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Abstract

Characterization of Quasiconformal Mappings and Extremal Length Decomposition
By Wenfei Zou

Quasiconformal mappings have abundant subtle analytic and geomet-
ric properties, which can be used widely in various contexts. The reason
probably lies in that there exists several equivalent definitions for quasicon-
formal mappings. While conformal mappings preserve measures of angles,
quasiconformal mappings are their natural generalizations. Geometrically,
a quasiconformal mapping maps infinitesimal balls to infinitesimal ellipsoids
with uniformly controlled eccentricity in space. This suggests that it is rea-
sonable to use measures of angles to characterize quasiconformal mappings.
In the first part of this dissertation, a measure of angle called topological
angle is used to characterize quasiconformal mappings in higher dimensional
Euclidean space, generalizing a similar result in the plane.

The second part of the dissertation deals with some important conformal
invariants in the study of geometric function theory, such as quasiextremal
distance (or QED) constant and extremal length. QED domains are a class
of domains closely connected to quasiconformal mapping theory. The QED
constant is a naturally defined conformal invariant on a domain whose val-
ues reflect the geometry of a domain. In this part, a sharp upper bound for
the QED constant in terms of boundary dilatation is obtained for a finitely
connected domain on the complex plane. Furthermore, the extremal length
(or its reciprocal called modulus) of a curve family plays an essential role
in studying quasiconformal mappings. In the second part of this disserta-
tion, a decomposition result is established for the extremal length of a curve
family in a finitely connected domain. This can be regarded as a natural
generalization of subadditivity of extremal length. It is also a key ingredient
in obtaining the sharp upper bound for the QED constant mentioned above.
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Chapter 1

Introduction

1.1 Quasiconformal mappings

Quasiconformal mappings are natural generalization of conformal map-

pings. They are used to solve problems on which conformal mappings turn

out to be too restrictive. Quasiconformal mappings in the plane were first in-

troduced by H.Grötzsch in 1920’s. Then important results were developed by

O.Teichmüller and L.V.Ahlfors in 1930’s [3]. The systematic study of quasi-

conformal mappings in Rn was begun by F.W.Gehring [8] and J.Väisälä [14]

in 1960’s. Since then, its generalization has been actively studied, see [12]

[11] [4], and [5].

While a conformal map preserves both angles and shape of infinitesimal

small figures, a quasiconformal mapping maps infinitesimal balls to infinites-

imal ellipsoids with uniformly controlled eccentricity in space. Quasiconfor-

mal mappings are characterized by the property that there exists a constant

greater than 1 such that the infinitesimally small spheres are mapped onto

infinitesimally small ellipsoids with the ratio of the largest “semiaxis” to the

smallest one bounded from above by the constant. This naturally gives rise

to the metric definition. We thus define linear dilatation first.

Let f : Ω→ Ω′ be a homeomorphism between domains in the Euclidean
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space Rn, the linear dilatation of f at x is defined as:

H(x, f) = lim sup
r→0

L(x, f, r)

l(x, f, r)
,

where

L(x, f, r) = max
|y−x|=r

|f(y)− f(x)|,

l(x, f, r) = min
|y−x|=r

|f(y)− f(x)|.

Definition 1.1. (Metric definition) A homeomorphism f : Ω→ Ω′ is a qua-

siconformal mapping, where Ω,Ω′ are domains in Rn, if and only if H(x, f)

is bounded.

The metric definition of quasiconformal mapping is classical and simple,

but it is hard to deduce basic facts of quasiconformal mappings simply by

the boundedness of H(x, f). There are two other well-known equivalent

definitions of quasiconformality, namely, geometric definition and analytic

definition. The geometric definition is based on the concept of conformal

modulus of a curve family. It provides the most direct approach to a large

part of the quasiconformal mapping theory. Three dilatation parameters of

homeomorphism f of a domain Ω are needed in order to give the geometric

definition. The inner and outer dilatations of f are defined by

KI(f) = sup
M(f(Γ))

M(Γ)
, KO(f) = sup

M(Γ)

M(f(Γ))
,

where the supremum is taken over all curve families Γ in Ω. The quanti-

ties M(Γ),M(f(Γ)) are the conformal moduli of the curve families Γ and

f(Γ), respectively. The reader is referred to section 1.2 for the definition of

modulus. The maximal dilatation of f is

K(f) = max{KI(f), KO(f)}.
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Definition 1.2. (Geometric definition) A homeomorphism f : Ω → Ω′ is a

quasiconformal mapping if its maximal dilatation K(f) < ∞. If K(f) ≤ K

then f is said to be K-QC. Equivalently, f is K-QC if and only if

M(Γ)

K
≤M(f(Γ)) ≤ KM(Γ)

for every curve family Γ in Ω.

The following properties follow from the definition immediately:

1. If f is a K-quasiconformal mapping, then its inverse f−1 is also a K-

quasiconformal mapping.

2. The composite of a K1 quasiconformal mapping and a K2 quasiconfor-

mal mapping is a K1K2 quasiconformal mapping.

An analytic definition for quasiconformal mappings was first considered

by Lavrentiev in connection with elliptic systems of partial differential equa-

tions.

Definition 1.3. (Analytic definition) A homeomorphism f : Ω → Ω′ be-

tween domains in Rn, n ≥ 2, is said to be K-quasiconformal if the following

conditions are satisfied:

1. The first distributional partial derivatives of f are locally in the Lebesgue

space Ln.

2. The formal differential matrix Df = (∂ifj) satisfies

sup
h∈Rn,|h|≤1

|Df(x)(h)|n ≤ K|detDf(x)|

for almost every x ∈ Ω.
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In the alternative analytic definition given by J.Väisälä [16], absolute conti-

nuity and differentiability for almost all points are assumed and the bounded-

ness of the dilatation quotient is required almost everywhere. Although the

analytic definition given above is different from that by J.Väisälä, it follows

indirectly that f is a.e. differentiable [13]. The reader is referred to section

2.9 in [13] for details.

1.2 The modulus of a curve family

The modulus of curve families is the main tool when studying the proper-

ties of quasiconformal mappings. Moreover, the extremal length method can

also be applied to problems of conformal mappings and Teichmüller spaces

[10].

1.2.1 The definition of modulus

Definition 1.4. Let Γ be a curve family in Rn and denote by F (Γ) the set

of all nonnegative Borel functions ρ : Rn → R such that∫
γ

ρds ≥ 1

for every locally rectifiable curve γ ∈ Γ. For each p ≥ 1, set

Mp(Γ) = inf
ρ∈F (Γ)

∫
Rn
ρpdm

Mp(Γ) is called the p-modulus of Γ.

For the case p = n, we call it the modulus of Γ and denote it M(Γ). In the

literature, one often uses the extremal length of Γ. It is denoted as λ(Γ) and

is simply equal to M(Γ)
1

1−n . Extremal length is a sort of average minimal

length of curves in a curve family and the set of fewer and longer curves
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has larger extremal length. It is invariant under conformal mappings and

quasi-invariant under quasiconformal mappings.

1.2.2 Properties of modulus

For a given curve family Γ, it is usually very difficult to compute M(Γ) di-

rectly. We usually find the estimate of modulus instead. After listing several

basic properties of the modulus, we list several examples about the estima-

tion of modulus in some special domains, which can be used readily.

Theorem 1.5. [[16], Theorem 6.2] M is an outer measure in the space of all

curves in R̄n:

1. M(∅) = 0;

2. (Monotonicity) Γ1 ⊂ Γ2 implies M(Γ1) < M(Γ2).

3. (Subadditivity) M(∪∞i=1Γi) ≤
∑∞

i=1M(Γi).

Theorem 1.6. [Symmetry Principle] For any γ let γ̄ be its reflection in

the real axis, and let γ+ be obtained by reflecting the part below the real axis

and retaining the part above it (γ ∪ γ̄) = γ+ ∪ (γ+)−. If Γ = Γ̄, then

λ(Γ) =
1

2
λ(Γ+).

Definition 1.7. Let Γ1 and Γ2 be curve families in R̄n. We say that Γ2 is

minorized by Γ1 and denote Γ2 > Γ1 if every γ ∈ Γ2 has a subcurve which

belongs to Γ1.

Theorem 1.8. [[16], Theorem 6.4] If Γ1 < Γ2, then M(Γ1) ≥M(Γ2).
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Example 1.9. [The module of a rectangle] Γ is the set of all arcs in a closed

rectangle R with length a and width b which joins a pair of opposite sides in

length b, then

λ(Γ) =
a

b
.

Example 1.10. [The module of an annulus] Let G = r1 ≤ |z| ≤ r2 be a dou-

bly connected region in the finite plane with c1 the bounded, c2 the unbounded

component of the complement. Let Γ be the family of closed curves in G

which separate c1 and c2. Then the module

λ(Γ) =
1

2π
log(

r2

r1

).

Example 1.11. [[10] Teichimüller ring] Let R = R(E,F ) denote a ring

domain with the property that its complement has exactly two components

E and F . The Teichimüller ring is the ring domain defined by RT (t) =

R([−1, 0], [t,∞]) for some t > 0. Let the Teichimüller function Ψ(t) :

(0,∞]→ (1,∞] be defined by

2π

log Ψ(t)
= M(4([−1, 0], [t,∞];RT (t))).

It can be shown that Ψ(t) is continuous, non-decreasing and that limt→0 Ψ(t) =

1 and Ψ(∞) =∞. Moreover, it is known that limt→∞
Ψ(t)
t

= 16.

1.3 QED Domain and QED Constant

QED domains were first introduced by Gehring and Martio in the study of

quasiconformal mappings [9].

Definition 1.12. A domain Ω in R̄n is said to be an M − QED domain,

with 1 ≤M <∞, if for each pair of disjoint continua A and B in Ω,

mod(A,B;Rn) ≤Mmod(A,B; Ω).
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On the complex plane, a quasicircle is a Jordan curve that is the image

of a circle under a quasiconformal mapping of the plane onto itself. We say

that Ω ⊂ C̄ is a K-quasidisk if Ω is the image of an open disk or half plane

under a K-quasiconformal self mapping of C̄ and that its boundary is called

a K-quasicircle. A domain Ω ⊂ C̄ is said to be a K-quasicircle domain if each

component of ∂Ω is either a point or a k-quasicircle [9].

The following Theorem implies that QED domains are closely related to

uniform domains, quasisphere domains and linearly locally connected do-

mains [9].

Theorem 1.13. If Ω is a finitely connected domain in C, then the following

conditions are equivalent.

1. Ω is a QED domain.

2. Ω is linearly locally connected.

3. Ω is a quasicircle domain.

4. Ω is uniform.

By the symmetry principle for moduli of curve families, it follows that if

domain Ω is a ball or a half space, then Ω is 2-QED. To better understand

the geometry of a QED domain, we define the QED constant as follows [17].

Definition 1.14. [QED constant] For domain Ω, its quasi-extremal distance

constant M(Ω) is defined as:

M(Ω) = sup
A,B∈Ω̄

mod(A,B;Rn)

mod(A,B; Ω)
,

where the supremum is taken over all pairs of disjoint continua A and B in

Ω̄ such that mod(A,B;C) and mod(A,B; Ω) are not simultaneously 0 or ∞.



8

The properties of QED constant is well discussed in [17]. For example,

complete geometric characterizations are given for 1-QED domains and 2-

QED domains in Rn. Some sharp lower and upper bounds of M(Ω) for

different kinds of domains are also derived. In general, the value of M(Ω)

reflects the geometry of a domain Ω in some sense.

1.4 Outline and summary of results

The thesis is organized in three parts. Chapter 2 concerns the character-

ization of quasiconformality using the measure of topological angle which

generalizes a corresponding result in the plane [2] into higher dimensional

Euclidean space. Similar results were obtained by Agard in [1], but this part

of the thesis was done independently of [1]. In particular, quasisymmetry is

used to estimate the lower bound for topological angles under quasiconformal

mappings. In chapter 3, a QED constant called QED reflection constant is

defined. Several basic properties are discussed and it is shown that the QED

reflection constant can only be obtained by a pair of nondegenerate continua

for a smooth Jordan domain other than a disk or half plane. The last two

chapters are devoted to establishing a sharp upper bound for the QED con-

stant M(Ω) of a finitely connected planar domain in terms of local boundary

dilatation of its boundary components, which is a generalization of a result in

[6] about Jordan domains. In particular, one of the lemmas, decomposition

of extremal length on finitely connected domain, is formulated in Chapter 4

independently since it gives rise to its own applications and interests.
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Chapter 2

Characterization of

quasiconformal mappings using

topological angle

2.1 Introduction

Recall that there are three equivalent definitions of quasiconformality. They

all involve selecting a certain property of conformal mappings and then study-

ing the class of homeomorphisms which enjoy a slightly weakened form of this

property [2]. The fact that a conformal mapping is an angle preserving diffeo-

morphism could be generalized to the class of quasiconformal mappings. It

provides the point of view of “angle preserving” to characterize quasiconfor-

mal mappings on the complex plane. This chapter is devoted to generalizing

this characterization to higher dimensional Euclidean space.

