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Abstract

Innovative methods for investigating the genetic architecture of complex
human traits

Over the past two decades, there has been a rapid increase in the amount of publicly-
available genetic datasets necessary to advance gene mapping of complex human traits
and diseases. As the amount of genome-wide association (GWAS) data has grown,
so has the need for novel statistical methods that aim to not only locate risk regions
across the genome, but also shed light on the mechanisms by which these risk loci
exert their effect on traits of interest. In this dissertation, we develop and apply
innovative statistical methods to help fill these important gaps in such knowledge.

In the first project, we develop a population-based test for parent-of-origin ef-
fects (POEs) leveraging GWAS data on multiple phenotypes. A POE exists when
maternally- and paternally-transmitted alleles exhibit differential effects on phenotype
expression. We show that the presence of a POE at a given locus induces a difference
in the covariance structure among multiple phenotypes between homozygotes and
heterozygotes. Based on a robust omnibus test for homogeneity of covariance matri-
ces, our method can be applied to normal and non-normal phenotypes and can easily
adjust for population stratification and other non-genetic confounders. We evaluate
our method through simulation studies and apply it to GWAS data of BMI and two
cholesterol phenotypes from the UK Biobank, identifying 338 genome-wide significant
variants.

In the second project, we apply a recently proposed transcriptome-wide associa-
tion study (TWAS) method to publicly available summary statistic GWAS data for
breast and ovarian cancer. This Bayesian genome-wide method (BGW-TWAS) incor-
porates both cis- and trans-expression quantitative trait loci (eQTLs). We first train
gene expression imputation models using GTEx V8 transcriptomic data separately
in breast and ovarian tissue. We then identify genes significantly associated with risk
of both cancers and 10 common subtypes of these cancers and investigate the eQTL
architecture of these top genes. We show that several novel loci are identified driven
primarily by trans-eQTL effects. We replicate several associations using independent
GWAS data and expression data in tumor and tumor-adjacent breast tissue from the
Cancer Genome Atlas.

In the third project, we expand upon a recent method for TWAS that circum-
vents the need for individual-level genotype and transcriptomic data. This method
leverages summary-level eQTL data and polygenic risk score (PRS) models to impute
gene expression in individuals of a given ancestral group. In contrast to ancestrally
homogenous populations, recently admixed populations have genomes that are a mo-
saic of distinct local ancestral (LA) segments, and it is well-known that PRS methods
port very poorly across ancestral groups. Motivated by this, we propose a method
to perform TWAS with summary-level eQTL data in recently admixed subjects. We
compare the imputation accuracy, power, and type I error rate of this LA-aware ap-
proach to LA-unaware PRS methods. We apply our method to 29 blood biochemistry
phenotypes in two-way African/European admixed individuals in the UK Biobank.
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4.6 Gene expression imputation accuracy in 10,000 admixed testing sam-

ples (10 admixture generations, 80% initial contribution from AFR) for

expression heritability h2
e,1 = 0.2, h2

e,2 = 0.1. Vertical panels indicate
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Chapter 1

Introduction

1.1 Overview

The desire to understand the role that genetic factors play in the manifestation of

human traits has spurred great advancements in recent years. These advancements

lie not only in the development of technology to accurately and affordably sequence

large numbers of individuals, but also in the development of statistical methodologies

that are appropriate to analyze this unique class of data. Statistical genetics lies

at the intersection of human genetics and biostatistics, and research in this field

has helped to augment our knowledge of how variation in traits within or across

populations relates to variation among individuals and populations at the genetic

level. Through the advent and prolific application of genome-wide association studies

(GWAS), researchers have identified thousands of genetic polymorphisms associated

with complex traits [1] and, in turn, great progress has been made in the clinical

translation of these findings to improve public health.

However, due to the population-based nature of most GWAS cohorts, as opposed

to family-based cohorts, it is implicitly assumed in analysis that the effect of a given al-

lele on the phenotype under study is independent of the (unknown) parental ancestry
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of the inherited allele. This assumption is violated in the presence of parent-of-origin

effects (POEs). A POE occurs when the effect of a maternally-inherited allele on ex-

pression of a trait differs from the effect of the paternally-inherited copy of the same

allele [2]. Most existing methods that are used to detect POEs currently are limited

by the requirement of familial genotype data, often of modest sample size, to de-

termine maternal or paternal transmission of alleles in offspring [3–12]. One method

proposed for GWAS-scale cohorts that does not require paternal genetics still requires

a genealogy database containing data from more distant relatives to impute parental

ancestry of haplotypes of the subjects under study [13]. Another recent POE method

that does not require any familial genetic data is limited to the analysis of a single

quantitative trait and does not leverage the pleiotropic nature of many genes [14]. In

the second chapter of this dissertation, we describe our development of a powerful sta-

tistical method for detecting loci harboring POEs in samples of unrelated individuals

that accommodates multiple phenotypes jointly.

Another challenge faced by researchers while interpreting GWAS results is that the

vast majority of GWAS-identified risk variants fall in non-protein coding regions of

the genome and thus lack an obvious mechanistic explanation by way of a direct effect

on protein structure [15]. This realization has motivated considerable methodological

and applied research in the field of transcriptome-wide association studies (TWAS).

These studies aim to estimate the association between disease risk and genetically-

regulated transcriptional activity and therefore improve our understanding of how

the effects of risk variants are mediated by gene expression. While the catalog of

susceptibility genes identified by TWAS for a wide range of complex traits is growing,

further knowledge can be gained by exploring the trans-regulatory effects of common

variants on gene expression [16, 17]. Further, most TWAS methods published to

date (1) require individual-level transcriptomic and genetic data to train statistical

models of gene expression in a reference cohort, which may be difficult to obtain
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and can be of limited sample size, and (2) are dedicated exclusively to ancestrally

homogenous, non-admixed populations. In the next two chapters of this dissertation,

we describe two projects that focus on the application and development, respectively,

of innovative statistical methods for TWAS that help address these issues.

1.2 Outline of Research

In Chapter 2 of this dissertation, we describe our first project, a method we have

termed POIROT (Parent-of-Origin Inference using Robust Omnibus Test) [18]. It is a

powerful statistical test for detecting POEs in population-based samples of unrelated

individuals that leverages multiple phenotypes simultaneously. In Section 2.1, we

begin with a brief introduction to the biological phenomena giving rise to POEs

in nature, describe known POE-trait associations, and describe existing methods

currently employed for detecting these effects in the settings of both familial and

population-based genotype data. We highlight the limitations of these approaches

that motivate our proposed research. In Section 2.2, we define our statistical model

for quantitative traits exhibiting POEs, outline our method for testing whether a

POE exists at a given locus for one or more quantitative traits, and present the

framework for our simulation and applied analyses. In Section 2.3, we describe the

power and type I error of POIROT from performed simulation studies and the results

from the application of our method to real-world data on three phenotypes from

the UK Biobank (BMI, high-density lipoprotein cholesterol, low-density lipoprotein

cholesterol). We compare the performance of our method in both simulations and our

applied analysis to a competing univariate method for detecting POEs in unrelated

samples that does not utilize data across multiple phenotypes. We conclude this

chapter with a discussion (Section 2.4) of the limitations of this work.

In Chapter 3 of this dissertation, we describe an applied TWAS analysis [19].
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This work leverages expression quantitative trait loci (eQTL) information from both

the variants located in close proximity to a given gene (cis-variants) and those lo-

cated distal to the gene, often one megabase (Mb) or further on the same chromo-

some or on a separate chromosome (trans-variants). By first estimating the associa-

tion of these genome-wide variants with expression using a reference panel from the

Genotype-Tissue Expression (GTEx) project [20], we were able to detect genes whose

genetically-regulated component of gene expression (GReX) in breast and ovarian tis-

sue are associated with risk of overall breast and ovarian cancer. We also examine

this gene-level association of GReX with five common histological subtypes of each of

these cancers. Of note, we identify a subset of highly significant genes not previously

detected in GWAS or cis-only TWAS of these cancers whose associations appear to

be driven by strong trans-eQTL effects. In Section 3.1, we provide an introduction

to the framework behind TWAS, discuss the limitations of TWAS that have been

performed for breast and ovarian cancer thus far, and describe the recently published

computationally-tractable statistical method for performing TWAS using both cis-

and trans-eQTLs [21]. In Section 3.2, we describe the data we obtained for perform-

ing this analysis, including whole-genome sequencing, transcriptomic, and GWAS

summary statistic data, as well as outline the methodology behind the method we

apply. We also describe our extensive set of validation analyses performed to in-

vestigate how our putatively novel cancer-associated genes replicate using data from

studies independent of our main analyses. In Section 3.3, we describe our estimated

GReX models in both tissues and their corresponding eQTL architecture. We de-

scribe the findings from our TWAS of all 12 cancer phenotypes in detail and relate

these to the results of all validation analyses. In Section 3.4, we conclude with an

extensive discussion of the limitations of this work and compare our findings to genes

previously implicated in other applied TWAS of breast and ovarian cancer.

In Chapter 4 of this dissertation, we describe our work on a statistical method
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for enhanced TWAS analysis in individuals of admixed ancestry, a group that has

been largely underrepresented across the entire spectrum of genetic association stud-

ies. Our proposed method builds upon a recently published approach to TWAS that

utilizes summary-level eQTL reference datasets and polygenic risk score (PRS) ap-

proaches to train GReX models [22]. We leverage local ancestry (LA) information

within haplotypes to allow for possible LA-dependent eQTL architecture. In Section

4.1, we provide an overview of how PRS models can be used to perform TWAS, how

performance of these PRS models varies greatly across different ancestral groups, and

how LA deconvolution in recently admixed TWAS subjects could be used to yield im-

proved estimates of the association between imputed gene expression and a phenotype

of interest. In Section 4.2, we provide a statistical introduction to how we explicitly

model gene expression in admixed subjects and our proposed TWAS method. We

then describe our simulation analyses performed to evaluate the GReX imputation

accuracy of our method, as well the power and type I error of the downstream gene-

phenotype association test. We also discuss our applied analysis using real-world

data from two-way African/European admixed individuals in the UK Biobank and

phenotype data on 29 blood biomarker traits. In Section 4.3, we discuss the results

of these analyses. We conclude this chapter in Section 4.4 with a discussion of the

limitations of our proposed work.

In addition to the sections outlined above, each subsequent chapter includes an

appendix. This appendix contains supplemental figures and tables not inlaid in the

main sections, as well as any statistical proofs, where appropriate. Lastly, in Chapter

5, we briefly summarize a few possible extensions for each of the projects presented

in this dissertation.
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Chapter 2

Topic 1. POIROT: A powerful test

for parent-of-origin effects in

unrelated samples leveraging

multiple phenotypes

2.1 Introduction

Most genome-wide association studies (GWAS) implicitly assume the magnitude and

direction of effect of a genetic variant on expression of a phenotype is independent of

whether the variant was maternally or paternally inherited. However, there exists a

distinct class of genetic variants for which this assumption is violated. Such variants

harbor a parent-of-origin effect (POE) wherein the effect of an allele on a trait depends

on whether it was transmitted from the mother or the father [2]. A substantial

proportion of the variation in complex traits is not explained by the additive effects

of common single nucleotide polymorphisms (SNPs) across the genome. POEs may

represent an important contribution to this missing heritability [23].
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There are multiple cited biological mechanisms by which POEs can arise in mam-

mals. These include maternal intrauterine environment effects and effects of the ma-

ternal mitochondrial genome. However, the most frequently considered mechanism

is genomic imprinting [24]. This epigenetic phenomenon was formally discovered in

the 1980s primarily through embryological experiments [25]. In imprinting, the ma-

ternal and paternal alleles undergo differential epigenetic modifications that leads to

parent-of-origin-specific transcription of the gene copies. Many imprinted genes tend

to be found in clusters across the genome. Regulation of the expression of these

clustered genes is under control of an imprinting control region (ICR), the mecha-

nisms of which are complex [26]. These ICR are often characterized by repetitive

sequences and located near imprinted genes. It is estimated that only approximately

1% of mammalian genes are subject to imprinting. However, there has been growing

evidence for the existence of POE variants for a wide range of hereditary traits [27].

Classic examples of POE-associated diseases include Prader-Willi syndrome and An-

gelman syndrome. These diseases result from imprinted genes at 15q11-15q13 when

only maternal or paternal copies are expressed, respectively [13, 14, 24, 28–34].

To detect variants demonstrating POEs, studies have historically required geno-

type data from related individuals to ascertain parental ancestry of the inherited al-

leles. In the case of available parent-offspring trio or other forms of familial genomes,

there are well-established methods to detect POEs [3–12]. These approaches often

test for a mean difference in allele effect based on grouping offspring by parent-of-

origin of the allele. These mean-based tests are intuitive and optimally powered given

sample size. Yet, the requirement of trio or more general family data severely limits

this sample size in practice. This, in consequence, limits genome-wide discovery of

the modest genetic effects that we anticipate for complex human traits.

Rather than rely on family studies of limited sample size to detect POEs, re-

searchers have recently transitioned to detecting the phenomenon in GWAS-scale
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cohorts. This practice requires innovative statistical methods to deal with missing

parental ancestry information. For example, Kong et al. inferred parental origin

of alleles when parental genotype data are not available by first phasing Icelandic

probands. For each of the proband haplotypes, they searched a genealogy database

for the closest typed maternal and paternal relatives carrying that haplotype [13].

For each haplotype, they constructed a robust score comparing the meiotic distances

between the proband and these two relatives to quantify the likelihood of maternal

or paternal transmission and ultimately assign parental origin. While this approach

solves the issue of small sample sizes, power is still impacted by the potential inaccu-

racy or uncertainty in haplotypic reconstruction.

More recently, Hoggart et al. described a novel statistical method for detect-

ing POEs for a single quantitative trait using GWAS data of unrelated individuals

[14]. The authors illustrated that the existence of a POE results in increased pheno-

typic variance among heterozygotes compared to homozygotes. They tested for this

variance inflation using a robust version of the Brown-Forsythe test. The method

successfully identified previously undocumented POE associations of two SNPs with

body mass index (BMI). This work has enabled POE analysis in population studies

of biobank scale.

A sizable proportion of genes in the GWAS catalog are pleiotropic [35]. These

genes affect more than one biological process, in turn associating with multiple (cor-

related) phenotypes [36]. Analyzing the joint effects of a gene on more than one trait

can often result in a marked increase in power over univariate approaches [37–39].

Importantly, well-established POEs in humans are usually the result of embryonic

silencing of one parental allele. As this silencing generally occurs early in develop-

ment, its effects are likely to present in all or nearly all tissues expressing the gene.

When differential silencing of this gene affects multiple tissues, this can yield POEs

for several distinct phenotypes. Joint analysis of multiple traits can leverage this po-



9

tential pleiotropy to improve power over univariate variance-based POE tests while

simultaneously reducing multiple testing burden of multiple phenotypes.

Here, we expand on the concept initially suggested by Hoggart et al. to develop a

test for POEs in genetic studies of unrelated individuals that considers multiple quan-

titative phenotypes. We show that a pleiotropic POE variant will not only induce

differences in the variance of POE traits between heterozygotes and homozygotes,

but also in their corresponding covariances. In our method, POIROT (Parent-of-

Origin Inference using Robust Omnibus Test), we test for equality of phenotypic

covariances matrices between heterozygous and homozygous groups. Specifically, we

use the robust omnibus (R-Omnibus) test [40] to accommodate highly skewed traits.

We first provide background on the statistical construction of our test statistic us-

ing the R-Omnibus framework. Next, through simulations, we demonstrate that our

proposed method properly controls type I error and achieves superior power com-

pared to the univariate approach of Hoggart et al. We also introduce a post-hoc

test that can help distinguish variants with POE effects from variants demonstrating

more general gene-gene/gene-environment effects (which also induce patterns of trait

variance/covariance that differ by genotype). We apply our method to GWAS data

of BMI, HDL cholesterol, and LDL cholesterol from the UK Biobank and identify

338 significant potential POE loci. We conclude with a discussion of our findings,

limitations, and proposed research to extend this work.

2.2 Methods

2.2.1 Phenotype Model

Using the notation of Hoggart et al., consider one bi-allelic SNP with reference allele

“A” and alternative allele “B” [14]. Assume that we have collected nAA individuals

who have the homozygous AA genotype, nBB individuals who have the homozygous
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BB genotype, and nAB individuals who are heterozygous at the SNP of interest.

Further assume we have K > 1 continuous phenotypes on all subjects and that we

have already adjusted these phenotypes for the effects of non-genetic confounders like

principal components of ancestry.

We first model phenotypes in homozygous AA subjects. We can model the kth

phenotype of the ith individual with this genotype (y
(AA)
i,k ) as follows:

y
(AA)
i,k = µk + ϵi,k, i = 1, ..., nAA, k = 1, ..., K (2.1)

Here, µk is the mean of the kth phenotype among AA homozygotes and ϵi,k is a

random error term. Let y
(AA)
i = (y

(AA)
i,1 , y

(AA)
i,2 , ..., y

(AA)
i,K )⊤ ∈ RK be the vector of

phenotypes for the ith AA individual. We can then model this vector as below:

y
(AA)
i = µ+ ϵi, i = 1, ..., nAA (2.2)

where µ = (µ1, ..., µK)
⊤ is the K × 1 vector of phenotype means in AA subjects and

ϵi = (ϵi,1, ...ϵi,K)
⊤ is the K × 1 vector of error terms. We assume that E[ϵi] = 0K

and Cov[ϵi] = Σ, where Σ is the K ×K variance-covariance matrix of the vector of

error terms.

Now, let us next consider the individuals who carry two copies of the alternative

allele (BB). We can model the kth phenotype of the ith individual with this genotype

(y
(BB)
i,k ) as follows:

y
(BB)
i,k = µk + βMk + βPk + ϵi,k, i = 1, ..., nBB, k = 1, ..., K (2.3)

In the equation above, βMk represents the effect of the maternally-inherited B allele

on the kth phenotype, and βPk represents the effect of the paternally-inherited B

allele on the kth phenotype. If there is no association between this SNP and the kth

phenotype, it follows that βMk = βPk = 0. If there is a marginal association between
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this SNP and the kth phenotype, but there is no POE present, then βMk = βPk ̸= 0.

Let y
(BB)
i = (y

(BB)
i,1 , y

(BB)
i,2 , ..., y

(BB)
i,K )⊤ ∈ RK be the vector of phenotypes for the ith

BB individual. We can similarly rewrite the model for the phenotype vector as follows:

y
(BB)
i = µ+ βM + βP + ϵi, i = 1, ..., nBB (2.4)

The K × 1 vector µ is as defined previously. βM = (βM1, ..., βMK)
⊤ is the K × 1

vector of maternal effects of the B allele on each of the k phenotypes, and βP =

(βP1, ..., βPK)
⊤ is the K × 1 vector of corresponding paternal effects of the B allele.

Each element of βM and βP is assumed to be a fixed effect. Just as for the AA

subjects, we again assume that E[ϵi] = E[(ϵi,1, ..., ϵi,K)
⊤] = 0K and Cov[ϵi] = Σ.

Lastly, let us consider the individuals who carry only one copy of the alternative

allele (AB). We can model the kth phenotype of the ith heterozygous individual at

this SNP (y
(AB)
i,k ) as follows:

y
(AB)
i,k = µk + πiβMk + (1− πi)βPk + ϵi,k, i = 1, ..., nAB, k = 1, ..., K (2.5)

In the equation above, πi is an indicator random variable, where πi = 1 if individual

i received the B allele from the mother and πi = 0 if individual i received the B allele

from the father. In other words, we assume πi ∼ Bernoulli(1
2
). The parameter of this

Bernoulli random variable takes value 1
2
since we assume that half of heterozygotes

will have maternally-derived B alleles. We can rewrite the equation in the following

manner:

y
(AB)
i,k = µk + βPk + (βMk − βPk)πi + ϵi,k, i = 1, ..., nAB, k = 1, ..., K (2.6)
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Now, let y
(AB)
i = (y

(AB)
i,1 , y

(AB)
i,2 , ..., y

(AB)
i,K )⊤ ∈ RK be the vector of phenotypes for

the ith AB individual. We can reformulate the model for the phenotype vector as

follows:

y
(AB)
i = µ+ βP + (βM − βP )πi + ϵi, i = 1, ..., nAB (2.7)

The maternal and paternal effect vectors are as defined as for the model of BB sub-

jects. We also assume that E[ϵi] = 0K and Cov[ϵi] = Σ. In other words, the

covariance matrix of the error terms is the same within all three genotype groups.

We can easily calculate and compare the phenotypic covariance matrices across

the three genotype groups assuming these models. For AA individuals, Cov(y
(AA)
i ) =

Cov(ϵi) = Σ, i = 1, ..., nAA. For BB individuals, Cov(y
(BB)
i ) = Cov(ϵi) = Σ, i =

1, ..., nBB. We see that the phenotypic covariance matrices of the two homozygote

groups (AA and BB) are both equal, and we define this matrix as ΣHom = Σ. For

AB individuals, since we assume that πi ⊥ ϵi ∀ i, i ∈ (1, ..., nAB), we can derive

the phenotypic covariance matrix ΣHet = Cov(y
(AB)
i ) = Cov[(βM − βP )πi + ϵi] =

(βM−βP )Var(πi)(βM−βP )
⊤+Σ = 1

4
(βM−βP )(βM−βP )

⊤+Σ. Let bk = βMk−βPk

for k = 1, ...K. It can be shown that ΣHet = ΣHom if any only if:

b21 b1b2 · · · b1bK

b2b1 b22 · · · b2bK
...

...
. . .

...

bKb1 bKb2 · · · b2K


= 0K×K

Thus, if a parent-of-origin effect exists for any phenotype k, then βMk ̸= βPk,

which implies bk ̸= 0 and b2k > 0, and therefore the kth diagonal element of ΣHet will

be larger than the corresponding element of ΣHom. Furthermore, if there exists POEs

at this SNP for both phenotypes k and k′, then bkbk′ ̸= 0 and the kk′ element of ΣHet

will be different from the corresponding off-diagonal element of ΣHom.
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2.2.2 POIROT Method to Detect POE SNPs

We can test the null hypothesis that no POEs exist at a given SNP for any of the K

phenotypes under study (H0 : βM = βP ) by equivalently testing H0 : ΣHet = ΣHom.

In our proposed method POIROT, we test for equality of these phenotypic covari-

ance matrices between homozygotes and heterozygotes using the robust omnibus (R-

Omnibus) test of O’Brien [40]. POIROT uses R-Omnibus rather than the traditional

Box’s M test [41] to test covariance differences since the latter is highly sensitive to

deviations of phenotypes from multivariate normality. This can lead to an undesirable

elevation in type I error rates [42].

To derive the R-Omnibus test, we first center the phenotypes by the median

within each genotype group (AA, AB, BB). This step is necessary if a marginal

association exists between the alternative allele and a given phenotype. In that event,

the variance of original phenotype values among aggregate homozygous subjects (AA,

BB) would be erroneously inflated. We next group these centered phenotypes by

homozygote versus heterozygote status. Let xhet
i,k be the kth centered phenotype of

the ith heterozygote (i = 1, ..., nAB) and xhom
j,k be the kth centered penotype of the

jth homozygous (AA and BB combined) individual (j = 1, ..., nAA + nBB). We

then calculate the median of each phenotype k in heterozygotes and homozygotes

separately. Let Mhet
k be the median of the kth phenotype in the nAB heterozygotes.

Correspondingly, let Mhom
k be the median of the kth phenotype in the nAA + nBB

homozygotes. For heterozygotes and homozygotes separately, we then calculate for

phenotypes k and k′:

Zhet
i,k,k′ = (xhet

i,k −Mhet
k )(xhet

i,k′ −Mhet
k′ ) (2.8)

Zhom
j,k,k′ = (xhom

j,k −Mhom
k )(xhom

j,k′ −Mhom
k′ ) (2.9)



14

W het
i,k,k′ =

Zhet
i,k,k′

|Zhet
i,k,k′|1/2

(2.10)

W hom
j,k,k′ =

Zhom
j,k,k′

|Zhom
j,k,k′ |1/2

(2.11)

In Equation 2.10 and 2.11, we standardize the Z measures by dividing by the

square root of their absolute values. We considerW het
i to be the vector ofW values for

the ith heterozygous subject, and W hom
j is the corresponding vector of W values for

the jth homozygous subject. We then perform a two-sample Hotelling’s T 2 test [43]

comparing our two sets of p = (K2+K)/2 samples means (W het,W hom). There are p

dependent variables being compared between heterozygotes and homozygotes as this

corresponds to the number of upper-triangular elements in the phenotypic covariance

matrix. We calculate the test statistic t2 = nhetnhom

nhet+nhom
(W het − W hom)

⊤S−1(W het −

W hom), where S−1 is the inverse of the pooled covariance matrix estimate. Under

the null, our test statistic t2 ∼ T 2(p, nhet+nhom−2) [43]. The test can also be viewed

as a one-way multivariate analysis of variance test (MANOVA).

2.2.3 Post-Hoc Test for Interaction Effects

As detailed above, POIROT tests for a variant demonstrating POE by compar-

ing/contrasting trait variances and covariances by genotype. However, trait vari-

ances can also differ by genotype when a variant exhibits a gene-gene (GxG) or

gene-environment (GxE) interaction effect [44]. To increase confidence that a variant

identified by POIROT demonstrates a POE rather than a more general interaction

effect, we propose a post-hoc test that can be utilized to differentiate the two phe-

nomena. The test is motivated by the observation that, for a general interaction

effect, the variance of a quantitative phenotype among BB homozygous individuals

is different from that of AA homozygotes. This observation is in contrast to the
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variance pattern expected under a POE, in which the variability of each homozygous

group is the same after phenotype centering. Thus, we can craft a post-hoc test that

assesses the null hypothesis of a POE (trait variance/covariances are the same be-

tween the two homozygous categories) versus the alternative of a general interaction

effect (trait variance/covariances differ between the two homozygous categories). We

create such a test by implementing the R-Omnibus framework as previously outlined

but restricted to comparison of the two homozygous groups (AA, BB).

2.2.4 Simulation Study

We conducted a variety of simulation studies to determine POIROT’s ability to detect

POEs while maintaining proper rates of type I error. We considered K = 3, 6, or

10 phenotypes and n = 3,000, 5,000, or 10,000 unrelated individuals. To generate

phenotypes for each round of simulation, we first randomly generateK intercepts from

a standard normal distribution to form the K × 1 vector µ. This corresponds to the

mean vector of phenotypes among AA homozygotes. For simplicity, we assume the

diagonal elements of the matrix Σ corresponding to the variances of the random error

terms are all equal to one. We assume the K phenotypes exhibit one of three possible

levels of pairwise correlation (low, medium, or high). We assume the pairwise trait

correlations are randomly drawn from a uniform distribution. To simulate phenotypes

exhibiting “low” correlation, we assume this is a Uniform(0,0.3) distribution. For

phenotypes of “medium” and “high” correlation, we assume a Uniform(0.3,0.5) and

Uniform(0.5,0.7) distribution, respectively. These random draws are used to populate

the off-diagonal elements of Σ.

Once we have constructed Σ, we then randomly generate n maternal and pater-

nal genotypes for a given SNP by sampling twice from a Bernoulli(p = MAF [minor

allele frequency]) for each parent. To generate offspring genotypes, we sample from

a Bernoulli(p = 0.5) distribution to determine which maternal allele and which pa-



16

ternal allele is transmitted. Thus, we can now assign all n offspring to one of four

genotype groups: (1) AB with maternal reference/paternal alternative, (2) AB with

paternal reference/maternal alternative, (3) AA, and (4) BB. We then simulate the

phenotypic error vector for all n unrelated offspring by drawing from a multivariate

distribution with mean 0 and variance-covariance matrix Σ. The respective fixed

K×1 maternal and paternal effect vectors of the alternative allele (βM ,βP ) are con-

structed depending on the specific null or alternative scenario under consideration.

We then add these vectors to the random error and intercept term in concordance

with the genotype group of each individual, as described in Section 2.2.1

For type I error rate simulations, as described above, we assume these phenotypes

have pairwise-trait correlation of levels low, medium, or high. To reflect the scenario

where there exist no POEs or marginal effects of the alternative allele at the locus

for any phenotype, we assume that βM = βP = 0. We also considered a second null

scenario wherein a marginal association exists for the variant that is not specific to the

parent-of-origin, i.e., βM = βP ̸= 0. However, we note that if the same seeds are used

in simulating the data, this marginal fixed effect is effectively removed when centering

phenotypes by genotype group. The resulting test statistics are equivalent to the first

null scenario. We first consider the circumstance where the random error terms are

drawn from a normal distribution, i.e., the error follows MVNK(0,Σ) and assume

a MAF of 0.25. For each of the 27 combinations of number of phenotypes, sample

size, and pairwise-trait correlation, we conducted 50,000 null simulations. To evaluate

the robustness of our method to highly skewed phenotypes, we then repeated these

parameter settings with non-normal random error terms. In particular, we utilize

the method of Vale and Maurelli to simulate multivariate non-normal error terms

assuming a skewness of two and excess kurtosis of two for each phenotype [45]. An

example distribution of such a phenotype is illustrated in Appendix Figure 2.5.

Next, we investigated the power of our test when POEs do in fact exist for a locus.
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We again considered K = 3, 6, or 10 normally distributed phenotypes. We assumed 1,

2, or 3 had parent-of-origin specific associations with the variant. When the number

of affected phenotypes is greater than one, this corresponds to pleiotropy. For these

scenarios, we assumed βP = 0 and βMk = 0.5, 0.6, or 0.75 for each phenotype k

harboring a POE. All other elements of the maternal effect vector are 0 for the

phenotypes with no POE associations. We again considered low, medium, and high

pairwise-trait correlations. We assumed a MAF of 0.25 and sample sizes of 5,000,

and 10,000. We applied our method to 5,000 simulated datasets for each of the

162 settings and calculated power at significance level α ∈ {0.005, 5 × 10−4}. We

also evaluated the power of POIROT when a locus is pleiotropic for POEs, but the

magnitude of βMk varies by phenotype. For this power analysis, we again tested 3, 6,

or 10 total normal phenotypes, of which 2 or 3 are harboring POEs. Since maternal

effect sizes of 0.5− 0.75 were considered for the scenarios described above, we tested

βM1 = 0.5, βM2 = 0.75 when two phenotypes have POEs. When 3 phenotypes have

POEs, we tested power using 0.5, 0.6, and 0.75 as maternal effect sizes.

