate cell cnd, so any

cell that is absolutely farther than them from cnd cannot possibly be among kNN

neighbors of cnd and therefore an influence cell of it. Figure 4.9b illustrates INF2

as the shaded area which intersects all of the possible influence cells that satisfy the

condition above for the candidate cell < 5, 4 > when k = 1. It is computed as the

area surrounding the cell < 5, 4 > with distance Maxdist2 from every possible point

in the cell such that Maxdist2 = maxr2R(MaxDist(r, cnd)) where R includes the

closest cells to cnd that have k points collectively. Clearly, if q is not in INF2 (i.e.

among cnd’s possible kNN), then cnd cannot be a candidate in the first place.

Figure 4.10: Computing influence cells for the candidate cell < 8, 2 >
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Theorem 4.4. Given a query point q, a candidate cell cnd, INF1 as the set of cells

satisfying Condition 4.1 and INF2 as the set of cells satisfying Condition 4.2, the

influence cells for cnd is computed as the set INF = INF1 \ INF2.

Proof. Figure 4.9c illustrates INF as the intersection of areas covering INF1 and

INF2 for the candidate cell cnd =< 5, 4 >. Let’s assume there is a cell c which is

an influence cell for the cell cnd, but c 62 INF . Since c is an influence cell of cnd,

it satisfies both Conditions 4.1 and 4.2, so c 2 INF1 and c 2 INF2. Assuming the

case in Figure 4.9c which indicates Maxdist1 > Maxdist2, we can easily see that

INF2 ⇢ INF1 because both INF1 and INF2 are areas centered at the cell cnd with

the radius of Maxdist1 and Maxdist2. As a result, we have INF = INF1\INF2 =

INF2 and since c 2 INF2, we will have c 2 INF which contradicts the assumption

and concludes the proof. A similar conclusion can be easily drawn for the case when

Maxdist1 < Maxdist2 as illustrated in Figure 4.10 for the candidate cell < 8, 2 >.

Similarly, the proof applies when Maxdist1 = Maxdist2.

4.3.3 Verification Phase

Once the pruning phase is complete, the location coordinates of candidate and influ-

ence cells are retrieved from DBloc. After retrieving candidate and influence points,

a verification check is applied on them to refine the candidate points and obtain the

final query results.

Candidate Verification A candidate point cnd cannot be in the RkNN set of

the query q, if the range query centered at cnd with radius of Dist(cnd, q) contains

greater than or equal to k points.

When final results are determined, actual data points along with their complete

information are retrieved from DBdtl through pointers stored in DBloc.
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4.3.4 RkNN Query Retrieval Example

Figure 4.3 illustrates the map and the indexing structure for the example data space.

Client issues a RkNN query for k = 1 at the query point q shown as a star. Using

the map and grid specifications, she learns that q is located at cell < 7, 3 > with the

Hilbert-curve value of 51. With the help of aggregated information stored locally

in DBcnt, she easily retrieves the information of query cell < 7, 3 >. The pair of

information associated with this cell is < 18, 0 > which indicates that there is no

point in this cell and there exist 18 points in the preceding cells in the order of Hilbert

curve.

Afterwards, client runs the pruning algorithm with the set of candidate cells empty

at the beginning. She checks each cell around the query in clockwise order, so the

first non-empty cell that she reaches is < 8, 2 > and runs the pruning methods

(since the set of candidate cells is empty, the only applicable method is self-pruning

method). Since < 8, 2 > is not pruned by any candidate cell or by itself, it is

added to the set of candidate cells. The search continues for other cells while they

are checked against the candidate cells. When the pruning phase is finished, the

set of candidate cells includes < 8, 2 > and < 5, 4 >. Moreover, the influence

cells for each of these candidate cells are {} for < 8, 2 > as shown in Figure 4.10,

{< 6, 5 >,< 8, 2 >,< 3, 1 >,< 2, 2 >,< 2, 4 >} for < 5, 4 > as shown in Figure 4.9c.

In the verification phase, the client retrieves the point coordinates for candidate

set and their influence sets from DBloc by asking for blocks {B2,2, B2,4, B2,5} through

PIR. Block indexes are computed using the count information provided in DBcnt.

As a result, location coordinates of points {P7, P11} are retrieved as candidate points

with influence points as {P5, P6, P7, P10, P12, P18, P19}. In the verification phase,

client observes that P19 is closer to P11 than q, so, P11 cannot be an answer. Thus,

R1NN(q) = P7.

Finally, the client retrieves the detailed information of P7 from DBdtl through the

pointer stored in DBloc. Therefore, she asks for block B3,7 through PIR.
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4.3.5 Query Answer Retrieval Modifications for RkNN-HRT

Query answering in RkNN-HRT is similar to the described methods for RkNN-HG

with some di↵erences. In this section, we highlight the necessary modifications to

Algorithm 3 to work for Hilbert R-Tree indexing structure using the example in

Figure 4.4. First, Q is located as cell c11 using the locateQueryCell method similar

to RkNN-HG.

Instead of examining grid cells, we only check leaf nodes in this method, so the

candidate and influence cells are substituted by leaf node MBRs. The pruning phase

also uses a di↵erent search strategy while pruning methods are the same. Since leaf

node summaries in DBcnt include both minimum bounding rectangle mbr and the

largest Hilbert values of their data lhv, we can search for candidates by examining

the closest leaf nodes based on minimum Euclidean distance or Hilbert values. In our

example, if we search using Hilbert values, the algorithm finds R1 as the closest leaf

since its Hilbert value R1.lhv is 3; Alternatively, if Euclidean distance is used, R2.mbr

has the minimum distance to q and is examined first. Our experiments showed no

significant di↵erence between these two strategies, so we only used Hilbert values for

more e�ciency. The stopping criteria for the pruning phase is also changed since we

do not examine empty spaces any more, so all of the leaf nodes are probed before the

algorithm stops. However, by examining the closer nodes first which are more likely

to be candidates, many of the farther nodes will be pruned by them reducing the

cost for computation of half-planes. We use the same pruning methods as RkNN-HG.

The rest of the algorithm remains the same.

4.4 Query Plan Pre-computation

In order to preserve the privacy of RkNN queries and ensure that client receives

accurate answers, we propose an o✏ine algorithm which computes the query plan to

be used by all clients regardless of their location. This algorithm finds the maximum

number of PIR retrievals performed in DBloc and DBdtl for any RkNN query q and
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stores it in a tuple as < cntloc, cntdtl >.

For computing the query plan, the server uses fine-granined grid cells and treats

them as an uncertain query, then using a modified version of query answer retrieval

method described in Section 4.3, it retrieves the RkNN set for the uncertain query.

Using this approach, the retrieved number of data blocks from DBloc and DBdtl

for an uncertain query Qu is guaranteed to be su�cient to answer RkNN queries

issued for any query point q where q 2 Qu. In this section, we describe the required

modification to query answer retrieval algorithm.

Figure 4.11: Uncertain half-plane pruning

4.4.1 Modified Pruning for Query Plan Computation

To be able to prune uncertain rectangular areas (i.e. grid cells or MBRs) against

an uncertain query, we cannot utilize the uncertain pruning methods described in

Section 4.3, therefore, we adopt a solution based on half-plane pruning method pro-

posed in [18]. Figure 4.11 shows the computation of pruned area when both query and

points are uncertain. Two uncertain rectangles represent the uncertain query Qu and

an uncertain candidate cnd. In contrast to the uncertain half-plane pruning method
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described in Section 4.3, we cannot define the boundary of pruned area by merely

intersecting the four bisectors, because we may miss some points as answers [18]. To

compute the pruned area, we find a point o in which Mindist(o,Qu) � Dist(o, cnd),

and pass all of the bisectors between the query and the candidate rectangles through

this point; The intersection area of all these bisectors is defined as the pruned area.