To circumvent the exceptional set of zero measure where quasiconformal

mapping is not differentiable, a form of measure called topological angle is

defined in section 2.1. In section 2.2 and 2.3, we study how the measure

of topological angle changes under various mappings. In section 2.4, using

the local quasisymmetry of a quasiconformal mapping, we estimate lower
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bound of the topological angle under quasiconformal mappings. Section 2.5

establishes the main theorem about the characterization of quasiconformal

mapping using topological angle in R3. And finally, we deduce similar results

in Euclidean space Rn+1 by providing some parallel theorems and lemmas.

2.2 Definition of topological angle

It is known that a conformal mapping preserves the measure of angles and

that quasiconformal mappings are natural generalizations of conformal map-

pings. It is conceivable that we could define some measure of angle to char-

acterize quasiconformal mappings and we may also obtain some interesting

results in studying the behavior of topological angles under quasiconformal

mappings. Before that, since quasiconformal mapping is only differentiable

almost everywhere, we need to define some kind of measure of an angle which

can be measured under quasiconformal mappings.

With the inspiration of trigonometric function of angles on the complex

plane, the topological angle is defined as follows (see [2]).

Definition 2.1. Let γ1 and γ2 be two arcs in Rn. We say γ1 and γ2 form

a topological angle at a point x0 if both γ1 and γ2 have x0 as an end-point

and if x0 is the only point γ1 and γ2 have in common in its neighborhood.

Define the inner measure A(γ1, γ2) of this topological angle as follows:

A(γ1, γ2) = lim
x1,x2→x0

inf 2 arcsin(
|x1 − x2|

|x1 − x0|+ |x2 − x0|
), xi ∈ γi. (2.1)

It is easy to check that 0 ≤ A(γ1, γ2) ≤ π, and that A(f(γ1), f(γ2)) =

A(γ1, γ2) when f is a similarity mapping or a reflection in a plane.

2.3 Topological angle under linear mappings

We quantify topological angle under two linear mappings in this section.
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Lemma 2.2. Suppose that f is a homeomorphism of a neighborhood U of

the origin, that

f(x) = x+ o(|x|)

near the origin, and that γ1 and γ2 are two arcs in U which form a topological

angle at the origin. Then f(γ1) and f(γ2) form a topological angle and

A(f(γ1), f(γ2)) = A(γ1, γ2)

Proof. Given that 0 < ε < 1, we may choose δ > 0 such that |f(x)−x| ≤ ε|x|
for |x| < δ. This implies |f(x)| ≥ (1 − ε)|x|. Choose xi in γi so that

0 < |xi| < δ, i = 1, 2.

Then

|f(x1)− f(x2)|
|f(x1)|+ |f(x2)|

≤ |f(x1)− x1|+ |x1 − x2|+ |f(x2)− x2|
(1− ε)|x1|+ (1− ε)|x2|

≤ ε(|x1|+ |x2|) + |x1 − x2|
(1− ε)(|x1|+ |x2|)

=
|x1 − x2|
|x1|+ |x2|

+
ε

1− ε
|x1 − x2|
|x1|+ |x2|

+
ε

1− ε

≤ |x1 − x2|
|x1|+ |x2|

+
2ε

1− ε
.

It follows that

sin
1

2
A(f(γ1), f(γ2)) ≤ |f(x1)− f(x2)|

|f(x1)|+ |f(x2)|
≤ |x1 − x2|
|x1|+ |x2|

+
2ε

1− ε
.

Letting x1, x2 → 0 as in Definition (2.1) yields

sin
1

2
A(f(γ1), f(γ2)) ≤ sin

1

2
A(γ1, γ2) +

2ε

1− ε
.

Since ε is arbitrary, we obtain

A(f(γ1), f(γ2)) ≤ A(γ1, γ2).

The reverse inequality follows by symmetry.
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Lemma 2.3. Suppose that f(x) = Ax, and that A is a non-degenerate n×n
matrix which can be diagonalized in the form :

a1 0 · · · 0 0

0 a2 · · · 0 0
...

...
. . .

...
...

0 0 · · · an−1 0

0 0 · · · 0 an


where a1 ≥ a2 ≥ · · · ≥ an > 0. If

K ≥ a1

an
,

then

KA(γ1, γ2) ≥ A(f(γ1), f(γ2)) ≥ 1

K
A(γ1, γ2) (2.2)

for each pair of arcs γ1 and γ2 which form a topological angle at the origin.

Conversely, if

A(f(γ1), f(γ2)) ≥ 1

K
A(γ1, γ2)

holds for each pair of segments γ1 and γ2 which form an angle at the origin,

then

K ≥ a1

an
.

Proof. Fix any pair of arcs γ1 and γ2 which form a topological angle at the

origin. Choose x = (x1, · · · , xn) in γ1 and y = (y1, · · · , yn) in γ2 so that

x, y 6= 0, and set

ϕ = arcsin(
|x− y|
|x|+ |y|

), ϕ′ = arcsin(
|f(x)− f(y)|
|f(x)|+ |f(y)|

).
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Then

(tanϕ′)2 =
|f(x)− f(y)|2

(|f(x)|+ |f(y)|)2 − |f(x)− f(y)|2

=

∑n
i=1 a

2
i (xi − yi)2

(
√∑n

i=1 a
2
ix

2
i +

√∑n
i=1 a

2
i y

2
i )

2 − (
√∑n

i=1 a
2
i (xi − yi)2)2

=

∑n
i=1 a

2
i (xi − yi)2

2
∑n

i=1 a
2
ixiyi + 2

√∑n
i=1 a

2
ix

2
i

√∑n
i=1 a

2
i y

2
i

≥ a2
n

a2
1

∑n
i=1(xi − yi)2

2
∑n

i=1 xiyi + 2
√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

=
a2
n

a2
1

(tanϕ)2.

Hence

ϕ′ ≥ arctan(
an
a1

tanϕ) ≥ an
a1

ϕ.

This yields by the definition of A(γ1, γ2) in (2.1),

2 arcsin(
|f(x)− f(y)|
|f(x)|+ |f(y)|

) ≥ 2an
a1

arcsin(
|x− y|
|x|+ |y|

) ≥ an
a1

A(γ1, γ2).

Since this is true for all x ∈ γ1 and y ∈ γ2 with x, y 6= 0, taking the infimum

limit as x→ 0 and y → 0 as in the definition (2.1) yields

A(f(γ1), f(γ2)) ≥ an
a1

A(γ1, γ2).

Thus, if K ≥ a1
an

,

A(f(γ1), f(γ2)) ≥ an
a1

A(γ1, γ2) ≥ 1

K
A(γ1, γ2)

which gives the second inequality in (2.2).
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For the rest part in (2.2), we note that

(tanϕ′)2 =

∑n
i=1 a

2
i (xi − yi)2

2
∑n

i=1 a
2
ixiyi + 2

√∑n
i=1 a

2
ix

2
i

√∑n
i=1 a

2
i y

2
i

≤ a2
1

a2
n

∑n
i=1(xi − yi)2

2
∑n

i=1 xiyi + 2
√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

=
a2

1

a2
n

(tanϕ)2

and that

ϕ′ ≤ arctan(
a1

an
tanϕ) ≤ a1

an
ϕ.

Similarly, the following inequality holds,

A(f(γ1), f(γ2)) ≤ a1

an
A(γ1, γ2).

Thus if K ≥ a1
an

,

A(f(γ1), f(γ2)) ≤ KA(γ1, γ2).

Conversely, let A(f(γ1), f(γ2)) ≥ 1
K
A(γ1, γ2) holds for each pair of segments

γ1 and γ2 which form an angle at the origin. Fix θ > 0 and let γ1, γ2

be the line segments connecting the origin and x̄ = (cos θ, 0, · · · , 0, sin θ),
ȳ = (cos θ, 0, · · · , 0,− sin θ), respectively.

Then

A(f(γ1), f(γ2)) = 2 arcsin
|f(x̄)− f(ȳ)|
|f(x̄)|+ |f(ȳ)|

= 2 arcsin
2an sin θ

2
√

(a1 cos θ)2 + (an sin θ)2

= 2 arctan(
an
a1

tan θ)

−→ an
a1

A(γ1, γ2) as θ → 0,

and hence A(f(γ1), f(γ2)) ≥ 1
K
A(γ1, γ2) implies an

a1
A(γ1, γ2) ≥ 1

K
A(γ1, γ2).

Therefore, K ≥ a1
an

holds.
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2.4 Topological angle under differentiable home-

omorphism

Using Lemma 2.2 and Lemma 2.3, we study the behavior of topological

angles under differentiable homeomorphisms.

Theorem 2.4. Suppose that f is a homeomorphism on a domain G, that f

has a differential at x0 and that

max
θ
|Dθf(x0)| > 0 (2.3)

where Dθf denotes the directional derivative of f . If

max
θ
|Dθf(x0)|n ≤ K|J(x0)| (2.4)

where J denotes the Jacobian of f , then

A(f(γ1), f(γ2)) ≥ 1

K
A(γ1, γ2) (2.5)

for each pair of arcs γ1 and γ2 which form a topological angle in G at x0.

Conversely, if (2.5) holds for each pair of segments γ1 and γ2 which form

an angle in G at x0, then the following inequality holds

max
θ
|Dθf(x0)|n ≤ Kn−1|J(x0)|. (2.6)

Proof. By performing preliminary similarity mappings, we may assume that

x0 = f(x0) = 0 and that, since f(x) has a differential at x0 = 0,

f(x) = f(x0) + J(x0)(x− x0) + ◦(|x− x0|)

which is

f(x) = J(x0)x+ ◦(|x|),

where J(x0) is an n×n matrix and x = (x1, x2, · · · , xn)T . Suppose inequality

(2.4) holds. Then (2.3) implies that |J(x0)| 6= 0. Hence the matrix J(x0) can
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be diagonalized in the form as in Lemma 2.3. Thus by performing preliminary

similarity mappings and reflections again, we may assume, near x0 = 0,

f(x) = g(x) + ◦|g(x)| = Ax+ ◦(|Ax|),

where g(x) = Ax and A is as in Lemma 2.3. Note that,

|J(x0)| = det(A) =
n∏
i=1

ai (2.7)

|Dθf(x0)| = |Ax̄| = |
n∑
i=1

aix̄i|.

Where x̄ = (x̄1, x̄2, · · · , x̄n)T and |x̄| = 1. Set x̄ = (1, 0, · · · , 0), we can have

max
θ
|Dθf(x0)| = a1. (2.8)

By (2.7) and (2.8), inequality (2.4) implies that an1 ≤ K
∏n

i=1 ai, and since

a1 ≥ a2 ≥ · · · ≥ an, a1
an
≤ K.

For any pair of arcs γ1 and γ2 in G which form a topological angle at the

origin. Notice that topological angle is unchanged under similarity mappings.

By lemma 2.2, A(f(γ1), f(γ2)) = A(g(γ1), g(γ2)). By lemma 2.3, inequality

K ≥ a1
an

implies that A(g(γ1), g(γ2)) ≥ 1
K
A(γ1, γ2). Thus,

A(f(γ1), f(γ2)) ≥ 1

K
A(γ1, γ2),

for each pair of arcs γ1 and γ2 which form a topological angle in G at x0.

For the other direction, first suppose that |J(x0)| 6= 0, x0 = f(x0) = 0 and

that f(x) = g(x) + ◦|g(x)| = Ax + ◦(|Ax|) holds, where function g(x) and

matrix A are defined as above. Fix any pair of segments γ1 and γ2 which form

an angle in G at the origin. By Lemma 2.2, A(f(γ1), f(γ2)) = A(g(γ1), g(γ2)).

Thus (2.5) yields

A(g(γ1), g(γ2)) ≥ 1

K
A(γ1, γ2).



17

By Lemma 2.3, it implies that a1
an
≤ K. Noticing that a1 ≥ a2 ≥ · · · ≥ an,

then

a1 ≤ Kan, a1 ≤ Ka2, a1 ≤ Ka3, · · · , a1 ≤ Kan−1.

Multiplying these inequalities, we get an−1
1 ≤ Kn−1

∏n
i=2 ai and

an1 ≤ Kn−1

n∏
i=1

ai.