We also compared the performance of POIROT to the corresponding univariate

test of Hoggart et al. [14]. For the univariate test, we first calculated power using

standard Bonferroni correction. Power was calculated as the proportion of loci for

which the minimum observed p-value across the K phenotypes tested was less than

α/K. Given that these phenotypes are correlated and therefore may not reflect K

independent tests, this approach can be overly conservative. Thus, we implemented

a second more liberal approach that estimates the true number of independent tests,

Keff, which corresponds to the minimum number of principal components (PCs) ex-

plaining 90% of the variation in our K phenotypes. We then calculated power of the

univariate approach as the proportion of loci for which the minimum observed p-value

was less than α/Keff [46, 47]. We then repeated these parameter settings for assessing

power of POIROT with non-normal phenotypes, as described for null simulations.
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Finally, we performed several simulations to investigate the performance of our

proposed post-hoc test for distinguishing POEs from general interaction effects. Un-

der the null hypothesis (i.e., there exist POEs but no interaction effects for any of

the phenotypes considered), we looked at type I error of the R-Omnibus test com-

paring phenotypic covariances of the two homozygous groups. Similar to above, we

considered a MAF of 0.25 and 3, 6, or 10 tested phenotypes, of which 1, 2, or 3 had

POEs but no interaction effects. We considered sample sizes of 5,000 and 10,000, ma-

ternal POE effect sizes {0.5, 0.6, 0.75}, and low/medium/high trait correlation. We

also evaluated the power of this post-hoc test to identify GxE effects when present.

Simulation parameters were informed by prior work of Paré et al. [44]. We considered

a single unmeasured covariate drawn from a standard normal distribution. Again, we

considered 3, 6, or 10 total quantitative traits, of which 3 had a non-negligible covari-

ate effect. Of these three phenotypes, 1, 2 or 3 had gene-covariate interaction effects.

The covariate effect sizes ranged from 0.3 to 0.7. Among the phenotypes with gene-

covariate interaction effects, we varied to the proportion of total variation of each

phenotype explained by the interaction effects between 0.005 and 0.01. Again, we

allowed traits to have varying pairwise correlation. We performed 5,000 simulations

for each of the 216 power settings outlined for the post-hoc interaction test.

2.2.5 Application of POIROT to UK Biobank

To assess the utility of POIROT for detecting POEs on continuous phenotypes using

published population-based GWAS data, we utilized genotype and phenotype data

from the UK Biobank (UKB), a large-scale biomedical database housing data col-

lected from approximately 500,000 individuals from the UK. This study allows for

widespread investigation of the genetic variation associated with hundreds of lifestyle

and health factors. To identify potential POE variants, we obtained data on three

quantitative phenotypes (BMI [kg/m2], high-density lipoprotein [HDL] cholesterol
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[mmol/L], and low-density lipoprotein [LDL] cholesterol [mmol/L]). Relevant covari-

ates included genotyping array, PCs, sex, age at recruitment, and smoking status

(prefer not to answer, never, previous, current). Prior to analysis, we removed all

individuals identified as outliers according to pre-calculated metrics of genotype miss-

ingness, heterozygosity, and excess relatedness. We excluded those with putative sex

chromosome aneuploidy and those who were not included in PCA calculation. We

included individuals of self-reported white British ancestry only.

Subjects were genotyped using either the UK BiLEVE or UK Biobank Axiom

arrays. We considered only autosomal variants with MAF > 0.05, Hardy-Weinberg

equilibrium p > 1 × 10−8, and missingness rate < 0.02. After quality control and

filtering, 330,801 SNPs remained for analysis across 292,779 unrelated individuals

with complete phenotype and covariate information. There is moderate negative

correlation between BMI and HDL cholesterol (Pearson’s r = -0.35), low positive

correlation between BMI and LDL (r = 0.02), and low positive correlation between

LDL and HDL (r = 0.10). However, all estimated correlations are statistically sig-

nificant (p < 2.2 × 10−16). Covariate adjustment was performed by first fitting a

linear model for each phenotype and extracting the residuals as the new adjusted

phenotypes. We then applied POIROT to these three adjusted phenotypes to jointly

test for POEs across the genome. We compared the findings of our approach to those

from the method of Hoggart et al. performed on each phenotype individually. For

any variant identified by POIROT meeting the Bonferroni-adjusted genome-wide sig-

nificance threshold, we applied our proposed post-hoc test to assess if the effect might

be explained by a general interaction effect rather than a POE.

We concluded with a follow-up analysis to determine whether we see enrich-

ment of variants in imprinting regions among those with lowest POIROT p-values

for detecting POEs in the UKB cohort. We first downloaded genes of known im-

printing and predicted imprinting status in humans from the GeneImprint database
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(https://www.geneimprint.com). We then determined which variants in the UKB

dataset fell within 500kb of the starting and ending site of these genes. We defined

these as our variant set of interest (comparable to a gene set in Gene Set Enrichment

Analysis [GSEA]). We then utilized the GSEAPreranked tool to test for enrichment

of variants in this set among those top ranked variants by −log10(POIROT p-value)

[48, 49].

2.3 Results

2.3.1 Type I Error Rate

We summarize the type I error of null scenarios with a sample size of 5,000 indi-

viduals using Quantile-Quantile (QQ) plots in Figure 2.1 (normal traits) and Figure

2.2 (non-normal traits). Across the settings considered, our method yields the ex-

pected distribution of p-values under the null hypothesis of no POEs for any single

phenotype. The distribution of the p-values is again as expected under the null when

we have non-normality of phenotypes (Figure 2.2), suggesting our method remains

robust. We summarize the empirical type I error rates of our proposed test and the

competing univariate approach at significance level α ∈ {0.05, 0.005, 5×10−4, 5×10−5}

in Tables 2.1, 2.2, 2.3, and 2.4 (Appendix). POIROT maintained appropriate type I

error across all scenarios for normally distributed traits. We observed slightly higher

error when 6 or 10 highly-skewed non-normal phenotypes were tested. The univari-

ate approach with correction for Keff tests showed minor inflation with 6 or 10 highly

correlated phenotypes.

2.3.2 Power

Simulation results comparing the performance of POIROT to the competing univari-

ate test under the assumption of true POE(s) are summarized in Figure 2.3. This
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Figure 2.1: Q-Q plots of p-values for proposed POE test under the null hypothe-
sis βM = βP = 0 using a series of 50,000 simulations of 5,000 individuals using
3 (left column), 6 (middle column) or 10 (right column) continuous normal pheno-
types. Minor allele frequency is assumed to be 0.25. Horizontal panels depict level of
pairwise-trait correlation (low, medium, high).
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Figure 2.2: Q-Q plots of p-values for proposed POE test under the null hypothe-
sis βM = βP = 0 using a series of 50,000 simulations of 5,000 individuals using 3
(left column), 6 (middle column) or 10 (right column) continuous non-normal pheno-
types. Minor allele frequency is assumed to be 0.25. Horizontal panels depict level of
pairwise-trait correlation (low, medium, high).
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figure reflects normally distributed traits and sample size of 5,000 (α = 5 × 10−4).

Corresponding results from all other additional power settings, including both normal

and non-normal traits, sample sizes of 5,000 and 10,000, and α = 0.005, 5× 10−4 are

largely consistent with the results shown below.
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Figure 2.3: Power of POIROT to identify POEs assuming K = 3, 6, or 10 normal
phenotypes (horizontal panels) compared to univariate test. We assume either 1, 2,
or 3 of the phenotypes harbor POEs at the locus (vertical panels). We performed
5,000 simulations for each scenario. We calculated power at significance level 0.0005
for our multi-trait test and 0.0005/K (Bonferroni correction) and 0.0005/Keff for the
univariate test, where Keff is the number of PCs needed to explain 90% phenotypic
variation. βMk = 0.75 for POE traits, MAF = 0.25, and sample size = 5,000.
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Simple Bonferroni correction tends to be overly conservative in the presence of

correlated traits. We therefore used two multiple-testing correction approaches for

the univariate method. As power generally increases with increasing sample size and

POE magnitude, the scenarios shown in Figure 2.3 correspond to a βMk of 0.75 and

sample size of 5,000. For almost all scenarios, we see three general trends. First, un-

like the univariate method, our method successfully leverages the correlation among

phenotypes. We see power increasing with increasing trait correlation. Second, when

pleiotropy exists and more than one phenotype harbors a POE, our method outper-

forms the univariate approach regardless of the multiple testing correction strategy.

Third, power of POIROT increases as the number of phenotypes associated with

the maternally-transmitted alternative allele increases across all levels of phenotypic

correlation. Under simulated pleiotropic POE loci with varying βMk, the power of

POIROT tends to reflect the power assuming a constant βMk for POE phenotypes at

the median effect size.

The one exception to these trends is the top right panel of Figure 2.3. This

reflects the scenario where 3 of 3 phenotypes harbor POEs of the same magnitude

and direction. We see here that power decreases going from low to medium correlation

and from medium to high correlation. We also see lower power when 3 phenotypes are

affected when compared to the corresponding settings when only 2 of 3 phenotypes

have POEs. This pattern, although unusual, has been documented in previous cross-

phenotype methodological studies [47, 50]. As described in Section 2.2.2, the R-

Omnibus test for equality of covariance matrices used by POIROT ultimately employs

a one-way MANOVA test to generate our test statistic. Ray et al. describe how when

we have K correlated traits being tested and a SNP is associated with all K traits,

utilizing a MANOVA to find marginal associations with multiple traits can result

in an appreciable loss of power. In particular, the authors show how the power of

MANOVA is asymptotically lower when all traits are associated with equal magnitude
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and direction than when fewer than K phenotypes are associated [50].

2.3.3 Post-Hoc Interaction Test

Type I error results of our post-hoc test for distinguishing POE (null) from general

interaction effects (alternative) are shown in Figure 2.6 (Appendix). This is an illus-

trative example when only POEs exists for a sample size of 10,000 and the maternal

POE effect size is 0.75. These results are indicative of all null simulation settings

which show the test was well-calibrated under the null when the only effects were

parent-of-origin-dependent. Under alternative simulations with a GxE interaction ef-

fect, our post-hoc test had the power to differentiate interaction effects from POEs

(Figures 2.7, 2.8 [Appendix]). Power is increasing with increasing number of pheno-

types with non-null interaction effects, sample size, strength of interaction effect, and

generally, pairwise trait correlation.

2.3.4 Applied Data Analysis

We applied our method for detecting POEs to genotype and multivariate phenotype

data of 292,779 individuals of European ancestry from the UK Biobank. Raw quan-

titative phenotype measures of interest were BMI, HDL cholesterol, and LDL direct

cholesterol. Phenotypes were appropriately adjusted for the effects of genotype array,

PCs, sex, age, and smoking status. For the 330,801 variants considered, the average

computation time per POIROT test was 22.53 seconds. Analysis was run with parallel

computation with the genome segmented into 793 blocks with a maximum block run-

time of 4.7 hours (681 variants). We identified a total of 338 variants with POIROT

p-values falling below the Bonferroni-adjusted genome-wide significance threshold of

1.5×10−7. These suggestive POE variants are shown in the Manhattan plot in Figure

2.4.

We also saw a significant positive normalized enrichment score (nominal p < 0.001)
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Figure 2.4: Manhattan plot of parent-of-origin effects analysis using POIROT with
BMI, HDL cholesterol, and LDL cholesterol phenotypes from the UK Biobank. The
dashed line represents Bonferroni-adjusted genome-wide significance of 1.5× 10−7.

from the GSEA follow-up test, indicating that variants within 500kb of imprinted or

predicted-imprinted genes tended to lie at the top of our list ranked by increasing

POIROT p-value. We next applied our post-hoc test to these 338 identified variants

to evaluate whether any demonstrated general interaction effects and observed that

approximately two-thirds (230) had p > 0.05/338 and failed to reject the null of

a POE. We similarly applied the univariate test for POEs genome-wide using each

individual phenotype separately.

In Table 2.7 (Appendix), we report on the 41 variants identified by POIROT

as potential POE loci that were not identified by any of the three univariate tests

for POEs and further were not significantly demonstrating general interaction effects

based on our post-hoc test. These 41 variants thus represent the strongest evidence

for novel POE effect(s) in our analysis. Among them, we highlight one exonic variant

(Affx-20090007, POIROT p = 9.7 × 10−16) and one intronic variant (rs41360247,
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POIROT p = 3.0 × 10−13) on chromosome 2 for gene ABCG8. Polymorphisms in

this gene have previously been associated with direct LDL in UKB samples [51,

52]. Variants within this gene have additionally been associated with cholesterol

phenotypes in analyses outside of the UK Biobank dataset [53]. Of particular note,

ABCG8 has been shown by prior research to be a high-confidence gene for maternal

imprinting [54]. We also wish to highlight variants identified by POIROT around the

gene APOB on chromosome 2. Of 14 POIROT-identified variants mapping to this

gene, two failed to show evidence of significant interaction effects by our post-hoc

test (rs550619 [intronic, POIROT p = 3.1× 10−10], rs74629722 [intergenic, POIROT

p = 3.3 × 10−10]). In particular, rs550619 lies 3,299bp from a previously-published

POE variant for BMI (rs1367117) [55] and has significant GWAS associations with

direct LDL levels and total cholesterol phenotypes [51, 52]. Neither of these variants

were identified for any of the three tested phenotypes using the existing univariate

approach to detect POEs.

2.4 Discussion

In this project, we introduce a multivariate method, POIROT, for identifying com-

mon variants exhibiting POEs on one or more quantitative phenotypes in unrelated

subjects. This work is motivated dually by the widespread evidence of pleiotropy in

the genetics literature, as well as the limited statistical options for detecting POEs

in unrelated cohorts. Our proposed method is an inherently simple statistical test

of whether the phenotypic covariance matrix of heterozygotes is equal to that of ho-

mozygotes at a given locus. It represents a multivariate extension of the POE test

of a single continuous phenotype proposed by Hoggart et al. [14]. It allows for ap-

propriate adjustment for the effects of important covariates on the phenotypes under

study and is also computationally efficient for application to biobank-scale datasets
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(Appendix Tables 2.5, 2.6).

Through simulations, we demonstrate POIROT achieves appropriate type I error

under the null. It further displays superior power to detect POEs than the compet-

ing univariate approach under most settings. Our method is indeed robust to non-

normality of phenotypes across several simulation scenarios. We further applied our

method to real GWAS data on white individuals of European ancestry from the UKB.

In this analysis, we considered BMI as well as HDL and direct LDL cholesterol as

potential imprinted phenotypes. The analysis revealed 338 variants meeting the strin-

gent genome-wide significance threshold. Of these, 41 may warrant particular focus in

future investigations. They were not identified by the existing univariate approach to

detect POEs and did not show evidence of significant gene-gene or gene-environment

interaction effects using our proposed post-hoc test. Two of these variants map to

gene ABCG8, a gene with high confidence of maternal imprinting in humans based

on previously published work, and another lies nearby a known POE variant for BMI

in the gene APOB.

While the results presented here are promising for the utility of our proposed

multivariate method for POE detection in practice, there are inherent limitations that

we must address. Firstly, we propose POIROT as a method to detect SNPs wherein

the effect of the variant allele in offspring differs according to which parent transmitted

it. We do not evaluate the ability of our method to detect other trans-generational

effects that may appear as imprinting effects at surface evaluation [3]. Furthermore,

we acknowledge that our method to detect POEs by evaluation of differing phenotypic

covariance matrices by genotype groups may lead to false positive identifications at

loci where gene-environment or gene-gene interaction effects exist. We have proposed

a two-stage screening procedure to combat this: first by implementing POIROT as

described, and second, by following up with our proposed test to distinguish which

findings may be the result of more general interaction effects. We also note if a trans-
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generational effect exists by which, for example, the maternal genotype is affecting

the offspring phenotype in a manner that is not completely independent of offspring

genotype (in other words, there are maternal-fetal genotype interaction effects), we

do believe we would be able to detect these in our post-hoc test for interaction effects.

POIROT is a variance/covariance-based test for detecting POEs applicable to

large population samples where allelic parental origin is unknown. If parental genetic

information is known (i.e., through collection of parent-offspring trios), then it is

well-established that variance-based tests within the offspring are often considerably

less powerful than mean-based tests (like those described in the Introduction) that

leverage allelic parental origin and look for differences in phenotypic means between

heterozygous offspring with maternally- vs. paternally-inherited effect alleles [56].

We performed additional simulations comparing the power of the two strategies at

different sample sizes. Specifically, we simulated parent-offspring trio genotype data,

restricted samples for analysis to include only heterozygous offspring, and tested

for mean-based differences in phenotypes between offspring who inherited the variant

alleles maternally versus those who inherited it paternally via one-way MANOVA. We

assumed 2 out of 3, 6, or 10 phenotypes harbored a POE. We generally found that

variance/covariance methods require approximately 13 times as many observations as

familial mean-based tests for equivalent power. The trio-based simulations assumed

full knowledge of parental transmission of the variant allele in heterozygous offspring,

when in reality, parent-of-origin may be ambiguous in certain cases. For details, please

see Figure 2.9 (Appendix). Thus, if family-based data are available, we recommend

the use of mean-based tests for POE detection rather than variance-based tests. For

population studies, variance-based tests remain the only option for POE analysis.
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2.5 Appendix

2.5.1 Proofs

Proof of equivalence of null simulations with and without marginal effects

Consider one phenotype. Let us assume there are n heterozygotes. Let x be the

n× 1 vector of simulated phenotypes for AB individuals when there are no maternal

or paternal effects of the B allele. When we center these phenotpes by the sample

average of AB individuals, we are left with the new vector x−
∑

xi

n
. When we assume

a marginal effect of the B allele with no POE (βM = βP = β ̸= 0), then the vector of

simulated phenotypes for the n heterozygotes will now be x+β. When we again center

by the sample average of AB heterozygotes, we are left with x+β−
∑

(xi+β)
n

= x−
∑

xi

n
.

Thus, the centered phenotypes are the same in both scenarios, and the downstream

p-value will be the same regardless of the number of phenotypes with marginal effects

(no POEs) and the magnitude of those effects.



31

2.5.2 Tables

Table 2.1: Empirical type I error rates at significance
level α = 0.05 of proposed POE test under the null hy-
pothesis βM = βP = 0 for 50,000 simulations performed
per scenario.

N NPheno Error Correl POIROT Univar-Bonf Univar-Keff-90
3000 3 Normal Low 0.050 0.050 0.050
3000 3 Normal Medium 0.050 0.047 0.047
3000 3 Normal High 0.051 0.046 0.050
3000 3 Non-normal Low 0.055 0.051 0.051
3000 3 Non-normal Medium 0.057 0.048 0.048
3000 3 Non-normal High 0.059 0.045 0.045
3000 6 Normal Low 0.050 0.051 0.056
3000 6 Normal Medium 0.050 0.047 0.057
3000 6 Normal High 0.050 0.044 0.062
3000 6 Non-normal Low 0.058 0.050 0.051
3000 6 Non-normal Medium 0.060 0.047 0.056
3000 6 Non-normal High 0.062 0.044 0.052
3000 10 Normal Low 0.048 0.052 0.060
3000 10 Normal Medium 0.048 0.049 0.061
3000 10 Normal High 0.048 0.042 0.064
3000 10 Non-normal Low 0.058 0.049 0.054
3000 10 Non-normal Medium 0.061 0.048 0.057
3000 10 Non-normal High 0.061 0.042 0.052
5000 3 Normal Low 0.051 0.050 0.050
5000 3 Normal Medium 0.050 0.050 0.050
5000 3 Normal High 0.050 0.047 0.051
5000 3 Non-normal Low 0.057 0.051 0.051
5000 3 Non-normal Medium 0.058 0.048 0.048
5000 3 Non-normal High 0.059 0.046 0.046
5000 6 Normal Low 0.051 0.051 0.056
5000 6 Normal Medium 0.051 0.048 0.057
5000 6 Normal High 0.050 0.045 0.062
5000 6 Non-normal Low 0.059 0.049 0.049
5000 6 Non-normal Medium 0.063 0.048 0.057
5000 6 Non-normal High 0.063 0.043 0.051
5000 10 Normal Low 0.049 0.050 0.057
5000 10 Normal Medium 0.049 0.049 0.060
5000 10 Normal High 0.051 0.043 0.065
5000 10 Non-normal Low 0.062 0.050 0.056
5000 10 Non-normal Medium 0.064 0.048 0.058
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5000 10 Non-normal High 0.063 0.044 0.053
10000 3 Normal Low 0.049 0.050 0.050
10000 3 Normal Medium 0.049 0.048 0.048
10000 3 Normal High 0.050 0.046 0.050
10000 3 Non-normal Low 0.055 0.050 0.050
10000 3 Non-normal Medium 0.056 0.047 0.047
10000 3 Non-normal High 0.058 0.046 0.046
10000 6 Normal Low 0.050 0.049 0.053
10000 6 Normal Medium 0.051 0.048 0.056
10000 6 Normal High 0.051 0.044 0.061
10000 6 Non-normal Low 0.059 0.049 0.049
10000 6 Non-normal Medium 0.064 0.047 0.055
10000 6 Non-normal High 0.062 0.044 0.051
10000 10 Normal Low 0.051 0.050 0.058
10000 10 Normal Medium 0.050 0.048 0.058
10000 10 Normal High 0.050 0.042 0.064
10000 10 Non-normal Low 0.060 0.048 0.053
10000 10 Non-normal Medium 0.065 0.045 0.053
10000 10 Non-normal High 0.062 0.040 0.050

Table 2.2: Empirical type I error rates at significance
level α = 0.005 of proposed POE test under the null hy-
pothesis βM = βP = 0 for 50,000 simulations performed
per scenario.

N NPheno Error Correl POIROT Univar-Bonf Univar-Keff-90
3000 3 Normal Low 0.005 0.005 0.005
3000 3 Normal Medium 0.005 0.005 0.005
3000 3 Normal High 0.005 0.005 0.005
3000 3 Non-normal Low 0.006 0.005 0.005
3000 3 Non-normal Medium 0.007 0.005 0.005
3000 3 Non-normal High 0.007 0.005 0.005
3000 6 Normal Low 0.005 0.005 0.005
3000 6 Normal Medium 0.004 0.004 0.005
3000 6 Normal High 0.004 0.005 0.007
3000 6 Non-normal Low 0.007 0.005 0.005
3000 6 Non-normal Medium 0.007 0.005 0.007
3000 6 Non-normal High 0.007 0.005 0.006
3000 10 Normal Low 0.005 0.005 0.007
3000 10 Normal Medium 0.005 0.005 0.006
3000 10 Normal High 0.005 0.005 0.008
3000 10 Non-normal Low 0.007 0.005 0.006
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3000 10 Non-normal Medium 0.007 0.005 0.007
3000 10 Non-normal High 0.007 0.005 0.006
5000 3 Normal Low 0.005 0.005 0.005
5000 3 Normal Medium 0.005 0.005 0.005
5000 3 Normal High 0.005 0.005 0.005
5000 3 Non-normal Low 0.006 0.005 0.005
5000 3 Non-normal Medium 0.006 0.005 0.005
5000 3 Non-normal High 0.007 0.005 0.005
5000 6 Normal Low 0.005 0.005 0.005
5000 6 Normal Medium 0.006 0.005 0.006
5000 6 Normal High 0.005 0.004 0.007
5000 6 Non-normal Low 0.007 0.005 0.005
5000 6 Non-normal Medium 0.007 0.005 0.006
5000 6 Non-normal High 0.007 0.005 0.006
5000 10 Normal Low 0.005 0.005 0.006
5000 10 Normal Medium 0.005 0.005 0.007
5000 10 Normal High 0.005 0.005 0.008
5000 10 Non-normal Low 0.007 0.005 0.006
5000 10 Non-normal Medium 0.007 0.006 0.007
5000 10 Non-normal High 0.007 0.005 0.006
10000 3 Normal Low 0.004 0.005 0.005
10000 3 Normal Medium 0.005 0.005 0.005
10000 3 Normal High 0.005 0.005 0.005
10000 3 Non-normal Low 0.006 0.005 0.005
10000 3 Non-normal Medium 0.007 0.005 0.005
10000 3 Non-normal High 0.007 0.005 0.005
10000 6 Normal Low 0.005 0.005 0.005
10000 6 Normal Medium 0.005 0.005 0.006
10000 6 Normal High 0.005 0.005 0.007
10000 6 Non-normal Low 0.007 0.005 0.005
10000 6 Non-normal Medium 0.007 0.005 0.006
10000 6 Non-normal High 0.007 0.005 0.006
10000 10 Normal Low 0.005 0.005 0.006
10000 10 Normal Medium 0.005 0.006 0.007
10000 10 Normal High 0.005 0.005 0.008
10000 10 Non-normal Low 0.007 0.005 0.006
10000 10 Non-normal Medium 0.007 0.005 0.007
10000 10 Non-normal High 0.007 0.005 0.006
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Table 2.3: Empirical type I error rates at significance
level α = 5 × 10−4 of proposed POE test under the null
hypothesis βM = βP = 0 for 50,000 simulations per-
formed per scenario.

N NPheno Error Correl POIROT Univar-Bonf Univar-Keff-90
3000 3 Normal Low 0.00044 0.00058 0.00058
3000 3 Normal Medium 0.00044 0.00042 0.00042
3000 3 Normal High 0.00048 0.00046 0.00050
3000 3 Non-normal Low 0.00062 0.00060 0.00060
3000 3 Non-normal Medium 0.00084 0.00050 0.00050
3000 3 Non-normal High 0.00078 0.00056 0.00056
3000 6 Normal Low 0.00038 0.00052 0.00058
3000 6 Normal Medium 0.00040 0.00052 0.00064
3000 6 Normal High 0.00042 0.00056 0.00078
3000 6 Non-normal Low 0.00060 0.00060 0.00060
3000 6 Non-normal Medium 0.00102 0.00064 0.00072
3000 6 Non-normal High 0.00086 0.00054 0.00062
3000 10 Normal Low 0.00036 0.00076 0.00086
3000 10 Normal Medium 0.00044 0.00044 0.00054
3000 10 Normal High 0.00046 0.00050 0.00076
3000 10 Non-normal Low 0.00082 0.00062 0.00068
3000 10 Non-normal Medium 0.00088 0.00066 0.00084
3000 10 Non-normal High 0.00086 0.00054 0.00066
5000 3 Normal Low 0.00052 0.00072 0.00072
5000 3 Normal Medium 0.00052 0.00060 0.00060
5000 3 Normal High 0.00058 0.00042 0.00046
5000 3 Non-normal Low 0.00052 0.00060 0.00060
5000 3 Non-normal Medium 0.00064 0.00058 0.00058
5000 3 Non-normal High 0.00080 0.00050 0.00050
5000 6 Normal Low 0.00056 0.00042 0.00050
5000 6 Normal Medium 0.00054 0.00046 0.00052
5000 6 Normal High 0.00056 0.00050 0.00078
5000 6 Non-normal Low 0.00060 0.00054 0.00054
5000 6 Non-normal Medium 0.00076 0.00044 0.00058
5000 6 Non-normal High 0.00086 0.00064 0.00076
5000 10 Normal Low 0.00046 0.00064 0.00070
5000 10 Normal Medium 0.00026 0.00050 0.00064
5000 10 Normal High 0.00050 0.00066 0.00096
5000 10 Non-normal Low 0.00084 0.00072 0.00076
5000 10 Non-normal Medium 0.00078 0.00064 0.00074
5000 10 Non-normal High 0.00058 0.00064 0.00072
10000 3 Normal Low 0.00048 0.00054 0.00054
10000 3 Normal Medium 0.00050 0.00048 0.00048
10000 3 Normal High 0.00046 0.00054 0.00058
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10000 3 Non-normal Low 0.00048 0.00038 0.00038
10000 3 Non-normal Medium 0.00056 0.00050 0.00050
10000 3 Non-normal High 0.00052 0.00058 0.00058
10000 6 Normal Low 0.00054 0.00054 0.00060
10000 6 Normal Medium 0.00052 0.00062 0.00074
10000 6 Normal High 0.00036 0.00052 0.00070
10000 6 Non-normal Low 0.00064 0.00072 0.00074
10000 6 Non-normal Medium 0.00094 0.00058 0.00066
10000 6 Non-normal High 0.00062 0.00056 0.00070
10000 10 Normal Low 0.00036 0.00060 0.00064
10000 10 Normal Medium 0.00050 0.00054 0.00088
10000 10 Normal High 0.00040 0.00050 0.00090
10000 10 Non-normal Low 0.00086 0.00050 0.00052
10000 10 Non-normal Medium 0.00078 0.00034 0.00050
10000 10 Non-normal High 0.00068 0.00048 0.00066

Table 2.4: Empirical type I error rates at significance
level α = 5 × 10−5 of proposed POE test under the null
hypothesis βM = βP = 0 for 50,000 simulations per-
formed per scenario.