Figure 4.12: Modified verification for query plan

4.4.2 Modified Verification for Query Plan Computation

After retrieving the location coordinates of all candidate and influence cells from

DBloc, we need to refine the candidate points to obtain the final query answers.

Since the actual location of query is not known, we cannot verify the candidate

points similar to Section 4.3, so instead we propose a method to find all plausible

answer sets.
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First, we compute the distance between each candidate point and their k nearest

neighbor among the retrieved points and we call it kthDist. If a circle centered in the

candidate point cnd with the radius of its kthDist intersects the query cell, cnd is a

possible answer for points in the intersected portion of the query cell. By drawing sim-

ilar circles for all candidate cells, we can find possible answer sets for di↵erent regions

of query cell. Finally, we retrieve the possible answer sets from DBdtl and record the

maximum number of retrieved blocks among them. Figure 4.12 illustrates an example

in which there are several possible answer sets {cnd2}, {cnd3}, {cnd4}, {cnd3, cnd4}.
Among the answer sets, {cnd3, cnd4} collectively intersect with the query cell in

the patterned area and has the highest number of page retrievals from DBdtl, so is

recorded.

4.5 Experimental Evaluation

We conduct several experiments with two real-world datasets to assess the e↵ective-

ness of our solutions based on the computational and overhead cost.

4.5.1 Experimental Methodology

We adopt rigorous models for simulating private DB block retrieval with secure hard-

ware PIR (SCOP) which are based on [103], and [77]. To calculate the computational

cost for retrieving a block of data through PIR we set the following parameters as

described in [77]. Block-size is set to 4KB, disk-seek as 5ms, disk read/write as 100

MB/s, SCOP read/write as 80 MB/s, and SCOP encrypt/decrypt as 10 MB/s. We

use the following metrics to evaluate our methods.

The computational cost (query answering time) for each query is calculated using

the simulated PIR retrieval time for required blocks of data. The number of required

blocks is specified by the pre-computed query plan (i.e. the maximum number of

data blocks from each database necessary to answer any query).

The client-side storage overhead cost is computed as the relative size of DBcnt
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Table 4.1: Summary of datasets

Dataset Gowalla California

Size of DBloc 5MB 26MB

block retrieval time (s) in DBloc 0.47 0.71

Size of DBdtl 20MB 104MB

block retrieval time (s) in DBdtl 0.66 0.94

with regard to the size of DBdtl or in other words |DBcnt|
|DBdtl|

.

As described in the previous sections, query plan is pre-computed by the server,

hence we do not report its computation time.

4.5.2 Datasets

We tested our methods using two real datasets Gowalla [1] and California [64].

Gowalla contains check-in information of users of a location-based social network

in New York. The check-ins consist of time and location coordinates of users at

di↵erent points of interests (POIs). We use the coordinates of 19483 points in our

experiments. California dataset contains the location coordinates of 104770 points

of interest in California. Table 4.1 shows the summary of databases created for each

dataset along with the computational cost for retrieval of a block of data from each

database (i.e. per PIR Request). The size of data points (i.e. description, images,

etc) is set to 1KB in all of our experiments.

4.5.3 Parameter Tuning

Table 4.2 shows the parameter settings with default values highlighted with an un-

derline for Gowalla dataset and in bold font for California dataset. We use the grid

granularity gQP = 512 to compute the query plan in all of the methods. We tune

the grid granularity for the indexing and query processing and other parameters for

each method as follows.
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Table 4.2: Parameter settings

Parameter Values

k 1 2 3 4 5

gn (Naive Grid Granularity) 32 64 128 256

g (RkNN-HG Grid Granularity) 32 64 128 256 512

h (RkNN-HRT Hilbert Resolution) 32 64 128 256 512 1024

b (Node Block Size (B)) 32 64 128 256 512

t (MBR Size Threshold) 32 64 128 256 512

gQP (Query Plan Grid Granularity) 512
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Figure 4.13: Naive: The e↵ect of grid granularity gn (Gowalla)

Naive Approach

Figure 4.13 shows the e↵ect of the parameter gn (grid granularity) on query pro-

cessing and answer retrieval time for the Naive approach using the Gowalla dataset.

Looking at the computational cost, with minimal cost of 452 seconds, it is clear that

this method is not e�cient. We have also demonstrated the size of DBloc relative

to the size of DBdtl for every values of gn to show how the size of this database is

a↵ected by grid granularity in this method. As g is increased, the query answering

time is increased. The size of DBloc is also increased reaching up to 14 times the size
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of original data for gn = 256. Due to similar highly ine�cient results for California

dataset, the figures are excluded.
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Figure 4.14: RkNN-HG: The e↵ect of grid granularity g

RkNN-HG

Figure 4.14 shows the e↵ect of the parameter g (Grid granularity) on query processing

time for RkNN-HG using both Gowalla and California datasets. In addition to

processing time, we have also included the relative size of DBcnt with regard to

DBdtl. Note, the size of DBloc is determined by the size of dataset and thus is

independent of the settings (see Table 4.1). Using Hilbert curve for storing the
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points in the cells is the reason for smaller DBloc in this method compared to Naive

method. As g increases, the processing time decreases while the size of DBcnt is

increasing. Based on Figure 4.14a, we choose g = 256 as the best granularity for

Gowalla dataset with an acceptable DBcnt value. Figure 4.14b shows g = 512 is the

best setting for California data.
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Figure 4.15: RkNN-HRT: The e↵ect of Hilbert resolution h

RkNN-HRT

We set the node block size b as 128 bytes for Gowalla dataset and 256 bytes for

California dataset. The node block size limits the number of children per node in
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the HR-Tree. Additionally, we modified the HR-Tree algorithm to use a threshold 1
t

which limits the size of the MBRs as a fraction of the map size. This parameter is

set as 64 for the Gowalla data which means the diagonal of MBRs are less than 1
64

of the map diagonal. Parameter t is set as 256 for the California data respectively.

Figure 4.15 shows the e↵ect of Hilbert resolution (h) on computational cost and the

relative size of DBcnt with regard to the size of DBdtl (i.e. the original data). As

shown in the figures, increasing h does not necessarily reduce the computational cost,

but decreases the size of DBcnt. We choose h = 512 for Gowalla and h = 1024 for

California as the best settings resulting in the smallest computational and overhead

cost.
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Figure 4.16: Comparison of methods

4.5.4 Evaluation

Comparison of Methods

After tuning each method with their best parameter settings, we compare them side

by side in Figure 4.16. In Figure 4.16a, we observe that RkNN-HRT and RkNN-HG

both significantly outperform the naive methods, and HRT further outperforms HG
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with computational cost of 30 seconds per query (k = 1) based on the computed

query plan (i.e. maximal query processing time). Similarly, Figure 4.16b compares

the computational cost of RkNN-HRT and RkNN-HG for California dataset omitting

the Naive approach. Again, RkNN-HRT performs better than RkNN-HG.
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The E↵ect of Parameter k

Figure 4.17 illustrates the e↵ect of parameter k on RkNN-HRT and RkNN-HG. As

we see, for both datasets, our methods scale well with k.
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Scalability Analysis

To study the e↵ect of database size on processing time, we increased the data point

size from 1KB up to 10KB for California dataset expanding the size of DBdtl from

approximately 100MB to 1GB. Note DBcnt and DBloc are not a↵ected by the

size of data points. Figure 4.18 presents the results of varying the size of data on

computational cost. While the size of data is increased by a factor of 5 and 10,

computational cost is not a↵ected by the same scale.

