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Abstract 

 

Background: Leptospirosis is a neglected tropical disease with 1.0 million cases and 

59,000 deaths occurring each year. The major disease burden is placed on socio-

economically depressed populations. Leptospirosis persists in an endemic state 

throughout Brazil, where ~3,000 cases are reported per year. Climate change in this 

country affects the ecology of numerous zoonotic diseases, leading to the increased risk 

of an outbreak.  

Methods: In this study, we investigated the spatial temporal variations of leptospirosis 

incidence to enhance the understanding of leptospirosis patterns at a municipal scale. 

Additionally a general linear mixed model controlling for municipality and time was 

constructed to identify environmental predictors of leptospirosis.  

Results: Results suggested high incidence rates of leptospirosis are spatially clustered in 

Southeastern Brazil. Temporal analyses indicated high seasonality, peaking from 

December-March, with overall trend of total cases and average cases reported increasing 

overtime as well. Our results suggest that increases in leptospirosis incidence were 

significantly associated with increases in mean monthly precipitation over time, mean 

monthly vegetation index score over time and year. Municipalities with lower urban 

populations and increased mean soil water pH and isothermality, interpreted as higher 

temperature evenness over the course of a year, were also significantly associated with 

higher leptospirosis incidence at baseline. Mean monthly temperature was not 

significantly associated with an increase in leptospirosis incidence in the final model.  

Discussion: Our results clearly show the seasonal temporality of leptospirosis, with 

increases in leptospirosis observed over time. Our model illustrates an increase in 

leptospirosis in rural regions with high vegetation in time-periods of elevated rainfall. 

This approach assists in identifying spatial regions and time-periods of high potential 

infection risk that may lead to the development of strategies to improve targeted 

prevention and response. 
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Introduction 

Background  

Leptospirosis, a tropical zoonotic spirochete bacterial disease of increasing 

worldwide importance, results in an estimated 1.0 million cases and 59,000 deaths on an 

annual basis (1). Despite this health burden, leptospirosis remains a relatively "neglected 

tropical disease". Furthermore, a growing body of evidence suggests associations 

between environmental factors (including environmental changes) and leptospirosis. For 

example, higher leptospirosis incidence rates have been associated with greater 

precipitation and flooding, inadequate floodwater drainage and increasing temperatures 

(2-5). These findings have major pubic health implications as the number of severe 

climatic events continues to rise. 

Leptospira spp. range from 6-20 micrometers in length and prefer a consistent 

temperature of 28-30 °C (6). There are 13 pathogenic and 6 saprophytic species of 

Leptospira. Pathogenic strains, such as L. interrogans and L. Icterohamorrhagiae, are 

very adaptable and can grow in low nutrient environments, including moist soil and 

freshwater, surviving outside a host for weeks to months (7). Leptospira spp. have been 

identified in most mammals. Rodents, livestock and domesticated mammals serve as the 

predominant hosts of pathogenic species (8). The exact infectious load of leptospirosis is 

unknown, but estimates range from 103 -108 organisms/mL for all pathogenic Leptospira 

spp. (9). Shedding of the bacteria occurs through urine as hosts carry leptospirosis in the 

proximal renal tubules of the kidney (10). Exposure transpires through contact with 

mammalian reservoir host urine or environmental persistence(6). The bacteria enter the 

host through a small cut, abrasion or the mucous membrane (11).  
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Human exposure and subsequent cases have been linked to environmental, social, 

occupational and pathogenic risk factors. Human-to-human transmission is extremely 

rare (12). Pathogenic species are responsible for a myriad of signs and symptoms that 

range from mild to severe (11-13). While most infections result in nonspecific flu-like 

symptoms that resolve without treatment, leptospirosis can cause kidney damage, 

meningitis, liver failure, respiratory distress and death (14, 15). Severe manifestations of 

the disease present with organ failure and internal bleeding (Weil’s disease) and 

associated severe hemorrhagic pulmonary syndrome. These severe diagnoses have 10% 

and 75% case fatality rates, respectively (16). With severe infections, morbidity and 

mortality can occur despite generic antibiotic treatment; these complications are at least 

in part attributed to poor patient immunity or delayed treatment initiation (17).  

In Brazil, a large country with a tropical climate and heavy rainy season, there are 

approximately three to five thousand cases of leptospirosis confirmed annually through 

Sistema de Informacaco de Agravos de Noti Cacao (SINAN) (17). These case numbers 

are estimates and may underreport true disease burden due to lack of reporting in many 

municipalities throughout Brazil. In addition, the number of cases continues to rise, 

placing a significant burden on the public health and economy of the nation. Using 

SINAN leptospirosis data for 2007, it has been estimated that leptospirosis resulted in the 

loss of 6, 940 potential life years in Brazil with 75% of these lost years occurring in the 

20-49 age group range. Approximately 11.85 million USD from years of minimum wage 

work were lost to the disease in 2007 (18).  The estimated total economic cost of a one 

specific leptospirosis outbreak in Nova Friburgo, Brazil was estimated to range between 

21,500 and 100,800 USD in 2007 (19). Given the inadequate appreciation of the adverse 
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health and socioeconomic consequences of leptospirosis, there is a lack of effective 

implementation of disease control measures. Research examining spatial temporal 

incidence and environmental determinants of leptospirosis in Brazil is needed to advance 

knowledge of the disease ecology and improve prevention, surveillance and response to 

disease outbreaks.  

