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Abstract 

 

The Applications of NoSQL Systems and Ensemble Learning  in Managing, Processing and 

Analyzing Big Omics Data 

 

           By Xiaobo Sun 

 

 

The development of high-throughput genomics technologies has resulted in massive quantities of 

diverse omics data. However, existing dataset search tools rely almost exclusively on the metadata. 

To overcome this barrier, we have developed Omicseq, a novel web-based platform that facilitates 

the easy interrogation of omics datasets beyond just metadata. The core component of Omicseq is 

trackRank, a novel algorithm for ranking omics datasets that fully uses the numerical content of 

the dataset to determine relevance to the query entity. The Omicseq system is supported by a 

scalable NoSQL database that hosts a large collection of processed omics datasets, and provide a 

web-based user interface for searching and queries. 

 

In addition, operations on big omics data can be a challenge for traditional single machine based 

methods. For example, sorted merging of a large number of Variant Call Format (VCF) files are 

frequently encountered in large scale whole genome sequencing projects. We custom design 

optimized schemas for Hadoop (MapReduce), HBase and Spark, to perform sorted merging of 

massive genome-wide data. These schemas all adopt the divide-and-conquer strategy to split and 

conquer tasks in an ordered, parallel and bottleneck-free way. Our experiments on merging VCF 

files suggest that all three schemas either deliver a significant improvement in efficiency or render 

much better strong/weak scalabilities over traditional methods such as the VCFTools, thus 

providing generalized scalable schemas for performing sorted merging on genetics and genomics 

data using these Apache distributed systems. 

 

Methylation level changes of CpG sites are associated with specific diseases such as Alzheimer’s 

disease. However, quantifying these changes across the whole genome remains a challenge, 

especially for those not covered by the array-based technologies. In this study, we develop an 

ensemble feature selection and classification model to identify the most relevant features to CpG 

methylation level changes in a specific disease from a comprehensive collection of genome-wide 

precomputed epigenomic profiles, and to predict methylation level changes at CpGs beyond the 

array. Therefore, it provides insights to the mechanism behind CpG methylation level changes in 

a specific disease as well as an approach to evaluate an individual’s risk exposures to it.  
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Chapter 1 

 

Introduction 

 

1.1     The Big Omics Data 

 

The rapid development of genomics technologies, such as microarrays and massively-parallel 

DNA sequencing, have dramatically increased the speed of generating and size of experimental 

data in the life sciences and propelled the genetics studies into the Big Data era. Big Data can be 

defined as datasets which have a much larger size than what a traditional relational database is 

capable of managing and handling efficiently [1]. More formally, Big Data can be defined from 

three versus levels---volume, variety, and velocity [2].  The first V refers to the large size of 

datasets, and calls for scalable data storage, query and retrieval techniques; The second V refers to 

the heterogeneous data structure and format from various data resources, and calls for more 

flexible data integrating techniques. The third V refers to the increasing new data generating rate, 

and calls for versatile and efficient data retrieving and preprocessing technologies. These massive 

genomics data provide new information in an unprecedented scale and offer an attractive new 

source for biomedical knowledge. By design, these genome-wide profiling data such as ChIP-seq 

[3-5] and RNA-seq [6] offer unbiased, genome-wide, and often base-pair resolution information 

from transcription factor binding to histone modification. Scientific publications reporting these 

data often focus their attentions on higher level analyses that reflect important, but limited, aspects 
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of such data. Additionally, over the past ten years, millions of variants at genomic loci and single-

nucleotide polymorphism (SNPs) have been identified by using high-density SNP arrays and DNA 

re-sequencing [7]. On average, more than 4 million genetic variants are identified, among which 

at least 100,000 are novel, per individual under investigation via deep sequencing [8]. It is now 

not uncommon to conduct deep sequencing in a genome-wide association studies (GWAS) involve 

hundreds or even thousands of individuals which generates terabytes or even petabytes of data to 

detect genetic variants that are associated with complex traits and common diseases in the 

population [9].   

 

Furthermore, specific genomic information can be derived from sequencing data using 

computational and statistical methods. For example, PhastCons score [10], degree of centrality in 

the protein-protein interaction network, or the probability of being loss of function intolerant (pLI) 

of a gene, proposed by the Exome Aggregation Consortium (ExAC) [11]. Like above-mentioned 

genome-wide profiling data, such data also provide useful information from different perspectives. 

The challenge is how best to process and analyze large catalogues of genomic data. In a perspective 

article which describes NIH’s vision of Big Data to Knowledge (BD2K) [12], Margolis et al. 

pointed out that “A fundamental question for BD2K is how to enable the identification, access, 

and citation of (i.e., credit for) biomedical data”. In Eric Green’s presentation on “NIH and 

Biomedical ‘Big Data’”, the first and second “major’ problems to solve” for big data are “Locating 

the data” and “Getting access to the data". However, currently, such data is typically scattered and 

sequestered in data repositories that obstruct conveniently locating, retrieving, processing and 

interrogating the data. Consequently, it becomes increasingly important to efficiently collect, 

integrate, store, analyze, and display these data. For example, the RCSB Protein Data Bank [13] 
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searches and integrates data over 20 sources covering genomic, proteomic and disease 

relationships for providing queries and analyses on three-dimensional structure data of biological 

macromolecules. The Bio2RDF [14] is a mashup system which collects documents from public 

bioinformatics databases, such as Kegg, PDB,MGI, HGNC and so on, and makes them available 

through in standard RDF format.   

 

Relational database systems, represented by MySQL, PostgreSQL and SQLite, have been applied 

in the field of bioinformatics for data management and analyses for a long time. It has the 

advantages of simplicity, fast data access, efficient storage, support for complex queries as well as 

properties of atomicity, consistency, isolation and durability (ACID). However, as bioinformatics 

data, especially genomic and proteomic data, grow in both size and complexity, a relational 

database becomes incapable of efficiently managing and handling Big Data due to its inherent 

drawbacks such as the requirements of rigid data schemas, indices building, and data normalization 

and isolation. These drawbacks lead to extra costs of data preprocessing, slow inserting and 

updating operations, disk I/O bottleneck, poor scalability and data availability in face of 

unstructured data in size of terabytes and petabytes. The advent of NoSQL solutions relieves these 

limitations of the relational database system to some extent.  Compared to relational database 

systems, NoSQL database systems differ in several aspects: First, they can adopt a variety of 

models of how the data is stored, such as key/value stores represented by memcached, relationship 

stores represented by Neo4j, column-oriented stores represented by HBase and Cassandra, and 

document-oriented stores represented by MongoDB; Second, they can choose to whether store the 

data in memory or to persist the data to permanent storage; Third, they usually loose the 

requirements of strict consistency and normalization by storing multiple copies of data, which 
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affects the latency on handling large number of concurrent read and write requests. However, 

eventual consistency must be guaranteed by all NoSQL databases. Fourth, they usually have 

limited supports for transaction, atomic read-update-write and secondary index. Fifth, they can 

have different physical models, either single machine or distributed. And if distributed, most of 

them have a transparent load balancing system. Additionally, many distributed NoSQL databases 

have a better scalability than sharded relational databases. Sixth, they usually have a graceful 

failure handling system for both task and data failures.  

 

Not only are the relational database systems inefficient for storing large scale of data, but also for 

large scale of processing and ad hoc analysis. This is because disk seek time is improving in a 

slower pace than disk transfer rate. Therefore, if the disk seek dominates the data access pattern, 

it will take much longer to read or write large scale of data than streaming through it, which 

operates at the disk transfer rate. Most relational databases adopt the B-tree-like data structure for 

indexing and storing data, which optimizes the query and update speed of small random data. 

However, data access pattern based on B-tree are dominated by disk seek, thus when the whole 

dataset is analyzed or processed in batch, the efficiency dramatically degrades. To address this 

problem, some distributed systems running on a cluster of computing nodes, represented by 

MapReduce, have been recently developed. These systems are designed for batch processing 

dataset in size of petabytes, and particularly efficient for tasks that write once and read many times. 

Additionally, they work well on semi-structured or unstructured data since they adopt the schema-

on-read model instead of schema-on-write model used by relational database. Furthermore, they 

give up the data normalization, which is required by relational database to retain data integrity and 

remove redundancy, in return for data locality and high-speed streaming reads and writes. Finally, 
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they scale linearly with the data and cluster size. And some of them, such as Spark, allow 

dynamically adding/removing computing nodes at runtime.  

  

In bioinformatics, researchers have already started to embrace these distributed systems, especially 

those developed by Apache foundation, to manage and process large amount of high throughput 

[15] omics data. For example, the Cancer Genome Atlas project makes use of the Hadoop 

framework to split genome data into chunks distributed over the cluster for parallel processing[1, 

16]. The CloudBurst [17], Seal [18], Hadoop-BAM [19] and Crossbow software [20] take 

advantage of the Hadoop framework to accelerate sequencing read mapping, aligning and 

manipulations as well as SNP calling. The Collaborative Genomic Data Model (CGDM) [21] uses 

HBase to boost the querying speed for the main classes of queries on genomic databases. The 

MetaSpark [22] utilizes Spark’s distributed data set to recruit large scale of metagenomics reads 

to reference genomes, achieves better scalability and sensitivity than single-machine based 

programs [23]. Industry cloud computing vendors such as Amazon [24] and Google [25] are also 

beginning to provide specialized environments to ease genomics data processing in the cloud. 

 

Although numerous Apache distributed system-based applications have already been developed 

for processing and analyzing large scale of genomics data including ADAM [26],VariantSpark 

[27], SparkSeq [28], Halvade [29], SeqHBase [30] among others, we believe there are still many 

opportunities in biomedical data analyses to take advantage of distributed systems as data becomes 

larger and more complex. For example, any data manipulation problem that involves the key-value 

model, such as union, intersection, grouping and aggregation, sorting and shuffling, naturally fit 



6 

into the framework of these systems. Consequently, via deliberately designed workflow and 

execution plan, these problems can be solved in an efficient and scalable manner.   

 

Epigenetics is a branch of omics studies which studies on inheritable non-genetic markers that are 

both stable through cell division and variable in response to cellular and environmental stimuli. 

Epigenetic markers may change within an individual over time and have been shown to exhibit 

cell-type specificity [31-33]. DNA methylation is the best know and extensively studied epigenetic 

marks and is involved in a variety of cellular processes such as cell differentiation, cancer 

progression, chromosome instability and son on [34]. DNA methylation usually occurs at the 5-

GC-3 sites where a methyl group is added to the cytosine, which renders such sites mutation 

hotspots and an important role in regulating DNA replication, transcriptional activity, and disease 

susceptibility. Such an important role is reflected in the observations that diseased and normal 

individuals can show differential DNA methylation levels (either up- or down- regulated) at 

specific CpG sites [35]. Across the human genome, there are about 28 million single CpG 

methylation sites. The current golden standard for quantifying the DNA methylation levels is the 

whole-genome bisulfite sequencing (WGBS), which quantifies DNA methylation levels at ~26 

million CpG sites in the human genome. However, WGBS also has from several limitations such 

as its prohibitively expensive costs, conversion bias and experimental feasibility in particular 

genomic regions. As a more economical alternative to the WGBS, methylation microarrays such 

as the Illumina HumanMethylation450 BeadChip measures the DNA methylation level at 

~482,000 preselected CpG sites which consists of 2% of the total CpG sites. So if knowledge and 

mechanisms, such as the relationship between CpG methylation status and regulatory events and 

other epigenomic features, can be learnt from these preselected CpG sites, they can be applied to 
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predict the methylation level of the rest 98% unassayed sites and evaluate an individual’s risk of 

exposure to diseases or propensity to phenotypes. 

 

The powerful high-through put technologies including the next-generation sequencing (NGS) 

experimental assays have been developed to comprehensively survey the entire genome for 

regulatory events. Representative experiments of these types of assays include: Coupling 

chromatin immunoprecipitation and next generation sequencing (ChIP-Seq) to identify in vivo 

binding of transcription factors and histone marks; DNase I hypersensitive sites sequencing 

(DNase-seq) [36, 37] and formaldehyde-assisted isolation of regulatory elements sequencing 

(FAIRE-seq) [38], both for identifying open chromatin regions. Given the importance of such 

regulatory information, large international consortia, like the Encyclopedia of DNA Elements 

(ENCODE) [39] and the Roadmap Epigenomics Mapping Consortium (REMC) [40] have been 

formed to systematically conduct these experiments to identify functional elements with regulatory 

activities across hundreds of cell lines/tissues. These datasets, with a total size from hundreds of 

terabytes to petabytes, offer a great opportunity to link epigenomic variants such as CpG 

methylation status to regulatory elements, including TF binding, histone modification, and open 

chromatin. 

    

 

1.2     Outline 

 

In this paper, our first study goal is how best to locate, collect, store, process, analyze and access 

large catalogues of omics data. The second study goal is how to apply the recent distributed batch 
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processing systems and cloud technologies to address a specific type of omics data manipulation 

that involves complex and expensive operations. The third goal is how to use machine learning 

methods to discover biomedical knowledge from epigenomics data. In chapter 2, we introduce a 

ranking algorithm suite, trackRank, to identify and rank omics datasets according to their 

significance for a give query gene. This algorithm is implemented within a web-portal interface 

named OmicSeq, which provides services of searching, browsing and viewing ranked omics data, 

and is supported by an underlying high performance NoSQL database.  In chapter 3, we implement 

three working schemas using three Apache distributed systems, Hadoop, HBase and Spark, to 

address the problem of sorted merging of omics data in a more efficient and scalable way. Their 

performances are also compared with traditional single machine-based and HPC-based methods. 

In chapter 4, we develop an ensemble learning model to identify disease-specific the methylation 

level change of CpG sites by leveraging a comprehensive collection of genome-wide epigenomic 

profiles across cell types and factors, along with other static genomic features.   
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Chapter 2 

 

OmicSeq: A web-based search engine for exploring omics 

datasets 

 

2.1 Introduction 

 

Data sharing policies promulgated by the United States National Institutes of Health and adopted 

elsewhere have caused genome-wide profiling experimental data to accumulate rapidly in public 

repositories such as GEO [41], the Sequence Read Archive (SRA) [42] and ArrayExpress [43]. 

The NCBI Gene Expression Omnibus (GEO) has archived 80,690 experimental studies that 

comprise more than 2,086,234 samples since 2001 (accessed 1/10/2017 

http://www.ncbi.nlm.nih.gov/geo/) [41]. In addition to individual investigators, large consortia 

such as the 1000 genomes [44], the Cancer Genome Atlas (TCGA) [45], International Cancer 

Genome Consortium (ICGC) [46], the ENCyclopedia Of DNA Elements (ENCODE) [39], 

modENCODE [47, 48] and Roadmap Epigenomics projects [49] are specifically tasked to provide 

high-quality genome-wide profile data as resources for the research community. Such a large 

volume of public omics data represents a tremendous resource for biomedical research because 

these genome-wide profiling data offer unbiased, genome-wide coverage. Therefore a dataset 

http://www.ncbi.nlm.nih.gov/geo/
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generated in one study can be, and in many cases is explicitly intended, to be used for completely 

different studies that may constitute secondary or even tertiary analyses of the original data.  