4.6 Application of Private RkNN Queries for Au-

tonomous Spatial Task Selection

RkNN queries have many applications in various domains such as location-based

services, marketing, and outlier analysis [57, 89, 93, 94]. In particular, this query

can be utilized by volunteers of a geo-spatial crowd sensing application for task

selection. Figure 4.19 shows an example of volunteers after a disaster who are willing

to report the condition of a↵ected areas for collective mapping of damages. In an

autonomous task selection scheme, each volunteer may choose its nearest tasks as

shown in Figure 4.19a which results in unbalanced reporting of damages (i.e., no

one reports tasks 2 and 3 while three volunteers report task 1). Alternatively, they

can choose their reverse nearest tasks as shown in Figure 4.19b for more balanced

coverage.

In this section, we evaluate two methods for autonomous spatial task selection

including NN and RNN queries. We show that RNN outperforms NN resulting

in higher task coverage and task cost. Total Task coverage includes the total

number of distinct tasks completed by participants. Average Task Cost is the

average distance traveled by participants per completed task.

Spatial Task Selection Using NN Queries In this method, each participant

selects her nearest task from the pool of available tasks in the server and performs
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Task 2

Task 1

Task 3

(a)

Task 2

Task 1

Task 3

(b)

Figure 4.19: Using (a) NN and (b) RNN for autonomous task selection

it. We assume each participant is able to perform only one task.

Spatial Task Selection Using RNN Queries In this method, each participant

selects the closest task from the set of its RNN tasks retrieved from the pool of

available tasks in the server and performs it. Again, we assume that each participant

is able to perform only one task.

4.6.1 Evaluation Setting

We generated a synthetic data set including 1000 tasks and 1000 participants uni-

formly distributed in a map. In each experiment, we select n participants and m

tasks randomly from the data set and evaluate both task selection methods. We

compute the total task coverage and average task cost in each experiment.

4.6.2 Results

The Impact of the Number of Tasks Figure 4.20 shows the result of our ex-

periment when we vary the number of tasks for a fixed number of participants (i.e.
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Figure 4.20: Impact of the number of tasks on (a) total task coverage, and (b) average

task cost
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Figure 4.21: Impact of the number of participants on (a) total task coverage, and

(b) average task cost

100 participants). In Figure 4.20a, we observe that RNN yields higher total task

coverage than NN for varying number of tasks. While NN guarantees that every

participant always retrieve a task, the lack of a coordinator results in several partic-

ipants selecting the same task which leads to over-coverage. Over-coverage causes

high average cost per completed task for NN as shown in Figure 4.20b. However, as

we increase the number of tasks, the chance of over-coverage decreases for NN which

results in lower cost. RNN does not guarantee a task per participant, however, it

does not su↵er from the over-coverage problem either.
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The Impact of the Number of Participants We also vary the number of par-

ticipants for a fixed number of tasks (i.e. 100 tasks). Figure 4.21 shows that RNN

outperforms NN for both task cost and coverage. As we increase the number of

participants, the chance of over-coverage increases for NN resulting in a higher cost.
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Chapter 5

Dynamic Data Driven Crowd

Sensing Task Assignment

In this chapter, we propose a dynamic data driven framework for spatial task assign-

ment in mobile crowd sensing with dynamic and uncertain participant locations. Our

approach is based on the DDDAS (Dynamic Data Driven Application Systems) [25]

paradigm. The DDDAS concept is crucial to address the big data problem in such

crowd sensing applications in order to steer and assign the data collection tasks in

targeted ways, adapting dynamically to application needs and the dynamic and un-

certain locations of participants. The task assignment entails a synergistic feedback

loop between application simulations and data collection: 1) based on assigned tasks,

participants report the collected data and possibly their current (uncertain) locations

to the application; 2) the collected data are dynamically integrated into an executing

simulation to augment or complement the application model (e.g. flood movement),

3) the reported (uncertain) locations are dynamically integrated into an executing

mobility model to accurately track participants’ moving locations, and 4) conversely

the executing simulations update the data collection targets and requirements as

well as participants’ locations which are then used by the task assignment module to

make new task assignments and steer future data collection. Through model-based

prediction and filtering, the DDDAS feedback loop is essential to dynamically steer

future data collection, adapting in real time to data dynamics, moving participants,

and application needs.
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Figure 5.1: Adaptive dynamic data driven framework for uncertain spatial task as-

signment

5.1 Dynamic Data Driven Framework For Task

Assignment

We propose a novel DDDAS based framework for dynamic spatial task assignment

with uncertain trajectories illustrated in Figure 5.1. Our framework includes an of-

fline learning process which builds a mobility model by mining the public trajectories

to be used as the process model in the filtering module. The framework entails a

feedback loop composed of the following key components:

• Participants, based on their assigned tasks, report collected data and volun-

tarily their current (uncertain) locations to the application.

• The collected data are dynamically integrated into an executing simulation to

augment or complement the application model (e.g. flood movement), which

updates the sensing targets for future data collection,

• The reported (uncertain) locations are dynamically integrated into a filtering

component to augment or complement a mobility model. The prediction step
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computes or simulates a participant’s current location based on her historic

trajectory and the mobility model (i.e. prior estimates). The correction step

integrates the reported (uncertain) location and predicted location into a more

accurate location (i.e. posterior estimate).

• The updated sensing targets and requirements as well as participant informa-

tion with posterior estimates of their locations are then fed to the uncertain

task assignment module which assigns tasks to participants using a probabilis-

tic model while globally optimizing sensing coverage and cost. The output of

this module, which is a mapping of tasks to participants, will be returned back

to participants.

• Once each participant receives a set of tasks from the tasking server, if she has

access to her exact location, a local task refinement step (i.e. a second-stage

tasking module) can be used to further optimize her set of tasks.

• The final assigned tasks are then used to steer the future data collection as well

as possibly participants’ future trajectories since they might need to travel to

the location of sensing targets.

Since the application model is dependent on specific applications and sensing tasks,

we focus on the general task assignment module in this chapter and explain each

component in detail below.

5.1.1 Learning Mobility Models

To learn a mobility model, we use a set of publicly available trajectories as a historical

data set to calculate transition probabilities between adjacent locations. To formulate

the location transition process, Bayesian inference and Markov model are two popular

methods which are examined in this chapter. Note that, we do not consider modes

of transport or location-based activities to build these models, however this module

can be easily extended to include them. We note that we can learn mobility models
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(a) A 3⇥ 3 grid representation (b) A graph representation (c) A Markov model

Figure 5.2: An example map with a grid, graph, and Markov model representation

for specific individuals if we have su�cient historical personalized trajectories. Of

course, additional privacy mechanisms may be required to protect the individual’s

privacy when learning such personalized models.

Bayesian Inference

A grid-based road network with mapped trajectories can be used to build a Bayesian

inference framework for next location prediction [106]. Generally, a map is a two-

dimensional g⇥ g grid with granularity of a cell (i.e. all the locations within a single

cell are considered to be the same). A graph is build based on the grid where each

cell corresponds to a node in the graph, then trajectories are mapped to sequences

of these nodes. An example of a 3⇥ 3 grid is given in Figure 5.2a, where trajectories

T1, T2, T3, and T4 are shown in the map. Figure 5.2b represents the trajectories

mapped in a graph which is created based on the grid. T1 and T2 are identical in the

graph because of the granularity which is a grid cell.

After mapping the set of all trajectories T , given a partial trajectory Tj, the prob-

ability of a node n being the next destination of Tj can be computed based on the

Bayes rule as Equation 5.1, which is the probability that node n contains the next

location in given trajectory Tj, conditioning on the query trajectory Tj.

P (next(Tj) = n | Tj) =
P (Tj | next(Tj) = n)P (next(Tj) = n)

P (Tj)
(5.1)
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On the other hand, the probability that node n is the next destination of trajectory

Tj can be calculated as Equation 5.2 which is the number of trajectories containing

the sequence of nodes in Tj followed by node n divided to the total number of

trajectories.