 

Epidemiology, Environmental Predictors and Prior Research of Leptospirosis  

Numerous small-scale epidemiologic studies conducted throughout tropical 

regions of the globe have examined cross-sectional associations between Leptospirosis 

prevalence or aggregated incidence over time and a multitude of environmental factors 

including increased precipitation and flooding (2, 9-11, 20-26), greater temperature, low 

elevation, presence of agricultural lands and alkaline soils (2, 9-11, 20-34). Early 

epidemiologic studies suggested that leptospirosis predominantly manifests as a rural 

disease. However, due to massive urban migration and poor urban slum conditions, there 

has been an increase of leptospirosis cases in urban areas (22, 35-37). Sporadic outbreaks 

of leptospirosis are more frequent in urban settings (35). The Leptospirosis Burden 

Epidemiology Reference Group (LERG), supported by the World Health Organization, 

cites both environmental and social variables as important potential risk factors for 

leptospirosis that need further scientific support (4). While previous investigations have 

examined spatial prediction of hotspots and clustering of outbreaks, they have failed to 

examine the temporality of the associations of potential environment predictors with 

incidence rates. Climate change events have led to shifting environmental conditions 

throughout Brazil (38). Furthermore, habitat loss and increasing urbanization have 
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resulted in vegetation loss, placing large populations in leptospirosis suitable habitats at 

increased risk for outbreaks. 

Since 2001, leptospirosis has been on the nationally notifiable disease registry of 

the Brazil Ministry of Health. However, many municipalities still do not report cases due 

to diagnostic challenges and limited funding (17). Previous local epidemiological studies 

examining leptospirosis in Brazil indicate the endemic nature of the disease. Dias et al. 

(37), reported that overall seroprevalence in Salvador, Brazil was 12.4%, indicating an 

endemic state of leptospirosis in Brazil with 61% of the seroprevalent individuals 

showing high titers for the highly infectious Icterohamorrhagiae serogroup. Work of 

Goncalves et al. in 2006 suggested that occupational exposures, such as farming or other 

jobs with proximity to mammalian reservoir hosts, are risk factors for leptospirosis in 

Brazil. For example, a study that examined illness in 150 slaughterhouse workers in 

Parana State, Brazil reported increased prevalence in workers with contact to slaughtered 

animals (39). Similarly, exposure to livestock in rural areas of Parana State, Brazil was 

associated with a higher likelihood of Leptospirosis, whereas control of rodents on the 

property and higher education level had protective effects (40). Lacerda et al. (41) found 

that Leptospira spp. infections occurred primarily in rice fields and persisted even in 

times of low rainfall in rural communities, perhaps because of prolonged exposure to 

reservoir hosts. These prior studies illustrate that restricted by the lack of spatial and 

temporal data and analyses. Highlighting regions of the country with elevated incidence 

rates remains a gap in the literature. In addition, prior research has not adequately 

addressed the changes in incidence over time across Brazil or comprehensively evaluated 

associations of environmental factors with the disease, at a regional scale.   
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A Spatial Temporal Analysis 

Complex interactions in disease ecology require expanding methodological 

capabilities in statistics, geographic information systems and remote sensing (42). These 

tools improve the ability to analyze spatial temporal relationships of environmental risk 

factors of infectious diseases. Examining disease trends through a spatial temporal lens 

will improve predictions of future disease trends (43). In turn, these applications may 

enhance delivery of public health and clinical interventions to most efficiently and 

effectively reduce disease burden. Dynamic time series maps, as well as models 

accounting for space and time, can characterize and quantify how the spatial distribution 

of disease changes over time, especially in regards to a changing climate. Several studies 

have examined the relationships of cases and incidence of a number of infectious diseases 

with environmental factors including land classification, vegetation, temperature and 

precipitation using general linear mixed modeling (GLMM) (44-46). However, no 

GLMM models exist for leptospirosis. Allowing for changing environmental factors 

across the dimensions of time and space provides an improved model fit with the 

opportunity to account for random effects and adjust for correlations within time and 

space. Understanding the association between incidence rates, geographical location and 

time is crucial to exploring the seasonality of leptospirosis as well as forecasting future 

estimated burdens of disease in regards to the changing environment and climate. 

 

Purpose of Study 

Our study examined the associations between several environmental factors and 

incidence of leptospirosis in cases/ 100,000 person-months, through a spatial temporal 
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lens. The principal aims of this study were to: 1) examine the clustering of total 

leptospirosis incidence in Brazil on a spatial scale to identify regions with high incidence, 

2) evaluate the trend and seasonality of leptospirosis in Brazil and 3) identify potential 

environmental drivers of leptospirosis incidence accounting for variations and clustering 

in time and space. 

This analysis characterized the temporal trends of leptospirosis in Brazil as well 

as identified high incidence both spatially and seasonally. Through GLMMs, we model 

the variation in the true rates and highlight systemic from random variability and develop 

a spatial temporal ecological model for leptospirosis at a municipal level in Brazil. 

Additionally, we identified significant environmental predictors associated with 

leptospirosis incidence, allowing for an improved understanding of the eco-epidemiology 

of leptospirosis in Brazil.  

