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Abstract 
 

Acute Effects of Ambient SO2 Exposure on Pediatric Asthma Emergency Department Visits in 
Atlanta, Georgia 
By Adam Benson 

 
Purpose: Previous epidemiological and limited clinical and mechanistic evidence supports an 
association between sulfur dioxide (SO2) and asthma exacerbation events in children. However, 
further investigations at a monitors-specific scale are needed to better understand this 
relationship due to insufficient monitor networks and the large spatial heterogeneity of SO2. 
Furthermore, little is known whether exposure to traffic-related pollutants modifies the 
association between SO2 and asthma exacerbation events.  
 
Methods: A case-crossover study was conducted using emergency department visits from 2002 
- 2013 for asthma or wheeze among children aged 1 to 17 within a 5 (n = 15,610), 4 (n = 8,522), 
and 3 (n = 6,742) kilometer radius of four ambient SO2 monitoring stations in the Metropolitan 
Atlanta Area. Concentrations of traffic-related near-surface particulate matter (PM2.5) were 
estimated using an R-LINE model to examine effect modification by traffic-related pollution. 
Odds ratios were calculated using conditional logistic regression for multiple-day moving 
averages of 1-hour maximum SO2 concentrations.  
 
Results: There were trends of positive associations between SO2 and asthma-related emergency 
department visits overall (OR: 1.044, 95% CI: 1.006 – 1.084 at 4 Km, Lag 0), and in both warm 
and cold season analyses.  Strongest associations were observed in the cold season using a 3-
day moving average of SO2, and tended to increase as distance to monitor decreased (OR: 1.105, 
95% CI: 1.013 – 1.204 at 4 Km, Lag 0 – 3, in the cold season). Odds ratios between cases exposed 
to high versus low concentrations of traffic-related pollution tended to be positive overall, and 
in season-specific analyses. Strongest associations were observed using 3-day moving averages 
of SO2 and during the warm season (OR: 1.031, 95% CI: 0.957 – 1.110 at 4 Km, Lag 0 – 3, for a 1 
ppm increase in SO2 in the warm season). 
 
Conclusions: These findings provide additional evidence supporting previously documented 
associations between SO2and asthma exacerbation events despite concerns due to large spatial 
heterogeneity of SO2 and a limited quantity of monitors. Furthermore, the association between 
SO2 and asthma exacerbation may be susceptible to modification by traffic-related pollutants, 
particularly during the warm season. 
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CHAPER I: LITERATURE REVIEW 

I. Introduction 

 Asthma is a chronic disease characterized by episodes of reversible airflow obstruction, 

affecting approximately 8.4% of the U.S. population, or more than 16.5 million adults and 7.0 

million children nationwide (Guarnieri & Balmes, 2014; Moorman et al., 2012). In Georgia, 13.5% 

of adults and 16% of children aged 0-17 have asthma. Children are a sub-group of concern as a 

susceptible population, particularly in Georgia with asthma prevalence among children higher 

than the U.S. average (Annor et al., 2014; Atkinson et al., 2014; Peden, 2005). 

 Important precipitators include exercise, airway infections, airborne allergens, 

occupational exposure, and environmental airborne irritants (Annor et al., 2014; Guarnieri & 

Balmes, 2014). Although SO2 is a pollutant of concern, there are limited studies examining the 

relationship between SO2 exposure and pediatric asthma ED visits, and the role of SO2 in asthma 

etiology remains unclear (Lai et al., 2013; Penard-Morand et al., 2010). Several studies have 

included SO2 as an exposure of interest in models of ambient air pollution and ED visits, and 

have reported small independent associations of SO2 and pediatric ED visits. (Strickland et al., 

2010; Restrepo et al., 2012; Winquist et al., 2014). An important challenge is the large spatial 

heterogeneity in SO2, which Strickland et al. (2013) reports is the largest among any commonly 

found primary or secondary pollutants. This is of particular concern for SO2 given the generally 

small quantity of monitors, and that a primary source of SO2 is coal power plant plumes, which 

may produce variable regional concentrations (Guarmieri & Balmes, 2014; Smith et al., 1978). 

 The examination of asthma events by resident locations near SO2 monitors may help 

elucidate the association between SO2 exposure and acute asthma events.     
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II. Mechanisms 

General Mechanisms of Air Pollutants: 

 Air pollutants are thought to contribute to harmful health effects, including the 

development and exacerbation of asthma, through four primary mechanisms: oxidative stress 

and damage, airway remodeling, inflammatory pathways and immunological responses, and 

sensitization of respiratory system to inhaled allergen (Brunekreef & Holgate, 2002; Guarnieri & 

Balmes, 2014; Trasande & Thurston, 2005). Additionally, there is evidence of interaction 

between these mechanisms, particularly through the indirect effects of oxidants.  Many 

pollutants act as oxidants not only through direct effects on lipids and proteins, but also through 

indirect activation of oxidant pathways. Indirect oxidant pathways can result in remodeling, 

inflammation, and sensitization as well (Brunekreef & Holgate, 2002; Guarnieri & Balmes, 2014; 

Johns & Linn, 2011).  

 Plausible indirect mechanisms include depletion of intracellular glutathione, initiation of 

cytokines, chemokines, cellular adhesion expression, and synthesis of allergic antibody IgE in 

animals and humans. Additional evidence for these mechanisms included the observation of 

increased white blood cell counts, and increased levels of C-reactive protein, a biomarker of 

inflammation (Brunekreef & Holgate, 2002; Trasande & Thurston, 2005). 

 A greater number of studies exist examining mechanisms of ozone, though NO2, PM, 

and SO2 are thought to act via direct oxidative damage or indirect oxidation pathways; however, 

potentially to a lesser degree than ozone (Brunekreef & Holgate, 2002; COMEAP, 2011). Indirect 

oxidative pathways appear to overlap, though pollutant specific responses have been seen, such 

as the ability of NO2 to impair alveolar macrophages and epithelial cells (Brunekreef & Holgate, 

2002). 
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 There is also evidence of a strong genetic role in differing individual responses to 

exposure. Several candidate genes for ozone exposure responses include TNFα, manganese 

superoxide dismutase, glutathione peroxidase, NAD(P) quinone oxidoreductase, and glutathione 

S transferases. These genetic factors may be important in other air pollutant responses as well 

(Brunekreef & Holgate, 2002; COMEAP, 2011; Peden, 2005). The individual variability in 

response to environmental exposures, combined with growing evidence of genetic variability, 

indicates that dietary and genetic factors affecting local antioxidant availability may be 

important in varying individual inflammatory responses (Peden, 2005). 

 Despite extensive research on the association between air pollutants and respiratory 

health, specific mechanisms for individual air pollutants remains poorly understood, particularly 

for long-term exposures, and in understanding the interaction of pollutants in mixtures.  

 

SO2 Specific Mechanisms: 

 In comparison to ozone and PM, even more limited research exists on specific 

mechanisms of action for SO2. Though SO2 can act as a reductant under certain conditions, it is 

believed to act by direct and indirect oxidative mechanisms in similar manners as other common 

air pollutants. It has been also documented to lead to increased bronchoconstriction and 

enhanced responses to inhaled allergens (Johns & Linn, 2011). Liu et al. (2009) have also 

documented decreases in forced expiratory flow (-3.0%; 95% CI, -5.8 to -0.3) and increases in 

TBARS (an oxidative stress marker) (36.2%; 95% CI, 15.7 to 57.2) (Liu et al., 2009). 

 Similar results have been reported in controlled exposure studies among animals.  Mice 

models have provided additional evidence for oxidative stress, particularly to the cardiovascular 

system over a variety of acute exposure scenarios (Meng et al., 2003). Acute exposures in rats 

have identified altered genetic expression important in allergenic response, in addition to DNA 
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damage to cells in the lung, and lipid peroxidation in brain and livers (COMEAP, 2011; Meng et 

al., 2005). A long-term study in rats by Wagner et al., also identified concentrations of 20 ppm to 

be associated with airway remodeling and mucus hypersecretion (COMEAP, 2011.).  

Among those with asthma, in addition to increased bronchoconstriction and enhanced 

responses to allergens, there is limited evidence to suggest that a parasympathetic nervous 

response and inflammatory pathways are elevated through sensory receptors or mast cells in 

the trancheobroncial airways. This response can be substantially exacerbated when breathing 

patterns are switched from nasal to oral or oronasal breathing due to the dominant absorption 

of SO2 in the nasal passage (Johns & Linn, 2011). 

While, acute and chronic toxicity has been identified in both animal and human 

subjects, additional research is necessary to understand the specific mechanisms of action for 

SO2, particularly among susceptible populations, and in the context of multi-pollutant mixtures.  

 

Unique Susceptibility of Children: 

 Biological: Children are thought to be identified as particularly susceptible to air 

pollution exposure due to a combination of biological and behavioral differences, compared to 

adults at similar ambient air pollution concentrations. One biological susceptibility includes the 

ongoing organogenesis of the lung in children; extensive alveoli growth occurs in the first four 

years and continues through adolescence. Additionally, air pollution has the potential to alter 

normal processes of lung development that may result in permanent damage or susceptibility to 

future insults (Trasande & Thurston, 2005). Regarding SO2, it is unclear if altered lung 

development is due to oxidative mechanisms or a by other casual mechanisms. A meta-analysis 

by Lai et al. (2013) indicated no observable patterns in SO2 relative risk among current literature, 
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providing no evidence to point towards whether altered lung development is associated with 

SO2 or pollutants such as PM10, NO2, or ozone (Lai et al., 2013).  

