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Abstract 

 

Investigating Lithium Enrichment in Infrared Excess in K-G Giants 

 

By Zoe Hughes 

 

The observance of anomalously high lithium abundances in K-G type giant stars challenges 

conventional models of stellar evolution, prompting a deeper investigation into the underlying 

processes responsible for this phenomenon. In this study, we present a comprehensive analysis of 

a sample of K-G giants exhibiting peculiar lithium enrichments, leveraging optical spectra 

obtained from the FAST and REOSC spectrographs. Through examination of equivalent widths 

of the lithium absorption line at 6707.8 Angstroms, we quantify lithium abundances and explore 

potential correlations with other stellar parameters like infrared excess, metallicity, and projected 

rotational velocity. Our analysis encompasses a diverse range of evolutionary stages, including 

giants in the HB red clump, RGB helium flash tip/AGB, subgiant, and RGB luminosity bump 

phases. This study represents a significant step towards unraveling the complex interplay between 

stellar evolution, nucleosynthesis processes, and lithium enrichment in K-G giant stars, paving the 

way for a deeper understanding of the stellar evolution of giants and the short-lived mechanisms 

of lithium enrichment they may involve. 
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Chapter 1  

 

Introduction 

 

Stellar evolutionary models predict the behavior of stars throughout their lives and identify 

expected parameters at various evolutionary phases. Such expected characteristics at specific 

evolutionary phases include elemental abundances in the stellar atmosphere and nuclear processes 

fueling the star. Instances of certain stellar anomalies have led astrophysicists to question our 

developed stellar evolutionary models. One such phenomenon is the presence of lithium 

enrichment in evolved intermediate-mass giant stars. This investigation will explore the peculiarly 

high lithium abundances of a set of such evolved giant stars to contribute to the discussion of 

reevaluating our current models of stellar evolution. Ideally, our results will offer more information 

into the origin of lithium in these objects and the processes involved in excessive lithium 

production. 

1.1  Evaluating Current Models of Stellar Evolution 

Evolution of stars is directly related to the nuclear fusion processes that power them. 

After nebulae collapse to form protostars, the protostars gradually obtain stable equilibrium and 

join the main sequence. Main sequence stars generate energy via nuclear fusion of hydrogen atoms 

in their core. As this fusion begins to form a helium core, main sequence stars like our sun begin 

to fuse hydrogen in a spherical shell surrounding the core, causing the star to gradually grow and 
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approach the subgiant phase. As the core exhausts its supply of hydrogen, stars evolve off the main 

sequence (Laughlin et al. 1997). Eventually, stars reach the red giant phase, and depending on the 

mass of the star undergo various transitions that will be discussed in the next section. For reference, 

figure 1 displays the evolutionary tracks of stars of various solar masses on a Hertzsprung-Russell 

(HR) diagram, with location on the diagram being dependent on a stars’ color and luminosity 

values at evolutionary stages.  

(A)                  (B) 

 
Figure 1: HR Diagram Depicting Evolutionary Tracks for Stars of Varying Solar Masses. Evolutionary tracks of stars 

of different masses shown in 1A for 10 M☉, 5 M☉, and 1 M☉ star and in 1B for 15 M☉, 10 M☉, 6.5 M☉, 4 M☉, 2.5 M☉, 

1.5 M☉, and 10 M☉ star. 1A depicts a general Hertzsprung-Russell diagram showing how stars’ evolutionary phase is 

organized via luminosity (absolute magnitude of intrinsic brightness on y-axis) and color (B-V index that determines 

spectral class and effective surface temperature on x-axis). Diagram via Hollow, Commonwealth Science, and 

Industrial Research Organization (CSIRO), Australia. 1B depicts an evolutionary track diagram and calculations done 

by Toonen et al. (2016). Evolutionary tracks plotted using modeled stellar values of log(L/L☉), or the logarithmic 

value of luminosity expressed in terms of solar luminosity, and log(Teff/K), or the logarithmic value of effective surface 

temperature. Dashed lines represent lines of constant radii derived using Stefan-Boltzmann Law. 
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1.1.1  General Processes of Red Giant Evolution by Stellar Mass Profile 

1.1.1.1 Low-Mass Stars 

Low-mass stars are usually identified as being less than 0.5 solar masses (M☉), or half the 

mass of our sun, and are characterized as cool, red M-type stars or orange K-type main sequence 

stars. These stars maintain their location on the main sequence for trillions of years, slowly 

increasing in temperature and luminosity, yet never undergoing helium fusion due to the small size 

of their cores. Low-mass stars closer to 0.5 M☉  can evolve into red giants and move from the main 

sequence to the red giant branch (RGB). However, their expansion is only via hydrogen shell 

burning around their helium cores, as low-mass star cores are too low in temperature to ignite 

helium fusion (Hansen et al. 2004). After hydrogen shell burning stops, low-mass stars move off 

the RGB to become helium white dwarfs. 

1.1.1.2 Intermediate-Mass Stars 

Intermediate-mass stars, ranging anywhere from about 0.5 to 8 M☉, are characterized in 

the range of F, G, and K-type giants. F-type stars are the hottest and yellow in coloration, while 

K-type stars are the coolest and reddest among intermediate mass stars.  Beyond these spectral 

types, intermediate mass stars are typically red giants in one of two phases of post-main sequence 

evolution: along the RGB or asymptotic branch (AGB).  

Evolved intermediate-mass RGB giants experience gravitational core collapse due to 

insufficient internal pressure, causing rapid hydrogen fusion around the core and thus a 

“luminosity bump” or surge in luminosity, as well as expansion of the outer layers of the star. Once 

the hydrogen around the core fuses to completion, the core’s absorption of the produced helium 

leads to contraction, ultimately igniting helium fusion. In intermediate-mass giants around 2 M☉, 
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this ignition creates a massive energy release known as the helium flash, causing the star to contract 

and migrate to the horizontal branch (HB). Many HB giants fall into a region known as the red 

clump, a stable region of the HR diagram characterized by stars that have finished helium fusion 

and are undergoing core helium burning (as well as experiencing helium fusion and hydrogen 

burning in the core-surrounding shell, or intershell). 

AGB giants are generally characterized as evolved RGB stars. Having consumed all helium 

in the core via fusion, AGB giants exhibit hot, inert carbon and oxygen cores with helium fusion 

and helium burning in the intershell (Hansen et al. 2004). Another shell of hydrogen burning 

surrounds this shell closer to the stellar surface. Throughout evolution along the AGB, this 

hydrogen burning shell periodically contributes helium towards the center of the star, generating 

thermal pulses of energy output from the helium intershell. Thermal pulses are typical of AGB 

giants between 4 to 7 M☉. Evolution across the AGB is associated with rapid mass-loss and 

effective temperature decrease in giants. Eventually, a superwind develops around AGB giants via 

ejected material from the outer atmosphere, contributing to the most rapid period of mass loss 

(Quarles 2023). The buildup of circumstellar debris from mass loss leads to intermediate-mass 

post-AGB stars evolving blueward. As hydrogen and helium burning shells are extinguished, 

intermediate-mass stars cool to become white dwarf stars, essentially composed of their red giant 

phases’ degenerate carbon and oxygen core. 

1.1.1.3 Massive Stars 

Massive stars, being anywhere above 8 M☉, are characterized as O, B, A, and sometimes 

include early F-type stars. O-type stars are the hottest and brightest stars, known as supergiants, 

with size and temperature decreasing gradually transitioning to B, A, and early F-type stars. 

Massive stars contain cores so large that helium ignition does not result in a significant luminosity 
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increase. Instead, electron degeneracy pressure continues to exceed inward gravitational force, 

preventing the core from gravitationally collapsing. This leads to heavier and heavier elements 

fusing, igniting, and forming subsequent shells in the star (Vanbeveren et al. 2009). These objects 

are not expected to survive evolution to red supergiants and depending on extremity of mass 

eventually form heavy element white dwarfs or are destroyed via type II supernovae, thus forming 

a neutron star. For those stars exceeding 20 M☉, the sheer amount of mass may result in the star 

undergoing complete gravitational collapse, forming a black hole. 

 

1.1.2  Lithium Enrichment in Evolved Intermediate-Mass Giants Contradict  

Current Models of Stellar Evolution 

 

Several phases attributed to intermediate-mass giant evolution contain processes associated 

with lithium destruction in the star. The transitory helium flash phase of certain intermediate-mass 

RGB giants is characterized by the outer layers of the stars expanding and cooling, the star’s 

rotation rate slowing, the convection zone deepening, and an initiation of a series of shell-burning 

and core-burning phases (Rebull et al. 2015). The process of the convection zone deepening brings 

the material of the stellar surface to the interior through vertical motions, where lithium atoms are 

brought to deep layers of the star, and they are destroyed via proton capture (Lopez-Valdivia et al. 