N NPheno Error Correl POIROT Univar-Bonf Univar-Keff-90
3000 3 Normal Low 4.0E-05 2.0E-05 2.0E-05
3000 3 Normal Medium 6.0E-05 2.0E-05 2.0E-05
3000 3 Normal High 8.0E-05 2.0E-05 6.0E-05
3000 3 Non-normal Low 1.4E-04 1.6E-04 1.6E-04
3000 3 Non-normal Medium 4.0E-05 6.0E-05 6.0E-05
3000 3 Non-normal High 4.0E-05 8.0E-05 8.0E-05
3000 6 Normal Low 2.0E-05 4.0E-05 4.0E-05
3000 6 Normal Medium 4.0E-05 8.0E-05 1.0E-04
3000 6 Normal High 4.0E-05 2.0E-05 4.0E-05
3000 6 Non-normal Low 6.0E-05 8.0E-05 8.0E-05
3000 6 Non-normal Medium 1.0E-04 1.0E-04 1.2E-04
3000 6 Non-normal High 2.0E-04 1.2E-04 1.2E-04
3000 10 Normal Low 2.0E-05 8.0E-05 8.0E-05
3000 10 Normal Medium 6.0E-05 8.0E-05 8.0E-05
3000 10 Normal High 8.0E-05 8.0E-05 1.6E-04
3000 10 Non-normal Low 4.0E-05 6.0E-05 6.0E-05
3000 10 Non-normal Medium 8.0E-05 6.0E-05 6.0E-05
3000 10 Non-normal High 6.0E-05 2.0E-05 2.0E-05
5000 3 Normal Low 2.0E-05 1.0E-04 1.0E-04
5000 3 Normal Medium 2.0E-05 4.0E-05 4.0E-05
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5000 3 Normal High 6.0E-05 8.0E-05 8.0E-05
5000 3 Non-normal Low 6.0E-05 1.0E-04 1.0E-04
5000 3 Non-normal Medium 6.0E-05 6.0E-05 6.0E-05
5000 3 Non-normal High 2.0E-05 4.0E-05 4.0E-05
5000 6 Normal Low 8.0E-05 2.0E-05 2.0E-05
5000 6 Normal Medium 6.0E-05 6.0E-05 6.0E-05
5000 6 Normal High 6.0E-05 6.0E-05 1.0E-04
5000 6 Non-normal Low 8.0E-05 4.0E-05 4.0E-05
5000 6 Non-normal Medium 8.0E-05 2.0E-05 4.0E-05
5000 6 Non-normal High 1.4E-04 4.0E-05 8.0E-05
5000 10 Normal Low 0.0E+00 2.0E-05 2.0E-05
5000 10 Normal Medium 2.0E-05 4.0E-05 6.0E-05
5000 10 Normal High 0.0E+00 4.0E-05 8.0E-05
5000 10 Non-normal Low 2.0E-05 2.0E-05 2.0E-05
5000 10 Non-normal Medium 6.0E-05 6.0E-05 8.0E-05
5000 10 Non-normal High 1.2E-04 1.4E-04 1.4E-04
10000 3 Normal Low 4.0E-05 4.0E-05 4.0E-05
10000 3 Normal Medium 2.0E-05 1.2E-04 1.2E-04
10000 3 Normal High 2.0E-05 6.0E-05 6.0E-05
10000 3 Non-normal Low 4.0E-05 2.0E-05 2.0E-05
10000 3 Non-normal Medium 2.0E-05 4.0E-05 4.0E-05
10000 3 Non-normal High 6.0E-05 4.0E-05 4.0E-05
10000 6 Normal Low 2.0E-05 8.0E-05 8.0E-05
10000 6 Normal Medium 4.0E-05 2.0E-05 2.0E-05
10000 6 Normal High 2.0E-05 0.0E+00 0.0E+00
10000 6 Non-normal Low 1.0E-04 8.0E-05 8.0E-05
10000 6 Non-normal Medium 1.6E-04 4.0E-05 8.0E-05
10000 6 Non-normal High 1.0E-04 6.0E-05 6.0E-05
10000 10 Normal Low 0.0E+00 6.0E-05 8.0E-05
10000 10 Normal Medium 4.0E-05 2.0E-05 4.0E-05
10000 10 Normal High 4.0E-05 2.0E-05 8.0E-05
10000 10 Non-normal Low 8.0E-05 2.0E-05 2.0E-05
10000 10 Non-normal Medium 1.0E-04 4.0E-05 4.0E-05
10000 10 Non-normal High 8.0E-05 4.0E-05 4.0E-05

Table 2.5: Median computational time per POIROT test
by sample size and number of phenotypes (K). Each row
is based on 45,000 simulations.

K Sample Size N Median Time (s) IQR Time (s)
3 3000 0.550 0.139
6 3000 1.278 0.458
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10 3000 2.499 0.544
3 5000 1.026 0.216
6 5000 2.169 0.135
10 5000 4.264 0.946
3 10000 2.020 0.373
6 10000 4.319 0.214
10 10000 5.194 2.841

Table 2.6: Median computational time per proposed
POE test for larger-scale datasets. Each row is based
on 50 null simulations assuming normal random error.

Sample Size N K Median Time (s) IQR Time (s)
20000 3 3.173 2.082
20000 6 8.587 0.261
20000 10 13.497 7.966
40000 3 8.181 0.149
40000 6 9.431 0.563
40000 10 31.411 6.611

Table 2.7: Significant variants (41) identified by
POIROT in UKB that were not identified by any uni-
variate POE test or post-hoc GxE test.

rs Chr Pos Ref Alt Function POIROT p
rs4970829 1 109757295 A G intronic 4.9E-10
rs585362 1 109789795 T C intergenic 7.3E-08
rs11577931 1 109820884 G A intergenic 2.5E-21
rs55660224 1 109839400 T C intronic 4.9E-09
rs62104180 2 466003 A G intergenic 1.6E-10
rs74629722 2 21127044 C G intergenic 3.3E-10
rs550619 2 21260601 A G intronic 3.1E-10
Affx-20089987 2 44065090 A G exonic 4.1E-14
Affx-20090007 2 44066247 C G exonic 9.7E-16
rs41360247 2 44073656 C T intronic 3.0E-13
rs61789562 3 135926784 C T intergenic 1.1E-07
rs3128987 6 31434198 C T downstream 1.2E-07
rs9276689 6 32751962 T C intergenic 5.7E-08
rs74617384 6 160997118 T A intronic 2.5E-08
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rs10455872 6 161010118 G A intronic 6.0E-08
rs471364 9 15289578 T C intronic 3.5E-10
rs643531 9 15296034 A C intronic 1.3E-10
rs12686004 9 107653426 A G intronic 1.2E-17
rs28927680 11 116619073 G C UTR3 5.7E-10
rs11825181 11 116626258 A G intronic 3.3E-10
rs11820589 11 116633862 A G exonic 3.0E-10
rs11216185 11 116782974 G T intronic 4.0E-09
Affx-52324980 11 117030633 TC T intronic 5.2E-08
rs45574931 11 117076972 A C exonic 1.4E-08
rs74580294 12 122622795 G A exonic 7.4E-08
rs4759377 12 123796849 T C intronic 3.5E-08
rs11057273 12 123814466 C T intronic 4.8E-08
rs28660993 12 123875394 T C intronic 5.9E-08
rs12445698 16 56928216 T C intronic 5.2E-08
rs8063291 16 56930251 C T intronic 3.3E-08
rs2217332 16 56969148 A G exonic 4.5E-10
rs12934552 16 57021433 G A intergenic 7.9E-14
rs11542916 19 10694720 A G exonic 4.7E-09
rs4425006 19 10813364 C T intronic 1.1E-12
rs73013159 19 11122710 T G intronic 2.4E-15
rs2228603 19 19329924 T C exonic 3.3E-13
rs7259004 19 45432557 C G ncRNA intronic 1.7E-18
rs77617917 20 44563217 A G upstream 6.5E-15
rs2274755 20 44639692 T G intronic 7.5E-08
Affx-16780572 20 44643111 A G exonic 4.4E-08
rs10432735 20 44650318 T A upstream 7.1E-08

2.5.3 Figures
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Figure 2.5: Histogram of example simulated non-normal phenotypes assuming skew-
ness = 2 and excess kurtosis = 2. Data shown here corresponds to a sample size of
5,000 for a single phenotype with no parent-of-origin effects.
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Figure 2.6: QQ plots of p-values for proposed post-hoc test for gene-gene or gene-
environment interaction effects under the null hypothesis of no interactions effects
but under the presence of POEs. Simulations used 10,000 individuals with 3 (left
column), 6 (middle column) or 10 (right column) continuous normal phenotypes with
medium correlation. MAF is assumed to be 0.25. Horizontal panels depict number
of phenotypes with POE (1, 2, or 3), and maternal POE effect size of 0.75.
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Figure 2.7: Power of post-hoc test for interaction effects assuming K = 3, 6, or 10
normal phenotypes (horizontal panels). We assume either 1, 2, or 3 of the phenotypes
harbor gene-environment interaction effects at the locus with varying magnitude of
covariate effect size (vertical panels). Color corresponds to proportion of phenotypic
variation explained by interaction effects for an affected phenotype. We performed
5,000 simulations for each scenario. We calculated power at significance level 5×10−4.
We assume MAF = 0.25 and sample size = 5,000.
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Figure 2.8: Power of post-hoc test for interaction effects assuming K = 3, 6, or 10
normal phenotypes (horizontal panels). We assume either 1, 2, or 3 of the phenotypes
harbor gene-environment interaction effects at the locus with varying magnitude of
covariate effect size (vertical panels). Color corresponds to proportion of phenotypic
variation explained by interaction effects for an affected phenotype. We performed
5,000 simulations for each scenario. We calculated power at significance level 5×10−4.
We assume MAF = 0.25 and sample size = 10,000.
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Figure 2.9: Power comparison of POIROT to a family-based approach using trio
genotype data. Black line represents the power of POIROT at given sample size of
unrelated individuals with no family genotype data (x-axis). Horizontal lines rep-
resent power of one-way MANOVA comparing phenotypic means of heterozygous
offspring with maternally inherited minor allele versus heterozygous offspring with a
paternally inherited minor allele. Green line represents family-based approach power
at trio size 500, blue corresponds to trio size 300, and red represents trio size 250.
Given trio size N , this corresponds to approximately 2(MAF)(1-MAF)N heterozy-
gous offspring. Simulation parameters included MAF = 0.25, βM = 0.5, normal error
distribution, and medium pairwise phenotype correlation. Of the 3, 6, or 10 total
phenotypes tested in each analysis, we assumed 2 harbored parent-of-origin effects.
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Chapter 3

Topic 2. Cis- and trans-eQTL
TWAS of breast and ovarian
cancer identify more than 100 risk
associated genes in the BCAC and
OCAC consortia

3.1 Introduction

Both breast and ovarian cancer carry a significant global burden. The estimated

numbers of new cases of female breast cancer and ovarian cancer each year exceed 2.2

million and 310,000, respectively [57]. Genome-wide association studies (GWAS) have

identified a growing catalog of validated common risk variants for breast and ovarian

cancer [58–65]. Further research has helped define risk variants that are unique to

distinct subtypes of breast cancer (for example, hormone receptor positive tumors)

and ovarian cancer (for example, high grade and low grade serous histotypes) [61, 62,

64, 66, 67]. While pleiotropic and subtype-specific GWAS have helped delineate the

germline genetic architecture of these cancers, most GWAS-derived risk variants for

complex traits lie in non-coding regions of the genome [15, 68]. This suggests that

considerable disease risk may stem from variation in regulatory elements that affect

gene transcription [69].
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Transcriptome-wide association studies (TWAS) are a powerful approach to iden-

tifying genes that are associated with risks for complex diseases with genetic effects

mediated through genetically regulated transcriptional activity. In a training dataset,

TWAS studies first build a statistical regression model of gene expression in a specific

tissue by selecting those genetic variants having non-zero effect sizes on gene expres-

sion; we refer to such genetic variants as expression quantitative trait loci (eQTLs)

of a broad sense for that gene. Using these models, TWAS then imputes the geneti-

cally regulated expression (GReX) levels of the gene in a target GWAS dataset where

transcriptomic data are absent but disease outcome data are available. TWAS then

tests for association between imputed gene expression and phenotype. Equivalent

TWAS tests also can be conducted using only GWAS summary data with estimated

eQTL effect sizes from the expression imputation models. TWAS have successfully

identified novel candidate susceptibility genes for not only overall breast cancer and

ovarian cancer risk, but, more recently, for specific subtypes of breast and ovarian

cancer [70–72].

To date, standard TWAS methods employ training models that only consider the

regulatory effects of variants located in close proximity to the target gene (cis-SNPs)

[73–79]. These variants reside within a small (e.g., 1Mb) window around the target

gene. However, recent work has estimated the average proportion of heritability

of gene expression estimated from mapped SNPs (mostly cis) to be modest, with

reported values ranging between 0.2 and 0.38 [16]. One potential source for the

remaining heritability of gene expression may be the aggregated effects of trans-

eQTLs, which are defined as those variants that influence transcriptional activity

that reside 1Mb or further away from the transcription start/end site of the target

gene [16, 17]. With growing evidence of distal regulatory effects of common variants,

Luningham et al. [21] developed a Bayesian genome-wide TWAS (BGW-TWAS)

method, which trains expression prediction models considering both cis- and trans-
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SNPs. This approach both improves prediction of GReX as well as enhances detection

of genes that influence phenotype through distal transcriptional regulation.

In light of established shared genetic etiology between breast cancer and ovar-

ian cancer [68, 80–84], here we apply BGW-TWAS to conduct TWAS of each dis-

ease (and various subtypes) that consider the regulatory activity of both distal and

proximal germline variants for a target gene. We first constructed gene expression

imputation models using BGW-TWAS in normal breast and ovarian tissue from the

Genotype-Tissue Expression (GTEx) project and subsequently imputed GReX into

large-scale GWAS summary data from the Breast Cancer Association Consortium

(BCAC) and Ovarian Cancer Association Consortium (OCAC) to identify genes as-

sociated with risk of overall breast cancer, five breast cancer subtypes (luminal A-like,

luminal B-like, luminal B/HER2-negative-like, HER2-enriched-like, triple-negative),

non-mucinous ovarian cancer, and five ovarian cancer subtypes (high grade serous,

low grade serous, endometrioid, mucinous, clear cell). Our findings replicate several

established cancer risk loci and suggest several novel candidate trans-eQTL driven

genes not discovered by a standard TWAS approach that models cis-SNPs only. We

then used independent GWAS summary data and matched genotype/gene expression

data in breast tissue from the Cancer Genome Atlas to validate several of our top

identified genes. This work provides new insight into the eQTL genetic architecture

of breast and ovarian tissue and leverages trans-genome regulation of expression in

these tissues for improved TWAS of breast and ovarian cancer.

3.2 Materials and Methods

3.2.1 GTEx V8 Training Dataset

In order to train our imputation models for gene expression levels, we first obtained

whole-genome sequencing (WGS) and RNA sequencing data on breast mammary
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tissue and ovarian tissue from the Genotype-Tissue Expression (GTEx) project V8

(dbGaP accession number phs000424.v8.p2). Data were available for 337 (125 female,

212 male) White individuals in breast tissue and 140 White females in ovarian tissue.

We obtained gene expression levels as transcripts per million (TPM) per sample per

tissue. We focused exclusively on autosomal genes for our analyses. We adjusted

raw transcript data for the effects of age, body mass index, top five principal compo-

nents to account for ancestry, and top probabilistic estimation of expression residuals

(PEER) factors. In the gene expression data from mammary tissue, we also adjusted

for Estrogen Receptor 1 (ESR1) expression in accordance with previous studies [68,

78]. This gene encodes estrogen receptor α, a transcription factor that plays a critical

role in regulating gene expression and cell division in mammary glands [85].

3.2.2 Breast Cancer GWAS Summary Data

We obtained recently published summary-level GWAS data from BCAC (see Web

Resources). The summary statistics for variant-level associations with breast cancer

risk and risk of specific breast cancer subtypes were the result of a large multi-study

GWAS of women of European ancestry [61]. The overall breast cancer analysis used

genotype data from cases (invasive, in situ, unknown invasiveness) and controls across

82 BCAC studies that were genotyped using either the iCOGS or OncoArray Illu-

mina genome-wide custom arrays. For this overall analysis, data from 11 other breast

cancer GWAS were incorporated. This yielded a total sample size of 133,384 cases

and 113,789 controls. The authors estimated SNP-disease associations using standard

logistic regression, adjusting for country of origin and top principal components. Re-

sults were obtained for iCOGS subjects, OncoArray subjects, and additional GWAS

separately and then combined via fixed-effects meta-analysis.

In addition to the summary statistics for the outcome of overall breast cancer

risk, this study also published summary statistics for the association of variants with
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risk of specific intrinsic-like subtypes of breast cancer: luminal A-like cancer, lu-

minal B-like cancer, luminal B/HER2-negative-like cancer, HER2-enriched-like, and

triple-negative cancer. These subtype analyses were performed by fitting two-stage

polytomous logistic regression models. Full details on these models are described

elsewhere [86, 87]. Only invasive cases were considered for this analysis, and samples

from the 11 additional GWAS were not included due to missing tumor marker infor-

mation. The final sample for the GWAS subtype analyses included 106,278 cases and

91,477 controls.

Lastly, a meta-analysis was performed combining results from the analysis of

triple-negative breast cancer cases from BCAC and the separate analysis of cases

and controls with a pathogenic BRCA1 variant from the Consortium of Investigators

of Modifiers of BRCA1/2 (CIMBA). The CIMBA participants were also of European

ancestry. Authors performed a fixed-effects meta-analysis, combining odds ratio esti-

mates from the BCAC study and hazard ratio estimates from the CIMBA study. As

the majority of breast cancer cases in BRCA1 mutation carriers are triple-negative

[88], our “triple-negative” TWAS results utilized summary statistics from this meta-

analysis for greatest power. Quality control and imputation protocols for all sets of

genotype data used in the study are described separately [58, 66, 89, 90]. Additional

details on the study samples and statistical methods used in the breast cancer GWAS

are provided by Zhang et al [61].

Once we obtained the summary data from this GWAS, we performed liftover to

map these GWAS variants to Human Genome Assembly GRCh38. We then harmo-

nized and imputed missing variants’ summary statistics using the MetaXcan suite of

tools (see Web Resources) and a European reference panel from the 1000 Genomes

Project [91].
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3.2.3 Ovarian Cancer GWAS Summary Data

We obtained summary-level GWAS data from a large-scale fine-mapping project of

epithelial ovarian cancer [92]. This study used genotype data from six OCAC projects

and two BCAC projects. The final sample contained a total of 26,151 ovarian cancer

cases, 40,138 controls from OCAC, and 65,586 controls from BCAC. This project

provided summary statistics for variant-level associations with risk of each of the five

main subtypes of ovarian cancer: high grade serous ovarian cancer (HGSOC, 13,609

cases), low grade serous ovarian cancer (LGSOC, 2,749 cases), mucinous ovarian can-

cer (MOC, 2,587 cases), endometrioid ovarian cancer (ENOC, 2,877 cases), and clear

cell ovarian cancer (CCOC, 1,247 cases). Additionally, the authors also performed

a GWAS for the aggregate non-mucinous subtype, which excludes MOC cases. All

participants were of European ancestry. Details on the genotyping and imputation

procedures for this data are available elsewhere [92].

Authors used logistic regression models to generate association statistics for SNP

genotypes and the five subtype outcomes, as well as the non-mucinous epithelial ovar-

ian cancer analysis. For each analysis, authors fit separate models for OncoArray data,

COGS data, and five additional GWAS datasets. Results from each group were then

combined via fixed effects meta-analysis. Analyses adjusted for the effects of study

of origin and possible population stratification by way of top principal components.

We performed liftover, harmonization, and summary statistic imputation as out-

lined for the breast cancer GWAS summary data.

3.2.4 Model Training and Association Test

After we obtained the training dataset from GTEx V8 individuals with both WGS

and RNA-seq transcriptomic data, we proceeded to train genome-wide expression

prediction models separately in breast mammary tissue (N = 337) and ovarian tissue

(N = 140) using BGW-TWAS. To briefly summarize, the method first calculates
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genome-wide single variant eQTL summary statistics from the simple linear regression

of adjusted expression against genotype at a given SNP. Cis-SNPs were defined as

those within 1Mb of the flanking 5’ and 3’ ends of the target gene. Trans-SNPs

were those falling outside of the 1Mb window. Genotype files were then segmented

into approximately independent genome blocks using LDetect [93]. We excluded rare

variants with minor allele frequency (MAF) < 0.5% from consideration.

Next, we pruned genome-wide blocks to select a subset of blocks containing cis-

SNPs and a subset of trans blocks with a minimum single-variant eQTL p-value less

than 0.00001 to fit the following Bayesian variable selection regression (BVSR) model:

Eg = Xciswcis +X transwtrans + ϵ (3.1)

Here, Eg is the vector of expression levels in the training (GTEx) dataset, Xcis

and X trans are the cis and trans genotype matrices from the pruned genome blocks,

and the w terms correspond to the eQTL effect sizes of the considered SNPs. The

BGW-TWAS model then assumes a spike-and-slab prior distribution for the eQTL

effect sizes, allowing these distributions to be different for cis and trans SNPs. Using

an adapted expectation-maximization Markov Chain Monte Carlo (EM-MCMC) al-

gorithm, BGW-TWAS estimates (w,PP ), where, for selected SNPs, w is the vector

of eQTL effects and PP is the vector of posterior causal probabilities (PP) of the

selected SNPs beings true eQTLs (with non-zero effect size). Only selected SNPs

with estimated PP greater than 0.0001 were retained in the imputation models for

each respective gene. We did not make any restrictions on the number of models in

which a certain trans- or cis-variant can be included. If a variant is used to predict

expression of more than one gene and has high probability of being a true eQTL

for these genes, this does not impact the accuracy of the corresponding GReX mod-

els or interpretation. Full details on the statistical methodology and computational

algorithms of BGW-TWAS are provided by Luningham et al [21].
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Once we have trained the GReX imputation models, we then performed TWAS

using the breast cancer and ovarian cancer GWAS summary statistics by calculating

the following burden BGW-TWAS Z-score statistic for each gene g:

Zg =
∑

l∈Modelg

w∗
l σ̂lZl√
ŵ′V ŵ

(3.2)

Here, w∗
l = P̂Plŵl, the expected eQTL effect size estimated from the BVSR model

above. σ̂l is a reference-derived estimate of standard deviation (SD) of genotype data

for variant l, Zl is the variant’s corresponding Z-score statistic from the GWAS, and

V is the reference-derived covariance of the genotype data of selected SNPs for this

gene. We used GTEx V8 samples with available genotype information as reference for

σ̂l and V . We calculated this burden BGW-TWAS Z-score test statistic for each of

the six breast cancer GWAS phenotypes and the six ovarian cancer GWAS phenotypes

to test for significant candidate risk genes.

Transcriptome-wide significant genes were those passing Bonferroni correction at

0.05/M . Here, M is the total number of gene-level association tests performed across

all six analyses for breast cancer and ovarian cancer, respectively. We note that

this is a strict multiple test correction, as we expect the gene-level test statistics

to be correlated across certain breast cancer phenotypes and ovarian cancer pheno-

types (such that the number of effectively independent tests is smaller than M). We

further compared the performance of BGW-TWAS in identifying breast and ovar-

ian cancer susceptibility genes to sPrediXcan with pre-computed GTEx models that

only consider cis-eQTLs [76]. We used the published GTEx V8 multivariate adap-

tive shrinkage in R (MASHR-M) models available at https://predictdb.org/. These

models leverage information across multiple tissues and incorporate posterior causal

probability of variants from fine-mapping. These models have been described in detail

previously [94]. We applied sPrediXcan to all 12 cancer phenotypes described above.
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3.2.5 Validation Analyses

Independent Genome-wide Association Dataset

To evaluate the robustness of our findings, we determined which genes identified by

BGW-TWAS in the primary analyses using BCAC and OCAC GWAS data replicated

in a similar analysis using summary statistic data from an independent GWAS of mul-

tiple cancers [95]. This GWAS aimed to identify common germline genetic variants

associated with 18 types of cancer and interrogate possible pleiotropy among these

identified variants. The study sample comprised of individuals of European ancestry

from the UK Biobank (UKB) and the Kaiser Permanente Genetic Epidemiology Re-

search on Adult Health and Aging (GERA) cohort. A total of 17,881 breast cancer

cases (13,903 UKB, 3,978 GERA) and 1,259 ovarian cancer cases (1,006 UKB, 253

GERA) were considered, as well as a total of 219,656 controls (189,855 UKB, 29,801

GERA). Following quality control, imputation was performed using 1000 Genomes

reference data. Authors fitted cohort-specific logistic regression models. These mod-

els adjusted for the effects of age, top 10 PCs, and genotyping array and genotype

reagent kit (where applicable). Results were then combined via meta-analysis for vari-

ants present in both cohorts. We obtained the publicly available summary statistics

for the fixed-effect meta-analysis of breast and ovarian cancer (see Web Resources).

Again, we performed variant harmonization and liftover to GRCh38 using the MetaX-

can suite of tools. We repeated BGW-TWAS with this data for significant genes iden-

tified in the primary BCAC/OCAC analyses. We note that this validation GWAS

data reflects odds ratio estimates for overall breast cancer and ovarian cancer, as the

GWAS study did not include subtype-specific regression models.
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GReX Prediction in Independent Breast Tissue Samples

As a second validation analysis, we investigated how the GReX imputation models

trained by BGW-TWAS in GTEx data (normal breast tissue) would predict gene

expression in an independent set of breast cancer cases. Specifically, we looked at

prediction performance in tumor-adjacent normal breast tissue (NAT) and tumor

tissue samples. We obtained individual-level germline genotype data and matched

gene expression data in breast cancer cases from The Cancer Genome Atlas (TCGA).

Genotypes were called from Affymetrix SNP Array 6.0. We restricted consideration

to individuals of consensus European ancestry as defined by Carrot-Zhang et al. [96].

In this paper, authors performed four methods of ancestry determination in TCGA

individuals. Consensus ancestry refers to the majority ancestry assignment across

the employed methods. We also retrieved ancestral PCs for TCGA samples from

this study. To maximize sample size in TCGA, we downloaded both blood-derived

genotype data and solid normal tissue-derived (adjacent to tumor) genotype data.

For individuals who had both, we preferentially used blood-derived genotypes as

germline. We set as missing genotypes with birdseed confidence scores exceeding 0.1.

We retained SNPs with call rate greater than 95% and samples with call rate greater

than 95%. We aligned alleles to agree with Affymetrix SNP Array 6.0 annotation.

We then excluded ambiguous SNPs and duplicates with identical chromosome and

position and removed samples with high heterozygosity. We defined this when the

absolute value of the inbreeding coefficient exceeded 0.2. We also pruned sample pairs

with high estimated relatedness. We defined this by an estimated KING kinship

coefficient exceeding 0.0884 (2nd degree relatedness or higher) [97]. We excluded

SNPs with MAF < 0.005 and HWE p < 1× 10−6. We aligned alleles with data from

the 1000 Genomes. We performed imputation using the Michigan Imputation Server

with 1000 Genomes Phase 3 V5 data and applied a Rsq threshold of 0.3. We then

lifted variants over to GRCh38.
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We downloaded RNA sequencing data (Illumina TruSeq) in NAT breast tissue and

tumor tissue from TCGA. We ultimately had 786 individuals (779 females, 7 males)

with germline genotype data, complete covariate information, and gene expression

data in breast tumor samples. We had 101 individuals (100 female, 1 male) with

complete genotype data, covariate data, and expression data in NAT breast tissue

samples. We selected genes as having TPM ≥ 0.1 in 20% more of samples and those

having 6 or more reads in 20% or more of samples. To calculate PEER factors, we

then normalized read counts using the trimmed means of M values (TMM) method

[98] and applied inverse normal transformation. These factors were calculated using

peer package in R [99]. For both models (NAT and tumor), we determined the

number of PEER factors to adjust for by examining the plot of the posterior variance

of factor weights for a clear elbow. Expression levels in tumor were adjusted for the

effects of age, first 10 PCs to account for ancestry, first 5 PEER factors, and ESR1

expression via linear regression. For NAT samples, we adjusted for age, first 3 PCs,

first 3 PEER factors, and ESR1 expression.

Once all data were processed, we used our GTEx-derived cis- and trans-eQTL

gene expression imputation models constructed for the main analysis to predict gene

expression using TCGA germline variants. For genes that we had successfully trained

a model for in Section 3.2.4 and were present in the TCGA expression datasets, we

estimated the correlation between predicted GReX and observed, adjusted expression

levels in both NAT and tumor samples. For this, we used Spearman’s rank correlation

coefficient.

BGW Modeling of Gene Expression in Breast Tumor Tissue

We were also interested in comparing the discovery yield of BGW-TWAS using GReX

imputation models trained in normal breast tissue (GTEx) to imputation models

trained in tumor tissue. Specifically, we trained genome-wide models of gene ex-



55

pression using BGW-TWAS and the adjusted tumor expression data and matched

germline genotype data from TCGA described in the above section. We restricted

model training to only those genes that were identified as significantly associated

with one or more breast cancer phenotypes in the original BGW-TWAS analyses us-

ing BCAC summary statistics (Section 3.2.4). For this analysis, we further restricted

our attention to females only (N = 779). We used the same BGW training protocol

as described in Section 3.2.4. Once the models were trained, we similarly calculated

the burden BGW-TWAS Z-score statistics for each of the six breast cancer BCAC

GWAS phenotypes.

Colocalization of Top Trans-SNPs and GWAS Variants

For those genes that were identified as significantly associated with one or more cancer

phenotypes in the main BGW-TWAS analysis (Section 3.2.4), we performed down-

stream colocalization tests using BCAC and OCAC GWAS loci. Guided by protocols

in a recent study of trans-eQTLs [100], we first defined our set of highest confidence

trans-eQTLs as those with BGW-TWAS PP > 0.001 and LRT p < 0.05. We then

defined 200kb upstream and downstream of these variants as our “trans” regions.

