Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

__04/20/23_____

[Hidayat Ogunsola]

Date

Autoimmunity in the Neuropsychological Manifestations of 22q11.2 Deletion Syndrome

By

Hidayat Ogunsola Degree to be awarded: Master of Public Health

Department: Epidemiology

[Chair's signature]

[Dr. Bradley Pearce] Committee Chair

Autoimmunity in the neuropsychological manifestations of 22q11.2 deletion syndrome

By

Hidayat Ogunsola

MBBS Gulf Medical University 2012

Thesis Committee Chair: [Dr. Bradley Pearce, PhD]

An abstract of A thesis submitted to the Faculty of the Rollins School of Public Health of Emory University in partial fulfillment of the requirements for the degree of Master of Public Health in Epidemiology department 2023

Abstract

Autoimmunity in the Neuropsychological Manifestations of 22q11.2 Deletion Syndrome

By Hidayat Ogunsola

The 22q11.2 deletion syndrome (22q11DS) is a chromosomal microdeletion disorder that presents with multiple congenital anomalies and immune conditions. Most of newly identified patients with 22q11DS have de-novo deletions. Development of autoimmunity in patients with 22q11.2 deletion can possibly be due to various mechanisms including infections, molecular mimicry, and bystander activation of autoreactive T lymphocytes by inflammatory cytokines.

Cognitive deficits occur among individuals with 22q11DS, and there is a high rate of autism spectrum disorders as well as psychotic disorders (in particular, schizophrenia).

We hypothesized that there is an association between immune biological factors and neuropsychological manifestations in patients with 22q11DS. By using the existing SERPh22 database comprising of 778 individuals with 22q11DS, leukocyte cell counts (CD3+ CD4+ CD8+ CD19+ CD56+) and immunoglobulin levels (IgA, IgG, IgM) were extracted from the database. I then examined a subset of 23 children from this group to test the association between the immunological factors on record and scores on the Communication and Symbolic Behavior Scales-Developmental Profile Infant-Toddler Checklist (CSBS-DP ITC) and Child Development Inventory profile (CDIP). On regression analysis, IgG was associated with significantly greater impairment in the CSBS-DP ITC Social scale (B=0.5851, SE=0.2299, p <0.05), in models adjusted sex, age at blood work, and age at the behavioral assessment (adjusted $R^2=0.424$). IgA levels were associated with worst outcomes on the CDIP sub-scale, Expressive Language, (B=0.07177, SE=0.0476, p <0.05), in models adjusted for the same covariates (adjusted R^2 =0.514). Prior studies in other pediatric conditions have found elevated IgG in autoimmunity, through there is little information on its relationship to neurobehavioral parameters. A limitation of this study was the small sample size and multiple comparisons since multiple immune factors were analyzed. Conducting this research in a larger cohort will be beneficial in better understanding the association between immune biological factors and neuropsychological manifestations among patients with 22q deletion syndrome.

Autoimmunity in the Neuropsychological Manifestations of 22q11.2 Deletion Syndrome

By

Hidayat Ogunsola

MBBS Gulf Medical University 2012

Thesis Committee Chair: [Dr. Bradley Pearce, PhD]

A thesis submitted to the Faculty of the Rollins School of Public Health of Emory University in partial fulfillment of the requirements for the degree of Master of Public Health in Epidemiology Department 2023

Abstract

The 22q11.2 deletion syndrome (22q11DS) is a chromosomal microdeletion disorder that presents with multiple congenital anomalies and immune conditions. Most of newly identified patients with 22q11DS have de-novo deletions. Development of autoimmunity in patients with 22q11.2 deletion can possibly be due to various mechanisms including infections, molecular mimicry, and bystander activation of autoreactive T lymphocytes by inflammatory cytokines.

Cognitive deficits occur among individuals with 22q11DS, and there is a high rate of autism spectrum disorders as well as psychotic disorders (in particular, schizophrenia).

We hypothesized that there is an association between immune biological factors and neuropsychological manifestations in patients with 22q11DS. By using the existing SERPh22 database comprising of 778 individuals with 22q11DS, leukocyte cell counts (CD3+ CD4+ CD8+ CD19+ CD56+) and immunoglobulin levels (IgA, IgG, IgM) were extracted from the database. I then examined a subset of 23 children from this group to test the association between the immunological factors on record and scores on the Communication and Symbolic Behavior Scales-Developmental Profile Infant-Toddler Checklist (CSBS-DP ITC) and Child Development Inventory profile (CDIP). On regression analysis, IgG was associated with significantly greater impairment in the CSBS-DP ITC Social scale (B=0.5851, SE=0.2299, p <0.05), in models adjusted sex, age at blood work, and age at the behavioral assessment (adjusted R²=0.424). IgA levels were associated with worst outcomes on the CDIP sub-scale, Expressive Language, (B=0.07177, SE=0.0476, p <0.05), in models adjusted for the same covariates (adjusted R²=0.514). Prior studies in other pediatric conditions have found elevated IgG in autoimmunity, through there is little

information on its relationship to neurobehavioral parameters. A limitation of this study was the small sample size and multiple comparisons since multiple immune factors were analyzed. Conducting this research in a larger cohort will be beneficial in better understanding the association between immune biological factors and neuropsychological manifestations among patients with 22q deletion syndrome.

Goal of this project

The overarching goal of my thesis is to investigate the relationship between autoimmunity and neuropsychological indices in patients with 22q11 deletion syndrome. To this end, I am relying on an existing database of over 700 individuals with this syndrome that was created by Dr. Pearce and colleagues (termed the SERph22 database).

My original plan was to supplement this database with new data by marshaling and coding the prevalence of specific autoimmune diseases among the individuals in the database. Although we received IRB approval, and my proposal and data request were approved through CHOA, including the division head, the complete data set is not yet available for this thesis.

Fortunately, the SERph22 is a rich data source with extensive immune data relevant to autoimmune disease, especially biological factors such as immune cell counts and the presence or absence of the thymus, and immunoactive hormones (e.g., T3, T4, TSH). The analysis for my thesis is focused on the relationship between immune indices and select neuropsychological outcomes.

INTRODUCTION

Characteristics of the 22q11 deletion syndrome.

22q11.2 deletion syndrome is the most common microdeletion syndrome. The 22q11.2 region of the chromosome is a highly unstable region due to non-homologous meiotic recombination. The misalignment of segmental duplications of this region leads to the deletion of chromosome 22.q11.2.(Hacıhamdioğlu, Hacıhamdioğlu, & Delil, 2015). T-box protein 1 (TBX1) is a gene located on the long arm of chromosome 22, and it is the main gene deleted in 22q11.2 deletion syndrome. Various literature suggests that T-box protein 1 (*TBX1*) is predominantly responsible for the physical malformations seen in patients with 22q11.2 deletion syndrome. (Yagi et al., 2003).

Patients with 22q11.2 deletion syndrome exhibit dysmorphic features including low set ears, micrognathia, cleft palate resulting in feeding difficulties, and defects in the heart(conotruncal), thymus, and parathyroid glands. This is due to the impaired migration of neural crest cells during embryogenesis.(McLean-Tooke, Spickett, & Gennery, 2007). In the 1960s, 22q11.2 deletion syndrome was characterized by the clinical triad of congenital heart defect, immunodeficiency, and hypoparathyroidism. Now, it is known that the condition has heterogenous presentation including autoimmune diseases, gastrointestinal involvement, renal abnormalities, cognitive delays, and psychiatric conditions. (McDonald-McGinn et al., 2015).

Immune abnormalities in autoimmunity in 22q11DS.