2018) after exceeding temperatures of 2.5E6 Kelvin in the stellar interior (Zhang et al. 2020). This 

process leads to a significant dilution in lithium abundance in these giants. As such, the observance 

of high amounts of lithium in intermediate-mass RGB and HB giants contradict current models of 

stellar evolution.  

Evolution along the AGB for intermediate-mass giants is associated with thermal pulses, 

or alternating periods or quiescent hydrogen shell burning and ignition of helium burning in the 
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helium-rich intershell (Karakas et al. 2014). Periods of helium burning in the intershell during 

thermal pulses produce short-lived spikes in luminosity, power a convective zone in the intershell, 

and contribute to “dredge-up” of carbon and helium burning products to the stellar surface as the 

outer convective envelope moves inwards (Iben 1981). AGB giants above 5 M☉ can even 

experience hot bottom burning, or the development of a deep convective envelope reaching all the 

way to the top of the hydrogen shell following the formation of a convective zone in the intershell 

from a thermal pulse. Generally, processes resulting from thermal pulsing are thought to dilute the 

surface abundance of lithium in AGB giants by not only bringing material from lithium-depleted 

regions of the stellar interior to the surface via dredge-up but enhancing efficiency of lithium 

destruction through proton and alpha capture via deep convective mixing. Thus, the observance of 

high amounts of lithium in intermediate-mass AGB giants also make us question existing models 

of stellar evolution. 

 

1.2  Identification of Lithium Enriched Disk Detective IR 

Excess Objects 

 The Disk Detective citizen project, launched in 2014, was originally designed to find stars 

with infrared (IR) excess using ALLWISE data from the Wide-Field Infrared Survey Explorer 

(WISE) mission (Kuchner et al. 2016). IR excess is determined by the difference between W1 and 

W4 infrared bands from ALLWISE photometric data from the WISE mission. For Disk Detective, 

IR excess is qualified by the parameter W1-W4 > 0.25, however for K5-K9 stars a stricter 

parameter is imposed of W1-W4 ≳ 0.4 due to these stellar types having more significant stellar 

contribution at the WISE wavelengths (Kuchner et al. 2016). The spectral data for these objects 

was followed up with medium resolution spectral data from the FAST spectrograph on the 
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Tillinghast 1.5-meter telescope at the Fred Lawrence Whipple Observatory and the REOSC 

spectrograph at the CASLEO Observatory. The spectra were also combined with distance 

estimates from the Gaia DR3 release to classify the nature of the Disk Detective objects. 

IR excess objects were vetted originally with the goal of identifying young stellar object 

candidates with debris disks. However, with the incorporation of Gaia’s DR3 release distance 

estimates, the initiative revealed that some of the infrared excess objects were giants, identifying 

nearly 144 giant star candidates that produced circumstellar material as they evolved off the main 

sequence (Bans et al. 2024). 21 K-G giants among these IR excess giants showed evidence of 

lithium line absorption. Generally, 1-2% of all existing K-G giants have been identified as 

presenting with peculiarly high lithium abundance (Holanda et. al., 2020). Yet out of the 144 

infrared excess giants classified through Disk Detective, nearly 15% had the potential to be 

lithium-enriched (see section 2.3.5), offering the potential for an investigation into origins of 

lithium enrichment in a highly confident set of IR excess K-G giants with reliable optical 

spectroscopic data. 

The IR excess nature of our set of K-G giants, along with their peculiar lithium enrichment 

nature, offers an interesting approach and potential for correlations to be found between IR excess 

and lithium enrichment in the giants. Past research has noted possible links between red giants 

with overabundant lithium and IR excesses that imply a mechanism of ejection of circumstellar 

materials and formation of a disk (Rebull et al. 2015). Although lithium enrichment in K-G giants 

has been investigated along with possible presence of IR excess in those objects, the approach of 

using highly confident IR excess K-G giants identified through Disk Detective offers a more 

thorough investigation into this possible correlation. 
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1.3  Existing Hypotheses for Origins of Lithium Enrichment 

in Giants 

Investigations into this peculiar set of K-G giants aim to uncover potential correlations that 

may offer evidence in support of the origins of their lithium enrichment. By looking at correlations 

between quantified lithium abundance and stellar parameters including metallicity and rotational 

velocity, the origins of the lithium enrichment become clearer. Existing lithium enrichment origin 

hypotheses for giants include in situ enrichment mechanisms and auto-enrichment mechanisms. 

By analyzing the properties of these identified IR excess K-G giants with lithium abundance, we 

aim to shed light on various existing theories regarding the causes of lithium enrichment in giant 

stars. 

1.3.1  In situ Lithium Enrichment Mechanisms 

In situ enrichment mechanisms consider the possibility of an external source of lithium in 

these enriched giants. Multiple models of external acquisition of lithium have been proposed over 

the years. These engulfment models invoke some external reservoir of lithium, perhaps from 

ingestion of a planet, substellar companion, or mass transfer from an AGB companion. As early 

as 1967, Alexander et al. described favorable circumstances for lithium enrichment via planet 

engulfment in population II red giants and called for opening the possibilities of origins of lithium 

enrichment in these giants to go beyond internal nuclear processes and consider external sources 

(Alexander 1967). Alexander’s hypotheses regarding in situ lithium enrichment via planetary 

engulfment could possibly explain presence of lithium enrichment and/or metal-richness in 

population II red giants, although it is worth noting these metal-poor stars do not typically have 

many planets. 
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1.3.1.1 Planet or Dwarf Star Engulfment 

Other in situ enrichment models that consider external accretion sources like rocky planets 

include dwarf stars as a potential external source of lithium. One such model describes 

observational signatures indicative of an accretion process hypothesized to involve planet or brown 

dwarf star dissipation at the bottom of the convective envelope, in turn accompanied by substantial 

expansion of the star and bottom burning (Siess et al. 1998). The observational signatures 

emphasized by Siess to potentially indicate this accretion process include the ejection of a shell 

and thus a subsequent phase of IR emission, an increase in the lithium surface abundance and 

stellar metallicity, and spin-up of the star due to deposition of orbital angular momentum (Siess et 

al. 1998). Some evolutionary models computed in the last few years even suggest the merging of 

a helium white dwarf star with a red giant branch (RGB) star as the main progenitor of lithium-

rich red clump stars (Zhang et al. 2020).  

Despite the popularity in external lithium accretion being explained by a giant’s 

engulfment of a lithium rich planet or dwarf star, limitations to this theory have been posed by 

researchers as well. Certain models elucidate that these external engulfment mechanisms may only 

explain giants with lithium abundances up to A(Li) ≈ 2.2, and giants with higher abundances need 

alternative explanatory mechanisms (Aguilera-Gomez et al. 2016). Furthermore, planet or dwarf 

companion ingestion is most likely to occur before the time a star reaches the tip of the RGB, at 

its maximum radius, making planetary or dwarf star engulfment an unlikely origin hypothesis for 

lithium-richness in horizontal branch (HB) or AGB giant stars (Kirby et al. 2016). 

 

 

 

 

 



 10 

 

1.3.1.2 Mass Transfer via Stellar Companion  

Beyond the proposed dwarf star or planet engulfment scenarios, another prevailing 

hypothesis involved lithium-rich material having been accreted from a thermally pulsing 

asymptotic giant branch (AGB) star companion or ejected nova-explosion material from a novae 

companion (Jose et al. 1998). Some models postulate the lithium enrichment originating from tidal 

interactions between binary stars (Siess et al. 1999). Such a close binary system consisting of a 

white dwarf and a large main-sequence star is defined as a classical nova, involving significant 

energy release from the main-sequence star to form a circumstellar accretion disk; the abundance 

levels of intermediate-mass elements in this ejecta, including lithium, were found to be 

significantly enhanced compared to traditional stellar spectra of main-sequence stars (Jose et al. 

1998). Additionally, recent literature proposed that the most likely origin of lithium enrichment in 

post-RGB stars is from mass transfer with thermally pulsing AGB binary companion (Kirby et al. 

2016). Interestingly, this proposal insinuates that lithium-rich post-RGB stars, containing higher 

surface gravities than HB and AGB stars, acquired mass from the convective envelope of lithium 

enhanced HB and AGB companion stars, whose own lithium enhancement came from auto-

enrichment mechanisms (see section 1.3.2). 

However, these binary system theories are juxtaposed with contradictory findings that 

binary frequencies among lithium-rich K-giants are found to be normal compared to binary 

frequencies of typical K-giants (Jorissen et al. 2020), and many observed lithium enriched giants 

have been observed as isolated field stars, indicating that the formation of lithium enriched giants 

may not depend on their initial conditions such as involvement in a binary star system (Zhang et 

al. 2020).  
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1.3.2  Auto-enrichment Lithium Generating Mechanisms 

Auto-enrichment mechanisms are the prevailing theories for origins of lithium enrichment 

in giants, although the applicability of these mechanisms to all giant stellar objects is widely 

debated. Auto-enrichment mechanisms imply self-generation of lithium in the star, whether 

through processes that conserve lithium throughout phases of stellar evolution, produce lithium 

internally, or via rapid rotation of the star. Existing auto-enrichment mechanisms are generally 

thought to be short-lived processes correlated to specific stellar evolutionary stage phases. 