 A second biological susceptibility is due to an incomplete development of the epithelium 

in children. This results in greater permeability of the epithelial layer, allowing for greater 

potential damage to lung tissue for a given exposure compared to adults or adolescents 

(Trasande & Thurston, 2005). Additionally, the immune systems of young children are still 

developing, suggesting increased susceptibility to insults and the potential for inappropriate 

immune system responses (Holt, 1998; Trasande & Thurston, 2005). Though few studies have 

been conducted, there is some evidence to suggest environmental exposures influence the 

development of TH2 instead of TH1 immunological phenotypes. Development and dominance of 

TH2 cells induce cytokine secretion and are associated with allergic reactions compared to a 

protective allergen reducing TH1 pattern of cytokine secretion (Holt, 1998). Additionally, children 

also have differing abilities to biologically process environmental exposures, including variable 

metabolic, detoxifying, and excretion abilities associated with incomplete development of organ 

and immune systems (Trasande & Thurston, 2005). 

Behavioral: On average, children also have higher respiration rates and greater levels of 

physical activity than adults, resulting in increased exposures to air pollutants compared to 

adults at the same ambient concentrations. A study of California children estimated that on 

average, children spend 124 minutes a day in outdoor recreation, which is five times more than 

adults spend outdoors (Trasande & Thurston, 2005). Additionally, a study in The Netherlands 

estimated personal exposures for PM10 in adults were only two-thirds that of children at similar 

outdoor concentrations (Janssen et al., 1998; Janssen et al., 1997). Finally, increased activity 

among children can be potentially more harmful as children are less likely to stop physical 
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activity when they do experience harmful respiratory or asthma symptoms (Trasande & 

Thurston, 2005). 

 The unique biological and behavioral vulnerabilities are well documented and have 

resulted in a focus on pediatric health outcomes due to air pollution exposure, including 

pediatric asthma. There is a limited understanding of the specific biological mechanisms of 

action, and dose-response information among humans is limited. Further mechanistic and 

epidemiological investigations are necessary to better understand the association of SO2 and 

asthma, particularly as additional controlled exposure studies are unlikely due to ethical and 

safety considerations among the most susceptible populations, such as severely asthmatic 

children; nor would such studies address the limited information on long-term SO2 exposure.  

III. Methods: Time-Series and Case-Crossover Design 

Both time-series analysis and case-crossover design have been used to examine the 

association of short-term pollutant variation with acute outcomes, such as asthma ED visits 

(Atkinson et al., 2014; Fung et al., 2003; Jalaludin et al., 2008; Strickland et al., 2010).  

 

Time-series: 

Time-series analysis is a common technique, particularly in combination with Poisson 

regression to attempt to better control for time trends such as seasonality (Jaakkola, 2003). One 

challenge is choosing appropriate time span when using methods to control for confounding. 

The development of local smoothing methods (LOESS) using Generalized Additive Models (GAM) 

has improved the ability to control for confounding; however, issues of concurvity, indicating a 

high degree of multicollinearity, can remain. This can lead to the understatement of variance 

and unstable estimates. The use of parametric natural cubic splines in a generalized linear 

model (GLM) has been proposed as an alternative to the LOESS method (Fung et al., 2003). 
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Case-crossover:  

Case-Crossover design has been proposed as an alternative for short-term 

environmental exposures, in which cases serve simultaneously as their own controls at different 

points in time (Fung et al., 2003; Jalaludin et al., 2008; Levy et al., 2001; Strickland et al., 2010). 

One advantage of a case-crossover study is that potential confounders due to individual traits 

can be controlled for by design, as the case serves as their own control. Additionally, using a bi-

directional design that samples control dates both pre and post-event is able to control for time 

trends in both exposures and outcomes, such as important seasonal trends in air pollutants and 

asthma exacerbations (Fung et al., 2003). 

 However, the case-crossover design does have some disadvantages. Though, individual 

traits can be controlled for by design, it may not control for characteristics that change over 

time. In case-control studies the referent-spacing time, or the time between a case and control 

selection must be chosen for a duration that will not biased due to autocorrelation of the data 

(Fung et al., 2003); however, shorter referent-spacing time may help reduce selection bias, and 

bias due to confounding (Bateson & Schwartz, 2001). 

In a simulation analysis by Fung et al. (2003), hospital admission data was generated and 

used to compare mean results across 500 iterations in various parameters with time-series and 

case-crossover designs. The authors concluded that both time-series and case-crossover design 

provided reasonable estimates of risk of adverse health outcomes due to short-term air 

pollution exposure; however, time-series analyses with a short admission span provided more 

precise estimates than the bi-directional case-crossover method using an exact calculation 

method for ties, which resulted in larger 95% confidence intervals. This imprecision is reflected 

in larger standard errors for parameter estimates, and lower power in the case-crossover 

methods (Fung et al., 2003), which is generally consistent with the reported 50% lower power of 
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case-crossover analysis compared to time-series analysis (Bateson & Schwartz, 1999; Jaakkola, 

2003). 

While concerns still remain about case-crossover design, further exploration of these 

methods by Lu & Zeger (2007) have indicated that when there is a common exposure, case-

crossover methods using conditional logistic regression are actually a special case of time-series 

analysis. Additionally, time-series methods account for over-dispersion of the Poisson variance, 

while case-crossover analyses typically do not (Lu & Zeger, 2007). These findings are particularly 

applicable for many air pollution studies, where many people can be assumed to have the same 

ambient exposures, such as when there is regional homogeneity in ambient ozone 

concentrations.  

The implications of Lu & Zeger’s work suggest that the issues identified by Fung et al. 

(2003) are not a concern in certain implementations of case-crossover design. However, in a 

monitor-specific study of SO2 and examination of effect modification by traffic-related pollution, 

there may still be advantages to using a time-series analysis. Monitor specific SO2 

concentrations will mean there are no longer shared exposures between subjects in each time 

interval, unless analyses are stratified by monitor. Traffic-related population will also differ by 

location and exposure to high traffic-flow roads. While case-crossover design allows for 

computational convenience, a comparison of results using time-series methods would allow for 

identification of potential bias due to the absence of shared exposures.   

IV. Sulfur Dioxide (SO2) 

Sources of SO2: 

SO2 is primarily formed during the extraction of metal from ore, the refinement of 

petroleum products, or when raw materials and fuel containing sulfur are burned, such as coal 

and oil. Mobile sources do contribute due to burning high sulfur fuels in locomotives, large 
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diesel ship engines, and non-road equipment (U.S. EPA, 2015). On a global scale, natural SO2 

emissions, particularly from volcanoes, are important, but do not contribute significantly to 

ambient concentrations in an urban setting (Lowe, 2007; Jacobson, 2002). 

According to the 2011 U.S. National Emissions Inventory, 94% of emissions are due to 

point sources, 3% are due to area sources, and 2.4% are due to mobile sources. Additionally, 

83% of SO2 total emissions are due to fuel combustion, and 73% of total emissions are due 

specifically due to fossil fuel power plants (U.S. EPA, 2011). SO2 emissions in Georgia related to 

fossil fuel electricity production are even higher than national levels, with an estimated 88% 

contribution to statewide SO2 emissions in 2002 (U.S. EPA, 2015). 

 There are five major point sources for SO2 in the Metropolitan Atlanta Area: Plant 

Bowen, Plant McDonough, Plant Wansley, Plant Yates, and Lafarge Building Materials. Though 

neither are the largest contributors of SO2, Plant McDonough and Lafarge Building Materials the 

two closest to the metro area (Lowe, 2007). Additionally, in 2005, Lafarge Building Materials 

closed their last coal-fired kiln for cement production, and in 2012 Plant McDonough converted 

to natural-gas turbines for electricity production. Though these changes resulted in essentially 

the elimination of SO2 emissions, both of these sources do make important emission 

contributions throughout 2002 – 2013 (Lowe, 2007).  

Analysis of SO2 monitor data at Georgia Tech and Jefferson Street, wind speed and 

direction, and point-source emission plumes identified highest ambient SO2 concentrations 

blowing from the northwest (Lowe, 2007; Wade, 2005). This indicates that Plant McDonough 

and Plant Bowen are likely the two greatest contributors to metro Atlanta ambient SO2 levels. 

Plant Bowen is likely to contribute lower concentrations, but more often and less dependent on 

wind direction as plumes consistently touchdown in the Atlanta area. Alternatively, plumes from 
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Plant McDonough are likely responsible for peak concentration levels, though are more 

dependent on wind direction (Lowe, 2007). 

However, an important consideration is that SO2 emissions increase as power output 

increased, indicating that growing electricity demand in the Atlanta area will be a factor in SO2 

emissions even with control methods and changes in technology (Lowe, 2007). Other potential 

sources in the Atlanta area include industrial facilities for chemical manufacturing, pulp and 

paper processing, and metal processing. Potential mobile sources are railroad equipment and 

diesel vehicles; however, limited data is available on emissions or their contribution to the 

Atlanta area (Lowe, 2007; Wade, 2005).  

 

Spatial Heterogeneity and Measurement Error: 

Though several studies have incorporated SO2 into their analyses of air pollution and 

asthma emergency department visits, including using data from Atlanta, multiple studies have 

identified spatial heterogeneity and measurement errors as important sources of bias in air 

pollution time-series analyses (Goldman et al., 2010; Sarnat et al., 2010; Strickland et al., 2013; 

Wade et al., 2006). Biased estimates are particularly concerning for SO2 due to the large 

reported spatial heterogeneity, combined with the generally small quantity of monitors, and 

that a primary source of SO2 is coal fired power plants, which may produce variable regional 

concentrations (Lowe, 2007; Smith et al., 1978; Wade et al., 2006) 

Personal Exposure Error: Individual exposures may differ from central monitor locations 

due to differences between indoor and outdoor concentrations, microclimates such as car 

environments, and behavioral differences due to travel for work, education, or recreation (Zeger 

et al., 2000). These unique individual exposure profiles may result in two types of this error: the 

difference between individual exposure and average personal exposures, as well as between 
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average personal exposures and ambient monitor-based levels (Goldman et al., 2010; Zeger et 

al., 2000). 