Autoimmune conditions occur due to abnormalities in the immune system. The presence of selfreactive B cells and/or T cells results in chronic inflammatory process within target organs, disrupting the normal function of tissues. Immunological tolerance is a process of inhibiting the immune system from mounting responses against self-antigens. (Romagnani, 2006). It is however important to note that healthy individuals exhibit autoreactive T cells and autoreactive B cells. Such T cells and B cells are kept under control by regulatory mechanisms. Autoimmunity develops when there is loss of tolerance to self-antigens. The thymus plays a key role in immune tolerance, in part through regulatory T-cells (Treg cells), which are essential for maintaining self-tolerance. (McLean-Tooke et al., 2007). Patients with 22q11.2 deletion syndrome have abnormal thymic development resulting in decreased frequency of Treg cells and potential disruption of tolerance.

Prior studies on 22q.11.2 deletion syndrome has proposed different mechanisms for the development of autoimmunity. Evidence shows that infections play a role in autoimmunity through the release of sequestered antigens from damage to tissues. Inflammatory cytokines released from infiltrating monocytes and macrophages cause activation of autoreactive T cells. Molecular mimicry is also implicated in the development of autoimmunity when microbial products share structural similarity with endogenous peptides. (McLean-Tooke et al., 2007). Prior studies have been small-scale since the prevalence of 22q.11.2 deletion syndrome is approximately 1/4000 births.

Neuropsychological manifestations in 22q.11.2

Neuropsychological manifestations in 22q.11.2 deletion syndrome include autism spectrum disorders, intellectual disability, and schizophrenia. Studies have also shown that some individuals with this syndrome also have and increased rate of attention-deficit/hyperactivity disorder (ADHD), anxiety and emotional instability compared to the general population. (Niklasson, L et al., 2001).

For my thesis I achieved the following aims:

Aim 1. Construct a table of all the available literature on autoimmune disorders in 22q11DS.

Aim 2. Download deidentified data on leukocyte cell counts and immunoglobulin levels, and cross index this with the availability of individual data (scores) on psychometric tests.

Aim 3. Examine the characteristics of this data, such as normality and redundancy, and develop a modeling strategy.

Aim 4. Use regression analysis to investigate the association between levels of these immune parameters and psychological outcomes.

METHODS:

<u>Sample</u>

The study population include over 778 individuals with 22q.11DS from the SERph22 database maintained by Dr. Pearce. Biologic factors relevant to autoimmune disease such as counts in peripheral blood of T-cells (CD3+, CD4+, CD8+), B-cells (CD19+), and Natural Killer (NK) cells (CD56+) along with the immunoglobulins A, G and M were extracted from the SERph22 database. Behavioral assessments with sufficient data were also extracted for cross-correlation and linear regression analysis. As described below, CSBS-DP and CDIP data were selected to be included in the study. Behavioral assessment data were derived from questionnaires from participants at the 22q Specialty Clinic at Children's Healthcare of Atlanta between October 2006 to December 2017.

Literature Review Search strategy and selection criteria:

I searched PubMed, Embase, Web of Knowledge, SCOPUS, and CINAHL, and Google Scholar electronic database from Jan 1, 1997, to Jan 1, 2023, for studies reporting autoimmune diseases among patients with 22q.11DS. After consultation with an expert librarian, the search strategy was developed. I limited the search to humans and language to English. I used the following search terms, adapted for each database when appropriate: "chromosome 22 microdeletion 22 q11", "22q11 Deletion Syndrome", "22q11*", "digeorge", AND "Autoimmune Diseases", "autoimmune", and "autoimmunity". In addition to literature searches, I conducted gathered data on ICD codes related to autoimmune disease.

Data from Psychological Assessment Instruments

The CSBS-DP is used in patients 6-24 months of age, while the CDIP is used in pediatric age group between 15 months to 6 years of age.(Wetherby, Prizant, & Barry, 1990) The best predictor of a developmental delay in a child may be their degree of communication skills. When major medical conditions or physical disabilities are absent, a child's delay in language development may be the first obvious sign that anything is wrong with their development. Language delays could be the main issue, or they could be caused by delays in other areas.

The CSBS-DP has two goals: first, it identifies children who already have a communication deficit or who are at risk of developing one, and second, it tracks changes in a child's expressive speech, communication, and symbolic behavior through time. The Checklist has 24 questions totaling 57 points that fall between 2 and 4 points in each of the 7 Clusters.

The scores are then classified in Concern or No Concern. If the criteria levels are more than 1.25SD below the mean for the particular age of the child being tested, participants were labeled as "Concern". The classification determines whether the children are classified as communicating appropriately for their age or as needing to be referred for a developmental review.

A communication composite score of 8-26 for infants who are 6 months old is considered normal, while a score of 0-7 raises concerns. When the score is between 0 and 1, the expressive speech

composite is of concern, but not when it is between 2 and 14. Finally for symbolic, a score of 3-17 is of no concern whereas, a score of 0-2 is of concern.

The CDI is for the assessment of children 15 months to six years of age and for older children who are judged to be functioning in the one to six-year range. It is a standardized method in which parents complete the instrument to assess the child's development. The child's social maturity is reflected in the Social Scale results and also by the presence or absence of behavioral problems included in the CDI Problems items. For the CDIP test, the scales to evaluate are social (S), self-help (SH), gross motor (GM), fine motor (FM), expressive language (EL), language comprehension (LC), letters (L), numbers (N) and general development (GD), which is a summary of all the previous scales. The scores will be compared to the expected scores by age in each of the scales, which are based on a sample of 568 children one to six years old. If the child's score is less than 30% below the age limit, the child's development is below expectation.

The Self-Help Scale and Social Scale work together to define how well a child has mastered independent living tasks like eating, dressing, washing, and using the restroom. These abilities are partly developed as a result of the child's desire for independence, which is demonstrated by the phrase "I want to do it myself."

The development of the child's physical abilities is described by the two motor scales, Gross Motor and Fine Motor. They include the development of more refined eye-hand coordination as well as big muscle or whole-body coordination. One could argue that children's knowledge of their own developing physical skills serves as their initial sense of mastery and foundation for self-esteem. Parental recognition of the child's developing skills, most visibly demonstrated by the child's walking, then serves to reinforce this sense of competence.

Expressive language, as well as the child's growing language comprehension enhance their connection to the outside world. The ability to comprehend language and, in particular, to comprehend concepts, gives a child a whole new set of skills for adapting to new situations and addressing problems. There is growing evidence that early intervention has a bigger influence on outcomes for children and families than assistance offered to students in school.

For the behavioral assessments, CSBS-DP test was for the sub-scales social, expressive speech, and symbolic composite while CDIP test was for the social (S), gross motor (GM), fine motor (FM), expressive language (EL), and language comprehension (LC) sub-scales. The test scores were correlated with immunological factors –cell counts CD3+, CD4+, CD8+, CD19+, CD56+, and immunoglobulins IgA, IgG and IgM to examine the characteristics of this data, such as normality and redundancy, and develop a modeling strategy.

Statistical Analysis:

To determine if cell counts CD3+, CD4+, CD8+, CD19+, CD56+, and immunoglobulins IgA, IgG and IgM predicted CSBS-DP ITC and CDIP assessment scores. Normality test was done for predictor variables and did log transformation of the ones that are not normal. Regression models were used with the CD3+, CD4+, CD8+, CD19+, CD56+, and immunoglobulins IgA, IGG and

IgM levels as the exposure variable and scores on each of the three CSBS-DP ITC and five of the CDIP composites as the outcomes. To control for possible confounding factors, models were run with age at blood draw for the immunological tests, age at CSBS-DP ITC and CDIP assessment as covariates. Sex as recorded in the medical record was also a covariate. Statistical tests were implemented in SAS Version 9.4 software (SAS Institute Inc., Cary, NC).

Results:

Tables 1 and 2 show normality check for the cell counts and psychological outcomes.