 

Methods  

Study Design 

We conducted a retrospective analysis of leptospirosis incidence using confirmed 

cases from SINAN aggregated by month and municipality collected and reported by the 

Brazil Ministry of Health from 2001 to 2014 (17). We report monthly incidence in 

cases/100,000 person-months for the 13-year period. Analyses were conducted with the 

statistical software R3.2 (47),  ArcMap 10.3 by ESRI (48), Cluster Seer 2.0 (49), GeoDa 

(50).  
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Data Collection, Matching, and Merging Methods 

Individual cases meeting the serological definition of leptospirosis (i.e positive 

microscopic agglutination test (MAT) or the enzyme-linked immunosorbent assay 

(ELISA) were collected by SINAN and identified at the municipality of residence (17). 

We used Microsoft Excel to gather reported cases of leptospirosis from January 2001 to 

December 2014. Data from 2007 was not available for analysis. We calculated incidence 

rates using municipality population from 2010 the last population census in Brazil. 

Incidence was reported as number of cases per 100,000 person months. We assumed that 

municipality population size remained constant over the analysis period (51).  

The global administrative areas database reports a total of 5,504 municipalities 

within Brazil’s 26 states. Despite leptospirosis being a nationally mandated reported 

disease in the country, not all municipalities report due to personnel and financial 

constraints. Over the 13 year surveillance period 45.2% of all municipalities reported 

incidence rates (2,487 out of 5,504) (52).  The data was log-transformed to adjust for the 

non-normal, strongly right skewed data. Potential environmental predictors, identified 

from a review of relevant literature, were acquired from different sources in raster form 

(Table 1). For each covariate, we used zonal statistics to calculate the mean value by 

municipality. Remotely sensed environmental data were grouped into three time scales: 

time invariant, monthly time variant or monthly time variant over the entire study period 

(Table 1). All analyses were performed using the statistical software R v3.2 (47) and the 

following packages: sp, maptools, raster, dplyr, lattice, ggplot2 and nlme. 
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Descriptive Analysis 

We performed a series of descriptive analyses of both the count and incidence 

case data as well as the environmental independent variables of interest. We preliminarily 

investigated the potential predictor variables of interest with summary statistics and 

histogram plots. None of the environmental predictors were severely skewed and thus 

were not transformed. Mean, standard deviation, median, and percent of data missing in 

the potential predictor variables were reported (Table 2).  

General correlation matrices were used to explore the covariate data for potential 

multicollinearity as well as associations with the outcome of interest: leptospirosis 

incidence. The ranges of the continuous environmental variables were explored. We 

reported the mean, standard deviation and percent of data missing for each potential 

dependent and independent variable (Table 2).  

 

Spatial Data Statistics  

Spatial regions were defined in this analysis as GADM standardized Brazil 

municipalities with reported incidence. We performed all spatial statistical analyses using 

ArcGIS 10.1 by ESRI (48), Cluster Seer 2.0 (49), and GeoDa (50). We spatially explored 

the distribution of leptospirosis cases and incidence across the municipalities. We 

projected the Brazil shapefile in the WGS 1984 World Mercator Coordinate system. 

Spatial statistics were performed only on municipalities with reported cases and 

incidence data. We calculated the geographic distribution of mean incidence and the 

standard deviational ellipse to assess the incidence distribution and concentration. 
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Choropleth maps were used to represent variations in incidence, local autocorrelation, 

and hotspots across municipalities. 

 

Global Autocorrelation 

Global indices of spatial autocorrelation compared incidence rate distribution 

within municipalities across Brazil. The Global Moran’s I test is a well-recognized 

method with which to test the significance of the degree to which similar incidence rates 

of leptospirosis occurred in neighboring municipalities (near in space). The null 

hypothesis of this test assumed leptospirosis incidence is spatially independent of its 

neighbors with the disease occurring randomly across regions and the population at risk 

has an even distribution. Using Clusterseer software (49), we assed significance of global 

autocorrelation using queens contiguity to build the spatial weights at a 95% significance 

level (p<0.05) with 999 repeated Monte Carlo Simulations. 

 

Local Spatial Autocorrelation  

Local indicators of spatial autocorrelation (LISA) highlight where localized 

clusters of disease occur in space. The Local Moran’s I is similar to the Global Moran’s I, 

with the I statistic calculated for every municipality instead of the entire county. The sum 

of the Local I values is proportional to the Global Moran’s I statistic. We performed the 

Local Moran’s I using a queen’s contiguity formation to build the spatial weights matrix 

in GeoDa (50). The Global and Local Moran’s I detect the presence of similar value 

clustering. Moran’s I values close to +1 indicate that the municipality has a high 

incidence rate of leptospirosis and is surrounded by other municipalities with high 
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incidence rates (i.e. high-high clustering). For both the Global and Local Moran’s I, Z-

scores and p-values  assessed the significance of the overall and local incidence 

clustering. 

 

Hot-Spot Analysis 

We conducted a hotspot analysis using the Getis-Ord Gi* statistic with a queens 

contiguity weighting, that allowed each municipality to have one or more neighbor. This 

method identifies municipalities with higher and lower incidence than predicted. The 

Getis-Ord Gi* statistic significantly separates clusters of high values from clusters of low 

values, which are defined as hotspots and cold spots, respectively as compared to 

neighboring values at varying degrees of significance.  

 

Temporal Analysis 

Temporal variation of leptospirosis cases were assessed using a decomposed 

seasonal, trend line analysis (STL). This procedure filters time series data into trend, 

seasonal and remainder components (53). This analysis included 13 time points with 12 

observations per unit time due to the monthly nature of the data. From these models and 

graphs, we assessed the variation and magnitude in total and average leptospirosis cases 

over time of overall temporal trend and seasonality. The STL allows for removal of 

seasonal peaks to report on the secular trend of the data.  