We performed two rounds of Bayesian colocalization analyses of each region/gene

pair with minimum GWAS p < 5 × 10−5 using the R package coloc [101]. In the

first round, we used LRT p-values of SNPs in the corresponding GReX imputation

model detected in each trans region. In the second round, we used simple linear

regression eQTL summary statistics of all SNPs in the trans region, regardless of

whether they were selected in the GReX model of a given gene. We defined signifi-

cant colocalizations as those with posterior probability of one common causal variant

(PPH4) > 0.75.
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3.3 Results

3.3.1 Fitted GReX Models and eQTL Architecture

In normal GTEx breast tissue samples, we successfully trained 24,833 autosomal

gene expression models using Bayesian variable selection regression (BVSR) within

BGW-TWAS. For each variant included in the BGW-TWAS models, we estimated the

posterior probability (PP ) of the variant being a true eQTL for the target gene. The

sum of these PP estimates across all SNPs included as predictors in the fitted model

corresponds to the estimated number of eQTLs per gene. These quantities can help

improve our understanding of the location and distribution of eQTL effects genome-

wide. For quality control, we excluded 102 outlier gene models with estimated PP

summation exceeding 35 and/or maximum (|w|) (eQTL effect size) greater than 1000,

indicating poor model fit. Across the remaining genes passing these quality control

filters, the median number of SNPs with estimated PP > 0.0001 per model was 868

(interquartile range [IQR] = 1074). For all breast tissue models, the average training

R2 (squared correlation between imputed GReX and observed gene expression in the

training GTEx dataset) was 0.30 (SD = 0.11). The median proportion of variants

included as predictors per model that was located in trans to the target gene was 0.98

(IQR = 0.04). The median number of estimated eQTLs per gene was 1.14 (IQR =

2.04), while the median estimated eQTLs from trans regions across all breast models

was 0.74 (IQR = 1.70). The distribution of estimated total eQTLs in breast tissue

expression models is shown in Figure 3.4 (Appendix). The median (IQR) of estimated

eQTLs located in trans regions on the same chromosome as the target gene was 0.02

(0.05). The median (IQR) of estimated eQTLs located in trans regions on a different

chromosome from the target gene was 0.69 (1.60). This distribution indicates most

SNPs used to model gene expression in the trans genome were located on a different

chromosome than the target gene. The median genome-wide, cis-region, and trans-
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region estimates of total eQTLs according to model training R2 are provided in Table

3.5 (Appendix).

In normal ovarian tissue samples from GTEx, we trained 22,584 autosomal GReX

models using the BVSR framework of BGW-TWAS. All models had cumulative PP

below 35, but 68 models with large maximum (|w|) were excluded. Across our fitted

BGW-TWAS models, the number of genome-wide variants included as predictor vari-

ables was generally smaller than for the breast tissue models, with a median of 608

(IQR = 983). The median proportion of variants included as predictors per model

that were located in trans to the target gene was 0.98 (IQR = 0.03). The median

number of estimated eQTLs per gene was lower for genes in ovarian tissue at 0.40

(IQR = 1.27), while the median estimated eQTLs from trans regions across models

was 0.30 (IQR = 1.14). The distribution of estimated total eQTLs in ovarian tissue

expression models is also provided in Figure 3.5 (Appendix). The median (IQR) of

estimated eQTLs located in trans regions on the same chromosome as the target gene

was 0.01 (0.04). The corresponding median (IQR) of estimated eQTLs residing on a

different chromosome as the target gene was 0.28 (1.06). The median genome-wide,

cis-region, and trans-region estimates of total eQTLs according to model training R2

are similarly provided in Table 3.5 (Appendix). The average training R2 for fitted

ovarian tissue models was 0.49 (SD = 0.13). We note that a larger proportion of

genes had training R2 exceeding 0.5 in ovarian tissue compared to breast tissue. This

inflation is likely a result of limited ovarian tissue samples with RNA sequencing data

for model training, as observed in previous simulations for this method [21].

3.3.2 Breast Cancer TWAS

We performed a total of 148,929 tests for BGW-TWAS across the six breast cancer

phenotypes. This corresponds to a Bonferroni-adjusted p-value threshold of 3.36 ×

10−7 for transcriptome-wide significance. We note again this correction is stringent as
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all tests are not expected to be independent across phenotypes. We further obtained

sPrediXcan results based on cis-eQTLs only using the GTEx V8-derived MASHR

models for 14,145 genes for each of the breast cancer phenotypes. We performed

a total of 84,870 tests with sPrediXcan, corresponding to a Bonferroni threshold of

5.90× 10−7. Manhattan plots and quantile-quantile (QQ) plots of the BGW-TWAS

results for the analysis of overall breast cancer risk and risk of the five subtypes of

breast cancer are included in Figures 3.6-3.12 (Appendix). We see that the BGW-

TWAS p-values do appear to suffer from inflation for the overall and luminal A

phenotypes. As an illustrative example, for overall breast cancer, we have a genomic

inflation factor of λ = 1.34, likely the result of the large GWAS sample sizes and

phenotype polygenicity. Thus, as an alternative measure, we calculated the genomic

inflation factor scaled to a study of 1000 cases and 1000 controls (λ1000 = 1.003)

[102–104]. This measure was acceptable and reflective of all our BGW-TWAS results

for breast cancer phenotypes.

Across the six TWAS performed for breast cancer phenotypes, BGW-TWAS iden-

tified 101 unique genes significantly associated with at least one of the six phenotypes

considered. Location and phenotypes associated with these genes are shown in Fig-

ure 3.1. This figure also illustrates how the location of these genes relate to the

location of significant GWAS variants from the original BCAC analysis of overall

breast cancer risk. Using the coloc PPH4 cut-off of 0.75, we identified a sizable

subset of genes/trans-eQTL regions with high probability of a single shared causal

variant (eQTL and GWAS variant). For the 101 identified breast cancer genes, we

found 21 harboring at least one significant colocalization with a trans region. It is

important to further note that, although the GReX imputation models of these genes

were trained in samples composed of both males and females, imputation accuracy

(training R2) of these genes were highly concordant when stratified by sex. Using our

BGW-TWAS models of these 101 genes and observed gene expression levels in GTEx,
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we calculated sex-stratified training R2 values (R2
female, R

2
male) and compared them to

the training R2 we obtained originally using the combined samples (R2
all). Training

R2
female is concordant with training R2

all (correlation r = 0.92, p < 2.2 × 10−16), and

training R2
male is concordant with training R2

all (correlation r = 0.97, p < 2.2× 10−16).

Further, the two sex-stratified training R2 results are significantly correlated (corre-

lation r = 0.80, p < 2.2× 10−16). All results are shown in Figure 3.13 (Appendix).

We then performed a validation TWAS of these 101 genes using independent

GWAS summary statistics of breast cancer from Rashkin et al [95]. For overall breast

cancer risk, we identified 87 significant genes initially from BCAC and, of these, 31

further validated in the BGW-TWAS of Rashkin et al. data (p < 0.05/101). These

31 genes are provided in Table 3.1 along with sPrediXcan p-values. Of the 31 genes,

23 either could not be fit using MASHR-M models with sPrediXcan or failed to reach

statistical significance in the cis-eQTL only approach. These 23 genes likely either

failed to show a strong cis-eQTL in GTEx and thus did not have a publicly available

MASHR-M model, or the associations were driven by trans-eQTL effects and thus

were non-significant when modeled using a cis-eQTL-only approach.

For this overall analysis, the most significant gene identified by BGW-TWAS

was ACAP3 on chromosome 1 (BCAC p = 2.3 × 10−34). We do note that this

gene was found to be similarly associated with risk of luminal-A-like breast cancer

(BCAC p = 3.4 × 10−34). The BVSR genome-wide model contained 18 cis-SNPs

and 1,052 trans-SNPs. As the upper plot of Figure 3.2 illustrates, the SNPs with

highest posterior probability of being eQTLs and largest expected eQTL weights lie

on chromosomes 10 and 5, and several of these SNPs on chromosome 10 additionally

have highly significant GWAS p-values (Figure 3.2, bottom plot). Given that the

association of this gene is predominantly driven by trans-eQTL effects, it was not

identified by sPrediXcan in either the overall analysis or the luminal-A-like analysis.
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Figure 3.1: Ideogram of BCAC-derived BGW- TWAS results for overall breast cancer
and breast cancer subtypes. 101 genes shown meet transcriptome-wide Bonferroni-
adjusted p-value threshold for one or more phenotypes. Gray lines indicate position
of genetic variants with BCAC GWAS p < 5×10−8 for association with overall breast
cancer risk.
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Table 3.1: BGW-TWAS identified genes associated with risk of overall breast cancer
in BCAC analysis that validated in Rashkin et al. GWAS analysis (31).

BGW sPred

BCAC Rashkina BCAC TCGA ρb,c

Gene Chr Z p Z p Z p TransPP Tumor NAT
ACAP3 1 12.23 2.3E-34 5.8 6.7E-09 -0.124 9.0E-01 0.996 0.031 -0.048
BLACAT1 1 9.14 6.5E-20 3.65 2.7E-04 0.523 6.0E-01 0.999 -0.081 0.135
ITGA10 1 6.91 4.7E-12 3.58 3.4E-04 0.995 0.064 -0.13
TMEM50A 1 -5.91 3.5E-09 -4.66 3.2E-06 -0.603 5.5E-01 0.992 0.031 -0.011
AC093110.3 2 -7.98 1.4E-15 -3.95 7.8E-05 0.882
ALS2CR12 2 6.15 7.7E-10 5.06 4.1E-07 6.074 1.3E-09 0.705
CYBRD1 2 -5.77 7.8E-09 -4.27 1.9E-05 -5.165 2.4E-07 0.3 0.058 0.538
KLF7-IT1 2 5.54 3.0E-08 4.39 1.1E-05 0.92 0.002 0.105
SLC4A7 3 10.44 1.7E-25 4.94 7.8E-07 1.914 5.6E-02 0.838 0.116 0.112
GLRA3 4 -8.09 6.0E-16 -3.96 7.4E-05 0.362 0.043 -0.051
RPS23 5 6.81 9.8E-12 5.15 2.7E-07 6.255 4.0E-10 0.042 0.395 0.553
ATP6AP1L 5 -6.8 1.1E-11 -5.14 2.8E-07 -5.586 2.3E-08 0.288 0.296 0.533
MRPS30 5 6.17 6.9E-10 3.74 1.8E-04 9.24 2.5E-20 0.804 0.1 0.066
ATG10 5 -6.14 8.0E-10 -4.48 7.6E-06 -4.835 1.3E-06 0.383 0.474 0.608
NUDT1 7 6.18 6.3E-10 6.06 1.4E-09 0.072 9.4E-01 0.918 -0.065 -0.028
NPM2 8 -9.48 2.5E-21 -5.32 1.0E-07 -0.276 7.8E-01 0.999 0.036 -0.176
EFR3A 8 -7.51 6.2E-14 -4.63 3.6E-06 -0.555 5.8E-01 0.988 -0.014 0.085
RP11-723D22.3 8 5.33 9.9E-08 3.53 4.2E-04 0.995
IL2RA 10 -6.73 1.7E-11 -3.71 2.1E-04 -1.084 2.8E-01 0.93 -0.009 -0.169
RP11-165A20.3 10 6.66 2.8E-11 4.7 2.7E-06 0.999
PIDD1 11 7.33 2.3E-13 3.79 1.5E-04 7.249 4.2E-13 0.25 0.083 0.189
CCDC91 12 -6.78 1.2E-11 -3.64 2.7E-04 -4.391 1.1E-05 0.641 0.035 0.178
RCCD1 15 -8.58 9.5E-18 -4.85 1.2E-06 -8.208 2.3E-16 0.023 0.111 0.345
RP11-467L19.16 15 -5.87 4.4E-09 -4.06 4.8E-05 1
LINC02210 17 -5.99 2.1E-09 -6 2.0E-09 0.501 0.322 0.686
RP11-259G18.1 17 -5.93 3.0E-09 -5.9 3.6E-09 0.002
KANSL1-AS1 17 -5.5 3.8E-08 -5.99 2.1E-09 0.508 0.583 0.699
CTD-3157E16.1 17 -5.42 6.1E-08 -4.02 5.7E-05 0.799
PLEKHM1 17 -5.2 2.0E-07 -5.79 7.1E-09 0.089 0.231 0.367
LINC00683 18 8.78 1.6E-18 3.92 9.0E-05 -1.967 4.9E-02 0.994 0.017 -0.151
APOBEC3B 22 -5.93 3.1E-09 -4.45 8.7E-06 -6.871 6.4E-12 0.718 0.101 0.137
aBGW-TWAS results using summary statistics from independent GWAS of overall breast cancer.
bCorrelation between observed expression and predicted GReX by BGW-TWAS model.
cBold values indicate significant, positive correlation (p < 0.05).
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The SNP with the highest estimated probability of being an eQTL for ACAP3 was

rs1268974 on chromosome 10, and we further observe that many of the SNPs most

likely to be eQTLs on chromosome 10 are intron variants for ZMIZ1. We see sig-

nificant colocalization of eQTL signal in GTEx with breast cancer GWAS risk loci

in this region (Chr10:78892621-79292621, Figure 3.14-3.15, PPH4 = 0.99 for overall

phenotype). Notably, rs1268974 (eQTL PP = 0.1153) has been associated with breast

cancer in European ancestry [58]. Another top predictor at this locus is rs704010 (PP

= 0.0394), which has been associated with overall breast cancer in European ances-

try [58] and Han Chinese [105] populations, as well as overall and ER-/PR- breast

cancer in an African American cohort [106]. However, we do not see replication of

this trans-signal in tumor or NAT tissue (Appendix Figures 3.16-3.17).

For our overall breast cancer analysis, several of the other top BGW-TWAS genes

for this phenotype are supported by the literature. The majority of genes (64/87)

lie within 1Mb of one or more curated breast-cancer associated variants, 25 of which

were identified by sPrediXcan [107]. However, we consider 10 of the BGW-TWAS

genes to represent potentially novel candidate risk loci, as they do not lie near these

breast cancer variants or even a set of candidate susceptibility loci for ovarian can-

cer [64]. The expression models fitted for these genes (ACAP3, CTD-3157E16.1,

EFR3A, KLF7-IT1, LINC00683, NPM2, NUDT1, RP11-467L19.16, RP11-723D22.3,

TMEM50A) all show predominantly trans-SNP effects on regulation. The proportion

of estimated eQTLs from trans regions exceeds 0.79 for each gene, and none were

identified by sPrediXcan.

Beyond ACAP3, we identified 60 additional genes in the subtype-specific analysis

of luminal A-like cancer using BGW-TWAS with BCAC data. Of these, 53 were also

among those identified above for overall breast cancer risk. It is important to note

that the independent GWAS summary data that we used for validation analyses of our

BCAC-derived findings did not distinguish cases by cancer subtype. As such, we are
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Figure 3.2: Estimated posterior probability (PP) of non-zero eQTL effects sizes from
BGW-TWAS -selected SNPs for ACAP3 on chromosome 1 in breast tissue (top),
and negative logarithm of the overall breast cancer GWAS p-values for these selected
SNPs (bottom). Blue dotted line indicates genome-wide significance threshold for
GWAS (5× 10−8).
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less powered to validate certain subtype-specific associations, particularly for those

of rarer cancer types. However, given the high prevalence of luminal A-like cancers

globally, we assume the GWAS phenotype of the validation data (overall cancer) to

be a reasonably proxy for the luminal-A-like phenotype. In Table 3.2, we present

the 18 luminal-A-like genes that further validated when we applied our BGW-TWAS

models to the Rashkin et al. data (p < 0.05/101). Of these 18 genes, ACAP3,

EFR3A, NPM2, NUDT1, and RP11-723D22.3 are also not in regions of candidate

breast cancer susceptibility loci [107].

Table 3.2: BGW-TWAS identified genes associated with risk of luminal-A-like breast
cancer in BCAC analysis that validated in Rashkin et al. GWAS analysis (18).

BGW sPred

BCAC Rashkina BCAC TCGA ρb,c

Gene Chr Z p Z p Z p TransPP Tumor NAT
BLACAT1 1 5.42 6.1E-08 3.65 2.7E-04 0.87 3.8E-01 0.882 -0.081 0.135
ITGA10 1 7.14 9.4E-13 3.58 3.4E-04 0.996 0.064 -0.13
ACAP3 1 12.19 3.4E-34 5.8 6.7E-09 -0.2 8.4E-01 0.718 0.031 -0.048
AC093110.3 2 -6.2 5.8E-10 -3.95 7.8E-05 0.383
CYBRD1 2 -5.59 2.3E-08 -4.27 1.9E-05 -5.95 2.7E-09 0.288 0.058 0.538
SLC4A7 3 9.88 5.1E-23 4.94 7.8E-07 2.11 3.5E-02 0.999 0.116 0.112
GLRA3 4 -8.96 3.2E-19 -3.96 7.4E-05 0.641 0.043 -0.051
ATP6AP1L 5 -6.08 1.2E-09 -5.14 2.8E-07 -5.1 3.4E-07 0.3 0.296 0.533
ATG10 5 -5.53 3.3E-08 -4.48 7.6E-06 -4.8 1.6E-06 0.988 0.474 0.608
RPS23 5 6.17 6.9E-10 5.15 2.7E-07 5.81 6.2E-09 0.362 0.395 0.553
MRPS30 5 6.63 3.3E-11 3.74 1.8E-04 10.7 1.1E-26 0.995 0.1 0.066
NUDT1 7 6.07 1.3E-09 6.06 1.4E-09 -1.7 8.9E-02 0.804 -0.065 -0.028
NPM2 8 -8.72 2.9E-18 -5.32 1.0E-07 -0.23 8.2E-01 0.999 0.036 -0.176
EFR3A 8 -6.84 8.0E-12 -4.63 3.6E-06 -0.07 9.4E-01 0.918 -0.014 0.085
RP11-723D22.3 8 5.19 2.1E-07 3.53 4.2E-04 0.25
PIDD1 11 5.33 9.7E-08 3.79 1.5E-04 5.16 2.5E-07 0.995 0.083 0.189
CCDC91 12 -5.4 6.8E-08 -3.64 2.7E-04 -3.57 3.6E-04 0.042 0.035 0.178
APOBEC3B 22 -5.41 6.2E-08 -4.45 8.7E-06 -6.1 1.1E-09 0.838 0.101 0.137
aBGW-TWAS results using summary statistics from independent GWAS of overall breast cancer.
bCorrelation between observed expression and predicted GReX by BGW-TWAS model.
cBold values indicate significant, positive correlation (p < 0.05).

Results from the TWAS of all other breast cancer subtypes (luminal B-like, lu-

minal B/HER2-negative-like, HER2-enriched-like, and triple-negative) are shown in

Table 3.3. We do not restrict this table to those genes that additionally had a sig-

nificant association using the validation data since, here, we do not expect an in-

dependent GWAS of overall breast cancer to be an ideal validation study for these

subtype-specific findings. However, the corresponding p-values from application of
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BGW-TWAS to the validation summary data are provided in Table 3.3. The subtype-

specific risk genes we identified also reflect prior candidate loci. For example, previous

work has suggested that BLACAT1 has a role in breast cancer metastasis [108]. Ex-

pression of RCCD1 on chromosome 15 has also been shown to be associated with

breast cancer risk in a large trans-ethnic TWAS [109]. However, BOD1L1 (luminal

B-like), NPM2 (luminal B/HER2-negative-like), RP11-474P2.6 (HER2-enriched-like)

and RPS18 (triple-negative) do not fall within 1Mb of curated candidate breast can-

cer risk loci [107]. For a global comparison of findings across all our analyses in

breast cancer, we provide a correlation plot of BGW-TWAS Z-scores across all genes

between subtypes in Figure 3.18 (Appendix).

Table 3.3: BGW-TWAS identified genes associated with specific risk of other breast
cancer subtypes in BCAC analysis with corresponding PrediXcan and validation re-
sults.

BGW p sPred p TCGA ρb,c

Subtype Gene Chr TransPP BCAC Rashkina BCAC Tumor NAT
Luminal B BOD1L1 4 0.217 2.7E-09 3.5E-01 2.1E-09 0.05 0.158

RCCD1 15 0.023 8.3E-08 1.2E-06 2.5E-07 0.111 0.345
Luminal B/HER2-neg NPM2 8 0.999 3.8E-10 1.0E-07 5.9E-01 0.036 -0.176

RCCD1 15 0.023 1.6E-12 1.2E-06 1.9E-12 0.111 0.345
HER2-enriched BLACAT1 1 0.999 2.6E-08 2.7E-04 3.6E-01 -0.081 0.135

RP11-474P2.6 12 0.998 1.1E-07 7.5E-01 6.4E-01
Triple-negative BLACAT1 1 0.999 4.5E-10 2.7E-04 6.1E-01 -0.081 0.135

RPS18 6 0.391 5.9E-10 7.7E-01 1.4E-12 0.114 0.106
ANKLE1 19 0.378 1.3E-41 4.1E-03 4.2E-30 9.62E-05 -0.018
OCEL1 19 0.19 2.1E-14 4.1E-03 9.7E-12 0.205 0.303
ABHD8 19 0.001 4.7E-09 7.4E-01 1.3E-20 -0.015 0.282

aBGW-TWAS results using summary statistics from independent GWAS of overall breast cancer.
bCorrelation between observed expression and predicted GReX by BGW-TWAS model.
cBold values indicate significant, positive correlation (p < 0.05).

For breast cancer genes, we additionally used the GTEx-derived models of ge-

netically regulated gene expression to predict gene expression levels in tumor tissue

samples of breast cancer patients from TCGA, as well as normal tumor-adjacent

breast tissue samples. This analysis was performed to gauge how well the models

trained in GTEx among individuals without breast cancer accurately predict tran-

scription in individuals with breast cancer. Tables 3.1 -3.3 provide an estimate of the
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correlation between imputed gene expression in TCGA samples that used the GTEx-

derived BGW-TWAS models and observed expression levels in both tumor and NAT

breast tissue. Among the genes from the overall and luminal A-like analyses that

validated using external GWAS data (Table 3.1-3.2), seven (RPS23, ATP6AP1L,

ATG10, RCCD1, KANSL1-AS1, LINC02210, PLEKHM1) showed nominally signif-

icant correlation between imputed and observed expression levels in both NAT and

tumor TCGA samples (p < 0.05), and the estimated Spearman correlation coefficient

was positive between the two vectors. For Table 3.1 and 3.2, we saw validation of

SLC4A7, MRPS30, PIDD1, and APOBEC3B in tumor tissue but not NAT. Further,

the BGW model of CYBRD1 showed significant correlation between predicted and

observed expression in NAT tissue only. When looking at the genes identified by

BGW-TWAS in the remaining subtypes (Table 3.3), we further saw RPS18, ABHD8,

and OCEL1 (triple-negative) validate in tumor only, NAT only, and both tissue types,

respectively.

Additionally, we performed a second round of BGW-TWAS with the six breast

cancer phenotypes using genome-wide cis- and trans-eQTL models trained using tu-

mor expression data of female cases in TCGA. Of the 101 genes originally identified

in the GTEx-derived analyses, 67 had available expression data in TCGA and suc-

cessfully passed BGW-TWAS model QC (PP summation below 35 and maximum

(|w|) < 1000). Here, we identified 15 genes that further showed significant associ-

ation (p < 0.05/[6 × 67]) with one or more breast cancer phenotypes using these

tumor-derived models. 11 and 10 genes showed significant association with overall

and luminal A-like cancer, respectively. KLHDC7A, which was identified originally

for overall and luminal A-like cancer, was similarly identified in the subsequent tu-

mor analysis for not only these two phenotypes, but also the luminal B and luminal

B/HER2-negative-like subtypes.
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3.3.3 Ovarian Cancer TWAS

We performed a total of 135,474 tests using BGW-TWAS across the six ovarian

cancer phenotypes. This corresponds to a Bonferroni threshold of 3.69 × 10−7 for

transcriptome-wide significance. We obtained sPrediXcan results for 13,109 genes

for each of the six ovarian cancer phenotypes, corresponding to a total of 78,654

tests and a Bonferroni threshold of 6.36 × 10−7. We present genome-wide findings

for non-mucinous ovarian cancer and the five main subtypes of ovarian cancer us-

ing BGW-TWAS and OCAC-derived GWAS summary statistics in Figures 3.19-3.25

(Appendix). The BGW-TWAS p-values do show evidence of some inflation for the

non-mucinous and high grade serous phenotypes. However, as with the breast cancer

results, this is corrected when considering the GWAS sample size used in construction

of the test statistics (λ = 1.06, λ1000 = 1.002 for NMOC).

Eight unique significant genes were identified by BGW-TWAS when applied to the

summary statistic data on risk of NMOC and HGSOC (Table 3.4). No genes meeting

the multi-trait adjusted Bonferroni threshold were identified for LGSOC, EOC, MOC,

or CCOC. A correlation plot of BGW-TWAS Z-scores across all genes between ovarian

cancer subtypes is included in Figure 3.26 (Appendix). All eight significant genes had

model training R2 > 0.1 in ovarian tissue. Of the eight genes shown, sPrediXcan fit

models for ANKLE1 and CCDC106. The most significant gene identified by BGW-

TWAS across all analyses was ANKLE1 at 19p13 for HGSOC (BCAC p = 4.4×10−21),

but it was also identified in the non-mucinous analysis (BCAC p = 8.25 × 10−13).

ANKLE1 is a well-established candidate susceptibility locus for both breast cancer

and ovarian cancer [83, 110, 111]. In the sPrediXcan model of ANKLE1, three SNPs

were used to model expression, one of which (rs67412075) was also included in the

BGW-TWAS model for ANKLE1 in ovarian tissue (PP = 0.0169). Although 389

out of 448 selected SNPs were located in trans to ANKLE1, all SNPs driving the

association (with highest eQTL PP) are cis-SNPs located on chromosome 19, and
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thus it is not surprising that this gene was similarly identified by sPrediXcan in both

phenotypes.

Table 3.4: Significant genes identified by BGW-TWAS for non-mucinous and high
grade serous ovarian cancer in OCAC analyses with validation p-value for overall
ovarian cancer using Rashkin et al. GWAS summary statistics.

NMOC HGSOC Rashkina

Gene Chr TransPP Z pb Z pb Z pb

RP11-455G16.1 4 1 -7.43 1.1E-13 -8.53 1.5E-17 -1.58 1.1E-01
PRC1-AS1 15 0.17 4.91 9.3E-07 5.8 6.7E-09 0.72 4.7E-01
LRRC37A2 17 0.78 4.71 2.5E-06 5.28 1.3E-07 -0.13 9.0E-01
NSF 17 0.06 -4.31 1.7E-05 -5.3 1.1E-07 0.31 7.6E-01
ANKLE1c 19 0.39 7.16 8.3E-13 9.42 4.4E-21 0.96 3.4E-01
CCDC106 19 1 -7.61 2.8E-14 -7.1 1.2E-12 -2.47 1.4E-02
ZNF551 19 1 -4.92 8.6E-07 -5.25 1.5E-07 -0.86 3.9E-01
MLLT10P1 20 0.93 -6.2 5.8E-10 -5.43 5.6E-08 -2.78 5.0E-03
aBGW-TWAS results using summary statistics from independent GWAS of overall ovarian cancer.
bBold indicates statistically significant results.
cIdentified by PrediXcan for both HGSOC and NMOC.

In contrast, another highly significant gene from the BGW-TWAS analysis of

both NMOC and HGSOC that appears to be largely driven by trans-eQTL effects is

CCDC106 at 19q13. The BVSR genome-wide model had 21 cis-SNPs and 2016 trans-

SNPs. As we can see in the top plot of Figure 3.3, the SNPs with highest PP of being

eQTLs are located in trans on chromosomes 17 and 15. The bottom plot of Figure

3.3, which shows the corresponding OCAC GWAS p-values for these SNPs in the non-

mucinous analysis, indicates that a subset of SNPs on chromosome 17 furthermore

have the most significant GWAS associations for this phenotype. Therefore, this

gene has not been implicated in previous cis-only TWAS of ovarian cancer. We see

significant colocalization of eQTL signal in GTEx with GWAS loci in this region

(Chr17:48211237-48611237, Figure 3.27-3.28, PPH4 = 0.87 for HGSOC phenotype).

CCDC106 was not identified as significant by sPrediXcan for either HGSOC or NMOC

(p > 0.2), as the association appears to be driven by distal GWAS-significant loci on

chromosome 17 correlated with CCDC106 expression. The top SNP by eQTL PP is
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rs1979858 on chromosome 15, an intergenic variant for ARRDC4. The second top

SNP is rs9898988 on chromosome 17, an intron variant for SKAP1. Intron variants

of SKAP1 have previously been associated with overall epithelial ovarian cancer [64,

112, 113] and HGSOC [64].
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Figure 3.3: Estimated posterior probability (PP) of non-zero eQTL effects sizes from
BGW-TWAS -selected SNPs for CCDC106 on chromosome 19 in ovarian tissue (top),
and negative logarithm of the non-mucinous ovarian cancer GWAS p-values for these
selected SNPs (bottom). Blue dotted line indicates genome-wide significance thresh-
old for GWAS (5× 10−8).

Other top genes identified by BGW-TWAS have been implicated by previous
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work. For example, PRC1-AS1 was identified for HGSOC and is a candidate risk

locus for breast cancer previously identified by GWAS in Europeans and East Asians

[114, 115] and also identified by a previous cis-only TWAS of ovarian cancer [78].

Additionally, for the HGSOC analysis, our genome-wide model implicates NSF, which

has documented GWAS and TWAS associations with risk of ovarian cancer [78, 110].

For R11-455G15.1, the top SNP by eQTL PP was rs10738466 on chromosome 9. This

SNP is 32,525 bp to BNC2, a locus already implicated in ovarian cancer [113, 116–

118].

However, of the eight ovarian cancer genes identified across phenotypes, LRRC37A2,

CCDC106, ZNF551, and MLLT10P1 do not lie within 1 Mb of reported ovarian sus-

ceptibility loci [64]. CCDC106 and MLLT10P1 are additionally not within regions

of curated breast cancer susceptibility loci [107]. For MLLT10P1, the top SNP most

likely to be an eQTL was rs2229304 on chromosome 17. This is a missense variant for

HOXB23. MLLT10P1 was additionally the only gene to validate when BGW-TWAS

was applied to independent GWAS summary statistics for overall ovarian cancer risk

by Rashkin et al. (p < 0.05/8). We note that failure of all other genes to replicate is

likely due in part to the limited sample size for ovarian cancer cases in this validation

GWAS itself (1,006 UKB, 253 GERA). These counts are considerably smaller than the

corresponding sample size of breast cancer cases used (13,903 UKB, 3,978 GERA)

and overall controls used (189,855 UKB, 29,801 GERA). Although only one gene

achieved significance in this validation, six out of the eight genes originally identified

by BGW-TWAS with OCAC summary data showed the same estimated direction of

effect in the follow-up validation analysis (Table 3.4). For the two genes with differing

effect directions between the OCAC and Rashkin et al. analyses, we emphasize that

the latter Z-scores were close to zero (p > 0.7).