 

Our inability to search through massive, disparate datasets poses a major barrier to biological and 

biomedical research. Despite the obvious potential and promise of using omics data to address 

important research questions, unlike text-based data, currently it is very difficult to explore and 

query omics data. We believe the primary challenge facing life sciences research is the limitation 

in existing informatics solutions. First, genomics data is typically sequestered in disparate data 

repositories that impair the process of conveniently locating, retrieving, processing, and 

interrogating the data. Second, most data stored in public data repositories are unprocessed which 

means that users must process these data using arbitrary methods prior to use. This often presents 

significant challenges for biomedical researchers who neither have, nor have access to, 

bioinformatics expertise. Due to these issues, we believe most of the public omics data are under-

used and, as a result, opportunities for novel discovery are being missed. Third, the ability to 

identify datasets of interest is very limited, given that existing search methods are usually limited 

to metadata only. Finally, it is a daunting task to rank and select among datasets in terms of their 

relevancy to a query term among a collection of diverse data types.  

 

The search engine is perhaps the most useful tool to explore the internet. We believe a search 

engine [50] is also critically important for exploring the massive collection of omics datasets. For 

the internet search engine, the key lies in its ability to rank websites in terms of their relevancy to 

the query term. For example, the success of Google is largely attributed to the pageRank algorithm 

[51], and we believe the ranking idea is also the key to effectively explore massive genomics data.  



11 

 

To address this challenge, we have developed a novel informatics infrastructure named Omicseq 

that allows users to view, browse, and search processed, ready-to-use omics data. Our platform 

includes two parts: 1) a scalable and elastic database storing processed omics, or genome-wide 

profiling datasets such as ChIP-seq, RNA-seq and DNase-seq; 2) a web interface to access, browse 

and search for omics data. Akin to an internet search engine, given a query entity (e.g. gene or 

gene set) will help researchers easily identify important data with a ranked listing of the most 

relevant genomic data sets related to the gene or gene set. The overarching goal of the Omicseq 

project is to develop enabling technologies to facilitate data-driven biomedical research that makes 

optimal maximum use of existing public omics resource.   

 

2.2 Methods 

 

Processing Different Data Types  

For each dataset, we first retrieve sample metadata and source file information and import them 

into a metadata database that will complement the subsequently processed data In cases wherein 

pre-processed data are directly available from the source, such as level 3 data in TCGA, we can 

download and import the data directly. Otherwise, we next download raw data (typically in 

FASTQ format) and subject them to a data processing workflow that makes use of third-party 

softwares such as SRATOOLKIT ([52]), bowtie2 ([53]) and TCGA assembler ([54]) to transform 

raw data into appropriate formats such as SAM, and BED. Subsequently, depending to the type of 

experiment, we call upon appropriate pipelines to calculate gene rank and percentile statistics 

which are maintained in the database. 
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ChIP-seq  

Reads from ChIP and input samples will be mapped to the hg19 human reference genome 

separately using BWA [55, 56]. We calculate and save two types of scores, one for gene bodies 

and one for promoters (defined to be 5kb up- and down-stream of the transcription start sites 

(TSS)). This is because the promoter region is of interest to study TF binding, and the gene body 

is of interest for some histone marks such as H3K36me3. For each gene, the promoter score is 

calculated as the difference between ChIP read count and input read count, the gene body score is 

calculated as the difference between ChIP read count and input read count normalized (divided) 

by the length of the coding region. Next the two sets of scores are ranked and converted to 

percentiles separately. 

DNase-seq 

Similar to ChIP-seq data, we record the difference between numbers of reads from DNase sample 

and the control sample in the promoter regions of all the genes. Then the read count differences 

are sorted and converted to percentile.  

RNA-seq  

We use the transcript abundance measure represented by read per million per kilobases mapped 

(RPKM) value [6] as the gene-based score. We choose RPKM since it is a widely-used gene 

expression measure. We are aware of alternative measures such as TPM [57] and RSEM measures 

[58]. We plan to provide such alternative measures in the future release of Omicseq. 

Copy number variation  

Copy number variation (CNV) data is processed the same way as in the CNV analysis pipeline 

used by the TCGA consortium 
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(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/) in which the 

estimated copy number for the coding region of each gene was transformed into the segment mean 

value, which is defined as log2(copy-number/ 2). Normal copy number (diploid regions) will have 

a segment mean of zero, amplified regions will have positive values, and deletions will have 

negative values. 

Methylation 

Currently, all genome-wide methylation profiling data stored in Omicseq are obtained from array-

based technology (such as the Infinium HumanMethylarion 450 BeadChip array from Illumina Inc, 

(San Diego, CA)). The measure of methylation is taken as the beta values, calculated from array 

intensities as Beta=M/(M+U) using the minfi package [59]. For each gene, the average methylation 

measure of CG sites falling into its promoter region (5kb upstream or downstream of the TSS) is 

used as the quantitative measure for each gene and subsequently converted into percentiles after 

ranking.  

GRO-seq 

The global run-on-sequencing (GRO-seq) assay [60] is a sequencing-based mainly used to 

evaluate promoter-proximal pausing on all genes. We calculate the pausing index for each gene 

and treat it as the gene-based measure, and subsequently converted into percentiles after ranking.  

Microarray gene expression 

For microarray data, typically processed gene-level gene expression data are available from the 

lab where the experiment is done. We take these measures, sorted and then converted them to 

percentiles.  

Somatic mutations  

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/
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The number of single nucleotide somatic mutations found within the coding region of a gene is 

tallied, sorted and converted to percentiles.   

DNA sequence motif 

The number of a specific type of motif (such as CTCF) detected that locate within the promoter 

region (within 5kb upstream and downstream of the TSS) for a gene is taken as the gene-based 

measure. These values are then sorted and converted to percentiles.   

Summary statistics 

Each of the tracks we described so far represent a single sample. In some cases, the study-level 

summary statistics is of more interest. The average measurement from all samples in a study (for 

example, the average gene expression level among all prostate cancer tumor samples in TCGA) is 

taken as the measurement. These summary statistics are then sorted and converted to percentiles.   

 

TrackTrank Algorithm 

For omics datasets, a typical query entity is either a gene name or a set of gene names. Hence the 

key is to effectively rank omics datasets of diverse types given a query. As described above, for 

each dataset (a track), regardless of the data type, we can obtain a numerical and continuous score 

(such as promoter region read counts for ChIP-seq, RPKM values for RNA-seq) for each gene. In 

order to make the scores comparable across tracks, within each track, we convert all the scores 

into percentiles, which is straightforward for a set of fixed features (genes). Here we present a 

detailed view of the underlying trackRank component which is at the heart of the Omicseq system. 

 

trackRank 
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Now suppose gene A is selected as the query gene, we retrieve the percentiles of gene A in each 

and every track, next we rank all these percentiles collected from all tracks for gene A and do 

another round of sorting. The track in which gene A has the lowest percentile is ranked the highest, 

the track in which gene A has the second lowest percentile ranked the second and so on. The 

procedure is illustrated in Figure 2.1. To speed up the search, we pre-calculate the percentile for 

each gene and pre-sort them within each dataset. Therefore only one round of sorting is needed to 

return the query result.  

 

trackRank set 

In many studies, it is often of interest to find the biological properties for a set of genes. For 

example, a group of genes located in the same region of the genome or belonging to the same 

biological pathway.  

 

When querying multiple genes, the key is to estimate the ranking percentile for an arbitrary set of 

genes. To achieve this, we derive a statistical-sound approach to derive combined ranks for a group 

of genes, and thus assess the significance of the query gene set in each track. Suppose the query is 

a group of k genes. There are N tracks in total. We denote their individual percentiles in the jth 

track as 𝑥𝑖𝑗’s, , 𝑖 = 1, … , 𝑘, 𝑗 = 1, … , 𝑁. It is reasonable to assume that 𝑥𝑖𝑗~𝑖𝑖𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1]. 

Let 𝑦𝑗 = ∑ 𝑥𝑖𝑗
𝑘
𝑖=1 , when k is large (say, 𝑘 > 10, we can use Normal approximation to calculate 

the percentile of 𝑦𝑗 courtesy of the central limit theorem (CLT). We have √𝑘 (
𝑦𝑗

𝑘
−

1

2
) ~𝑁 (0,

1

12
). 

All we need to do next is to rank all the tracks based on 𝑦𝑗’s  
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2.3 Results 
 

 

The Current Release of Omicseq Search Engine 

We provide a Web based portal (http://www.omicseq.org) as the interface to provide query 

capability on individual genes or pathway with the intent to accommodate more general query 

types in the future. This website is free and open to all users and there is no login requirement.  

 

Currently, Omicseq contains 50,484 unique, high quality genome-wide profiling datasets. The vast 

majority of which are from Human and the rest are from Mouse. The majority of these data is 

collected from large international consortia including: 36,694 datasets from TCGA, 3,935 from 

ENCODE and 2,331 from Roadmap Epigenome, 2,079 from Cancer Cell Line Encyclopedia 

(CCLE) [61], 661 from ICGC, 660 from GEUVADIS [62]. We included diverse data types 

including ChIP-seq, RNA-seq, DNase-seq, copy number variation, methylation, GRO-seq, 

microarray gene expression, DNA motifs and summary-level data. More data types will be added 

later. Currently, for query terms we allow a single gene name or a known pathway name. There 

are 32,745 Human gene names (from RefSeq version hg19) in our database. Gene queries are 

flexible as we accept gene names as well as known aliases. For example OCT4, an alias for 

POU5F1 will be recognized. There are 10,023 pathways (from mSigDB) stored in Omicseq that 

may be queried. Users can select them from a list arranged in alphabetical order or enter text 

corresponding to the pathway of interest. Partially typed gene or pathway names will be auto-

completed for the convenience of the user. We also begin to provide gene search capability on 

mouse data. There are 30,493 Mouse gene names (from RefSeq version mm9) in our database. 

More mouse data and the pathway search capability will be added in the next release. 

http://www.omicseq.org/
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After a user submits a search, a result page will be displayed. The result page lists top 50 most 

relevant datasets based on the corresponding trackRank algorithm. For each dataset, corresponding 

metadata is also displayed, including cell, factor/experimental condition, and another “MetaData” 

link to a popup window to display more comprehensive metadata about the dataset. Users will also 

be able to find corresponding publications by clicking “PubMed” button. A link named “GEO” 

will point to the corresponding GEO page if available. For the convenience of the users, we also 

supply dozens of external links about the query gene such as PubMed, Wikipedia, WikiGenes [63]. 

At the bottom of the result page, users can click on the “D” button to view a pie chart that show 

the breakdown of data types among the top ranked tracks (in which the query gene has a percentile 

that is less than 1%).  

 

There will also be an option / popup button that allows users to specify advanced search options. 

For example, the search can be constrained to a specific experiment type, such as ChIP-seq, RNA-

seq or DNase-seq. It will also be possible to constrain searches to a specific data sources such as 

the ENCODE [39], TCGA [45] or Roadmap Epigenomics [64], or combination of multiple ones. 

The default is to search all data sources. Querying selected cell lines, such as MCF7, LNCaP is 

also supported.  

 

We believe the Omicseq system is fairly intuitive to use. Nevertheless, we have created a tutorial 

document with detailed instructions. This tutorial page (http://www.omicseq.org/tutorial.htm) can 

be easily accessed from any page within the Omicseq web portal. In addition, we have created a 

video tutorial which can be accessed at https://youtu.be/tfmjh6ADVu0.  

http://www.omicseq.org/tutorial.htm
https://youtu.be/tfmjh6ADVu0
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Our recent testing indicates that a typical gene-based search takes only 0.1 seconds with a nine 

node MongoDB setup. In general, loading/ingesting data into our database takes significant time 

though by implementing a parallel loading strategy, we are able to achieve a loading metric of 7.3 

seconds per dataset. Our performance study also demonstrates that MongoDB based indexing is 

highly scalable on query performance and loading performance. Given that data loading is an 

incremental one-time cost, we expect data ingestion to be prompt.  

 

System Architecture 

The Omicseq system is based upon the SpringMVC architecture using Spring 4.0 and Servelet 3.0 

techniques. It runs as a cluster of databases and web servers on Amazon Web Services Elastic 

Computing instances, which can easily scaled in response to demand. The database server cluster 

is built on a sharded TokuMX database with the supporting web servers using Apache Tomcat for 

the user interface application. As shown in Figure 2.2, the overall system consists of seven major 

subsystem components including: 1) the webcrawler system (under construction); 2) the source 

data download system; 3) the data processing system; 4) the cache system; 5) the database system; 

6) The task-scheduling system; and 7) the web application service system. They work 

collaboratively to collect and process data from multiple data sources, and provide query services 

to users. 

 

Considering the large size of data, two mechanisms were adopted to optimize the overall system 

performance. First, we implemented a task scheduling system initiated at the severs’ startup which 

manages the assignment and reclamation of computing resources to different tasks such as  

https://youtu.be/tfmjh6ADVu0
https://youtu.be/tfmjh6ADVu0
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webpage crawling, data downloading and processing tasks, allowing them to be performed in batch. 

Second, a memcached system has been implemented on a separate server to alleviate database 

workload and boost system performance and improve query speed. With memcached, frequently 

queried data are preloaded into the memory at the server’s starting up. In addition, intermediate 

data generated between data processing steps are also cached for later use. So that when a request 

for such data is issued, either by users or internal system components, the memcached system is 

first consulted to avoid redundant database lookups. If the data is not found then the query would 

be routed to the database. This approach significantly reduces the load on the database system and 

improves query speed. 

 

Omicseq Web Server 

The Web portal is based on the well-performing Apache Server with tight integration of the 

Tomcat Application Server. For purposes of scalability, high availability, and security the 

infrastructure has been deployed on Amazon Web Services Elastic Computing environment. The 

Web portal application has two layers: application logic layer and presentation layer. The 

application logic layer provides the mapping of queries into various backend database operations 

or computation operations, caching management of repeated queries, and search job management 

of multiple query requests. The application logic layer also provides post-processing of data, for 

example, the generation of images from returned data to be visualized. We use JFreeChart library 

(http://www.jfree.org/jfreechart/) to produce images. Many common operations in the application 

layer are implemented as RESTful WebAPIs to facilitate easy integration with various applications. 