P (next(Tj) = n) =
|{Ti | (Tj, n) 2 Ti}|

|T | (5.2)

Markov Model

Using the same graph as Figure 5.2b, a Markov model can be constructed which

assumes a state for each node of the graph as in Figure 5.2c. For each pair of

adjacent nodes, both transition directions are considered and the probability of each

directed edge prs and psr are calculated as the probability of location transition

between nr and ns and vice versa. In a first-order Markov model, only the current

state determines the probability of transiting to the next state, so the probability

prs is calculated as the number of trajectories which have the sequence of two nodes

(nr, ns) divided to the number of trajectories which have nr as shown in Equation 5.3.

prs =
|{Ti | (nr, ns) 2 Ti}|

|{Ti | nr 2 Ti}|
(5.3)

After calculating all the probabilities between the nodes, a g2⇥ g2 transition matrix

M is created which can be used as a process model in a state-space model as described

in Section 5.1.2. Moreover, other advanced Markov models such as higher order or

hierarchical Markov models can be built to feed more variables to the model which

are not considered in this chapter, but can be easily plugged into the framework.

5.1.2 Adaptive Filtering

The filtering component in our framework provides estimates of noisy locations in

order to improve the accuracy of location information per time stamp to be used in

task assignment module. First, given the mobility model as described in Section 5.1.1,

we can create a linear state space model as shown in Figure 5.3 and formulated in
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tx x t+1

Observation

Process

z zt t+1

Figure 5.3: A Simple State-Space Model

Equation 5.4. In Figure 5.3, x represents true states while z shows observed states.

xt+1 = Axt + !t (5.4)

!t ⇠ N (0, Q)

where A is the time-invariant, linear coe�cient and !k represents the noise of the

linear model. Intuitively, the process model linearly relates the current location

state xt+1 to the previous state xt as described in Markov model, except for a white

Gaussian noise !, called the process noise with variance Q. The observed state zt

is also obtained from the true state xt at each time point t and contains additive

measurement noise. we can build a observation model as Equation 5.5.

zt = Hxt + ⌫t (5.5)

⌫t ⇠ N (0, R)

where H is the linear coe�cient and ⌫k represents the additive measurement noise.

In our context, this noise can originate from device inaccuracy (e.g. GPS noise) or a

perturbation method (e.g. di↵erential privacy) and be modeled di↵erently according

to the measurement equipment or process. In this chapter, we assume a Gaussian

noise with variance R.

Given the process model and the measurement model, a filtering algorithm is used

for posterior estimation of true state to minimize the measurement error. Two pop-

ular filtering algorithms in literature are Kalman Filter [45] and Particle Filter [39].

Kalman filter is optimal for linear processes with a Gaussian noise, while Particle
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filter makes no assumption about the process model or noise in the state-space model

but can be computationally expensive.

5.1.3 Uncertain Spatial Task Assignment

The output of the filtering module for the given set of noisy participant locations at

time t is a set of filtered uncertain locations to be used in spatial task assignment.

Given a set of updated spatial tasks and assignment goals by applications, and the

set of participants with uncertain locations (i.e. output of filtering module), we

have developed methods and algorithms to handle location uncertainty and optimize

assignment process to achieve required goals of the applications. In our work, we con-

sidered coverage-based assignment goals with a distance-based cost model, however,

any assignment goal can be adopted in our task assignment module in the dynamic

framework. General definitions of task assignment, spatial task and distance-based

cost model is given as follows.

A task assignment is a mapping of participants to tasks. Each participant-task

pair can be considered also an individual assignment. A cost might be set for each

assignment.

A spatial task (i.e. location-based task) includes a target (i.e. an object, event,

or phenomena), a location, a time-frame for sensing, and other specific instructions

or sensor requirements to perform sensing.

A distance-based cost model defines the cost of each assignment as a function of

distance between the participant and the task location. In the simplest definition

which considers the exact distance as cost, closest participants to each task will form

least costly assignments.

Task coverage could be defined in di↵erent ways.
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• Single-coverage model means each task needs to be performed by only one

participant to be considered as covered.

• K-coverage model requires each task to be assigned to k participants to be

considered as covered. This model can be used in untrustworthy or uncertain

environments to avoid faulty or missing data.

Considering these task coverage models, coverage-based assignment goals might fall

in one of the following categories.

• Maximum coverage assignment aims at maximizing the coverage of tasks by

participants. In a single-coverage model, the assignment goal can be summa-

rized as maximizing the number of assigned tasks.

• Minimum-cost coverage-based assignment aims at achieving a task coverage

goal with minimum cost. In a single-coverage model, the assignment goal

might require only a portion of tasks to be assigned with minimum cost.

• Minimum-cost maximum-coverage assignment aims at maximizing a task cov-

erage goal with minimum cost.

Task Assignment with Uncertain Locations In spatial task assignment with

uncertain locations, since exact locations of participants are not provided, the dis-

tance information between task locations and participants is unavailable to the task-

ing server, therefore the server is required to deal with location uncertainty to achieve

assignment goals. Spatio-temporal queries over uncertain data have been extensively

studied with many algorithms to handle queries such as nearest neighbors, top-k, and

range queries [102]. These queries mostly consider the results for one query object

and not a set of objects, therefore cannot be directly adopted in our work or would

be very ine�cient. Among other spatio-temporal queries, K closest pairs query (K-

CPQ) [23] which is the problem of finding the K closest pairs between two spatial

datasets is the most related query type to our problem, but is not studied for uncer-

tain datasets.
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Knowing the set of uncertain locations of participants as a set of minimum bounding

area of each uncertain location with a probability density function, we can apply two

simple methods to calculate the expected distances between this set and the set of

exact locations of the tasks. As a naive method, for each participant, we calculate the

centroid point of all possible location samples in each uncertainty area and use it to

calculate the expected distances between this point and all locations of the task set.

As a more accurate alternative method, we first apply a geometric pruning algorithm

to remove the task-participant pairs with zero probability of being accessible (i.e. a

participant can not travel to the place of a task) and shrink the uncertain areas to

only contain the accessible location samples. Then, for the remaining pairs with

shrinked areas, we calculate the probabilities of the task locations being accessible

by participants as well as the expected distance between task locations and shrinked

areas. Finally, the set of expected distances and the accessibility probabilities can

be used in our probabilistic task assignment methods proposed in Chapter 3.

Local Task Refinement Once the task assignment is done at the tasking server,

the assignments are sent to individual participants. The goal of the local task re-

finement is to further optimize task assignment results of the global assignments by

each participant using her exact location. This approach requires the participants

to know their actual locations. This assumption is reasonable when spatial noise

is added by participants for privacy-preserving purposes, but can not be applied to

other types of uncertainty. Hence, we have considered an optional task refinement

module in participant side of our proposed framework.

The final assigned tasks are then used by the participants to steer their future

data collection, which completes the feedback loop. Our main insights are that given

this feedback loop, data will be collected in a targeted way, adapting dynamically

to application needs and data dynamics. The data collection process is adapted

according to participants’ moving trajectories and the sensing tasks in such a way

that sensing cost and resource utilization are optimized.
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Chapter 6

An Extensive Experimental

Evaluation of Location Prediction

Models For Moving participants

This chapter investigates and evaluates the existing state-of-the-art location pre-

diction methods in an attempt to find suitable methods for modeling participants

movements in our dynamic task management framework proposed in Chapter 5.

Existing location prediction approaches target di↵erent applications with their pa-

rameters tuned for certain datasets. Many of such approaches have not been studied

in variety of experimental settings with di↵erent data, thus, they lack an extensive

evaluation to show their strengths and limitations in di↵erent situations. Moreover,

due to existing of variety of spatial and temporal modeling of trajectories, several ap-

proaches are not comparable directly [73], therefore, we build a framework to evaluate

and compare such methods extensively using di↵erent datasets and test parameters.

6.1 Problem Definition

We define the problem of next location prediction in this section as follows.

Definition 6.1. A trajectory T is a sequenced set of tuples

T = hhx1, y1i , t1i , ..., hhxn, yni , tni
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where hxi, yii indicates a location at time point ti and ti  ti+1.