71

3.4 Discussion

In this work, we conducted the first TWAS of breast cancer and ovarian cancer that

uses not only cis-SNPs, but both intra- and inter-chromosomal trans-SNPs, to model

genetically regulated transcription. This genome-wide modeling approach, BGW-

TWAS, stems from the growing catalog of trans-eQTL effects identified across a

wide range of tissue types [17, 20, 119, 120]. We applied this method to train gene

expression models in GTEx mammary and ovarian tissues and tested for association

with risk of breast and non-mucinous ovarian cancer using summary GWAS data

from recent large-scale meta-analyses. We further investigated how the landscape of

identified risk genes for these diseases varied across cancer subtypes. We identified

101 significant genes across the overall and subtype-specific breast cancer analyses

and eight for the corresponding ovarian cancer analyses.

Many of these genes have been implicated in recent cis-only TWAS of breast cancer

and ovarian cancer [78, 121]. Of our eight ovarian cancer genes, four (50%) were found

in these previous studies (PRC1-AS1, LRRC37A2, NSF, ANKLE1), and 36 of 101

(36%) breast cancer genes were similarly identified. However, several genes appear

to be potentially novel associations that are driven largely by trans-eQTL effects.

ACAP3, EFR3A, NPM2, and NUDT1 were (1) identified in our TWAS for both

luminal A-like breast cancer and overall breast cancer, (2) did not lie near curated

sets of candidate susceptibility variants for either breast or ovarian cancer, (3) further

validated using an independent GWAS dataset, and (4) were not identified in the two

recent TWAS of breast cancer. KLF7-IT1, LINC00683, and TMEM50A further met

this criteria for overall breast cancer only. ACAP3 is predicted to play a role in

GTPase activator activity, but the gene’s possible role in tumorigenesis is unknown.

EFR3A protein, however, has been implicated in oncogenic signaling and tumorigenic

activity [122]. NUDT1 overexpression has been observed in several cancers, including

breast [123, 124]. NPM2 is located near a well-studied tumor suppressor gene, DOK2,
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on 8p21.3, which is theorized to play a role in several cancers [125]. NPM2 further

showed association with risk of luminal B/HER2-negative-like breast cancer using

both BCAC and validation GWAS data.

While less powered to detect novel genes associated with risk of ovarian cancer

and its main subtypes due to the limited number of ovarian tissue samples available in

GTEx, we did identify two genes that may warrant further investigation. CCDC106

and MLLT10P1 were strongly associated with both HGSOC and NMOC with trans-

driven GReX. They are not located near sets of curated candidate breast cancer and

ovarian cancer risk variants and were not identified in recent cis-only TWAS of ovarian

cancer [78, 121]. However, recent work in mutant p53 ovarian cancer cells has shown

that overexpression of CCDC106 in particular leads to inhibition of p21 transcription

and, ultimately, proliferation of the cancer cells [126]. MLLT10P1 was the only risk

gene to validate using independent GWAS data in our ovarian cancer analyses. While

it is a pseudogene, and therefore the biological mechanisms behind this association

are unclear, functional research on pseudogenes has indicated that they can indeed

play a role in tumorigenesis and are dysregulated in many cancers [127].

In this study, the abundance of non-trivial trans-SNP effects on gene expression

that we observed in both mammary and ovarian tissues opened the door for iden-

tification of new potential risk genes and underscores the importance of including

trans-SNPs in TWAS. However, we note there are several limitations to this work.

Firstly, the samples used for training the genome-wide expression imputation models

were limited in number, particularly for ovarian tissue (N = 140). One possible con-

sequence of such a modest training size is overfitting, as reflected by inflated R2 in the

training samples. While BGW-TWAS is the first method of its kind to be computa-

tionally tractable enough to fit trans-eQTL models, its computational requirements

do prevent cross-validation analysis during model training. Also, the lower prevalence

of ovarian cancer relative to breast cancer makes identification of suitable validation
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GWAS datasets and transcriptomic panels in ovarian tissue of sufficient sample size

difficult to obtain.

Furthermore, we note that while breast cancer is a disease predominantly occur-

ring among females, the majority of the GTEx samples for which RNA sequencing

data was available in breast tissue came from men (63%). While training gene expres-

sion models using only female samples is ideal, the subsequent drop in sample size

would have negatively impacted model predication accuracy. To assess any impact

of sex bias in our analyses, we calculated sex-specific GReX imputation accuracy in

the GTEx training samples of our BGW-TWAS genes identified for breast cancer.

Training R2 results were highly concordant between males and females. We also lim-

ited our scope to autosomal genes only and did not consider the important role of

sex-chromosome genes in sex-biased diseases like breast cancer. Our study also used

data only from individuals of European ancestry for the expression model training,

gene-level association tests, and validation analyses. However, there are considerable

disparities in clinical outcomes of these cancers across racial groups. Research has

also reported unique gene expression profiles across non-European ancestries in breast

cancer tumors [128], which motivates that the application of trans-eQTL TWAS to

underrepresented populations.

Lastly, we note that the expression models of our trans-eQTL-driven TWAS genes

were trained using normal breast and ovarian tissue from GTEx rather than tumor

adjacent normal tissue or tissue with precursor lesions that are disease relevant. Our

expression models showed little validation in tumor adjacent normal tissue (NAT)

in TCGA, the closest independent surrogate samples for the GTEx normal breast

tissue used to train our models. This may be a result of sample size or due to

altered regulatory effects of these SNPs in these samples caused by their proximity to

tumors. Indeed, recent work comparing GTEx tissues and the corresponding TCGA

NAT across cancer types suggests that the NAT transcriptome is not “normal” but
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represents an intermediate gene expression state between normal and tumor with

multiple pathway-level perturbations differentiating NAT from GTEx [129]. Further,

some models validated in NAT tissue but failed to validate in the TCGA tumor

samples. The association between predicted and observed expression in NAT here

may be spurious considering the small sample size of NAT and that significance was

assessed at the nominal level. However, this may otherwise be indicative of altered

regulatory activity in tumor vs. non-tumor tissue whereby germline control of somatic

gene expression may be lost during the oncogenic transition from normal/NAT to

tumor tissue [130]. Lastly, some models validated in tumor tissue but not NAT. This

is likely due to the difference in sample size between tumor tissue (N = 786) and

tumor-adjacent normal tissue (N = 101). We have higher power to detect significant

correlation between imputed GReX and observed GReX in tumor tissue samples. In

fact, for most of these models, the estimated correlation coefficients were quite similar

in both NAT and tumor, with a median difference near zero (0.03).

3.5 Web Resources

The BCAC GWAS summary statistic data for risk of breast cancer phenotypes are

publicly available and can be accessed here. The manuscript for the OCAC GWAS of

ovarian cancer phenotypes is currently under review, and the GWAS summary data

will be made available for download upon publication. The Rashkin et al. pan-cancer

GWAS summary statistics used in validation analyses are publicly available and can

be accessed here. The MetaXcan suite of tools are available for download on Github

here. Code and a corresponding tutorial for fitting BGW-TWAS models are available

here.

https://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/gwas-summary-associations-breast-cancer-risk-2020/
https://github.com/Wittelab/pancancer_pleiotropy
https://github.com/hakyimlab/MetaXcan
https://github.com/yanglab-emory/BGW-TWAS
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3.6 Appendix

3.6.1 Tables

Table 3.5: Median (IQR) of sums of posterior probabil-
ities of having non-zero eQTL effect sizes by range of
training R2 in fitted BGW-TWAS models.

Tissue Training R2 Num. Genes Genome-wide Cis-Region Trans-Region
Breast (0,0.05] 295 0.683 (1.838) 0.004 (0.011) 0.443 (1.462)
Breast (0.05,0.1] 326 0.396 (0.761) 0.077 (0.592) 0.069 (0.252)
Breast (0.1,0.25] 7719 0.982 (1.2) 0.005 (0.689) 0.428 (0.87)
Breast (0.25,0.5] 15678 1.292 (2.546) 0.004 (0.013) 1.061 (2.238)
Breast (0.5,1] 756 2.7 (4.44) 0.698 (1.191) 1.584 (3.35)
Ovary (0,0.05] 262 0.336 (1.139) 0.004 (0.004) 0.285 (1.007)
Ovary (0.05,0.1] 70 0.25 (1.113) 0.004 (0.003) 0.226 (0.905)
Ovary (0.1,0.25] 581 0.36 (0.686) 0.007 (0.581) 0.165 (0.214)
Ovary (0.25,0.5] 9702 0.423 (1.133) 0.004 (0.006) 0.282 (0.925)
Ovary (0.5,1] 11940 0.388 (1.502) 0.004 (0.004) 0.362 (1.422)

3.6.2 Figures

Figure 3.4: Histogram of expected number of eQTLs (cumulative posterior causal
probability) per gene from BGW-TWAS imputation models in breast tissue.
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Figure 3.5: Histogram of expected number of eQTLs (cumulative posterior causal
probability) per gene from BGW-TWAS imputation models in ovarian tissue.

Figure 3.6: Manhattan plot of BGW-TWAS results for overall breast cancer risk. The
dashed line denotes the Bonferroni-adjusted transcriptome-wide significance thresh-
old.
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Figure 3.7: Manhattan plot of BGW-TWAS results for luminal A-like breast cancer
risk. The dashed line denotes the Bonferroni-adjusted transcriptome-wide significance
threshold.

Figure 3.8: Manhattan plot of BGW-TWAS results for luminal B-like breast cancer
risk. The dashed line denotes the Bonferroni-adjusted transcriptome-wide significance
threshold.
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Figure 3.9: Manhattan plot of BGW-TWAS results for luminal B/HER2 negative-like
breast cancer risk. The dashed line denotes the Bonferroni-adjusted transcriptome-
wide significance threshold.

Figure 3.10: Manhattan plot of BGW-TWAS results for HER2 enriched-like breast
cancer risk. The dashed line denotes the Bonferroni-adjusted transcriptome-wide
significance threshold.



79

Figure 3.11: Manhattan plot of BGW-TWAS results for triple negative-like breast
cancer risk. The dashed line denotes the Bonferroni-adjusted transcriptome-wide
significance threshold.
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Figure 3.12: Quantile-quantile plots of BGW-TWAS results for six breast cancer
phenotypes using BCAC GWAS summary statistics.
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(a) (b)

(c)

Figure 3.13: Training R2 (squared correlation between imputed GReX and observed
gene expression in the training GTEx dataset) of 101 breast cancer genes identified
by BGW-TWAS. Panel (a) compares training R2 in male subjects compared to all
subjects. Panel (b) compares training R2 in female subjects compared to all subjects.
Panel (c) compares training R2 in female subjects compared to male subjects.
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Figure 3.14: The upper figure shows the posterior causal probability of SNPs being
eQTLs in the BGW-TWAS GReX imputation model for ACAP3 in breast tissue in
the region Chr10:78892621-79292621. The bottom figure shows the corresponding
-log(p) of GWAS BCAC p-values for these variants in the overall phenotype analysis.
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Figure 3.15: The upper figure shows the posterior causal probability of SNPs being
eQTLs in the BGW-TWAS GReX imputation model for ACAP3 in breast tissue in
the region Chr10:78892621-79292621. The bottom figure shows the corresponding
-log(p) from single-variant eQTL analysis of all SNPs in this region in GTEx.
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Figure 3.16: This figure shows -log(p) from single-variant eQTL analysis of all SNPs
in Chr10:78892621-79292621 (top trans region for ACAP3) in TCGA breast tumor.
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Figure 3.17: This figure shows -log(p) from single-variant eQTL analysis of all SNPs
in Chr10:78892621-79292621 (top trans region for ACAP3) in TCGA breast tumor-
adjacent normal tissue.
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Figure 3.18: Correlation plot of BGW-TWAS Z scores across six breast cancer phe-
notypes using BCAC GWAS summary statistics.
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Figure 3.19: Manhattan plot of BGW-TWAS results for non-mucinous ovarian cancer
risk. The dashed line denotes the Bonferroni-adjusted transcriptome-wide significance
threshold.

Figure 3.20: Manhattan plot of BGW-TWAS results for high grade serous ovarian
cancer risk. The dashed line denotes the Bonferroni-adjusted transcriptome-wide
significance threshold.
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Figure 3.21: Manhattan plot of BGW-TWAS results for low grade serous ovarian
cancer risk. The dashed line denotes the Bonferroni-adjusted transcriptome-wide
significance threshold.

Figure 3.22: Manhattan plot of BGW-TWAS results for mucinous ovarian cancer
risk. The dashed line denotes the Bonferroni-adjusted transcriptome-wide significance
threshold.
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Figure 3.23: Manhattan plot of BGW-TWAS results for endometrioid ovarian cancer
risk. The dashed line denotes the Bonferroni-adjusted transcriptome-wide significance
threshold.

Figure 3.24: Manhattan plot of BGW-TWAS results for clear cell ovarian cancer
risk. The dashed line denotes the Bonferroni-adjusted transcriptome-wide significance
threshold.
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Figure 3.25: Quantile-quantile plots of BGW-TWAS results for six ovarian cancer
phenotypes using OCAC GWAS summary statistics.
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Figure 3.26: Correlation plot of BGW-TWAS Z scores across six ovarian cancer phe-
notypes using OCAC GWAS summary statistics.
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Figure 3.27: The upper figure shows the posterior causal probability of SNPs being
eQTLs in the BGW-TWAS GReX imputation model for CCDC106 in ovarian tissue
in the region Chr17:48211237-48611237. The bottom figure shows the corresponding
-log(p) of GWAS OCAC p-values for these variants in the non-mucinous phenotype
analysis.
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Figure 3.28: The upper figure shows the posterior causal probability of SNPs being
eQTLs in the BGW-TWAS GReX imputation model for CCDC106 in ovarian tissue
in the region Chr17:48211237-48611237. The bottom figure shows the corresponding
-log(p) from single-variant eQTL analysis of all SNPs in this region in GTEx.
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Chapter 4

Topic 3. Enhanced
transcriptome-wide association
analyses in admixed samples using
eQTL summary data

4.1 Introduction

While genome-wide association studies (GWAS) have been largely successful in iden-

tifying genetic variants associated with a wide range of complex traits and diseases,

the majority of the top variants lie in non-protein coding regions of the genome. It has

been estimated that up to 90% of GWAS-identified single nucleotide polymorphisms

(SNPs) are non-coding variants, and thus the biological mechanisms by which these

variants exert their effects on a phenotype remain unclear [131]. Transcriptome-wide

association studies (TWAS) have become a field of rapidly growing interest, as these

methods seek to elucidate such complex regulatory mechanisms. A typical TWAS

assumes two datasets: a training dataset, usually of modest size, that possesses geno-

type and gene expression data from a tissue related to the outcome of interest, and a

testing (GWAS) dataset that possesses genotype and outcome data but lacks expres-

sion data. TWAS involves a two-stage process. In Stage I, the process constructs a

model on the training dataset to identify variants (expression quantitative trait loci,
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or eQTLs) associated with expression levels of a target gene and their corresponding

effect sizes (weights). In Stage II, the process uses the eQTL weights from Stage I to

impute genetically-regulated gene expression (GReX) within subjects from the test-

ing (GWAS) dataset and then tests for association between the imputed expression

and the outcome of interest.

Stage I of the majority of established TWAS methods require individual-level

training data in order to impute gene expression in Stage II [73–79]. In other words,

paired individual-level genotype and transcriptomic datasets from reference databases

are typically required to ultimately perform the association test between imputed

GReX and the trait of interest. While most individual-level training eQTL datasets

from databases like the Genotype-Tissue Expression (GTEx) project [20] are small,

there exist much larger publicly available datasets in summary form. Using larger

eQTL summary statistic datasets for TWAS can lead to greater accuracy of training

models and greater power in Stage II of TWAS. To leverage these potential power

gains, Dai et al. recently published a novel TWAS method (OTTERS). This method

uses estimated eQTL effect sizes and corresponding single-variant p-values to im-

pute GReX without the need for individual-level transcriptomic data [22]. To do

this, OTTERS jointly uses multiple well-established methods developed for modeling

polygenic risk scores (PRS) using summary statistic GWAS data to train multiple

gene expression imputation models. The specific PRS models used in OTTERS can

be selected by the user, and, using these, we can subsequently impute multiple GReX

vectors in the Stage II testing dataset. OTTERS then tests for the association be-

tween each imputed vector and the trait of interest, and p-values are ultimately

combined using the aggregated Cauchy association test (ACAT) [132]. Through sim-

ulations, OTTERS demonstrated proper type I error rate control and power gains

over a competing TWAS approach that uses individual-level stage I data [74].Ad-

ditionally, the simulation studies and applied work suggest that the optimal PRS
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method for imputing GReX is a function of the genetic architecture of the gene under

study, e.g., the number of causal eQTLs with non-zero effect sizes and the heritability

of expression.

Importantly, OTTERS is intended for TWAS of individuals of only a single, homo-

geneous ancestral group. Given the increased collection and analysis of multi-ancestry

subjects across the entire spectrum of genetic ancestry, there is need to expand the

framework to handle genetic and genomic data from diverse groups. However, in

order to develop such a method for multi-ancestry groups, we first emphasize that

the underlying genetic architecture of gene expression may not be the same across

populations and may differ by ancestral group [133]. As a result of these differences

in genetic architecture and additional factors that differ between continental ances-

tries, applied work has shown that gene expression prediction models trained in one

ancestral population do not generalize well to other populations [134]. The gene ex-

pression prediction models used in such work were similar to the PRS methods used

by OTTERS, and such PRS methods are known to have poor transferability across

ancestral groups. This has been well-documented across a variety of phenotypic do-

mains. Indeed, research has shown that PRS models trained using GWAS data from

one ancestry have significantly decreased prediction performance when applied to in-

dividuals of an ancestral background different than that used for training [135–139].

It is hypothesized that this poor portability may be a function of a population-specific

effect sizes. These population-specific effects may arise from a multitude of factors

that differ across populations, such as gene-environment interaction effects, gene-gene

interaction effects, allele frequencies, and linkage disequilibrium (LD) patterns [140–

142]. Poor performance of PRS in diverse ancestries is further exacerbated by the con-

sistently lower sample sizes of diverse GWAS cohorts compared to European-ancestry

cohorts [135, 143].

The development of sufficiently powered TWAS methods for diverse ancestries is
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particularly important for admixed individuals, whose genomes are a unique mosaic of

multiple continental ancestral groups. Admixed groups account for a large and grow-

ing proportion of the United States population, with more than 33.8 million people

identifying as multiracial in the 2020 Census [144]. It has been common practice over

the past few decades in GWAS to exclude admixed individuals from consideration

due to their complex ancestral makeup, and as such, they represent a historically

underrepresented group in genetic studies. In response to this realization, researchers

have recently considered the utility of including local ancestry information in variant-

level genetic association analyses of admixed populations [145–155]. Building on these

advancements, we have also seen a recent rise in novel PRS approaches specifically

designed for admixed populations [156–158] that we can leverage for related TWAS.

For example, Marnetto et al. developed an ancestry-aware approach for PRS that first

deconvoluted admixed haplotypes for a test subject and then computed the subject’s

ancestry-specific components of the PRS using GWAS summary data from the ap-

propriate reference ancestral populations. Authors demonstrated that this approach

can not only yield improved phenotype predictability over standard methods but also

an unbiased distribution of PRS in recently admixed populations. [156].

Given the existing evidence in the literature for differential eQTL architecture

between admixed groups and more ancestrally homogenous subjects [133, 159], we

propose an enhanced method for performing TWAS in admixed samples that leverages

local ancestry information as well as summary-level eQTL data from multiple refer-

ence datasets of differing ancestry. In this method, we first apply the gene-expression

training models used by OTTERS separately to each reference dataset. We then

apply a local-ancestry deconvolution method to our test admixed sample and then,

for a given gene, impute ancestry-specific partial GReX following the method of Mar-

netto et al. We can then combine the vectors of ancestry-specific GReX into an

aggregate ancestry-aware measure of GReX. We can then test whether the aggregate



97

ancestry GReX (as well as ancestry-specific GReX) are associated with outcome. We

can then further combine the aggregate and ancestry-specific results together into

an omnibus test using a Cauchy combination test similar to ACAT. We evaluate the

performance of our method in simulations via expression imputation R2 and power

analyses, and we demonstrate the method is well-calibrated under the null hypothesis

of GReX-phenotype independence. We conclude with an application of our method to

29 blood biochemistry phenotypes in two-way African/European admixed individuals

in the UK Biobank and compare its performance to expression imputation models

that ignore local ancestry.

4.2 Materials and Methods

4.2.1 Overview

The overarching goal of our TWAS is to impute gene expression in GWAS data from

admixed individuals using summary-level eQTL data from individuals of the founder

(continental) ancestral groups from which the admixed participants are derived. Like

most established TWAS, this involves two general stages. Stage I focuses on training

models of predicted gene expression in each of the reference summary-eQTL datasets

under consideration. Stage II uses estimates from these trained models, along with

local ancestry information (discussed later), to estimate ancestry-specific genetically-

regulated gene expression and then relate such expression to an outcome of interest.

4.2.2 Modeling Expression in Admixed Individuals

Without loss of generality, we assume our admixed test subjects are two-way admixed,

e.g., of African (AFR) and European (EUR) descent. We first define how gene ex-

pression is modeled in this population. For the purposes of all subsequent notation,

the subscript “1” stands for “AFR”, and “2” stands for “EUR”. Let us assume we
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have Nadm admixed individuals. For a given gene g, we assume there are S cis-eQTLs

that are shared between the two ancestral groups and U cis-eQTLs that are unique

to only one ancestral group. We define the total number of cis-eQTLs for a given

gene in each ancestral group as V = S + U .

For v ∈ {1, ...V }, let xM
i,v,1(x

P
i,v,1) ∈ {0, 1} be the number of minor alleles for vth

AFR eQTL on the maternal (paternal) haplotype of subject i. Let γM
i,v,1(γ

P
i,v,1) ∈ {0, 1}

be an indicator variable taking value 1 if the local ancestry of vth AFR eQTL on

maternal (paternal) haplotype of subject i is AFR. Similarly, we define xM
i,v,2(x

P
i,v,2) ∈

{0, 1} as the number of minor alleles for the vth EUR eQTL on the maternal (paternal)

haplotype of subject i. Let γM
i,v,2(γ

P
i,v,2) ∈ {0, 1} be an indicator variable taking value

1 if the local ancestry of vth EUR eQTL on the maternal (paternal) haplotype of

subject i is EUR.

Thus, we can now let gi,v,1 := xM
i,v,1γ

M
i,v,1+xP

i,v,1γ
P
i,v,1 represent the number of AFR-

ancestry minor alleles of the vth AFR eQTL and gi,v,2 := xM
i,v,2γ

M
i,v,2 + xP

i,v,2γ
P
i,v,2 be

the number of EUR-ancestry minor alleles of subject i at vth EUR eQTL. We can

arrange these quantities into matrices G1 and G2, each of dimension Nadm × V . In

these matrices, we further assume each column has been centered to mean zero. We

can therefore model the gene expression vector of our testing population as follows:

Eg = G1T
1/2
1 β1 +G2T

1/2
2 β2 + ϵg, ϵg ∼ N(0, (1− h2

e,adm)INadm
) (4.1)

Here, Eg is the Nadm × 1 vector of gene expression in our admixed testing pop-

ulation. T1 and T2 are the V × V diagonal scaling matrices with diagonal elements

(Tl)vv = τ 2vl =
1

2fvl(1−fvl)
, where fvl is the MAF of the vth eQTL in reference population

l (l = 1, 2). h2
e,adm represents the gene expression heritability in our admixed subjects.

βl ∈ RV is the vector of causal eQTL effect sizes in population l. ϵg ∈ RNadm is the
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error vector, while INadm
is the Nadm×Nadm identity matrix. Using these quantities,

we can derive both the joint distribution of all eQTL effect sizes and an estimate for

the heritability of gene expression in our admixed subjects (Appendix).

4.2.3 Stage I Reference Expression Model Training via OT-

TERS

Let us now assume, for our Stage I training datasets, we have summary-level eQTL

data derived from Nref individuals in each of the two reference populations that

represent the source ancestries among our two-way admixed testing population. In

other words, we require eQTL summary data from an AFR cohort and EUR cohort

for imputing gene expression in African American individuals. We note that Nref

need not be the same for both AFR and EUR groups, but we assume so for ease of

presentation.

In each homogeneous ancestral population (AFR, EUR), we can model the genetically-

regulated component of gene expression of each gene g as we did for our admixed

subjects in Section 4.2.2. As above, expression is a function of the V cis-eQTLs with

non-zero effect sizes in each population.

Eg1 = Xg1β1 + ϵg1, ϵg1 ∼ N(0, (1− h2
e,1)INref

) (4.2)

Eg2 = Xg2β2 + ϵg2, ϵg2 ∼ N(0, (1− h2
e,2)INref

) (4.3)

In the above equations, Eg1 and Eg2 are the Nref × 1 vectors of gene expression

in our AFR and EUR reference populations. Xgl is the Nref ×V matrix of genotypes

(0/1/2) with columns centered and standardized by minor allele frequency (MAF)

in each population l. βl ∈ RV is the vector of ancestry-specific eQTL effect sizes

in population l (l = 1, 2). ϵgl ∈ RNref are the error vectors for each population l,
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while INref
is the Nref × Nref identity matrix. h2

e,l represents the gene expression

heritability in population l.

In reality, we do not know a priori the true V cis-eQTLs present in Equations

4.2 and 4.3. Instead, we attempt to model gene expression using eQTL summary

information available from J >> V cis-SNPs found in and around gene g. That is, we

have summary-level results (estimated effect sizes and p-values) from the below single-

variant linear regression models (Equations 4.4 and 4.5) for each cis-SNP j ∈ {1..., J}

within 1MB of the transcription start site and end site of each gene g.

Eg1 =
xj1 − 2fj1√
2fj1(1− fj1)

βj1 + ϵj1, ϵj1 ∼ N(0, σ2
ϵj1
I), j = 1, ...J. (4.4)

Eg2 =
xj2 − 2fj2√
2fj2(1− fj2)

βj2 + ϵj2, ϵj2 ∼ N(0, σ2
ϵj2
I), j = 1, ...J. (4.5)

These linear regression models are fitted separately in each population l. In the

above equations, xj1 and xj2 are the Nref × 1 vectors of genotypes (0/1/2) for the

jth variant, j ∈ {1..., J}, in the AFR and EUR reference populations, respectively.

Similarly, we have error terms ϵj1 and ϵj2. βj1 and βj2 are the standardized marginal

eQTL effect sizes for this variant in AFR and EUR. Derived from these fitted models,

for each gene in population l, we have summary statistics in the form of β̂jl (the

marginal least squares effect estimate) and corresponding p-value pjl. These summa-

rize the marginal association of variant j ∈ {1, .., J} with the expression of the gene

of interest in population l.

OTTERS PRS Models

Using these marginal estimated eQTL effect size vectors (β̂11, ..., β̂J1), (β̂12, ..., β̂J2)

and corresponding marginal p-value vectors from the single-variant eQTL data, we

next use OTTERS to train PRS models to impute gene expression in both populations
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separately. While the OTTERS pipeline includes multiple frequentist and Bayesian

PRS methods as options, here we focus on two as illustrative examples. We briefly

summarize the methodology of these two PRS models below.

Pruning and Thresholding (P+T): This approach includes two steps: pruning, or

clumping, of variants to exclude correlated SNPs, and thresholding to keep only those

SNPs significantly associated with gene expression [160]. First, variants are filtered

to include only those with p-values < PT . Next, among these, a set of pairwise-

independent variants are selected as those with linkage disequilibrium (LD) R2 < RT ,

preferentially keeping those with the smallest p-value. These pruning and threshold-

ing steps are performed in the OTTERS pipeline using PLINK 1.9 [161]. For our

analysis, we used thresholds PT = (0.05, 0.001) and left RT = 1. We chose to not first

prune SNPs as LD patterns differ considerably between populations, and OTTERS

previously indicated that LD pruning did not significantly impact the performance

of their method. We used the marginal standardized eQTL effect sizes from SNPs

meeting this criteria to predict expression.

lassosum: This method represents a summary-statistics-based version of the least

absolute shrinkage and selection operation (lasso) pipeline, a penalized variable selec-

tion approach for dimension reduction with a large number of predictors (variants)

[162]. Full details on lassosum are provided elsewhere [163]. In contrast to P+T

methods, lassosum requires LD blocks from an external reference panel. LD blocks

were pre-calculated using lddetect [93] and data from 1000 Genomes (AFR and

EUR populations, respectively) [91]. Note, for reasons indicated above, we did not

perform LD clumping prior to training PRS via lassosum.

Using the two pruning and threshold approaches (P+T0.05, P+T0.001) and the

lassosum approach, we have three sets of estimated eQTL effect size vectors for

each training population for a given gene g: β̂1

ω
, β̂2

ω
, where ω ∈ {P + T0.05, P +
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T0.001, lassosum}.

4.2.4 Stage II Imputing Expression in Admixed Individuals

As the true causal eQTLs in each ancestry are unknown, we propose to impute

ancestry-specific components of GReX in our admixed testing set using the trained

PRS models of gene expression in the two reference eQTL datasets. Let us assume

that we have phased genotype information and have performed ancestry deconvo-

lution of our admixed testing dataset haplotypes. For each PRS model considered

ω ∈ {P+T0.05, P+T0.001, lassosum}, we use the estimated eQTL effect size vectors

from Stage I, β̂ω
1 and β̂ω

2 , to impute ancestry-specific partial gene expression PRS

(aspPS) in the manner of Marnetto et al. [156]. We can then add together the AFR-

and EUR-specific partial components of GReX to create a combined PRS (casPS). We

provide the details on these local ancestry-aware approaches to expression imputa-

tion, as well as a comparative description of the standard PRS approach to expression

imputation that ignores local ancestry (PS), in the next few sections.