One challenge is the absence of studies examining adult or child behavior data in the 

U.S. or Atlanta that may assist in characterizing geographic patterns of travel or quantity of time 

spent at residence location. Determining how often children and adolescents are at home, the 

distance between schools and extra-curricular activities and residence location could help 

estimate if residence location is sufficient to characterize exposure by monitor location.  

While behavior data is lacking, several quantitative assessments of exposure error 

between personal exposure and ambient concentrations exist, though the studies primarily 

focus on PM components, NO2, and ozone. There was considerable variation between personal 

PM exposure data and ambient concentrations based on central monitors (Janssen et al., 1998, 

1997; Wallace, 1996, 2000). However, there were differences in whether outdoor 

concentrations overestimated or underestimated personal exposures by pollutant and by study.   

A review conducted by Wallace (1996) found relatively poor correlation between the 

data for PM10 and PM2.5, though these correlations improve when studies repeated 

measurements seven or more times, and as particle size became finer (Wallace, 1996). 

Additionally, when controlling for environmental tobacco smoke, correlations improve, though 

outdoor ambient concentrations underestimated personal exposures (Janssen et al., 1998). 

Several of these studies did report data on sulfate components of PM2.5 or elemental sulfur 

(Monn, 2001; Oglesby et al., 2000; Wallace & Williams, 2005). While Wallace & Williams (2005) 

did report low differences in outdoor and indoor concentrations due to few indoor sulfate 

sources, there was still low-to-moderate correlations between personal exposures and ambient 

concentrations. 
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Among studies that did explicitly examine SO2, most are written about the Six Cities 

Study series conducted in the 1970’s and reported large variability in correlations (Dockery et 

al., 1993). However, as this series of studies were conducted in the 1970’s they may not 

accurately reflect important changes in the built environment or behavioral patterns of children, 

such as outdoor exposure time, or distance to school facilities.  

Though there is limited evidence to assist in quantifying the potential individual and 

average personal exposure misclassification for SO2, misclassification is likely greater than what 

is suggested by the data available for PM10 and PM2.5 due to greater spatial variability in SO2.  

Evidence of Heterogeneity and Variability: In addition difficulties of assessing individual 

exposures, evidence of strong spatial heterogeneity comes partly from the study of plume 

behavior in coal power plants and other large point source emitter (Smith et al., 1978). 

Furthermore, an examination of SO2 monitors in the metropolitan Atlanta area identified 

detectable annual, monthly, weekly, and diurnal trends in SO2 concentrations. Dirurnal trends in 

particular varied by monitor location, and though all monitors examined recorded mid-day 

peaks, the profile of peaks varied in duration, and rate of SO2 concentration change. 

Furthermore, two year diurnal 1-hr maximum averages though similar, did vary by monitor 

location (Lowe, 2007). Day-to-day variation of ambient SO2 is likely due to point sources that 

either do not emit every day, or are not reaching the limited number of monitors in Atlanta. 

Meteorological influence on plume properties and transit are likely a primary reason for day-to-

day variations (Johns & Linn, 2011; Lowe, 2007; Wade et al., 2006). 

The conclusions about SO2 variation at various monitor sites is supported with an 

analysis by Wade et al. (2006) using wind rose plots for monitors within the Metro Atlanta area. 

Results showed a large degree of variability in concentration of SO2 at each monitor that could 

largely be attributed to regional point source emissions, such as Plant Bowen, McDonough, 
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Wansley, Yates, and coal fired cement production facilities. Most importantly, there was 

significant variability between monitor locations in the metropolitan areas (Wade et al., 2006). 

Classical and Berkson Measurement Error: One framework presented by Goldman et al. 

(2010) separates error types of concern into classical error, and Berkson error. Classical error 

occurs when ambient pollutant measurements vary about the true concentrations (Goldman et 

al., 2010). Classical error is typically associated with instrument imprecision, and generally 

results in a bias towards the null; however, in simulations using air pollution data from Atlanta 

and emergency department visits, error due to instrument imprecision was estimated to be a 

small contribution (Goldman et al., 2010; Strickland et al., 2013). 

Alternatively, Berkson error occurs when true ambient concentrations vary about the 

measurement. Goldman et al. (2010) conclude that due to the dominant error associated with 

spatial heterogeneity between monitors, rather than instrument imprecision, measurement 

error is dominated by Berkson error. The author’s estimate that primary pollutants (SO2, NO2, 

CO, and EC) had between a 19% and 31% bias away from the null in RR parameter estimates 

(Goldman et al., 2010). 

Spatial Heterogeneity and Spatial Variability Measurement Error: Expanding on the 

classical and Berkson error framework, Strickland et al. (2013) identified measurement error 

into four main components: spatial heterogeneity, spatial variability, instrument imprecision, 

and monitor metric selection. Air pollution data and population level health data was generated 

for the purpose of determining true associations between air pollution and ED visits, and 

subsequent measurement error (Strickland et al., 2013). 

Spatial heterogeneity is defined as when the average concentration of a pollutant is not 

uniformly distributed across space, and is considered to be modeled as Berkson error. Strickland 

et al. (2013) report median bias in estimates for SO2 to be 23.91% (82% CI: 18.29%, 29.99%) 



14 
 

away from the null. Spatial variability is defined as when the day-to-day changes in 

concentration are not uniform across space, and generally results in a bias toward the null. As 

identified in Goldman et al. (2010), instrument imprecision can be modeled as classical error and 

likely contributes only a small portion to overall error. 

For the purpose of time-series studies, pollutant data can be averaged in different ways, 

which may result in different biases. Strickland et al. (2013) tested an unweighted metric form, a 

population-weighted metric form, and a central monitor weight metric form. All three methods 

resulted in biases towards the null; however, the central monitor metric generated substantially 

larger biases than either other form. The population-weighted metric form generally produced 

the lowest biases; however, differences between the unweighted and population-weight forms 

were reduced when associations were measured in per IQR increase in concentration, as 

opposed to per unit increase in concentration. Though reduced bias for unweighted and centric 

forms when results are scaled to an IQR, the authors concluded a population-weighted metric 

form will generally produce lower biases (Strickland et al., 2013). 

Despite bias away from the null due to spatial heterogeneity, net bias tended to be 

towards the null due to bias due to spatial variability, instrument imprecision, and metric 

selection. The lowest net bias scenario for SO2 still resulted in a 22.6% (82% CI: -26.9%, -17.9%) 

bias towards the null (Strickland et al., 2013). A relevant limitation of the study is the lack of 

incorporation of meteorological variables as potential confounders. This could be problematic, 

particularly for SO2, as weather patterns can drive spatial heterogeneity and spatial variability 

(Lowe, 2007; Wade et al., 2006). 

Though there are limitations both in using observed data, or performing a simulation 

based analysis, the results from Goldman et al. (2010) and Strickland et al. (2013) both indicate 

that measurement error, largely due to spatial heterogeneity and variability, can introduce bias 
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into measures of association, typically a net bias towards the null. Furthermore, SO2 has the 

largest reported bias for any commonly measured primary or secondary pollutant, indicating 

that existing measures of association for health effects and ambient SO2 are potentially 

underestimating the strength of association.   

V. Epidemiology of SO2 and Asthma 

Introduction and Cross-Sectional Studies: 

Numerous studies have examined single-pollutant and multi-pollutant relationships 

between air pollution and asthma exacerbation and prevalence. Only one study was found that 

focused solely on SO2 and asthma ED visits; however, many studies included SO2 in their 

analysis. While there is strong epidemiologic evidence supporting an association of asthma with 

air pollution, results varied across studies on the association between not only SO2 and asthma 

prevalence, but also SO2 and asthma-related ED visits. 

A cross-sectional study based on the U.S. National Health Interview Survey from 2001 – 

2004 found no association between SO2 and childhood asthma prevalence using annual SO2 

concentration averages (Akinbami et al., 2010).  

Alternatively, a cross-sectional study by Penard-Morand et al. (2010) investigated long-

term exposures using a validated dispersion model for school children from 108 schools in 

France. The OR for SO2 were estimated based on outcomes of exercise-induced asthma (1.27, 

95% CI: 1.11 – 1.53), asthma symptoms within the last year (1.29, 95% CI: 1.03 – 1.71), lifetime 

asthma (1.26, 95% CI: 1.11 – 1.42), and sensitization to pollens (1.02, 95% CI: 0.83 – 1.31). The 

OR for lifetime asthma was also stratified by duration of residence at address recorded in the 

survey. As residence time increased, the OR increased from 1.26 to 1.38; however, the OR was 

not statistically significantly different. Furthermore, among residents who lived at the same 

address for at least eight years, or since birth, associations were either borderline statistically 
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significant, or not statistically significant (Pénard-Morand et al., 2010). Though this study has 

statistically significant ORs for asthma related outcomes, the study is limited by cross-sectional 

survey design.  

Lastly, a meta-analysis of cross-sectional studies conducted by Anderson et al. (2011) 

found the association between asthma prevalence and SO2 ranged from ORs of 0.94 to 1.51, 

with variable statistical significance for a 10 µg/m3 increase in SO2 concentration, indicating a 

lack of consistent results in the cross-sectional literature (Anderson et al., 2011). 

 

SO2 and Emergency Department Visits:  

 Many studies have examined associations between air pollution and asthma using time-

series analysis. Five recent studies have been reviewed for their inclusion of single pollutant and 

mutli-pollutant results of SO2 and asthma ED visit associations. Out of the five, only one study 

focused exclusively on the association SO2 and asthma exacerbation.  