REST is a software architecture style for distributed hypermedia systems such as the Web.  REST 

is lightweight in representation, and can be used to build applications easily. In RESTful Web 

http://www.jfree.org/jfreechart/
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Services, data are viewed as resources, which can be identified by their URIs. Normally 

implemented on the HTTP, RESTful Web Services are very efficient for transporting data over the 

Web. We define a set of common queries as RESTful Web Services to allow flexible integration 

of the search engine into users’ applications.  

 

 The presentation layer provides the actual interfaces for interactive searching and visualization of 

query results. The front page provides a search box where a user can type in a keyword and select 

the corresponding query type to start a search. Auto-completion is implemented using an Ajax-

based request based on the JQuery framework. The Ajax request is supported by a RESTful Web 

API which generates possible completed keywords based on a collection of keywords related to 

common names or IDs such as gene names stored in the indexing database.  

  

The online search portal is built on top of a NoSQL databases (a MongoDB is used to manage 

index data for gene search).  The web portal provides modeling, managing and searching of results 

from the databases on top of an Apache Web Server integrated with Tomcat Application Server.  

 

Database 

The database system consists of a cluster of five nodes and can be functionally divided into two 

components. The first component is a single, unsharded database built on MongoDB 2.4.9. That 

stores the extracted metadata of the crawled raw data. For example, metadata information 

including sample ID, source type, data-processing state are stored in a collection indexed on 

sample ID. The second component is a distributed sharded database built on TokuMX 2.0.1 that 

extends the MongoDB protocol but with additional performance-enhancing features such as 
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improved multithread reading and writing, high throughput transaction support, and efficient 

creation and management of clustering indexes. This component includes three Shard servers 

where the bulk of data are maintained, a Configuration server which holds metadata about which 

shards hold what data, and a Service server which acts as a proxy to route client requests to the 

appropriate shard (Figure 2.2). The shard servers holds 600 million records of gene rank, miRNA 

rank and etc. In such a large data scenario, the choice of shard key is a critical step in optimizing 

the system performance. Since almost all client queries are based on gene ID or miRNA ID, these 

are used as a primary shard key to horizontally split the data of corresponding collection into 

separate shards. The internal balancer of TokuMX automatically balances the data load among 

shard servers. In addition, since some queries may be based on sample ID or need sorting according 

to percentile value, clustering indexes are also built on these fields which significantly improve 

range queries as well as data migration among shards.  

User Cases 

As an example, It has long been established that prostate-specific antigen (PSA), encoded by 

KLK3 gene, is an important biomarker for prostate cancer [65]. When we query the KLK3 gene, 

it turns out that RNA-seq data on prostate tumor samples from TCGA and ICGC show up on top.  

Hence users who queries KLK3 will immediately recognize the importance of this gene for 

prostate cancer. Similarly, a query of the HER2 gene (ERBB2) identified hundreds of RNA-seq 

data from tumor samples of breast cancer patients in TCGA show up on top.  As another example, 

when query PTEN, the top ranked datasets are dominated by CNV data show strong deletion, 

which clearly indicates that PTEN is a tumor suppressor. Search results for these three genes can 

be found in Figure 2.3.   
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It is well known that many of the genes in the genome received very little attention in the literature. 

When query all genes in the human genome against PubMed recently, we found about 30% of the 

genes are not mentioned in any paper, and the median number of publications is only six for all 

human genes. For example, for non-coding RNA (ncRNA) SLCO4A1-AS1, a PubMed query 

returns zero record. But an Omicseq search return 278 datasets in which this ncRNA gene is within 

the top 1% among all genes in the genome. Among the top ranked datasets, there are multiple 

ChIP-seq datasets of histone marks H3K4me1 and H3K36me3, both show significant enrichment 

in the promoter region of this gene in cancer cell lines HepG2 and HeLa-S3. There are also 205 

CNV datasets, from various tumor samples collected by TCGA included among the top ranked 

datasets. All these datasets point to potential functional connection of this ncRNA gene with cancer.   

 

2.4 Discussion 
 

Literature is the dominating source of biomedical knowledge today. The explosion of massive 

genomics data offers an attractive, alternative source for biomedical knowledge since these assays 

interrogate a large number of genes which provides a somewhat unbiased (no vetting from 

investigators), comprehensive view of the genome. As a result, genome-wide profiling 

experiments are supplementing the traditional hypothesis-driven research paradigm with a data-

driven paradigm. However, key informatics infrastructure needs to be developed in order to make 

these datasets a truly useful resource. One of the major aims of the recent BD2K 

(https://datascience.nih.gov/bd2k) efforts (e.g., bioCADDIE) is focused on making biomedical 

data searchable and reusable to speed up discovery [66]. Here we describe our attempt to develop 

such an informatics infrastructure to fulfill this aim. The ultimate overarching goal of Omicseq is 

https://datascience.nih.gov/bd2k
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to enhance findability of omics datasets, to facilitate re-utilization, or re-purposing of existing data 

for secondary, tertiary analyses.  

 

Genome-wide profiling experiments offer great opportunities for “data-centric” knowledge 

discovery, which we believe represents an innovation that significantly improves upon, and 

effectively augments, the traditional knowledge discovery approach relied upon in text mining. In 

this sense, Omicseq provide a novel tool that can facilitate discoveries using existing and emerging 

genomic datasets. 
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Figure 2.1: Illustration of ranking genomic datasets of different types. 
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Figure 2.2: The architecture of Omicseq web system. The system consists of the data storage 

layer (in the yellow square) and the Spring MVC web service layer (in the purple square). In the 

storage layer, processed omics data are saved in sharded TokuMX database with three shard nodes 

and one access proxy node. Metadata are saved on another mongoDB database server. In the MVC 

layer, on one hand, the web crawler, source file downloader and statistical processor work together 

to load data into the database. On the other hand, front-end web server delegates users’ query to 

the corresponding service which in turn retrieves relevant data from cached system or database 

system. The web server uses the retrieved data to generate the query results and displays them on 

the result page. 
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Figure 2.3: Search interface and result pages for KLK3, ERBB2 and PTEN. Most relevant 

datasets are displayed with links to metadata and paper, etc.  
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Chapter 3 

 

Optimized Distributed Systems Achieve Significant 

Performance Improvement on Sorted Merging of Massive 

VCF Files 

 

3.1 Introduction 

 

Studies like Genome Wide Association Studies (GWASs), Whole Genome Sequencing (WGS) 

and whole exome sequencing (WES) studies have produced a massive amount of data. The ability 

to efficiently manage and process such massive data becomes increasingly important in a 

successful large scale genetics study [1, 26, 67]. Single machine based methods are inefficient on 

processing such big data due to the prohibitive computation time, I/O bottleneck, and CPU and 

memory limitations. Traditional HPC techniques based on MPI/OpenMP also suffer from 

limitations such as not allowing addition of computing nodes at runtime, shortage of a fault-

tolerant and high available file system, inflexibility of customizing the computing environment 

without administrator permission of the cluster [1, 68].  It becomes increasingly attractive for 

investigators to take advantage of more powerful distributed computing resources or the cloud to 



28 

perform data processing and analyses [1, 69]. Apache Foundation has been a leading force in this 

endeavor and has developed multiple platforms and systems including Hadoop [70, 71], HBase 

[72] and Spark [73]. All these three Apache platforms have gained an increasing popularity in 

recent years, and have been endorsed and supported by major vendors such as Amazon Web 

Services (AWS). 

 

One particular problem that could be possibly efficiently addressed by using a distributed system   

is sorted merging, which is a ubiquitous operation in processing genetics and genomics data. As 

an example, in WGS, variants identified from individuals are often called and stored in separate 

VCF files. Eventually these VCF files may need to be merged (into a VCF or TPED file) as 

required by downstream analysis tools such as  PLINK [74] and BlueSNP [75, 76]. Either a VCF 

or TPED file requires data to be sorted by genomic locations, thus these tasks are equivalent to the 

well-known sorted full-outer-joining problem [77, 78]. Currently, they are handled by software 

such as VCFTools [79] and PLINK, which become very cumbersome even in the face of a 

moderate scale of genomic data. The main reason is that these tools adopt the multiway-merge-

like method [80] with a priority queue as the underlying data structure to ensure the output order. 

Although such a method only requires one round of read through of the input files, a key deficiency 

is that it can only have one consumer to access items from the data queue, which literally makes it 

sequential on writing. This problem cannot be eliminated even if the multiway-merging is 

implemented as parallel processes due to I/O saturation, workload imbalance among computing 

units, and memory limitation.  Therefore, these single-machine based tools are inefficient and 

time-consuming when handling large datasets.  
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In this study, we use the case of sorted-merging multiple VCF files to demonstrate the benefits of 

using Apache distributed platforms. However, simply running sorted merging on such distributed 

systems runs into problems of bottlenecks, hotspots and unordered results commonly seen in 

parallel computations. Rather, we believe working schemas custom designed for each specific 

distributed platform are required to unleash their full potentials. To overcome the limitations of 

single-machine, traditional parallel/distributed, and simple Apache distributed system based 

methods, we propose and implement three schemas running on Hadoop, Spark and HBase 

respectively. We choose these three platforms because they are representative cloud distributed 

systems providing data partitioning based parallelism with distributed storage, data partitioning 

based parallelism with in-memory based processing, and high dimensional table like distributed 

storage, respectively. Hadoop [70] is the open source implementation of MapReduce [71] based 

parallel key-value processing technique, and has the advantage of transparency and simplicity. 

HBase [72] is a data warehousing platform which adopts Google’s BigTable data storing structure 

[81] to achieve high efficiency in storing and reading/writing large scale of sparse data. Spark [73] 

introduces the concept of Resilient Distributed Dataset (RDD) and Directed Acyclic Graph (DAG) 

execution to parallel key-value processing, thus enabling fast, robust and repetitive in-memory 

data manipulations.  Specifically, our schemas involve dividing the job into multiple phases 

corresponding to tasks of loading, mapping, filtering, sampling, partitioning, shuffling, merging 

and outputting. Within each phase, data and tasks are evenly distributed across the cluster, enabling 

processing large scale of data in a parallel and scalable manner, which in turn improves both speed 

and scalability.  

 

3.2  Methods 
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Overview 

The benefits of using the three Apache distributed platforms to perform sorted merging are four-

fold when compared to using the multiway-merge method [80], a relational database based 

approach, or a HPC framework. First, with genomic locations as keys and genotypes as values, it 

is readily transformed into the key-value model in which all three platforms offer a rich set of 

parallel operations.  Second, data in VCF files are semi-structured. This type of data ideally fit for 

all three platforms which allow defining the schema during data loading, avoiding the 

preprocessing of raw data into a rigid schema as in a relational database.  Third, all these platforms 

provide built-in efficient task coordination, high fault tolerance, data availability and locality 

which are absent in the traditional HPC framework. Fourth, the merged results are directly saved 

onto a distributed file system such as HDFS or Amazon S3 which can be directly used for 

subsequent cluster-based GWAS or WGS analytical tools such as BlueSNP.  

 

Despite these advantages, simply performing sorted merging on these Apache distributed systems 

will not deliver expected results for the following reasons. First, it can lead to globally unsorted 

results. Hash-based shuffling of input data is the default mechanism for distributing data to parallel 

working units in the system. However, shuffling will lead to globally unsorted results.  Second, 

bottlenecks and hotspots can happen during the processing in the cluster. Bypassing the hashing 

based shuffling can lead to unbalanced workloads across the cluster, result in straggling computing 

units which become the bottlenecks for response time. In addition, for parallel loading of presorted 

data into HBase, data being loaded from all the loading tasks access the same node simultaneously 

while other nodes are idling, leading to an I/O hotspot. Third, sampling costs could become 
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prohibitive. Although Hadoop provides a built-in utility named total-order-merging [77] to 

achieve both workload balance and global order, it involves transferring to and sampling all the 

data on a single node. The communication costs over the network and disk I/O can be prohibitive 

when data size is very large. In the following sections, we will illustrate how our custom designed 

schemas are able to overcome these limitations in detail. 

 

 Data Formats and Operations 

In a typical WGS experiment, data analysis often starts from individual genotype files in VCF 

format [82]. A VCF file contains data arranged into a table consisting of eight mandatory fields 

including chromosome (CHROM), the genomic coordinate of the start of the variant (POS), the 

reference allele (REF), a comma separated list of alternate alleles (ALT), among others. In our 

experiments, we use a dataset consisting of the VCF files of 186 individuals [9] generated from 

Illumina's BaseSpace software (Left tables in Figure 3.1). Each VCF file has around 4-5 million 

rows, each row contains information on one of the individual’s genomic variants. Each VCF file 

is about 300 megabyte in size. In an attempt to protect the privacy of the study subjects, we apply 

the following strategy to conceal their real genetic variant information contained in the VCF files: 

we first transform each original genomic location by multiplying it with an undisclosed constant 

real number, taking the floor integer of the result, and then add another undisclosed constant 

integer number. 

 

It is common that multiple VCF files need to be merged into a single TPED file for analysis tools 

such as PLINK. A TPED file resembles a big table, aggregating genotypes of all individuals under 

investigation by genomic locations (Right table in Figure 3.1). The merging follows several rules. 
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First, each record is associated with a data quality value in the “filter” column, which records the 

status of this genomic position passing all filters. Usually only qualified records with a “PASS” 

filter value are kept. Second, genotypes in VCF files are stored in the form of allele values, where 

0 stands for the reference allele, 1 stands for the first mutant allele, 2 stands for the second mutant 

allele, and so on. Allele values must be translated into corresponding types of nucleotides in the 

TPED file. Third, all individuals need to have a genotype for genomic locations that appear in at 

least one VCF file. The default genotype for a missing value is a pair of homozygous reference 

alleles. The merging of multiple VCF files to a single VCF file follows the rules as: First, “ALT” 

and “INFO” columns of a genomic location in the merged file are set as the concatenated values 

of the corresponding columns on that location from all input files with duplicated values removed. 

Second, the “QUAL” column of a genomic location in the merged file is set as a weight-averaged 

quality value of all individuals on that location. Third, a genomic location is kept only when it 

appears in at least one input file and has a “FILTER” value that equals to “PASS”. Fourth, if an 

individual does not have allele values on a genomic location in the input file, their missing allele 

values are designated as “.” in the merged file.  

 

For our Apache cluster-based schemas, the merging of VCF files into a TPED file and the merging 

of VCF files into a single VCF file differ only in the value contents of the key-value pairs, so they 

should have the same scalability property.  Although we implement the applications of both 

merging types using our Apache cluster-based schemas, which are available on our project website, 

we focus our experiments on the merging of multiple VCF files to a TPED file and only evaluate 

the execution speed of the merging of multiple VCF files to a single VCF file with VCFTools as 

the benchmark. 
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MapReduce (Hadoop) Schema 

This schema is built on Hadoop’s underlying model MapReduce and running on Hadoop clusters. 