Additionally, we constructed both an unconditional means model and an 

unconditional growth model. These are the first two linear models in the multilevel 

hierarchical model taxonomy and assess variation in leptospirosis incidence due to the 
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inter- and intra-municipality differences, respectively. The intraclass correlation 

coefficient (ICC), 𝜌 = σ 20 / (σ 20+ σ 2ε) (54) was calculated using the variances of the 

unconditional means model. The ICC illustrates the variation in incidence rates 

attributable to differences among municipalities rather than  time. These models were the 

first in the taxonomic multilevel model hierarchy.  

 

Spatial Temporal Environmental Model 

 We acquired potential predictor variable data from Worldclim (55),  Soilgrids 

(56), NASAs near earth observatory program (NEO) (57) and the 2010 Brazil census 

(51). To estimate vegetation by municipality, the normalized difference vegetation index 

(NDVI) calculated a greenness measure of vegetation from 0.0 to 0.8 and was used to 

quantify vegetation. Remote sensing data was also used to report temperature, 

precipitation,, soil water pH and elevation. Isothermality, the quantification of 

temperature evenness throughout the year, and urban population by municipality were 

reported as percentages (Table 1). Missing data trends were explored. Due to a large 

amount of missing data (44%) in the NDVI dataset, vegetation index values for 

municipalities were imputed using the median value. General correlation matrices were 

used to explore the covariate data for potential multicollinearity, as other methodologies 

such as variance inflation factors are not possible to calculate with multilevel models. 

Pearson correlation values for all covariates were <0.4. We explored ranges of the 

continuous environmental variables and joined case data to the environmental data.   

Due to the temporal nature of the data, a general linear model would fail to 

account for spatial and temporal variability that is factored into potential independent 
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variables. Thus we apply a general linear mixed modeling framework, as these models 

can account for temporal and spatial clustering of the data by structured random effects in 

the linear predictor. The error covariance structures of mixed models are allowed to vary 

at both the municipal and time levels which improve model fit and factors temporal and 

spatial autocorrelation into the random effects. The Gaussian multi-level mixed model 

used in this analysis assumes the taxonomy of statistical models, with a systematic 

sequence of models that extend a prior model. With this complex multilevel model, both 

the level 1 (municipal) and level 2 (time) change trajectories are assumed to be linear. 

These models assume univariate normality at level 1 and bivariate normality at level 2. 

These assumptions were checked and validated in the exploratory analysis (54). We 

included an autoregressive time series component and utilized the continually Gaussian 

autoregressive structure to account for spatial dependence. We used the taxonomic 

hierarchy of the model framework, to compare independent variables, identify significant 

predictors (at p<0.05) and select an appropriate covariance structure for the best fitting 

model according to lowest values for deviance, AIC and BIC parameters and significance 

of each independent variable. Models for consideration appear in the model selection 

framework (Table 3). The final model was back transformed for interpretability. To 

assess the model fit, fixed and random residuals for the selected model were interpreted 

and graphed.  
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Results 

Descriptive Analysis  

A total of 110,430 cases of leptospirosis were documented from 2001-2014 by the 

Brazil Ministry of Health. For the 2,417 municipalities reporting any cases (43% of all 

municipalities), the total cases reported by municipalities over the time-period ranged 

from 1 to 228. The mean number of leptospirosis cases per month in municipalities was 

2.16 cases respectively, with an SD of 4.57. Population size in these municipalities 

ranged from 1,216 to 11,250,000 with a mean of 368,000 with a SD of 114,000.  

There was a wide range of incidence rates across municipalities reporting cases 

with a minimum incidence of 0.055 to a maximum incidence of 200.80 cases/100,000 

person-months. Mean incidence of leptospirosis among municipalities reporting cases in 

Brazil was 10.82 cases/100,000 person-months with an SD of 13.52. The data were 

strongly right skewed, according to the histogram. Incidence was selected as the outcome 

of interest for spatial and modeling methodologies.  

 

Spatial Data Statistics 

Descriptive 

We observed cases of leptospirosis across all regions of Brazil (though in less 

than 50% of municipalities due to absence of reporting by 57% of municipalities). High 

case totals (Figure 1) were clustered in the Southeast region. Additionally, the mean 

center and the directional distributions showed incidence clustering in the Southeast 

regions of the country. The directional distribution, summarized by the standard deviation 
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ellipse, depicted the spread of the data longitudinally from north to south in the eastern 

region of the country (Figure 2).  

 

Global Autocorrelation Analysis 

The Global Moran’s I value under Monte Carlo simulation was 0.099 with a p-

value of 0.002. The magnitude of the I value indicated that this clustering was modest in 

magnitude, yet statistically significant.    

 

Local Autocorrelation Analysis 

Results of the Local Moran’s I are displayed in a LISA cluster map (Figure 3). 

Relationships are categorized as high leptospirosis incidence next to high leptospirosis 

incidence (high-high), and low incidence next to low incidence (low-low). Outliers are 

identified as high-low and low-high regions. All clusters noted in the cluster map are 

significant at p = 0.05.  