Table 1: Normality check for predictor variables

Table 2: Normality check for psychological outcome variables.

Tables 3 and 4 show collection of ICD information (ICD 9&10) and literature search.

 Table 3: Shows the information from ICD code books 9 and 10. This covered the timeframe

 for our study from 1997 till date.

	Autoimmune diseases	ICD-9-CM	ICD-10-CM	Keywords
1	Acquired aplastic anemia	284.9	D61. 9	Anemia, aplastic anemia
2	Acquired hemophilia	286.52	D68. 311	autoantibodies against FVIII, bleeding symptoms
3	Agammaglobulinemia, primary	279.00	D80. 0	Antibody deficiency, Immunoglobulins.
4	Alopecia Areata	704.01	L63	hair loss
5	Ankylosing spondylitis	720.0	M45.0- M45.9	Spine, arthritis
6	Anti-NMDA receptor encephalitis	323?	G04.90	Autoimmune encephalitis

7	Anti-phospholipid	286.53	D68. 61	lupus anticoagulants, anti-
	syndrome			cardiolipin, anti-beta-2-
				glycoprotein I, vascular
				thrombosis, pregnancy
				complication
8	Autoimmune Addison's	255.41	E27.1	Autoimmune adrenalitis
	disease			
9	Autoimmune autonomic	337.9	G90, 9	Autoimmune dysautonomia
-	ganglionopathy			
	gangnonopatny			
10	Autoimmune	323.81	G04. 81	antibody; autoimmune;
	encephalitis/acute			encephalitis; paraneoplastic.
	disseminated			
	encephalomyelitis			
11	A	525.10		
11	Autoimmune gastritis	535.10	K29. 40,	Iron deficiency, Vitamin B 12
			K29. 50	deficiency, Autoimmune
				gastritis
12	Autoimmune Hemolytic	283.0	D59. 10	Cold agglutinin disease;
	anemia			Microvesicles
	ancina			
13	Autoimmune hepatitis	571.42	K75.4	Liver-related autoantibodies

14	Autoimmune	258.1	E31.0	
	polyglandular syndrome			
15	Behcet's disease	136.1	M35. 2	HLA-B*51; systemic vasculitis;
				immunosuppressive therapy;
				anti- inflammatory therapy
16	Bullous Pemphigoid	694.5	L12. 0,	Antibodies, Autoimmunity,
			L12. 9	Hemidesmosomes.
17	Celiac disease	579.0	K90. 0	Celiac sprue; Gee-Herter-
				Heubner disease; Gluten
				sensitive enteropathy; GSE;
				Nontropical sprue.
18	Churg-Strauss Syndrome	446.4	M30. 1	ANCA-associated vasculitis;
				Asthma; Eosinophilic
				granulomatosis with
				polyangiitis; Hypereosinophilic
				syndromes:
19	CREST syndrome	701.0	M34.1	systemic sclerosis, dystrophic
				calcinosis, CREST syndrome,
				telangiectasia, Raynaud's
				phenomenon, sclerodactyly.

20	Dermatitis herpetiformis	694.0	L13.0	autoimmune; bullous; celiac
				disease; dermatitis
				herpetiformis; disease
				monitoring; pruritis.
21	Dermatomyositis	710.3	M33. 1	Cutaneous manifestations;
				Muscle weakness, Rash
22	Diabetes, type 1	250.93	E10.9	insulin- dependent diabetes
23	Discoid Lupus	695.4,	L93. 0	cutaneous lupus erythematosus
		710.8,		
		710.9		
24	Evans Syndrome	287.32	D69. 41	auto-immune haemolytic
				anaemia (AIHA), autoimmune
				cytopenias.
25	Glomerulonephritis	580.0	M32. 14,	Glomerular Lesion;
			N05.2	ANA; Autoimmune disease;
				C3 glomerulonephritis; C3
				glomerulopathy; ds-DNA
26	Good pasture's	446.21	M31.0	ANCAs; Anti-GBM antibodies;
	syndrome			Anti-GBM disease; Crescentic
				glomerulonephritis;

				Goodpasture syndrome;
				Pulmonary-renal syndrome.
27	Glomerulomatosis with	446.4	M31. 3	Granulomatosis with
	polyangiitis/Wegener's			polyangiitis; necrotizing
	granulomatosis			vasculitis; ANCA-associated
				vasculitis;
28	Graves' disease	242.0	E05.00	autoimmune thyroid disease;
				hyperthyroidism;
29	Guillain Barre Syndrome	357.0	G61. 0	Campylobacter jejuni; Guillain–
				Barré syndrome; acute
				inflammatory demyelinating
				polyneuropathy; acute motor
				axonal neuropathy;
30	Hashimoto's thyroiditis	245.2	E06. 3	Hashimoto's
				thyroiditis; autoimmune
				diseases; autoimmune thyroid
				disorders; autoimmune
				thyroiditis; hypothyroidism;
31	Henoch Schonlein	287.0	D69.0	Abdominal pain; IgA vasculitis;
	Purpura			arthralgia; arthritis; hematuria;

				palpable purpura; proteinuria; vasculitis.
32	IgA nephropathy	583.9	N02.8	chronic kidney disease · glomerulonephritis · IgA nephropathy · proteinuria.
33	Immune thrombocytopenia	287.3	D69. 3	immune, thrombocytopenia, Idiopathis Thrombocytopenic Purpura, platelets, thrombopoietin, splenectomy
34	Juvenile idiopathic arthritis	714.30	M08	<i>Juvenile arthritis</i> , rheumatoid arthritis, joints.
35	Lambert Eaton myasthenic syndrome	358.1	G70. 80	Autoimmunity; Lambert–Eaton myasthenic syndrome; Neuromuscular junction; Quality of life; Small cell lung carcinoma; Voltage-gated calcium channels.
36	Meniere's disease	386.00	H81. 0	Vertigo; sensorineural hearing loss; tinnitus; vestibular disorders

37	Mixed connective tissue		M35.1	Dermatomyositis; Genetics;
	disease			Interstitial pulmonary fibrosis;
				Mixed connective tissue disease;
				Myositis; Polymyositis;
				Pulmonary hypertension;
				Systemic lupus erythematosus;
				Systemic sclerosis; U1 small
				nuclear ribonucleoprotein.
38	Multiple Sclerosis	340	G35	Demyelination; Multiple
				sclerosis; Myelin;
				Oligodendrocyte
39	Myasthenia gravis	358.00	G70	B cells; T cells; acetylcholine
				receptor; autoantibodies;
				cytokines; myasthenia gravis
40	Paroxysmal nocturnal	283.2	D59.5	hemolytic anemia, bone marrow
	hemoglobinuria			failure, thromboembolism;
41	PANS/PANDAS		D89.89	Autoimmune; Obsessive
				Compulsive disorder;
				Psychiatric; Tics.