MapReduce [71] is a parallel computing model based on a split-apply-combine strategy for data 

analysis, in which data are mapped to key-values for splitting (mapping), shuffling and combining 

(reducing) for final results. We use Apache Hadoop-2.7 as the system for our implementation. Our 

optimized schema consists of two MapReduce phases, as shown in Figure 3.2 (the pseudocodes 

are shown in Figure 3.11). 

 

1) First MapReduce phase.  

Raw data are loaded from HDFS into parallel mappers to perform the following tasks: First, 

unqualified data are filtered out and qualified ones are mapped to key-value pairs. The mapper 

output key is the genomic location and output value is the genotype and individual ID. Second, 

Key-value pairs are grouped together by chromosomes and temporarily saved as compressed 

Hadoop sequence files [83] for faster I/O in the second MapReduce phase. With this grouping, we 

only need to merge records from selected chromosomes of interest rather than from all of them. 

Meanwhile, these records are sampled to explore their distribution profile of keys along 

chromosomes to determine boundaries. The boundaries are determined such that there is an 

approximately equal number of records within each segment. Because all records falling in the 

same segment will be assigned to the same reducer in the later phase, boundaries calculated in this 

way ensure that the workload of each reducer is balanced.  There are two rounds of samplings. The 

first one happens in each mapper with a pre-specified sampling rate, which in our case is set to be 

0.0001. Sampled records are then separated and distributed to different reducers in this phase by 
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chromosomes, where they are sampled again with a rate equal to the reciprocal of the number of 

input files. This second sampling effectively limits the number of final sampled records even in 

the face of a very large number of input files. Because the number of reducers instantiated in the 

second phase is decided by the number of sampled records, we can therefore avoid launching 

unnecessary reducers thus reducing task overheads. 

 

2) Second MapReduce phase. In this phase, multiple parallel MapReduce jobs are created, 

and each job specifically handles all records of a single chromosome outputted as sequence files 

in the first phase. Within each job, a partitioner redirects records to the appropriate reducer by 

referring to the splitting boundaries from the previous phase, so that records falling in between the 

same pair of boundaries are aggregated together. Finally, each reducer sorts and merges aggregated 

records by genomic locations before outputting them to a TPED file. In this way, globally sorted 

merging can be fulfilled.  

 

HBase Schema 

HBase [72] is a column-oriented database where data are grouped into column families and split 

horizontally into regions spreading across the cluster. With this data storing structure, it supports 

efficient sequential reading and writing of large-scale data as well as fast random data accessing. 

Also, HBase is storage efficient because it can remember null values without saving them on disk. 

These features make HBase an ideal platform for managing large, sparse data with relatively low 

latency which naturally fits the sorted merging case. We use the HBase-1.3 as the system for our 

implementation. As shown in Figure 3.3, our optimized HBase schema is divided into three phases 

as discussed next (refer to Figure 3.12 for pseudocodes). 
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1) Sampling phase  

The main challenge of HBase lies in that it is not uncommon to find that one server of the cluster 

becomes a computational hotspot. This can happen when it starts loading a table from a single 

region hosted by a single node. Therefore, we need to presplit the table into regions of 

approximately equal size before loading. The sampling phase is introduced to determine 

reasonable presplitting regional boundaries. The total number of regions is set to be half of the 

number of input files so that the size of each region is approximately 1GB. Meanwhile, mappers 

of this phase also output qualified records as compressed Hadoop sequence files on HDFS which 

are used as inputs in the next phase. In addition, filtering and key-value mapping also take place 

in this phase. 

  

2) Bulk loading phase  

Even when the table has been presplit evenly, the hotspot problem of loading sorted inputs is not 

yet fully solved because sorted records are loaded sequentially and at any instant they still access 

the same region and server, which necessitates the adding of this phase. During the bulk loading, 

the key and value of each record produced from the previous phase is converted into HBase’s 

binary row-key and column-value respectively, and saved into a HFile, HBase’s native storage 

format. The row-key here is in the form of chromosome-genomic location, and column-value 

refers to reference allele, individual ID and genotype. The bulk loading populates each HFile with 

records falling in the same pair of presplit regional boundaries. Because HFiles are written 

simultaneously by parallel mappers/reducers, all working nodes are actively involved and the 

regional hotspot is thus circumvented. Upon finishing writings, the HBase can readily load HFiles 
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in parallel into the table by simply moving them into local HBase storage folders. This procedure 

is therefore at least an order of magnitude faster than the normal loading in which data are loaded 

sequentially via HBase servers’ I/O routines.  The order of records in the table is guaranteed 

because they are internally sorted by writing reducers and HBase’s Log-Structured Merge-tree 

[84]. It is noteworthy to mention that VCF records are sparse, thus HBase is very storage-efficient.  

 

3) Exporting phase  

A scan of a specified genomic window is performed on the table. It involves launching parallel 

mappers each receiving records from a single HBase region, filling in missing genotypes, 

concatenating records with the same row-key, and outputting final results into TPED files.   

 

Spark Schema 

Spark [73]  is a distributed engine that embraces the ideas of MapReduce and RDD.  It can save 

intermediate results in the form of RDD in memory, and perform computations on them. Also, its 

computations are lazily evaluated, which means the execution plan can be optimized since it tries 

to include as many computational steps as possible. As a result, it is ideal for iterative computations 

such as sorted merging. We implement our optimized Spark schema on Spark-2.1. It has three 

stages described below and shown in Figure 3.4 (refer to Figure 3.13 for pseudocodes).  

 

1) RDD preprocessing stage  

This stage involves loading raw data as RDDs, filtering, and mapping RDDs to paired-RDDs with 

keys (chromosome and genomic position) and values (reference allele, sample ID and genotype). 

This stage ends with a sorting-by-key action which extends to the next stage.  
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2) Sorting and merging stage 

 The sort-by-key shuffling repartitions and sorts PairRDD records so that records with the same 

key are aggregated together, which are then merged into TPED format and converted back to RDD 

records for outputting. However, Spark’s native family of group-by-key functions for merging 

should not be used here because their default partitioner is hash-based and different from the range-

based partitioner used by previous sort-by-key function. Consequently, the merged results would 

be reshuffled into an unsorted status. We therefore optimize the merging to bypass these functions 

and be performed locally without data reshuffling to ensure both order and high speed.  

 

3) Exporting stage  

In this stage, merged RDD records are saved as TPED files on HDFS.  

 

Execution parallelism has an important impact on the performance. To maximize performance, the 

number of parallel tasks is set to the number of input files. In this way, the data locality is 

maximized and each task is assigned a proper amount of work. In addition, unlike using 

MapReduce or HBase, when performing sorting by keys, no explicit sampling is needed because 

Spark keeps track of the number of records before determining repartition boundaries.  

 

Parallel Multiway-Merge and MPI-based High Performance Computing Implementations 

Since many bioinformatics researchers have access to a traditional in-house HPC cluster or stand-

alone powerful server (with cores ≥ 16 and memory ≥ 200G) rather than a heterogeneous cloud-

based cluster, we also implement a parallel multiway-merge program running on a single machine 
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and a MPI-based (mpi4py v3.0) “single program, multiple data (SPMD)” program running on a 

HPC cluster as benchmarks. We choose to implement multiway-merge, because many existing 

bioinformatics tools, including VCFTools and PLINK, adopt it as the underlying algorithm for 

sorted merging. Multiway-merge is highly efficient on single machine as it requires only one scan 

of sorted input files, so it can theoretically run at the speed of disk I/O.   

 

Generally, there are two types of parallelism---data parallelism and task parallelism. The former 

splits data horizontally into data blocks of roughly equal size (the size of genomic intervals in our 

case) before assigning them to all available processes; the latter assigns a roughly equal number 

of input files to each process. For parallel multiway-merge, we choose data parallelism because 

the implementation of task parallelism would be the same as the HPC-based implementation 

running on a single node. We will discuss data parallelism in a later portion of this paper. Perhaps 

the most difficult part of data parallelism is that we do not know the data distribution across all 

input files, which usually leads to the problem of workload imbalance among processes. If we pre-

sample all the input files to estimate the record distribution, then a full scan of the input files is 

required which will almost certainly take more time than the single-process multiway-merge 

method. As a compromise, we assume that the distributions of SNP locations in all VCF files are 

uniform and the input files can be split into regions of approximately equal sizes. The total number 

of regions are set to be the number of concurrent processes so that each region is specifically 

handled by a process. To avoid seeking of a process’s file reader to its starting offset from the 

beginning of the file, we take advantage of the Tabix indexer [85], which builds indices on data 

blocks of the input file and place the reader’s pointer directly onto the desired offset. One important 

aspect of the Tabix indexer is that it needs the input file to be compressed in bgzip format which 
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is not supported by Hadoop, HBase and Spark.  The compression and decompression of a file in 

bgzip format can be much faster than in bz2 format used in our cluster-based schemas, single 

multiway-merge and HPC-based implementations, so parallel multiway-merge can run much 

faster than other methods/schemas when input size is small.      

 

For the HPC-based implementation, we adopt the task parallelism (Figure 3.5) to avoid sampling 

and workload imbalance. Otherwise the workflow of HPC-based implementation is the same as 

that of the MapReduce-based schema with the same operations and the same order: sampling in 

parallel, dividing the dataset into splits of equal size, and assigning splits to processes to do the 

merging. But this implementation is without data locality offered by HDFS and task coordination 

offered by YARN and thus has a performance no better than the MapReduce-based schema. 

Specifically, input files are shared across all nodes in the cluster via a Network File System (NFS). 

In the first round, each core/process fetches roughly the same number of files from the NFS and 

performs multiway-merging locally. In the following rounds, we adopt a tree-structured execution 

strategy. In the second round, processes with even ID numbers (process id starts from 0) retrieve 

the merged file from its adjacent process to the right, which are then merged with its local merged 

file. Processes with odd ID number are terminated.  In the third round, processes with ID divisible 

by 4 retrieve the merged file from its adjacent process to the right in the second round to merge 

with its local merged file. This process continues until all the files are merged into a single file for 

a total number of rounds of log(n), where n is the number of input files.  

 

Strong and Weak Scalabilities  
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In this study, we quantify scalability by measuring computing efficiency in tests of strong and 

weak scalabilities. We define efficiency as the average time costs of processing a file per core: 

Efficiency = (Tb*Cb/Nb) / (Ti*Ci/Ni) 

where Tb is the baseline running time, Cb is the baseline number of cores, Nb is the baseline number 

of input files, Ti is the current running time, Ci is the current number of cores, Ni is the current 

number of input files. We also incorporate the parallel multiway-merge and MPI-based HPC 

implementations as benchmarks in the tests.   

 

For the strong scalability test, we fix the number of input files at 93 and increase the computing 

resources up to 16-fold from the baseline. The baseline is a single node (4 cores) for all 

methods/schemas except for the parallel multiway-merge in which only a single core is used 

because it can only run on a single machine. For the weak scalability test, we increase both 

computing resources and input size at the same pace. The ratio is ten file/core for parallel 

multiway-merge and ten file/node for all others. 

 

3.3 Results 

 

We conduct experiments of Apache cluster-based schemas using Amazon’s Elastic MapReduce 

(EMR) service and experiments of the HPC-based implementation using MIT’s StarClusterTM 

toolkit which launches an AWS openMP virtual private cluster (VPC). Within both infrastructures, 

we choose EC2 working nodes of m3.xlarge type, which has four High Frequency Intel Xeon E5-

2670 v2 (Ivy Bridge) Processors and 15GB memory. We conduct experiments of parallel 

multiway-merge on a single EC2 r4.8xlarge instance with 32 High Frequency Intel Xeon E5-2686 
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v4 (Broadwell) processors and 244 GB memory. We use a dataset consisting of 186 VCF files [9] 

generated from Illumina's BaseSpace software.  

 

Overall Performance Analysis of Clustered-based Schemas 

Our primary goal is to explore the scalabilities of the three schemas on input data size and available 

computing resources, namely CPUs. To achieve this, in this experiment we adjust the number of 

input files from 10 to 186, with an approximate total uncompressed size from 2.5 G to 40 G, and 

use a varying number of working nodes from 3 to 18, namely 12 to 72 cores.   

 

As Figure 3.6 shows, for all three schemas, given a fixed number of cores, the execution time 

increases at a slower pace than that of the input size. On the one hand, the increase of execution 

time is more obvious with fewer cores because each core is fully utilized. As the number of input 

files increases, so does the number of parallel tasks assigned to each core. For example, given 12 

cores, as the number of input files increases from 10 to 186 (18.6 fold), the execution time increases 

from 739 to 4,366 seconds (~5.9 fold) for the MapReduce schema, from 375 to 5,479 seconds 

(~14.6 fold) for the HBase schema, and from 361 to 1,699 seconds (~4.7 fold) for the Spark schema. 

On the other hand, with relatively more cores such as 72, this linear increasing trend is less 

pronounced because there are more cores than tasks so that all cores are assigned at most one task. 

We also notice that when input size is small or moderate, the Spark schema does not always show 

a consistent improvement in terms of execution time when using more cores. This is reflected, for 

example, in the intersection of curves occurred between 24 and 72 cores in Figure 3.6c. This 

phenomenon is attributed to the limitation of Spark’s internal task assignment policy which gives 

rise to the possibility that some nodes are assigned more than one tasks while others remain idle.   
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Strong and Weak Scalabilities of Apache Cluster-based Schemas and Traditional Parallel 

Methods 

Figure 3.7 shows the results of the strong scalability. In accordance with the Amdahl’s law [86], 

all schemas/methods show degraded efficiency with increasing computing nodes/cores. Parallel 

multiway-merge has the steepest degradation because the more parallel processes, the higher 

likelihood of workload imbalances among them. In addition, disk I/O reaches saturation as more 

processes write simultaneously. Furthermore, to achieve data parallelism and optimize execution 

speed, we use Tabix indexer to index data blocks of input files. While reading, each process needs 

to maintain a full copy of file descriptors, indices and uncompressed current data blocks of all 

input files in memory. When both the number of processes and input files are large, great pressure 

is placed on the memory management. For instance a test with 93 files and 16 processes requires 

over 100GB memory, which results in a very long memory swap and garbage collection (GC) time. 

In contrast, the MapReduce-based schema has the best efficiency. Surprisingly, its efficiency even 

improves when the number of cores doubles from the baseline. This is because it has many parallel 

tasks in its second MapReduce phase, and when the core allowance is low, the overheads of 

repetitive task launching and terminating on a single core become non-negligible. Consequently, 

as the number of cores starts to increase, the actual proportion of overheads in the total running 

time decreases, leading to an improved efficiency. Nonetheless, as the number of cores further 

increases, the unparalleled parts of the schema gradually dominate the total running time, leading 

to a reduced efficiency.   