1.3.2.1 Internal Thermonuclear Production of Lithium 

Most prominently accepted is the “Cameron-Fowler conveyor” mechanism, involving an 

internal thermonuclear production of lithium (Cameron & Fowler 1970). The internal 

thermonuclear production of lithium considers the 5-step reaction mechanism of the proton-

proton-II (pp-II) chain of hydrogen burning in stellar core nuclear reactions: 

𝑝 + 𝑝 → 𝑑 + 𝑒+ + 𝑣𝑒  (1) 

𝑑 + 𝑝 → 3𝐻𝑒 + 𝛾   (2) 

3𝐻𝑒 + 4𝐻𝑒 → 7𝐵𝑒 + 𝛾 (3) 

7𝐵𝑒 + 𝑒−  → 7𝐿𝑖 + 𝑣𝑒 (4) 

7𝐿𝑖 + 𝑝 → 2(4𝐻𝑒)  (5) 

Most notable are reactions (3) and reaction (4), the fusion of helium-3 and helium-4 nuclei to form 

beryllium-7, which captures an electron to form lithium-7. Cameron and Fowler proposed that the 

scarcity of bound K-shell electrons at high temperatures extends the half-life of beryllium-7 from 

53 days in terrestrial conditions to 50-100 years, creating a delay that allows for more formation 

of lithium-7 (Cameron & Fowler 1970). As mentioned in section 1.1.1.2, intermediate-mass giants 

can exhibit thermal pulses during evolution on the AGB that may lead to mixing of intrastellar 
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material in the region of pp-II burning (Kirby et al. 2016). Thus, as lithium destruction in reaction 

(5) is temperature dependent (being more efficient at temperature above 2.5E6 Kelvin), intrastellar 

mixing via AGB thermal pulsing could lead to the delivery of freshly synthesized lithium to the 

surface of the star.  

However, as Kirby notes in his 2016 analysis, this conveyor mechanism may not be active 

in all giant stars; first-ascent RGB stars and less massive AGB stars may have convective 

envelopes too shallow to activate this conveyor mechanism. Such lithium production and mixing 

in intermediate-mass stars at the base of the AGB is thought to cease once a strong mean molecular 

weight gradient has been established between the convective envelope and surrounding nuclear-

burning shell, suggesting that such a period of lithium enrichment in stars at this specific 

evolutionary stage and mass range is short-lived (Charbonnel & Balachandran, 2000). 

1.3.2.2 Helium Core Flash 

While the Cameron-Fowler conveyor mechanism provides a possible hypothesis for 

abundant lithium origins in intermediate-mass AGB stars, other proposed auto-enrichment 

mechanisms suggest correlations between a brief period of lithium enrichment and the helium flash, 

which typically occurs between the RGB tip and early AGB phases of stellar evolution. Generally, 

the steps leading up to the helium flash are responsible for the depletion of lithium in a star’s 

evolution (see section 1.1.1.2). However, recent literature suggests the Cameron-Fowler conveyor 

may operate at the helium core flash in stars around 2 M☉, indicating the helium flash could be the 

explanation for trends of lithium-enriched stars falling in the RGB tip, with the lithium being 

swiftly destroyed as a clump star evolves to early reaches of the AGB (Kumar et al. 2011). This 

line of reasoning was supported by Rebull’s findings of the RGB tip being the most prominent 
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region for lithium rich stars, suggesting the lithium enrichment is triggered by the helium flash at 

the RGB tip (Rebull et al. 2015).  

1.3.2.3 RGB Luminosity Bump  

 Another evolutionary stage attributed to being a potential origin for lithium-enrichment is 

the luminosity bump of the RGB. One proposed mechanism of lithium production describes 

intermediate-mass RGB stars as producing lithium during the phase known as the luminosity bump, 

occurring before the helium flash. The luminosity bump is a phase characterized by the helium 

core becoming degenerate, causing a temporary halt in core contraction, with the energy generated 

by helium fusion in the core increasing the luminosity of the star. Theoretically, the luminosity 

bump involves internal extra-mixing processes, or the first “dredge-up,” to connect helium-3 rich 

material to the hydrogen-burning shell, enabling lithium production via the Cameron-Fowler 

conveyor mechanism (Charbonnel & Balachandran, 2000). This model suggests a short-lived 

period of lithium enrichment as well, predicting that further mixing destroys the freshly 

synthesized lithium once the carbon isotopic ratio has been lowered. 

 Interestingly, this first dredge-up of K-giants during the RGB luminosity bump associated 

with lithium enrichment has also been thought to result in a sudden stellar mass-loss, with the 

mass-loss proposed to result in the detachment of stellar surface material and the formation of a 

circumstellar disk (de la Reza et al. 1996). Like that of Charbonnel and Balachandran, de la Reza’s 

model hypothesizes this lithium enrichment period to be short-lived, spanning 40,000 to 80,000 

years, in which the star undergoes changes in its luminosity (i.e. is involved in the luminosity bump 

RGB phase of stellar evolution).  
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1.3.2.4 Rapid Rotation 

 In addition to internal thermonuclear processes, perhaps attributed to specific short-lived 

periods within phases of stellar evolution, the last prevailing theory of auto-enrichment in lithium 

enriched giants involves rapid rotation. The correlation between angular momentum and rotational 

velocity of giants with their lithium abundance has been somewhat explored in past literature. 

During the early phase of their expansion into giants, smaller stars may transfer angular momentum 

from their inner regions to their outer surfaces. This process is associated with the movement of 

intrastellar material, as suggested by Fekel and Balachandran in 1993. In their model, turbulence 

provided by the transport of angular momentum to the surface provides a mechanism for dredging 

up freshly synthesized lithium to the surface of the star. This model proposes an alternative method 

for the movement of newly synthesized lithium, perhaps via Cameron-Fowler conveyor 

mechanisms, to the surface of stars beyond mixing from thermal pulsing in AGB stars. 

 A later model proposed a trigger mechanism, facilitated by rapid rotation, for lithium 

enrichment in RGB tip giants characterized as low-mass stars, post-luminosity bump, that are 

ascending the RGB (Palacios et al. 2001). The proposed mechanism suggests that beryllium-7 

(formed via reaction 3) is diffused into the lower-temperature region between the top of the 

hydrogen-burning shell and the base of the convective envelope via rapid rotation, allowing 

beryllium-7 to form lithium-7 via proton capture (see reaction 4). This diffusion and subsequent 

formation of lithium-7 is thought to result in a significant release of energy in this region as 

lithium-7 is converted to helium-4 (via reaction 5), triggering a “lithium flash” that turns the region 

convective, merging with the convective envelope of the star. This mixing process is thought to 

enrich the outer layers of the star with lithium for a short duration before being destroyed again at 

the base of the convective envelope. Like Charbonnel and de la Reza’s models, the lithium flash 
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is thought to lead to an increase in luminosity as well as mass-loss and the subsequent formation 

of a circumstellar dust shell. Evidently, lithium enrichment being attributed to a short-lived process 

resulting in mass-loss, formation of a circumstellar shell, and an increase in luminosity is the most 

popular theory - though a correlation with rapid rotation is up for debate. Theories regarding the 

origins of the lithium enrichment within the star, though, remain conflicted between in situ and 

auto-generation mechanisms.  

 

1.4  Constructing a Novel Approach to the Lithium 

Enrichment Discourse 

Such previous approaches have prompted this investigation of K-G giants to consider not 

only IR excess and lithium abundance correlations, but also to construct algorithms to determine 

stellar metallicity and projected rotational velocity for each object. All these stellar parameters will 

be compared with spectral type, mass, luminosity, and color values of each star to shed light on 

the potential origins of the lithium enrichment. 

High metallicities correlated to lithium abundance could lend evidence in support of planet 

or dwarf star engulfment that led to substantial material accretion by the star, particularly for any 

K-G giants around 2 M☉ near the RGB tip. However, low-metallicity values for K-G giants near 

the RGB tip could insinuate auto-generation Cameron-Fowler conveyor mechanisms as proposed 

by Kumar et al. 2015. Intermediate-mass K-G giants lying in the luminosity bump could have 

lithium enrichment attributed to internal mixing associated with evolutionary changes (i.e. helium 

core becoming degenerate and then igniting, increasing luminosity, and initiating mixing of first 

dredge-up). 
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High metallicities correlated to lithium abundance in post-RGB K-G giants could implicate 

lithium enrichment mechanisms via mass transfer with a companion AGB. Presence of high 

projected rotational velocities in these objects, with low-metallicities, may lend evidence in 

support of a lithium flash auto-generation mechanism as proposed by Palacio et al. 2001. 