A study by Sunyer et al. (2003) conducted a time-series analysis of daily counts of ED 

admissions using data from the European APHEA 2 study. For an increase of 10 µg/m3 of 

ambient SO2, daily asthma ED admissions among 0-14 year olds increased 1.3% (95% CI: 0.4%, 

2.2%). The authors also identified issues of strong correlations between SO2 and other 

confounding air pollutants, such as CO and PM10 (Sunyer et al., 2003).  

Restrepo et al. (2013) used negative binomial regression, which is similar to time-series 

methods using Poisson regression, to model the association of SO2 and asthma exacerbation 

using air pollution and hospital admission data from 1996 – 2000 in New York City counties. The 

authors stratified by age, between children (0-17) and adults (18+). 

The relative risk for the IQR of same day 24-hour average SO2 concentrations was 1.023 

(95% CI: 1.004, 1.042). When 1, 3, 5, and 7-day lag periods were applied in the model, RRs 
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increased with each additional lag period time; however, only the 7-day lag period was 

statistically significantly larger than same day, or 1-day lag periods. Analysis by individual county 

revealed differing RR trends by lag period differentiation; however, no results were statistically 

significantly different by county. Though seasonal analysis and comparison of daily averages to 

daily 1-hour maximums for concentrations measurements was performed for PM2.5, these 

analyses were not carried out for SO2; however, results from PM2.5 highlight the importance of 

accounting for time trends such as seasonality, along with the use of 1-hour maximums if data is 

available (Restrepo et al., 2013). An additional limitation was the inclusion of children from 0 – 5 

years old; as their inclusion can be problematic due to the difficulty in diagnosing asthma (Annor 

et al., 2014; Strickland et al., 2010). 

A study by Strickland et al. (2010) examined daily counts of ED visits for asthma or 

wheeze among children aged 5 – 17 from Atlanta hospitals during 1993-2004. The authors’ 

report a warm season rate ratio (RR) of 1.030 (95% CI: 1.002-1.058) from a Poisson generalized 

linear model for SO2 IQR range increases, using a three-day moving average. Overall, cold season 

RRs were not statistically significant. Similar results were produced when examining the 

association by quintile, with small, but statistically significant RRs only found for warm season 

3rd and 4th quintiles of SO2 concentrations (7 to < 13ppb, 13 to < 24.2ppb). In a cubic 

polynomial distributed lag model, using IQR concentration increases, SO2 RRs remained 

consistent across a choice of 0 – 7 lag day periods. These results differ from analyses performed 

by Restrepo et al. (2013), who observed increasing relative risks as lag period increased; 

however, the analyses in Restrepo et al. (2013) did not account for seasonal trends, and other 

confounders to the same extent as Strickland et al. (2010).  

Strickland et al. (2010) also performed a sensitivity analysis, utilizing alternative model 

specifications including case-crossover study design. Though cold season results consistently 
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indicate no statistically significant associations, model results differ for the warm season, with 

smaller associations that are not statistically significant.  

In a follow-up study to Strickland et al. (2010) and using similar data, Winquist et al. 

(2014) examined the joint-effects of air pollutants on pediatric asthma ED visits in Atlanta from 

1998-2004. Single pollutant model results are similar to results reported in Strickland et al. 

(2010) for warm and cold season models. Joint effects models based on a combination of SO2 

and SO4
-2, representing a typical power plant combination, resulted in statistically significant 

associations with asthma ED visits in warm season models incorporating linear, quadratic, and 

cubic interaction terms for each pollutant (1.0634, 95% CI: 1.0060, 1.1240). However, a joint 

effect model with no interaction terms, but controlling for ozone, CO, NO2, and elemental 

carbon did not result in statistically significant positive associations with asthma ED visits 

(Strickland et al., 2010; Winquist et al., 2014). 

 

Conclusions: 

 The literature presents inconsistent conclusions regarding the association of SO2 and 

asthma exacerbations, identifying that many challenges remain in obtaining more accurate 

estimates. Variable methodologies and geographic locations in the reviewed studies make it 

difficult to always directly compare results. Sensitivity analysis presented by Strickland et al. 

(2010) identified that there can be sufficient variation in modeling results using different 

methodologies to alter statistical significance, even using the same data. Furthermore, 

additional challenges have been identified in controlling for measurement error and spatial 

heterogeneity. The ability to control for confounding due to other pollutants and to estimate 

the joint effects of pollutants remains a challenge as well, though Winquist et al. (2014) offers 

important insight in estimating joint effects using multi-pollutant models.  
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Also as Strickland et al. (2010) notes, there are advantages to using single-city area data 

sources. The focus on a specific geographic area allows for detailed consideration of local 

idiosyncrasies and potentially more accurate modeling, even though the study may not be 

statistically as robust. Strickland et al. (2010) also noted their skepticism of warm season 

associations of SO2 and asthma exacerbations due to concerns of low monitor density, and the 

spatial heterogeneity of SO2 concentrations that is likely due to variable SO2 plume touch-down. 

Furthermore, they note that there is inconsistent evidence of an association between SO2 and 

harmful pediatric respiratory health effects. These discrepancies are further present in results 

for warm season RRs following sensitivity analysis. 

Uncertainty clearly remains in understanding the association between SO2 and asthma 

exacerbation indicating the continued need for robust methods of analysis that are able to 

account for complex joint effects.  

VI. Effect Modification of Traffic on SO2 and Asthma Association 

The association between traffic pollutants and asthma is well established (Brugge et al., 

2007; Brunekreef & Holgate, 2002; COMEAP, 2011; Guarnieri & Balmes, 2014; McConnell et al., 

2006; McCreanor et al., 2007; Winquist et al., 2014).  Furthermore, at least two studies have 

specifically examined the relationship between traffic flow and pediatric asthma ED visits 

(English et al., 1999; Hwang et al., 2005); however, little is known if traffic flow intensity 

modifies the association between SO2 exposure and asthma ED visits. To my knowledge, no 

studies exist examining effect modification of traffic on the association between SO2 and 

asthma. 
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VII. Contribution of Proposed Study 

 This study intends to examine the association of asthma events by residence location 

within 5 kilometers of SO2 monitors within the Metropolitan Atlanta Area. As identified in this 

literature review, a critical challenge remains in characterizing the association of SO2 and asthma 

exacerbation. Measurement error due to spatial heterogeneity and spatial variability may 

produce biased estimates of association and are difficult to control for given the limited SO2 

monitoring network. In examining asthma ED cases from 2002 – 2013 within a small radius of 

monitoring locations, it may be possible to obtain a less biased measurement of SO2 exposure 

compared to existing studies that use various weighting methods to estimate regional SO2 

concentrations.  

 Additionally, it is unclear if traffic flow intensity modifies the association between SO2 

exposure and asthma emergency room visits. This study will help improve the understanding if 

there is any modification of the association between SO2 and asthma exacerbation due to traffic 

flow density. An improved understanding of these associations may help identify the most 

vulnerable populations and provide recommendations to reduce frequent asthma ER visits and 

exacerbations.  
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CHAPTER II: MANUSCRIPT  

Introduction 

In the U.S. and in the state of Georgia, asthma, a chronic disease characterized by 

episodes of reversible airflow obstruction, affects more than 16.5 million adults and 7.0 million 

children nationwide (Guarnieri & Balmes, 2014; Moorman et al., 2012). In Georgia 13.5% of 

adults and 16% of children aged 0 – 17 years have asthma. Children are a sub-group of concern 

as a susceptible population, particularly in Georgia with asthma prevalence among children 

higher than the U.S. average (Annor et al., 2014; Atkinson et al., 2014; Peden, 2005). Important 

precipitators include exercise, airway infections, airborne allergens, occupational exposure, and 

environmental airborne irritants (Annor et al., 2014; Atkinson et al., 2014; Peden, 2005).  

There is strong clinical, mechanistic, and epidemiologic evidence supporting an 

association of asthma with air pollution (Guarnieri & Balmes, 2014; Peden, 2005; Trasande & 

Thurston, 2005). Examination of emergency department (ED) visits with the primary cause of 

asthma have been previously identified, and used throughout the literature to investigate an 

association of air pollution with asthma exacerbation among both adults and children (Atkinson 

et al., 2014; Jaakkola, 2003; Tolbert et al., 2000). A case-crossover design has been used to 

examine the association of short-term pollutant variation with acute outcomes, such as asthma 

ED visits (Jalaludin et al., 2008; Strickland et al., 2010). 

Although SO2 is a pollutant of concern, there are limited studies examining the 

relationship between SO2 exposure and pediatric asthma ED visits, and the role of SO2 in asthma 

etiology remains unclear (Lai et al., 2013; Pénard-Morand et al., 2010). Several studies have 

included SO2 as an exposure of interest in models of ambient air pollution and ED visits, and 

have reported small independent associations of SO2 and pediatric ED visits (Restrepo et al., 

2013; Strickland et al., 2010; Winquist et al., 2014). An important challenge is the large spatial 
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heterogeneity in SO2, which Strickland et al. (2013) reports is the largest among any commonly 

found primary or secondary pollutants. This is of particular concern for SO2 given the generally 

small quantity of monitors, and that a primary source of SO2 is coal power plant plumes, which 

may produce variable regional concentrations (Guarnieri & Balmes, 2014; Lowe, 2007; Smith et 

al., 1978). The examination of asthma events by resident locations near SO2 monitors may help 

elucidate the association between SO2 exposure and acute asthma events.     

Additionally, the association between traffic pollutants and asthma is well established 

(Brunekreef & Holgate, 2002; Guarnieri & Balmes, 2014; McConnell et al., 2006; James 

McCreanor et al., 2007). Furthermore, at least two studies have specifically examined the 

relationship between traffic flow and pediatric asthma ED visits (English et al., 1999; Hwang et 

al., 2005); however, little is known if traffic flow intensity modifies the association between SO2 

exposure and asthma ED visits. 