Local Ancestry-Aware Approaches (aspPS, casPS)

Using the notation of Section 4.2.2 and 4.2.3, recall we have assumed there are J total

cis variants in the region of gene g and Nadm admixed testing subjects. Let ΓM (ΓP )

be a (Nadm × J) matrix where the (i, j) element equals 1 if individual i has an AFR

allele at jth SNP on his/her maternal (paternal) haplotype and 0 otherwise. We

further define XM (XP ) as the Nadm × J ancestry-standardized maternal (paternal)

haplotype (0/1) matrix with (XM )i,j =
xM
i,j−2f√
2f(1−f)

. Here, xM
i,j is the minor allele count

of the ith individual at the jth variant on the maternal haplotype and f is the MAF

of that variant in EUR or AFR, depending on the local ancestry of that SNP. Let

β̂ω
1 (β̂

ω
2 ) ∈ RJ be the estimated eQTL effect size vector from a given PRS method

ω using reference AFR (EUR) eQTL data. We can impute the AFR component of
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GReX (aspPSω
1 ) and the EUR component of GReX (aspPSω

2 ) as follows:

aspPSω
1 = (XM ⊙ ΓM +XP ⊙ ΓP )β̂ω

1 (4.6)

aspPSω
2 = (XM ⊙ (1− ΓM ) +XP ⊙ (1− ΓP ))β̂ω

2 (4.7)

In the above equations, the symbol ⊙ indicates element-wise multiplication of

matrices. For each PRS model ω, we then impute the total GReX in our admixed

testing samples as the sum of these two ancestry-specific components:

casPSω = aspPSω
1 + aspPSω

2 (4.8)

Non-Ancestry-Aware Approach (PS)

We can also compare the performance of the ancestry-aware approaches to imputing

GReX (aspPS1, aspPS2, casPS) to the standard PRS methodologies that ignore local

ancestry in admixed individuals. For this, let X be the Nadm × J standardized

(columns centered and scaled to unit variance, not ancestry-specific standardization)

matrix of minor allele counts (0/1/2). We can impute GReX in our admixed testing

data as:

PSω
z = Xβ̂ω

z (4.9)

Here, β̂ω ∈ RJ is the estimated eQTL effect sizes vector from a given PRS method

ω for a given set of eQTL summary statistics z. This standard approach could use

the same reference population eQTL summary data as those used in the LA-aware

approaches above (z = AFR, EUR), or it could be trained using summary eQTL data

from a sample of admixed individuals that is independent of our testing dataset (z =

ADMIX).
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4.2.5 Stage II Gene-Trait Association Test

Once we have our all of our vectors of imputed gene expression in our admixed testing

dataset {aspPSω
1 , aspPSω

2 , caspPSω, PSω
z } for ω ∈ {P+T0.05, P+T0.001, lassosum}

and z ∈ {AFR, EUR, ADMIX}, we assume that our phenotype vector (y ∈ RNadm),

for whom we want to estimate the association with GReX, has already been adjusted

for the effects of important non-genetic confounders. We will perform simple linear or

logistic regression of y on each of the aspPS, casPS, and PS imputed GReX vectors

individually. For each ω and z, we thus obtain an ordinary least squares p-value.

Using the approach employed by OTTERS [22], we can then combine these p-values

in multiple ways using the Aggregated Cauchy Association Test (ACAT) [132]. First,

we can aggregate across ω (our PRS models) to generate one p-value for each of our

LA-aware approaches (aspPS1, aspPS2, casPS) and, similarly, one aggregate p-value

for each of the standard PS approaches (PS). We refer to this as Level 1 aggregation.

For example, to get the aggregate p-value for casPS, let pω be the p-value from the

simple regression of y on casPSω for ω ∈ {P+T0.05, P+T0.001, lassosum}:

T =
∑
ω

kωtan{(0.5− pω)π} (4.10)

pcasPS ≈ 0.5− {arctan(T/
∑
ω

kω)}/π (4.11)

Here T is the ACAT test statistic. Authors assume that T approximately follows

a Cauchy distribution and can therefore approximate pcasPS, the aggregated p-value.

kω represent the combination weights, and for our purposes, we assume these weights

to be equal across all PRS methods. We can then repeat this process (aggregating

over PRS models ω) to also calculate paspPS1 , paspPS2 , pPSz .

We also propose to perform a second round of p-value aggregation using ACAT

(Level 2). In this second round, we can aggregate over all LA-aware p-values pcasPS,



105

paspPS1 , paspPS2 , or we may even elect to combine all LA-aware p-values with those from

the standard PS approaches (e.g., aggregating over all pcasPS, paspPS1 , paspPS2 , pPSz).

4.2.6 Simulations

To evaluate the accuracy of our proposed ancestry-aware gene expression imputation

approach, we performed extensive simulations. First, we chose our simulated admixed

testing dataset to be two-way African and European recently admixed individuals. We

used the 1000 Genomes (1KG) Phase 3 biallelic data in GRCh38 as source genomes

to simulate multiple sets of admixed genomes [91]. We specifically chose CEU (Utah

Residents with Northern and Western European Ancestry) as the European source

population and YRI (Yoruba in Ibadan, Nigeria) as the African source population.

In order to ensure we had large enough source populations to sample haplotypes from

to generate our admixed testing set, we first expanded the YRI and CEU populations

to size 10,000 each using admix-kit [164]. This tool generates additional sets of 1KG

populations using the HAPGEN2 framework [165].

We selected one gene, ABCA7, on chromosome 19 (1040101:1065571) as our target

gene for simulations, as this gene has been used previously for the simulation stage

of TWAS [75]. We assumed a window of 1MB upstream and downstream as the

simulation region (66,358 variants). We generated different training datasets in which

we first simulate gene expression and then subsequently calculate eQTL summary

data. We generated AFR and EUR training datasets by randomly selecting 500 of

our expanded sample of YRI and CEU subjects, respectively. We further generated

several admixed training datasets of size 500 using the expanded sets of 10,000 YRI

and CEU source haplotypes and the tool haptools [166]. We simulated three admixed

training datasets according to different admixture generation parameters. First, we

assumed an initial realistic African American demographic model of one pulse of

admixture 9 generations ago with 80% contribution from YRI and 20% from CEU
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(ADMIX 80 10g). We also considered two additional admixed training sets; the first

assumed 5 admixture generations plus an initial AFR population frequency of 80%

(ADMIX 80 5g) while the other assumed 5 admixture generations plus an initial AFR

population frequency of 50% (ADMIX 50 5g).

To generate our admixed testing datasets, we again assumed the realistic African

American demographic model of 10 admixture generations with 80% contribution

from YRI (AFR) and 20% from CEU (EUR). These admixture generation settings for

our testing dataset match those used to generate the ADMIX 80 10g training dataset.

These simulation settings are similar to those used in previous methodological work

in admixed individuals [145]. We simulated a total of 10,000 individuals to serve as

our pool of admixed testing samples.

Using the simulated haplotypes and genotypes from the non-admixed reference

AFR/EUR populations, we next simulated gene expression. In our training datasets

(admixed and reference AFR/EUR of size 500), we first simulated gene expression

according to the models described in Sections 4.2.2 and 4.2.3. We varied gene ex-

pression heritability in the AFR population (h2
e,1) and in the EUR population (h2

e,2)

among {0.1, 0.2}, excluding the limited utility scenario where both are 0.1. We also

varied the number of eQTLs (V ) in both populations among {2, 10, 100}, the propor-

tion of eQTLs that overlap between AFR and EUR populations (OP = S/V ) among

{0.5, 1}, and the correlation of effect sizes among shared AFR and EUR eQTLs (ρ)

among {0.5, 1}. We also ensured that all SNPs selected as eQTLs have MAF > 0.05

in each of the training datasets. In total, we have 36 combinations of expression

simulation parameters.

Since all of these settings consider overlap in eQTLs across ancestries, we took

care when simulating correlated eQTL effect size vectors in each ancestry. Using the

notation of Equations 4.2 and 4.3, we first randomly drew a temporary β∗
1 ∼ N(0, IV )

and calculated the scale factor δ1 ≈
√

h2
e,1

V
. To simulate eQTL effect sizes in EUR,
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note that the first S are correlated with the first S elements of the effect size vector

in AFR. Thus, we sampled a temporary β∗
2 as below:

β∗
2 =

ρβ∗
1[1:S] +

√
1− ρ2(z)

N(0, IU )

 where z ∼ N(0, IS) (4.12)

Let the scale factor for EUR be δ2 ≈
√

h2
e,2

V
. Thus, for each simulation, the eQTL

effect size vectors achieving the desired h2
e,1, h

2
e,2, ρ, and OP are simply β1 = δ1β

∗
1 and

β2 = δ2β
∗
2. We then used these ancestry-specific eQTL effect size vectors to simulate

gene expression in our reference AFR/EUR training sets and, also, our admixed

training/testing sets according to Equation 4.1.

Next, for each simulated training dataset (reference AFR/EUR and our inde-

pendent admixed training samples), we calculated single-variant eQTL summary

statistics and used the OTTERS pipeline to train PRS models. For each dataset,

we retained summary data for only those variants with MAF > 0.05 in the corre-

sponding sample. Using these eQTL summary statistics, we then imputed gene ex-

pression in our admixed testing set in the manner described in Section 4.2.3. We

compared the imputation R2 (squared correlation between imputed and true ex-

pression in our admixed testing set) between our proposed LA-aware approaches

{aspPSω
1 , aspPSω

2 , caspPSω}, ω ∈ {P+T0.05, P+T0.001, lassosum}, and the stan-

dard PRS approaches that ignore local ancestry {PSω
z } for z ∈ {AFR, EUR,

ADMIX 80 10g, ADMIX 80 5g, ADMIX 50 5g}. For each round of GReX imputa-

tion using ancestry-aware approaches, we also performed another round of imputation

where we assumed that 10% of the cis-variants in the region on both haplotypes of

each individual in the testing set had incorrect local ancestry information.

Next, we performed power and type I error simulations for the Stage II test of

GReX-trait association. We simulated the trait according to following equation where

we assume the trait is a function of the total gene expression and is not a function of
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the ancestry-specific components of gene expression in Equation 4.1.

y = αEg + ϵy, ϵy ∼ N(0, (1− h2
p)INadm

) (4.13)

For both our power and type I error simulations, we calculated the Level 1 ACAT

p-values that aggregate over the three respective PRS models: pcasPS, paspPS1 , paspPS2 ,

and pPSz . We also then calculated the Level 2 ACAT p-values that aggregated over

various combinations of these Level 1 ACAT p-values. For our power simulations, we

considered α such that h2
p ∈ {0.025, 0.1}. For our null simulations to evaluate type I

error rate, we assume this value was 0. For each of the 1,000 simulations performed

for each of the 36 combinations of expression simulation parameters, we performed 10

trait simulations per h2
p. Thus, for each expression simulation parameter combination,

we performed 10,000 power and 10,000 type I error simulations.

4.2.7 Applied Analysis

UK Biobank Data

To assess the utility of our proposed methods in practice, we obtained individual-

level genotype and phenotype data from admixed individuals in the UK Biobank

(UKB). The UKB is a large-scale biomedical database housing data collected from

approximately 500,000 individuals across the UK. This study allows for widespread

investigation of the genetic variation associated with hundreds of lifestyle and health

factors. To best mimic the settings of our simulation study, we elected to focus our

analysis on two-way admixed individuals of African and European ancestry in the

UKB. In order to identify these individuals making up our testing dataset, we first

performed preliminary subject filtering. Specifically, we excluded subjects who had

subsequently withdrawn from the study, those who were marked as “redacted”, and

those who were marked as outliers based on pre-calculated metrics of heterozygos-
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ity and missing rates. We also excluded subjects with putative sex aneuploidy, those

with high pre-calculated estimates of relatedness, and those whose genetically-inferred

gender differed from their submitted gender. We then removed individuals falling in

the “White British subset”. These individuals were previously identified by a combi-

nation of both self-reported ancestry and genetic PCs. We also excluded individuals

who have missing self-reported ethnicity or whose self-reported ethnicity fell among

the following: White, Irish, British, Any other white background. Following this,

27,491 subjects remained.

We then performed principal component analysis (PCA), projecting these filtered

UKB individuals onto genetic PCs anchored in 1000 Genomes (1KG) data [91]. For

this, we first subset 1KG genotype data to include unrelated individuals from the

following populations: African (ACB [African Caribbeans in Barbados] and ASW

[Americans of African Ancestry in SW USA] excluded) (503), Admixed American

(347), East Asian (504), European (503), and South Asian (489). We restricted

variants to non-ambiguous SNPs, those found in the UKB GWAS data, those with

MAF > 0.05 in each population, those with HWE p > 1 × 10−6. We then pruned

remaining variants (window size 1000 bp, step size 50 variants, R2 threshold 0.1).

Using the loadings for the top 10 PCs trained in 1KG samples, we projected the

UKB self-reported non-White individuals (27,491) into this space (Appendix Figure

4.16). Following the approach of Atkinson et al. [145], using the 1KG data, we then

trained a random forest classifier to predict continental ancestry (1KG population)

from the top 10 PCs. We then applied this random forest model to our UKB sample.

We excluded any individuals with < 50% estimated probability of African ancestry.

Using the top 3 PCs in the 9,187 meeting this criteria, we constructed a 95% ellipsoid

along the African-European cline (Appendix Figure 4.17). We kept the 8,752 UKB

individuals lying within the ellipsoid. Finally, we excluded two additional subjects

with self-reported Asian/Asian British and White and Asian ethnicity. The remaining
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8,750 individuals made up our final two-way, AFR and EUR admixed testing dataset.

Genotype data on these subjects was generated using either the UK BiLEVE or

UK Biobank Axiom arrays. Prior to imputation, we followed the pre-imputation qual-

ity control pipeline provided at https://www.well.ox.ac.uk/ wrayner/tools/#Checking,

using variant data from TOPMed Freeze3a on GRCh37/hg19. We performed impu-

tation, liftover to GRCh38, and phasing using the TOPMed Imputation Server [167–

169]. Next, we prepared our AFR and EUR reference data for local ancestry deconvo-

lution of our UKB genotypes. First, we imputed missing genotypes in the 1KG Phase

3 biallelic phased GRCh38 data of AFR and EUR subjects using BEAGLE, again ex-

cluding ASW and ACB [170]. Using this as our reference population genotype data,

we performed local ancestry inference in our admixed UKB testing set using FLARE

[171]. We assumed 10 generations since admixture (10 admg).

eQTL Summary Data

For our European (EUR) reference eQTL dataset, we downloaded cis-eQTL summary

statistics in whole blood from the GTEx V8 dataset (dbGaP phs000424.v8.p2), where

cis-eQTL analysis was performed in 570 European-American subjects. To briefly

summarize the analysis performed, authors adjusted RNA sequencing for the effects

of top 5 PCs, top 60 PEER factors, sequencing platform (Illumina HiSeq 2000 or

HiSeq X), sequencing protocol (PCR-based or PCR-free), and sex. For the eQTL

analysis, they then restricted genes to those with > 0.1 TPM and ≥ 6 reads in at

least 20% of the data samples, and they normalized expression vectors using TMM

[98] and inverse normal transformed. SNPs from WGS data with MAF ≥ 1% were

retained. Authors performed single-variant cis-eQTL analysis using FastQTL [172]

and a 1MB window from the transcription start site of each gene.

For our African (AFR) reference eQTL dataset, we used publicly-available whole-

blood cis-eQTL summary statistics from a subset of high-African ancestry admixed
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individuals [133]. In this study, authors mapped ancestry-specific gene expression sig-

natures in 2,733 individuals (African American, Puerto Rican, and Mexican Amer-

ican) from the Genes-Environments and Admixture in Latino Asthmatics (GALA

II) study and the Study of African Americans, Asthma, Genes, and Environments

(SAGE). Authors obtained paired RNA sequencing data and WGS data. RNA and

WGS data processing are described elsewhere [133]. Authors used CEU and YRI

HapMap reference genotypes, as well as Indigenous American ancestry reference geno-

types, to estimate global measures of ancestry with ADMIXTURE [173]. Authors defined

a high global African ancestry subset as those with > 50% estimated global African

ancestry (721). They then performed ancestry-specific eQTL analysis in these sub-

jects using a 1MB cis-window from the transcription start site of each gene and

FastQTL [172]. Analyses adjusted for expression for age, sex, asthma status, top 5

PCs, and 60 PEER factors.

TWAS

As our TWAS traits in our UKB testing dataset, we considered 29 widely-collected

blood biomarkers. We first log-normalized raw trait measurements and then we

obtained covariate-adjusted phenotypes by taking the residuals of linear regression

models of each log trait on the top 20 PCs, sex, age at recruitment, and smoking

status (prefer not to answer, never, previous, current). Using our AFR and EUR

reference eQTL summary data described above, we first removed ambiguous SNPs

(A/T,T/A,G/C,C/G) and only kept eQTL data from SNPs with MAF > 0.01 in each

respective sample. We then performed LD clumping using a R2 threshold of 0.99.

Next, we trained AFR and EUR ancestry-specific PRS models of gene expression us-

ing OTTERS and P+T0.001, P+T0.05, and lassosum models. We then imputed gene

expression in UKB samples using LA-aware approaches (casPS, aspPS) and standard

PS approaches (PS AFR, PS EUR). We concluded our analyses by performing simple
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linear regression analysis for the association of each imputed gene expression vector

with each of the 29 adjusted blood biomarker traits. Multiple p-value aggregation

approaches via ACAT were considered.

4.3 Results

4.3.1 Expression Imputation Accuracy

To evaluate the GReX imputation accuracy of proposed local-ancestry aware ap-

proaches compared to the standard PRS imputation approaches of OTTERS, we

used as our testing set a collection of Nadm = 1000, 5000, 10000 simulated admixed

individuals (10 admixture generations, 80% initial contribution of AFR [1KG YRI]

haplotypes, 20% contribution of EUR [1KG CEU] haplotypes). We computed our

LA-aware measures of GReX using simulated eQTL summary data from a reference

AFR and a reference EUR sample (each Nref = 500). For comparison, we also com-

puted the standard LA-unaware GReX using each of these reference samples (AFR

PS, EUR PS). We also computed a vector of standard PSs using eQTL summary

datasets from independent simulated admixed samples of varying admixture param-

eters. The “ADMIX 80% 10g” PSs represent the GReX we would have imputed had

we had access to eQTL data from an independent admixed sample of exactly the

same ancestry as our admixed testing set (10 admg, 80% initial AFR contribution).

We use the other training datasets with 5 admg and 50-80% initial AFR contribution

to examine the impract of “mismatch” between admixed training and test datasets

on imputation accuracy. In Figure 4.1, we present the squared correlation (R2) be-

tween imputed GReX and true gene expression in our admixed testing subjects. This

figure corresponds to gene expression heritability in both Africans and Europeans

(h2
e,1, h2

e,2) of 0.2 and testing sample size of 10,000. We provide imputation R2 re-

sults for other expression heritability and eQTL architecture settings for N = 10000
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in the Appendix (Figures 4.6-4.7), as imputation accuracy patterns did not differ

dramatically by testing sample size.

From these figures, we see a few general trends. Across all imputation approaches,

both LA-aware and unaware, as well as across all PRS methods (P+T0.001, P+T0.05,

lassosum), we see higher R2 values for the sparse eQTL scenario (2) compared to the

scenarios where the number of causal eQTLs is 10 or 100. There may exist other

PRS approaches (PRScs, for example [174]) that may perform better for the scenario

in which we expect larger number of true eQTLs. Next, we see that accuracy of our

proposed casPS approach, using pruning and thresholding PRSs, tends to be slightly

higher than the optimal standard PS approach using admixed eQTL summary data

from a perfect ancestry-matched admixture cohort (ADMIX 80 10g PS) when the

eQTLs are not exactly the same between AFR and EUR or when the correlation of

shared eQTL effect sizes is less than 1. In other words, these simulations suggest

that even if we had access to eQTL data from a cohort exactly matched for ancestry

to our admixed testing cohort, we would still achieve as high or higher imputation

accuracy using reference population eQTL datsets. Across all simulation settings,

lassosum performed inconsistently with no notable performance patterns by imputa-

tion approach. In the scenario where eQTL architecture for the given gene is identical

between AFR and EUR populations (OP = 1, ρ = 1), the imputation R2 appears

quite similar between the caPS LA-aware approach and ADMIX 80 10g PS. Further-

more, across all settings, we see a downward trend for R2 when using standard PS

approaches and admixed training data as the training samples become increasingly

different from the testing dataset in terms of admixure generation parameters. As the

number admixture generations decreases (10 to 5) and the proportion of initial AFR

donors decreases (80% to 50%), we generally see less successful GReX imputation.

In Appendix Figures 4.8-4.10, for our LA-aware approaches, we show the impact

of LA misclassification of 10% of SNPs in the region of ABCA7 that were eligible for
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Figure 4.1: Gene expression imputation accuracy in 10,000 admixed testing samples
(10 admixture generations, 80% initial contribution from AFR, 20% initial contribu-
tion from EUR) for expression heritability h2

e,1, h2
e,2 = 0.2. Vertical panels indicate

the true number of causal SNPs for gene expression (eQTLs). Horizontal panels indi-
cate the proportion of eQTLs that overlap (OP) between AFR and EUR ancestries,
as well as the correlation in eQTL effect sizes for shared eQTLs between the two
ancestral groups (ρ). The x-axis shows the GReX imputation approach, including
our proposed local-ancestry aware methods (aspPS, casPS) and standard PRS im-
putation approaches (PS). For ancestry-aware methods, we assume no local ancestry
misclassification. Whiskers of boxplot extend to maximum/minimum point that is
less than 1.5*IQR from the third/first quartiles.
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modeling gene expression. In other words, we assumed 10% of the cis-SNPs of this

gene with MAF > 0.05 in the corresponding training datasets (Ref AFR or Ref EUR)

had incorrect LA tags (AFR or EUR). We further assumed misclassification of these

SNPs on both maternal and paternal haplotypes. We note this likely on the high

end for misclassification rates, as popular local ancestry imputation algorithms (e.g.,

FLARE, MOSAIC, RFMix) have high imputation accuracy for reasonably sized training

panels used to infer LA. For example, the squared correlation between inferred and

true local ancestry dosage r2 ∈ [0.87, 0.96] for the three methods mentioned in three-

way admixed samples using reference panel sizes of N=400 [171]. Similarly, another

benchmarking paper cited RFMix as having 89% classification accuracy in the highly

complex scenario of a five-way admixed sample [175]. Regardless, we do not see a

marked drop in the quantiles of imputation R2 of our proposed LA-aware GReX

imputation approaches (aspPS AFR, aspPS EUR, casPS) across PRS models.

4.3.2 Type I Error Rate

Next, we assessed the type I error rate of the Stage 2 gene-trait association tests.

For these simulations, we assumed a null association between true gene expression

and each simulated phenotype, i.e., a phenotypic heritability h2
p = 0. As the type I

error rates did not differ dramatically by the gene expression simulation parameters

(h2
e,1, h2

e,2, ρ, OP, number of eQTLs), we present quantile-quantile (QQ) plots for

p-values across each of the 36 simulation settings, corresponding to a total of 36,000

null simulations per plot.

As we see, the p-values resulting from Level 1 aggregation across PRS models

(P+T0.001, P+T0.05, lassosum) for the LA-aware approaches (aspPS AFR, aspPS

EUR, casPS) show the expected distribution under the null when we assume no LA

misclassification (Figure 4.2) and 10% LA misclassification (Appendix Figure 4.11).

Similarly, the Level 1 p-value aggregation for the standard imputation approaches
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Figure 4.2: QQ plots of p-values from gene-level association tests from both LA-aware
and LA-unaware GReX imputation approaches under the null when no association of
expression with trait exists. Here, we assume a testing sample size of 10,000. These
p-values represent Level 1 p-value aggregation by ACAT, i.e., aggregation of p-values
across the three PRS models (P+T0.001, P+T0.05, lassosum). For ancestry-aware
methods, we assume no local ancestry misclassification. Each plot shown corresponds
to 36,000 total simulations, including all 36 gene expression simulation settings.
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using reference eQTL data (PS AFR, PS EUR) also appear to maintain appropriate

rates of type I error. We do, however, see a slight deflation of Level 1 aggregated

p-values for the standard PS approaches using eQTL data in an independent set of

admixed subjects (middle right plot). To assess whether we see any inflation of our

gene-trait association p-values at the second level of p-values aggregation, i.e., aggre-

gating Level 1 p-values for our LA-aware approaches and/or standard PS approaches,

we constructed a second set of QQ plots in Figure 4.3. Again, we see the expected dis-

tribution under the null even when we combine aspPS and casPS p-values with those

from the reference-derived PSs (AFR PS, EUR PS) and, further, with the p-values

from the independent admixed-derived PSs (middle and right panels, respectively).

This applies to both assumptions of 0% (top row) or 10% LA misspecification (bottom

row).

4.3.3 Power

Simulation results comparing the performance of our proposed LA-aware approaches

to the competing standard GReX imputation approaches under the assumption of a

true gene-trait association are summarized in Figure 4.4 (2 eQTLs) and Figure 4.5

(10 eQTLs). These figures reflect normally distributed traits, a testing set sample

size of 10,000, significance level α = 5 × 10−5, and no LA misspecification. When

comparing the performance of the Level 1 approaches (aggregation across PRS), our

proposed LA-aware casPS has higher power than any of the LA-unaware standard PS

approaches, including that trained using a perfectly matched admixed sample, when

gene expression genetic architecture is different between populations. The power of

Level 1 casPS is similar to that of standard PS with a perfectly matched admixed

sample (ADMIX 80 10g) when the gene expression genetic architecture is exactly

the same between AFR and EUR groups (OP = 1, ρ = 1). Across all simulation

settings, the Level 2 aggregation approach utilizing LA-aware GReX (casPS, aspPS
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Figure 4.3: QQ plots of p-values from gene-level association tests from LA-aware
GReX imputation approaches under the null when no association of expression with
trait exists. Here, we assume a testing sample size of 10,000. These p-values represent
Level 2 p-value aggregation by ACAT. The p-value aggregation approach is indicated
in the plot title. For ancestry-aware methods, we assume either no local ancestry
misclassification (No LA Misclass) or misclassification of 10% of SNPs in the gene
region (LA Misclass 10%). Each plot shown corresponds to 36,000 total simulations,
including all 36 gene expression simulation settings.
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AFR, aspPS EUR) and the standard PSs built using reference data (EUR PS, AFR

PS) achieved the highest power (dark blue) and is therefore the preferred method

going forward.
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Figure 4.4: Power of gene-level association tests of imputed GReX vectors and simu-
lated trait at significance level α = 5×10−5. Here, we assume a phenotypic heritability
of h2

p = 0.025, 2 eQTLs, no local ancestry (LA) misclassification for LA-aware ap-
proaches, and a testing dataset sample size of 10,000. Vertical panels indicate the
proportion of eQTLs that are shared between AFR and EUR ancestries (OP) and
the correlation of eQTL effect sizes for shared eQTLs (ρ). Horizontal panels indicate
the gene expression heritability in AFR and EUR ancestries (h2

e AFR/EUR). Pink
bars indicate the power of LA-unaware GReX imputation approaches, with p-values
aggregated across the three PRS models (ACAT Level 1). Light blue bars indicate
LA-aware approaches with Level 1 p-value aggregation by ACAT. Dark blue bars
indicate the power of LA-aware approaches, aggregating both PRS p-values and the
resulting p-values of casPS, aspPSs (AFR and EUR), and standard PSs trained in
the two AFR/EUR reference populations (ACAT Level 2).

In Appendix Figures 4.12 (2 eQTLs) and 4.13 (10 eQTLs), we illustrate the power

of the LA-aware approaches assuming a high rate of LA misclassification (10%) for

cis-SNPs in the gene region. With the exception of the scenario in which we have
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Figure 4.5: Power of gene-level association tests of imputed GReX vectors and simu-
lated trait at significance level α = 5×10−5. Here, we assume a phenotypic heritability
of h2

p = 0.025, 10 eQTLs, no local ancestry (LA) misclassification for LA-aware ap-
proaches, and a testing dataset sample size of 10,000. Vertical panels indicate the
proportion of eQTLs that are shared between AFR and EUR ancestries (OP) and
the correlation of eQTL effect sizes for shared eQTLs (ρ). Horizontal panels indicate
the gene expression heritability in AFR and EUR ancestries (h2

e AFR/EUR). Pink
bars indicate the power of LA-unaware GReX imputation approaches, with p-values
aggregated across the three PRS models (ACAT Level 1). Light blue bars indicate
LA-aware approaches with Level 1 p-value aggregation by ACAT. Dark blue bars
indicate the power of LA-aware approaches, aggregating both PRS p-values and the
resulting p-values of casPS, aspPSs (AFR and EUR), and standard PSs trained in
the two AFR/EUR reference populations (ACAT Level 2).
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a higher lever of gene expression heritability in Europeans (h2
e,2 = 0.2) and lower

level of expression heritability in Africans (h2
e,1 = 0.1) and assume 10 eQTLs, we

still observe the Level 2 ACAT LA-aware approach achieving highest power. For the

anomalous setting mentioned, we note that gene-expression imputation accuracy here

is quite low across the board (Appendix Figure 4.7), and thus power is subsequently

low for all LA-aware and LA-unaware approaches. This is similar to the scenario

where we assume 100 eQTLs for the gene under study. We have comparatively less

accurate GReX imputation, and therefore it is unsurprising that we see low power in

the downstream association tests across all methods (Appendix Figures 4.14-4.15).