Similarly, high projected rotational velocities correlated to lithium abundance and IR 

excess could lend evidence in support of the formation of a circumstellar disk around the object 

because of this external accretion process. Depending on location on HR diagram, low-mass K-G 

giants in early giant phase (subgiant phase) exhibiting high rotational velocity could provide 

evidence in support of angular momentum experienced during subgiant phase resulting in lithium 

enrichment in these stars. This high projected rotational velocity, leading to giants developing 

more circumstellar material, could explain correlations with high IR excess related to rapid rotation 

lithium enrichment processes.  

By comparing these stellar parameters, this investigation presents a novel approach to not 

only the origin of lithium enrichment in K-G giants (in situ vs. auto-generation), but also the 

characteristics of the duration and mechanisms of the lithium enrichment process. Indeed, as noted 

by Drake in 2002 and evident by the existing literature around peculiar lithium enrichment in giants, 

observational requirement for coupling lithium production to rotation and mass loss has been 

overlooked or subject to nothing more than speculation up until this point (Drake et al. 2002). In 

Chapter 2, the methods for undergoing this investigation are discussed. 
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Chapter 2: Methods 

 

2.1  Constraining Stellar Parameters of Our Set of IR 

Excess K-G Giants 

2.1.1  Obtaining Stellar Effective Temperature via HR Diagram 

IR excess K-G giants’ spectral types were confidently identified by Bans et al. (2024). Our 

initial analysis of these 21 IR excess K-G giants involved plotting them on a HR diagram using 

corrected values of absolute magnitude and color with applied reddening and extinction 

corrections (see Figure 3). Absolute magnitude (Mg) represents the magnitude of intrinsic 

brightness, while color was identified by the difference between the magnitudes of the Gaia blue 

and red bands (B-R). Location on the HR diagram was used to identify differences between giants 

at different evolutionary states contributing to lithium enrichment and assist in constraining each 

giants’ stellar surface gravity (log(g)). Inherent colors with Gaia extinction corrections were used 

rather than raw B-R values to get the most accurate HR diagram location for each object. Gaia Mg 

values, our corrected Mg values, Gaia raw B-R color values, and Gaia inherent B-R color values 

are displayed in Table 1. 

Corrections were applied to Mg using the following relationship between Mg and the 

interstellar reddening value E(B-R), determined by Wang et al. (2019): 

𝑀𝑔 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) =   𝑀𝑔 − 𝐴𝑔    (6) 

𝐴𝑔 = (1.890 ± 0.015) ∗ 𝐸(𝐵 − 𝑅)  (7) 
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where Ag represents the extinction of Gaia’s G-band. This correction incorporates E(B-R) using 

Gaia’s B and R bands, where the E(B-R) values were obtained by comparing intrinsic and raw B-

R values. The value of 1.89 represents the Gaia band extinction coefficient derived from Gaia’s 

interstellar averages (Wang et al. 2019).  

 

 

Table 1: K-G Giant Corrected and 

Uncorrected Mg and (B-R) Values. 

Stars are identified via Zoo and 

WISE IDs and referred to by their 

Zoo IDs throughout this 

investigation. Reduction in B-R 

values after applying reddening 

corrections imply some of our 

objects are extremely reddened, 

likely due to circumstellar debris 

contributing to these objects’ 

reddening. Additionally, several 

objects are upwards of thousands 

of parsecs away, contributing to 

more reddening and elongation of 

wavelengths due to significant 

distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Visual analysis of these giants’ stellar spectrum revealed that several contained significant 

Balmer emission indicated by emission peaks at spectral lines along the hydrogen spectrum 

associated with transitions between higher energy levels and the second energy level. Balmer 

emissions are typically associated with young stellar objects in a brief luminous period but could 

also be a result of circumstellar material that formed around giants following a huge mass loss 

 

Zoo ID 
  

Mg 
  

Mg (corrected) 
  

(B – R)raw 
  

 

(B – R)inherent 

AWI0005d61 -0.157 -0.905 1.218 0.823 

AWI0000wqx 0.350 -0.231 1.157 0.850 

AWI0000qxd 0.385 -0.075 1.193 0.950 

AWI000621k -1.930 -2.766 1.392 0.950 

AWI0005yjf 2.578 2.136 1.217 0.983 

AWI000004g 0.595 0.226 1.179 0.983 

AWI0005dlh 0.580 0.191 1.189 0.983 

AWI0000eg6 0.853 0.392 1.227 0.983 

AWI00001q1 0.717 0.126 1.296 0.983 

AWI00061yb -3.16 -4.898 1.904 0.983 

AWI0000hat 0.805 0.227 1.316 1.010 

AWI0005yix 0.905 0.095 1.439 1.010 

AWI0000mh2 0.524 0.018 1.367 1.100 

AWI0005xy6 -3.149 -4.878 1.898 0.983 

AWI0005zgp 1.895 0.747 1.817 1.210 

AWI0002b9u -0.130 -1.904 2.369 1.430 

AWI0000t35 -3.871 -4.669 1.852 1.430 

AWI0005yly -3.742 -4.054 0.949 0.784 

AWI00059y8 0.555 0.017 1.235 0.950 

AWI0005dj7 0.952 0.383 1.284 0.983 

AWI0005c3y 
  

0.628 
  

-0.099 
  

1.368 
  

0.983 
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(Izotov et al. 2007). Although distance estimates provide significant evidence in favor of these 

objects being giants, it is worth noting that giants containing Balmer emission are more likely to 

have been potentially misidentified than giants without Balmer emission (Bans et al. 2024). 

 

 

(A)  

  

    

  

  

  

  

  

  

 

 

 

 

 

 

 

 

(B) 
Figure 2: HR Plots of Our IR Excess 

K-G giants. 2A reveals our HR plot 

overlaid on Gaia’s uncorrected DR2 

HR diagram with spectral type 

regions plotted. Uncorrected Mg and 

raw B-R values were used in plot 2A 

for best overlay on Gaia HR diagram. 

2B shows a closer view of our plotted 

giants with parallax error accounted 

for. Noted are estimated locations of 

the red clump (region of HB), the 

RGB tip and bump, and the AGB and 

AGB bump that were used for 

confirming stellar evolutionary tracks 

of our K-G giants. Error bars of 

parallax shown in plot 2B were 

calculated via derivations from Mg 

calculations using distance (with error 

equating to 2.17 * (distance 

error/distance)) with distance being in 

parsecs. Spectral types were plotted as 

regions by color (Mamajek 2022).  

Raw 
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Initial analysis of this set of 21 giants reveals most seem to lie in the red clump within the 

HB, with two yellow stars left of the red clump possibly also being in this evolutionary stage but 

appearing bluer due to larger mass values. Beyond this noticeable clump, there appears to be 

several stars ascending the RGB and AGB branches (ascent being labeled as those branches’ 

“bump”), several stars lying in the AGB, and some approximately near the RGP tip. Evolutionary 

stage identifications can be seen in Table 2. Notably, one object seems to border-line subgiant 

phase and RGP bump. The significant reddening of the objects seen in the inherent B-R values 

versus raw B-R values is further demonstrated by the clear stretch down and to the right of the red 

clump objects in plot 2A.  

 Identification of luminosity error as parallax error bars for absolute magnitude values 

revealed high uncertainty for objects around the AGB region and RGP tip, likely due to these 

objects’ significant distance from us. The observation of some of our objects lying near the RGP 

tip and most lying in the HB red clump aligns with previous findings that not only found most 

lithium enriched giants to lie in the red clump, but that hypothesized the lithium enhancement 

origin of these stars is thus at the RGB tip during helium flash (Deepak & Reddy 2019). 

Furthermore, the HR plot provides evidence in support of all 21 IR excess objects being giants 

despite significant Balmer emission, although prompting more investigation into object 

AWI0005yjf, which appears border-line main sequence. 

2.1.2  Estimating Surface Gravity via Absolute Magnitude and  

Stellar Evolutionary Tracks 

 Using corrected Mg values, surface gravity (log(g)) values were derived for each K-G giant. 

Given the relationship between Mg and luminosity (L) with solar brightness (𝑀𝑔☉ )and solar 

luminosity (𝐿☉): 
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𝑀𝑔 − 𝑀𝑔☉ =  −2.5 ∗ log (
𝐿

𝐿☉
) (8) 

we can obtain 
𝐿

𝐿☉
.  Using the 

𝐿

𝐿☉
 value expressing each objects’ luminosity in terms of solar 

luminosity, we can obtain a radius value in meters for each object using the Stefan-Boltzmann law 

relating luminosity, radius (R), and temperature (T): 

𝐿 =  4𝜋𝑅2𝜎𝑇4   (9) 

Incorporating our value of 
𝐿

𝐿☉
, Teff for temperature in Kelvin (K), Stefan-Boltzmann 

constant 𝜎 = 5.67E-8 
𝑊

𝑚2𝐾4
, and given that L☉ is approximately 3.8E26 Watts (W), we can thus 

solve for the radius value in meters (m). Using the equation to calculate surface gravity (g): 

g =  
𝐺𝑀

𝑅2     (10) 

we can input our radius value in centimeters (cm), the gravitational constant G = 6.67E-8 𝑑𝑦𝑛𝑒 ∗

𝑐𝑚2

𝑔2  (in CGS units), and solar mass M☉ = 2E33 grams (g) to find the surface gravity of each object. 