Thus

max
θ
|Dθf(x0)|n ≤ Kn−1|J(x0)|.

Finally, (2.3) and (2.5) imply that |J(x0)| 6= 0. If not, suppose |J(x0)| =

0. By performing preliminary similarity mappings, we may assume x0 =

f(x0) = 0 and that, near x0 = 0,

f(x) = Bx+ ◦(|Bx|).

Where B is in the form

B =



b1 0 · · · 0 0

0 b2 · · · 0 0
...

...
. . .

...
...

0 0 · · · bn−1 0

0 0 · · · 0 0


.

For r > 0, let γ1, γ2 denote the segments joining the origin to (r, 0, · · · , 0, r)
and (r, 0, · · · , 0,−r). Then segments γ1 and γ2 lie in G for small r, we can

see that

A(γ1, γ2) =
π

2
> A(f(γ1), f(γ2)) = 0.

We get a contradiction. It completes the proof of the reverse direction.
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2.5 Lower bound of topological angles under

quasiconformal mappings

2.5.1 Quasisymmetric mappings

The definition of quasisymmetric mapping is a stronger and global version

of quasiconformal mapping. A quasisymmetric mapping between reasonable

spaces has many strong properties such as it is also Hölder continuous, inverse

mappings are also quasisymmetric etc. Much of the classical quasiconformal

theory can be done by exploiting the definition of quasisymmetry. In partic-

ular, it is well known that a quasiconformal mapping f : Rn → Rn, n ≥ 2,

is also quasisymmetric. It is also known that a quasiconformal mapping of a

domain in Rn is locally quasisymmetric [?].

Definition 2.5. A homeomorphism f : A → B of domains A,B ⊂ Rn is

called quasisymmetric if there is a homeomorphism η : [0,∞) → [0,∞) so

that

|x− a| ≤ t|x− b| implies |f(x)− f(a)| ≤ η(t)|f(x)− f(b)|

for each t > 0 and for each triple points x, a, b ∈ A.

2.5.2 Lower bound of angles under quasiconformal map-

pings

By the equivalence between quasisymmetry and quasiconformality in Rn

for n ≥ 2, we can derive the following estimate of the measure of topological

angles under quasiconformal mappings.

Theorem 2.6. Suppose that f : R̄n → R̄n is a K-quasiconformal mapping

with f(∞) =∞. Then for each triple of distinct finite points x1, x0, x2,

sin β ≥ min

{
1

2
cr

2−1η(
1

sinα
)−r

2

,
1

2
η(

1

sinα
)−1

}
,
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where

α = arcsin(
|x1 − x2|

|x1 − x0|+ |x2 − x0|
)

β = arcsin(
|f(x1)− f(x2)|

|f(x1)− f(x0)|+ |f(x2)− f(x0)|
),

η is a homeomorphism η : [0,∞) 7−→ [0,∞), c ≥ 1 and r ∈ (0, 1] which

depend only on f .

Proof. Since f : Rn → Rn is a K-quasiconformal mapping, f is quasisym-

metrc. Fix a triple of distinct finite points x1, x0, x2 ∈ Rn. Let α =

arcsin( |x1−x2|
|x1−x0|+|x2−x0|), β = arcsin( |f(x1)−f(x2)|

|f(x1)−f(x0)|+|f(x2)−f(x0)|). By the definition

of quasisymmetric mapping, there is a homeomorphism η : [0,∞) → [0,∞)

such that if

t1 =
|x1 − x0|
|x1 − x2|

, t2 =
|x2 − x0|
|x2 − x1|

,

then we have

|f(x1)− f(x0)|
|f(x1)− f(x2)|

≤ η(t1),
|f(x2)− f(x0)|
|f(x1)− f(x2)|

≤ η(t2).

Since for quasisymmetric mappings on Rn, η is of the form [?]

η(t) = cmax
{
tr, t

1
r

}
,

where c ≥ 1 and r ∈ (0, 1] which depends only on f . Assume that t2 ≤ t1.

There are three cases to be considered.

Case 1. If 0 < t1 < 1, 0 < t2 < 1:

η(t1) + η(t2) = ctr1 + ctr2 = ctr1(1 + (
t2
t1

)r) ≤ 2ctr1 ≤ 2c(t1 + t2)r.

subcase 1, if 0 < t1 + t2 < 1,

η(t1) + η(t2) ≤ 2c(t1 + t2)r = 2η(t1 + t2).

subcase 2, if t1 + t2 ≥ 1,

η(t1) + η(t2) ≤ 2c(t1 + t2)r = 2c(
1

c
η(t1 + t2))r

2

= 2c1−r2(η(t1 + t2))r
2

.
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Case 2. If 0 < t2 < 1, t1 ≥ 1:

η(t1) + η(t2) = ct
1
r
1 + ctr2 ≤ ct

1
r
1 + c ≤ 2ct

1
r
1 ≤ 2c(t1 + t2)

1
r = 2η(t1 + t2).

Case 3. If t1 ≥ 1, t2 ≥ 1:

η(t1) + η(t2) = ct
1
r
1 + ct

1
r
2 ≤ c(t1 + t2)

1
r = η(t1 + t2).

Summarizing the three cases, an upper bound of η(t1) + η(t2) is given by

maximum
{

2c1−r2η( 1
sinα

)r
2
, 2η( 1

sinα
)
}

. Thus,

1

sin β
=
|f(x1)− f(x0)|+ |f(x2)− f(x0)|

|f(x1)− f(x2)|
≤ η(t1) + η(t2)

≤ max
{

2c1−r2η(t1 + t2)r
2

, 2η(t1 + t2)
}

= max

{
2c1−r2η(

1

sinα
)r

2

, 2η(
1

sinα
)

}
.

Noticing
1

sinα
=
|x1 − x0|+ |x2 − x0|

|x1 − x2|
= t1 + t2,

one concludes that

sin β ≥ min

{
1

2
cr

2−1η(
1

sinα
)−r

2

,
1

2
η(

1

sinα
)−1

}
.

2.6 Characterization of quasiconformal map-

pings by topological angles in R3

2.6.1 Preliminary

Before proceeding to the main result, we present the definition and a lemma

on the regular Caratheodory outer measure.



21

Definition 2.7. Given a set E ⊆ Rn and d > 0, we define

∧(E, d) = inf
∑
α

diaEα,

where {Eα} is any covering of E with diaEα ≤ d. Clearly ∧(E, d) is non-

increasing in d, and we may define the regular Caratheodory outer measure:

∧(E) = lim
d→0
∧(E, d).

Lemma 2.8. [2] If F is a bounded perfect linear set, then for each ε > 0

there exists a δ > 0 with the following property: given 0 < t < δ, there exist

N non-overlapping intervals In, with end-points in F and lengths not greater

than t, such that

F ⊆ ∪N1 In and Nt ≤ ∧(F ) + ε.

2.6.2 Characterization Theorem

Now we are ready to show how we can characterize quasiconformal map-

pings by making use of topological angles. We first state the theorem and

then separate the proof into several parts.

Theorem 2.9. Let f be a homeomorphism of domain G ⊆ R3. If f is

K-quasiconformal mapping, 1 ≤ K <∞, then we have:

1. For all ζ0 in G and for all arcs γ1 and γ2 which form an angle in G at

ζ0,

A(f(γ1), f(γ2)) > 0.

2. For almost all ζ0 in G and for all arcs γ1 and γ2 which form an angle

in G at ζ0,

A(f(γ1), f(γ2)) ≥ 1

K
A(γ1, γ2).

Conversely, if conditions 1 and 2 are satisfied, then f is K1-quasiconformal

with K1 = K2.
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2.6.3 Derivative of measure

Definition 2.10. Let A be a Borel set in U = (0, 1)× (0, 1) and L be a com-

pact set in (0, 1). Let f be a homeomorphism of domain G ⊆ R3 containing

the unit cube. Define a set function in U :

ϕL(A) := m(f(A× L)).

It is easy to check that conditions in Lebesgue’s Theorem are all satisfied:

For all Borel sets A in U , ϕL(A) ≥ 0. Since A×L ∈ unit cube C, m(f(C)) <

∞ implies ϕL(A) < ∞. Let A1, A2, · · · be a sequence of disjoint Borel sets

in U , then

m(f(∪(Ai × L))) =
∑
i

m(f(Ai × L))

i.e.

ϕL(∪Ai)) =
∑
i

ϕL(Ai).

Furthermore, by Lebesgue’s Theorem, the set function ϕ has a finite deriva-

tive in U almost everywhere. We may assume ϕ has a derivative at the

point (x, y) and denote by An the closed rectangles {(x′, y′)|x − 1
n
≤ x′ ≤

x+ 1
n
, y − 1

n
≤ y′ ≤ y + 1

n
} n = 1, 2, · · · . Then,

ϕ′L(x, y) = lim
n→∞

ϕL(An)

m(An)

= lim
n→∞

m(f(An × L))

m(An)
.

(2.9)

Lemma 2.11. Let C(x0, y0, L) denote the cube {(x, y, z)|0 ≤ x ≤ x0, 0 ≤ y ≤
y0, 0 ≤ z ≤ L}. Let G(x, y, L) = mf(C(x, y, L)) for (x, y) ∈ (0, 1) × (0, 1).

Then

lim
t→0

(G(x+ t, y + t, L)−G(x+ t, y − t, L))− (G(x− t, y + t, L)−G(x− t, y − t, L))

t2

is finite a.e. and equals 4ϕ′L(x, y) a.e. on the domain (0, 1)× (0, 1).
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Proof. Let ω denote the cube {(x′, y′, z′)|x − t ≤ x′ ≤ x + t, y − t ≤ y′ ≤
y + t, 0 ≤ z′ ≤ L}, then

m(f(ω)) = (G(x+t, y+t, L)−G(x+t, y−t, L))−(G(x−t, y+t, L)−G(x−t, y−t, L)).

It is equivalent to show that limt→0
m(f(ω))

t2
is finite a.e. on (0, 1) × (0, 1).

Note that

lim
t→0

m(f(ω))

t2
= 4 lim

n→∞

m(f(An × L))

m(An)
= 4ϕ′L(x, y),

where ϕ′ is the derivative of the set function and An are rectangles as above.

Since ϕ′ is finite a.e. , the proof is completed.

2.6.4 f is ACL on G

Let C be a closed cube in G with each face parallel to a coordinate

plane. After performing preliminary similarity mappings, we may assume

C = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}. We shall show that

f is absolutely continuous on the interval 0 ≤ z ≤ 1 for almost all pairs

{(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. By symmetry, we can thus conclude that f is

absolutely continuous on almost all horizontal and vertical segments in C.

Let I(x0, y0) denote the interval 0 ≤ z ≤ 1, x = x0, y = y0. Let C(x0, y0)

denote the cube {(x, y, z)|0 ≤ x ≤ x0, 0 ≤ y ≤ y0, 0 ≤ z ≤ 1}. Fix s with

0 < s < 1
2
ρ(∂C, ∂G), where ρ denotes the distance between ∂G and ∂C. For

each ζo = (x0, y0, z0) in C, assume

ζ1 = (x0+s, y0, z0), ζ2 = (x0, y0, z0−s), ζ3 = (x0, y0, z0+s), ζ4 = (x0+s, y0, z0+s).

and let γi be segments jointing ζ0 and ζi, i = 1, 2, 3, 4.

Condition 1 in Theorem 2.9 implies

A(f(γ1), f(γ2)) > 0, A(f(γ3), f(γ4)) > 0.
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This implies

lim sup
ζ1,ζ2→ζ0

|f(ζ1)− f(ζ0)|+ |f(ζ2)− f(ζ0)|
|f(ζ1)− f(ζ2)|

<∞,

lim sup
ζ3,ζ4→ζ0

|f(ζ3)− f(ζ0)|+ |f(ζ4)− f(ζ0)|
|f(ζ3)− f(ζ4)|

<∞,

where ζi ∈ γi, i = 1, · · · , 4.

For each pair of integers p, q, with p > 0, 0 < 1
q
< s. Let H(p, q) denote

the set of ζ0 in C, which satisfies

|f(ζ1)− f(ζ0)|+ |f(ζ2)− f(ζ0)| ≤ p|f(ζ1)− f(ζ2)| (2.10)

|f(ζ3)− f(ζ0)|+ |f(ζ4)− f(ζ0)| ≤ p|f(ζ3)− f(ζ4)| (2.11)

whenever |ζi − ζ0| ≤ 1
q
, and ζi ∈ γi(ζ0). Then H(p, q) is compact and

C = ∪p,qH(p, q),

where the sum is taken over all relevant p, q.