42	Pemphigus Vulgaris	694.4	L10. 0	Pemphigus, paraneoplastic
				pemphigus, oral erosions,
				stomatitis, blistering disorder,
				acantholysis, rituximab
43	Pernicious Anemia	281.0	D51	cobalamin deficiency;
				macrocytic anemia; pernicious
				anemia; vitamin B12 deficiency.
44	POEMS syndrome	359.29	D47.7	Castleman disease; Chronic
				inflammatory
				polyradiculoneuropathy;
				Paraneoplastic; Plasma
				cell disorder.
45	Polyarthritis nodosa	446.0	M30. 0	Medium vessel vasculitis;
				Polyarteritis nodosa; Systemic
				necrotizing vasculitis; Vasculitis.
46	Polymyalgia Rheumatica	725.0	M35. 3	giant cell arteritis; polymyalgia
				rheumatica; temporal arteritis;
				treatment.
47	Polymyositis	710.4	M33. 2	Dermatomyositis; inclusion-
				body myositis; inflammatory

				myopathy; myositis-specific autoantibodies;
48	Primary Biliary Cirrhosis	571.6	K74. 3	Cholestatic liver disease; Cirrhosis; Liver transplantation; Primary biliary cirrhosis; Ursodeoxycholic acid.
49	Primary Sclerosing Cholangitis	576.1	K83. 01	Etiopathogenesis inflammatory bowel disease; Liver transplantation
50	Psoriasis	696.1	L40	inflammation, chronic skin disease
51	Pure Red Cell Aplasia	284.81	D61.01	Dyserythropoiesis, <i>pure red cells</i> <i>aplasia</i> , reticulocytopenia
52	Raynaud's syndrome	443.0	173.0	Connective tissue disease; Digital ischemia; Raynaud's phenomenon; Scleroderma; Systemic sclerosis
53	Reactive arthritis/Reiter's syndrome	099.3	M02. 9	Rheumatic Disease; Chlamydia Trachomatis; Reactive Arthritis;

				Yersinia Enterocolitica; Joint Symptom.
54	Rheumatic fever	390 - 392	100-102	arthritis; autoimmunity; rheumatic fever; rheumatic heart disease; streptococcus.
55	Rheumatoid Arthritis	714.0	M06.09	Arthritis; arthrology; autoimmune disease; immunopathology; inflammatory; joints; pannus
56	Sarcoidosis	135	D86.9	inflammatory disease; granulomas (small nodules of immune cells); lungs; lymph nodes.
57	Schmidt's syndrome	258.1	E31.9	Polyglandular, Schmidt's syndrome, autoimmune, primary adrenal insufficiency, autoimmune hypothyroid,

				insulin dependent diabetes
				mellitus
58	Scleroderma	710.1	M34	Autoimmune; Skin, blood
				vessels, muscles and joints,
				gastrointestinal (GI) tract,
				kidneys, lungs and heart
59	Sjogren's syndrome	710.2	M35. 01	Autoimmune;
				keratoconjunctivitis sicca (dry
				eyes); and xerostomia (dry
				mouth).
60	Systemic Lupus	710.0,	M32. 9	Systemic Lupus
	Erythematosus	695.4,		Erythematosus (SLE);
		710.8		cardiovascular disease (CVD);
				cerebrovascular accident (CVA);
				chronic kidney disease (CKD).
61	Subacute Bacterial	421.0	I33. 0	Streptococcus salivarius;
	Endocarditis			bicuspid aortic valve; infective
				endocarditis; splenic
				infarction; subacute bacterial
				endocarditis.

62	Sydenham's chorea	392	I02. 9	Sydenham's chorea; autoimmune
				movement disorders; acute
				rheumatic fever.
63	Sympathetic Ophthalmia	360.11	H44.1	Dalen–Fuchs nodule,
				granulomatous uveitis,
				immunosuppression, ocular
				trauma.
64	Takayasu's disease	446.7	M31. 4	Takayasu disease, claudication,
				pulseless disease, granulomatous
				inflammatory vasculitis,
				transmural fibrous thickening
65	Ulcerative colitis	556.9	K51	Crohn's disease; Inflammatory
				bowel diseases
66	Vitiligo	709.01	L80	White or depigmented macules
				and patches

Table 4: Shows results of the literature search	using the strategy explained in the methods.
---	--

Reference	Title	Study	% Autoimmunity
		Population	in cohort
(A. R.	Immunological aspects of	N= 60	43 of 60 subjects
Gennery,	22q11.2 deletion		alive (72%). 13
2012)	syndrome.		patients had
			autoimmune thyroid
			disease, 9 patients
			had lineage
			hematological
			cytopenia, and other
			patients had
			nephritic syndrome
			and autoimmune
			enteritis.
(A.	Antibody deficiency and	N = 32	Of 32 patients
Gennery	autoimmunity in 22q 11.2		identified, 26 (81%)
et al.,	deletion syndrome		had severe or
2002)			recurrent infection,

			of which 13 (50%)
			had abnormal serum
			immunoglobulin
			measurements and
			$11/20 \ge 4$ years old
			(55%) had an
			abnormal response
			to pneumococcal
			polysaccharide. Ten
			of 30 patients (33%)
			had autoimmune
			phenomena; six
			(20%) were
			symptomatic.
(Di Cesare	Autoimmunity and	N = 50	16 of 50 patients
et al.,	regulatory T cells in		(32%) had recurrent
2015)	22q11.2 deletion		infection. Higher
	syndrome patients		frequency of
			autoimmunity 44%
			(7 out of 16)
			compared with those
1	1	1	

			without recurrent
			infections (6%, 2 of
			34).
(Ricci et	Characterization of	N = 73	16 of the 73 enrolled
al., 2022)	Autoimmune Thyroid		patients (21.9%)
	Disease in a Cohort of 73		developed ATD
	Pediatric Patients Affected		before 18 years of
	by 22q11.2 Deletion		age (mean age 12.92
	Syndrome		\pm 3.66 years). A total
			of 20.5% developed
			Hashimoto's
			Thyroiditis (HT),
			50% required L-
			thyroxine treatment;
			1.4% developed
			Graves' Disease.
(G.	Clinical and	N = 446	Autoimmune disease
Giardino	immunological features in		was diagnosed in
et al.,	a cohort of patients with		35/446 (7.84%)
2019)	partial DiGeorge		patients (Table 1).
			Autoimmune

	syndrome followed at a		cytopenia was the
	single center.		most common
			manifestation
			observed (9/446).
			Five patients
			suffered from more
			than 1 autoimmune
			manifestation. Mean
			age at the onset of
			autoimmunity was
			7.8 ± 5.5 years
			(range, 0.5-17).
(K Lima	Hypoparathyroidism and	N = 59	Out of 59 patients
(III. Elilla		11 - 55	out of 59 putients,
et al.,	autoimmunity in the		28 patients were
2011)	22q11.2 deletion		positive for
	syndrome		autoantibodies. Six
			(10%) persons
			developed an
			autoimmune disease.
(Montin et	Immunophenotype	N = 358	The study population
al., 2019)	anomalies predict the		included 358
	development of		patients with a
------------	---------------------------	---------	----------------------
	autoimmune cytopenia in		global prevalence of
	22q11.2 deletion		autoimmunity of
	syndrome.		24%. Autoimmune
			cytopenia were seen
			in 8%.
(Tison et	Autoimmunity in a cohort	N = 130	Eleven
al., 2011)	of 130 pediatric patients		(8.5%)patients had
	with partial DiGeorge		an autoimmune
	syndrome		disease, mean age of
			presentation of 5
			years, 8 (72%) were
			females. Three
			patients had
			autoimmune
			hypothyroidism, 1
			patient had
			monoarticular
			arthritis with a
			positive antinuclear
			antibody result, 1
			1

patient idiopa patient	t had juvenile thic arthritis, 1 t had vitiligo
idiopa patient	thic arthritis, 1
patient	t had vitilioo
1 notic	i nua vitiligo,
1 parte	ent had
psoria	sis, 1 patient
had au	ıtoimmune
neutro	penia, and 4
patient	ts had ITP and
AIHA	
(Jawad,Immunologic features ofN = 195Study	of 195
McDonald chromosome 22q11.2 patient	ts with
-McGinn, deletion syndrome 22q11	.2 deletion
Zackai, & syndro	ome reported
Sullivan, juveni	le rheumatoid
2001) arthriti	is (n = 4),
idiopa	thic
throm	bocytopenia (n
= 8),	, autoimmune