4.3.4 Applied Data Analysis

We applied several approaches to detect genes associated with blood biomarkers by

way of genetically-regulated transcriptional activity in a subset of 8,750 two-way

African/European admixed subjects in the UK Biobank. We first performed LA de-

convolution using FLARE and reference genotypes from AFR and EUR cohorts from

1000 Genomes. Through this, we estimated an overall global (genome-wide) pro-

portion of AFR genotypes of 86.6% and an estimated proportion of EUR genotypes

of 13.4%. Using our two sets of European-derived and high-African ancestry-derived

eQTL summary data in whole blood, we trained our AFR and EUR GReX imputation

models for 14,614 genes. Specifically, we used lassosum and pruning and threshold-

ing models, first pruning variants with an R2
T = 0.99 and then filtering by p-value

thresholds of PT = 0.05, 0.001. For each PRS model, we then imputed GReX in

our admixed UKB testing set in the standard OTTERS approach separately using

our AFR-trained models (PS AFR) and EUR-trained models (PS EUR). We also

imputed GReX in our proposed LA-aware approach using both sets of PRS models

and our inferred LA information. We calculated two ancestry-specific components of

gene expresion (aspPS AFR, aspPS EUR) and one vector representing the sum of
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these two components (casPS).

We tested for the association of each of the vectors of imputed GReX with 29

blood biomarkers: 4 bone and joint traits (alkaline phosphatase, calcium, rheuma-

toid factor, vitamin D), 8 cardiovascular traits (apolipoprotein A and B, C-reactive

protein, cholesterol, HDL cholesterol, LDL cholesterol, lipoprotein A, triglycerides), 2

diabetes-related traits (glucose, HbA1c), 3 hormone traits (insulin-like growth factor

1 [IGF-1], sex hormone binding globulin [SHBG], testosterone), 6 liver-related traits

(alanine aminotransferase, albumin, aspartate aminotransferase, direct bilirubin, γ

glutamyltransferase, total bilirubin), and 6 traits related to renal function (creati-

nine, cystatin C, phosphate, total protein, urate, urea). For each approach (PS AFR,

PS EUR, aspPS AFR, aspPS EUR, casPS), we calculated a Level 1 ACAT p-value,

aggregated across PRS models. We also combined subsets of these Level 1 p-values

to calculate two Level 2 ACAT p-values (casPS+aspPS, casPS+aspPS+PS).

We assessed significance at a Bonferroni-adjusted level of 0.05/(29 ∗ 14614) =

1.18× 10−7, adjusting for the total number of phenotypes and number of genes con-

sidered. Across all tests and imputation approaches, we identified 265 significant

gene-trait associations. We identified associations for 15/29 traits (51.7%), with the

most associations observed for SHBG (66), lipoprotein A (31), total bilirubin (29),

γ glutamyltransferase (26), and direct bilirubin (24). While 265 significant asso-

ciations were found, most gene-trait associations were unsurprisingly picked up by

more than one imputation approach, and thus we ultimately identified 71 unique

gene-trait pairings. In order to evaluate the utility of our LA-aware approaches, we

compare and contrast the total number of unique gene-trait associations identified in

Figure 4.18 (Appendix). Leveraging our LA-derived ancestry-specific p-values (aspPS

AFR/EUR) and the p-values from their combined component (casPS), this Level 2 ag-

gregation successfully identified 68/71 associations (95.8%). In Table 4.1, we present

the 15 gene-trait associations identified by this casPS+aspPS approach that were not
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identified by standard GReX imputation using reference eQTL summary data (PS

AFR, PS EUR). We provide the full lists of all gene-trait associations identified by

each individual approach in the Appendix (Tables 4.2-4.6).

Of these 15 genes, 14 have consistent evidence in the GWAS literature, with each

harboring one or more significant GWAS variant (p < 5×10−8) for the relevant traits.

However, one association (HNRNPH for lipoprotein A) is not located near known

GWAS loci [1]. While HNRNPH is a pseudogene, and thus the biological mechanisms

behind this association are thus unclear, previous work has helped elucidate the role

that pseudogenes can play in the development of cardiovascular disease [176].

Next, we used the online database TWAS Atlas to examine prior documented

TWAS associations for each of these 15 genes [177]. Some of the 15 genes identified

exclusively by our approach have been implicated in previous TWAS of relevant traits,

while others represent potentially new TWAS findings. For example, we did not find

prior TWAS associations of EIF4E2 with traits relevant to total bilirubin, whereas

ATG16L1 has been previously implicated in a TWAS of Crohn’s disease [178], which

is associated with low serum bilirubin [179]. While many of the genes identified by our

approach for lipoprotein A have been implicated by previous TWAS of lipid biomark-

ers of cardiovascular disease, CD36, on the other hand, has only been implicated in

a whole blood TWAS of body mass index (BMI) [180]. The four genes associated

with SHBG in Table 4.1 were identified in association with endometriosis in a recent

TWAS [181]. SHBG plays a role in the availability of sex hormones in the body, and

increased levels of SHBG were observed among women with endometriosis compared

to controls [182]. Genes CABIN1, LRRC75B, XRCC6, and HNRNPH1P1 did not

have any significant prior TWAS associations with biomarker-relevant phenotypes.
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Table 4.1: Associations identified in UKB blood biomarker analysis by Level 2 p-value
aggregation of LA-aware casPS and aspPSs that were not identified using standard
GReX imputation using PS trained in reference AFR and EUR eQTL summary data.
The p-values shown below represent ACAT(casPS p, aspPS AFR p, aspPS EUR p).

Phenotype Group Gene Name Chr Pos p
Total bilirubin Liver ENSG00000135930 EIF4E2 2 232550593 4.01E-08
Direct bilirubin Liver ENSG00000085978 ATG16L1 2 233210051 3.16E-08
Lipoprotein A Cardiovascular ENSG00000175048 ZDHHC14 6 157381133 5.98E-08
Lipoprotein A Cardiovascular ENSG00000220305 HNRNPH1P1 6 159712801 2.65E-10
Lipoprotein A Cardiovascular ENSG00000146457 WTAP 6 159725585 4.23E-08
Lipoprotein A Cardiovascular ENSG00000175003 SLC22A1 6 160121789 1.06E-08
Lipoprotein A Cardiovascular ENSG00000213071 LPAL2 6 160453428 4.49E-09
Apolipoprotein A Cardiovascular ENSG00000135218 CD36 7 80369575 1.08E-07
SHBG Hormone ENSG00000170175 CHRNB1 17 7445061 1.98E-08
SHBG Hormone ENSG00000209582 SNORA48 17 7574713 5.07E-09
SHBG Hormone ENSG00000129244 ATP1B2 17 7646627 1.43E-12
SHBG Hormone ENSG00000141499 WRAP53 17 7686372 3.15E-17
Gamma glutamyltransferase Liver ENSG00000099991 CABIN1 22 24011192 1.01E-07
Gamma glutamyltransferase Liver ENSG00000178026 LRRC75B 22 24585620 3.84E-10
Creatinine Renal ENSG00000196419 XRCC6 22 41621119 6.15E-09

4.4 Discussion

In this project, we introduce a novel method for performing transcriptome-wide asso-

ciation analysis in admixed subjects. Genomes of admixed individuals are a mosaic

of two or more distinct ancestral groups, and thus local ancestry tract information

within each haplotype can be leveraged to improve power in genetic association anal-

yses when causal variant effect sizes differ between populations. This method repre-

sents an important contribution to the small but growing catalog of statistical meth-

ods dedicated to admixed individuals as it does not require individual-level genotype

and gene expression data, as is typically needed in Stage 1 GReX model training in

TWAS. Here, we build upon a recently published TWAS approach, OTTERS, that

uses well-established PRS models designed for GWAS summary data and applies

them to eQTL summary data to impute gene expression in a tissue of interest [22].

In our proposed method, we use multiple sets of eQTL summary statistics, namely

those derived from the distinct parent ancestral groups of our admixed testing sam-

ple. The framework is flexible enough to also incorporate eQTL summary data from

admixed cohorts independent of the testing set. We assessed the performance of our
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method using both real and simulated admixed data and compare to standard TWAS

approaches designed for homogeneous populations that ignore LA information. Our

proposed approach achieved higher power compared to standard GReX imputation

approaches for the majority of simulation settings when LA imputation is accurate,

and in our applied analyses, we were able to identify 15 additional genes that were

not found by LA-unaware approaches.

Through our simulations, we first demonstrate that p-values of all variants of our

proposed approach yield the expected distribution under the null assumption of no

gene-trait association. These variants include two approaches of p-value aggregation:

Level (1), wherein we combine p-values from the three PRS models, and Level (2), in

which we aggregate some subset of p-values from Level (1). Next, through our power

simulations, we make several important observations. First, under all scenarios of 10

or fewer eQTLs , both our Level (1) casPS and Level (2) (casPS+aspPS+PS) aggrega-

tion methods achieve superior power to any standard LA-unaware approach when the

genetic architecture of gene expression differs between AFR and EUR populations. In

fact, there is growing evidence for such ancestry-specific genetic architecture patterns,

and estimated gene expression heritability has also been shown to differ significantly

by local ancestry at the transcription start site of genes among admixed subjects

[133]. Second, even when genetic architecture patterns are identical between an-

cestries, our LA-aware Level (1) casPS and Level (2) (casPS+aspPS+PS) generally

achieve greater power or power comparable to if we employed standard GReX im-

putation using eQTL summary data from a perfectly ancestrally-matched (number

of admixture generations, initial AFR/EUR contribution proportions) independent

admixed sample. Third, we also see that our Level (2) approach still performs com-

petitively in these settings when we assume a large number (10%) of local ancestries

are misclassified in the gene region.

Finally, in our applied analysis, we use real-world eQTL summary data from a Eu-
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ropean sample and a high-African ancestry sample of African Americans to perform

TWAS of 29 blood biomarker traits. Here, our testing set is two-way African and

European admixed subjects from the UK Biobank. We successfully identified 15 sig-

nificant gene-trait associations using our Level 2 p-value aggregation approach (casPS

+ aspPSs) that were not picked up using standard GReX PS imputation methods

that ignore local ancestry (PS AFR, PS EUR). 14 of these genes are consistent with

GWAS loci previously identified for the corresponding traits. However, one gene,

HNRNPH on chromosome 6, represents a potentially novel locus for lipoprotein A

and was not identified by standard GReX imputation.

We observe several limitations of our present work. We first note that while our

method demonstrates desirable power levels for modest trait heritability, the gene

expression imputation accuracies are lower across all simulation settings than the

assigned true indicated gene expression heritability levels. We argue, however, that

our imputation models are trained using PRS approaches to leverage the widespread

availability of eQTL summary data, and R2 has been shown to fall below true trait

heritability for common PRS approaches [22, 174], and we expect imputation accuracy

to be even lower when ancestry-specific effects are at play. We argue that we may fur-

ther improve imputation accuracy by including more PRS approaches to our method,

and, importantly, those designed precisely for admixed samples (e.g., GAUDI [158]).

Additionally, in this project, we only consider two-way admixed individuals for both

our simulated analyses and applied work in the UK Biobank. We believe that we can

easily extend this approach to allow for three-way or higher levels of admixture, and

that the approach is computationally efficient enough to implement this in practice.

Finally, we designed our method to utilize eQTL data from ancestrally homogeneous

parent ancestral groups. However, when seeking to apply our method to admixed

individuals of African ancestry, we note there is a marked paucity of eQTL studies

performed in non-admixed African cohorts. The eQTL summary data from African
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American individuals with > 50% African ancestry-alleles currently represents the

best surrogate dataset of reasonable sample size for our analysis, and this substitu-

tion has similarly been employed in another recent methodological paper [158].

4.5 Appendix

4.5.1 Tables
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Table 4.2: Associations identified in UKB blood biomarker analysis by Level 2 p-value
aggregation of LA-aware casPSs and aspPSs. The p-values shown below represent
ACAT(casPS p, aspPS AFR p, aspPS EUR p).

Phenotype Gene Name Chr Pos p
Apolipoprotein B ENSG00000134222 PSRC1 1 109279556 2.86E-11
C-reactive protein ENSG00000158716 DUSP23 1 159780932 3.05E-10
C-reactive protein ENSG00000272668 RP11-190A12.8 1 159866954 5.28E-16
C-reactive protein ENSG00000279430 RP11-190A12.9 1 159910094 5.76E-09
Total bilirubin ENSG00000135930 EIF4E2 2 232550593 4.01E-08
Direct bilirubin ENSG00000085978 ATG16L1 2 233210051 3.16E-08
Total bilirubin ENSG00000085978 ATG16L1 2 233210051 3.55E-22
Direct bilirubin ENSG00000251791 SCARNA6 2 233288676 1.23E-24
Total bilirubin ENSG00000251791 SCARNA6 2 233288676 9.79E-50
Direct bilirubin ENSG00000259793 RP11-400N9.1 2 233351132 8.51E-21
Total bilirubin ENSG00000259793 RP11-400N9.1 2 233351132 1.12E-43
Direct bilirubin ENSG00000077044 DGKD 2 233354507 9.35E-53
Total bilirubin ENSG00000077044 DGKD 2 233354507 5.98E-77
Direct bilirubin ENSG00000085982 USP40 2 233475520 6.44E-27
Total bilirubin ENSG00000085982 USP40 2 233475520 4.31E-58
Direct bilirubin ENSG00000123485 HJURP 2 233833424 3.99E-28
Total bilirubin ENSG00000123485 HJURP 2 233833424 1.30E-49
Urate ENSG00000261490 RP11-448G15.3 4 10068089 3.44E-13
Urate ENSG00000178163 ZNF518B 4 10439874 4.96E-12
Alkaline phosphatase ENSG00000112293 GPLD1 6 24428177 1.08E-26
Lipoprotein A ENSG00000175048 ZDHHC14 6 157381133 5.98E-08
Lipoprotein A ENSG00000122335 SERAC1 6 158109515 3.90E-09
Lipoprotein A ENSG00000218226 TATDN2P2 6 158609706 9.25E-09
Lipoprotein A ENSG00000164691 TAGAP 6 159034468 2.24E-10
Lipoprotein A ENSG00000220305 HNRNPH1P1 6 159712801 2.65E-10
Lipoprotein A ENSG00000146457 WTAP 6 159725585 4.23E-08
Lipoprotein A ENSG00000175003 SLC22A1 6 160121789 1.06E-08
Lipoprotein A ENSG00000213071 LPAL2 6 160453428 4.49E-09
Lipoprotein A ENSG00000026652 AGPAT4 6 161129979 6.58E-17
Alkaline phosphatase ENSG00000135218 CD36 7 80369575 5.28E-16
Apolipoprotein A ENSG00000135218 CD36 7 80369575 1.08E-07
SHBG ENSG00000148572 NRBF2 10 63133247 6.99E-10
SHBG ENSG00000165476 REEP3 10 63521363 6.63E-11
Apolipoprotein A ENSG00000118137 APOA1 11 116835751 1.32E-08
Phosphate ENSG00000047621 C12orf4 12 4487728 1.60E-11
Apolipoprotein B ENSG00000182149 IST1 16 71885233 1.08E-07
SHBG ENSG00000169992 NLGN2 17 7404874 2.09E-11
SHBG ENSG00000181284 TMEM102 17 7435443 7.35E-13
SHBG ENSG00000170175 CHRNB1 17 7445061 1.98E-08
SHBG ENSG00000239697 TNFSF12 17 7548891 1.70E-18
SHBG ENSG00000161955 TNFSF13 17 7558292 5.99E-30
SHBG ENSG00000161960 EIF4A1 17 7572706 1.38E-10
SHBG ENSG00000209582 SNORA48 17 7574713 5.07E-09
SHBG ENSG00000129226 CD68 17 7579467 5.74E-32
SHBG ENSG00000129255 MPDU1 17 7583529 1.73E-29
SHBG ENSG00000141504 SAT2 17 7626234 2.68E-33
SHBG ENSG00000129244 ATP1B2 17 7646627 1.43E-12
SHBG ENSG00000141510 TP53 17 7661779 5.41E-21
SHBG ENSG00000141499 WRAP53 17 7686372 3.15E-17
SHBG ENSG00000167874 TMEM88 17 7855065 3.71E-09
SHBG ENSG00000132518 GUCY2D 17 8002594 4.09E-14
Alkaline phosphatase ENSG00000171119 NRTN 19 5823802 7.43E-09
Apolipoprotein B ENSG00000186019 AC084219.4 19 44105463 6.33E-21
Cholesterol ENSG00000186019 AC084219.4 19 44105463 6.63E-14
LDL direct ENSG00000186019 AC084219.4 19 44105463 4.88E-18
Apolipoprotein B ENSG00000130204 TOMM40 19 44890569 8.66E-24
Cholesterol ENSG00000130204 TOMM40 19 44890569 3.03E-09
LDL direct ENSG00000130204 TOMM40 19 44890569 1.44E-15
Alkaline phosphatase ENSG00000142233 NTN5 19 48661407 5.71E-08
Cystatin C ENSG00000101439 CST3 20 23626706 9.65E-27
Gamma glutamyltransferase ENSG00000099991 CABIN1 22 24011192 1.01E-07
Gamma glutamyltransferase ENSG00000099998 GGT5 22 24219654 1.09E-09
Gamma glutamyltransferase ENSG00000100024 UPB1 22 24494107 1.77E-13
Gamma glutamyltransferase ENSG00000178026 LRRC75B 22 24585620 3.84E-10
Gamma glutamyltransferase ENSG00000100031 GGT1 22 24594811 5.82E-16
Gamma glutamyltransferase ENSG00000284128 BCRP3 22 24644791 3.01E-23
Gamma glutamyltransferase ENSG00000167037 SGSM1 22 24806169 2.50E-12
Creatinine ENSG00000196419 XRCC6 22 41621119 6.15E-09
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Table 4.3: Associations identified in UKB blood biomarker analysis by Level 2 p-value
aggregation of LA-aware casPSs, aspPSs, and standard GReX imputation using PS
trained in reference AFR and EUR eQTL summary data. The p-values shown below
represent ACAT(casPS p, aspPS AFR p, aspPS EUR p, PS AFR, PS EUR).

Phenotype Gene Name Chr Pos p
Apolipoprotein B ENSG00000134222 PSRC1 1 109279556 7.04E-12
C-reactive protein ENSG00000158716 DUSP23 1 159780932 4.65E-12
C-reactive protein ENSG00000272668 RP11-190A12.8 1 159866954 8.80E-16
C-reactive protein ENSG00000279430 RP11-190A12.9 1 159910094 4.51E-09
C-reactive protein ENSG00000171786 NHLH1 1 160367067 1.72E-08
Total bilirubin ENSG00000135930 EIF4E2 2 232550593 6.68E-08
Direct bilirubin ENSG00000085978 ATG16L1 2 233210051 5.27E-08
Total bilirubin ENSG00000085978 ATG16L1 2 233210051 5.92E-22
Direct bilirubin ENSG00000251791 SCARNA6 2 233288676 1.11E-24
Total bilirubin ENSG00000251791 SCARNA6 2 233288676 7.81E-50
Direct bilirubin ENSG00000259793 RP11-400N9.1 2 233351132 1.32E-20
Total bilirubin ENSG00000259793 RP11-400N9.1 2 233351132 1.83E-43
Direct bilirubin ENSG00000077044 DGKD 2 233354507 5.55E-77
Total bilirubin ENSG00000077044 DGKD 2 233354507 2.73E-111
Direct bilirubin ENSG00000085982 USP40 2 233475520 2.66E-29
Total bilirubin ENSG00000085982 USP40 2 233475520 7.19E-58
Direct bilirubin ENSG00000123485 HJURP 2 233833424 4.56E-29
Total bilirubin ENSG00000123485 HJURP 2 233833424 6.68E-50
Urate ENSG00000261490 RP11-448G15.3 4 10068089 1.08E-39
Urate ENSG00000071127 WDR1 4 10074339 3.38E-09
Urate ENSG00000178163 ZNF518B 4 10439874 5.61E-22
Alkaline phosphatase ENSG00000112293 GPLD1 6 24428177 1.43E-26
Lipoprotein A ENSG00000175048 ZDHHC14 6 157381133 9.96E-08
Lipoprotein A ENSG00000122335 SERAC1 6 158109515 6.38E-09
Lipoprotein A ENSG00000218226 TATDN2P2 6 158609706 1.46E-08
Lipoprotein A ENSG00000164691 TAGAP 6 159034468 3.57E-10
Lipoprotein A ENSG00000220305 HNRNPH1P1 6 159712801 4.42E-10
Lipoprotein A ENSG00000146457 WTAP 6 159725585 7.05E-08
Lipoprotein A ENSG00000175003 SLC22A1 6 160121789 1.77E-08
Lipoprotein A ENSG00000213071 LPAL2 6 160453428 7.49E-09
Lipoprotein A ENSG00000026652 AGPAT4 6 161129979 1.10E-16
Alkaline phosphatase ENSG00000135218 CD36 7 80369575 7.73E-16
SHBG ENSG00000148572 NRBF2 10 63133247 5.89E-10
SHBG ENSG00000165476 REEP3 10 63521363 1.10E-10
Apolipoprotein A ENSG00000118137 APOA1 11 116835751 1.75E-08
Phosphate ENSG00000047621 C12orf4 12 4487728 1.19E-11
SHBG ENSG00000169992 NLGN2 17 7404874 3.42E-11
SHBG ENSG00000181284 TMEM102 17 7435443 1.15E-12
SHBG ENSG00000170175 CHRNB1 17 7445061 3.25E-08
SHBG ENSG00000239697 TNFSF12 17 7548891 2.83E-18
SHBG ENSG00000161955 TNFSF13 17 7558292 9.98E-30
SHBG ENSG00000161960 EIF4A1 17 7572706 5.75E-13
SHBG ENSG00000209582 SNORA48 17 7574713 8.45E-09
SHBG ENSG00000238917 SNORD10 17 7576811 4.09E-13
SHBG ENSG00000129226 CD68 17 7579467 6.67E-32
SHBG ENSG00000129255 MPDU1 17 7583529 1.56E-29
SHBG ENSG00000141504 SAT2 17 7626234 4.25E-33
SHBG ENSG00000129244 ATP1B2 17 7646627 2.38E-12
SHBG ENSG00000141510 TP53 17 7661779 9.02E-21
SHBG ENSG00000141499 WRAP53 17 7686372 5.25E-17
SHBG ENSG00000167874 TMEM88 17 7855065 1.36E-09
SHBG ENSG00000132518 GUCY2D 17 8002594 6.81E-14
Alkaline phosphatase ENSG00000171119 NRTN 19 5823802 7.65E-09
Apolipoprotein B ENSG00000186019 AC084219.4 19 44105463 6.83E-21
Cholesterol ENSG00000186019 AC084219.4 19 44105463 1.03E-13
LDL direct ENSG00000186019 AC084219.4 19 44105463 6.86E-18
Apolipoprotein B ENSG00000130204 TOMM40 19 44890569 1.43E-23
Cholesterol ENSG00000130204 TOMM40 19 44890569 4.84E-09
LDL direct ENSG00000130204 TOMM40 19 44890569 2.37E-15
Alkaline phosphatase ENSG00000142233 NTN5 19 48661407 2.60E-08
Cystatin C ENSG00000101439 CST3 20 23626706 5.07E-31
Gamma glutamyltransferase ENSG00000099998 GGT5 22 24219654 5.10E-10
Gamma glutamyltransferase ENSG00000100024 UPB1 22 24494107 2.95E-13
Gamma glutamyltransferase ENSG00000178026 LRRC75B 22 24585620 6.40E-10
Gamma glutamyltransferase ENSG00000100031 GGT1 22 24594811 9.69E-16
Gamma glutamyltransferase ENSG00000284128 BCRP3 22 24644791 2.79E-24
Gamma glutamyltransferase ENSG00000167037 SGSM1 22 24806169 1.74E-12
Creatinine ENSG00000196419 XRCC6 22 41621119 1.03E-08
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Table 4.4: Associations identified in UKB blood biomarker analysis by Level 2 p-value
aggregation of LA-aware aspPSs. The p-values shown below represent ACAT(aspPS
AFR p, aspPS EUR p).

Phenotype Gene Name Chr Pos p
Apolipoprotein B ENSG00000134222 PSRC1 1 109279556 1.90E-11
C-reactive protein ENSG00000158716 DUSP23 1 159780932 2.04E-10
C-reactive protein ENSG00000272668 RP11-190A12.8 1 159866954 7.72E-16
C-reactive protein ENSG00000279430 RP11-190A12.9 1 159910094 3.92E-09
Total bilirubin ENSG00000135930 EIF4E2 2 232550593 2.67E-08
Direct bilirubin ENSG00000085978 ATG16L1 2 233210051 2.11E-08
Total bilirubin ENSG00000085978 ATG16L1 2 233210051 2.37E-22
Direct bilirubin ENSG00000251791 SCARNA6 2 233288676 8.22E-25
Total bilirubin ENSG00000251791 SCARNA6 2 233288676 6.53E-50
Direct bilirubin ENSG00000259793 RP11-400N9.1 2 233351132 2.07E-20
Total bilirubin ENSG00000259793 RP11-400N9.1 2 233351132 4.46E-43
Direct bilirubin ENSG00000077044 DGKD 2 233354507 6.23E-53
Total bilirubin ENSG00000077044 DGKD 2 233354507 3.98E-77
Direct bilirubin ENSG00000085982 USP40 2 233475520 5.54E-25
Total bilirubin ENSG00000085982 USP40 2 233475520 1.75E-44
Direct bilirubin ENSG00000123485 HJURP 2 233833424 2.66E-28
Total bilirubin ENSG00000123485 HJURP 2 233833424 8.68E-50
Urate ENSG00000261490 RP11-448G15.3 4 10068089 2.29E-13
Urate ENSG00000178163 ZNF518B 4 10439874 3.31E-12
Alkaline phosphatase ENSG00000112293 GPLD1 6 24428177 7.18E-27
Lipoprotein A ENSG00000175048 ZDHHC14 6 157381133 8.58E-08
Lipoprotein A ENSG00000122335 SERAC1 6 158109515 2.60E-09
Lipoprotein A ENSG00000218226 TATDN2P2 6 158609706 1.18E-08
Lipoprotein A ENSG00000164691 TAGAP 6 159034468 2.49E-10
Lipoprotein A ENSG00000220305 HNRNPH1P1 6 159712801 2.16E-10
Lipoprotein A ENSG00000146457 WTAP 6 159725585 2.83E-08
Lipoprotein A ENSG00000175003 SLC22A1 6 160121789 7.14E-09
Lipoprotein A ENSG00000213071 LPAL2 6 160453428 2.99E-09
Lipoprotein A ENSG00000026652 AGPAT4 6 161129979 4.39E-17
Alkaline phosphatase ENSG00000135218 CD36 7 80369575 5.80E-16
Apolipoprotein A ENSG00000135218 CD36 7 80369575 1.10E-07
SHBG ENSG00000148572 NRBF2 10 63133247 7.03E-10
SHBG ENSG00000165476 REEP3 10 63521363 4.42E-11
Apolipoprotein A ENSG00000118137 APOA1 11 116835751 1.71E-08
Phosphate ENSG00000047621 C12orf4 12 4487728 2.30E-11
Apolipoprotein B ENSG00000182149 IST1 16 71885233 7.19E-08
SHBG ENSG00000169992 NLGN2 17 7404874 1.39E-11
SHBG ENSG00000181284 TMEM102 17 7435443 1.00E-11
SHBG ENSG00000239697 TNFSF12 17 7548891 1.13E-18
SHBG ENSG00000161955 TNFSF13 17 7558292 3.99E-30
SHBG ENSG00000161960 EIF4A1 17 7572706 1.95E-10
SHBG ENSG00000129226 CD68 17 7579467 3.83E-32
SHBG ENSG00000129255 MPDU1 17 7583529 1.15E-29
SHBG ENSG00000141504 SAT2 17 7626234 1.79E-33
SHBG ENSG00000129244 ATP1B2 17 7646627 1.09E-12
SHBG ENSG00000141510 TP53 17 7661779 8.61E-21
SHBG ENSG00000141499 WRAP53 17 7686372 2.10E-17
SHBG ENSG00000167874 TMEM88 17 7855065 2.91E-09
SHBG ENSG00000132518 GUCY2D 17 8002594 2.73E-14
Alkaline phosphatase ENSG00000171119 NRTN 19 5823802 9.98E-09
Apolipoprotein B ENSG00000186019 AC084219.4 19 44105463 4.22E-21
Cholesterol ENSG00000186019 AC084219.4 19 44105463 4.42E-14
LDL direct ENSG00000186019 AC084219.4 19 44105463 3.25E-18
Apolipoprotein B ENSG00000130204 TOMM40 19 44890569 8.41E-20
LDL direct ENSG00000130204 TOMM40 19 44890569 5.99E-13
Alkaline phosphatase ENSG00000142233 NTN5 19 48661407 3.81E-08
Cystatin C ENSG00000101439 CST3 20 23626706 6.50E-27
Gamma glutamyltransferase ENSG00000099991 CABIN1 22 24011192 7.65E-08
Gamma glutamyltransferase ENSG00000099998 GGT5 22 24219654 7.79E-10
Gamma glutamyltransferase ENSG00000100024 UPB1 22 24494107 1.18E-13
Gamma glutamyltransferase ENSG00000178026 LRRC75B 22 24585620 2.15E-09
Gamma glutamyltransferase ENSG00000100031 GGT1 22 24594811 3.88E-16
Gamma glutamyltransferase ENSG00000284128 BCRP3 22 24644791 4.05E-23
Gamma glutamyltransferase ENSG00000167037 SGSM1 22 24806169 2.90E-12
Creatinine ENSG00000196419 XRCC6 22 41621119 4.10E-09
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Table 4.5: Associations identified in UKB blood biomarker analysis by Level 1 p-value
aggregation of standard GReX imputation using PSs trained in reference AFR eQTL
summary data. The p-values shown below represent p-value aggregation of the three
PRS models.