Lemma 2.12. Suppose that 0 < x < 1, 0 < y < 1 and F is compact in

I(x, y) ∩H(p, q), then

∧(f(F ))3 ≤ 6p

π
ϕ′F (x, y) ∧ (F )2

where ϕF is the set function defined in Definition 2.10.

Proof. Let I be a closed subinterval of I(x, y) with end points ζ1(x, y, z1)

and ζ2(x, y, z2) in F with |z1− z2| ≤
√

2
2

min(1
q
, 1−x, x, y). Let T be the cone

generated by the triangle with vertices ζ1, ζ2 and ζ3 = (x + z1 − z2, y, z1)

rotated along the line through the points ζ1, ζ2. We call T the associated

cone with the interval I. We will show that

|f(ζ1)− f(ζ2)|3 ≤ 3p

2π
m(f(T )). (2.12)
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By performing a change of variables, we may assume f(ζ1) = (0, 0, l), f(ζ2) =

(0, 0, 0). Pick some positive number u0 between 0 and l. Use a horizontal

plane to slice f(T ) through point (0, 0, u0). The image of I is a curve lying

in f(T ) with end points f(ζ1) and f(ζ2), and it intersects the plane at a

point, say ω1. Let ω2 be the point on the curve formed by the intersection

of the plane and the surface of f(T ) such that d(ω1, ω2) is shortest. Notice

that ω2 is either on f(α) or on f(β), where α, β are faces rotated by interval

ζ1ζ3 and interval ζ2ζ3.

Suppose ω2 ∈ f(α), denote ηi = f−1(ωi), then |ηi − ζ1| ≤ 1
q
. Then by

equation (2.10),

2(l − u0) ≤ |f(ζ1)− ω1|+ |f(ζ1)− ω2| ≤ p|ω1 − ω2|.

Similarly, if ω2 ∈ f(β), it follows from (2.11) that

2u0 ≤ |ω1|+ |ω2| ≤ p|ω1 − ω2|.

By Fubini’s Theorem,

m(f(T )) ≥ 2

p

∫ l

o

π(min{u0, l − u0})2du

and hence

|f(ζ1)− f(ζ2)|3 ≤ 3p

2π
m(f(T )).

Since F is closed. We can write F as the union of F1 and F2, where F1 is

countable and F2 is either empty or perfect. It is easy to see that

∧(F ) = ∧(F2), ∧(f(F )) = ∧(f(F2)).

We may from now assume F is perfect, otherwise the inequality which needs

to prove is trivial. Fix ε > 0, choose δ as in Lemma 2.8, s.t, for 0 < t < δ,

t ≤
√

2

2
min(

1

q
, 1− x, x, y).
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Let I1, I2, · · · , IN be the covering of F as in Lemma 2.8 and let Tn be the

associated cones. Then for each pair of points ζ1 and ζ2 in F ∩ In, let T ⊂ Tn

be the associated cone of the closed interval with end points ζ1 and ζ2. Since

|ζ1−ζ2| ≤ t, we have |ζ1−ζ2| ≤
√

2
2

min(1
q
, 1−x, x, y). Then inequality (2.12)

applies, i.e.

|f(ζ1)− f(ζ2)|3 ≤ 3p

2π
m(f(T )) ≤ 3p

2π
m(f(Tn)).

It follows that

(diaf(En))3 = d3
n ≤

3p

2π
m(f(Tn)), where En = F ∩ In.

Let d = max{d1, d2, · · · , dN}. Note that {f(En)} forms a covering of f(F )

and dia(f(En)) ≤ d. Hence by Schwarz Inequality,

∧(f(F ), d)3 ≤ (
N∑
1

dia(f(En)))3

≤ (
N∑
1

1
3
2 )2(

N∑
1

(dia(f(En))3)

≤ 3p

2π
(Nt)2

∑N
1 m(f(Tn))

t2
.

Without loss of generality, we may assume that L = ∪In is an interval.

Since
∑N

1 m(f(Tn)) is contained in the cube ω = {(x′, y′, z′)|x − t ≤ x′ ≤
x+ t, y − t ≤ y′ ≤ y + t, 0 ≤ z′ ≤ L} and by Lemma 2.11,

lim
t→0

∑N
1 m(f(Tn))

t2
≤ 4ϕ′L(x, y).

Letting t→ 0 and then d→ 0, by Lemma 2.8, it follows that

∧(f(F ))3 ≤ 6p

π
ϕ′F (x, y)(∧(F ))2.
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Lemma 2.13. Suppose that 0 < x < 1, x < y < 1 and that E is a subset of

I(x, y) with ∧(E) = 0. Then ∧(f(E)) = 0.

Proof. First suppose E is compact, then Fp,q = E ∩ H(p, q) is compact for

each pair of p, q. By Lemma 2.12,

∧(f(Fp,q))
3 ≤ 6p

π
ϕ′Fp,q(x, y)(∧(Fp,q))

2.

Then since cube C = ∪p,qH(p, q), we have

∧(f(E)) ≤
∑
p,q

f(Fp,q) ≤
∑
p,q

(
6p

π
ϕ′Fp,q(x, y)(∧(Fp,q))

2)
1
3 = 0.

Next suppose E is a Gδ− Borel set. Then since F = I(x, y) ∩ H(p, q) is

compact,

∧(f(E ∩H(p, q)))3 ≤ 6p

π
ϕ′ ∧ (I(x, y) ∩H(p, q))2 ≤ 6p

π
ϕ′ <∞.

This shows f(E) is of
∑
−finite linear measure. Since f(E) is a Gδ−Borel

set,

∧(f(E)) = sup{∧(F ′) : F ′is compact subest in f(E)}.

Let F ′ be any compact subset of f(E) and set F = f−1(F ′), then F is

compact and F ⊆ E, hence ∧(F ) = 0 and ∧(F ′) = 0. Thus, we conclude

that ∧(f(E)) = 0.

In general, we can find a Gδ−Borel set H s.t, E ⊆ H ⊆ I(x, y) and

∧(E) = ∧(H) = 0. Then ∧(f(E)) ≤ ∧(f(H)) = 0.

We finally complete the proof of ACL property of f by using Lemma 2.12

and Lemma 2.13. For each integer p > 0, set H(p) = ∪qH(p, q), where the

sum is taken over relevant q. Condition 2 in Theorem 2.9 implies m(C \
H(p)) = 0, whenever p > csc(π/8k). Fix such a number p, by Fubini’s

Theorem,

∧(I(x, y) \H(p)) = 0, for almost all pairs (x, y) ∈ [0, 1]× [0, 1].
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Let E be any compact set in I(x, y), fix such a pair (x, y) s.t, ϕ′E(x, y) exists

and is finite. Write E = (E ∩H(p)) ∪ (E \H(p)), where ∧(E \H(p)) = 0.

Hence by Lemma 2.12 and Lemma 2.13,

∧(f(E))3 = ∧(f(E ∩H(p)))3

= lim
q→∞
∧(f(E ∩H(p, q)))3

≤ 6p

π
ϕ′E(x, y) lim

q→∞
∧(E ∩H(p, q))2

≤ 6p

π
ϕ′E(x, y) ∧ (E)2.

Then f(x, y, z) is absolutely continuous in 0 ≤ z ≤ 1. Therefore, f has the

desired ACL property.

2.6.5 fz is ACL3 on G

By performing similarity mappings, it is sufficient to show that fz is ACL3

on compact set K ⊂ C \ {∞, f−1(∞)}, where C denote the unit cube. Since

it is already shown that f is ACL in z, f has finite partial derivative fz a.e.

in K.

For every line segment L on the fixed vertical line segment I(x, y) ⊂ C,

where f is absolutely continuous, define

∧(L) =

∫
L

|fz(x, y, ζ)|dζ

and

gn(x, y, z) =
n

2

∫
In(z)

|fz(x, y, ζ)|dζ,

where In(z) = {ζ : z − 1
n
≤ ζ ≤ z + 1

n
} is an interval on I(x, y) where fz

exists for n = 1, 2, ... . Let

g(x, y, z) = lim inf
n→∞

gn(x, y, z).
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Then it is easy to see that g(x, y, z) = |fz(x, y, z)|. On compact set K,

g3
n(x, y, z) = (

n

2
∧ (In(z)))3.

Taking the integral of g3
n(x, y, z) over the compact set K and using Lemma

2.12 for In(z), we obtain that∫∫
K

g3
n(x, y, z)dm(x, y) ≤ 1

8

∫∫
K

6p

π
ϕ′In(z)(x, y) ∧ (In(z))2n3dm(x, y)

≤ 3p

π

∫∫
K

ϕ′In(z)(x, y)ndm(x, y)

=
3p

π
ϕIn(z)(K)n.

Letting n→∞, by Fatou’s lemma, it yields that∫∫
K

g3(x, y, z)dm(x, y) ≤ lim inf
n→∞

3p

π
ϕIn(z)(K)n.

By Lebesgue Theorem, limn→∞
n
2
ϕIn(z)(K) = ϕ′′(z) where ϕ′′(z) is measur-

able and
∫
I
ϕ′′(z)dζ ≤ ϕI(K). Therefore,∫∫

K

g3(x, y, z)dm(x, y) ≤ 6p

π
ϕ′′(z).

By Fubini’s theorem, we have∫∫
K×L
|fz|3dm <∞,

i.e, fz is locally ACL3 in z and, by the symmetry, the partial derivatives of

f are locally ACL3 in G.

2.6.6 Completion of proof of Characterization Theo-

rem 2.9

Proof. Suppose f is a K-quasiconformal mapping on domain G, we show

that f satisfies condition 1 and 2 in Theorem 2.9. For any point ζ0 ∈ G, let
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γ1, γ2 be a pair of arcs which form a topological angle at ζ0, then condition 1

follows immediately from a local version of Theorem 2.6 because, by Theorem

11.14 in [?], f is locally quasisymmetric in G.

Let E be the set of all points ζ0, such that f is differentiable at ζ0 and

satisfies

0 < max
θ
|Dθf(ζ0)|3 ≤ k|J(ζ0)|.

Since quasiconformal mapping is differentiable a.e., m(G \ E) = 0. For any

point ζ0 ∈ E, let γ1 and γ2 be a pair of arcs which form an angle at ζ0,

we have A(f(γ1), f(γ2)) ≥ 1
k
A(γ1, γ2) by Theorem 2.4. Thus condition 2 is

proved given that f is a K-quasiconformal mapping.

Next suppose f is a homeomorphism on domain G satisfying conditions

1 and 2, we show f is K-quasiconformal on domain G. we show this through

the analytic definition of quasiconformality. From deduction in section 2.6.5,

f is locally ACL3 in G.

Due to a result by Väisälä [15], if f is ACL3, then f is differentiable a.e.

We then show that maxθ |Dθf(ζ0)|3 ≤ K1|J(ζ0)| for almost all ζ0 ∈ G. Fix

ζ0 ∈ G such that f is differentiable at ζ0 and the inequality A(f(γ1), f(γ2)) ≥
1
K
A(γ1, γ2) holds at ζ0. If maxθ |Dθf(ζ0)| > 0, by Theorem 2.4,

max
θ
|Dθf(ζ0)|3 ≤ K2|J(ζ0)|.

If maxθ |Dθf(ζ0)| = 0, the inequality holds trivially. The proof is complete.

2.7 Generalization to Rn+1

To conclude this chapter, we give parallel results in n + 1 dimensional Eu-

clidean space with n ≥ 3.

Theorem 2.14. Let f be a homeomorphism on domain G ⊆ Rn+1. If f is a

K-quasiconformal mapping, 1 ≤ K <∞, then we have:
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1. For all ζ0 in G and for all arcs γ1 and γ2 which form an angle in G at

ζ0

A(f(γ1), f(γ2)) > 0.

2. For almost all ζ0 in G and for all arcs γ1 and γ2 which form an angle

in G at ζ0

A(f(γ1), f(γ2)) ≥ 1

K
A(γ1, γ2).

Conversely, if condition 1 and 2 are satisfied, then f is K1-quasiconformal

with K1 = Kn.