 



43 

For the weak scalability test (Figure 3.8), all methods/schemas follow Gustafson’s law [87] to have 

a much better efficiency than in the strong scalability test.  Meanwhile, for the same reasons as the 

strong scalability, the MapReduce-based schema enjoys the best efficiency while the HPC-based 

implementation has the worst. This is because, for the HPC-based implementation, as the number 

of input files increases, the total number of merging rounds also increases, leading to a significantly 

reduced efficiency.  Finally, all three Apache cluster-based schemas demonstrate significantly 

better weak scalability than the other two traditional parallel methods. 

 

The Anatomic Performances Analysis of Apache Cluster-based Schemas 

Another important goal of our study is to identify potential performance bottlenecks, so we 

evaluate the execution time of each phase/stage of all three schemas. Figure 3.9 shows the trends 

of the anatomic computing time spent on merging increasing number of VCF files (from 10 to 186) 

using 48 cores. For the MapReduce schema (Figure 3.9a), its two phases account for a comparable 

proportion of total time and both show a linear or sublinear scalability. The reason the time cost 

of the first phase between 40 and 93 input files remains flat is because both runs use two rounds 

of mappers. As the number of files doubles to 186, four rounds of mappers are required which 

results in about a 2-fold increase in the time cost as expected.  For the three phases of the HBase 

schema (Figure 3.9b), they generally scale well with the input data size. Meanwhile, the second 

phase becomes more dominant with more input files owing to the larger amount of shuffled data 

during the writing of HFiles. However, we do not consider it as a bottleneck since all tasks of this 

phase are parallelized with no workload or computational hotspot. We do not observe an obvious 

super-linear (relative to input data size) increment pattern from the figure either.  Finally, Figure 

3.9c shows the time costs of three stages of the Spark schema. They show a uniform increasing 
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trend with the number of input files. Among them, the second one takes up a considerable 

proportion of the total execution time as it has a relatively expensive sort-by-key shuffling 

operation. Although no data is shuffled in the first stage, its time lapse is close to that of the second 

stage. This is because at the end of the first stage, data are sampled for determining the boundaries 

used by sort-by-key’s range partitioner. This operation demands a considerable execution time 

because it scans all the data and balances them if necessary.     

 

Given that no super-linear increasing trend is observed in running time for all phases/stages of the 

three schemas and they generally scale well on the input data size, we reach the following 

conclusion: Although the performances of these schemas might degrade to some extent when 

dealing with even larger data size due to overheads such as data transmission over network, we do 

not expect to see any significant bottleneck. 

 

Execution Speed Comparisons Among Traditional Methods and Apache Cluster-based 

Schemas 

Another intriguing question is: How does the speed of the Apache cluster-based schemas compare 

to single machine based and traditional parallel/distributed methods/applications on merging 

multiple VCF files into a single VCF or TPED file? To answer this question, we choose the widely-

used VCFTools (v4.2) and a single-process multiway-merge implementation as single-process 

benchmarks and parallel multiway-merge and HPC-based implementations as parallel/distributed 

benchmarks, which are the same as in the experiments of strong and weak scalabilities above.    
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In the first experiment, we merge 40 VCF files into one VCF file using VCFTools as the 

benchmark.  As shown in Table 2, VCFTools takes 30,189 seconds while the fastest Apache 

cluster-based schema, the MapReduce-based, takes only 484 seconds using 72 cores, which is 62-

fold faster.  In the second experiment (Figure 3.10), we test the time costs of merging of VCF files 

into a TPED file using single/parallel multiway-merge and HPC-based implementations as 

benchmarks. The single multiway merger is run on a node with the hardware configuration (4 cores 

and 15G memory) identical to the nodes on which the Apache cluster-based schemas are run. The 

parallel multiway merger is run on a node with a maximum of 18 simultaneously running processes. 

The HPC-based implementation is run on a 18-node cluster with the same hardware configurations 

as the cluster of Apache cluster-based schemas. Initially, with ten input files, the parallel multiway-

merge (~30 seconds) is much faster than all the other methods; it is about 7.3-fold faster than the 

fastest Apache cluster-based schema (MapReduce, 221 seconds). On the other hand, the slowest 

method is the single-process multiway merger which takes 620 seconds to finish and is about 2.8-

fold slower than the MapReduce-based schema. It is worth mentioning that in this test the parallel 

multiway-merge is essentially the same as the single-process multiway-merge, and the speed 

difference (~378 seconds) between them is the result of a different compression format (bz2 vs 

bgzip) of the input files as explained above.  As we gradually increase the number of input files to 

186, the difference in speed between the fastest overall method (parallel multiway merger, 602 

seconds) and the fastest Apache cluster-based schema (MapReduce, 809 seconds) reduces to about 

1.3-fold, while the difference between the slowest overall method (single multiway merger, 13,219 

seconds) and the MapReduce-based schema increases to 16.3-fold. In addition, all three Apache 

schemas significantly outperform the HPC-based implementation. As explained in the strong and 
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weak scalabilities section, we expect that the larger the input size, the faster the Apache cluster-

based schemas run compared to the other traditional methods. 

 

We also compare the time cost among the three schemas (Figure 3.10). It turns out that they have 

a comparable speed. More specifically, the MapReduce schema performs the best if enough cores 

are available and the input file size is large; the HBase schema performs the best with moderate 

input file size; the Spark schema performs the best with large input file size and a limited number 

of cores. The rationale behind our observation is that, when the number of cores is sufficient, the 

MapReduce-based schema can make the most use of the available computing resources because it 

runs a constant 25 parallel jobs (one for each of chromosomes 1-22, X Y and M (Mitochondria)) 

in its second phase. In contrast, the Spark-based schema has fewer tasks whose number equals to 

the number of input files in order to achieve maximum data-task locality. When the input data size 

is moderate, the HBase-schema triumphs due to its internal sorting and relative compact storage 

format of intermediate data. When the input data size is large and computing resource is relatively 

limited, the Spark-based schema outperforms the other two owing to its least number of data 

shuffling (only one), execution plan optimization, and ability to cache intermediate results in 

memory. We caution that the computing time may fluctuate depending on the distribution of 

genomic locations in the input files as well as the data loading balance of the HDFS. 

 

3.4  Discussion 

 

In this report, we describe three cluster-based schemas running on the Apache Hadoop 

(MapReduce), HBase and Spark platforms respectively for performing sorted merging of variants 
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identified from WGS.  We manage to show that all three schemas are scalable on both input data 

size and computing resources, suggesting that large scale sequencing of variant data can be merged 

efficiently given computing resources that are readily available in the cloud. Furthermore, the three 

schemas show better strong and weak scalabilities than traditional single machine-based parallel 

multiway-merge and cluster-based HPC methods owing to the absence of I/O bottleneck, better 

workload balance among nodes, less pressure on memory, as well as data locality and efficient 

task coordination mechanisms provided by HDFS and YARN. Finally, we show that even with a 

moderate-sized cluster and input data, all three schemas significantly outperform the broadly-used, 

single-machine based VCFTools, single-process multiway-merge and HPC-based 

implementations. Although initially the parallel multiway-merge implementation is much faster 

than the Apache schemas owing to its advantage of local I/O and light compression of input files, 

its poor scalability reduces this difference as the number of concurrent processes and input files 

increases. Consequently, we expect that the Apache cluster-based schemas eventually outperform 

the parallel multiway-merge when merging a much larger scale of data using a larger number of 

cores.   

 

Unlike normal merging, efficient sorted merging of many large tables has always been a difficult 

problem in the field of data management. Multiway-merge is the most efficient single-machine 

based method for sorted merging, but its performance is limited by the disk I/O [88]. Sorted 

merging also places challenges to distributed system based solutions because neither the efficient 

hash-based merging nor caching the intermediate table in shared memory is feasible [89]. 

Although a utility named total-order-joining is provided by the Hadoop for addressing this 

problem, it suffers from both network communication and local disk I/O bottlenecks, thus is not 
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scalable [77, 90]. In contrast, our schemas divide this problem into different phases/stages of tasks 

each conquered in parallel to bypass these bottlenecks and achieve maximum parallelism. 

Furthermore, in addition to merging sequencing variant data, the schemas can be generalized for 

other key-based, sorted merging problems that are frequently encountered in genetics and 

genomics data processing. As an example, they can be slightly modified to merge multiple BED 

format files such as ChIP-seq peak lists [91] and other genomic regions of interest. Other 

potentially useful features include: 1) Unlike traditional sorted merging algorithms which usually 

require presorted inputs for a better performance, our schemas are free of such a requirement; 2) 

Our implementations automatically take care of multi-allelic positions which are frequent in large 

scale VCF flies by retaining the information of all alleles until the merging actually occurs.  

 

Finally, in light of different features and specialties of the three platforms, each of the three 

schemas we developed has its own advantages and disadvantages in different application scenarios 

as summarized in Table 3.1. For example, the MapReduce schema is good for a static one-time, 

non-incremental merging on large-size data provided sufficient cores are available since it has the 

most parallel jobs, the least overheads, and the most transparent workflow. The HBase schema, 

supported by data warehousing technologies, fits for an incremental merging since it does not need 

to re-merge existing results with new ones from the scratch only if the incremental merging is 

performed on the same chromosomes. Also, it provides a highly-efficient storage and On-Line 

Analytical Processing (OLAP) on merged results. The Spark schema is ideal for merging large 

scale of data with relatively limited computing resources because it has the least data shuffling and 

keeps intermediate results in memory. A bonus brought by Spark is that subsequent statistical 
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analyses can be carried out directly on the merged results using its rich set of parallel statistical 

utilities.  
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Figure 3.1: Converting VCF files to TPED.  Left tables are input VCF files. Right table is the 

merged TPED file. Records are filtered out if their Filter value does not equal to ‘PASS’ (Pos 

10147). Individual genotypes with the same genomic location that exist in any VCF file are 

aggregated together on one row. The resulting TPED file thus has an inclusive set of sorted 

genomic locations from all VCF files.  
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Figure 3.2: The workflow chart of MapReduce schema. It consists of two phases: In the first 

phase, input VCF records are filtered, grouped by chromosomes into bins, and mapped into key-

value records. Two samplings are performed to generate partition lists of chromosomes. In the 

second phase, parallel jobs of specified chromosomes are launched. Within each job, records from 

corresponding bins are loaded, partitioned, sorted and merged by genomic locations before being 

outputted as TPED files. 
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Figure 3.3: The workflow chart of HBase schema. The workflow is divided into three phases. 

The first one is a sampling, filtering and mapping phase.  A MapReduce job samples out VCF 

records whose genomic positions are used as region boundaries when creating the HBase table. 

Only qualified records are mapped as key-values and saved as Hadoop sequence files. The second 

phase is HBase bulk loading in which a MapReduce job loads and writes records outputted from 

the previous phase, aggregating them into corresponding regional HFiles in the form of HBase’s 

row key and column families. Finished HFiles are moved into HBase data storage folders on region 

servers. In the third phase, we launch parallel scans over regions of the whole table to retrieve 

desired records which are subsequently merged and exported as TPED files.   
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Figure 3.4: The workflow chart of Spark schema.  It is a single Spark job consisting of three 

stages. In the first stage, VCF records are loaded, filtered, and mapped to PairRDDs with keys of 

genomic position and values of genotype. The sort-by-key shuffling spans across the first two 

stages, sorting and grouping together records by keys. Then grouped records with the same key 

are locally merged into one record in TPED format. Finally, merged records are exported as TPED 

files. 
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Figure 3.5: The execution plan of HPC-based implementation. The execution plan resembles 

a tree with branches. In the first round, each process is assigned an approximately equal number 

of files to merge locally. In round 2, even-numbered process retrieves the merged file of its right 

adjacent process to merge with its local merged file. In round 3, processes whose ID can be fully 

divided by 4 retrieves merged file of its right adjacent process in the second round and do the 

merging. This process continues recursively until all files are merged into a single file (round 4).  
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Figure 3.6: The scalability of Apache cluster-based schemas on input data size. A. MapReduce 

schema. B. HBase schema. C. Spark schema. As the number of input files increases from 10 to 

186, the time costs of all three schemas with 12, 24 or 72 cores increase in a slower pace than that 

of the input data size, especially when the number of cores is relatively large. The HBase schema 

with 12 cores has the largest increase (from 375 to 5,479 seconds, ~14.6 fold). 
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Figure 3.7: Comparing the strong scalability between traditional parallel/distributed 

methods and Apache cluster-based schemas. We fix the number of files at 93 and increase the 

number of nodes/cores. The baseline for the parallel multiway-merge is one single core, while for 

the others is one single node (4 cores). All methods/schemas show a degraded efficiency as 

computing resources increase 16 fold from the baseline. Specifically, the efficiency of 

MapReduce-, HBase-, Spark-based schemas drops to 0.83, 0.63 and 0.61 respectively, while the 

efficiency of parallel multiway-merge and HPC-based implementations drops to 0.06 and 0.53 

respectively. 
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Figure 3.8: Comparing the weak scalability between traditional parallel/distributed methods 

and Apache cluster-based schemas. We simultaneously increase the number of cores and input 

data sizes while fixing the ratio of file/core (parallel multiway-merge) or file/node (all others) at 

ten. The baseline is the same as in the test of strong scalability. All but the MapReduce-based 

schema have degraded efficiency, among which the HPC-based implementation has the steepest 

degradation. Specifically, when computing resource increases 16 fold from the baseline, the 

efficiency of MapReduce-, HBase- and Spark-based schemas changes to 3.1, 0.87 and 0.75 

respectively, and for parallel multiway-merge and HPC-based implementations, the efficiency 

reduces to 0.42 and 0.35 respectively.   
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Figure 3.9: The performance anatomy of cluster-based schemas on increasing input data size. 