We use O to denote the set of trajectories for all moving objects while O(i) indicates

the trajectories of one object.

Definition 6.2. Given a set of trajectories O, and a partial trajectory of a moving

object P at current time point tc,

P = hhx1, y1i , t1i , ..., hhxc, yci , tci

Next Location Prediction problem predicts the object’s location at next time point

tc+1.

We assume all the trajectories are synchronized, otherwise, we interpolate the miss-

ing locations. We also assume equivalent time intervals between two consecutive time

points in all trajectories �t

�t = ti+1 � ti

which may vary for di↵erent applications. This assumption is necessary for our

evaluations since several location prediction algorithms in this study do not handle

variable length time intervals in their problems.

Other variants of problem formulation Several works formulate the location

prediction problem as path prediction with unknown destinations [114]. Since the

destination is unknown, the only di↵erence between these definitions and our for-

mulation is the number of subsequent locations that are predicted. Therefore, we

include these methods in our evaluations.

There are several other location prediction approaches in literature which are not

comparable to the next location prediction problem, thus are excluded from this

study. For example destination prediction focuses on predicting the destination of

an individual without considering the path to reach it [62,106]. Similarly, next stay-

point prediction predicts the next location in which an individual will stay ignoring
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the intermediate locations and the interval time [110]. Finally, path prediction with

known destinations finds the best path to reach a destination [55].

We also exclude approaches that utilize information such as speed or direction in

addition to trajectories [44], or are built based on road networks [55] because they

can not be compared to methods lacking such information.

6.2 Classification of Methods

We classify next location prediction approaches according to four di↵erent aspects:

personalization, temporal representation, spatial representation, and their mobility

learning approach.

6.2.1 Personalization

Location prediction approaches utilize the past trajectories of a moving object to

predict its future locations, however, these methods di↵er whether they use the

history/trajectories of other objects additionally. With this regard, we categorize

location prediction methods in literature into two groups, i) Individual-based methods

assume the mobility behavior of individuals are independent from each other and only

utilize the history of one object to predict its future locations [43, 81, 108], while ii)

general-based methods use the movement history of other objects additionally (e.g.

similar objects or similar trajectories) to predict the object’s future location [73,75,

110,114].

We evaluate individual-based and general-based methods using both sparse and

abundant data which are collected with di↵erent sampling rates. Thus, we can

identify the strengths and weaknesses of methods of each category in various settings.
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6.2.2 Temporal Representation

We divide location prediction methods based on whether they incorporate time in

their trajectory representation into three categories:

i) Location-series (No-time) representations define trajectories as a set of sequenced

locations ordered in time [92]. Since our problem definition requires a fixed-interval

time between two consecutive locations, we only consider the methods from this

category that hold the same assumption. As mentioned in Section 6.1, next stay-

point prediction do not consider the interval time or intermediate locations, thus

such methods are excluded.

ii) Fixed-interval time representations use a fixed time interval between two con-

secutive locations [92,114], therefore, there might be missing locations at some time

points. Missing locations are generally interpolated [114]. If there are more than one

location per interval, one location is chosen randomly [88] or an aggregated location

is used. The choice of an appropriate time interval is crucial for the accuracy and

usability of these methods. In our experiments, we use a variety of di↵erent interval

time to further evaluate these methods.

iii) Variable-interval time representations allow variable transition times between

sequenced locations [73], therefore, no location interpolation is required. By choosing

proper �t value, we are able to compare these methods to other methods that use

fixed-interval times.

It is noteworthy, while some methods benefit from periodic and seasonal informa-

tion such as time-of-day, day-of-week, or month [43, 70, 81], other works ignore such

information [67]. We will investigate the e↵ect of such information on performance

of methods in our experiments.

6.2.3 Spatial Reperesentation

Location prediction approaches can be categorized based on how they represent lo-

cations in trajectories. Real datasets include raw trajectories of continuous GPS
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coordinates which are noisy and inaccurate, therefore di↵erent methods are used to

extract meaningful discrete locations from raw data.

• Mining frequent/dense regions using clustering methods is one of the most com-

mon ways to represent locations. Popular clustering algorithms include density-

based algorithms such as DBSCAN [43] and hierarchical clustering [114]. Vari-

ants of the k-means algorithm is also used for location clustering [9].

• Grid-based methods divide space into fixed-size cells which can be simple rect-

angular regions [63] or use the hierarchical triangular mesh approach to divide

the Earths surface into a set of triangular regions, each roughly occupying an

equal area of the Earth [70].

• Semantic-based methods use semantic features of locations in addition to the

geographic information, therefore, trajectories consist of meaningful locations

(e.g. home, bank, school) [5, 110].

6.2.4 Learning Mobility Behavior

Location prediction approaches use di↵erent schemes to learn mobility behavior

of moving objects. Pattern-based methods use pattern mining algorithms to ex-

tract interesting/frequent individual or group movement patterns form trajecto-

ries [5, 73, 75, 81]. Model-based methods formulate the movement of moving objects

using mathematical models [9, 67, 92, 114].

Pattern-based prediction

Pattern-based prediction methods exploit pattern mining algorithms for next loca-

tion prediction. Here, we briefly review related work in this category. Sequential

pattern mining approaches extract frequent patterns and association rules from tra-

jectories with fixed-interval time. These association rules are then matched based

on the notion of support and confidence to predict the future locations of a moving
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object [108]. Morzy et. al [74] reports an accuracy of 80% for next location predic-

tion using a modified version of Apriori [3]. PrefixSpan [78] algorithm is also used

to discover frequent trajectory patterns [75, 110].

WhereNext [73] first extracts Trajectory Patterns [36] from historical trajectories of

moving objects. The Trajectory Patterns represent the behaviors of moving objects

as sequences of regions frequently visited with a typical travel time. Then a prefix tree

called T-pattern Tree is built where the nodes represent the frequently visited regions

in the Trajectory Patterns and the edges represent travels among regions annotated

with the typical travel time. For each input trajectory, WhereNext computes a score

associated with each path in the T-pattern Tree and outputs the predictions based

on the paths with the highest score.

A non-parametric model is proposed in [81] which predicts locations in far future.

The location prediction is formulated as a eigendecomposition problem to extract

patterns and associate them to temporal aspects such as day of week.

Model-based Prediction

Model-based prediction methods formulate the movement of moving objects using

mathematical models. Here, we briefly review the related work in this category.

State-Space models are suitable for estimating near future locations of moving ob-

jects in a discrete location space [9,67,114]. Markov Chain is the simplest state-space

model which is frequently used for next location prediction [9]. Using cellular net-

work data, Lu. et. al. recently showed that Markov Chain models can result in

high accuracy for trajectory prediction, which is close to theoretical upper limits of

predictability for human mobility [67].

Hidden Markov Models are also used for next location prediction with an indi-

vidual’s activities, goals, or motivations as hidden variables [70, 114]. A location

prediction approach based on Mixed Markov Chain Models is proposed in [8] where

an individual’s personality is modeled as a hidden variable.

Another approach builds a recursive model by expressing the next movement of
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Table 6.1: Location prediction algorithms

Year Name Personalization Spatial Representation Temporal Representation Mobility Scheme

Baseline Markov Chain General/Individual-based Grid-based Fixed-interval Model-based

2003 RMF Individual-based Grid-based Fixed-interval Model-based

2008 Hybrid Individual-based Clustering-based Fixed-interval Hybrid

2013 Semi-Lazy General-based Clustering-based Fixed-interval Model-based

individuals as a recursive function of their past locations [92].

Hybrid Prediction

A hybrid method is proposed in [43] which includes a combination of model-based

and pattern-based approach. Recursive motion function is adopted as the model-

based part for near future predictions. A sequential pattern mining algorithm based

on Apriori algorithm is also used to overcome the shortcomings of RMF.