Proof. Since most part of the proof of Theorem 2.9 is valid in higher di-

mensional space, we just outline the major difference in proving the ACL

property. First of all, we should notice the change of symbols. We will only

write out the coordinates relevant to the proof here. Denote by C the closed

cube {(x1, x2, · · · , xn+1)|0 ≤ xi ≤ 1, i = 1, · · · , n + 1} in domain G ⊆ Rn+1

and we need to show f is absolutely continuous on 0 ≤ xn+1 ≤ 1 for almost

all n-dimensional points {(x1, x2, · · · , xn)|0 ≤ xi ≤ 1, i = 1, · · · , n}.
Let I be a closed subinterval of I(x1, x2, · · · , xn) with end points ζ1 and ζ2

in a compact set F on I(x1, x2, · · · , xn)∩H(p, q). And let T be the associated

cone with interval I. Similar to (2.12), we obtain that

|f(ζ1)− f(ζ2)|n+1 ≤ cm(f(T )),
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where c =
n(n+1)Γ( 1

2
n)pn

2n+1π
n
2

. Furthermore,

∧(f(F ), d)n+1 ≤ (
N∑
1

dia(f(En)))n+1

≤ (
N∑
1

1
n+1
n )n(

N∑
1

(dia(f(En))n+1)

≤ cNn

N∑
1

m(f(Tn))

≤ c(Nt)n
∑N

1 m(f(Tn))

tn

≤ c(∧(F ) + ε)n
∑N

1 m(f(Tn))

tn
,

where, as in the proof of Lemma 2.12, t is selected sufficiently small which

makes the associated cone T being contained in cube C and, d is the max-

imum diameter of the intersection of F and its finite coverings under f .

Letting t→ 0, it follows that

∧(f(F ))n+1 ≤ c(∧(F ))n
N∑
1

lim
t→0

m(f(Tn))

tn
.

Next, we will give a more general result which is similar to Lemma 2.11.

Let A be a Borel set in n-dimensional unit cube in Rn and L(x1, x2, · · · , xn)

be the vertical segment{(x1, x2, · · · , xn)×L}. We introduce the set function

µ defined as

µ[A,L] = mf(A× L).

Clearly, µ is a measure. By Lebesgue’s theorem, for fixed segment L, the

function µ′(x1, x2, · · · , xn, L) given by

µ′(x1, x2, · · · , xn, L) = lim
m→∞

µ[Am(x1, · · · , xn), L]

m(Am)
,

where Am is n dimensional cube {(x′1, x′2, ...x′n)|x1− 1
m
≤ x′1 ≤ x1+ 1

m
, x2− 1

m
≤

x′2 ≤ x2 + 1
m
, ..., xn − 1

m
≤ x′n ≤ xn + 1

m
} m = 1, 2, ... . µ′(x1, x2, · · · , xn, L)
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is well defined and finite almost everywhere.

Moreover,

M∑
1

lim
t→0

m(f(Tm))

tn
≤ lim

t→0

µ[Am(x1, ...xn), L]

tn
=

1

2n
µ′(x1, x2, ...xn, L).

Therefore

∧(f(F ))n+1 ≤ cµ′(x1, x2, ...xn, L)(∧(F ))n.

Thus, for any compact set E in I(x1, x2, · · · , xn),

∧(f(E))n+1 ≤ cµ′(x1, x2, · · · , xn, L)(∧(E))n.

Therefore accordingly, f has the desired ACL property in G.
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Chapter 3

QED reflection constant

Quasiextremal distance (QED) constant M(Ω) was introduced in [17] and

[18]. The QED constant is a conformal invariant because it is invariant under

Möbius transformations or conformal mappings on the extended plane C̄. It

reflects the geometry of a domain.

In this chapter, we will define a new QED constant, the quasiextremal

distance reflection constant. We then list some fundamental properties, and

show that for a smooth Jordan domain other than a disk or a half plane,

the reflection QED constant can only be obtained by a pair of disjoint non-

degenerate continua.

Definition 3.1. For a Jordan domain Ω in the complex plane C we define

quasiextremal distance reflection constant (QED reflection constant) M∗(Ω)

as follows:

M∗(Ω) = sup
A,B⊂∂Ω

mod(A,B; Ω∗)

mod(A,B; Ω)
, (3.1)

where A,B are disjoint non-degenerate continua on ∂Ω, and mod(A,B; Ω∗)

denotes the modulus of family of curves connecting A and B in Ω∗ = C/Ω̄.
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3.1 Fundamental properties about the QED

reflection constant

3.1.1 Properties about the QED reflection constant

We study several basic facts of the QED reflection constant.

Lemma 3.2. M∗(Ω) ≥ 1.

Proof. On ∂Ω, denote two non-degenerate disjoint continua by A,B, their

complements by A′, B′. By Riemann mapping theorem and Elliptic integral,

Ω is mapped onto a rectangle and continua A,B are mapped onto a pair of

parallel sides and their compliments A′, B′ onto the other pair. Since modulus

is invariant under conformal mappings, using the module of rectangle (see

Example 1.9), one can deduce that

mod(A,B; Ω) ·mod(A′, B′; Ω) = 1,

mod(A,B; Ω∗) ·mod(A′, B′; Ω∗) = 1.

Thus,
mod(A,B; Ω)

mod(A,B; Ω∗)
=
mod(A′, B′; Ω∗)

mod(A′, B′; Ω)
. (3.2)

This gives rise to

M∗(Ω) ≥ 1.

Lemma 3.3. M∗(Ω) = M∗(Ω∗).

Proof. Using the same notation as in the proof of Lemma 3.2, identity (3.2)

holds. Taking the supremum over all pairs A,B ⊂ ∂Ω in (3.2), we obtain

sup
A,B⊂∂Ω

mod(A,B; Ω)

mod(A,B; Ω∗)
= sup

A′,B′⊂∂Ω

mod(A′, B′; Ω∗)

mod(A′, B′; Ω)
,
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which gives the identity

M∗(Ω) = M∗(Ω∗).

Lemma 3.4. M∗(Ω) = 1 if and only if Ω is a disk or a half plane in C.

Proof. We first assume that Ω is a disk (or a half plane). Let A,B be two

non-degenerate disjoint continua on ∂Ω. By symmetry principle,

mod(A,B; Ω) = mod(A,B; Ω∗) =
1

2
mod(A,B;C).

Thus,

M∗(Ω) = sup
A,B⊂∂Ω

mod(A,B,Ω∗)

mod(A,B; Ω)
= 1.

Next we show that if M∗(Ω) = 1, then Ω is a disk or a half plane. Sup-

pose A and B are two disjoint non-degenerate continua on ∂Ω. Denote two

complement disjoint continua as A′ and B′. As same as (3.2),

mod(A,B; Ω)

mod(A,B; Ω∗)
=
mod(A′, B′; Ω∗)

mod(A′, B′; Ω)
.

This, together with M∗(Ω) = 1, yields that

sup
A,B⊂∂Ω

mod(A,B; Ω∗)

mod(A,B; Ω)
= sup

A′,B′⊂∂Ω

mod(A′, B′; Ω∗)

mod(A′, B′; Ω)
= inf

A,B⊂∂Ω

mod(A,B; Ω∗)

mod(A,B; Ω)
= 1.

Thus, for any pair of disjoint continua A and B on ∂Ω,

mod(A,B; Ω) = mod(A,B; Ω∗).

Let p1, p2 and p3 be three points on ∂Ω. There exists a preliminary Möbius

transformation f : Ω̄→ H̄+, such that f(p1) = −1, f(p2) = 0 and f(p3) =∞
and that Ω is mapped onto the upper half plane. Similarly, there exists pre-

liminary Möbius transformation f ∗ : Ω̄∗ → H̄− with f ∗(p1) = −1, f ∗(p2) = 0

and f ∗(p3) =∞ such that Ω∗ is mapped onto the lower half plane.
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Denote the boundary curve between p1 and p2 as A such that p3 6∈ A. Se-

lect a point z ∈ ∂Ω such that z 6∈ A. It is obvious that f(z) and f ∗(z) lie on

the real axis. Denote the boundary curve between p3 and z as B such that

A ∩ B = ∅. And let A′ = [−1, 0], B′ = [f(z),∞) and C ′ = [f ∗(z),∞). Then

it is easy to see that f(A) = f ∗(A) = A′, f(B) = B′ and f ∗(B) = C ′. Since

modulus is invariant under conformal mappings, we obtain

mod(A,B; Ω) = mod(A′, B′;H+),

mod(A,B; Ω∗) = mod(A′, C ′;H−).

Since mod(A,B; Ω) = mod(A,B; Ω∗),

mod(A′, B′;H+) = mod(A′, C ′;H−).

By the monotonicity of modulus of Teichmüller ring domain in Example 1.10,

f(z) = f ∗(z).

This implies that f = f ∗ on ∂H+. Thus, by the Schwarz reflection principle,

there exists a Möbius transformation g(z), z ∈ C̄ such that g(z) = f(z) on

Ω and g(z) = f ∗(z) on Ω∗. Moreover, Ω is Möbius equivalent to H+ under

a global Möbius transformation on C̄ . Therefore, Ω is a disk or a half

plane.

3.2 The QED reflection constant for smooth

domains

3.2.1 Preliminary

To study the QED reflection constant for a smooth Jordan domain, we first

give some definitions and preliminary results.
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Definition 3.5. (Reflection constant) The quasiconformal reflection con-

stant (or reflection constant) of Ω, denoted by R(Ω), is defined as

R(Ω) = inf
f
K(f),

where the infimum is taken over all homeomorphic reflections f in the bound-

ary ∂Ω and K(f) denotes the maximal dilatation of f . A homeomorphic

reflection in a Jordan curve is a homeomorphism of C̄ that interchanges the

two components of the complement of the curve taken with respect to the

extended plane and fixes the curve pointwise.

Definition 3.6. (L-bi-Lipschitz) A mapping f : E → E ′ is L-bi-Lipschitz if

1

L
|x− y| ≤ |f(x)− f(y)| ≤ L|x− y|

for x, y ∈ E; f is locally L-bi-Lipschitz if each x ∈ E has a neighborhood U

such that f is L-bi-Lipschitz in E ∩ U .

Theorem 3.7. [19] Let Ω be a smooth Jordan domain other than a disk or

a half plane and let f be a conformal map of Ω onto the unit disk D. Then

1. f has a quasiconformal extension to C such that the complex dilatation

∂f

∂z̄
/
∂f

∂z
→ 0

uniformly as z → ∂Ω;

2. f has a bilipschitz extension to Ω̄;

3.

sup
A,B⊂∂Ω

mod(A,B; Ω∗)

mod(A,B; Ω)
< R(Ω).

Definition 3.8. (Condenser) A condenser is a domain in R̄n whose comple-

ment consists of two disjoint compact sets F0 and F1. Condenser is usually

denoted by R(F0, F1) or R.
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Theorem 3.9. [19] Let R(A,B) be a condenser and f a homeomorphism

defined on A ∪B such that

L1|x− y| ≤ |f(x)− f(y)| ≤ L2|x− y|

when x, y ∈ A or x, y ∈ B and such that

M1|x− y| ≤ |f(x)− f(y)| ≤M2|x− y|

when x ∈ A and y ∈ B, where L1, L2,M1,M2 are constants. Then

c1 +
2π

mod(A,B;C)
≤ 2π

mod(f(A), f(B);C)
≤ c2 +

2π

mod(A,B;C)
,

where c1 and c2 are constants depending on L1, L2,M1,M2.

3.2.2 The QED reflection constant

In [19], on a smooth Jordan domain other than a disk or a half plane, the

QED constant is well studied. We can also obtain a similar result for the

QED reflection constant.

Theorem 3.10. For any smooth Jordan domain Ω other than a disk or a

half plane, the supremum in (3.1) is attained, that is there exists a pair of

disjoint non-degenerate continua A and B on ∂Ω, such that:

M∗(Ω) =
mod(A,B; Ω∗)

mod(A,B; Ω)
.

Proof. We assume that Ω is a bounded smooth Jordan domain other than

a disk or a half plane. Let f be a conformal map of Ω onto the unit disk D

and F be a conformal map from Ω∗ to D∗. By Theorem 3.7, f and F have

bilipschitz extension to Ω̄ and Ω̄∗. We still denote the extensions by f and

F . For each n ≥ 1, fix disjoint non-degenerate continua An and Bn on ∂Ω,

such that

M∗(Ω) = lim
n→∞

mod(An, Bn; Ω∗)

mod(An, Bn; Ω)
,
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where An and Bn converge to A and B in the Hausdorff metric. For conve-

nience, let A′n = f(An), B′n = f(Bn), A′′n = F (An), B′′n = F (Bn). If A and B

are disjoint non-degenerate continua, by the continuity of moduli,

M∗(Ω) =
mod(A,B; Ω∗)

mod(A,B; Ω)
.

Depending on the positions and sizes of continua A and B, we consider

remaining three cases respectively:

Case 1: At least one of the two sets A,B is a single point and A ∩B = ∅.
From above notations,

mod(An, Bn; Ω) = mod(A′n, B
′
n;D),

mod(An, Bn; Ω∗) = mod(A′′n, B
′′
n;D∗).