Phenotype Gene Name Chr Pos p
Apolipoprotein B ENSG00000134222 PSRC1 1 109279556 1.65E-12
C-reactive protein ENSG00000158716 DUSP23 1 159780932 9.39E-13
C-reactive protein ENSG00000272668 RP11-190A12.8 1 159866954 2.83E-09
C-reactive protein ENSG00000279430 RP11-190A12.9 1 159910094 1.70E-09
Total bilirubin ENSG00000085978 ATG16L1 2 233210051 4.48E-11
Total bilirubin ENSG00000251791 SCARNA6 2 233288676 1.07E-07
Direct bilirubin ENSG00000259793 RP11-400N9.1 2 233351132 4.04E-20
Total bilirubin ENSG00000259793 RP11-400N9.1 2 233351132 1.59E-42
Direct bilirubin ENSG00000085982 USP40 2 233475520 2.09E-20
Total bilirubin ENSG00000085982 USP40 2 233475520 3.82E-48
Urate ENSG00000178163 ZNF518B 4 10439874 1.12E-22
Alkaline phosphatase ENSG00000112293 GPLD1 6 24428177 1.41E-26
Lipoprotein A ENSG00000122335 SERAC1 6 158109515 6.96E-08
Lipoprotein A ENSG00000218226 TATDN2P2 6 158609706 5.91E-08
Lipoprotein A ENSG00000164691 TAGAP 6 159034468 1.61E-09
Lipoprotein A ENSG00000026652 AGPAT4 6 161129979 2.40E-13
Alkaline phosphatase ENSG00000135218 CD36 7 80369575 1.27E-15
SHBG ENSG00000148572 NRBF2 10 63133247 2.38E-10
Apolipoprotein A ENSG00000118137 APOA1 11 116835751 1.71E-08
Phosphate ENSG00000047621 C12orf4 12 4487728 4.32E-12
SHBG ENSG00000169992 NLGN2 17 7404874 4.29E-10
SHBG ENSG00000181284 TMEM102 17 7435443 4.07E-12
SHBG ENSG00000239697 TNFSF12 17 7548891 2.30E-08
SHBG ENSG00000161955 TNFSF13 17 7558292 6.24E-21
SHBG ENSG00000161960 EIF4A1 17 7572706 1.15E-13
SHBG ENSG00000129226 CD68 17 7579467 4.41E-32
SHBG ENSG00000129255 MPDU1 17 7583529 6.83E-30
SHBG ENSG00000141504 SAT2 17 7626234 1.79E-32
SHBG ENSG00000141510 TP53 17 7661779 1.58E-17
SHBG ENSG00000167874 TMEM88 17 7855065 3.49E-10
SHBG ENSG00000132518 GUCY2D 17 8002594 2.50E-11
Alkaline phosphatase ENSG00000171119 NRTN 19 5823802 4.00E-09
Apolipoprotein B ENSG00000130204 TOMM40 19 44890569 3.68E-22
Cholesterol ENSG00000130204 TOMM40 19 44890569 2.31E-08
LDL direct ENSG00000130204 TOMM40 19 44890569 4.37E-14
Cystatin C ENSG00000101439 CST3 20 23626706 1.01E-31
Gamma glutamyltransferase ENSG00000099998 GGT5 22 24219654 1.42E-10
Gamma glutamyltransferase ENSG00000284128 BCRP3 22 24644791 5.90E-25
Gamma glutamyltransferase ENSG00000167037 SGSM1 22 24806169 5.99E-13
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Table 4.6: Associations identified in UKB blood biomarker analysis by Level 1 p-value
aggregation of standard GReX imputation using PSs trained in reference EUR eQTL
summary data. The p-values shown below represent p-value aggregation of the three
PRS models.

Phenotype Gene Name Chr Pos p
C-reactive protein ENSG00000171786 NHLH1 1 160367067 3.48E-09
Direct bilirubin ENSG00000251791 SCARNA6 2 233288676 4.87E-25
Total bilirubin ENSG00000251791 SCARNA6 2 233288676 3.00E-50
Direct bilirubin ENSG00000077044 DGKD 2 233354507 1.11E-77
Total bilirubin ENSG00000077044 DGKD 2 233354507 5.46E-112
Direct bilirubin ENSG00000085982 USP40 2 233475520 5.33E-30
Total bilirubin ENSG00000085982 USP40 2 233475520 1.48E-49
Direct bilirubin ENSG00000123485 HJURP 2 233833424 9.79E-30
Total bilirubin ENSG00000123485 HJURP 2 233833424 1.93E-50
Urate ENSG00000261490 RP11-448G15.3 4 10068089 2.17E-40
Urate ENSG00000071127 WDR1 4 10074339 6.77E-10
Alkaline phosphatase ENSG00000112293 GPLD1 6 24428177 3.72E-13
SHBG ENSG00000165476 REEP3 10 63521363 3.78E-09
Apolipoprotein B ENSG00000182149 IST1 16 71885233 1.08E-07
SHBG ENSG00000239697 TNFSF12 17 7548891 1.42E-08
SHBG ENSG00000238917 SNORD10 17 7576811 8.19E-14
SHBG ENSG00000141504 SAT2 17 7626234 8.63E-08
Apolipoprotein B ENSG00000186019 AC084219.4 19 44105463 3.88E-21
Cholesterol ENSG00000186019 AC084219.4 19 44105463 3.23E-13
LDL direct ENSG00000186019 AC084219.4 19 44105463 8.81E-18
Alkaline phosphatase ENSG00000142233 NTN5 19 48661407 7.17E-09
Cystatin C ENSG00000101439 CST3 20 23626706 1.26E-15
Gamma glutamyltransferase ENSG00000100024 UPB1 22 24494107 2.06E-10
Gamma glutamyltransferase ENSG00000100031 GGT1 22 24594811 7.11E-08
Gamma glutamyltransferase ENSG00000284128 BCRP3 22 24644791 1.43E-12

4.5.2 Figures
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Figure 4.6: Gene expression imputation accuracy in 10,000 admixed testing samples
(10 admixture generations, 80% initial contribution from AFR) for expression her-
itability h2

e,1 = 0.2, h2
e,2 = 0.1. Vertical panels indicate the true number of causal

SNPs for gene expression (eQTLs). Horizontal panels indication the proportion of
eQTLs that overlap (OP) between AFR and EUR ancestries, as well as the correla-
tion in eQTL effect sizes for shared eQTLs between the two ancestral groups (ρ). The
x-axis shows the GReX imputation approach, including our proposed local-ancestry
aware methods (aspPS, casPS) and standard PRS imputation approaches (PS). For
ancestry-aware methods, we assume no local ancestry misclassification. Whiskers
of boxplot extend to maximum/minimum point that is less than 1.5*IQR from the
third/first quartiles.



134

2 eQTLs 10 eQTLs 100 eQTLs

R
ho 0.5

O
P

 0.5

R
ho 1

O
P

 0.5

R
ho 0.5

O
P

 1

R
ho 1

O
P

 1

as
pP

S
 A

F
R

as
pP

S
 E

U
R

ca
sP

S
A

D
M

IX
_8

0_
10

g 
P

S
A

D
M

IX
_8

0_
5g

 P
S

A
D

M
IX

_5
0_

5g
 P

S
A

F
R

 P
S

E
U

R
 P

S

as
pP

S
 A

F
R

as
pP

S
 E

U
R

ca
sP

S
A

D
M

IX
_8

0_
10

g 
P

S
A

D
M

IX
_8

0_
5g

 P
S

A
D

M
IX

_5
0_

5g
 P

S
A

F
R

 P
S

E
U

R
 P

S

as
pP

S
 A

F
R

as
pP

S
 E

U
R

ca
sP

S
A

D
M

IX
_8

0_
10

g 
P

S
A

D
M

IX
_8

0_
5g

 P
S

A
D

M
IX

_5
0_

5g
 P

S
A

F
R

 P
S

E
U

R
 P

S

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Im
pu

ta
tio

n 
R

2 PRS Method

lassosum
P0.001
P0.05

Testing N 10000, LA Misclassification 0%

H2 AFR 0.1/H2 EUR 0.2

Figure 4.7: Gene expression imputation accuracy in 10,000 admixed testing samples
(10 admixture generations, 80% initial contribution from AFR) for expression her-
itability h2

e,1 = 0.1, h2
e,2 = 0.2. Vertical panels indicate the true number of causal

SNPs for gene expression (eQTLs). Horizontal panels indication the proportion of
eQTLs that overlap (OP) between AFR and EUR ancestries, as well as the correla-
tion in eQTL effect sizes for shared eQTLs between the two ancestral groups (ρ). The
x-axis shows the GReX imputation approach, including our proposed local-ancestry
aware methods (aspPS, casPS) and standard PRS imputation approaches (PS). For
ancestry-aware methods, we assume no local ancestry misclassification. Whiskers
of boxplot extend to maximum/minimum point that is less than 1.5*IQR from the
third/first quartiles.
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Figure 4.8: Gene expression imputation accuracy of pruning and thresholding (PT =
0.001) for LA-aware approaches in 10,000 admixed testing samples (10 admixture
generations, 80% initial contribution from AFR). Vertical panels indicate the true
number of causal SNPs for gene expression (eQTLs). Horizontal panels indicate the
proportion of eQTLs that overlap (OP) between AFR and EUR ancestries, as well as
the correlation in eQTL effect sizes for shared eQTLs between the two ancestral groups
(ρ). For these ancestry-aware methods, we assume either no LA misclassification
(darker boxes) or 10% misclassification of SNPs in the gene region (lighter boxes).
Whiskers of boxplot extend to maximum/minimum point that is less than 1.5*IQR
from the third/first quartiles.
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Figure 4.9: Gene expression imputation accuracy of pruning and thresholding (PT =
0.05) for LA-aware approaches in 10,000 admixed testing samples (10 admixture gen-
erations, 80% initial contribution from AFR). Vertical panels indicate the true number
of causal SNPs for gene expression (eQTLs). Horizontal panels indicate the propor-
tion of eQTLs that overlap (OP) between AFR and EUR ancestries, as well as the
correlation in eQTL effect sizes for shared eQTLs between the two ancestral groups
(ρ). For these ancestry-aware methods, we assume either no LA misclassification
(darker boxes) or 10% misclassification of SNPs in the gene region (lighter boxes).
Whiskers of boxplot extend to maximum/minimum point that is less than 1.5*IQR
from the third/first quartiles.
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Figure 4.10: Gene expression imputation accuracy of lassosum for LA-aware ap-
proaches in 10,000 admixed testing samples (10 admixture generations, 80% initial
contribution from AFR). Vertical panels indicate the true number of causal SNPs
for gene expression (eQTLs). Horizontal panels indicate the proportion of eQTLs
that overlap (OP) between AFR and EUR ancestries, as well as the correlation in
eQTL effect sizes for shared eQTLs between the two ancestral groups (ρ). For these
ancestry-aware methods, we assume either no LA misclassification (darker boxes) or
10% misclassification of SNPs in the gene region (lighter boxes). Whiskers of boxplot
extend to maximum/minimum point that is less than 1.5*IQR from the third/first
quartiles.
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Figure 4.11: QQ plots of p-values from gene-level association tests from LA-aware
GReX imputation approaches under the null when no association of expression with
trait exists. For these ancestry-aware methods, we assume 10% local ancestry mis-
classification for SNPs in the gene region. Here, we assume a testing sample size of
10,000. These p-values represent Level 1 p-value aggregation by ACAT, i.e., aggrega-
tion of p-values across the three PRS models (P+T0.001, P+T0.05, lassosum). Each
plot shown corresponds to 36,000 total simulations, including all 36 gene expression
simulation settings.
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Figure 4.12: Power of gene-level association tests of imputed GReX vectors and simu-
lated trait at significance level α = 5×10−5. Here, we assume a phenotypic heritability
of h2

p = 0.025, 2 eQTLs, 10% local ancestry (LA) misclassification of cis-SNPs for LA-
aware approaches, and a testing dataset sample size of 10,000. Vertical panels indicate
the proportion of eQTLs that are shared between AFR and EUR ancestries (OP) and
the correlation of eQTL effect sizes for shared eQTLs (ρ). Horizontal panels indicate
the gene expression heritability in AFR and EUR ancestries (h2

e AFR/EUR). Pink
bars indicate the power of LA-unaware GReX imputation approaches, with p-values
aggregated across the three PRS models (ACAT Level 1). Light blue bars indicate
LA-aware approaches with Level 1 p-value aggregation by ACAT. Dark blue bars
indicate the power of LA-aware approaches, aggregating both PRS p-values and the
resulting p-values of casPS, aspPSs (AFR and EUR), and standard PSs trained in
the two AFR/EUR reference populations (ACAT Level 2).
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Figure 4.13: Power of gene-level association tests of imputed GReX vectors and simu-
lated trait at significance level α = 5×10−5. Here, we assume a phenotypic heritability
of h2

p = 0.025, 10 eQTLs, 10% local ancestry (LA) misclassification of cis-SNPs for
LA-aware approaches, and a testing dataset sample size of 10,000. Vertical panels
indicate the proportion of eQTLs that are shared between AFR and EUR ancestries
(OP) and the correlation of eQTL effect sizes for shared eQTLs (ρ). Horizontal panels
indicate the gene expression heritability in AFR and EUR ancestries (h2

e AFR/EUR).
Pink bars indicate the power of LA-unaware GReX imputation approaches, with p-
values aggregated across the three PRS models (ACAT Level 1). Light blue bars
indicate LA-aware approaches with Level 1 p-value aggregation by ACAT. Dark blue
bars indicate the power of LA-aware approaches, aggregating both PRS p-values and
the resulting p-values of casPS, aspPSs (AFR and EUR), and standard PSs trained
in the two AFR/EUR reference populations (ACAT Level 2).
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Figure 4.14: Power of gene-level association tests of imputed GReX vectors and
simulated trait at significance level α = 5 × 10−5. Here, we assume a phenotypic
heritability of h2

p = 0.025, 100 eQTLs, no local ancestry (LA) misclassification for
LA-aware approaches, and a testing dataset sample size of 10,000. Vertical panels
indicate the proportion of eQTLs that are shared between AFR and EUR ancestries
(OP) and the correlation of eQTL effect sizes for shared eQTLs (ρ). Horizontal panels
indicate the gene expression heritability in AFR and EUR ancestries (h2

e AFR/EUR).
Pink bars indicate the power of non-LA-aware GReX imputation approaches, with
p-values aggregated across the three PRS models (ACAT Level 1). Light blue bars
indicate LA-aware approaches with Level 1 p-value aggregation by ACAT. Dark blue
bars indicate the power of LA-aware approaches, aggregating both PRS p-values and
the resulting p-values of casPS, aspPSs (AFR and EUR), and standard PSs trained
in the two AFR/EUR reference populations (ACAT Level 2).
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Figure 4.15: Power of gene-level association tests of imputed GReX vectors and
simulated trait at significance level α = 5 × 10−5. Here, we assume a phenotypic
heritability of h2

p = 0.025, 100 eQTLs, 10% local ancestry (LA) misclassification
of cis-SNPs for LA-aware approaches, and a testing dataset sample size of 10,000.
Vertical panels indicate the proportion of eQTLs that are shared between AFR and
EUR ancestries (OP) and the correlation of eQTL effect sizes for shared eQTLs (ρ).
Horizontal panels indicate the gene expression heritability in AFR and EUR ancestries
(h2

e AFR/EUR). Pink bars indicate the power of non-LA-aware GReX imputation
approaches, with p-values aggregated across the three PRS models (ACAT Level 1).
Light blue bars indicate LA-aware approaches with Level 1 p-value aggregation by
ACAT. Dark blue bars indicate the power of LA-aware approaches, aggregating both
PRS p-values and the resulting p-values of casPS, aspPSs (AFR and EUR), and
standard PSs trained in the two AFR/EUR reference populations (ACAT Level 2).
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Figure 4.16: Projection of UKB self-reported non-White individuals (N=27,491) onto
three-dimensional principal component space calculated using 1000 Genomes samples
from the following superpopulations: African, American, East Asian, European and
South Asian. Coloring of samples indicates self-reported (SR) ethnicity of UKB
subjects.
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Figure 4.17: Projection onto 1000 Genomes principal component space of N=9,187
UKB self-reported non-white subjects with > 50% probability of AFR ancestry by
the random forest ancestry classification model. These axes were calculated using
reference samples from the following superpopulations: African (AFR), American
(AMR), East Asian (EAS), European (EUR), and South Asian (SAS). These subjects
are also included on the plot to provide orientation to UKB subjects. UKB subjects
(red, black) are colored by whether they fall within the 95% ellipsoid along the AFR-
EUR cline.

Figure 4.18: Number of significant gene-trait associations found across all 29 blood
biomarker traits in UKB analysis. Counts are grouped by GReX imputation and
p-value aggregation approach.
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4.5.3 Proofs

Expression heritability in admixed subjects

Let there be N admixed individuals. Assume there are V total eQTLs in each ances-

try. In general, a subscript 1 corresponds to the African (AFR) reference population,

and subscript 2 corresponds to the European (EUR) reference population. Consider

the following definitions for admixed subject i, where MAC stands for minor allele

count and LA stands for local ancestry:

� xivm1 ∈ {0, 1} : MAC for vth AFR eQTL on maternal haplotype

� xivp1 ∈ {0, 1} : MAC for vth AFR eQTL on paternal haplotype

� xivm2 ∈ {0, 1} : MAC for vth EUR eQTL on maternal haplotype

� xivp2 ∈ {0, 1} : MAC for vth EUR eQTL on paternal haplotype

� γivm1 ∈ {0, 1} : 1 if AFR LA of vth AFR eQTL on maternal haplotype

� γivp1 ∈ {0, 1} : 1 if AFR LA of vth AFR eQTL on paternal haplotype

� γivm2 ∈ {0, 1} : 1 if EUR LA of vth EUR eQTL on maternal haplotype

� γivp2 ∈ {0, 1} : 1 if EUR LA of vth EUR eQTL on paternal haplotype

Let giv1 represent the number of AFR-ancestry minor alleles of the vth AFR eQTL,

and giv2 be the number of EUR-ancestry minor alleles of subject i at vth EUR eQTL.

We can formally define this as:

giv1 := xivm1γivm1 + xivp1γivp1

giv2 := xivm2γivm2 + xivp2γivp2

We can also arrange these quantitites into the following matrices, where each column

has been centered:

G1 =

(
˜
g11 · · ·

˜
gV 1

)
N×V

where
˜
gv1 =


g1v1 − ḡv1

...

gNv1 − ḡv1


N×1

and ḡv1 =
1
N

N∑
i=1

giv1
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G2 =

(
˜
g12 · · ·

˜
gV 2

)
N×V

where
˜
gv2 =


g1v2 − ḡv2

...

gNv2 − ḡv2


N×1

and ḡv2 =
1
N

N∑
i=1

giv2

The following quantities will also be needed to derive heritability:

fv1 =

N∑
i=1

giv1

N∑
i=1

γivm1+
N∑
i=1

γivp1

= AFR-specific MAF at vth AFR eQTL

fv2 =

N∑
i=1

giv2

N∑
i=1

γivm2+
N∑
i=1

γivp2

= EUR-specific MAF at vth EUR eQTL

θv1 =

N∑
i=1

γivm1+
N∑
i=1

γivp1

2N
= proportion alleles at vth AFR eQTL that are AFR ancestry

θv2 =

N∑
i=1

γivm2+
N∑
i=1

γivp2

2N
= proportion alleles at vth EUR eQTL that are EUR ancestry

These definitions imply the following:
N∑
i=1

giv1 = 2Nθv1fv1

N∑
i=1

giv2 = 2Nθv2fv2

ḡv1 = 2θv1fv1

ḡv2 = 2θv2fv2

Let us assume that we want to standardize genotypes by local ancestry. We also

assume that, of the V eQTLs in each ancestry, the first S are shared between AFR

and EUR, and the remaining U are unique to each ancestry (S + U = V ). We can

therefore model the N × 1 phenotype outcome vector (gene expression)
˜
y as:

˜
y = G1T

1/2
1 β̇1 +G2T

1/2
2 β̇2 +

˜
ϵ

Here,
˜
ϵ ∼ N(0, (1 − h2

adm)IN) and β̇1, β̇2 represent the V × 1 vectors of ancestry-

specific effects per genotype standard deviation. The phenotypic heritability is h2
adm.

Let T1 be a V × V diagonal matrix with (T1)vv = τ 2v1 =
1

2fv1(1−fv1)
and T2 be a V × V

diagonal matrix with (T2)vv = τ 2v2 = 1
2fv2(1−fv2)

. Also, let h2
1 be the heritability of

expression in AFR ancestry and h2
2 be heritability of expression in EUR ancestry. Let

ρ = Corr(β̇1v, β̇2v), v ∈ {1, ..., S}, i.e., the correlation of ancestry-specific effects for
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causal eQTLs that are common to both ancestries. We can model these effects as

follows:

β̇1

β̇2


2V×1

=



β̇1S

β̇1U

β̇2S

β̇2U


∼ N





0

...

...

0


,



h2
1

V
IS 0S×U

ρ
V

√
h2
1h

2
2IS 0S×U

h2
1

V
IU 0U×S 0U×U

h2
2

V
IS 0S×U

h2
2

V
IU




To derive the heritability in admixed subjects, let’s rewrite G1T

1/2
1 β̇1 as G1β1 and

G2T
1/2
2 β̇2 as G2β2, where:

β1

β2


2V×1

=



β1S

β1U

β2S

β2U


∼ N





0

...

...

0


,



A 0S×U B 0S×U

C 0U×S 0U×U

D 0S×U

E




AS×S = Cov(β1S, β1S) =

h2
1

V
diag(τ 2v1), v = 1, ..., S

BS×S = Cov(β1S, β2S) =
ρ
V

√
h2
1h

2
2diag(τv1τv2), v = 1, ..., S

CU×U = Cov(β1U , β1U) =
h2
1

V
diag(τ 2v1), v = S + 1, ..., V

DS×S = Cov(β2S, β2S) =
h2
2

V
diag(τ 2v2), v = 1, ..., S

EU×U = Cov(β2U , β2U) =
h2
2

V
diag(τ 2v2), v = S + 1, ..., V

Since the variance of the phenotype (expression) is assumed to be 1, we can define

h2
adm = Var(G1β1 +G2β2).

Var(G1β1 +G2β2) =
1
N
tr(E[(G1β1 +G2β2)(G1β1 +G2β2)

′])

= 1
N
tr(E[G1β1β

′
1G

′
1 +G2β2β

′
1G

′
1 +G1β1β

′
2G

′
2 +G2β2β

′
2G

′
2])

= 1
N
tr(E[G1β1β

′
1G

′
1] + E[G2β2β

′
1G

′
1] + E[G1β1β

′
2G

′
2] + E[G2β2β

′
2G

′
2])

= 1
N
{tr(E[G1β1β

′
1G

′
1])+ tr(E[G2β2β

′
1G

′
1])+ tr(E[G1β1β

′
2G

′
2])+ tr(E[G2β2β

′
2G

′
2])}

We can rewrite each component as follows:

tr(E[G1β1β
′
1G

′
1]) = E(tr[G1β1β

′
1G

′
1])

= E(tr[β1β
′
1G

′
1G1]

= tr(E[β1β
′
1G

′
1G1])

= tr[E(β1β
′
1)G

′
1G1]
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= tr(Cov[β1, β1]G
′
1G1)

Since Cov[β1, β1] is a diagonal matrix, the diagonal elements of the matrix product are

the product of diagonal elements of each matrix. Now, let us derive some quantities

needed to find the diagonal elements of G′
.G.

N∑
i=1

g2iv1 =
N∑
i=1

(xivm1γivm1 + xivp1γivp1)
2

=
N∑
i=1

(x2
ivm1γ

2
ivm1 + 2xivm1xivp1γivm1γivp1 + x2

ivp1γ
2
ivp1)

=
N∑
i=1

xivm1γivm1 + 2
N∑
i=1

xivm1xivp1γivm1γivp1 +
N∑
i=1

xivp1γivp1

= Nḡv1 + 2Nθ2v1f
2
v1

= 2Nθv1fv1 + 2Nθ2v1f
2
v1

= 2Nθv1fv1(1 + θv1fv1)

Similarly,
N∑
i=1

g2iv2 = 2Nθv2fv2(1 + θv2fv2)

N∑
i=1

giv1giv2 =
N∑
i=1

(xivm1γivm1 + xivp1γivp1)(xivm2γivm2 + xivp2γivp2)

=
N∑
i=1

xivm1γivm1xivm2γivm2 +
N∑
i=1

xivp1γivp1xivm2γivm2 +
N∑
i=1

xivm1γivm1xivp2γivp2 +

N∑
i=1

xivp1γivp1xivp2γivp2

If v ≤ S, γivm1 = 1− γivm2 and θv1 = 1− θv2:
N∑
i=1

giv1giv2 =
N∑
i=1

xivp1γivp1xivm2γivm2 +
N∑
i=1

xivm1γivm1xivp2γivp2

= 2Nfv1fv2θv1θv2

If v > S, the probability that the vth AFR eQTL is of African ancestry and the

probability that the vth EUR eQTL is of European ancestry on the same haplotype

are not independent, thus:
N∑
i=1

giv1giv2 = 2Nfv1fv2θv1θv2 + 2Nθ12fv1fv2

Now, to calculate the diagonal elements:

(G′
1G1)vv =

˜
g′v1

˜
gv1

=
N∑
i=1

(giv1 − ḡv1)
2



149

=
N∑
i=1

g2iv1 −Nḡ2v1

= 2Nθv1fv1(1 + θv1fv1)−N(2θv1fv1)
2

= 2Nθv1fv1(1− θv1fv1)

If v ≤ S:

(G′
1G2)vv =

˜
g′v1

˜
gv2 = −2Nfv1fv2θv1θv2

If v > S:

(G′
1G2)vv =

˜
g′v1

˜
gv2 = 2Nfv1fv2(θv12 − θv1θv2)

Now, to sum the diagonal elements:

tr(Cov[β1, β1]G
′
1G1) =

V∑
v=1

h2
1

V
τ 2v12Nθv1fv1(1− θv1fv1) =

Nh2
1

V

V∑
v=1

θv1(1−θv1fv1)
1−fv1

tr(Cov[β2, β2]G
′
2G2) =

V∑
v=1

h2
2

V
τ 2v22Nθv2fv2(1− θv2fv2) =

Nh2
2

V

V∑
v=1

θv2(1−θv2fv2)
1−fv2

tr(Cov[β1, β2]G
′
1G2) =

S∑
v=1

ρ
V

√
h2
1h

2
2τv1τv2(−2Nfv1fv2θv1θv2) =

−Nρ
√

h2
1h

2
2

V

S∑
v=1

θv1θv2
√
fv1fv2√

(1−fv1)(1−fv2)

Thus, we have for heritability in admixed subjects:

h2
adm = Var(G1β1 +G2β2)

=
h2
1

V

V∑
v=1

θv1(1−θv1fv1)
1−fv1

+
h2
2

V

V∑
v=1

θv2(1−θv2fv2)
1−fv2

− 2ρ
√

h2
1h

2
2

V

S∑
v=1

θv1θv2
√
fv1fv2√

(1−fv1)(1−fv2)
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Chapter 5

Future Work

There are several avenues we are interested in pursuing to extend the work pre-

sented in this dissertation. In our first project (Chapter 2), we presented a powerful

genome-wide test for detecting parent-of-origin effects (POEs) in multiple continuous

phenotypes. Rather than testing all genome-wide variants initially for POEs, we can

alternatively implement a two-stage screening procedure that may mitigate the mul-

tiple testing burden. In the first stage, we propose to perform a standard GWAS for

marginal (not parent-of-origin dependent) variant associations that considers multiple

traits jointly. We restrict consideration to marginal association tests that are orthogo-

nal to POIROT and thus provide complementary information. We can then efficiently

test a smaller subset of top SNPs identified from the first stage for POEs. Another

limitation we acknowledge is the requirement of continuous phenotypes. We are also

interested in the possible extension of our approach to accommodate dichotomous

multivariate traits in addition to continuous traits. One potential solution would be

to use liability-threshold models [183] that can effectively transform a binary out-

come into a continuous-valued posterior mean genetic liability. We could then use

these estimated posterior mean genetic liability scores as phenotypes with current the

POIROT architecture.
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In our second project (Chapter 3), we presented our transcriptome-wide asso-

ciation study (TWAS) of breast and ovarian cancer that leveraged common cancer

subtypes and the regulatory effects of both proximal (cis) and distal (trans) genetic

variants on gene expression. While we were successfully able to identify over 100

genes associated with one or more cancer phenotypes, we saw limited validation of

these genes using available independent GWAS and RNA sequencing datasets. In

particular, we are primarily interested in validating the genes that have not been

identified by previous GWAS or TWAS of these cancers that are largely driven by

strong trans-eQTL effects. Therefore, innovative approaches are needed to validate

the high probability trans-eQTLs of such putatively novel risk genes. One possi-

ble extension would be analysis of Hi-C or other chromatin conformation capture

data to quantify the rate at which our novel target genes and their corresponding

regions of high-evidence trans-eQTLs interact physically in the nucleus. The three-

dimensional interaction of these regions in both normal breast tissue samples and

established breast cancer cell lines would provide valuable insight into the complex

genome-wide genetic regulation that we observe. Further, while we trained a second

set of genome-wide expression imputation models for the 101 genes identified as sig-

nificant in our original breast cancer analyses in breast tumor tissue, we would like to

extend our work by training transcriptome-wide BGW-TWAS models of all genes in

breast and ovarian tumor tissue to better understand how germline control of somatic

gene expression changes during oncogenic transition from normal to tumor tissue.

In the third project (Chapter 4), we introduced a method for performing TWAS in

admixed subjects that involves deconvolution of gene expression into ancestry-specific

components using local ancestry information and summary eQTL data from multi-

ple reference populations. We note that while our proposed method circumvents the

need for individual-level Stage 1 training data (genotype and gene expression), we do

require individual-level Stage 2 data (genotype and phenotype information) in our
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admixed testing samples. Several TWAS methods, including OTTERS, have conve-

nient extensions of their approaches that allow for the substitution of summary-level

GWAS information in Stage II [21, 22, 74, 76]. We posit an extension of our presently

proposed method that would combine summary-level eQTL data in reference popu-

lations with summary-level GWAS data from admixed groups to perform TWAS, as

well. This extension would likely require the use of advanced techniques to estimate

the local ancestry proportions at all loci in the GWAS study, as well as build on es-

tablished TWAS test statistics for summary GWAS data (e.g., sPrediXcan) [76]. We

are also interested in a potential extension of our method that can leverage summary

eQTL data from multiple tissue types jointly.
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