The number of cores in these experiments is fixed at 48. Time costs of all phases of the three 

schemas have a linear or sub-linear correlation with the input data size. a) MapReduce schema: 

The two MapReduce phases have a comparable time cost, increasing 6.3- and 3.1-fold respectively 

as the number of input files increases from 10 to 186. b) HBase schema: The time spent in each 

phase increases 4.2-, 5.6- and 5.0-fold respectively as the number of input files increases from 10 

to 186. The bulk loading and exporting phases together take up more than 80% of total time 

expense. c) Spark schema:  The time cost increases 5.8-, 6.0- and 6.0-fold respectively for the three 

stages as the number of input files increases from 10 to 186 files. Like the HBase schema, the first 

two stages of the Spark schema together account for more than 80% of the total time cost.     
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Figure 3.10: Execution speed comparison among Apache cluster-based schemas and 

traditional methods. Firstly, we compare of the speeds of the three Apache schemas with that of 

three traditional methods which are single-process multiway-merge, parallel multiway-merge and 

HPC-based implementations. As the number of input files increases from 10 to 186, the speeds of 

Apache cluster-based schemas improve much more significantly than traditional methods. The 

numbers in the figures indicate the ratio of the time cost of each traditional method to that of the 

fastest Apache cluster-based schema. Secondly, we compare the processing speed among the three 

Apache cluster-based schemas which are comparable to each other regardless of the input data 

size. The MapReduce schema performs the best in merging 10 and 186 files; The HBase schema 

performs the best in merging 20, 40 and 60 files; The Spark schema performs the best in merging 

93 files.  
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Figure 3.11: The MapReduce Schema 
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Figure 3.12: The HBase Schema 
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Figure 3.13: The Spark Schema 
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Table 3.1. Performance comparisons of VCTools versus MapReduce-, HBase- and Spark-

based schemas 

 VCFTools MapReduce HBase Spark 

Time cost (seconds) 30,189 484 577 596 

Fold (faster) - 62.4 52.3 50.7 

 

 

 

 

 

 

 

 

 

 

 



64 

 

 

 

Table 3.2. Pros and Cons of MapReduce, HBase and Spark schemas   

Schemas Pros Cons 

MapReduce • Good for large input 

size and sufficient 

computing resources. 

• Simple architecture 

and least overheads 

given sufficient 

computing resources. 

• Best parallelism 

• Good for one-time 

merging. 

• Performance is stable. 

 

• Merging is not 

incremental.  

• Much overheads when 

computing resources 

are limited  

 

 

 

HBase • Good for intermediate 

input size (>=20 and 

<=100). 

• Supports incremental 

merging. 

• Supports On-Line 

• Users must determine 

region number in 

advance. 

• Has most local I/O. 

• Complex performance 

tuning. 
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Analytical Processing 

(OLAP). 

• Best storage 

efficiency. 

Spark • Good for large input 

size (>100) and 

relative limited 

computing resources. 

• Keeps intermediate 

results in memory and 

least local I/O. 

• Good for subsequent 

statistical analysis on 

merged results. 

 

 

 

• Possibly weakened 

data locality during 

loading. 

• Slight unstable 

performance when 

computing resources 

exceeds needs of input 

size. 

• Actual execution plan 

is not transparent. 

• Complex performance 

tuning. 
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Chapter 4 

 

Ensemble Learning of Changes of CpG Methylation Levels   

 

4.1 Introduction 

 

Decades of epidemiological research has shown that environmental exposures to pollutants and 

toxicants during fetal development can lead to both short term (e.g. reduced fetal growth) and long-

term (e.g. impaired neurodevelopment) consequences on the child’s health [92, 93]. But the 

mechanism by which the environmental factors exerts their impacts is insufficiently understood. 

Epigenetic mechanisms, in particular, DNA methylation variation, have been shown to hold 

substantial potential for improving our understanding of the underlying biological mechanisms 

[94].  

 

DNA methylation is a covalent modification, heritable by somatic cells through division. 5-

Methyl-cytosine represents 2–5% of all cytosines in mammalian genomes and is found primarily 

on CpG dinucleotides [95]. In recent studies, promising findings have been made linking DNA 

methylation to molecular response to environmental exposures [96-101]. For example, long-term 

exposure to PM10 has been linked to methylation in both Alu and LINE-1 [102]. The non-uniform 

distribution of CpG sites across the human genome and the important role of methylation in 
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cellular processes imply that characterizing genome-wide DNA methylation patterns is necessary 

for a better understanding of the regulatory mechanisms of this epigenetic phenomenon [103]. 

Epigenetic alteration has been recognized as playing an important role in the pathogenesis of many 

human diseases. In particular, difference in DNA methylation has been observed between cases 

and healthy controls in relevant tissues [104, 105]. 

 

So far, hundreds of EWASs have been conducted. Due to the high cost of the whole genome 

bisulfite sequencing (WGBS) assay [95, 106], all large scale EWASs have been conducted using 

array-based technologies [107-109]. The most frequently used is Illumina’s Infinium 

HumanMethylation 450K BeadChip, measuring methylation level at about 482,000 CpG sites 

genome-wide [107]. The next generation EPIC array doubles this number. However, the total 

number of CpG sites in the human genome is approximately 28 million. That is, the 450K array 

only covers about 1.5% of all CpG site in the human genome, and are biased towards promoters 

and strongly underrepresented in distal enhancers [110]. Hence the “epigenome-wide” claim on 

array-based methylation profiling is rather misleading. The high cost of the WGBS continues to 

push researchers to use array-based technologies to conduct population-level studies such as 

EWAS. The low coverage of the whole methylome means lost opportunities to uncover the 

underlying biological mechanism in response to environmental exposure. This is similar to the 

problem of incomplete coverage of the genotyping array scientists faced when conducting GWAS. 

Therefore, methods that improve the scope of methylation profiling beyond the array will have a 

significant impact, especially for those that can infer/predict DNA methylation status from other 

precomputed or latent information in the big omics data.   
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Datasets generated by next-generation sequencing experiments such as ChIP-Seq, DNase-Seq, 

FAIRE-Seq, RNA-Seq, and ATAC-Seq are stored in large international consortium such as 

ENCODE and REMC. These datasets can be leveraged to systematically identify functional 

elements with regulatory activities across hundreds of cell lines and tissues. For example, ChIP-

Seq detects protein-DNA interactions and can be used in the identification of transcription factor 

and other chromatin-associate protein bindings. DNase-Seq measures the sensitivities of genome-

wide regions to DNase I for identifying the locations of regulatory regions. FAIRE-Seq and 

ATAC-Seq are similar to DNase-Seq in that they also identify accessible DNA regions in the 

genome. RNA-seq measures the level of cellular transcriptome which reveals genomic 

mutations/SNPs and/or differences in gene expression.  Therefore these big omics data offer an 

opportunity to  reveal the latent linkage between epigenomic/genomic variants and regulatory 

elements, including TF binding, histone modification, and open chromatin. Features selected from 

a comprehensive collection of these datasets, marks associated with repressed chromatin for 

example, have been reported to facilitate the accurate and robust recognition of non-coding disease 

specific risk variants under multiple testing scenarios [111].  Based on these resources, several 

computational tools have been developed for identifying non-coding risk variations. The Genome-

wide Annotation of Variants (GWAVA) generates genome-wide metrics for distinguishing 

disease-implicated variants from benign variants [112]. The Combined Annotation–Dependent 

Depletion (CADD) project integrates many diverse annotations into a single C score for each 

SNP variant [113]. The DANN project overcomes the limitation of linear representation of the 

data of CADD and use a deep neural network (DNN) based algorithm for identifying genetic 

variants responsible for diseases [114]. The GenoCanyon project models the non-coding variant 

with a two-component mixture model (risk or benign) [15]. The Eigen project is similar to 
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GenoCanyon but adopts a more sophisticated two-component mixture model in the model-

fitting process [115].  

 

Although the above experiments and projects generate a large number of genome-wide genomic 

and epigenomic annotations and scores which provide potentially valuable information to infer 

DNA methylation levels, these annotations are disease/phenotype neutral, we yet do not know 

which combination of annotations is more associated with altered DNA methylation level in a 

specific disease. To address this problem, in this study, we develop an ensemble feature 

selection method to select the most relevant subset of annotations and scores which can be used 

to distinguish disease/phenotype-associated CpG sites and the background CpG sites. We also 

develop an ensemble learning model which is trained with labels converted from summary level 

data (association p-values) from array-based EWAS and selected annotations and scores as 

features, and applied to identify CpG sites beyond the array that are likely to show trait -

associated changes. 

   

 

4.2  Methods 

 

Overview 

We first collect summary level data (association p-values) from EWASs for each CpG site in the 

450K array based on which we label each site as either positive and negative. We treat the learning 

task as a classification problem that consists of four steps: (1) construct an experimental dataset 

for each trait, for example, a particular type of environmental exposure; (2) collect a massive set 
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of external public omics datasets and process them as features; (3) develop a feature selection 

procedure; (4) develop an ensemble learning method to classify CpG sites into trait-associated or 

not. Eventually, we utilize the learned model to score the entire genome to identify novel trait-

associated CpG sites not on the array for each type of environmental exposure. The workflow of 

the proposed method is illustrated in Figure 4.1.  

 

Datasets and Prediction Features 

We have summary level data from two studies on Alzheimer’s disease and placenta with exposure 

to arsenic respectively. In the first study, the methylation profiles of a total of 415,848 CpGs in a 

collection of 708 prospectively collected autopsied brain samples are assessed using the Illumina 

HumanMethylation450 beadset. The correlations of the methylation levels of these CpGs with 

post-mortem, neuropathologic diagnosis of AD are quantified as P-values. In addition, the 

direction and amount of altered methylation levels are also calculated. The second study is the 

Rhode Island Child Health Study (RICHS) cohort, which enrolls mother-infant pairs with 

nonpathologic pregnancies in Providence, Rhode Island. Placental tissue and cord blood samples 

from 347 individuals have been collected and profiled using the 450K array. Additionally, data on 

a set of environmental exposures have also been collected in all these samples through subject 

biomarkers (toenail or placenta). Among them, arsenic exposure is defined as the amount of 

Arsenic found in maternal toenail. The P-value in this study refers to the correlation between the 

methylation level changes of CpGs and the arsenic levels within maternal urine, postpartum toenail 

samples and placenta.  
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The features used in this study include epigenomic annotations and functional annotation scores 

(Table 4.1). So far, we have collected 1806 epigenomic features related to histone modification 

(1002), TF binding (571), open chromatin (184) and RNA Pol II/III binding (49), spanning 261 

cell lines. These features are constructed to cover the entire genome in 200 base-pair resolution 

(one value in each 200bp bin), representing local epigenomic profiles around every CpG site. The 

functional annotation scores are collected from multiple computational tools that have been 

developed to quantify the deleterious potential of a genomic locus. These computational tools 

include CADD (6) [113], GenoCanyon (4) [15], Eigen/EigenPC (10) [115], and DANN (4) [114]. 

We also add data from additional important data types including: 1. ATAC-seq (75), a powerful 

new technology to profile nucleosome landscape genome-wide; 2. Total RNA-seq (47) where 

transcription of non-mRNA can be better detected; 3. Distance to the nearest transcription start site 

(TSS).  

 

Experimental Dataset Construction 

In this study, there are two major statistics for evaluating the methylation level of a CpG site. The 

first one is the β value which quantifies single-CpG-site methylation levels. It equals to the 

proportion of probes for this CpG site that are methylated, which is computed as the methylated 

probe intensity divided by the sum of both the methylated and unmethylated probe intensities; thus, 

β  ranges from zero (the CpG site is unmethylated) to one (the CpG site is fully methylated) [31].  

The second statistic is P value of a CpG site which is the possibility of the null hypothesis that a 

positive sample has the same methylation level as a negative sample on this CpG site is valid.  

For the dataset of Alzheimer’s disease, we only have the P values of the top 71 statistically 

significant CpG sites, that is the 71 sites where normal and diseased people most likely have 
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different methylation levels. Consequently, we take all the 71 sites as the positives while all others 

as negative controls. During the construction of the experimental dataset, we included all 71 

positive sites, and for each positive site, we sample 20 negatives site with the closest β values. 

Considering the fact that we are more interested in positive sites and the imbalance ratio of positive 

to negative sites, we assign a weight of 1 to each negative site and a weight of -log(P-value) ^1.5. 

As a result, the largest weight ratio between positives and negative controls is 129.6.   

 

For the dataset of placenta with arsenic exposure, we first set two P-value thresholds for defining 

positive and negative control sites. Any site with a P-value less or equal to the 3e-4 are considered 

as positive sites (278) while with a P value equal or larger than 0.1 are considered as negative 

control sites (347,316). The purpose of this step is trying to set a distinguishable boundary between 

the positives and the negatives. Next, the experimental dataset construction adopts a similar 

strategy as that of the dataset of Alzheimer’s disease except we select 10 instead of 20 negatives 

for every positive site into the experimental dataset since we have much more positives this time.  

In addition, we assign each site a weight of -log(P-value) ^1.5, and the maximum weight ratio 

between positives and negatives is 102. 

    

Feature Selection 

Initially we have a comprehensive collection of 1953 genomic/epigenomic annotations and 

functional annotation scores from multiple sources and computational tools as predicting features 

in the model. However, all these annotation and scores are disease/trait neutral in that variants 

associated with all diseases/traits are included. Therefore it is desirable to separate relevant 

features from others for a particular disease/trait to reduce noise and boost computational 
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performance. Furthermore, considering the limited size of CpG sites in the human genome, naively 

including all the features in the training of the model would lead to the “small N large P” problem 

and thus considerable overfittings. Consequently, a dimension reduction and feature selection step 

is essential before the model training.  

 

Feature selection algorithms of classification can be divided into three categories – filter models, 

wrapper models and embedded models. Among the three models, filter models evaluate feature 

importance without referring to a specific algorithm. They calculate a ranking score for each 

feature in the feature space based on certain criteria such as information gain and pick up features 

with highest scores. Although methods of this model type are usually computational efficient, they 

are independent of the following classification model and thus do not take into account the biases 

of the classifier, which results in a relatively low performance. Wrapper models take the classifier 

bias into consideration by repetitively adding/removing features into/from the selection set which 

is evaluated by the classifier. Nonetheless, the repetitively running of the classification algorithm 

is computationally expensive especially for a large feature space or complicated algorithms such 

as DNN. Embedded models have both advantages of filter and wrapper models, the 

computationally efficiency and the interaction with the classification algorithm, by embedding the 

feature selection with the classifier construction. Therefore, we choose four embedded methods to 

build up our ensemble feature selection model, which are random forest, XGBoost [116], L2-

regularized logistic regression and L2-regularized linear support vector classifier (SVC) 

respectively.  
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Features are normalized before applying each component feature selection method. For L2-

regularized logistic regression and linear SVC, features with a coefficient statistically significantly 

different from 0 are selected. For random forest, each feature is given a score which is a weighted 

average of impurity reduction on tree nodes that use it. The top 100 features with largest impurity 

reduction scores are selected. For XGBoost, it measures the number of times a feature appears in 

all the trees of the model which implies the usefulness of this feature in building the model. The 

top 100 features with largest numbers are selected. Finally, the ensemble method keeps only 

features selected by at least  two methods while discard the others. 

      

Feature Engineering 

In order to further reduce the dimensionality of feature space while still retaining most useful 

information, we engineer new features in the form of linear or non-linear combinations of the 

original feature space using sparse autoencoder. Autoencoder is a type of artificial neural network 

capable of learning efficient representations of the input data, called codings, without any 

supervision. Codings usually have a much lower dimensionality than the input data, making 

autoencoder a dimensionality reduction technique. Sparse autoencoder [117, 118] adds an 

additional term to the cost function which suppress the number of active neurons in the coding 

layer. As a result, each remaining active neuron typically represents an informative artificial 

feature. The activity of neurons in the coding layer is quantified as sparsity. The sparse 

autoencoder is trained with a specified target sparsity, which usually is a number between 0 and 1. 