Then we obtain

mod(An, Bn; Ω∗)

mod(An, Bn; Ω)
=

mod(A′′n, B
′′
n;D∗)

mod(A′n, B
′
n;D)

=
mod(A′′n, B

′′
n;C)

mod(A′n, B
′
n;C)

.

Let ϕ = f ◦F−1, then ϕ is a bilipschitz map from ∂D → ∂D, where ϕ(A′′n) =

A′n and ϕ(B′′n) = B′n. We will show that

lim
n→∞

mod(A′′n, B
′′
n;C)

mod(A′n, B
′
n;C)

= 1.

By Theorem 3.9,

c1 +
2π

mod(A′′n, B
′′
n;C)

≤ 2π

mod(A′n, B
′
n;C)

≤ c2 +
2π

mod(A′′n, B
′′
n;C)

.

Multiplying this by mod(A′′n, B
′′
n;C) and letting n→∞, the fact that

limn→∞mod(A′′n, B
′′
n;C) = 0 yields

lim
n→∞

mod(A′′n, B
′′
n;C)

mod(A′n, B
′
n;C)

= 1.

And by the continuity of modulus, we obtain

M∗(Ω) = 1.
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Case 2: At least one of the two sets A,B is a single point and A ∩ B 6= ∅;
We consider two subcases. First assume that

lim
n→∞

mod(A′′n, B
′′
n;C) = 0,

then similar to Case 1, limn→∞
mod(A′′n,B

′′
n;C)

mod(A′n,B
′
n;C)

= 1, thus M∗(Ω) = 1.

Next assume that

lim
n→∞

mod(A′′n, B
′′
n;C) = a > 0,

and we keep the same indices for subsequences of {An} and {Bn}.
Without loss of generality, assume that A is a single point. Choose an, bn ∈

A such that |bn − an| is the diameter of An. Fix some ε > 0. Since f is K-

quasiconformal in Ω∗ and its complex dilatation converges to 0 uniformly as

z → ∂Ω, there exists a domain Ωε ⊃ Ω̄, such that f is (1 + ε)-quasiconformal

in Ωε and the image f(Ωε) is a disk. By Theorem 3.7, F can be extended to

a K-quasiconformal mapping on C. Restrict F on Ωε. Let Dε = F (Ωε), a
′′
n =

F (an), b′′n = F (bn) and |b′′n − a′′n| = dia (F (An)). Again by Theorem 3.7,

since F has a bilipschitz extension to Ω̄∗, |b′′n − a′′n| → 0 as n → ∞. Let

ϕ = F ◦ f−1, which is quasiconformal from disk f(Ωε) to Dε. By quasi-

invariance of modulus,

mod(A′′n, B
′′
n;Dε) ≤ (1 + ε)2mod(A′n, B

′
n;ϕ(Dε))

≤ 2(1 + ε)2mod(A′n, B
′
n;D)

= 2(1 + ε)2mod(An, Bn; Ω).

(3.3)

Thus,
1

mod(An, Bn; Ω)
≤ 2(1 + ε)2 1

mod(A′′n, B
′′
n;Dε)

.

Multiplying by mod(An, Bn; Ω∗) and noticing mod(An, Bn; Ω∗) = mod(A′′n, B
′′
n;D∗),

we obtain

mod(An, Bn; Ω∗)

mod(An, Bn; Ω))
≤ 2(1 + ε)2 mod(A′′n, B

′′
n;D∗)

mod(A′′n, B
′′
n;Dε)

≤ (1 + ε)2 mod(A′′n, B
′′
n;C)

mod(A′′n, B
′′
n;Dε)

.

(3.4)
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Next, we show

lim
n→∞

mod(A′′n, B
′′
n;C)

mod(A′′n, B
′′
n;Dε)

= 1.

Choose δ > 0, such that A′′n ⊂ D(b′′n, δ) ⊂ Dε for large n. Then, it follows

that

mod(A′′n, B
′′
n;C) ≤ mod(A′′n, B

′′
n;Dε) +

2π

log δ
|b′′n−a′′n|

.

Since limn→∞ |b′′n − a′′n| = 0 and limn→∞mod(A′′n, B
′′
n;C) = a > 0, it follows

that

1 ≥ mod(A′′n, B
′′
n;Dε)

mod(A′′n, B
′′
n;C)

≥
mod(A′′n, B

′′
n;C)− 2π

log δ
|b′′n−a′′n|

mod(A′′n, B
′′
n;C)

.

(3.5)

Letting n→∞ in inequality (3.5), we obtain limn→∞
mod(A′′n,B

′′
n;C)

mod(A′′n,B
′′
n;Dε)

= 1, and

letting n→∞ in inequality (3.4), it follows that

M∗(Ω) ≤ (1 + ε)2.

Since ε is arbitrary, letting ε→ 0, we obtain M∗(Ω) ≤ 1.

Case 3: A,B are both non-degenerate and A ∩ B 6= ∅. (3.3) implies that

the following inequality is true:

mod(An, Bn; Ω∗) = mod(A′′n, B
′′
n;D∗)

=
1

2
mod(A′′n, B

′′
n;C)

≤ 1

2
(mod(A′′n, B

′′
n;Dε) + mod(∂Dε, ∂D;C))

≤ (1 + ε)2mod(An, Bn; Ω) +
1

2
mod(∂Dε, ∂D;C).

(3.6)

Note that mod(∂Dε, ∂D;C) is finite and mod(An, Bn; Ω) → ∞. Letting

n→∞ after dividing by mod(An, Bn; Ω) in (3.6) yields that

M∗(Ω) ≤ (1 + ε)2,
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for any ε. Thus, we get M∗(Ω) ≤ 1.

Finally, by lemma 3.2 and lemma 3.4, all three degenerate cases imply that

Ω is a disk or a half plane. Thus only the non-degenerate case can occur:

the limit sets A and B are disjoint non-degenerate continua and

M∗(Ω) =
mod(A,B; Ω∗)

mod(A,B; Ω)
.

Remark: From the above proof, one can conclude that, if Ω is a smooth

Jordan domain other than a disk or a half plane, then the QED reflection

constant M∗(Ω) can only be achieved by a pair of disjoint non-degenerate

continua.
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Chapter 4

Decomposition of extremal

length on finitely connected

domains

The method of extremal length has had a profound influence on the the-

ory of comformal mappings and the more general theory of quasiconformal

mappings. In this chapter, we will explore the decomposition of extremal

length within multiply connected domains. More specifically, the Decompo-

sition theorem shows the extremal length of a certain family equals to the

sum of the extremal lengths of its decomposed parts. It can be regarded as

a strengthened version of the subadditivity for extremal length.

The decomposition theorem is a major ingredient in the proof of the main

result in chapter 5. It is also a generalization of the result from paper [6].

We state the Decomposition Theorem first.

Theorem 4.1. (Decomposition Theorem) Suppose Ω is an n-connected do-

main in the plane and A, B are two disjoint continua in Ω. Then there exist

two simple closed curves γA and γB in Ω̄, such that,

1. The number of intersection points of γA with ∂Ω and γB with ∂Ω are

at least 1, i.e, ](γA ∩ ∂Ω) ≥ 1 and ](γB ∩ ∂Ω) ≥ 1.
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2. λ(A,B; Ω) = λ(A, γA) + λ(B, γB) + λ(γA, γB; Ω).

3. The components of Ω\(γA ∪ γB) which contain continua A or B are

simply connected.

4.1 Reduction

For the proof of Theorem 4.1, we make the following reduction. First we

may assume that G = Ω\(A ∪ B) is connected and note that λ(A,B; Ω) =

λ(A,B;G). Next, by Koebe’s circle domain theorem (see [7]), G can be

conformally mapped onto a domain bounded by circles. Since extremal length

is invariant under conformal mappings, without loss of generality, we may

assume that the domain G is bounded by analytic Jordan curves βi (i =

0, 1, ..., n− 1), ∂A and ∂B, and assume that Ω is bounded by βi.

4.2 Preliminaries

Theorem 4.2. (The Generalized Argument Principle) Let Ω be a bounded

domain with C∞ smooth boundary. Suppose h is meromorphic in a neighbor-

hood of Ω̄ and that h is not identically zero. Let {zi}Ni=1 be the set of zeros of

h that lie in Ω, {pi}Qi=1 be the set of poles of h that lie in Ω, {bi}Mi=1 be the

set of zeros of h that lie on ∂Ω and {Bi}Ri=1 be the set of poles of h that lie

on ∂Ω. Then zeros and poles of h are isolated and

N∑
i=1

mh(zi) +
1

2

M∑
i=1

mh(bi)−
Q∑
i=1

mh(pi)−
1

2

R∑
i=1

mh(Bi) =
1

2π
4 arg h.

Theorem 4.3. (Green’s Theorem) Let C be a positively oriented, piecewise-

smooth, simple closed curve in the plane and let D be the region bounded by

C. if P and Q have continuous partial derivatives on an open region that
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contains D, then ∫
C

pdx+Qdy =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y
)dA.

Green’s Theorem can be extended to multiply-connected domains. It is

called Extended Green’s Theorem.

4.3 Mixed Dirichlet-Newmann problem

Due to Ahlfors [3] , extremal distance λ(A,B;G) can be computed by

Dirichlet integral D(u). Let G be the previously discussed domain in 4.1.

Theorem 4.4. The extremal distance λ(A,B;G) is the reciprocal of the

Dirichlet integral D(u), i.e,

λ(A,B;G) =
1

D(u)
,

where

D(u) =

∫∫
G

(u2
x + u2

y)dxdy.

The function u(z) is called the solution of a mixed Dirichlet-Neumann

problem with the following properties:

1. u is bounded and harmonic in G.

2. u has a continuous extension to ∂G, which is equal to 0 on ∂A and 1

on ∂B.

3. The normal derivative ∂u/∂n exists and the normal derivative vanishes

on ∂G.

Moreover, function u(z) is unique in G by the maximum principle and

0 < u(z) < 1 in G.
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4.4 Critical points

We now consider critical points of u(z) on G. Note that critical points of

u are zeros of the analytic function ux− iuy. The reflection principle implies

that u has a harmonic extension across ∂Ω∪∂A∪∂B. Thus, ux− iuy has an

analytic extension. Since A,B are continua in Ω, zeros of analytic function

ux − iuy have no accumulation points in G. So the number of its zeros in G

is finite. Let Cu be the critical point set of u. Suppose there are p zeros of

ux − iuy (counting multiplicity) in the interior of G and q zeros of ux − iuy,
also counting multiplicity, on the boundary of G, i.e., on

(
∪n−1
i=0 βi

)
∪∂A∪∂B.

By using theorem 4.2, the generalized argument principle, we have∫
∂G

d arg(ux − iuy) = 2π(p+
1

2
q).

Let v(z) be a locally single-valued harmonic conjugate of u(z). If we write

w = u+ iv, then

ux − iuy =
dw

dz
,

and ∫
∂G

d arg(ux − iuy) =

∫
∂G

d arg(dw)−
∫
∂G

d arg(dz).

Since ∂G is composed by analytic curves, on ∂G, we have

dw = (uxdx+ uydy) + i(uxdy − uydx)

=
∂u

∂T
ds+

∂u

∂n
ds,

where T is the tangent vector and n is the outer normal vector. Thus∫
∂Ω∪∂A∪∂B

d arg(dw) =

∫
∂Ω∪∂A∪∂B

d arg(
∂u

∂T
ds)+

∫
∂Ω∪∂A∪∂B

d arg(
∂u

∂n
ds) = 0.

Since u = 0 for z ∈ ∂A and u = 1 for z ∈ ∂B, we have

∂u

∂T
= 0 on ∂A ∪ ∂B.
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Taking into account of
∂u

∂n
= 0 on ∂Ω,

we conclude that on ∂G,

d arg(dw) = 0.

Moreover, since Ω is an n-connected domain,∫
∂G

d arg(dz) =

∫
β0∪β1∪···∪βn−1∪∂A∪∂B

d arg(dz) = 2nπ.

Therefore,

2p+ q = 2n.

4.5 Level curves and critical points

Note that u can not be constant on any subarc of ∂Ω. Otherwise, on such a

subarc, ∂u
∂T

= 0 and ∂u
∂n

= 0, which imply ux − iuy has infinitely many zeros

on ∂Ω, a contradiction.

Let

γk = {z ∈ Ω̄ : u(z) = k, k ∈ [0, 1]}

and

Γ = {γk : k ∈ [0, 1]}.

Easy to see γ0 = ∂A, γ1 = ∂B. We call γk the level curve of harmonic

function u in Ω̄. Define

Γ∗ = {γ ∈ Γ : γ contains at least one critical point of u}.