6.3 Location Prediction Algorithms

In this section, we review three state-of-the-art location prediction methods along

with a baseline method based on Markov Chains which we will later evaluate empir-

ically. Table 6.1 provides a chronological summary of these methods classified using

the aspects discussed in Section 6.2. We follow the same order of methods in the

subsequent sections.

6.3.1 Markov Chain Models

We use Markov Chain (MC) based models as our baseline methods in our evalua-

tions. Ashbrook et. al. argued that the order of the Markov Chain model could

be selected based on availability of data, which limited their models to 1st and 2nd

order models [9]. However, a recent study showed that higher order models did not

necessarily improve the prediction accuracy as compared to a 1st order model [67].
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In our study, we implemented di↵erent order Markov Chain models shown as MC(n)

with n as the order. One problem with higher order MC models is lack of matching

trajectories with the length of n in the database. To avoid such problem, we use

MC(n� 1) for prediction when there is no matching historical data for MC(n). For

spatial representation, we used a grid-based method to discretize raw locations into

g ⇥ g fixed-size rectangle cells.

6.3.2 Recursive Motion Function

The work in [92] is based on the assumption that the future movement of individuals

can be expressed as a recursive function of their previous locations rather than a

closed formula based on time. Therefore, having the recent locations of an individual,

they predict her near future movements by building a recursive motion function

(RMF) which adapts itself as the individual moves. RMF method can be summarized

in two steps as below.

Step 1: Build a recursive motion function For a partial trajectory of a moving

object o at current time point tc denoted as hhx1, y1i, ..., hxc�1, yc�1i, hxc, ycii, the
motion function can be described as Equation 6.1.

hxc+1, yc+1i = C0hxc, yci

+ C1hxc�1, yc�1i+

+ Cf�1hxc�f+1, yc�f+1i

(6.1)

where f is the retrospect which means f recent locations are considered in the func-

tion and Ci, 0  i  f � 1 are 2⇥ 2 matrices (2D location space).

To solve this equation, they propose a motion state s(o)t as a vector of f recent

locations of the object o at time t as

s(o)c+1 = {xc+1, yc+1, xc, yc, ..., xc�f+1, yc�f+1} and then simplify the Equation 6.1 as

Equation 6.2.

s(o)c+1 = K(o)s(o)c (6.2)
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where K(o) is the constant (2f) ⇥ (2f) motion matrix for the object. Note that

the values of this matrix is only unknown for the first 2 rows which determine xc+1

and yc+1. This equation is then solved for each row of K(o) separately using linear

equation solving methods. The authors observe that all objects that follow the same

motion pattern have identical motion matrices.

Step 2: Exploit the motion function for prediction Having K(o), future

movements of object o is predicted using the Equation 6.2. They evaluate their

method using small sets of synthetic data which are generated using predefined

mathematical functions with both known motion matrices (i.e. polynomial, sinu-

soid, circle, and ellipse) and unknown motion matrices (i.e. spiral, peach, parabola,

and swirl). Their results show that RMF outperforms a simple linear prediction

model.

For our evaluation purpose, we use grid-based method for location descritizing. We

adopt the same parameter settings used for Markov Chain models as described in

Section 6.3.1.

6.3.3 Hybrid

The selected hybrid prediction method for moving objects [43] – which is called

hybrid method throughout the chapter– predicts an objects future locations based

on its historical pattern information and motion functions that are computed by

recent movements. For objects trajectory patterns, they first use the DBSCAN

clustering method to detect frequent regions and then apply the Apriori algorithm

to find frequent patterns. Specifically, they use a novel indexing and access method

for e�cient query processing which is called Trajectory Pattern Tree (TPT). TPT

is a variant of Signature tree [68], which is a dynamic balanced tree and specifically

designed for bitmaps. Each leaf node of the TPT contains entries of encoded pattern

key for each trajectory pattern, corresponding confidence and the consequence of the

pattern. The insert, delete and split operations are similar to those in signature tree
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Table 6.2: Datasets

Dataset No. of objects Time unit Duration Max. missing rate No. of test objects Prediction window size

PSyn 1000 1 step 480 steps 0.0 100 48 steps

BF 10K 1 step 500 steps 0.0 200 50 steps

GL 22 1 hour 7 days 0.7 22 1 day

TD 3000 5 min 6 days 0.5 100 1 day

and R-tree. In addition, they use two query processing methods for both non-distant

and distant time queries to improve the accuracy of predictions.

6.3.4 Semi-Lazy

A semi-lazy approach for probabilistic path prediction with unknown destination is

suggested in [114] for moving objects in a dynamic environment. In this approach,

historical trajectories are kept and indexed for a short period of time (e.g. an hour)

in a grid-based data structure. To perform prediction for a target object, they

match its past trajectory against historical trajectories and extract a small set of

reference trajectories using a distance-based similarity measure (Finding trajectories

with locations that could be mapped to every location point of current trajectory in

the same order of appearance. Then a local Hidden Markov Model is built on top of

these trajectories. Circular shaped states are mined using a hierarchical clustering

method applied on reference points at each time stamp. To choose the best cluster

sizes, a heuristic method is suggested to choose the optimal compromise between

the transition probabilities and radius of the clusters. State transition probability

is then calculated as a function of intersection of states with the reference objects.

This model is then used to predict the future movement of the target object with a

self-correcting feature which assigns credits to reference objects based on the quality

of their prediction (after actual paths are observed). These credits are incorporated

into the clustering and prediction methods to improve the object’s future predictions.
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6.4 Experiments

6.4.1 Experiment setup

Datasets

We evaluate the performance of the prediction algorithms on two real-world and two

synthetic datasets. The datasets are chosen carefully by including di↵erent sam-

pling and missing location rates to facilitate the comparison of selected approaches.

Table 6.2 summaries their details.

PSyn We generated a periodic synthetic dataset (PSyn) based on the method

proposed in [69]. PSyn includes 1000 trajectories which are randomly generated

from 4 di↵erent patterns of length 24 (i.e. 24 is the period at which data follows a

pattern). Each trajectory includes 480 location points with no missing locations.

BF We used a modified version of Brinkho↵ generator [14] to generate a synthetic

set of trajectories on the road map of Boston [19]. We generated 10K moving objects

with trajectories of length 500 during 500 time steps, thus each object has one

location point per time step (i.e. the dataset has no missing location information).

GL Geolife GPS trajectory dataset [113] was collected in (Microsoft Research Asia)

in a period of over three years. Due to sparsity of the available sample, we selected

the trajectories of 22 individuals in a period of one week with missing location rate

of less than 70% per individual. We interpolated the missing locations, so that there

is a location point every an hour.

TD The T-Drive dataset [111, 112] contains trajectories of taxis within Beijing,

China. We selected 6 days of data including 3K taxis with missing location rate of

less than 50%. Again, we interpolated missing locations to have a location point

every 5 minutes.
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Evaluation Criteria

We used several metrics to evaluate the performance of prediction algorithms as

follows.

• Prediction Rate: We evaluated the prediction ability of the algorithms by mea-

suring the rate at which they could produce a prediction result. Prediction rate

measures the number of predictable trajectories divided by the total number

of test trajectories.

• Distance Error: We also evaluated the performance of algorithms by measuring

the euclidean distance between the actual and predicted locations. We take the

average of distances over all predictable trajectories as distance error.

• Prediction Accuracy: The accuracy of the algorithms are measured as the rate

of correct predictions. Since di↵erent methods use di↵erent sizes and shapes of

discretized regions or no regions at all, we use fixed-size grid cells to evaluate

the accuracy. A prediction is considered accurate when it belongs to the same

grid cell as the actual location. Prediction accuracy is measured by dividing

the number of accurate predictions by the number of predictable trajectories.

In addition to distance error and prediction accuracy, we defined two other

metrics Penalized Error and Penalized Accuracy which incorporate prediction

rate.