Using the stellar evolutionary track (Figure 1), upper and lower mass estimates in terms of solar 

mass were quantified for every object using log(Teff), a proxy for luminosity identifying placement 

on the HR diagram. Each mass estimate was used to calculate an upper and lower surface gravity 

g estimate per object. Finally, taking the log(g) obtains our upper and lower logarithmic surface 

gravity values for our giants, which can be seen in Table 2. For later calculations (i.e. involving 

spectral analysis with input parameters), the average of the upper and lower log(g) values was used 

as the determined surface gravity for each object. 
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Table 2: IR Excess K-G Giant Classifications via HR Diagrams. Effective surface temperature (Teff) and 

surface gravity (log(g)) values were constrained given spectral typing via Disk Detective, HR diagram 

location, and using stellar evolutionary model estimates for mass. Mass profile (low-mass, intermediate-

mass, or massive) was documented for each object as well for stellar evolutionary track considerations. 

Differentiation between AGB and HB or RGB was enhanced by referencing Yerkes spectral classification 

values (Est Lum Class), I being most luminous and attributed to supergiants (i.e. AGB region stars), II 

attributed to bright giants, III attributed to normal giants, and IV attributed to subgiants.  

 

2.2  Accounting for Radial Velocity 

It is important to account for doppler shift due to radial velocity when evaluating 

abundance and metallicities using pyMOOG (see section 2.3.2.2 and 2.4.1), as pyMOOG identifies 

these values using synthetic spectral templates that must be matched with our unshifted spectra. 

Radial velocity refers to velocity of the object along our line of sight. Negative radial velocity is 

indicated by blue-shifted wavelengths, meaning the star is moving toward the observer. Positive 

 

Zoo ID 
 

  

Spectral  

Type 
 

  

Teff  (K) 
 

 

 

Low Est 

log(g) 

 

 

 

High Est  

log(g) Class 
 

  

 

 

Location Notes 
Est 

Lum 
Class 

 

 

 

Mass Profile 

 

 

Low Est 

Mass 

(M☉) 

 

 

High Est 

Mass 

(M☉) 

AWI0005d61 G2 6000 2.33 2.55 HB HB III 

 

Intermediate 1.5 2.5 

AWI0000wqx G5 5500 2.44 2.67 HB HB III Intermediate 1.5 2.5 

AWI0000qxd G9 5380 2.47 2.69 HB HB (red clump) III Intermediate 1.5 2.5 

AWI000621k G9 5250 1.35 1.57 AGB AGB bump I Intermediate 1.5 2.5 

AWI0005yjf K0 5500 3.39 3.39 RGB RGB bump/subgiant IV Intermediate 1.5 1.5 

AWI000004g K0 5270 2.55 2.77 HB HB (red clump) III Intermediate 1.5 2.5 

AWI0005dlh K0 5270 2.54 2.76 HB HB (red clump) III Intermediate 1.5 2.5 

AWI0000eg6 K0 5270 2.62 2.84 HB HB (red clump) III Intermediate 1.5 2.5 

AWI00001q1 K0 5270 2.51 2.73 HB HB (red clump) III Intermediate 1.5 2.5 

AWI00061yb K0 5270 0.80 0.93 AGB AGB/AGB bump I Intermediate 3.0 4.0 

AWI0000hat K1 5170 2.52 2.74 HB HB (red clump) III Intermediate 1.5 2.5 

AWI0005yix K1 5170 2.47 2.69 HB HB (red clump) III Intermediate 1.5 2.5 

AWI0000mh2 K2 5100 2.41 2.63 HB HB (red clump) III Intermediate 1.5 2.5 

AWI0005xy6 K0 5270 0.81 0.94 AGB AGB/AGB bump I 
Intermediate 

3.0 4.0 

AWI0005zgp K3 5000 2.49 2.67 HB HB (red clump) III/IV Low 1.0 1.5 

AWI0002b9u K5 4500 1.43 1.65 RGB RGB clump III Intermediate 1.5 2.5 

AWI0000t35 K5 4250 0.74 0.82 RGB/AGB AGB/RGB tip I Intermediate 5.0 6.0 

AWI0005yly G0e 5930 1.35 1.47 AGB AGB I Intermediate 3.0 4.0 

AWI00059y8 G9e 5380 2.50 2.73 HB HB (red clump) III Intermediate 1.5 2.5 

AWI0005dj7 K0e 5270 2.61 2.84 HB HB (red clump) III Intermediate 1.5 2.5 

AWI0005c3y 
  

K0e 
  

5270 
 

2.42 
 

2.64 
 

HB 
  

HB (red clump) 
 

III 
 

Intermediate 1.5 
 

2.5 
 



 23 

 

radial velocity is indicated by red-shifted wavelengths, meaning the star is moving away from the 

observer.  

Doppler shifts were evaluated via algorithm constructed using specutils python packages 

to analyze differences between expected spectral wavelength for notable reference lines versus the 

observed spectral wavelength the absorbance line occurred at (Specutils Developers 2024). An 

example spectrum with doppler shift corrections applied is seen in figure 3. Doppler shift and 

therefore radial velocity were calculated via their relationship with the observed ( 𝜆𝑜𝑏𝑠 ) and 

reference wavelengths (𝜆), as well as the speed of light c (3E8 km/s) in the following way: 

Radial Velocity Shift =  
(𝜆𝑜𝑏𝑠 − 𝜆)

𝜆
∗ 𝑐   (11) 

 

Average doppler shift across notable 

reference lines for each object was used to 

quantify doppler shift due to radial velocity. 

Table 3 reveals all our objects’ mean doppler 

shift values and doppler shift status. The full 

doppler shift protocol can be seen in 

Appendix A. 

 
Table 3: Evaluation of Mean Doppler Shift for Each 

Object.  Mean doppler shift and associated standard 

deviation for each object was documented. Standard 

deviation for each object compared the doppler shift 

values for each reference line per object. 

Noticeably, the deviation is sometimes larger than 

the mean shift, however this mean shift is very small 

compared to the scale of wavelength ranges covered 

by each object’s spectrum. Thus, radial velocity 

seems to have little effect in shifting the objects, 

though their blue and red shift statuses were noted 

in the table too. 

Zoo ID 

 

  

 

Mean  

Doppler Shift 

  

Shift Status 

 

  

AWI0005d61 -4.77E-5 ± 5.24E-5 Blue-Shifted 

AWI0000wqx 3.16E-5 ± 1.09E-4 Red-Shifted 

AWI0000qxd -3.50E-5 ± 5.15E-5 Blue-Shifted 

AWI000621k 5.65E-3 ± 6.47E-3 Red-Shifted 

AWI0005yjf -5.37E-7 ± 5.14E-5 Blue-Shifted 

AWI000004g 1.30E-5 ± 5.58E-5 Red-Shifted 

AWI0005dlh 1.18E-5 ± 1.01E-4 Red-Shifted 

AWI0000eg6 -7.10E-6 ± 1.07E-4 Blue-Shifted 

AWI00001q1 -4.06E-6 ± 1.05E-4 Blue-Shifted 

AWI00061yb 8.62E-3 ± 9.12E-3 Red-Shifted 

AWI0000hat 2.26E-5 ± 5.00E-5 Red-Shifted 

AWI0005yix -3.81E-5 ± 4.98E-5 Blue-Shifted 

AWI0000mh2 -9.37E-5 ± 7.65E-5 Blue-Shifted 

AWI0005xy6 8.38E-3 ± 9.07E-3 Red-Shifted 

AWI0005zgp -1.48E-5 ± 1.06E-4 Blue-Shifted 

AWI0002b9u 1.42E-5 ± 5.00E-5 Red-Shifted 

AWI0000t35 -3.81E-5 ± 5.24E-5 Blue-Shifted 

AWI0005yly 6.93E-5 ± 5.00E-5 Red-Shifted 

AWI00059y8 -2.29E-5 ± 1.21E-4 Blue-Shifted 

AWI0005dj7 2.36E-5 ± 8.84E-5 Red-Shifted 

AWI0005c3y 
  

-3.99E-5 ± 9.93E-5 
  

Blue-Shifted 
  



 24 

 

(A)   

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B) 

  

  

  

 

 

Figure 3: Comparison of Original and Doppler Shifted Spectra for AWI0005zgp. 3A reveals comparisons of 

original and doppler shifted spectra for this object in three wavelength ranges centered around ionized calcium 

lines, neutral magnesium line, and neutral sodium line, respectively. The observed peak centers are identified in 

the legend, and gray vertical lines plotted represent the expected location of the corresponding reference line. 