			 = 1), vitiligo (n = 1) and inflammatory bowel disease (n = 1).
(Hernánde	Autoimmune	N = 1	Autoimmune
z-Nieto,	Thrombocytopenic		Thrombocytopenic
Yamazaki	Purpura in Partial		Purpura in Partial
-	DiGeorge Syndrome		DiGeorge
Nakashim			Syndrome.
ada,			
Lieberma			
n-			
Hernánde			
z, &			
Espinosa-			
Padilla,			
2011)			
(Gottlieb,	Uveitis in DiGeorge	N = 1	A case of
Li, Uzel,	syndrome: a case of		autoimmune ocular
Nussenbla	autoimmune ocular		inflammation in a

tt, & Sen,	inflammation in a patient		patient with deletion
2010)	with deletion 22q11.2		22q11.2
(Choi et	Endocrine Manifestations	N = 61	Hypocalcemia was
al., 2005)	Microdeletion Syndrome		found in 20 patients
			(32.8%), and overt
			hypoparathyroidism
			in 8 (13.1%). Two
			patients (3.3%)
			showed autoimmune
			thyroid diseases, 1
			each with Graves'
			disease and
			Hashimoto
			thyroiditis.
(Kawamur	Di George syndrome	N – 1	Graves' disease
(Kawailiui	DI- George syndrome	$1 \mathbf{v} = 1$	Glaves disease
a et al.,	with Graves' disease: A		reported an 18-year-
2000)	case report. Endocr J 47:		old female with
	91-95		partial phenotype of
			Digeorge Syndrome

(Kawame et al., 2001)	Graves' disease in patients with 22q11.2 deletion.	N = 5	Graves' disease reported in four females and one male diagnosed between the ages of 27 months and 16 years.
(Elder,	Type I diabetes mellitus in	N = 1	9-year-old boy with
Kaiser-	a patient with		a history of glottic
Rogers,	chromosome 22q11.2		web, clubfoot,
Aylsworth	deletion syndrome.		polyuria, polydipsia,
, &			weight loss,
Calikoglu,			hyperglycemia,
2001)			ketosis, serum
			insulin antibodies,
			and a low C-peptide
			level. The authors
			suggested that the
			presence of insulin
			antibodies in this
			patient indicate an
			autoimmune
			etiology for his

			diabetes mellitus
			type I.
(Brown,	Graves' Disease in	N = 1	Case report: Graves'
Datta,	DiGeorge Syndrome:		Disease in DiGeorge
Browning,	Patient Report with a		Syndrome.
& Swift,	Review of Endocrine		
2004)	Autoimmunity Associated		
	with 22q11.2 Deletion"		
		NT 1	
(Xie et al., 2016)	Autoimmune disorder secondary to DiGeorge	IN = I	A lemale born with
	syndrome: a long-term		congenital heart
	follow-up case report and		disease followed till
	interature review		20 years. 6 years old,
			the blood routine test
			showed slight
			thrombocytopenia
			and 9 years Found to
			have anemia and
			severe
			thrombocytopenia.

(Kratz et al., 2003)	Evans Syndrome in a Patient with Chromosome 22q11.2 Deletion Syndrome: A Case Report	N = 1	Evans Syndrome in a Patient with Chromosome 22q11.2 Deletion Syndrome: A Case Report, Pediatric Hematology and Oncology.
(Chang et al., 2006)	Type III Mixed Cryoglobulinemia and Antiphospholipid Syndrome in a Patient With Partial DiGeorge Syndrome	N = 1	Type III Mixed Cryoglobulinemia and Antiphospholipid Syndrome in a Patient with Partial DiGeorge Syndrome
(Pongprutt ipan, Cook, Reyes- Mugica, Spahr, & Swerdlow, 2012)	Pulmonary Extranodal Marginal Zone Lymphoma of Mucosa- Associated Lymphoid Tissue Associated with Granulomatous Inflammation in a Child with Chromosome 22q11.2 Deletion Syndrome (DiGeorge Syndrome)	N = 1	Pulmonary Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue Associated with Granulomatous Inflammation in a

			Child with Chromosome 22q11.2 Deletion Syndrome
(Verloes et al., 1998)	Juvenile rheumatoid arthritis and del(22q11) syndrome: a non-random association. <i>Journal of Medical</i> <i>Genetics</i> 1998;35:943- 947.	N = 3	Three children with the deletion and a chronic, erosive polyarthritis resembling idiopathic cases of juvenile rheumatoid arthritis (JRA)
(Sullivan et al., 1997)	Juvenile rheumatoid arthritis-like polyarthritis in chromosome 22q11.2 deletion syndrome	N = 80	Eighty patients with chromosome 22q11.2 deletion syndrome were tested arthropathy and all 3 patients with polyarthritis had evidence of more extensive

(Deriva)		N – 1	immunoregulatory derangements.
(Bruno, Barbier, Lambilliot te, Rey, & Turck, 2002)	Auto-immune pancytopenia in a child with DiGeorge syndrome.	1 - 1	pancytopenia in a child with DiGeorge syndrome
(Casimire, Golla, & Smith, 2011)	Sarcoidosis In A 43-Year- Old Woman With Digeorge Syndrome	N = 1	Sarcoidosis in a 43- year-old woman with Digeorge Syndrome
(Mahé et al., 2019)	Risk factors of clinical dysimmune manifestations in a cohort of 86 children with 22q11.2 deletion syndrome: A retrospective study in France	N = 86	Eleven patients (13%) developed an autoimmune disease; ATD, JIA, and ITP. the only risk factor was an antecedent of severe infection

(Ueda et al., 2017)	Graves' Disease in Pediatric and Elderly Patients with 22q11.2 Deletion Syndrome	N = 2	(OR: 4.1; 95% CI [1.099–15.573]). Two female patients (one child and an elderly) with Graves'
			disease
(Fishman et al., 2011)	Prevalence of thyroid disease in children with 22q11.2 deletion syndrome	N = 169	Overt thyroid disease was noted in 9.5% of 169 children with the syndrome. Hypothyroidism occurred in 7.7% and hyperthyroidism in 1.8%

Table 5: Shows the large potential outcome variables that are in the SERph22 database. This
table shows outcome variables that have a sufficient number of individuals that I chose to further
analyze.

	CD3	CD4	CD8	CD19	CD56				
Data on outcome	count	count	count	count	count	IgA	lgG	lgM	IgE
Psych Diagnosis	N = 58	N = 59	N = 57	N = 58	N = 58	N= 31	N = 30	N=31	N = 0
CSBS	N = 33	N = 20	N = 20	N = 20	N = 0				
CDIP	N = 37	N = 37	N = 38	N = 38	N = 38	N = 17	N = 17	N = 17	N = 0
ADOS	N = 21	N = 20	N = 20	N = 20	N = 0				
ADI	N = 21	N = 20	N = 20	N = 20	N = 0				
ABC	N = 10	N = 0							
CBCL	N = 10	N = 13	N = 13	N = 13	N = 0				
How many									
assessment did the									
participant have?	N = 56	N = 56	N = 56	N = 55	N = 55	N = 47	N = 48	N = 48	N = 0
Was the SCID-I/P									
ADMINISTERED?	N = 10	N = 0							
Was the ABAS									
assessment									
completed during									
the first									
evaluation?	N = 57	N = 57	N = 57	N = 56	N = 56	N = 49	N = 50	N = 50	N = 0
Was the CAARS									
assessment									
completed during									
the first									
evaluation?	N = 10	N = 0							
Was the Prodromal									
Questionnaire									
completed during									
the first									
evaluation?	N = 9	N = 9	N = 9	N = 9	N = 9	N = 6	N = 6	N = 6	N = 0
Was the Prodromal									
Questionnaire									
completed during									
the second									
evaluation?	N = 6	N = 6	N = 6	N = 6	N = 6	N = 6	N = 6	N = 6	N = 0
Autism Spectrum									
Disorder	N = 3	N = 3	N = 3	N = 3	N = 3	N = 5	N = 5	N = 5	N = 1
ADHD	N = 4	N = 4	N = 4	N = 4	N = 4	N = 4	N = 4	N = 4	N = 1

Data on outcome	CD3 count	CD4 count	CD8 count	CD19 count	CD56 count	IgA	lgG	IgM	IgE
Was the Prodromal Questionnaire completed during the first evaluation?	N = 9	N = 9	N = 9	N = 9	N = 9	N = 6	N = 6	N = 6	N = 0
Was the Prodromal Questionnaire completed during the second evaluation?	N = 6	N = 6	N = 6	N = 6	N = 6	N = 6	N = 6	N = 6	N = 0
Autism Spectrum Disorder	N = 3	N = 3	N = 3	N = 3	N = 3	N = 5	N = 5	N = 5	N = 1
ADHD	N = 4	N = 4	N = 4	N = 4	N = 4	N = 4	N = 4	N = 4	N = 1

Table 6: This table shows outcome variables that had insufficient number of individuals for analysis.