We call the element of Γ∗ the critical level curve. Since Cu is a finite set, Γ∗

contains finite elements.

Now we distinguish the level curve into two sets. Suppose γ ∈ Γ and ai

is one of the intersection points of γ with some βi. Then there are two and

only two cases:
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1. There exists a neighborhood Ui of ai and a homeomorphism φi such

that

φi(Ui) = D, φi(ai) = 0,

and

φi(γ|Ui) = [0, 1).

In this case, we call ai the regular intersection point.

2. There exists a neighborhood Ui of ai and a homeomorphism φi such

that

φi(Ui) = D, φi(ai) = 0,

and

φi(γ|Ui) = (−1, 1).

In this case, we call ai the non-regular intersection point.

It is obvious that all the intersection points of a level curve and ∂Ω are either

regular intersection points or non-regular intersection points.

If ai is a non-regular intersection point on level curve γ and boundary

component βi, it is obvious that ∂u
∂T

= 0 on ai since γ is a level curve. Note

that u is the unique solution of mixed Dirichlet-Newmann problem, so ∂u
∂n

= 0

on βi, i.e. ∂u
∂n

= 0 on ai. We conclude, from above analysis, ai is a critical

point of u. That means, all the non-regular intersection points are critical

points.

4.6 No interior critical points

Suppose γi(i ∈ Λ) be the level curves of u intersecting with some boundary

curve βi. Let

i = sup
i∈Λ

i, i = inf
i∈Λ

i.
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Since βi is a closed Jordan curve, γi and γi also intersect with βi. Suppose ai

is a point of γi ∩ βi and ai is a regular intersecting point. Then there exists

a neighborhood Ui of ai and a homeomorphism φi such that

φi(Ui) = D, φi(ai) = 0,

and

φi(γi ∩ Ui) = [0, 1).

Therefore, there exists some point a∗
i

in βi ∩ Ui such that the level curve γ∗i

passing through a∗
i

satisfies

u(γ∗i ) > u(γi).

It is contradictive to the definition of i. So ai is a non-regular intersection

point. The same reason can deduce that γi also contains a non-regular inter-

section point. Since non-regular intersecting points are critical points, γi and

γi contain at least one critical point, respectively. That means, βi contains

at least two critical points.

Note that we have 2p+q = 2n and each boundary curve βi (i = 0, 1, ..., n−1)

contains at least two critical points, so all the critical points lie on boundary

curves of Ω. Furthermore, each βi contains two and only two critical points.

From above analysis, we can also deduce that all the critical points are non-

regular intersection points and no regular intersection point is the critical

point. That is to say, a point is a critical point of u if and only if it is a

non-regular intersection point.

If critical points ai1 and ai2 in βi are located on the same level curve

γi, then there exist level curves joining at least one of the two compo-

nents of βi\{ai1 , ai2} across γi. This is a contradiction. Therefore, if some

γi ∈ Γ∗ contains k critical points, then there exist disjoint boundary curves

βi1 , βi2 , ..., βik ⊂ ∂Ω such that

](βij ∩ γi) = 1, (j = 1, 2, ..., k)
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and the point βij ∩ γi is a critical point of u.

4.7 Domain Decomposition

From the above discussion, the intersection points of level curve γ with

some boundary curve βi is either a critical point or two regular intersection

points. So

2 ≤ ]Γ∗ = l ≤ 2n.

Therefore, there exist γ
A
, γ

B
∈ Γ∗ such that

u(γ
A

) = inf{u(γ) : γ ∈ Γ∗},

u(γ
B

) = sup{u(γ) : γ ∈ Γ∗}.

It is easy to see that γ
A

and γ
B

are unique.

Let

Γ∗ = {γ1 = γ
A
, γ2, γ3, ..., γl−1, γl = γ

B
},

and

0 = u(∂A) = u(γ0) < u(γ1) < u(γ2) < ... < u(γl−1)

< u(γl) < u(γl+1) = u(∂B) = 1.

For any level curve δi, we decompose it by the regular intersection points

and critical points. Let

δi = δ1
i ∪ δ2

i ∪ ... ∪ δ
ni
i ,

u(γk) < u(δi) < u(γk+1).

It is easy to see that any level curve δj satisfying u(γk) < u(δj) < u(γk+1)

has the same number components of δi, i.e.

δj = δ1
j ∪ δ2

j ∪ ... ∪ δ
ni
j .
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Furthermore, δmj is homotopic to δmi with respect to ∂Ω for anym ∈ {1, 2, ..., ni}.
Using the curves in Γ∗, we can decompose Ω into finite subsets ∆i (0 ≤ i ≤

l)

∆i = {z ∈ Ω : u(γi) < u(z) < u(γi+1)}.

It is obvious that

Ω\Γ∗ =
l⋃

i=0

∆i,

and each ∆i is an open set. Note ∆i need not to be a domain.

Let

Ωc = {∆i : ∆i is connected},

Ωd = {∆i : ∆i is disconnected}.

Since all the level curves in ∆0 are homotopic to γ0 = ∂A, ∆0 ∈ Ωc. The

same reason deduces ∆l ∈ Ωc. So

2 ≤ ]Ωc ≤ l + 1.

4.8 Integration on critical level curves

Recall that the domain ∆0 is a doubly connected domain bounded by

γ0 = ∂A and γ1. By using a conformal map of ∆0 onto an annulus, we

can construct a simple arc τA in ∆0 joining ∂A and one critical point a1 in

γ
A

, such that τA is orthogonal to each level curve γt for 0 < u(γt) < u(γ1)

and that

λ(A, γ1) = λ(∂A, γ1; ∆̃0),

where ∆̃0 = ∆0\τA is a simply connected domain. By basic properties of the

harmonic function, ∫
∂G

∂u

∂n
ds = 0,

D(u) =

∫
∂G

u
∂u

∂n
ds.
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Since ∂u
∂n

= 0 on ∂Ω and u = 0 on ∂A, u = 1 on ∂B, so

−
∫
∂A

∂u

∂n
ds =

∫
∂B

∂u

∂n
ds =

∫
∂G

u
∂u

∂n
ds = D(u).

On the other hand, one can extend v continuously to prime ends of ∂Ω′ =

∂(Ω\(τA ∪ τB)). Then simple calculation yields that∫
∂A

dv = −
∫
∂A

∂u

∂n
ds,

which implies ∫
∂A

dv = D(u).

The same procedure implies ∫
∂B

dv = D(u).

For any critical level curve γ(γ 6= γ
A
, γ

B
), suppose u(γ) = k (0 < k < 1).

Denote G∗ be the component of Ω\(γ ∪ A) containing γ
A

. Then ∂G∗ is

composed by ∂A, γ and a part of ∂Ω. Write

u∗(z) =
u(z)

k
, CG∗ = ∂G∗\(γ ∪ ∂A).

Since γ has finite components, u∗(z) is the solution of mixed Dirichlet-

Newmann problem on G∗ which satisfies:

(i) u∗ is bounded and harmonic in G∗;

(ii) u∗ has a continuous extension to ∂G∗, which is equal to 0 on ∂A and 1

on γ;

(iii) the outer normal derivative ∂u
∂n

exists and vanishes on CG∗ .

Similarly, if v∗ is a harmonic conjugate of u∗, we have

D(u∗) =

∫
∂A

dv∗ =

∫
γ

dv∗.
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That is,

D(u) =

∫
γ

dv.

So, for any γ ∈ Γ∗, we have ∫
γ

dv = D(u).

Since the normal derivative of u vanishes on ∂Ω, the tangent derivative

of its conjugate v vanishes on the critical points of u. Therefore, v takes

constant values on the components of ∂Ω\Cu and the difference of the values

represents the value change of v along different level curves of u.

4.9 Completion of the Proof

Proof. For any ∆i ∈ Ωd, if

∆i = ∆1
i ∪∆2

i ∪ ...∆
ki
i ,

then by above analysis, ∆m
i is disjoint from ∆n

i (m 6= n). Denote by Γi the

curve family composed by the curves in Ω connecting γi and γi+1, and denote

by Γij the sub-family of Γi composed by curves in ∆j
i .

If we choose some z ∈ Ω\Cu such that v(z) = 0, then the conformal map

w = u+ iv maps ∆i onto the rectangle

R∆i
= (u(γi), u(γi+1))× (0, D(u)).

Let R∆j
i

be the image of ∆j
i under mapping w = u + iv. Since ∂u

∂n
= 0 on

∂Ω, R∆j
i

is also a rectangle in R∆i
. Furthermore, since∫

γi

dv =

∫
γi+1

dv = D(u),

we deduce that R∆i
is composed exactly by R∆j

i
(1 ≤ j ≤ ki), that is

R∆i
=

ki⋃
j=1

R∆j
i
.
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Figure 4.1: Decomposition of G

So

λ(Γi) =
u(γi+1)− u(γi)

D(u)
=

1
1

λ(Γi1)
+ 1

λ(Γi2)
+ · · ·+ 1

λ(Γiki )

.

Therefore
l∑

i=0

λ(Γi) =
l∑

i=0

u(γi+1)− u(γi)

D(u)
=

1

D(u)
.

Then

λ(A,B,Ω) =
1

D(u)
=

l∑
i=0

λ(Γi) = λ(A, γA) + λ(B, γB) +
l−1∑
i=1

λ(Γi).

Using the same method as above, we obtain that

λ(γA, γB,Ω) =
l−1∑
i=1

u(γi+1)− u(γi)

D(u)
=

1

D(u)
=

l−1∑
i=1

λ(Γi).
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Therefore

λ(A,B; Ω) = λ(A, γA) + λ(B, γB) + λ(γA, γB; Ω).

This completes the proof of Theorem 4.1.
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Chapter 5

The QED constant and the

Boundary dilatation on

multiply-connected domains

For a Jordan QED domain Ω, a sharp upper bound of QED constant M(Ω)

is obtained in terms of boundary dilatation H(Ω) in [6]. It is natural to

consider the generalization of this result to finitely connected QED domains.

We state our main theorem of this chapter:

Theorem 5.1. Let Ω be a finitely connected QED domain in the extended

complex plane. Then either M(Ω) is attained by a pair of disjoint non-

degenerate continua or

M(Ω) ≤ 1 +H(Ω).

First we define the boundary dilatation H(Ω) for a multiply connected

domain (both finite and infinite case) and prove the finiteness of H(Ω) for

a QED domain. The reflection lemma and the comparison lemma given in

section 5.2 are two major ingredients in proving the main theorem. In par-

ticular, the decomposition theorem in chapter 4 is used in dealing with the

degenerate case in the comparison lemma. Finally, the proof of the main

theorem is given in section 5.3.
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5.1 Boundary dilatation of multiply-connected

domains

Boundary ∂Ω of a quasidisk Ω admits a quasiconformal reflection which

interchanges Ω and its exterior domain Ω∗ = C̄ \ Ω̄ and keeps the boundary

fixed pointwise. For a QED Jordan domain Ω, the quasiconformal reflection

constant R(Ω) is defined as follows:

R(Ω) = inf{K(f) : f is a quasiconformal reflection in ∂Ω}.

In order to consider the degenerate case, the localized version of R(Ω), the

boundary dilatation H(Ω) is defined as:

H(Ω) = inf{k(f |Ω \ E) : f is a quasiconformal reflection and

E is a compact subset in Ω}.

It is obvious that 1 ≤ H(Ω) ≤ R(Ω).

Since the boundary dilatation is defined only for a Jordan domain, it is

necessary to provide a similar definition for a multiply-connected domain.

We define boundary dilation along each boundary curve respectively and

take the maximum of them.

Definition 5.2. (Boundary dilation of multiply-connected Domains) Let Ω

be a multiply-connected domain whose nondegenerate boundary components

consist of disjoint Jordan curves βj j = 0, 1... . Let Ωj be the component of

C \ βj containing Ω. Set

H(βj) = inf{K(f |Ωj \ E) : f is homeomorphic reflection about

βj and E is a compact subset in Ωj},

and define the boundary dilatation

H(Ω) = supH(βj), j = 0, 1...
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To show the finiteness of boundary dilatation H(Ω) for a QED domain,

the following theorem [17] about an upper bound for the constant K of

quasicircle domain is needed.

Theorem 5.3. If D is a QED domain in C, then D is a K-quasicircle domain

with

K ≤ L2,

where

L = Ψ−1(Ψ(1)(M(D)−1)).

Using Theorem 5.3, we are ready to show the finiteness of boundary

dilatation.

Lemma 5.4. For any multiply-connected QED domain Ω, H(Ω) <∞.