We identified High-High clustering in 76 municipalities, primarily located in the 

South. low-low clustering was identified in 177 municipalities scattered around Brazil, 

primarily in the East. We highlighted 97 low-high and 31 high-low outliers, where 

municipalities with low and high incidence occurred next to municipalities with high and 

low incidence respectively. Municipalities without significant clustering (n=2016) and 

neighborless municipalities (n=150) were also observed, due to the missing data.  
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Hotspot Analysis  

The incidence hotspot analysis, using the Getis-Ord Gi* statistic, isolated 

significant hotspots at 90%, 95% and 99% confidence levels (Figure 4). Similarly to the 

local autocorrelation analysis, hotspots were scattered throughout the country, but most 

concentrated in the south. Ninety-two municipalities had a 99% (p <0.01) confidence of 

hotspots, 77 municipalities for 95% (p < 0.05) confidence of hotspots and 51 with 90% (p 

< 0.10) confidence of hotspot activity. These hotspots indicated municipalities where 

higher incidence than expected was occurring. Five coldspots, regions with lower 

incidence than expected, were detected at a 90% confidence level (p <0.10). No 

additional significant coldspots were identified at p<0.05 and p<0.01.  

 

Temporal Models  

Temporal variation in the data was assessed via seasonal trend line (STL) 

decomposition. Seasonality accounted for a large magnitude of total cases and average 

cases by municipality over time. Case totals over the 13 years of data peaked from 

January to March, while the lowest case numbers of leptospirosis were observed in 

September (Figure 5). Variation occurred in total cases per year (Figure 6). Our STL 

extracted seasonality, overall trend and the remainder from the data. The seasonal STL 

value was 210.52 with a trend line STL of 80.79 (Figure 7). This illustrates that much of 

the variation is occurring seasonally. However once the seasonality was removed, a 

general positive increase in the secular trend was observed. Figure 7 illustrates a general 

increasing trend in total cases over time, accounting for seasonality  
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Results of the unconditional means model (Model A, Table 4) and unconditional 

growth model (Model B) are shown in Table 4. The intracorrelation coefficient, 

𝜌 was 0.829 indicating that 82.9% of the total variation in the incidence of leptospirosis 

was attributable to differences among municipalities. Despite the evidence that much of 

variation in incidence was to difference in municipalities, the estimated geometric mean 

incidence of leptospirosis (after back transformation of model B) was 5.62 cases/100,000 

person-months at baseline (Table 4). When fit in a linear model, incidence significantly 

decreased by 0.02% per month, controlling for municipalities. The unconditional growth 

model (Model B, Table 4) allowed for random effects within the model and estimated the 

within municipality variation and variation of incidence at baseline (Table 4). These 

variance components assess the amount of outcome variability remaining after fitting the 

multilevel model. As we lack comparison points for the random effect estimates, these 

estimates simply quantify the amount of variation remaining in the model against the null 

benchmark of 0.  

 

Spatial Temporal Environmental Models  

Multi-level mixed models were fitted to leptospirosis incidence data to identify 

candidate environmental variables that were significantly associated with incidence over 

time. Models C-L (Table 4) were constructed with the independent environmental 

variables univariately, to identify variables for further evaluation (using a p <0.2). 

Examination of partial plots and spaghetti plots revealed a roughly linear relationship 

between time and log incidence of leptospirosis. Multicollinearity did not present as an 

issue to this model. Level 1 and level 2 variables included in each hierarchical model 
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evaluated are outlined in table 3. Model N was selected as the best model and the 

conditional autoregressive error covariance structure was the best fit (model N*, Table 4). 

This structure is a spatial statistics function used to define the statistical measurements in 

neighboring municipalities and used when significant local autocorrelation is present, as 

defined by a LISA statistic (Table 5) 

In the final back-transformed model (N*, Table 4) there were six significant 

independent variables; two were time variant and four were time invariant (baseline) 

variables. Precipitation and vegetation were significant predictors of leptospirosis 

incidence over time. Each 10 mm increase in precipitation over time was significantly 

associated with a 0.3% monthly geometric mean increase in incidence. Each unit increase 

in the NDVI vegetation index was significantly associated with a 1.03% monthly 

geometric mean increase in incidence. For every year increase, the geometric mean 

incidence of leptospirosis significantly increased by 8.42%. Time invariant variables at 

baseline that significantly predicted leptospirosis incidence included urban population 

percentage, soil water pH, and isothermality. Each 1% decrease in urban population 

percentage was associated with a 2.70% geometric mean increase in leptospirosis, while 

each 10 °C decrease in mean monthly temperature was associated with a 0.01% geometric 

mean increase in incidence. This association was not significant at the 5% level.  Each  

0.10 point increase in soil water pH was significantly (p<0.10) associated with a 1.3% 

geometric mean increase in incidence Isothermality, (58), was significantly associated 

with leptospirosis incidence at baseline but not over time. Each 1% decrease in 

isothermality at baseline was associated with a 3.24% geometric mean increase in 

leptospirosis incidence. However, every 10% increase in isothermality over time was 
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associated with a 0.02% increase in geometric mean incidence. This suggests the strength 

the association between temperature evenness associated with increased incidence, 

decreased over time. All associations were significant at p<0.05 without an error 

covariance structure specified. In the final complete autoregressive correlation structure: 

mean temperature was not significant at the 95% confidence level. 

Variances of the intercept, slope and residuals were significantly different than 

zero (p<0.05), suggesting other variables not included in the final model (N*) may 

contribute to the variation (Table 4). These values also stress the importance of 

temporality in the model as it provides a better fit to explain the variation in the data.  