Figure 1: Matrix plot of CD3+, CD4+, CD8+, and CD19+ for CSBS scale

Leukocyte counts expressing markers: CD3+CD4+ CD8+ CD19+ CD56+: measured cubic millimeter (cells/mm³) of blood.

The histograms indicate an overall lack of a normal distribution, and as expected CD3-- a marker of T cells-- is correlated with Tcell subsets CD4 and CD8

	Simple Statistics									
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum				
CD3+	33	1981	1230	65383	626.00000	5266				
CD4 +	33	1343	845.39666	44335	402.00000	3680				
CD8 +	33	582.33333	466.85314	19217	118.00000	2045				
CD19+	33	1142	850.95448	37685	148.00000	3338				
CD56+	33	447.75758	334.28067	14776	131.00000	1466				

Figure 2: Matrix plot of IgA, IgG, IgM

IgG: Immunoglobulin G IgA: Immunoglobulin A IgM: Immunoglobulin M measured in mg/100 ml

There is a slight correlation between the immunoglobulins.

Simple Statistics								
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum		
IgA	20	36.00000	27.16228	720.00000	7.00000	96.00000		
IgG	20	566.40000	217.43926	11328	180.00000	1102		
IgM	20	44.40000	29.56598	888.00000	5.00000	114.00000		

Figure 3: Matrix plot of Social Speech Symbolic and CSBS total scales

CSBS total: The total score of the sub-scales.

As shown in figure 3, there are correlations between the scales and CSBS total.

Simple Statistics								
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum		
social	20	17.50000	5.92497	350.00000	8.00000	26.00000		
Speech	20	5.45000	3.15353	109.00000	0	13.00000		
symbolic	20	7.65000	3.52846	153.00000	2.00000	13.00000		
csbs_total	20	30.55000	11.18963	611.00000	11.00000	50.00000		

Figure 4: Matrix plot of CD3+, CD4+, CD8+, and CD19+ for CDIP

CD3+CD4+ CD8+ CD19+ CD56+: measured cubic millimeter (cells/mm³) of blood.

As shown in figure 4, there are correlations between the immune parameters with each other.

The histograms indicate an overall lack of a normal distribution.

Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum
cd3+	38	2290	1313	87022	555.00000	5684
cd4+	38	1486	1018	56473	221.00000	4921
cd8 +	38	688.78947	481.19132	26174	133.00000	2074
cd19+	38	1135	660.66542	43111	110.00000	2520
cd56	37	474.27027	330.17156	17548	69.00000	1309

Figure 5: Matrix plot of subscales for CDIP

GM: Gross Motor FM: Fine motor EL: Expressive Language LC: Language Comprehension

As shown in figure 5, there are correlations between the CDIP scales.

Simple Statistics									
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum			
gm	38	20.00000	6.81017	760.00000	4.00000	29.00000			
fm	38	17.60526	6.36519	669.00000	6.00000	30.00000			
el	38	24.57895	15.71474	934.00000	1.00000	49.00000			
lc	38	27.50000	14.80093	1045	0	50.00000			
social	38	25.21053	9.67906	958.00000	4.00000	40.00000			

Figure 6: Matrix plot of IgG, IgM, and IgA

Immunoglobulin levels IgM cd_ia:IgA cd_ig:IgG (Note code prefix cd is used as per variable name in the SERPh22 database but these are cluster differentiation markers)

The figure shows that there are some correlations between the immunoglobulins.

	Simple Statistics								
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum			
IgM	23	63.08696	34.72347	1451	17.00000	146.00000			
IgA	23	44.02609	32.53693	1013	7.00000	135.00000			
IgG	23	654.91304	338.83435	15063	154.00000	1574			

Regression analysis.

After eliminating_samples lacking concurrent CD3+ CD4+ CD8+ CD19+ CD56+ IgA, IgG IgM with CSBS and CDIP, 20 individuals had data for CSBS, and 23 individuals had data for CDIP. I ran 45 regression models but however, majority of them were not significant fits. Therefore, I am showing the models that are only significant fit as shown in the tables 7 and 8.

Model	Predictor	В	SE	P value	R^2	Adj R ²
	variable					
1. Social				0.0456	0.6364	0.4244
	IGG	0.01528	0.00553	0.0172		
	Age at assessment	0.58513	0.22989	0.0257		
	Age at blood test	0.00510	0.00612	0.4209		
	Sex	-3.79270	2.35451	0.1332		

Table 7: Shows my regression for significant CSBS predictor variables.

2. Total				0.0322	0.4845	0.3471
CSBS						
	Age at	1.42539	0.49018	0.0108		
	assessment					
	Age at blood	0.01072	0.01081	0.3371		
	test					
	Sex	-1.46131	4.43646	0.7464		
3.				0.0462	0.4557	0.3105
Symbolic						
	Age at	0.44598	0.15884	0.0133		
	assessment					
	Age at blood	-0.01070	0.00420	0.0201		
	test					
	Sex	-5.24301	5.28779	0.3346		

Model	Predictor	В	SE	P value	<i>R</i> ²	Adj R ²
	variable					
1. Gross motor				0.0063	0.5314	0.4273
	Age at	0.22207	0.07600	0.0091		
	assessment					
	Age at blood	-0.00147	0.00189	0.4459		
	test					
	Sex	2.92629	2.37772	0.2343		
2. Fine motor				0.0003	0.6704	0.5971
		0.00077	0.05700	. 0001		
	Age at	0.33277	0.05790	<.0001		
	assessment					
	Age at blood	-	0.00141	0.7637		
	test	0.00042958				
	Sex	-2.91790	1.95939	0.1538		
3.Language				0.0004	0.6601	0.5846
comprehension						

Table8: Shows my regression for significant CDIP predictor variables

	Age at	0.66076	0.12763	<.0001		
	assessment					
	Age at blood	-0.00363	0.00310	0.2569		
	test					
	Sex	-0.76300	4.31893	0.8617		
4. Expressive				0.0016	0.6023	0.5140
language						
	Age at	0.70729	0.16902	0.0006		
	Assessment					
	Age at blood	-0.01070	0.00420	0.0201		
	test					
	Sex	-1.18511	5.66911	0.8372		
	IgA	-0.15481	0.07177	0.0476	0.7424	0.6221

We performed a regression analysis with CSBS as CDIP as dependent variables, age at assessment, age at blood drawn and sex as covariates and immunological parameters as predictors. Tables 7 and 8 show where the regression was significant. In table 7, we found a significant association of IgG with social outcome. The higher the IgG, the higher the score on

social scale. In Table 8, none of the models was significant except for IgA which shows that the higher the IgA, the higher the scores on expressive language. Results are in appendix.