In this study, we assessed the association of SO2 and asthma ED visits using a case-

crossover design with data from non-federal acute care hospitals in Atlanta, and data from four 

monitoring locations throughout metropolitan Atlanta. Asthma cases within 5, 4, and 3 

kilometers of monitoring sites were analyzed using conditional logistic regression, controlling for 

meteorological variables, seasonal trends, and school holidays. Furthermore, we investigated 

effect modification by dichotomized traffic flow due to an interest in seeing if the association 

between SO2 and pediatric asthma ED visits is modified given the known role of traffic emissions 

and asthma exacerbation.  

Methods 

Study Design: 

This study used a symmetric bi-directional case-crossover design and conditional logistic 

regression to estimate associations between daily ambient SO2 concentrations and pediatric 
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asthma emergency department (ED) visits. The case-crossover design is a variation of the case-

control study, utilizing cases as their own controls at variable points in time. This study design is 

useful for studying intermittent and variable exposures associated with rare outcomes. This 

design has previously been used in the literature to examine acute effects of ambient air 

pollution (Jaakkola, 2003; Lumley & Levy, 2000) in addition to asthma ED visits related to air 

pollution (Jalaludin et al., 2008; Strickland et al., 2010). Estimates from symmetric bi-directional 

case-crossover design have been shown to be equivalent to time-series analysis (Darrow, 2010; 

Fung et al., 2003; Jaakkola, 2003). 

This study was approved by the Institutional Review Board of the Georgia Department 

of Public Health, and of Emory University.  

 

Environmental Data: 

Daily ambient one-hour maximum SO2 concentrations were obtained from four Atlanta 

Metropolitan Area monitor sites. Three sites were from the U.S. Environmental Protection 

Agency’s Air Quality System (EPA AQS) (AQS Site IDs: 13-089-0002, 13-121-0048, & 13-121-

0055) with data obtained from the EPA AirData AQS Data Mart, in addition to one monitoring 

site from the Southeastern Aerosol Research and Characterization Network (SEARCH, ID: JST).  

Hourly temperature and relative humidity data were obtained for the SEARCH JST 

monitor, and daily maximum temperature, daily minimum temperature and daily mean relative 

humidity were calculated. SEARCH JST meteorological data was considered representative for 

the Atlanta Metropolitan Area.  

 Traffic flow exposure was defined as exposure to ambient surface level PM2.5 

concentrations related to traffic exhaust and was estimated by locally generated model data 

from the Research – LINE  source dispersion model for near-surface releases (R-LINE) developed 
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by EPA’s Office of Research and Development and applied to Atlanta Regional Commission 2011 

road network and traffic data. R-LINE estimates for each ED case were selected by the nearest R-

LINE model 250 meter grid cell using ED case residence locations.  

 

Study Population: 

We obtained ED visit data from the Georgia Department of Public Health for all non-

federal hospitals in the state of Georgia from 2002 – 2013. We defined ED visits for pediatric 

asthmas as all visits with the International Classification of Diseases, 9th Revision, code for 

asthma (493.xx) or wheeze (786.07) among children age 1 – 17 years who did not have a code 

for external injury or poisoning (E800 – E999), or for acute respiratory infections (460.0 – 466.0). 

Children under 12 months of age were excluded due to the inability to accurately diagnose 

asthma (Annor et al., 2014; Strickland et al., 2010; Wardlaw, 1993). 

 ArcMap 10.2.2 and ArcCatalog 10.2.2 (ESRI; Redlands, CA, 2014) were used to identify 

asthma and wheeze ED cases within 5, 4, and 3 kilometer radii of each SO2 monitor base on 

residence location. ED case data were merged with environmental data, and control days were 

generated using a symmetric bi-directional design, with controls using available environmental 

data at 7 and 14 days before and after the event. When all requisite environmental data were 

not available, controls were excluded to allow for case-control strata with 4, 3, 2, or 1 controls 

days. To avoid overlap bias due to repeat cases by the same individuals, we removed all repeat 

cases within 7 days in either direction of the event and selected the earliest case for analysis.  

Final case sample size for each radius were 5 Km (n = 15,610), 4 Km (n = 8,522), and 3 Km (n = 

6,742). 
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Statistical Analyses: 

SO2 and ED Data Only: 

 Odds ratios for associations between SO2 and pediatric asthma-related ED visits were 

estimated using conditional logistic regression. The dependent variable was the radii specific 

count of pediatric asthma visits. Independent variables were monitor specific 1-hour maximum 

SO2 concentrations for each case-control strata, daily maximum temperature, daily minimum 

temperature, and daily mean relative humidity. Statistically significant meteorological 

interaction terms were identified using likelihood ratio tests, resulting in a final model 

containing independent variables, and interaction terms between maximum and minimum 

temperature, and each temperature variable and relative humidity, respectively.  

 Analyses were run using day-of SO2 (Lag 0) concentrations and meteorological terms, 

and were repeated using 1-day, 3-day, 5-day, and 7-day moving averages (Lag 0 – 1, Lag 0 – 3, 

Lag 0 – 5, & Lag 0 – 7, respectively). Analyses were conducted by repeating all analyses with case 

populations within 5 Km, 4 Km, and 3 Km of monitors, and by warm season (May – October) and 

cold season (November – April) stratifications.   

Traffic Data: 

 Traffic-related PM2.5 data were categorized into higher and lower exposures by three 

different methods: dichotomization around the median (4.86 µg/m3), dichotomization at 10 

µg/m3
 (91st percentile), and categorization by quintiles of PM2.5 concentration. Use of the 

median and quintiles was selected due to lack of normality in the data, and dichotomization at 

10 µg/m3 was performed as an exploratory analysis given previously reported increased rate-

ratios between PM2.5 and asthma-related ED events above 10 µg/m3. Data were also included as 

a continuous variable.  
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 Four new models were created by adding a variable for categorization of traffic-related 

PM2.5 and an interaction term between traffic-related PM2.5 and SO2 exposure to the original 

model. Likelihood ratio tests were performed on each model iteration to determine which 

categorization of traffic-related PM2.5 had significant interaction terms.  

 Odds ratios for associations between SO2 and pediatric asthma-related ED visits were 

run for high versus low traffic-related PM2.5. Analyses were repeated at day-of (Lag 0) and 3-day 

moving averages (Lag 0 – 3) of SO2 concentrations for overall data, and during cold and warm 

seasons. Day-of (Lag 0) and 3-day moving averages (Lag 0 – 3) were selected based on results of 

primary analyses for associations between SO2 and asthma-related ED visits showing the 

strongest association at these lag periods.  

 All analyses were performed in SAS 9.3 (Gary, NC, 2014).  

Results 
Descriptive Statistics   
 

Monitor locations and selection of pediatric asthma emergency department cases by 

resident location are shown in Figure 1. The closest distance between monitors was 1.9 Km 

apart and the furthest 15.3 Km.  

Selected characteristics of ED cases are summarized by search radius in Table 1 and by 

individual monitor in Table 2. Proportionally, a higher number of cases were boys (60.6%), had 

family insurance coverage (86.2%), aged 1- 4 years old (41.5%), and were black (90.5%). The 

number of cases decreased by age category, with 8.5% of cases being between ages 15 and 17. 

These demographic trends were consistent across all examined search radii. Demographic 

trends were also consistent across individual monitors. Sample size differed by monitor, with 

monitor #3 having the largest total case count and monitor #4 the smallest (8,514 vs. 1,421 at 5 

Km, respectively). Though the proportion of cases who were black was consistent by radius and 
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monitor, it was substantially higher than the proportion of black residents by census tract, with 

the exception of monitor #4 (Table 3). 

Descriptive characteristics for ambient SO2 concentrations are shown in Table 4. 

Monitor #3 had approximately half the median SO2 value compared to monitor #1, and #2; 

however, all three monitors had a similar range of concentrations. Monitor #4 differed from 

other monitors, with a median SO2 concentration of 1.0 ppb, and an IQR of 2.1 ppb. When 

monitor #4 was excluded from the aggregate, the data remained similar. Due to limited sample 

size, all monitor data in aggregate were selected for inclusion in models. There were substantial 

seasonal differences across monitors, particularly for monitor #1. Despite differences in SO2 

concentrations by monitor, Spearman correlation coefficients showed moderate-to-strong 

positive correlations between monitors (Table 5). There were no differences in correlations by 

season. 

 

Analysis of Ambient SO2Exposure: 

Results from primary analysis for associations between ambient SO2 concentrations and 

pediatric asthma or wheeze emergency department visits based on all monitor data by radii and 

multi-day moving averages are shown in Table 6. Associations were not statistically significant, 

with the exception of day-of SO2 (Lag 0) exposure for cases within a 4 Km radius (OR: 1.044, 95% 

CI 1.006 – 1.084). Associations between ambient SO2 exposure and asthma-related ED visits 

generally became larger as moving average increased from day-of (Lag 0) to 3-day moving 

averages models, with declining strength of association during 5-day and 7-day moving 

averages. Odds ratios also increased as search radius decreased, with 3-day moving average for 

cases within a 3 Km radius resulting in the largest odds ratio; however, confidence intervals 

were wider. 
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Results from exploratory cold and warm season analyses by radius and lag period are 

shown in Table 7. We observed one statistically significant association of ambient SO2 exposure 

and asthma-related ED visits during the cold season using day-of SO2 (Lag 0) exposure. Though 

not statistically significant, cold season models using 1-day and 3-day SO2 moving averages 

exhibited stronger associations than 5-day and 7-day moving averages. Additionally, the 

strength of positive associations increased as search radius decreased, similar to overall results. 

There were no statistically significant associations during the warm season for cases within a 5 

Km radius; however, sample sizes for both cold and warm seasons were small. Trends were 

similar at smaller radii, though, models during the warm season at 3 Km radius showed an 

increasing association as moving average lag period increased.  