To examine the model fit, we plotted residuals of the data set (Figure 8). Figure 8 

shows the errors between the observed and expected incidence values as a result of the 

model. The residuals from the data set had a median of -0.772 with an interquartile range 

(IQR) of 1.73. The small IQR suggests that the expected and observed values are 

relatively close to each other in value. Additionally the fixed and random residuals were 

plotted against each other (Figure 9). The random residual median was -0.16 with an IQR 

of 0.60. This depicts the improved fit when the model is allowed to vary on the intercept 

according to the spatial location of the municipalities.  

 

Discussion 

This analysis presents the first spatial temporal investigation of leptospirosis. We 

identified significant clustering of incidence rates of leptospirosis in space. In addition, 

cases of leptospirosis showed strong seasonality, however the secular trend of cases 

increased overtime as well. Linearly fitted model illustrating incidence rates over time 
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did not show a strong magnitude of change. Multilevel modeling highlighted five 

environmental variables significantly associated with increases in leptospirosis incidence 

in the final model with seven covariates.  

We observed cases of leptospirosis in all 21 states of Brazil, with the case and 

incidence distributions in addition to the spatial mean and standard deviational ellipse 

suggesting a higher case presence in Southeast municipalities in Brazil. This significant 

clustering is also supported by findings of the global and local autocorrelation and 

hotspot analyses. Global and local autocorrelation indicated similar incidence rates are 

significantly clustered in space. Providing evidence that the distribution of leptospirosis 

incidence across municipalities of Brazil is not random. The results of the hot spot 

analysis indicated spatial pinpointing of high incidence clusters in the South occurred. 

The intraclass correlation coefficient additionally suggested spatial significance, 

attributing 82.9% of the total variation in the incidence of leptospirosis to differences 

among municipalities. 

The results of the unconditional growth model and time series analysis 

demonstrated significant temporality in leptospirosis incidence. The seasonal 

decompression analysis highlighted a strong seasonality in cases, with a peak from 

December-March. These findings suggested the presence of associations of ecological 

factors with incidence that were later explored in the mixed model. Secular trend lines 

indicate a general increase in leptospirosis in Brazil over time. However, the 

unconditional growth model does not highlight a strong linear magnitude in leptospirosis 

incidence decrease by month. Controlling for municipality, in every month increase, there 

is a significant 0.02% decrease in leptospirosis incidence. However the unconditional 
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growth model, and the overall hierarchical framework does not factor in seasonality to 

the model (Model B, Table 4). The inability to separate seasonal and overall trends make 

this model less capable of elucidating temporal trends. Thus, we conclude that 

leptospirosis in Brazil municipalities is increasing over time, regardless of a strong case 

seasonality. 

The hierarchical mixed model framework allowed for exploration of potential 

associations of environmental factors with incidence that may further explain the 

variation in incidence between municipalities across time. Six independent variables were 

significantly associated with leptospirosis incidence in the final model consisting of 

seven covaraites. Increases in precipitation, vegetation, soil water pH and time were each 

associated with increases in leptospirosis incidence, while decreases in isothermality and 

percent of urban population were associated with increases in leptospirosis incidence. 

With these findings, we conclude that numerous environmental factors affect the 

distribution of leptospirosis across Brazil spatially and temporally.  

While mean temperature was significantly associated in the final model with no 

error covariance structure specified, it was not significant upon applying the conditional 

autoregressive formula that accounts for spatial dependency. This is potentially due to 

significant spatial autocorrelation among the mean temperature variable, reducing the 

variable’s importance in the model, once the covariance structure was specified. The 

conditional autoregressive error covariance structure allowed for random effects 

correlations by neighboring municipalities. There was no significant univariate 

association with elevation. While other literature supports a negative association between 

elevation and leptospirosis incidence (46), this independent variable was excluded due to 
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lack of significance in the hierarchical model. The lack of significance could be related to 

a modifiable area unit problem as elevation significant at a finer scale. Alternatively the 

lack of significance could be a result of elevation acting as a distal predictor. Localized 

epidemiology studies by Lau suggest soil acidity may affect distribution of leptospirosis 

cases (23). Our model suggested an increase in incidence in basic pH soils. Increasingly 

basic soils may suggest increased water content in the soil as the median soil water pH 

was acidic. An analysis of leptospirosis and potential predictors at different geographic 

scales in urban Brazil indicated that the strongest correlations at the regional level were 

population density while at the local level, flood risk was strongest (59). This could 

potentially explain why altitude was not significant in this municipal scale model. 

Municipalities with a higher proportion of rural residents were associated with increased 

leptospirosis incidence. Despite outbreaks in slums becoming increasingly frequent, our 

research suggests they do not account for a significant disease burden (22). Our model 

adds support to the literature base that increases in precipitation, isothermality and 

vegetation over time and rural regions are significantly associated with leptospirosis. 

However, we explored the disease through a spatial temporal lens as that remained a gap 

in the literature and from this analysis identified regions of Brazil in space and time 

where a high risk of leptospirosis exists. 