Discussion and Conclusion:

In this study I examined the potential association between peripheral blood leukocyte subsets and two measures of childhood neuropsychological development (CSBS and CDIP), as preparation for future studies that will provide a more detailed analysis of autoimmune phenomena and these psychological factors. I likewise formed a similar analysis for immunoglobulins (IgM, IgG, IgA).

My regression analysis for CSBS shows that many of the model fits were not significant. However, both IgG and age at assessment were significant for the social sub-scale model. For the IgG exposure variable, the parameter estimate was 0.01528 and the p value was 0.0172 and the 95% confidence interval was (0.0032, 0.02733). IgG was positively associated with CSBS score meaning that higher IgG indicates worse functioning of the individual. Age at assessment was positively associated with CSBS score. Likewise, for total CSBS and symbolic subscales, age at assessment was also significant. The mean (SD, range) age at the blood draw and at the CSBS-DP assessment were 179.5 (215.97, 646) days and 14.4 (5.27, 19) months, respectively. The mean (SD) age at the blood draw and at the CDIP assessment were 462.65 (617.66, 1826) days and 48.394 (16.30, 47.11) months, respectively.

For CDIP model, IgA, age at assessment and age at blood test showed significant result for the Expressive Language sub-scale. This model indicated that infants with higher IgA will perhaps have poorer expressive language function. For the other sub-scales, only the age at assessment was significant.

I performed a detailed review of autoimmunity in 22q11.2DS. Autoimmunity in 22q11.2DS usually presents as hyper-hypothyroidism, juvenile idiopathic arthritis, and autoimmune cytopenia.(Giuliana Giardino et al., 2019) Viral respiratory infections are the most common type of infection in patients with 22q11.2DS and opportunistic infections are rare. Previous studies show varying degrees of autoimmune conditions among individuals with 22q11DS. According to Lima et al, 47%(28 patients) out of 59 patients among individuals with 22q.11DS had hypoparathyroidism. (Kari Lima et al., 2011). Kathleen E Sullivan recorded 24% of autoimmune conditions in the research on immune biomarkers of autoimmunity (Sullivan, 2019). Development of autoimmunity in patients with 22q11.2 deletion can be due to different mechanisms (Khandaker, Zimbron, Dalman, Lewis, & Jones, 2012). Infections, molecular mimicry, and bystander activation of autoreactive T lymphocyte by inflammatory cytokines are some of the mechanisms leading to autoimmunity. (Kuo, Signer, & Saitta, 2018)

Abnormal thymic development leading to partial immunodeficiency is also relevant to autoimmunity. About 1.5% of patients with 22q11DS) have complete athymia with signs and symptoms similar to severe combined immune deficiency (SCID). Therefore, absence of T

lymphocyte is due to athymia as opposed to intrinsic hematopoietic abnormalities inherent in SCID. (Giuliana Giardino et al., 2019) In addition, Regulatory T cells (Treg) play a crucial role in maintaining self-tolerance in humans. Individuals with 22q11DS have been reported to have decreased frequency of Treg cells. (Klocperk et al., 2014)

Prior studies have examined the correlation between leukocyte subsets and autoimmune phenomena, but data is generally lacking for 22q11.2DS. There is also no data in the literature on whether there is any correlation between these immune parameters and neurodevelopmental indices in this genetic condition. Therefore, the work in my thesis yielded some novel insights.

My study found an association between immunoglobulin levels and adverse neurobehavioral outcomes. Considering that elevated immunoglobulins has been associated with autoimmune disease (Mindy S. Lo et al), further studies are needed to examine this connection in 22q11DS.

- Brown, J. J., Datta, V., Browning, M. J., & Swift, P. G. (2004). Graves' disease in DiGeorge syndrome: patient report with a review of endocrine autoimmunity associated with 22q11.2 deletion. *J Pediatr Endocrinol Metab*, 17(11), 1575-1579. doi:10.1515/jpem.2004.17.11.1575
- Bruno, B., Barbier, C., Lambilliotte, A., Rey, C., & Turck, D. (2002). Auto-immune pancytopenia in a child with DiGeorge syndrome. *Eur J Pediatr*, 161(7), 390-392. doi:10.1007/s00431-002-0976-y
- Casimire, T. N., Golla, V., & Smith, P. R. (2011). Sarcoidosis In A 43 Year Old Woman With Digeorge Syndrome. In C40. HYPERSENSITIVITY PNEUMONITIS, SARCOID AND GRANULOMA MODELS (pp. A4514-A4514): American Thoracic Society.
- Chang, A. D., Tachdjian, R., Gallagher, K., McCurdy, D. K., Lassman, C., Stiehm, E. R., & Yadin,
 O. (2006). Type III mixed cryoglobulinemia and antiphospholipid syndrome in a patient with partial DiGeorge syndrome. *Clin Dev Immunol*, 13(2-4), 261-264. doi:10.1080/17402520600877778
- Choi, J. H., Shin, Y. L., Kim, G. H., Seo, E. J., Kim, Y., Park, I. S., & Yoo, H. W. (2005). Endocrine manifestations of chromosome 22q11.2 microdeletion syndrome. *Horm Res*, 63(6), 294-299. doi:10.1159/000086745

- Di Cesare, S., Puliafito, P., Ariganello, P., Marcovecchio, G. E., Mandolesi, M., Capolino, R., . . . Cancrini, C. (2015). Autoimmunity and regulatory T cells in 22q11.2 deletion syndrome patients. *Pediatr Allergy Immunol, 26*(6), 591-594. doi:10.1111/pai.12420
- Elder, D. A., Kaiser-Rogers, K., Aylsworth, A. S., & Calikoglu, A. S. (2001). Type I diabetes mellitus in a patient with chromosome 22q11.2 deletion syndrome. *Am J Med Genet*, 101(1), 17-19. doi:10.1002/ajmg.1293
- Fishman, L., Shapiro, J., Shugar, A. L., Fishman, J., Cytrynbaum, C., & Weksberg, R. (2011).
 Prevalence of thyroid disease in 22q11 deletion syndrome: A retrospective chart review. *Hormone Research in Paediatrics*, 76, 47. doi:10.1159/000334325
- Gennery, A., Barge, D., O'sullivan, J., Flood, T., Abinun, M., & Cant, A. (2002). Antibody deficiency and autoimmunity in 22q11. 2 deletion syndrome. Archives of disease in childhood, 86(6), 422-425.
- Gennery, A. R. (2012). Immunological aspects of 22q11.2 deletion syndrome. *Cell Mol Life Sci,* 69(1), 17-27. doi:10.1007/s00018-011-0842-z
- Giardino, G., Radwan, N., Koletsi, P., Morrogh, D. M., Adams, S., Ip, W., . . . Gaspar, H. B. (2019). Clinical and immunological features in a cohort of patients with partial DiGeorge syndrome followed at a single center. *Blood, The Journal of the American Society of Hematology, 133*(24), 2586-2596.
- Giardino, G., Radwan, N., Koletsi, P., Morrogh, D. M., Adams, S., Ip, W., . . . Ladomenou, F. (2019). Clinical and immunological features in a cohort of patients with partial DiGeorge

syndrome followed at a single center. *Blood*, *133*(24), 2586-2596. doi:10.1182/blood.2018885244