Typically, using the sigmoid activation function in the coding layer, the codings are also within 

the range of 0 and 1. The Kullback-Leibler divergency is used to measure the divergence between 

the mean of the actual codings and target sparsity, and is added as the additional term to the cost 
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function. Upon finishing the training, the codings from most active neurons are taken as artificial 

features used in the following machine learning models. 

 

In this study, in order to find the most appropriate hyperparameter setting for the sparse 

autoencoder, we use Tree-of-Parzen estimator [119] to search the hyperparameter space of the 

autoencoder which include the target sparsity, sparsity weight, tensor structure, L2-regularization 

weight, number of training epochs. We also adopts the He-initialization technique [120] for 

initiating tensor weights, and batch-normalization to address the problem of vanishing gradient.    

 

Data Visualization 

In order to check the quality of the data and features, especially the separability of positive and 

negative CpG sites within the feature space, we leverage the t-Distributed Stochastic Neighbor 

Embedding (t-SNE) [121] to reduce the dimensionality of features and plot them in 3-D space. t-

SNE is a type of manifold learning which reduces dimensionality while trying to keep similar 

instances close and dissimilar instances apart. It is mostly used for visualization, in particular to 

visualize clusters of instances in high-dimensional space.  

 

Model Selection and Hyperparameter Tuning 

We build the ensemble model by choosing a subset of models from 6 models with model 

complexity from low to high, in the hope that different types of errors made by each individual 

model could be offset by other models to achieve a better overall performance.  The six models 

are: 1. Logistic regressor with L2-regularization; 2. Random forest; 3. Support vector classifier 

(SVC); 4. XGBoost classifier; 5. Multilayer perceptron in Scikit Learn package; 6. Deep neural  
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network (DNN) in Tensorflow. To select the best subset of models, we individually train and 

validate each model using stratified 10-fold cross-validation. Considering the imbalance between 

positive and negative CpGs and the fact that we are more interested in accurately identifying as 

many positive CpGs as possible, we adopt F-score as our evaluation metric. In addition, we also 

evaluate the relative complexity of each model to the dataset by plotting learning curves, and find 

that the logistic regressor underfits the problem while all other models overfit it. Finally, logistic 

regressor, random forest, XGBoost, SVC and DNN are selected into the ensemble model. We 

choose logistic regressor because its underfitting property can alleviate the ensemble model from 

too much overfittings. Multilayer perceptron in Scikit learn is left out because, unlike DNN, it does 

not adopt techniques such as He initialization and batch normalization in its implementation to 

address the problem of varnishing gradients, which leads to unconverged solutions. In addition, it 

cannot set a neuron dropout rate which is an additional regularization term for reducing overfittings. 

Furthermore, it does not allow sample weights during the training without which all CpG sites tend 

to be predicted as the dominant negative class.   

  

After the model selection, we use the Tree-of-Parzan method in Hyperopt [119] and 5-fold cross 

validation to search the hyperparameter space of each component model for the best parameter 

setting out of 50 adaptively-tuned settings. The evaluation metric used here is F-score. Depending 

on the number of hyperparameters to be tuned and the size of the search space, the process 

searching can be very slow especially for DNN with many layers and neurons as well as XGBoost 

with many trees. In order to speed up the training, we parallelize this training by simultaneously 

training each component model on multiple cores and dump the best hyperparameters onto the 

disk. Upon finishing the searching, the ensemble model loads best hyperparameters (Table 4.2) for 
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corresponding component models and re-train them with the whole training dataset without cross 

validation to obtain fitted and ready-to-use estimators.  

  

Prediction and Model Evaluation  

The final step of the ensemble model is the predictions on the test dataset and evaluations of 

predicted results. Each component model assigns a probability of being positive to every test CpG 

site. For example, the logistic regressor utilize the sigmoid function to calculate such a probability; 

For random forest, it is the ratio of the positive CpGs to total CpGs in the leaf node where a CpG 

belongs to. For SVC, the probabilities are calibrated using Platt scaling which is a logistic 

regression on the SVM’s scores fitted by an additional cross-validation on the training data [122].  

The ensemble model adopts the soft-voting method to obtain the predicted label for each CpG site, 

namely adding all the class membership probability estimates generated by component classifiers 

together and assigning the class label with the highest summed-up score.  

 

The predicted results of the ensemble model as well as its component models are evaluated using 

metrics including F-score, recall, precision, area under curve (AUC) and accuracy, and curves 

including receiver operating characteristic (ROC) curve and precision-recall curve. The confusion 

matrix is also plotted to give direct visualization of the qualities of predicted results of each model. 

 

4.3 Results 

 

Selected Features 
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The features selected by at least two feature selection methods are shown in Table 4.3 in which 

the column named ‘n’ indicates how many methods select the feature on the row. The differences 

of mean values of the selected features between positive and negative CpGs are calculated and 

subjected to the t-test with the null hypothesis that there is no difference between the two means. 

For the dataset of Alzheimer’s disease, 37 features are selected among which are those reported to 

be correlated with the development of AD such as H3K4me1 [123] and H3K27ac [124], and those 

correlated with brain development such as H3K36me3 in cortex derived neurosphere cultured cells. 

For the RICHS dataset, 41 features are selected among which we found many features related to 

placenta and fetal development such as H3K27me3 in fetal heart and placenta smooth chorion. 

These preliminary findings provide biological supports to our feature selection method.    

     

Predictions on CpG Methylation Level Changes on Alzheimer’s Disease 

The ensemble model is trained on 90% of the total data and tested on the rest 10%. The test dataset 

contains 7 positive CpGs and 149 negative control CpGs. The result metrics of the ensemble 

method and its component methods trained with either selected or engineered features, including 

AUC, recall, precision, accuracy and F-score, are shown in Table 4.4. The plots of ROC and 

precision-recall curves of the ensemble method and its component methods are shown in Figure 

4.2. When trained with selected features, the ensemble method achieves a AUC of 0.75, a recall 

of 0.57, a precision of 0.29 and a F-score of 0.38. In other words, the ensemble model predicts 14 

positive CpG sites among which 4 are true positive. The best component model is XGBoost which 

has the best recall-precision balance and the highest F-score, 0.4. The worst component model is 

DNN which has the lowest F-score, 0.1. In fact, DNN classifies all CpG sites as positive ones 

because the sample weight ratio of positive to negative sites might be too high for DNN. In addition, 
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due to the extreme slow training of the DNN model, we have to limit the number of neurons in 

each layer which potentially jeopardizes the performance of DNN. When trained with engineered 

features, the performances of all models but the DNN model degrade. One possible explanation is 

that engineered features in this study are outputs from DNN-like sparse autoencoder, which might 

introduce the bias-model which favors the DNN model but not others.   

 

Predictions on CpG Methylation  Level Changes on Placenta with Arsenic Exposure  

Similar to the dataset of Alzheimer’s disease, we split the RICHS dataset into training (90%) and 

test (10%) sets. The test dataset contains 28 positive CpGs and 273 negative control CpGs. The 

result metrics of the ensemble method and its component methods, including AUC, recall, 

precision, accuracy and F-score, are shown in Table 4.5. The plots of ROC curve, precision-recall 

curve and confusion matrices of the ensemble method and its component methods are shown in 

Figure 4.3.  When trained with selected features, the ensemble method achieves an AUC of 0.53, 

a recall of 0.07, a precision of 0.67 and a F-score of 0.13. In other words, the ensemble model 

predicts 3 positive CpG sites among which 2 are true positive. The best component model is 

random forest classifier which has the best recall-precision balance and the highest F-score, 0.25. 

Notably, it achieves a precision of 1.0 and a recall of 0.14, correctly predicting 4 out of 28 total 

positives. The worst component model is DNN which has the lowest F-score, 0, because it 

classifies all CpG sites as negative ones. When trained with engineered features, similar to the 

dataset of Alzheimer’s disease, the performances of all models but the DNN model degrade. DNN 

model remains the same performance as it still labels all sites as positives.  

 

4.4 Discussion 
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In this study, we report an ensemble learning based strategy to extend the coverage of EWAS 

beyond the limit of array-based technologies. Our strategy requires that EWASs have already been 

performed using array-based technology but does not require individual-level methylation data. 

The goal here is to classify whether a CpG site is trait-associated using a rich set of external, 

precomputed epigenomics profiles collected from public resources such as ENCODE. A previous 

work named DIVAN adopts a similar strategy and is capable of identifying new disease-associated 

sequence variants beyond those found by Genome-Wide Associate Studies (GWASs) [111]. In 

DIVAN, a machine learning approach is implemented using 1806 features which cover a 

comprehensive collection of epigenomic/genomic annotations. It has been tested on 45 

diseases/traits and obtains a cross validation AUC of ROC ranged from 0.65 to 0.88 with median 

0.74. In our study, we also collect the same set of epigenomic/genomic annotations plus additional 

functional annotation scores given by multiple computational tools and functional 

genomics/epigenomics profiles such as ATAC-seq. To reduce overfittings, our ensemble feature 

selection method reduces the original 1953 features to 37 features for the dataset of Alzheimer’s 

diseases and to 41 features for RICHS dataset. Among these features, many are disease/trait 

associated such as  H3K4me1 in the dataset of Alzheimer’s disease and H3K27me3 in fetal heart 

development in the RICHS dataset. Furthermore, in order to represent the most useful information 

from the selected features, we implement a sparse autoencoder to artificially engineer new features 

which are outputted from most active coding neurons and essentially linear/nonlinear 

combinations of input features. We next show that our ensemble model which consists of five 

individual models with different levels of complexity is able to obtain a recall of 0.57, a precision 

of 0.29 and an AUC of 0.75 for the dataset of Alzheimer’s disease, and a recall of 0.07 and a 



81 

precision of 0.67 and an AUC of 0.53 for the RICHS dataset. Taking into account the imbalance 

between positive and negative CpG sites in the training set, these results suggest that the selected 

features do provide information about the methylation level changes at some CpG sites, and the 

ensemble model is capable of predicting methylation level changes at some CpG sites.   

 

Generally speaking, the significances of our study are two-fold: 1. Identify new trait-associated 

CpG sites beyond the 450K array: The trade-offs between the high cost, high coverage WGBS 

and low cost, low coverage array-based technologies have always been a dilemma for researchers 

studying on the DNA methylation status across the genome.  Although most researchers choose 

the latter for economic considerations, the low coverage of the whole methylome means lost 

opportunities to uncover the underlying biological mechanism in response to environmental 

exposure. This is similar to the problem of incomplete coverage of the genotyping array scientists 

faced when conducting GWAS. Therefore, our model offers a promising way to computationally 

extend the coverage of the CpG sites in the genome. 2. Explore mechanisms behind EWAS findings: 

Although there is a growing evidence linking environmental exposures and DNA methylation, 

questions remain regarding the mechanisms through which these exposures impact epigenetic 

features, and particularly what underlies the specificity for their association with specific genes or 

targeted genomic regions. For example, a recent hypothesis of transcription factor occupancy 

driving this specificity has been put forth [103], but could be more broadly examined with more 

complete genome-wide data. By utilizing rich and diverse cell type specific epigenomic data as 

features in our machine learning approach, we can provide new evidence to understand these 

underlying mechanisms and spur research to explore those mechanisms in an experimental setting. 
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In our study, there are two major caveats and their corresponding remedies or future directions. 

First, no individual-level data is utilized. All the features used in the machine learning model is 

derived from external datasets obtained from seemingly unrelated cell lines or tissue types. We 

still think the strategy will work because biological connections may be hidden in the 

combinatorial pattern contained in the features we collected. The strength of this approach is the 

ability to make use of widely available results from existing EWAS without needing the underlying 

individual-level data. When individual-level data is available, we will design different strategies 

to utilize them. To be more specific, we will obtain individual-level methylation data from EWASs, 

with optional single or multiple types of individual-level omics profiling data (such as gene 

expression or chromatin accessibility). Then we will develop machine learning methods to impute 

methylation levels in genome-wide CpG sites beyond the array, then conduct real EWAS. Another 

potential caveat is that there are actually two types of CpG sites that are trait-associated, either the 

methylation level is higher among the cases than the controls or vice versa. It is possible that the 

epigenomic patterns around these two types of trait-associated CpGs are different. As an 

alternative strategy, we will separate these two types of CpGs and train two different classifiers. 

Or, we will consider this as a three-state classification problem: high, equal or low. We will train 

a multi-class (three-state) classification model accordingly.  
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Figure 4.1: Illustration of the ensemble learning workflow. 
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a) 

 

b) 

  

 

Figure 4.2: ROC and precision-recall curves of the ensemble model and its component 

models in evaluations of predictions on the dataset of Alzheimer’s disease. a) The models are 

trained with selected features. b) The models are trained with engineered features. 
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Figure 4.2: ROC and precision-recall curves of the ensemble model and its component 

models in evaluations of predictions on the RICHS dataset. a) The models are trained with 

selected features. b) The models are trained with engineered features. 
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Table 4.1. Summary of feature categories in the ensemble learning model  

Data source Features 

REMC DNase 73 

REMC Histone 735 

ENCODE DNase 80 

ENCODE FAIRE 31 

ENCODE TF(HAIB) 292 

ENCODE TF(SYDH) 279 

ENCODE Histone 267 

ENCODE RNA Polymerase 49 

ENCODE RNA-seq 75 

ENCODE ATAC-seq 47 

GenoCaynon 4 

Eigen 10 

DANN 4 

CADD 6 

Distance to nearest TSS 1 

Total  1953 
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Table 4.2. Best hyperparameters for the Alzheimer’s disease and RICHS datasets trained 

with selected or engineered features.    

Methods Hyperparameters AD + 

selected 

features 

AD + 

engineered 

features  

RICHS + 

selected 

features 

RICHS + 

engineered 

features 

Random 

forest 

min_samples_leaf 5 5 2 1 

max_depth 12 20 29 27 

min_samples_split 28 29 5 22 

n_estimators 163 312 298 43 

Logistic 

regression 

C 9.99 7.27 6.26 5.86 

Support 

vector 

classifier 

C 0.95 0.67 0.93 0.87 

gamma (Gaussian 

kernel) 

0.57 0.04 1 0.28 

XGBoost max_depth 13 6 9 16 

n_estimators 1562 1406 3443 1182 

reg_lambda 30.93 59.9 85.8 53.75 

gamma 1.45 2.97 3.32 1.01 

Deep neural 

network 

l2_reg 0.016 0.0076 0.016 0.027 

drop_out 0.4 0.21 0.42 0.15 

steps 1911 1254 1963 1175 

batch_size 30 30 30 30 

batch_normalization True True True  True 

layer_structure (185,111,37) (84,70,56,42,28)  (140,105,70,35) (96,80,64,48,32) 
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Table 4.3. Selected features for the Alzheimer’s disease dataset and RICHS dataset.  