3B exemplifies differences between expected (reference line) and observed (nearest line) wavelengths of notable 

reference wavelength in stellar spectra of each object. Expected reference wavelengths include those of neutral 

calcium, neutral magnesium, and neutral sodium with values obtained via the National Institute of Standards and 

Technology (NIST)’s atomic spectra database (Wright 2002). Hydrogen lines were forgone as reference lines 

due to some objects having significant Balmer emission. 
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2.3  Deriving Lithium Abundance 

 Abundance of elements like lithium in stellar spectra are determined using equivalent 

widths that measure the strength of the absorption line at the specific wavelength associated with 

the element. Essentially, the strength of the absorption line depends on the number density of 

absorbing atoms or ions in the right initial state in the stellar atmosphere and their interaction with 

photons at specific wavelengths. The lithium abundance determination protocol of this 

investigation began with different approaches of evaluating the equivalent width of the lithium 

absorption line to determine robust lithium abundance measurements. 

2.3.1  Spectral Line Equivalent Width Evaluation 

 Equivalent widths (EW) were evaluated through several approaches - via manual 

calculations with gaussian fits to the line and automatic calculations constructed using python’s 

specutils functionality. Comparisons between manual and automatic calculations provide a check 

of the viability of automatic spectral analysis features in the specutils package. During this process, 

spectra were also reviewed for usability. Giants with indistinguishable or highly blended lithium 

lines were removed from the data set. 

2.3.1.1 Manual Equivalent Width Evaluation via Specutils Gaussian Fit 

EWs were first evaluated manually at the lithium line at 6707.8 Angstroms (Å) for each K-

G giant. A continuum was fit to the spectra, and then the spectra proceeded to be normalized by 

dividing over the continuum. A Gaussian fit was applied to the lithium line, which was integrated 

over to obtain EW. The continuum and Gaussian fit process were completed utilizing spectral 

fitting tools from the specutils Python package (see Figure 4). Visualization of the lithium 

absorption line in relation to nearby lines like that of calcium served as a necessary check to 
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evaluate likelihood of lithium line blending that would leave it unviable for lithium abundance 

determinations. This usability checks identified AWI00061yb, AWI0005xy6, AWI0005yly and 

AWI0000mh2 as being unviable for lithium abundance determinations, reducing our giant set to 

17 stars.  

(A)         (B) 

 
Figure 4: Spectral Fitting Process for AWI0000eg6. 4A displays the continuum fit around lithium and calcium 

absorption lines for this K0 giant, generated by fitting a high order Hermite polynomial to the spectral data points 

via specutils. 4B displays the continuous Gaussian fits of lithium and calcium absorption lines for the same 

object. Spectra displayed do not have radial velocity shifts applied. 

 

2.3.1.2 Automatic Equivalent Width Evaluation via Specutils 

Following manual calculation and integration of the lines’ EWs, the specutils automatic 

EW function was used. Upon fitting a 200-degree Hermite spline model, the formatted, normalized 

spectra of each giant was given as an input into the EWauto function, as well as identified left and 

right wavelength boundaries for the lithium line. These were compared with the manually 

calculated EWs as a form of verification (see Table 4). 
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2.3.2  Lithium Abundance Evaluation 

These different approaches of evaluating the EWs of the lithium absorption lines of the IR 

excess K-G giants allowed for the identification of indistinguishable lithium absorption lines, 

narrowing this set to 17 giants. With this narrowed set, several lithium abundance protocols were 

explored to quantify each giants’ levels of lithium enrichment. 

2.3.2.1 Manual Lithium Abundance Evaluation via Gaia-ESO Curve of Growth  

Using the lithium equivalent width values and spectral parameters including Teff and 

log(g), lithium abundances (A(Li)) was first evaluated manually using FGK standard local 

thermodynamic equilibrium (LTE) curves of growth generated from the Gaia—ESO survey (Gaia 

Collaboration et al. 2019). LTE models constructed for FGK stars simulate the physical conditions 

(i.e. Teff, log(g), etc.) of such stars, generating synthetic spectra for various lithium abundance 

inputs. By plotting the observed lithium lines’ EWs against the physical conditions properties of 

various synthetic spectra of different A(Li) values, the best lithium abundance value can be 

generated (see Figure 7). Curve of growth evaluation attached in Appendix B. Although useful, 

unfortunately this kind of curve of growth method relies on assumptions of LTE and one-

dimensional modeling of stellar atmospheres, potentially misrepresenting the complex conditions 

of real FGK stars, particularly those possibly involved in short-lived lithium enrichment 

periods. Additionally, this manner of abundance evaluation assumed solar metallicity as a [Fe/H] 

input value for all objects, as this method preceded the creation of a metallicity evaluation 

algorithm.  
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Figure 5: Function Fit of Gaia-ESO FGK Curve of Growth for AWI0000eg6. This curve of growth was 

generated using log(g) = 2.5, Teff = 5250 K, A(Li) measurements attributed to those physical parameters 

via Gaia-ESO survey calculations, and an input EW of around 520 mÅ. Plotted function fit was applied to 

derive A(Li) for K-G giants by lithium line EW. A(Li) values are expressed in units of dex, referring to a 

logarithmic scale that expresses abundances like lithium relative to hydrogen. log(EW) is assumed to 

grow with the logarithmic value of the column density, or abundance, of lithium (log(A(Li)). We assumed 

this regime when generating a positive correlation quadratic fit when interpolating the curve of growth. 

This assumption was determined to be less accurate after full metallicity calculations (see section 2.4). 

Best abundance calculation via curve of growth can be seen in Appendix B.  

 

2.3.2.2 Automatic Lithium Abundance Evaluation via pyMOOG 

Spectral synthesis software adapted for python (pyMOOG) was used to construct an 

automatic lithium abundance generating algorithm. Approaching lithium abundance calculations 

using pyMOOG offered a novel method of spectral analysis related to K-G giant lithium 

enrichment, with improved model-fitting and abundance analysis automation, as well as flexibility 

in customization of these procedures (Jian 2023). pyMOOG’s abfind function force-fits 

abundances to EWs, taking specific input parameters and automatically outputting numerous 

values including abundance in units of dex (see Figure 6). The benefit of using the abfind function 

is that it allows for the A(Li) calculation of multiple wavelengths unlike the manual curve of 

growth function fits. In this case, beyond the 6707.8 Å line, the 6103.6 Å lithium line was 
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investigated as well (though significant blending of this line in most of our spectra ruled this 

lithium line as less reliable). Results of our automatic abundance scheme were compared with 

manually calculated lithium abundances as a form of verification (see Table 4). The qualifications 

for whether a star was identified as lithium rich or super lithium rich relied on the abundance value; 

A(Li) > 1.5 dex was classified as lithium rich, while A(Li) > 3.2 was classified as super lithium 

rich (Gao et al. 2022).  

     (A)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     (B) 

 

 

 

 

Figure 6: Input and Output of pyMOOG Automatic A(Li) Function (abfind). 6A denotes the structure of 

pyMOOG’s abfind function via Jian’s pyMOOG documentation, which requires several input parameters. 5000 

is an inputted Teff, 4.0 is inputted log(g), 0.0 is inputted metallicity, and line_list must be an imported file with: 

unique identifier for spectral line (ID), excitation potential of the lower energy level of the transition associated 

with the spectral line in units of eV (EP), the log of the oscillator strength (log(gf)), Van der Waals damping 

(C6), dissociation energy (D0), and equivalent widths obtained from the Gaussian fits in units of mÅ (EW). 6B 

denotes an example output of abfind for AWI0000hat, which is stored as a dictionary with these outputs: ID, EP, 

(log(gf)), EW, the log of the residual width of the line (logRWin), abundance in dex (abund), and the average 

abundance difference (delavg).  
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Table 4: Manual vs. Automatic EW and A(Li) Evaluations at 6707.8 Å to Determine Lithium Enrichment in 17 

IR Excess K-G Giants. Manual EW values were generated via integration over gaussian fit, auto EW values were 

generated via autoEW specutils functionality, manual A(Li) values were generated via Gaia-ESO LTE curves 

of growth for FGK stars, and auto A(Li) values were generated via pyMOOG abfind functionality. Li-rich 

qualifiers are highlighted in yellow while super Li-rich qualifiers are highlighted in orange. Ultimate lithium 

enrichment qualifications are those determined via pyMOOG indicated in column 5. Auto EW function was 

entirely unsuccessful for AWI000621 due to weak spectral lines; A(Li) values for this giant used manual EW 

value only. 
 