- Gottlieb, C., Li, Z., Uzel, G., Nussenblatt, R. B., & Sen, H. N. (2010). Uveitis in DiGeorge syndrome: a case of autoimmune ocular inflammation in a patient with deletion 22q11.2. *Ophthalmic Genet*, *31*(1), 24-29. doi:10.3109/13816810903426249
- Hacıhamdioğlu, B., Hacıhamdioğlu, D., & Delil, K. (2015). 22q11 deletion syndrome: current perspective. *The application of clinical genetics*, 123-132.
- Hernández-Nieto, L., Yamazaki-Nakashimada, M. A., Lieberman-Hernández, E., & Espinosa-Padilla, S. E. (2011). Autoimmune thrombocytopenic purpura in partial DiGeorge syndrome: case presentation. *J Pediatr Hematol Oncol, 33*(6), 465-466. doi:10.1097/MPH.0b013e31821b0915
- Jawad, A. F., McDonald-McGinn, D. M., Zackai, E., & Sullivan, K. E. (2001). Immunologic features of chromosome 22q11. 2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). *The Journal of pediatrics*, 139(5), 715-723.
- Kawame, H., Adachi, M., Tachibana, K., Kurosawa, K., Ito, F., Gleason, M. M., . . . McDonald-McGinn, D. M. (2001). Graves' disease in patients with 22q11.2 deletion. *J Pediatr*, 139(6), 892-895. doi:10.1067/mpd.2001.119448
- Kawamura, T., Nimura, I., Hanafusa, M., Fujikawa, R., Okubo, M., Egusa, G., & Amakido, M. (2000). DiGeorge syndrome with Graves' disease: A case report. *Endocr J*, 47(1), 91-95. doi:10.1507/endocrj.47.91

- Khandaker, G. M., Zimbron, J., Dalman, C., Lewis, G., & Jones, P. B. (2012). Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. *Schizophrenia Research*, 139(1-3), 161-168.
- Klocperk, A., Grecová, J., Šišmová, K., Kayserová, J., Froňková, E., & Šedivá, A. (2014). Helios expression in T-regulatory cells in patients with di George Syndrome. *Journal of Clinical Immunology*, 34, 864-870.
- Kratz, C. P., Niehues, T., Lyding, S., Heusch, A., Janssen, G., & Göbel, U. (2003). Evans syndrome in a patient with chromosome 22q11.2 deletion syndrome: a case report. *Pediatr Hematol Oncol*, 20(2), 167-172. doi:10.1080/0880010390158685
- Kuo, C. Y., Signer, R., & Saitta, S. C. (2018). Immune and genetic features of the chromosome 22q11. 2 deletion (DiGeorge Syndrome). *Current Allergy and Asthma Reports, 18*, 1-7.
- Lima, K., Abrahamsen, T. G., Wolff, A. B., Husebye, E., Alimohammadi, M., Kämpe, O., & Følling, I. (2011). Hypoparathyroidism and autoimmunity in the 22q11.2 deletion syndrome. *Eur J Endocrinol*, 165(2), 345-352. doi:10.1530/eje-10-1206
- Lima, K., Abrahamsen, T. G., Wolff, A. B., Husebye, E., Alimohammadi, M., Kämpe, O., & Følling, I. (2011). Hypoparathyroidism and autoimmunity in the 22q11. 2 deletion syndrome. *European journal of endocrinology*, 165(2), 345-352.
- Mahé, P., Nagot, N., Portales, P., Lozano, C., Vincent, T., Sarda, P., . . . Jeziorski, E. (2019). Risk factors of clinical dysimmune manifestations in a cohort of 86 children with 22q11.2

deletion syndrome: A retrospective study in France. *Am J Med Genet A*, *179*(11), 2207-2213. doi:10.1002/ajmg.a.61336

- McDonald-McGinn, D. M., Sullivan, K. E., Marino, B., Philip, N., Swillen, A., Vorstman, J. A., .
 . Morrow, B. E. (2015). 22q11. 2 deletion syndrome. *Nature reviews Disease primers*, *1*(1), 1-19.
- McLean-Tooke, A., Spickett, G., & Gennery, A. (2007). Immunodeficiency and autoimmunity in 22q11. 2 deletion syndrome. *Scandinavian journal of immunology*, *66*(1), 1-7.
- Montin, D., Marolda, A., Licciardi, F., Robasto, F., Di Cesare, S., Ricotti, E., . . . Cancrini, C. (2019). Immunophenotype Anomalies Predict the Development of Autoimmune Cytopenia in 22q11.2 Deletion Syndrome. J Allergy Clin Immunol Pract, 7(7), 2369-2376. doi:10.1016/j.jaip.2019.03.014
- Pongpruttipan, T., Cook, J. R., Reyes-Mugica, M., Spahr, J. E., & Swerdlow, S. H. (2012).
 Pulmonary Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid
 Tissue Associated with Granulomatous Inflammation in a Child with Chromosome
 22q11.2 Deletion Syndrome (DiGeorge Syndrome). *Journal of Pediatrics, 161*(5), 954-+.
 doi:10.1016/j.jpeds.2012.07.003
- Ricci, S., Sarli, W. M., Lodi, L., Canessa, C., Lippi, F., Azzari, C., & Stagi, S. (2022).
 Characterization of Autoimmune Thyroid Disease in a Cohort of 73 Paediatric Patients
 Affected by 22q11.2 Deletion Syndrome: Longitudinal Single-Centre Study. *Genes* (*Basel*), 13(9). doi:10.3390/genes13091552
- Romagnani, S. (2006). Immunological tolerance and autoimmunity. *Internal and emergency medicine*, *1*, 187-196.
- Sullivan, K. E. (2019). Immune biomarkers of autoimmunity in chromosome 22q11. 2 deletion syndrome. *The Journal of Allergy and Clinical Immunology: In Practice*, 7(7), 2377-2378.
- Sullivan, K. E., McDonald-McGinn, D. M., Driscoll, D. A., Zmijewski, C. M., Ellabban, A. S., Reed, L., . . . Keenan, G. (1997). Juvenile rheumatoid arthritis-like polyarthritis in chromosome 22q11. 2 deletion syndrome (DiGeorge anomalad/velocardiofacial syndrome/conotruncal anomaly face syndrome). *Arthritis & Rheumatism: Official Journal of the American College of Rheumatology*, 40(3), 430-436.
- Tison, B. E., Nicholas, S. K., Abramson, S. L., Hanson, I. C., Paul, M. E., Seeborg, F. O., . . .
 Chinen, J. (2011). Autoimmunity in a cohort of 130 pediatric patients with partial DiGeorge syndrome. *J Allergy Clin Immunol*, *128*(5), 1115-1117.e1111-1113. doi:10.1016/j.jaci.2011.06.043
- Ueda, Y., Uraki, S., Inaba, H., Nakashima, S., Ariyasu, H., Iwakura, H., . . . Akamizu, T. (2017).
 Graves' Disease in Pediatric and Elderly Patients with 22q11.2 Deletion Syndrome. *Intern Med*, 56(10), 1169-1173. doi:10.2169/internalmedicine.56.7927
- Verloes, A., Curry, C., Jamar, M., Herens, C., O'Lague, P., Marks, J., . . . Blanchet, P. (1998). Juvenile rheumatoid arthritis and del(22q11) syndrome: a non-random association. *J Med Genet*, 35(11), 943-947. doi:10.1136/jmg.35.11.943

- Wetherby, A. M., Prizant, B. M., & Barry, M. (1990). Communication and symbolic behavior scales.
- Xie, Y., Guo, J., Hua, Y., Zhao, W., Sun, Q., & Lu, X. (2016). Autoimmune disorder secondary to DiGeorge syndrome: a long-term follow-up case report and literature review. *Beijing da xue xue bao. Yi xue ban= Journal of Peking University. Health Sciences*, 48(6), 1086-1089.
- Yagi, H., Furutani, Y., Hamada, H., Sasaki, T., Asakawa, S., Minoshima, S., . . . Matsuoka, R. (2003). Role of TBX1 in human del22q11.2 syndrome. *The Lancet*, *362*(9393), 1366-1373. doi:<u>https://doi.org/10.1016/S0140-6736(03)14632-6</u>