Due to lack of normality in SO2 data we conducted further exploratory analysis assessing 

SO2 exposure by quintile of SO2 concentration. Results are presented for overall and season 

specific analysis in Table 8.  Analyses focused on day-of (Lag 0) exposure and 3-day moving 

averages due to evidence of stronger associations in this range in primary analyses. Positive 

associations were generally strongest for quintiles 2 and 5 using 3-day SO2 moving averages. 

Associations were slightly stronger during cold season. Day-of (Lag 0) exposure was inversely 

associated in overall and warm season analyses. Results were consistent by search radius; 

however, no associations were statistically significant.  

 

Analysis of Effect Modification by Traffic-related PM2.5: 

Descriptive characteristics of traffic-related PM2.5 estimated by R-LINE modeling are 

presented in Table 9. We categorized traffic-related PM2.5 in higher and lower exposures using 

four methods: Dichotomized exposure around the median (4.86 µg/m3), dichotomized around 

the 91st percentile (10 µg/m3), by quintile of PM2.5 exposure, and as a continuous variable. 
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Interaction terms between categorized traffic-related PM2.5 and ambient SO2 exposure were 

statistically significant when PM2.5 was modeled as a continuous variable and as quintiles (Table 

10). 

Odds ratios between high and low traffic-related PM2.5 for the association between 

ambient SO2 exposure and asthma ED visits are shown in Table 11. Generally, traffic-related 

PM2.5 assessed as a continuous variable showed weak positive associations for a 1 µg/m3
 

increase in PM2.5. When dichotomized at 10 µg/m3 we observed positive associations for high 

traffic exposure at all lag periods across season and overall analysis; however, no associations 

were statistically significant.  For cases within a 4 Km radius, positive associations for continuous 

and dichotomization at 10 µg/m3 were stronger and statistically significant in overall analysis 

and by season, except for day-of SO2 (Lag – 0) exposure during the cold season. For cases within 

a 3 Km radius results were not consistent. We observed inverse associations across all 

categorization schemes except during the warm season.  

Odds ratios of traffic-related PM2.5 by quintile for the association between ambient SO2 

exposure and asthma ED visits are shown in Table 12. Confidence intervals for associations were 

generally much wider than in other categorization schemes. For cases within a 5 Km radius 

associations were generally positive and the strength of association increased as quintile of 

PM2.5 exposure increased. Strongest associations were present during the warm season for 

quintile 5 of PM2.5 exposure. Results were not consistent by radius, with inverse associations for 

all quintiles for cases within a 4 Km and 3 Km radius, with the exception of day-of SO2 exposure 

during the warm season at 4 Km and for day-of SO2 exposure during both warm season and 

overall analyses at 3 Km.  
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Discussion 

We used a case-crossover design to examine the association between ambient SO2 

concentrations and over 15,000 pediatric asthma and wheeze emergency department visits 

within a 5 kilometer radius of SO2 monitors in the Atlanta Metropolitan Area. By restricting 

analyses of ED cases to those that are in close geographic proximity of monitor sites, we have 

attempted to reduce exposure misclassification of SO2 concentrations.  Additionally, we 

examined whether higher exposures to traffic-related PM2.5 modified associations between 

ambient SO2 and emergency department visits.  

We found positive trends between day-of (Lag 0) and 3-day moving averages of SO2 

exposure and asthma-related emergency department visits, as well as that associations 

increased as proximity to monitor location increased. However, most associations were not 

statistically significant. Positive associations were also observed in separate analyses of warm 

and cold seasons. The strongest associations, including statistically significant associations, were 

observed with 3-day moving average SO2 concentrations during the cold season.  

 

Association between Ambient SO2 and Emergency Department Visits: 

These results are generally consistent with several studies using case-crossover and time 

series methods that have observed small, but statistically significant associations between 

ambient SO2 concentrations and asthma-related ED visits (Jalaludin et al., 2008; Peel et al., 2005; 

Strickland et al., 2010; Winquist et al., 2014). However, previous epidemiologic and 

experimental studies have not consistently associated ambient SO2 concentrations with 

pediatric asthma-related ED visits, or other events of asthma exacerbation (Reiss et al., 2008; 

Schlesinger, 2008; Trasande & Thurston, 2005). 
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Strickland et al. (2010) in particular mentions concerns over the validity of reported 

associations due to local spatial heterogeneity of SO2. Previous large sample epidemiologic 

studies often use regional estimates of SO2 based on a limited number of monitors, which may 

not fully reflect local variability in plume touchdown and exposure concentrations (Strickland et 

al., 2010). In our study, observed variability in SO2 concentration magnitude and range by 

monitor is consistent with reported local spatial heterogeneity (Strickland et al., 2013) .Though 

few of our reported associations were statistically significant, the trend of positive associations 

lends evidence to the validity of previous studies reporting associations between asthma-related 

emergency department visits and ambient SO2. 

One notable difference in our results were stronger associations during the cold season, 

compared to previous studies reporting stronger associations during the warm season (Barnett 

et al., 2005; Jalaludin et al., 2008; Peel et al., 2005; Strickland et al., 2010). These findings may 

be due to seasonal differences in SO2 concentrations. Cold season median concentration and 

IQR (Median: 6 ppm, IQR: 13 ppm) were both larger than during the warm season (Median: 4 

ppm, IQR: 10 ppm). This was particularly noticeable for monitor #1, whose median was almost 

double that of the warm season.   

Another potential explanation is that rates of emergency department visits are more 

common during the cold season, with 55% of cases occurring from November to April and ED 

cases in June and July see a two to three fold reduction. Higher cases rates are thought to be 

attributable to exacerbations triggered by higher prevalence of viral infections (Annor et al., 

2014; Strickland et al., 2010). However, both the phenomenon of higher SO2 concentrations and 

greater ED rates during the cold season have been previously identified in the literature that 

also reported stronger warm season associations (Delfino et al., 2014; Jalaludin et al., 2008; Peel 

et al., 2005; Strickland et al., 2010). 
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It is possible our results differ from previous studies partly due to insufficient sample 

sizes in seasonal dichotomization; however, trends were consistent across study populations 

selected by variable distance from monitors (3 – 5 Km). Alternatively, though we controlled for 

interaction between meteorological variables, we did not control for interaction between SO2 

and meteorology. It is possible there is unaccounted synergism between SO2 exposure and 

temperature; however, this seems unlikely to be a driving factor in our observations given the 

large differences in seasonal SO2 and ED cases.  

 

Effect Modification: 

Additionally, we observed trends of larger associations between SO2 and asthma-related 

ED visits among those with higher traffic-related PM2.5 exposures in three of our four different 

modeling approaches to traffic-related PM2.5. This effect modification was present at all 

distances, including statistically significant results in overall, warm, and cold season analyses at a 

4 Km distance, with strongest associations occurring during warm season at the 3-day moving 

average of SO2 exposure. 

To the best of our knowledge, no other studies have examined effect modification of 

traffic-related PM2.5 exposures on the association between ambient SO2 and asthma emergency 

department visits. However, a recent study by Delfino et al. (2014) did examine effect 

modification of traffic-related air pollution using PM2.5, NOx, and particle number estimates from 

a similar near-surface dispersion model (CALINE4) as the R-LINE data in our study. The authors 

found associations between ambient CO, NOx, NO2, and PM2.5 were stronger for those with 

greater than median dispersion-modeled PM2.5, NOx, and particle number for both cold and 

warm seasons, with strongest effect modification during the cold season. However, these results 
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differed by pollutant, for example, effect modification of traffic-related exposures on primary 

PM2.5 was stronger during the warm season.  

Given differential seasonal patterns by specific pollutant, it is difficult to interpret the 

results of Delfino et al. (2014) in the context of our study on SO2; however, our results are 

generally consistent in observing statistically significant effect modification in both cold and 

warms seasons. A potential explanation for seasonal differences between Delfino et al. and our 

study’s strongest observed effect modification may be due to our R-LINE’s data being limited to 

traffic-related PM2.5 and not accounting for NOx and particle number. This may lead to effect 

modification being dominated by traffic-related PM2.5, which saw stronger effect modification 

during the warm season in both our study and Delfino et al. (2014).  

Alternatively, study geography may be important. Delfino et al. (2014) expected higher 

traffic-related exposures during the cool season due to lower mixing heights and air stagnation; 

however, this may be partially related to meteorological and topographical differences between 

Southern California and the Atlanta area. Furthermore, behavior patterns in car usage may differ 

between warmer year-round weather in Southern California and the Atlanta area. Previous 

studies have reported higher ambient concentrations of traffic-related pollutants in warmer 

months in Atlanta (Darrow et al., 2009; Li et al., 2009; Strickland et al., 2010). This was 

consistent with our observed data, which showed slightly higher median PM2.5 concentrations, 

and a greater number of cases in quintiles 3 and 4 during the warm season. 

Additionally, individual behavior differences, such as greater time spent outdoors and 

increased physical activity during the summer, may drive greater traffic-related exposures 

independently of higher ambient concentrations. Though, as hypothesized by Delfino et al. 

(2014), it is possible that effect modification among those with higher traffic exposure is due to 

greater levels of chronic airway inflammation. This chronic exposure could result in greater 
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susceptibility to short-term ambient exposures, particularly if there were cumulative effects 

over multi-day averages. Though our study did not extend effect modification analysis to 5-day 

and 7-day averages, we did observe strongest associations at 3-day average periods, potentially 

supporting the results found by Delfino et al. (2014). We did not examine 5-day and 7-day 

averages in effect modification models due to a lack of strong positive trends in our study at 5-

day and 7-day averages in models without traffic-related PM2.5. Given the absence of strong 

associations at 5-day and 7-day averages it is plausible that the relationship between SO2 and 

asthma behaves differently than the pollutants studied by Delfino et al. (2014).  