 

Limitations 

The spatial and temporal resolution of both the dependent and independent 

variables lead to limitations in this analysis, due to the ecological fallacy and modifiable 

area unit problem where conclusions based on data at a particular scale may not translate 
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to different scales. Case aggregation at the municipal level dilutes the ability of spatial 

statistics to identify specific data clusters and hotspots. Municipalities lacking case 

reports (n= 3,017), may lead to underestimations in true clustering and hotspots of 

leptospirosis in Brazil municipalities. Additionally, we calculated incidence rates and 

urban population percent under the assumption of a stagnant population. Spatial statistics 

were calculated ignoring the municipalities without incidence data. Future analysis could 

apply Empirical Bayesian spatial smoothing statistics to obtain incidence estimates for 

unreported regions and adjust rates by nearest neighbor population averages. Missing 

data was also apparent in ecological variables, most notably vegetation index (table 2), 

however this was attributed to random cloud cover and not thought to have a large affect 

on the model. The missing vegetation data was imputed using the median NDVI value, 

however in the future, interpolation models could be applied to strengthen our 

estimations. The case data of leptospirosis in Brazil municipalities was not reported 

consistently across months for regions under surveillance (51), limiting the temporal 

validity of the model. Due to unavailable case information data such as sex, race or age, 

we did not examine population demographic characteristics of the disease. As with all 

ecological epidemiological analyses, we cannot attribute causality to the significant 

associations observed in the mixed model. Land use change was not incorporated into the 

model and differentiations between climate change and anthropogenic events are not 

distinguishable in the model. We assume our data met the assumptions of the multilevel 

mixed model approach. Currently, there is no prominent method to assess 

multicollinearity or variance inflation factors in multilevel models and we used 

correlation matrices to assess potential multicollinearity. This model considered change 
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in incidence over time but did not incorporate seasonality as a unique variable. To our 

knowledge, this analysis was the first spatial temporal mixed model analysis of 

leptospirosis.  

Despite limitations stemming from the resolution of both the incidence and 

independent variable data, this study explored the dynamics of leptospirosis and 

associated environmental factors across space and time in a new lens. Additionally, the 

rational quadratic covariance correlation structure led to an improved model fit by 

allowing for municipalities close in space and time to have similar error covariance 

structures. Testing of reservoir hosts for seroprevalence rates in regions with high 

incidence could improve future models. Limited funding and time are severe restrictions 

on the collection of this spatial and temporal data.  

 

Public Health Significance  

Leptospirosis is a neglected tropical zoonosis of increasing importance as case 

fatalities rise to nearly 60,000 annually (1). Leptospirosis incidence had significant high-

high local autocorrelation and identified hotspots predominately in Southern Brazil, with 

a significant increase in incidence temporally. Low-low clustering was present in the 

North. Numerous environmental factors, including precipitation and temperature, were 

shown to be significantly associated with increased incidence. These findings will allow 

for enhanced predictive models and can open discussions on improved surveillance and 

disease prevention in the high-risk regions of the South while directing fewer resources to 

the low-risk regions in Northern Brazil.  
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The World Health Organization launched the multi-sectoral Global Leptospirosis 

Environmental Action Network (GLEAN) in 2010. GLEAN was developed to improve 

global and local strategies for prediction, prevention, detection and interventions of 

leptospirosis outbreaks in high-risk regions (60).  Combining GLEAN’s action-oriented 

platform with results from our spatial temporal analysis, allow for targeted policy 

suggestions. Leptospirosis is an ideal zoonosis to apply a “One Health” research and 

prevention framework. “One Health” focuses on a collaborative, multidisciplinary 

approach to the critical interactions between humans, wildlife, and ecosystems. Disease 

endemicity, animal infections, and circulating serovars are crucial in their contributions 

to human outbreaks (60). Our analysis identified municipalities with high and increasing 

incidence rates, with seasonal peaks occurring yearly from December through March. 

Significant environmental factors associated with these incidence increases including 

precipitation and mean temperature were highlighted. Additionally leptospirosis cases are 

increasing over time in Brazil. The number of severe climate-related events are expected 

to double in the next twenty-five years (61). Coupled with land-use change projections 

and humans migrating into previously heavily vegetated areas, climate change presents 

the potential for increased zoonotic outbreaks. Additionally land-use change can lead to a 

change in the soil water pH, potentially causing more widespread environmental 

persistence of the bacteria. If these trends continue as projected, leptospirosis outbreaks 

are anticipated to become more frequent as exposure risk increases.  

Drawing from our findings, we recommend an improved “One Health” active 

surveillance plan in several municipalities in the South, to enhance knowledge on serovar 

prevalence in animals and humans in these endemic regions. Targeted public health 
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messaging during seasons of high infection (December-March) in rural regions should 

focus on education to health care providers concerning signs and symptoms of 

leptospirosis and stress proper wound bandaging. Individuals should limit exposure in 

vegetated regions during the rainy season. Basic occupational interventions including 

proper workplace attire in the fields (long sleeves, proper footware, gloves, etc.), 

improvements to informal housing and cross-ministry involvement have the potential to 

reduce infection in males ages 20-49. This is both the largest demographic at risk for 

infection and the primary income earners in this society. We suggest collaboration 

between the Ministries of Health, Housing and Agriculture to target drivers of 

leptospirosis across organizations. A cost-benefits analysis of targeted interventions does 

not yet exist, however de Souza et al. stress the high social cost of leptospirosis including 

years of life lost and hospital costs. An estimated 11,847,151.32 USD were lost to the 

disease over years of work lost in cases that progressed to death from a 2007 study of 

Brazil leptospirosis (18). Applying these focused directives in Brazil to individuals and 

regions at highest risk, predicted by social and environmental drivers, will improve 

prevention response initiatives in a leptospirosis endemic country.  