Proof. Given a QED domain Ω, let βj, j = 1, 2, ..., be the non-degenerate

boundary components of Ω. Since Ω is a QED domain, then by Theorem

5.3, Ω is a K-quasicircle domain with K ≤ L2, where L = Ψ−1(Ψ(1)(M(D)−1)).

Then each βj is a K-quasicircle and moreover, each βj admits quasiconformal

reflections f on Ωj as in Definition 5.2.

Taking the infimum with respect to all quasiconformal reflections f ,

R(Ωj) = inf
f
K(f) ≤ K.

Thus,

H(βj) ≤ R(Ωj) ≤ K.

Therefore,

H(Ω) = sup
j
H(βj) ≤ K.

This gives the finiteness of H(Ω).
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5.2 Two Lemmas

In this section, we establish two lemmas that are needed in the proof of

Theorem 5.1. The first one, reflection lemma, can be regarded as a general-

ization of the symmetry principle for modulus.

Lemma 5.5. (Reflection Lemma) Let Ω be a domain in C with boundary Γ

consisting of disjoint quasicircles βi, i = 0, 1, ..., n−1, Ωi, i = 0, 1, ..., n−1 be

the component of C\βi containing Ω, Ωi,ε be a domain in C with Ωi ⊂ Ωi,ε.

Denote Ω∗i,ε = Ωi,ε\Ωi and let fi : Ω∗i,ε → Ωi be Ki−quasiconformal reflection

across βi. Write

Ωε =
n−1⋂
i=0

Ωi,ε.

Then for any disjoint non-degenerate continua A,B ⊂ Ω, we have

mod(A,B; Ωε) ≤ (1 +K)mod(A,B; Ω) = (1 +K)mod(A,B; Ω),

where K = maxiKi.

Proof. Let

Γ = Γ(A,B; Ω), Γε = Γ(A,B; Ωε).

For any given admissible function ρ ∈ adm(Γ), define ρε : C→ [0,∞) as

ρε(z) =

{
0, z /∈ Ωε;

ρ(g(z))|g′(z)|, z ∈ Ωε,

where

g(z) =

{
z, z ∈ Ω;

fj(z), z ∈ Ω∗j,ε, (j = 0, 1, ..., n− 1).

Let γε ∈ Γε be a locally rectifiable curve such that g is absolutely continuous
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on each closed subcurve of γε. Then g(γε) ∈ Γ is also locally rectifiable and∫
γε

ρε(z)ds =

∫
γε∩Ω

ρεds+
n−1∑
j=0

∫
γε∩Ω∗j,ε

ρ(fj(z))|f ′j(z)|ds

≥
∫
γε∩Ω

ρds+
n−1∑
j=0

∫
fj(γε∩Ω∗j,ε)

ρ(z)ds

=

∫
g(γε)

ρds ≥ 1.

Therefore ρε ∈ adm(Γ′ε) where

Γ′ε = {γε ∈ Γε : g is absolutely continuous on each closed subcurve of γε}.

Since g is ACL for almost all curve γε ∈ Γε, g is absolutely continuous on

each closed subcurve of almost all γε ∈ Γε. So

mod(Γε) = mod(Γ′ε).

Since fj is a quasiconformal mapping from Ωj,ε to Ωj, by the analytic prop-

erties, we have

|f ′j(z)|2/Kj ≤ J(z, fj),

where J(z, fj) denotes the Jacobian of fj on z. So

mod(Γ′ε) ≤
∫
C
ρ2
ε(z)dm

=

∫
Ω

ρ2dm+
n−1∑
j=0

∫
Ω∗j,ε

ρ2(fj(z))|f ′j(z)|2dm

≤
∫

Ω

ρ2dm+
n−1∑
j=0

Kj

∫
fj(Ω∗j,ε)

ρ2(z)dm

≤ (1 +K)

∫
Ω

ρ2(z)dm

≤ (1 +K)

∫
C
ρ2(z)dm.
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Taking the infimum over ρ ∈ adm(Γ) yields that

mod(Γ′ε) ≤ (1 +K)mod(Γ) = (1 +K)mod(A,B; Ω),

So

mod(Γε) ≤ (1 +K)mod(Γ) = (1 +K)mod(A,B; Ω).

The fact that the boundary of a QED domain has zero measure induces

mod(A,B; Ω) = mod(A,B; Ω). This completes the proof of lemma 5.5.

We further need to compare the moduli of curve families joining the same

disjoint continua in different domains. The comparison lemma shows, in the

degenerate case, the moduli of the curve families joining two disjoint continua

in the whole plane and in a fixed domain, respectively, are asymptotically

the same.

Lemma 5.6. (Comparison Lemma) Let Ω be a finitely connected domain

and Ωε be domain with Ω̄ ⊂ Ωε. Suppose that (An, Bn) is a sequence of

pairs of disjoint non-degenerate continua in Ω̄ such that at least one of the

two sequences {An} and {Bn} converges to a point. Then there exists a

subsequence of (An, Bn), denoted again by (An, Bn), such that

lim
n→∞

mod(An, Bn;C)

mod(An, Bn; Ωε)
= 1.

Proof. We fix such a domain Ωε such that Ω ⊂ Ωε. Without loss of gen-

erality, we may assume that sequence {An} converges to a point {a}. For

sequence {(An, Bn)}, we will also use notation {(An, Bn)} to denote its sub-

sequence for our convenience. By the existence of limit of mod(An, Bn; Ωε),

we can assume

lim
n→∞

mod(An, Bn; Ωε) = L,

where L = 0 or L > 0 (including the case that L =∞). We consider the two

cases respectively.
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Case 1. L > 0. Let

δ = min
j

dist (∂Ω, ∂Ωε) = inf
x∈∂Ω,y∈∂Ωε

|x− y|.

We choose a pair of points (an, bn) such that |an−bn| = diam (An). Because

{An} converges to a point,

lim
n→∞

|an − bn| = 0.

For each curve γ in Γ(An, Bn;C), either γ ⊂ Ωε or it contains a subcurve

which joins curve |z − an| = |bn − an| and curve |z − an| = δ when n is

sufficiently large. It follows that

mod(An, Bn;C) ≤ mod(An, Bn; Ωε) +
2π

ln δ
|bn−an|

.

Taking into account of |an − bn| → 0 as n→∞, it follows that

lim
n→∞

mod(An, Bn;C)

mod(An, Bn; Ωε)
= 1.

Case 2. L = 0. Replacing Ωε by a subdomain if necessary, we can assume,

without loss of generality, Ωε is bounded by quasicircles. That is, Ωε is a

QED domain. For each fixed pair of disjoint non-degenerate continua An

and Bn, apply theorem 4.1. Then there exist two simple closed curves γ
An

and γ
Bn

in Ω̄ε such that there exist two points an and bn with an ∈ γAn ∩∂Ωε

and bn ∈ γBn∩∂Ωε, the components of Ωε\(γAn∪γBn ) which contain continua

An or Bn are simply connected, and

λ(An, Bn; Ωε) = λ(An, γAn ) + λ(Bn, γBn ) + λ(γ
An
, γ

Bn
; Ωε).

On the other hand, by comparison principle of extremal length,

λ(An, Bn;C) ≥ λ(An, γAn ) + λ(Bn, γBn ).
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So

λ(An, Bn;C) ≤ λ(An, Bn; Ωε) ≤ λ(An, Bn;C) + λ(γ
An
, γ

Bn
; Ωε).

Thus

1 ≤ mod(An, Bn;C)

mod(An, Bn; Ωε)
≤ 1 + mod(An, Bn;C)λ(γ

An
, γ

Bn
; Ωε). (5.1)

Since Ωε is a bounded QED domain, we obtain

mod(An, Bn;C) ≤M(Ωε)mod(An, Bn; Ωε). (5.2)

Since in case 2, it is assumed that L = 0, i.e, limn→∞mod(An, Bn; Ωε) = 0.

(5.2) implies that limn→∞mod(An, Bn;C) = 0.

To complete the proof, it remains to show that λ(γ
An
, γ

Bn
; Ωε) is bounded

as n→∞. To this end, fix xn ∈ An and yn ∈ Bn. Since an ∈ γAn ∩ ∂Ωε and

bn ∈ γBn ∩ ∂Ωε, it follows that

|an − xn| ≥ dist (Ω̄, ∂Ωε), |bn − yn| ≥ dist (Ω̄, ∂Ωε),

and

|yn − xn| ≤ diam (∂Ωε), |bn − an| ≤ diam (∂Ωε).

Thus the cross-ratio [xn, an, yn, bn] satisfies

[xn, an, yn, bn] =
|yn − xn||bn − an|
|an − xn||bn − yn|

≤ ( diam (∂Ωε))
2

( dist (Ω̄, ∂Ωε))2
.

So an upper bound can be derived for λ(γ
An
, γ

Bn
; Ωε) by using extremal

property of Teichmüller ring domain as follows.

λ(γ
An
, γ

Bn
; Ωε) ≤M(Ωε)λ(γ

An
, γ

Bn
;C)

≤ 1

2π
M(Ωε) ln Ψ([xn, an, yn, bn])

≤ 1

2π
M(Ωε) ln Ψ

(
( diam (∂Ωε))

2

( dist (Ω̄, ∂Ωε))2

)
,
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where Ψ is the function defined by the Teichmüller ring domain as in Example

1.10. Since Ωε is a QED domain, M(Ωε) <∞. So λ(γ
An
, γ

Bn
; Ωε) is bounded

as n→∞.

Letting n→∞ in (5.1), we have

lim
n→∞

mod(An, Bn;C)

mod(An, Bn; Ωε)
= 1.

5.3 Proof of Main Theorem

Proof. We are ready to prove the main theorem. Recall that quasiextremal

distance constant for domain Ω is defined by

M(Ω) = sup
A,B⊂Ω̄

mod(A,B;C)

mod(A,B; Ω)
,

where A,B are disjoint continua in Ω̄. There exists a sequence of pairs of

disjoint continua {(An, Bn)}, such that,

M(Ω) = lim
n→∞

mod(An, Bn;C)

mod(An, Bn; Ω)
.

For our convenience, we will denote the subsequence the same as {(An, Bn)}.
Under Hausdorf distance, by passing to a subsequence if necessary, we can

assume

lim
n→∞

An = A, lim
n→∞

Bn = B.

There are three cases need to be considered with respect to A and B.

Case 1. Both A and B are nondegenerate continua with A ∩B = ∅;
Case 2. At least one of A and B is a single point;

Case 3. Both A and B are nondegenerate continua with A ∩B 6= ∅.
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For case 1, when A and B are disjoint nondegenerate continua,

M(Ω) = lim
n→∞

mod(An, Bn;C)

mod(An, Bn; Ω)
=

mod(A,B;C)

mod(A,B; Ω)
.

For the other two cases, we will show that M(Ω) ≤ 1 + H(Ω). First fix

ε > 0. By the definition of H(Ω), there is a quasiconformal reflection f across

∂Ω such that K(f) ≤ H(Ω)+ε in a neighborhood of ∂Ω. Thus, we can choose

a domain Ωε containing Ω such that f is (H(Ω)+ε)-quasiconformal reflection

across ∂Ω satisfying the conditions in the reflection lemma. Thus,

mod(An, Bn; Ωε) ≤ (1 +H(Ω) + ε)mod(An, Bn; Ω). (5.3)

In both case 2 and case 3, we claim that

lim
n→∞

mod(An, Bn;C)

mod(An, Bn; Ωε)
= 1. (5.4)

In case 2, it follows from the comparison lemma directly since at least one

of the two sequence An and Bn converges to a point.

In case 3, both continua A and B are nondegenerate with A∩B 6= ∅. It is

easy to see that mod(An, Bn; Ωε)→∞ and mod(An, ∂Ωε; Ωε) is bounded as

n→∞. Moreover,

mod(An, Bn;C) ≤ mod(An, Bn; Ωε) + mod(An, ∂Ωε; Ωε).

Then

1 ≤ mod(An, Bn;C)

mod(An, Bn; Ωε)
≤ 1 +

mod(An, ∂Ωε; Ωε)

mod(An, Bn; Ωε)
,

which yields (5.4).

To finish the proof, combing (5.3) and (5.4), we obtain that

M(Ω) = lim
n→∞

mod(An, Bn;C)

mod(An, Bn; Ω)

= lim
n→∞

mod(An, Bn;C)

mod(An, Bn; Ωε)
· mod(An, Bn; Ωε)

mod(An, Bn; Ω)

≤ 1 +H(Ω) + ε.
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Finally, letting ε→ 0, we obtain

M(Ω) ≤ 1 +H(Ω).

This completes the proof of the main theorem.
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