• Penalized Distance Error: We penalize a model when no prediction is possible

by choosing a random location point from history as prediction. We then

compute the distance between predictions/random predictions and the actual

locations and divide it by the total number of test trajectories as penalized

distance error.

• Penalized Prediction Accuracy: Similar to penalized error, we define penalized

accuracy as accuracy when models are penalized for the lack of prediction.
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Table 6.3: Parameters

Parameter Values

g 8,16,32,64,128,256,512,1024,2048

density 1-10

n-back 1 - 7

supp/conf 0.1-0.5

Table 6.4: Tuned parameters

Method g density n-back supp/conf

MC-I 8,8,32,32 - 1 -

MC-G 32,64,16,256 - 1 -

RMF - - 3,3,2,2 -

Hybrid 64,64,128,32 2,4,4,7 3,3,2,2 0.3/0.3

Semi-Lazy 512,2048,128,512 - 2 -

In addition to comparing the accuracy of methods with each-other, we also

used an upper limit of predictability which computes a theoretical maximal

accuracy for each dataset. In this way, we can also see how well the methods

are performing compared to a maximal possible accuracy.

Tuning Parameters

We tuned the parameters of each method for their best performance using our data.

For location representation, the granularity of grid cells g is used to divide the map

into g ⇥ g rectangles when fixed-size grids are utilized. For methods with frequent

region mining approaches, g is used to choose the minimum radius of frequent regions

as a factor of diagonal of the map. Another parameter density is used to specify

the minimum number of points/trajectories in frequent region mining algorithms.
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Moreover, all model-based methods use the number of backward location points n-

back for tuning. Several methods use minimum support supp and confidence conf

parameters. In addition to these parameters, each method also uses other parameters

specific to it which are also tuned for each dataset. Table 6.3 shows the common

parameters used in several methods and the value ranges used for tuning. Table 6.4

shows the summary of tuned parameters for each method/dataset pair. Four values

shown for each parameter represent the best tuned value in each dataset in the order

of PSyn, BT, GL, and TD.

Methodology

In all of our experiments, first we selected a random sample of individuals as the test

sample. Then we used an incremental training window method to repeatedly increase

the size of training period by incorporating the temporal aspects of trajectories. The

size of test data and the prediction window in every dataset is shown in Table 6.2.

For general-based methods, in each dataset, we started with the first window of all

data for training and predicted a location in the next window for the individuals

in the test data. Then, we increased the training window repeatedly during several

steps. Final results were calculated as the average of all steps. For individual-based

methods, training data only included the past history of each test individual.

6.4.2 Predictability Analysis

Methods

We used the measures proposed in [88] to compute the upper limits of predictabil-

ity for each object’s mobility in our datasets. Regardless of the time and location

granularity in each dataset, we assume the complete history of object i as a single

trajectory T i with fixed time units for the total duration of the dataset. If an object’s

location is unknown for any time stamp, we mark it as ’missing’. For example, each

object’s history is presented by a trajectory of length 7 ⇥ 24 in GL dataset while
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some of the locations are ’missing’. The main idea behind predictability analysis

is that uncertainty (or randomness) of the trajectories can be measured by entropy

with larger value indicating less predictability. We follow the notations in [88] to

calculate the trajectory entropy of object i with Li distinct locations.

Si
unc is the temporally-uncorrelated entropy with pik as the probability of visiting

location k by object i:

Si
unc = �⌃Li

k=1p
i
k log2 p

i
k

Si
real is the real entropy considering both temporal and spatial patterns with p(T 0)

as the probability of finding the sub-trajectory T 0 in T i:

Si
real = �⌃T 0⇢T ipi(T 0) log2[p

i(T 0)]

Similar to [88], we estimate Si
real using Lempel-Ziv data compression [56]. Clearly,

0  Si
real  Si

unc  1.

The predictability of object i’s mobility ⇧i at time n is bounded as ⇧i  ⇧max
i

where ⇧max
i is calculated using Fanno’s inequality [24]:

Si
real = H(⇧max

i ) + (1� ⇧max
i )log2(Li � 1) (6.3)

where

H(⇧max
i ) = �⇧max

i log2(⇧
max
i )� (1� ⇧max

i )log2(1� ⇧max
i )

Similarly, ⇧unc
i can be calculated using Si

unc instead of Si
real.

Predictability Limits of Our Data

We calculated the theoretical upper limits of predictability for our data which are

presented in Figure 6.1. We used simple grids to divide the map into fixed-size rect-

angular cells. We varied the size of the cells by changing the grid resolution to see how

the size of predicted regions e↵ect the predictability. All of datasets show consistent

decrease in predictability as the region size decreases. Intuitively, the next presence

of individuals is more predictable in larger regions compared to more granular and
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Figure 6.1: Theoretical limits of predictability in the available datasets

fine-grained areas. It is noteworthy, BF and PSyn include location information for

every time point for all individuals while GF and TD include a minimum of 0.7% and

50% missing locations per individual respectively. The presence of missing locations

are incorporated in computing the upper limits [88] which could explain some parts

of the high predictability of GF and TD datasets.

6.4.3 Evaluations

In this section, we evaluate and compare the selected methods extensively by varying

the prediction length. We also compare the performance of the methods with the

theoretical upper limits of predictability for each dataset. Moreover, we study the

impact of the number of backward steps for model-based methods.

The Impact of the Prediction Length

To study the performance of our algorithms in predicting the future locations, we

varied prediction length and compared the prediction rate and error of methods.

Figures 6.2, 6.3, 6.4, and, 6.5 show the e↵ect of prediction length on prediction
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Figure 6.2: PSyn dataset: the impact of the prediction length

rate, distance error, and penalized distance error in di↵erent datasets. Figure. 6.2a

shows the prediction rate in PSyn dataset. Semi-Lazy is the only method which

is significantly a↵ected by the length of prediction. As the prediction length is
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increasing, the prediction rate is dropping for Semi-lazy while the rest of methods

are not a↵ected significantly or are not a↵ected at all. The RMF and Hybrid methods

always entail a prediction. MC-G is a general-based method using the data of all

individuals with no restriction on similarity. Semi-lazy though is a general-based

method, utilizes only the similar trajectories which makes it prone to the lack of

prediction.

As for the distance error, the hybrid method outperforms all of the other methods

for PSyn data as shown in Figure 6.2b. Semi-lazy is the next best performer resulting

in a slightly lower distance error than MC-G, however, when we penalize it for the

lack of prediction, MC-G outperforms it as shown in Figure 6.2c. The distance error

increases as the prediction length increases for all of the methods, however, RMF’s

error is a↵ected considerably higher than the other methods making it an unsuitable

method for this data.

Figure 6.3a shows that the results of prediction rates for BF dataset are similar to

PSyn. The distance error, on the other hand, is di↵erent as shown in Figure 6.3b.

Semi-Lazy outperforms the other methods with distance error of 300 units for pre-

diction length of one step. Again, while it results in slightly better error than MC-G,

however, when penalized for the lack of prediction, it under-performs MC-G signif-

icantly as the prediction length increases in Figure 6.3c. Surprisingly, the Hybrid

method performs as bad or slightly worse than RMF. It could be explained by the

fact that the pattern-mining part of the Hybrid method relies heavily on periodic

aspect of data while BF is not periodic.

The prediction rate of Semi-Lazy drops as low as 40% for GL data in Figure 6.4a.

The sampling rate of one hour in GL makes the prediction far in future rather than

a near future prediction for which Semi-lazy is designed. Figure 6.4b shows that the

Hybrid method performs slightly better than RMF since the data has periodic fea-

tures in it. For only one step in future (i.e. the next hour in GL), the Hybrid method

outperforms the other methods with distance error of 1.5km. For longer prediction

lengths, Markov-based models MC-I and MC-G outperform all other methods signif-
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Figure 6.3: BF dataset: the impact of the prediction length

icantly. MC-I results in lower distance error without considering its low prediction

rate of around 80%. After incorporating the prediction rate, we see that MC-G out-

performs MC-I for the most values of prediction length. Semi-lazy constantly yields
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Figure 6.4: GL dataset: the impact of the prediction length

the worst error in both Figures 6.4b and 6.4c with its penalized error being slightly

higher than its error as expected.