 

Conclusions 

The dynamics of disease ecology between leptospira spp., their reservoir, dead-

end hosts and the environment are complex. By investigating environmental drivers of 

leptospirosis through a spatial temporal lens, we obtain an improved understanding of 

leptospirosis incidence across Brazil.  Our findings support previous studies, which 

suggest leptospirosis incidence is associated with increases in precipitation and 
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vegetation, while stressing the large impact of leptospirosis on rural municipalities with 

soils prone to flooding. While environmental determinates play a crucial role in the 

distribution of leptospira spp., examining spatial temporal interactions at a smaller scale 

will further elucidate this potentially causal relationship.  With these advancements come 

increasingly sensitive and accurate models for predicting regions at high risk for 

epidemic or endemic leptospirosis.  
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Appendix: Tables and Figures  

 
Table 1. Source of Independent Variable Data 

 

Data Source Time Scale Spatial 

Scale* 
Description of 

Data 

     

Total Precipitation NEO (57) Monthly over 

years 

0.1 degree Total precipitation in 

mm x 10 for each 

month from NASA 

remote sensing data 

Mean Temperature WorldClim (55) Monthly 2.5 km Mean temperature in ℃ 

by month x 10 

Minimum Temperature WorldClim (55) Monthly 2.5 km Minimum temperature 

in ℃ by month x 10 

Maximum Temperature WorldClim (55) Monthly 2.5 km Maximum temperature 

in ℃ by month x 10 

Isothermality WorldClim (55) Time invariant 2.5 km Percentile (oscillation 

in day to night 

temperatures relative to 

annual oscillations of 

summer to winter) 

Altitude  NEO (57) Time invariant 90 m Altitude at 90 m 

resolution from NASA 

remote sensing 

Soil water pH Soilgrids (56) Time invariant 1 km Soil pH measured 

through water, x 10 

Population Brazil Institute of 
Geography and Statistics 

(51) 

Time invariant Municipality 2010 Brazil Census 

     

% Population: Urban Brazil Institute of 

Geography and Statistics 
(51) 

Time invariant Municipality 2010 Brazil Census 

Vegetation NEO (57) Monthly over 

years 

0.1 degree Normalized difference 

vegetation index 

(NDVI) with an index 

of 0.0 to 0.8. 

*These values were averaged by municipality   
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Table 2: Characteristics of Sample 

 

 
 

Characteristic  Mean ±SD Median  IQR % Missing 

Cases of Leptospirosis 2.16 ± 4.58 1 1-2 0 

Log Incidence of Leptospirosis 0.609 ± 0.00105 0.54 -0.599-1.796 0 

Total Precipitation (mm) 188.89 ± 31.35 194.45 169.0-212.5 6.7 

Mean Temperature (°𝐶) x 10 217.51 ± 34.89 223.60 196.10-244.10 1.8x10-4 

Minimum Temperature(°𝐶) x 10 164.66 ± 37.98 171.00 140.80-192.90 1.8x10-4 

Maximum Temperature (°𝐶)x 10 270.09 ± 34.30 276.12 250.90-297.40 1.8x10-4 

Isothermality 62.62 ± 8.81 63.00 55.71-67.86 1.8x10-4 

Altitude (m) 370.56 ± 316.08 267.23 78.320-633.60 3.6x10-4 

Soil water pH x 10 51.56 ± 3.53 51.61 49.57-53.40 0 

Population 3.68 x105 ± 1.14x106 7.89x104 21,400-294,600 0 

% Population Urban 81.7 ± 21.50 91.55 68.60-98.50 5.4x10-4 

Vegetation (NDVI Index) 164.26 ± 31.93 171.00 151.0-186.0 44.3  
(0 after imputation) 
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Figure 1: Total leptospirosis cases over study years presented by municipality 
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Figure 2: Total leptospirosis incidence over study years with median and standard deviational 

ellipse values displayed to show incidence distribution 
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Figure 3: Local indicators of spatial association (LISA) of total incidence of 

leptospirosis/100,000 person months using the Local Moran I statistic, with a queens contiguity 

weighting. High-High clusters indicate municipalities with high incidence rates that border other 

high incidence municipalities. Low-Low clusters highlight the opposite. Low-High and High-

Low clusters are evidence of outliers, with municipalities of high and low incidence neighboring 

each other. 
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Figure 4: Hotspot and Cold Spot analysis of total incidence of leptospirosis/100,000 person 

months using the Getis-Ord Gi* statistic with a euclidean inverse distance measurement.  
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Figure 5: Total cases of leptospirosis by month. Cases peak from January-March.  

 

 
  

Figure 6: Total cases of leptospirosis by year with a fitted linear regression at 95% confidence 

intervals. Case totals vary by year, with a slight positive trend illustrated by the regression line.  
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Figure 7a: Time series analysis of leptospirosis cases in Brazil over time using a seasonal trend 

decomposition. 
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Figure 8. Observed values of leptospirosis rates and their corresponding standardized residuals. 

Clustering around the x-axis indicates a small residual value and suggest improved model fit.   

 
 
 

 
Figure 9. Fixed vs. Random residuals in the conditional autoregressive general linear mixed 

model. Clustering around the x and y-axis indicate small residual values and suggest improved 

model fit. 