2.4  Deriving Metallicity 

Metallicities were found by utilizing pyMOOG as well, to generate the best-fit spectral 

template per spectra. This method of calculating metallicity with pyMOOG, as opposed to 

photometrically estimated metallicities such as those accessible from Gaia databases, is more 

reliable for stars with IR excess. Photometric estimates can be affected by many factors relating to 

IR excess in spectra. Circumstellar material that could be altering observed flux, spectral 

degeneracy from IR excess K-G giants mimicking spectral features of other stars, and variability 

in the luminosities of IR excess K-G giants possibly undergoing short-lived luminous, lithium-

 

Zoo ID 

 

  

 

Gaussian Fit  

EW (mA) 

  

Specutils 

EWauto (mA) 

  

Gaia-ESO CoG 

 A(Li) (dex) 

  

pyMOOG abfind 

A(Li) (dex) 

  

AWI0005d61 273.843 230.119 2.893 3.812 

AWI0000wqx 404.435 361.265 3.797 3.364 

AWI0000qxd 265.471 244.146 3.159 3.542 

AWI000621k 399.763 384.650 3.623 4.984 

AWI0005yjf 84.381 77.526 1.325 1.917 

AWI000004g 482.669 454.455 4.052 3.414 

AWI0005dlh 488.299 446.545 4.080 4.080 

AWI0000eg6 519.426 495.552 4.229 4.492 

AWI00001q1 437.164 405.637 3.964 3.799 

AWI0000hat 463.437 422.654 3.660 2.946 

AWI0005yix 522.958 501.804 3.977 3.952 

AWI0005zgp 613.965 559.934 4.126 3.358 

AWI0002b9u 406.869 360.576 2.610 1.780 

AWI0000t35 723.806 693.645 4.890 3.545 

AWI00059y8 713.407 621.428 5.303 4.236 

AWI0005dj7 237.072 195.114 2.809 2.452 

AWI0005c3y 
  

441.448 
  

391.102 
  

3.847 
  

3.247 
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producing phases all can contribute to inconsistent photometric estimates. Thus, Gaia photometric 

estimates’ accuracy is doubtful given the IR excess nature of these objects, making spectroscopic 

analysis techniques via packages like pyMOOG offer a more direct and reliable means of 

determining metallicity by directly analyzing detailed spectral features. 

2.4.1  Generating Synthetic Spectra Using pyMOOG 

         Synthetic spectra using every available metallicity value in the pyMOOG data banks were 

generated with the stellar parameters (Teff, log(g)) for each giant (see Figure 7). Notably, the 

previously calculated doppler shift values for each spectrum were an input parameter for the 

synthetic spectra for improved accuracy in generation given stellar parameters. By comparing the 

fit of the synthetic spectra to the observed, the synthetic spectra with the metallicity value most 

likely correlated with each giant was found using a chi-squared minimization scheme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Observed vs. Synthetic Spectrum for AWI0005d61 in the Wavelength Range 6000-6500 Å. Synthetic 

spectra were generated using MARCS model atmosphere data, with input parameters of nearest Teff, 

nearest log(g) value, instrumental resolution, and minimum and maximum wavelength. The algorithm then 

steps through different metallicity values that create the synthetic spectra with the most agreement. 
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pyMOOG data banks utilize either MARCS (Model Atmospheres in Radiative and 

Convective Scheme) or Kurucz model atmosphere data to generate synthetic spectra. 

Experimenting was done between these data values used by pyMOOG to construct the synthetic 

spectra, given slight differences in the model atmospheres generated by each. MARCS data is 

computed using a radiative-convective scheme assuming LTE and considering both radiative and 

convective energy transport in stellar atmospheres. Although this scheme is beneficial in 

accurately modeling the atmospheric structure and temperature profiles of giants, the 

computational complexity of the scheme makes it more inefficient. Kurucz, or ATLAS9, models 

are computed using a one-dimensional plane-parallel approach and assume LTE. Although Kurucz 

models provide an efficient means of developing a comprehensive grid of synthetic spectra that 

considers atomic and molecular line profiles of different star types, its one-dimensional approach 

may not capture the full complexity of convective processes in giant stars. Ultimately, analysis 

was conducted using MARCS data in anticipation of more accurately generated synthetic spectra 

to identify optimal metallicities for each star.  

2.4.2  Developing the Chi-Squared Minimization Scheme 

Although it was the flexible nature of pyMOOG that allowed for the construction of more 

adept pyMOOG algorithms in this investigation, like automatic A(Li) calculations and generation 

of synthetic spectra for metallicity evaluation as just described, the adaptability of pyMOOG and 

limited documentation given its recent construction led to much troubleshooting in evaluating 

pyMOOG’s ability to accurately identify metallicity via the chi-squared minimization scheme. Our 

scheme found a chi-squared value that showed the goodness of fit between observed and synthetic 

spectra; our chi-squared values were the normalized different between observed and synthetic 

spectral template fits (see Appendix C). Due to the variability within each giants’ spectra across 
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the entire range of wavelengths, the chi-minimization scheme was constructed to analyze 

metallicities across 3 distinct wavelength ranges: 5000-5500 Å, 5500-6000 Å, and 6000-6500 Å 

(see an example in Figure 8). The wavelength range with the lowest chi-squared value, indicating 

least discrepancy between observed and synthetic spectra and thus the best fit, was used to identify 

the truly best metallicity values for each object.   

The chosen wavelength ranges purposely exclude significant absorption lines with 

potential noise that could be affecting the chi-squared evaluation, including telluric lines. Telluric 

lines are absorption or emission features that arise due to Earth’s atmosphere that could 

contaminate stellar spectra, including an oxygen line at 6850 Å. These ranges also excluded 

significant features such as the carbon-hydrogen G-band around 4300 Å and titanium-oxide dips 

around 5000 Å to allow for better analysis of the spectral features of interest (lithium and other 

metal lines for accurate metallicity evaluation). Unfortunately, MARCS model atmospheres only 

have surface gravities in increments of 0.5; thus, the metallicity chi-minimization scheme had to 

find the nearest MARCS surface gravity to the actual calculated surface gravity, although 

discrepancies are unlikely given surface gravity is likely accurate +/- 0.5. 
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Figure 8: Chi-squared Values vs. Metallicities for AWI0005zgp. Chi-squared goodness of fit test, often used in spectral 

analysis, compares goodness of fit between synthetic and observed spectra. Degrees of freedom are therefore 

determined via the number of flux values minus 1, as observed and model flux values are compared across the range 

of wavelengths, with each observed flux value contributing one degree of freedom to the chi-square calculator. As 

shown above, for object AWI0005zgp, least discrepancy between observed and synthetic flux values was in 

wavelength range 3 (6000-6500 Å), with the identified best metallicity value in that range being identified as optimal 

metallicity for this object. Error was found by finding the standard deviation between best metallicities of each 

wavelength range.  

 

2.5  Deriving Projected Rotational Velocity via Iron Lines’  

Full-Width Half Max Values 

 

Projected rotational velocities were investigated for these lithium-rich IR excess giants to 

evaluate existing hypotheses related to the origin of lithium enrichment in these stars. Project 

rotational velocities give an idea of whether stars experienced or are experiencing spin-up due to 

the deposition of angular momentum compared to expected rotational velocities of stars at these 

evolutionary stages. Generally, younger stars are expected to rotate faster due to angular 

momentum conservation during the formation process, while older stars may have experienced 

angular momentum loss through stellar winds or magnetic braking. Thus, projected rotational 
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velocity values larger than expected could insinuate spin-up due to internal angular momentum 

redistribution processes or external engulfment.  

2.5.1  Determining Significant Iron Lines 

A common approach to calculating rotational velocities for objects via spectra is using the 

full width half maximum (FWHM) values for several iron lines. Iron lines are often well-defined 

in stellar spectra and indicative of rotational velocity via broadening. Stellar rotation affects iron 

line width through doppler broadening; as surface material moves toward or away from the 

observer, shifts in the wavelengths of absorbed iron wavelengths can be quantified via iron lines’ 

FWHM. Thus, FWHM measurements of iron lines provide a robust measure of line broadening 

contributions via rotational velocity.  

Using known neutral and ionized iron lines documented by Holanda et al., our lithium-

enriched IR excess K-G giants’ spectra were analyzed for substantial iron absorbance. Evaluation 

of the spectra revealed four prominent iron lines as having significant lines for FWHM calculations: 

neutral iron (Fe I) at 5916.25 Å, Fe I at 6188.00 Å, Fe I at 6240.65 Å, and Fe I at 6574.23 Å. These 

prominent absorption lines are exemplified in figure 9. 
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Figure 9: Determination of Significant Iron Lines for AWI0000qxd Spectra. Lines appear to be somewhat 

weak. Differences in FWHM between iron lines are visually apparent based on this plot, emphasizing 

uncertainty in the average FWHM value derived from iron lines of each spectra.  