Figure 6.5a shows that TD also results in a dropping prediction rate for Semi-Lazy
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Figure 6.5: TD dataset: the impact of the prediction length

which e↵ects its penalized distance error significantly as illustrated in Figure 6.5c. It

is also noteworthy, since the data is not periodic, the hybrid method does not result

in lower errors leaving MC-G as the best performer.
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Comparison of Accuracy of Methods

In Figure 6.6, we evaluated the accuracy of selected methods by comparing their

penalized accuracy for varying prediction granularity (i.e. evaluation cell size) when

prediction length is one time unit in each dataset. We also included the upper limit

of predictability in each dataset to show the existing gap between the theoretical

limits and the practical accuracy that could be achieved by these methods. In all

of the datasets, all methods follow the same trend as the upper limits. As the size

of prediction regions increases, accurate predictions are more likely. In Figure 6.6a,

the Hybrid method outperforms the other methods using PSyn dataset, however,

there is a considerable gap between the accuracy of methods and the upper limit

which decreases as the size of prediction area increases. While the hybrid method

enjoys the periodic aspect of PSyn data, it does not perform as well for BF data in

Figure 6.6b in which MC-G and Semi-lazy methods yield better accuracy. There is a

similar trend of decreasing gap with the upper limit as of PSyn. In both data, MC-I

has the worse accuracy.

Comparing Hybrid and RMF It is also noteworthy to discuss how Hybrid and

RMF methods compare in di↵erent datasets. In PSyn and GL, the hybrid method

outperforms RMF as expected. Both of these datasets either are synthetically pe-

riodic as in PSyn or capture the movements of individuals in 24 hour periods as in

GL. It can also be partly explained by the prediction length of one hour in GL being

in favor of the hybrid method; RMF is more suitable for near future predictions.

On the contrary, the hybrid method performs similar to RMF in BF and TD which

means the pattern-based part of it is not performing well when no periodic data is

present or the prediction length is short.

Comparing Model-based Methods MC-G performs similar or better than MC-

I and Semi-Lazy in all of the datasets. Moreover, while the accuracy of all three

model-based methods follow a sudden drop in real datasets in Figures 6.6c and 6.6d,
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Figure 6.6: Comparison of methods predictability for di↵erent prediction granularity

MC-G shows more robustness for TD dataset. These results can be explained due

to the fact that MC-G has higher prediction rate compared to MC-I and Semi-Lazy

models, thus, does not su↵er from penalization as much as the other two methods.

The impact of the number of backward steps

Model-based methods utilize the number of backward steps as one of their major

parameters. In this section, we present the tuning results of varying this parameter

and study its impact on prediction rate and error. Figure 6.7a shows how prediction

rate varies for PSyn data as the number of backward steps increases. RMF always

produces a prediction since it only requires the location of the backward steps and
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does not search for any matching or similar sequences in history. On the other hand,

all of Markov-based models experience a drop in prediction rate as the number of

backward steps increases. Distance error on the other hand decreases with increasing

the number of steps as shown in Figure 6.7b. This indicates how methods become

more precise as the number of matching locations increases. After incorporating the

lack of prediction, we observe an increase in penalized error in Figure 6.7c. Similar

results can be seen in other datasets.
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Figure 6.7: The impact of the backward steps (prediction length is 1 time unit)
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Chapter 7

Conclusions and Future Work

Mobile crowd sensing (MCS) has numerous applications in a wide range of domains

including syndromic surveillance, crime mapping, environmental health and pollu-

tion mapping, tra�c monitoring, and emergency response. In this dissertation, we

proposed methods to build robust task management frameworks to handle uncer-

tainty and ensure privacy in such applications. Our solutions not only increase the

disposition of the participants to engage in data collection and sharing activity, but

also ultimately lead to more e↵ective MCS applications.

7.1 Summary

In Chapter 3, we defined and formulated the problem of privacy-aware spatial task

assignment in crowd sensing with cloaked locations as a novel two-stage optimization

problem. We showed the problem to be NP-hard in each stage, and proposed e�cient

greedy algorithms for each stage of the optimization problem. We studied the impact

of parameter values including task size, participant size, coverage goal and cloaking

size on our methods and showed their e↵ectiveness and robustness.

Chapter 4 investigated privacy-aware solutions for autonomous task selection based

on the notions of private information retrieval (PIR). First, we proposed two novel

solutions to answer private RkNN queries without disclosing any information about

the location of query point. Our solutions utilized PIR mechanisms to request data

from an untrusted database server without the server learning about retrieved data

or the query source. We evaluated our methods extensively using real datasets.

We investigated the e↵ect of variety of parameters on computational cost and data
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storage size. Our results showed the e�ciency and e↵ectiveness of our solutions.

Then, we showed that private RkNN queries can be utilized by participants of MCS

to query tasks autonomously without revealing their location while achieving high

task coverage.

In Chapter 5, we extended the problem of spatial task assignment for dynamic

MCS environments. Dynamic crowd sensing platforms come with some inherent

challenges, including constantly moving participants and uncertainty (i.e. noisy

or imprecise location). These were addressed in our dynamic spatial task assign-

ment framework based on the DDDAS (Dynamic Data Driven Application Systems)

paradigm. Our approach includes a data driven framework with feedback loops to

steer data collection, thus adapts to moving participants and application needs in

real time. Participant mobility is modeled using available public data, which is

then used with an adaptive filtering module to improve uncertain locations. Finally,

a spatial task assignment approach recruits the best set of participants to achieve

application-specific goals such as maximum coverage or minimum cost.

We also investigated the e↵ectiveness of existing human mobility prediction models

in Chapter 6 as an attempt to make a more knowledgeable decision for our dynamic

task assignment framework. To this end, we conducted an extensive experimen-

tal evaluation of several state-of-the-art location prediction methods. Our selected

methods included model-based, pattern-based, and hybrid approaches to predict user

locations in near or far future time. To conduct a fair and comprehensive evaluation,

we carefully chose our test data sets from both real and synthetic data. We also

designed extensive experiments to show both the strengths and weaknesses of each

method.

7.2 Future Work

Possible future research directions for the proposed methods in this dissertation are

presented as follows.
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Incorporating Participant’s Trust in Privacy-aware Spatial Task Assign-

ment Privacy and trust generally follow conflicting goals, given that the partici-

pant’s trust is gained by higher accuracy and exactness of provided data, but privacy

aims at hiding or perturbing identifying data (e.g. using location cloaking) to pro-

tect the participant [2, 37]. Furthermore, trust issues become more challenging for

anonymous tasking. Anonymity may result in assigning tasks to untrustworthy or

unqualified participants [20]. In our proposed methods, we focused on privacy as-

pects of task assignment in which users would only share their cloaked locations. As

future work, our approach could be extended to take into account the trustworthi-

ness of participants in terms of the quality of the data contributed by them without

compromising their privacy [51].

Extending The Dynamic Task Management Framework Real-world crowd

sensing environments are very dynamic with constantly changing parameters. In our

research, we considered moving participants as one of the core dynamic parameters of

such environments. Therefore, we built a framework to adapt to constant changes of

participant locations and the resulting uncertainty. As a next step, we plan to extend

our approach to also consider moving tasks (i.e. targets). Examples of moving tasks

include monitoring a moving crowd or tra�c flow, and disease spread surveillance.

Including such tasks requires building predictive models for di↵erent types of task

movement patterns while feeding their changes in real-time to the task assignment

process.
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