AD RICHS 

Features t-statistic p-value n Features t-statistic p-value n 

Fetal_Placenta-H3K4me1 5.20358342 2.22E-07 2 

H1_Derived_Mesenchymal_ 

Stem_Cells-H2BK12ac -0.1610283 0.87208195 2 

K562-XRCC4 -1.3239177 0.1857251 2 Gliobla1.0 -0.0392104 0.96872527 2 

CD14_Primary_Cells-

H3K4me1 6.33609316 3.08E-10 2 

Rectal_Smooth_ 

Muscle-H3K4me1 -2.279245 0.0227223 2 

H9-H4K8ac 5.1906512 2.37E-07 2 

Fetal_Adrenal_ 

Gland-H3K4me1 -1.518929 0.12888553 2 

CADD_max_raw 3.82401969 0.00013648 2 

H1_BMP4_Derived_ 

Trophoblast_Cultured_ 

Cells-H2BK12ac -0.674831 0.49983502 2 

CADD_avg_phred 4.03067273 5.83E-05 2 GM19099-NFKB 0.48085836 0.63065217 2 

Breast_Luminal_Epithelial 

_Cells-H3K36me3 2.77074118 0.0056595 2 H1-hESC-TCF12 2.97084301 0.00299336 2 

Chorion 0.82108474 0.41172394 2 Adult_Liver-H3K4me1 -2.2823573 0.02253781 2 

NHDF-Ad-H3K9me3 -2.6226594 0.00880993 2 Melano -0.375448 0.70735379 2 

Monocytes-CD14+_RO01746-

H3K4me1 7.02855679 3.11E-12 2 Fetal_Lung-H3K27me3 5.32037707 1.11E-07 2 

Left_Ventricle-H3K4me1 6.8340975 1.18E-11 2 iPS-15b-H3K27me3 4.87868154 1.12E-06 2 

Skeletal_Muscle-H3K27ac 6.74522791 2.15E-11 2 eigen_max_pc_raw -1.4624618 0.14371923 2 

Fetal_Adrenal_Gland-H3K27ac 5.62169709 2.24E-08 2 

H1_Derived_Neuronal_ 

Progenitor_Cultured_ 

Cells-H3K36me3 -0.3431681 0.73149597 2 

Fetal_Muscle_Leg-H3K4me1 4.87399332 1.21E-06 2 

Chondrocytes_from_ 

Bone_Marrow_Derived_ 

Mesenchymal_Stem_Cell_ 

Cultured_Cells-H3K9me3 1.95771415 0.05035596 2 

CADD_max_phred 4.30146657 1.80E-05 2 HeLa-S3-H3K9me3 -0.3023076 0.76243848 2 

H1_BMP4_Derived_ 

Mesendoderm_Cultured_ 4.56385187 5.42E-06 2 

CD34_Primary_ 

Cells-H3K36me3 -2.9790253 0.00291481 2 
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Cells-H3K18ac 

ENCFF305PRP_ATAC_counts -1.8885184 0.05914249 2 H1-H2BK15ac 3.36208581 0.00078324 2 

Medullo_D341 0.43051393 0.66688154 2 

Skeletal_ 

Muscle-H3K4me1 -2.7059408 0.00684958 2 

Bone_Marrow_Derived_ 

Mesenchymal_Stem_ 

Cell_Cultured_ 

Cells-H3K9me3 -3.0925943 0.00201946 2 HeLa-S3-EZH2 5.14962324 2.78E-07 2 

ENCFF205KDV_ATAC_counts -1.4705423 0.14161739 2 

CD4+_CD25-_ 

CD45RA+_Naive 

_Primary_Cells-H3K4me1 2.40015019 0.01644881 2 

Pancreatic_Islets-H3K27me3 -1.4858322 0.13752634 2 CADD_max_raw -0.1259418 0.89978638 2 

Spleen-H3K27ac 1.24982085 0.21155319 2 

hESC_Derived_CD184+ 

_Endoderm_Cultured_ 

Cells-H3K27me3 3.22083294 0.00129182 2 

IMR90 -0.0045355 0.99638179 2 

Stomach_Smooth_ 

Muscle-H3K27me3 5.02015445 5.46E-07 2 

ENCFF780JBA_ATAC_counts -2.1008124 0.03581818 2 GM12878-ZNF274 -2.8301304 0.00468379 2 

GM128921.0 0.22920766 0.81873768 2 iPS-15b-H3K4me3 -1.3032243 0.192598 2 

Fetal_Muscle_Leg-H3K27ac 4.1965936 2.86E-05 2 

Penis_Foreskin_ 

Keratinocyte_ 

Primary_Cells-H3K4me1 0.79892264 0.42439839 2 

H1_Derived_Neuronal_ 

Progenitor_Cultured_ 

Cells-H3K14ac 5.0026405 6.30E-07 2 FibroP -0.4205563 0.67410921 2 

CD20+-H3K4me2 -0.7676378 0.442819 2 ECC-1 -0.6434807 0.51996133 2 

Medullo -0.3698835 0.71151971 2 CADD_avg_phred 0.74310342 0.45747714 2 

Neurosphere_Cultured_Cells_ 

Cortex_Derived-H3K36me3 -0.3436121 0.73118452 2 

Fetal_Adrenal_ 

Gland-H3K27me3 4.20268252 2.71E-05 2 

Penis_Foreskin_Fibroblast_ 

Primary_Cells-H3K9me3 -2.4866536 0.0129994 2 

ENCFF585YAB_ 

ATAC_counts -1.0850521 0.27798557 2 

IMR901.0 1.28762954 0.19806667 2 

Fetal_Intestine_ 

Large-H3K27me3 5.23566223 1.76E-07 2 

Adipose_Nuclei-H3K4me1 5.35090994 1.01E-07 3 H9-H3K4me1 2.61588164 0.00894426 2 
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Psoas_Muscle-H3K27ac 6.18112886 8.12E-10 3 

Muscle_Satellite_ 

Cultured_Cells-H3K27me3 4.10992507 4.06E-05 2 

H1-hESC-BRCA1 -1.4030519 0.16080112 3 

CD4+_CD25-_CD45RO+_ 

Memory_Primary_ 

Cells-H3K27me3 6.87523956 7.50E-12 3 

Right_Atrium-H3K27ac 6.3575321 2.69E-10 3 GM12878-H3K4me1 3.39412924 0.00069739 3 

genocanyon_score 4.96931437 7.46E-07 4 H1-H3K14ac 2.66835178 0.00766338 3 

- - - - HeLa-S3-H3K27me3 6.16984296 7.75E-10 3 

- - - - Fetal_Heart-H3K27me3 6.45699049 1.24E-10 4 

- - - - genocanyon_score 1.57156253 0.11615729 4 

- - - - 

Placenta_Chorion_ 

Smooth-H3K27me3 5.08545465 3.89E-07 4 
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Table 4.4. Test results of the ensemble learning model on the dataset of Alzheimer’s disease. 

 Selected features Engineered features 

 ROC 

AUC 

Recall Precision Accuracy F-score ROC 

AUC 

Recall Precision Accuracy F-score 

Ensemble  

Model 

0.75 0.57 0.29 0.92 0.38 0.67 0.43 0.18 0.88 0.25 

Logistic 

Regressor 

0.79 0.85 0.13 0.73 0.22 0.72 0.71 0.1 0.72 0.19 

Random 

Forest 

0.68 0.43 0.25 0.92 0.32 0.62 0.29 0.2 0.92 0.24 

SVC 0.75 0.71 0.14 0.79 0.23 0.65 0.43 0.13 0.85 0.2 

XGBoost 0.7 0.43 0.38 0.94 0.4 0.69 0.43 0.27 0.92 0.33 

DNN 0.53 1 0.05 0.1 0.09 0.69 1 0.07 0.41 0.13 
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Table 4.5. Test results of the ensemble learning model on the RICHS dataset. 

 Selected features Engineered features 

 ROC 

AUC 

Recall Precision Accuracy F-score ROC 

AUC 

Recall Precision Accuracy F-score 

Ensemble  

Model 

0.53 0.07 0.67 0.91 0.13 0.52 0.04 1 0.91 0.07 

Logistic 

Regressor 

0.58 0.21 0.27 0.87 0.24 0.55 0.71 0.1 0.72 0.19 

Random 

Forest 

0.57 0.14 1 0.92 0.25 0.52 0.04 1 0.91 0.07 

SVC 0.57 0.18 0.29 0.88 0.22 0.51 0.04 0.2 0.9 0.06 

XGBoost 0.56 0.14 0.44 0.9 0.22 0.54 0.11 0.38 0.9 0.17 

DNN 0.5 0 0 0.91 0 0.5 0 0 0.91 0 

 

 

 

 

 

 

 

 

 



93 

 

Chapter 5 

 

Summary 

 

Innovations in sequencing technology have resulted in a deluge of high quality genomic data. The 

massive collection of genomics data is analogous to the Internet wherein extremely large amounts 

of diverse information are stored in heterogeneous formats. To facilitate scientific discoveries in 

bioinformatics using existing and emerging genomic datasets, we develop a ranking algorithm 

suite, trackRank, to identify and rank genomics datasets relative to their significance to a given 

query gene or pathway. For every genomic data type such as ChIP-seq and RNA-seq, the 

trackRank convert the raw data into scores that are comparable across different experiments and 

data types.  We also develop a data computing and management infrastructure backed by NoSQL 

systems. This system includes a data warehouse infrastructure that manages genomics datasets, 

analytical results and metadata, with automatic data collection and integration from diverse data 

sources. It also includes high performance indexing databases involve MongoDB and Memcached 

to enable near real-time response of various query types. And finally, it includes a web based 

search portal to provide ranking based search of genome datasets, summary of data sets identified 

to contain statistically significance results related to the query. 

 

Since we are pooling diverse datasets from multiple sources, maintaining high quality standards 

among the datasets is critically important and we are taking this seriously. We plan to add quality 
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metrics for datasets collected from places other than large international consortia (where data 

quality is typically high). In addition, we have deployed a “crowd sourcing” type of approach 

which allows users to leave comments on the data quality. These comments can alert future users 

about the potential quality issues so cautions can be exercised to avoid making conclusions based 

on faulty data.  Despite the significant effort put into Omicseq, it is still (and will continue to be) 

a constant work in progress. So far, datasets are collected manually. This is manageable for 

collecting datasets en masse from those large consortia. For public data repositories such as GEO, 

the format, file type and annotations vary substantially. We aim to collect data more efficiently 

and will use a web crawler system to discover and collect newly emerging omics data across 

multiple sources.  

 

In the second project, we develop three Apache cluster-based schemas, running on Hadoop, HBase 

and Spark respectively, for performing sorted merging on large volume of omics data. Particularly, 

we use the case of merging VCF files into a single TPED or VCF file as an example. Compared 

to traditional single machine based method such as multiway-merge or parallel computing methods 

such as HPC-based merging, the three schemas optimize the parallel execution of each step, 

minimize the waste of computing resources such as cores and memory, and maintain a better 

workload balance among cluster computing nodes. As a result, they are free of bottleneck and 

scalable on both input data size and the number of cores, and have much better strong and weak 

scalabilities. Our results imply that no matter how large the data size is, we can finish such a 

merging within a reasonable time provided we have sufficient computing resources which are now 

attainable via merchant cloud such as Amazon and Google. These schemas can be readily modified 

or extended to merge other types of omics data other than VCF files, by just changing the steps 
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generating contents of key-value pairs. The merging of multiple BED format files such as ChIP-

seq peak lists [91] is such an example.  

 

In addition to the simple sorted merging, there are some other more complicated types of merging 

of omics data. For example, the single machine based BEDTools [125] provides a utility to merge 

overlapping or “book-ended” features in an interval file into a single feature which spans all of the 

combined features. Same we expect BEDTools to have similar bottlenecks and limitations as other 

single machine based software such as VCFTools. However, if such a merging is implemented to 

run on a cluster of nodes installed with Apache distributed systems, instead of a single location 

key in merging VCF files, the merging keys need to be represented as overlapping genomic 

intervals, and thus its data representation model is much more complicated. Another example is 

the merging of gVCF files [126] in which each line corresponds to a range of genomic locations 

and contains info about all samples. It is also an interval sorted merging problem and its 

implementation on distributed system is also a challenge and deserve further studies.  

 

In the third project, using only summary level data (association p-values) from array-based EWAS 

together with external, precomputed static epigenomics profiling data as features, we develop a 

machine-learning model to predict the disease/trait-associated methylation level changes of CpG 

sites beyond the 450K array. For each trait, from existing EWASs conducted using arrays, we 

establish a training set that consist of trait-associated CpGs as the positive set and matching 

background CpGs (not trait-associated) as negative set. Since the discrimination power of 

supervised learning depends on the availability of sufficient informative features, we establish a 

comprehensive features set by thorough search for various data types from multiple sources. So 
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far, we have collected 1953 epigenomic/genomic features, mainly TF and histone modification 

ChIP-seq, FAIRE, DNase-seq, RNA-seq, ATAC-seq data from ENCODE and REMC consortia, 

and functional annotation scores from computational tools including CADD, GenoCanyon, 

Eigen/EigenPC and DANN. From these features, we develop an ensemble feature selection 

method which take classification model biases into consideration to select the best subset of 

features used in the following training and testing. For each selected feature, we also conduct a 

two-sample test comparing CpGs in positive and negative training sets. To achieve a good balance 

between overfitting and underfitting, we adopt the ensemble learning method in our study. It 

consists of five individual models which are logistic regressor, support vector classifier, random 

forest, XGBoost and deep neural network. The predicted class membership probability of a CpG 

site is the normalized sum of the predicted class membership probabilities of all individual models. 

In our study, we achieve a precision of 0.57 and a recall of 0.29 when testing our model on dataset 

of Alzheimer’s disease, and a precision of 0.67 and a recall of 0.07 when testing on RICHS dataset. 

These results, although not completely convincing, still suggest that the static epigenomic/genomic 

annotations are associated with the methylation level changes at some CpG sites. The methylation 

status at other CpG sites might be regulated or affected by many other factors including both 

environmental and individual factors. For example, in one study, a random forest model is 

developed to predict methylation rates for bulk ensemble cells, which takes comprehensive DNA 

annotations into account, including individual-level genomic contexts, and tissue-specific 

regulatory annotations such as DNase-I hypersensitivity sites [31]. In another study, a recurrent 

deep neural network based model (DeepCpG) which leverages local DNA sequence windows and 

observed neighboring methylation states to predict binary CpG methylation states in single cells 

[127]. 
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