Finally, due to lower ED visit rates in the warm months, it may be that there are fewer 

competing causes of asthma exacerbations, and thus the influence of traffic-related pollutants 

will be more readily noticeable than in the cold season, rather than a physiochemical, 

biologically, or behaviorally driven differential effect (Strickland et al., 2010). 

 

Limitations and Challenges: 

There were also several limitations to our study. Principally, our study had relatively 

small sample sizes compared to previous studies of ambient air pollution and asthma-related ED 

visits in the Atlanta area, which likely contributes to the lack of observed statistically significant 

associations and wide confidence intervals of the estimates (Strickland et al., 2010; Tolbert et 

al., 2000; Tolbert et al., 2007; Winquist et al., 2014).  

We also relied on administrative database records coded with principal diagnosis of 

asthma or wheeze from hospitals to identify ED visits for pediatric asthma. The inclusion of 

wheeze account for 15% of ED visits; however, analyses run without wheeze data yielded similar 

trends in results, but with wider confidence intervals. The difficultly of diagnosing children under 

age 5 with asthma, particularly in an ED setting, reduces our confidence that we are truly 
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observing asthma cases. This age group was included to maintain a larger sample size because 

over 40% of our cases were under age 5. There was also limited ability to address co-morbidities 

of ED visits primarily due to lack of data available in hospital records. Though we excluded cases 

with secondary codes for upper respiratory tract infections, we were unable to address chronic 

conditions that are associated with increased asthma exacerbation events (Annor et al., 2014; 

Neuzil et al., 2000).    

Our study population also had unique demographic characteristics as over 90% of ED 

cases were black. While racial and ethnic differences in asthma prevalence and ED case rates 

have been reported in the literature, a previous study reported 57% of ED cases were black for 

the Atlanta Metropolitan Area (Strickland et al., 2014).  Due to these demographic differences, 

our study population is not necessarily representative of ED cases for the entire Atlanta region. 

Though our results are not appropriate to support effect modification by race, the demographic 

differences in our study population may assist in explaining some of the observed differences in 

our results compared to previous studies. 

Although we believe our restriction of cases to residential locations adjacent to SO2 

monitors more accurately characterizes case SO2 exposure, there still remain challenges with 

exposure assessment. While monitor SO2 data were generally positively correlated, we did 

observe large inter-monitor variability in concentration magnitude and range, even between 

monitors 1.2 Km apart. This suggests that a 5 Km radius around monitors for selecting ED cases 

may remain too large to properly assess SO2 exposure; however, analyses at smaller radii from 

monitors resulted in similar general odds ratios, though were subject to wider confidence 

intervals due to decreased sample sizes. Additionally, monitor data was not available for all 

study years; additional sub-analyses for 2002 – 2009 may be beneficial despite loss in sample 

size.  
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The lack of control of secondary sulfur-related pollutants and additional primary 

pollutants in our model is another challenge. Our observed differences in seasonal associations 

compared to previous studies may be a result of our single pollutant modeling approach as 

previous studies have indicated the importance of controlling for confounding and interaction 

between other pollutants when examining associations with asthma-related ED visits (Strickland 

et al., 2010; Tolbert et al., 2007; Winquist et al., 2014). Strickland et al. (2010) observed 

attenuated single-pollutant associations when controlling for ozone, particularly among cold 

season analyses. This indicates inclusion of ozone is particularly important, though due to our 

limited sample size we would expect increased confidence intervals.   

As indicated by Winquist et al. (2014), in addition to controlling for other pollutants, it 

may be more meaningful from an epidemiological and regulatory perspective to examine 

pollutant combination profiles rather than associations by individual pollutants; however, it is 

difficult to build multi-pollutant complex interaction models at a monitor specific scale due to 

necessary input from regional air pollutant models.  
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 CHAPTER III: CONCLUSIONS AND IMPLICATIONS 

In summary, our study of asthma-related ED cases with residence locations near SO2 

monitoring stations in Atlanta may provide evidence that despite concerns over modeling 

spatial heterogeneity in SO2, associations reported in previous large city-wide, and multi-city 

studies are valid. Additionally, we observed some evidence of stronger associations between 

SO2 and asthma-related ED visits among those with higher traffic-related pollution exposure, 

particularly in the warm seasons.  

These data reinforce the importance of regional and national efforts to adequately 

control ambient air pollution. Though one of the largest sources of SO2 emissions in the Atlanta 

Metropolitan Area, the John J. McDonough coal power plant, was converted to a natural gas 

facility in 2012, other industrial sources of SO2 may still contribute to elevated ambient SO2 

concentrations in the region. When sufficient data are available, a comparison of asthma-

related ED cases before and after the conversion of the McDonough plant may help establish 

the efficacy of such conversions for other regions with elevated ambient SO2, such as 

communities near Plant Scherer in central Georgia.  

A further beneficial step to improve this research is the use of a multi-pollutant model 

to control for primary and secondary pollutants and their interaction terms. Inclusion of ozone is 

particularly important due to observed attenuation of single-pollutant associations when 

controlling for ozone (Strickland et al., 2010). Improved modeling and subsequent 

understanding of the relationship between SO2 and other pollutants will help inform which real-

world exposures scenarios represent the greatest risk.  Furthermore, with additional years of ED 

data added to analyses, it may be possible to better elucidate how the relationship between ED 

cases visits and distance from SO2 monitors. This information will be useful in identifying how 
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heterogeneity of SO2 has affected results of previous research on ambient air pollution and 

asthma-related ED visits.  

Finally, though the emphasis of our study is not on demographic trends in asthma 

prevalence or asthma-exacerbation events, we would like to use these results to continue to call 

attention to the substantial racial and ethnic disparities in asthma-related ED cases observed not 

only in our study population, but that have been documented in the literature and statewide 

epidemiologic reports (Annor et al., 2014; Delfino et al., 2014; Guarnieri & Balmes, 2014). 

Despite established knowledge regarding disparities in asthma prevalence, management, and 

ED visits, this study further highlights the need not only for programmatic interventions to 

improve long-term control of asthma symptoms, but the public health benefits of robust control 

of anthropogenic environmental exposures such as SO2, particularly when complementary 

public health infrastructure is limitedly available to a population.   
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Figure 1: Asthma Emergency Department Cases within a 5 Km Radius of SO2 Monitor Locations in Atlanta Metropolitan Area 
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Table 1: Descriptive Characteristics of Asthma Emergency Department Cases for All SO2 Monitors Combined 
 
 

 

 

 

 

Descriptive Characteristics of Asthma and Wheeze Emergency Department Cases by Radius: 
 All Monitors, Using Lag Period of 0 Days 

 Radius* Around Monitors 

Characteristics 5 Km  4 Km  3 Km  2 Km 

 N (15,610) %  N (11,488) %  N (6,953) %  N (3,097) % 

Age (Years)            

1 - 4 6,475 41.5  4,803 41.8  2,874 41.3  1,357 43.8 
5 - 9 5,066 32.5  3,674 32.0  2,380 34.2  992 32.0 
10 - 14 2,741 17.6  1,981 17.2  1,146 16.5  495 16.0 
15 - 17 1,328 8.5  1,030 9.0  553 8.0  253 8.2 

Race/Ethnicity            

White 635 4.1  538 4.7  369 5.3  154 5.0 
Black 14,121 90.5  10,303 89.7  6,208 89.3  2,749 88.8 
Hispanic 331 2.1  281 2.5  158 2.3  92 3.0 
Other 523 3.4  366 3.2  218 3.1  102 3.3 

Sex            

Male 9,462 60.6  6,946 60.5  4,207 60.5  1,859 60.0 
Female 6,148 39.4  4,542 39.5  2,746 39.5  1,238 40.0 

Insurance Status            

No Insurance 2,148 13.8  1,596 13.9  929 13.3  403 13.0 
Insurance  13,462 86.2  9,892 86.1  6,030 86.7  2,694 87.0 

* Search radius around each monitor used to select case population  
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Table 2: Descriptive Characteristics of Asthma Emergency Department Cases by Individual SO2 Monitor 
 
 

 

 

 

 

Descriptive Characteristics of Asthma and Wheeze Emergency Department Cases by Monitor: 
Using 5 Km Radius and a Lag Period of 0 Days 

 Monitor Location 

Characteristics # 1 (Jefferson St.)  # 2 (GA Tech.) # 3 (Confed. Ave.)  
# 4 (Perimeter 

College) 

 N (4,110) %  N (1,565) % N (8,514) %  N (1,421) % 

Age (Years)           

1 - 4 1,695 41.2  656 41.9 3,540 41.6  584 41.1 
5 - 9 1,350 32.9  500 32.0 2,727 32.0  489 34.4 
10 - 14 692 16.8  267 17.1 1,510 17.7  272 19.1 
15 - 17 373 9.1  142 9.1 737 8.7  76 5.4 

Race/Ethnicity           

White 147 3.6  56 3.6 361 4.2  71 5.0 
Black 3,741 91.0  1,442 92.1 7,694 90.4  1,244 87.5 
Hispanic 94 2.3  25 1.6 180 2.1  32 2.3 
Other 128 3.1  42 2.7 279 3.3  74 5.2 

Sex           

Male 2,459 59.8  948 60.6 5,187 60.9  868 61.1 
Female 1,651 40.2  617 39.4 3,327 39.1  553 38.9 

Insurance Status           

No Insurance 622 15.1  252 16.1 1,113 13.1  161 11.3 
Insurance  3,488 84.9  1,313 83.9 7,401 86.9  1,260 88.7 
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Table 3: Race and Ethnicity of Census Tracts Containing Individual SO2 Monitors 

 

 

 

 

 

Distribution of Population by Race and Ethnicity in Census Tracts Containing Monitors 

 Monitor Location 

Characteristics # 1 (Jefferson St.) # 2 (GA Tech.) # 3 (Confed. Ave.) 
# 4 (Perimeter 

College) 

 % of Population 

Study Population     

White 3.6 3.6 4.2 5.0 

Black 91.0 92.1 90.4 87.5 

Hispanic 2.3 1.6 2.1 2.3 

Other 3.1 2.7 3.3 5.2 

2010 Census Data     

White 25.4 64.4 38.4 5.8 
Black 70.5 9.2 45.3 92.0 
Hispanic 3.4 4.7 18.7 1.1 
Other 1.2 1.2 12.0 0.6 

2000 Census Data     

White 14.9 N/A 28.2 7.9 
Black 83.3 N/A 57.2 90.2 
Hispanic 2.0 N/A 20.4 0.9 
Other 1.1 N/A 14.1 1.9 
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Table 4: Descriptive Characteristics of Environmental Data by SO2 Monitors 

Descriptive Characteristics of Environmental Data by Monitor: 
 Using 5 Km Radius and a Lag Period of 0 Days 

Monitor # Characteristics 

 N* Mean (SD) Median Range IQR 

All Monitors      

SO2 (ppb) 77,382 9.8 (12.5) 5.0 129.5 11.4 

Max. Temp. (0C) 76,537 21.9 (8.0) 22.7 46.1 12.2 

Min. Temp. (0C) 75,847 11.0 (8.2) 11.2 41.7 13.7 

Relative Humidity (%) 76,368 68.1 (15.2) 68.1 93.0 21.9 

Monitors #1, 2, 3       

SO2 (ppb) 70,350 10.6 (12.9) 5.7 129.5 12.6 

Max. Temp. (0C) 69,634 21.9 (8.1) 22.8 46.1 12.3 

Min. Temp. (0C) 68,886 11.0 (8.2) 11.3 41.7 13.8 

Relative Humidity (%) 69,414 67.9 (15.3) 68.1 93.0 22.0 

# 1 (Jefferson St.)†      

SO2 (ppb) 20,142 14.1 (14.8) 8.8 129.3 15.8 

Max. Temp. (0C) 19,959 21.8 (8.2) 22.8 46.0 12.5 

Min. Temp. (0C) 19,777 10.8 (8.3) 11.0 41.5 14.0 

Relative Humidity (%) 19,953 67.7 (15.1) 67.8 92.7 21.6 

# 2 (GA Tech.)‡      

SO2 (ppb) 8,081 13.1 (15.3) 7.0 124.0 17.0 

Max. Temp. (0C) 8,036 21.7 (8.1) 22.2 45.3 12.3 

Min. Temp. (0C) 7,870 10.7 (8.2) 10.6 41.0 14.1 

Relative Humidity (%) 7,958 67.4 (15.9) 67.4 92.5 23.4 

# 3 (Confederate Ave.)††      

SO2 (ppb) 42,127 8.4 (10.8) 4.0 116.0 10.0 

Max. Temp. (0C) 41,639 21.9 (8.0) 22.8 46.1 12.2 

Min. Temp. (0C) 41,239 11.2 (8.1) 11.5 38.9 13.6 

Relative Humidity (%) 41,503 68.2 (15.2) 68.3 91.7 21.8 

# 4 (Perimeter College)‡‡      

SO2 (ppb) 7,032 2.2 (2.9) 1.0 24.5 2.1 

Max. Temp. (0C) 6,903 21.2 (7.5) 21.8 43.9 11.7 

Min. Temp. (0C) 6,961 11.1 (7.5) 11.1 37.0 12.0 

Relative Humidity (%) 6,954 69.4 (14.9) 68.7 75.2 22.1 

* Sample size includes total number of observations of environmental parameters included in regression. 

This is based on the number of cases and controls. For number of ER cases, see descriptive characteristics 
of ER Cases. 

† Measurements available January, 2002 through December, 2010  

‡ Measurements available January, 2002 through April, 2009 

†† Measurements available January, 2002 through December, 2013 

‡‡ Measurements available October, 2010 through December, 2013 
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Table 5: Correlation Coefficients between Individual SO2 Monitors 
 
 
 

 

 

 

 

 

Spearman and Pearson Correlations between Monitor 1-hour Maximum SO2 Concentrations (ppb)  

 Monitor Location  

 
# 1 (Jefferson St.) # 2 (GA Tech.) # 3 (Confed. Ave.) 

# 4 (Perimeter 
College) 

 

# 1 (Jefferson St.)     

               P
earso

n
 

Correlation Coefficient 

 
0.75 0.76 0.77 

P-Value <0.0001 <0.0001 <0.0001 
N 2543 3117 87 

# 2 (GA Tech.)     
Correlation Coefficient 0.83 

 
0.69 

N/A P-Value <0.0001 <0.0001 
N 2543 2583 

# 3 (Confed. Ave.)     
Correlation Coefficient 0.82 0.77 

 
0.79 

P-Value <0.0001 <0.0001 <0.0001 
N 3117 2583 1159 

# 4 (Perimeter College)       
  
  
  

Correlation Coefficient 0.78 
N/A 

0.84 
 P-Value <0.0001 <0.0001 

N 87 1159 

 Spearman   



 
 

5
2 

Table 6: Odds Ratios of Ambient SO2 Exposure on Asthma Emergency Department Visits by Radius, and Lag Period 

 
 
 

 

 

 

 

 

Odds Ratios and 95% Confidence Intervals of Ambient SO2* Exposure on Asthma and Wheeze ED Visits By Radius and Lag Period 

 Lag Period for SO2 

 Lag 0  Lag 0 - 1 Lag 0 - 3 Lag 0 - 5 Lag 0 - 7 

Radius†       

5 Km 1.029 (0.997 - 1.063) 1.023 (0.979 - 1.069) 1.021 (0.968 - 1.076) 0.999 (0.942 - 1.061) 1.002 (0.929 - 1.081) 

4 Km 1.044 (1.006 - 1.084) 1.044 (0.992 - 1.099) 1.047 (0.984 - 1.113) 1.026 (0.958 - 1.100) 1.017 (0.933 - 1.110) 

3 Km 1.043 (0.995 - 1.093) 1.060 (0.993 - 1.131) 1.080 (0.989 - 1.156) 1.066 (0.976 - 1.164) 1.041 (0.931 - 1.164) 

* SO2 Modeled as continuous variable 

† Search radius around each monitor used to select case population  

Model adjusted for maximum daily temperature, minimum daily temperature, and mean daily relative humidity, and meteorological interaction terms. 
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Table 7: Cold and Warm Season Odds Ratios of Ambient SO2 Exposure on Asthma Emergency Department Visits 

 

 

 

 

 

Cold and Warm Season Odds Ratios and 95% Confidence Intervals  
of Ambient SO2* Exposure on Asthma and Wheeze ED Visits By Radius** and Lag Period 

 Lag Period for SO2 

 Lag 0  Lag 0 - 1 Lag 0 - 3 Lag 0 - 5 Lag 0 - 7 

Cold Season†      

5 Km  1.054 (1.010 - 1.101) 1.042 (0.981 - 1.108) 1.069 (0.992 - 1.153) 1.007 (0.926 - 1.095) 1.008 (0.905 - 1.122) 

4 Km 1.063 (1.012 - 1.117) 1.072 (1.000 - 1.150) 1.105 (1.013 - 1.204) 1.053 (0.956 - 1.160) 1.013 (0.895 - 1.146) 

3 Km 1.069 (1.003 - 1.139) 1.087 (0.992 - 1.190) 1.119 (1.000 - 1.251) 1.073 (0.946 - 1.218) 1.011 (0.861 - 1.118) 

Warm Season†      

5 Km 1.000 (0.950 - 1.052) 1.001 (0.936 - 1.070) 0.980 (0.906 - 1.060) 0.980 (0.896 - 1.072) 0.973 (0.869 - 1.088) 

4 Km 1.017 (0.959 - 1.079) 1.010 (0.934 - 1.092) 0.998 (0.911 - 1.094) 0.997 (0.898 - 1.107) 1.006 (0.883 - 1.147) 

3 Km 1.012 (0.939 - 1.091) 1.037 (0.940 - 1.145) 1.032 (0.920 - 1.158) 1.054 (0.923 - 1.202) 1.053 (0.893 - 1.241) 

*SO2 Modeled as continuous variable scaled to 20 parts per billion (ppb) 

** Search radius around each monitor used to select case population  

†Cold Season defined as November to April; Warm Season defined as May to October 

Model adjusted for maximum daily temperature, minimum daily temperature, and mean daily relative humidity, and meteorological interaction terms. 
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Table 8: Odds Ratios and 95% Confidence Intervals of Ambient SO2 by Quintile by Radius, Lag Period, and Season 
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Table 9: Descriptive Characteristics of R-LINE Data by Categorization Type 

 

 

 

 

 

 

 

Table 10: Statistical Significant of R-LINE Interaction Terms by Categorization Type 

 

Descriptive Characteristics of R-LINE Data by Categorization Type 

 Characteristics 

Categorization Mean (SD) Median Range IQR 

Continuous   5.9 (3.6) 4.9 37.8 2.7 

     Dichotomized at 10 µg/m3 N %   

Below 20,211 92.3   

Above 1,934 8.7   

Likelihood Ratio Test for Significance of 
Interaction Term in Model: Using 5 Km and Lag 0 

Categorization Chi-Square P-Value 

Dichotomized at Median* 0.077 

Dichotomized at 10 µg/m3 0.362 

Continuous  0.020 

Quintiles 0.009 

*Median = 4.86 µg/m3 
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Table 11: Effect Modification of Traffic Flow on Association of SO2 and Asthma ED Visits 
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Table 12: Effect Modification by Quintile of Traffic Flow and Association of SO2 

 

 

 