 

2.5.2  FWHM and Project Rotational Velocity Calculation 

FWHM calculations were done using specutils’ FWHM function, after accounting for each 

spectrum’s doppler shift. This function (specutils.analysis.fwhm), with given input parameters of 

spectrum and regions to evaluate, finds the maximum of the spectrum, locates the point closest to 

half-maximum on either side of the maximum, and measures the distance between (Specutils 

Developers 2024). These FWHM values are then used to estimate the projected rotational velocity 

vsin(i), where v is the rotational velocity, and i represents the inclination angle of the rotating star’s 

axis to the line of sight. This computation is done given the following formula: 

𝑣𝑠𝑖𝑛(𝑖) = (
√(𝐹𝑊𝐻𝑀)2−(𝐹𝑊𝐻𝑀𝑒𝑟𝑟𝑜𝑟)2

𝜆0
) ∗ (

𝑐

2
)   (12) 
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where 𝜆0 represents the central wavelength of the spectral line, 𝐹𝑊𝐻𝑀𝑒𝑟𝑟𝑜𝑟  represents 

instrumental broadening, and c is the speed of light. This formula is derived from the relationship 

between the FWHM of a spectral line and the rotation of the emitting source: 

𝐹𝑊𝐻𝑀 = (
2𝑣𝑠𝑖𝑛(𝑖)

𝑐
) ∗ 𝜆0   (13) 

Projected rotational velocities vsin(i) must be used as proxies for rotational velocities v 

because the inclination angle i cannot be directly determined from the spectrum, thus projected 

rotational velocity values consider potential observational biases and instrumental effects. The 

calculated projected rotational velocities for each lithium-rich object are visualized in figure 10. 

The average projected rotational velocity across all iron lines was used as the final determination 

of projected rotational velocity. Full specutils protocol to evaluate both can be seen in Appendix 

D.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Projected Rotational Velocities (vsin(i)) at Each Iron Line for Each Lithium-Rich K-G Giant. Heatmap 

plotting feature used to visualize discrepancies and variations in projected rotational velocities across iron lines and 

spectra. Projected rotational velocities are in units of kilometers per second. 

 

 

 



 38 

 

Chapter 3: Results & Discussion 

3.1 Analysis of Our K-G Giants’ Spectra-Derived Properties 

3.1.1 Lithium Abundance Evaluation 

As displayed in table 3 following the automatic lithium abundance evaluation via specutils 

algorithms, 13 of our objects were identified as super lithium-rich and 4 as lithium-rich. These 

odds significantly contrast existing statistical estimates on prevalence of lithium enrichment in K-

G giants. Large survey programs offer statistics emphasizing the rarity of lithium-rich giant 

occurrence: Gaia-ESO survey predicts around 0.9% of all normal giants will have A(Li)> 1.5 dex 

(Casey et al. 2016), RAVE survey predicts 0.8% (Ruchti et al. 2011), and SDSS and GALAH 

predict 0.2-0.3% (Martell & Shetrone 2013). 12% of our IR excess giant candidates were lithium-

rich, emphasizing that approaching lithium abundance investigations from an IR excess 

perspective seems to offer higher likelihood of identifying giants undergoing peculiar, short-lived 

periods of lithium enrichment related to generating IR excess. 

3.1.2  Metallicity Evaluation 

The chi-minimization scheme method of calculating metallicity with pyMOOG serves to 

provide more reliable metallicity values than photometrically estimated metallicities accessible 

from Gaia databases. To quantify this, the pyMOOG generated metallicities, and associated chi-

squared values, were compared to available Gaia metallicity values (see Table 5). Metallicity 

values are expressed as a logarithmic ratio of iron to hydrogen abundance [Fe/H], providing a 

convenient way to compare the metal content of stars with respect to our sun (solar metallicity = 

[Fe/H]☉). Negative [Fe/H] values generally indicate metallicities less than [Fe/H]☉, with positive 

[Fe/H] values indicating a metallicity greater than [Fe/H]☉. Interestingly, the metallicities derived 
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via pyMOOG reveal that every lithium-rich object is somewhat metal-poor, displayed by their 

negative optimal metallicity value. The lack of metal abundance in these stars, unfortunately, 

dampens the validity of several lithium enrichment process hypotheses thought to be correlated 

with high metallicity values, such as dwarf star or planetary engulfment. 

  

Table 5: pyMOOG Derived vs. Other Surveys’ Photometric [Fe/H] Estimates. Comparisons reveal some agreement, 

although large discrepancies for certain objects. Notably, objects AWI000621k and AWI0005zgp have the most 

discrepancy, which may be related to the quality of these objects’ spectra; AWI000621k seems to have lower definition, 

lower resolution spectra and absorption lines compared to the other objects. Gaia photometric metallicity estimates 

were not available for every object, neither were LAMOST, APOGEE, or RAVE estimates, so comparisons were 

made when applicable. 

 

3.1.3  Rotational Velocity Evaluation 

As mentioned in section 2.5.2, the average projected rotational velocity across all iron lines 

was used as the final determination of projected rotational velocity. Analysis revealed that FWHM 

were not very consistent across iron lines, especially for AWI000621k whose peaks seemed 

 

Zoo ID 

  

pyMOOG [Fe/H] 

  

Gaia [Fe/H] 

  

 

LAMOST [Fe/H] 

 

APOGEE [Fe/H] 

 

RAVE [Fe/H] 

AWI0005d61 -0.25 ± 0.29 -0.20 

 

 

  

AWI0000wqx -0.75 ± 0.38  
   

AWI0000qxd -0.50 ± 0.25  
   

AWI000621k -2.00 ± 0.29 0.05   -0.37 

AWI0005yjf -1.00 ± 0.29 -0.15    

AWI000004g -0.75 ± 0.38  

  

-0.39 ± 0.01 

 

AWI0005dlh -0.50 ± 0.25 -0.57    

AWI0000eg6 -0.75 ± 0.43 -0.20 

 

-0.12 ± 0.03 

 

-0.11 ± 0.01 

 

AWI00001q1 -0.75 ± 0.14  
   

AWI0000hat -0.25 ± 0.38  
   

AWI0005yix -0.50 ± 0.25  
-0.35 ± 0.04   

AWI0005zgp -0.75 ± 0.38 0.01 -0.05 ± 0.03   

AWI0002b9u -0.50 ± 0.58 0.27    

AWI0000t35 -2.00 ± 0.00  
   

AWI00059y8 -0.50 ± 0.29  
-0.58 ± 0.02   

AWI0005dj7 -1.50 ± 0.29 -0.17 -0.56 ± 0.05   

AWI0005c3y 
  

-0.75 ± 0.14 

  

-0.54 

  

-0.33 ± 0.07   
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generally smaller than other spectra - possibly attributed to the lower quality of this specific 

object’s CASLEO spectra. Checking specutils automatic determination protocols could assist in 

narrowing the FWHM values for each iron line; a gaussian fit approach to finding the FWHM 

value could prove to be more accurate and precise too. The determined average FWHM and 

projected rotational velocity values can be seen in Table 6. Although the evolution of angular 

momentum is not entirely known in the astrophysics community, fast rotation is ubiquitous among 

massive stars, with projected rotational velocity thought to increase for intermediate mass to 

massive stars as they evolve (Sun et al. 2021). Yet the projected rotational velocities associated 

with our set of K-G giants would classify them all as rapid rotators, defined by researchers 

Medeiros & Mayor as stars with vsin(i) > 8 km/s (Mederios et al. 1999). With this guideline, our 

objects are very rapidly rotating, exceeding previous literatures’ fraction of rapidly rotating 

intermediate-mass field giant stars in a sample of field giant stars; 1.3% of Medeiros & Mayor’s 

evolved red giant sample exhibited rapid rotation, while less than 0.4% of Sun et al.’s red giant 

population qualifying as rapidly rotating.  

Evidently, this statistical comparison is incredibly biased given Medeiros worked with a 

population of 432 giants while Sun et al. worked with a population of almost 40,000. However, 

the likelihood of identifying a group of around 20 K-G giants, all displaying significant IR excess 

and falling in a similar region of the HR diagram stellar evolutionary track, as also exhibiting rapid 

rotation raises the question on if our approach to the lithium enrichment dilemma by first 

evaluating IR excess giants allowed for better understanding of processes involved in lithium 

enrichment. It is impossible to make definitive conclusions about the rapid rotation associated with 

these objects without higher resolution spectra.  
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Zoo ID 

  
Avg FWHM (Å) 

  
Avg vsin(i) (km/s) 

  

AWI0005d61 3.309 ± 0.123 79.263 ± 0.543 

AWI0000wqx 3.677 ± 0.235 89.106 ± 0.654 

AWI0000qxd  3.309 ± 0.346  80.198 ± 0.765 

AWI000621k 0.848 ± 0.457 20.358 ± 0.877 

AWI0005yjf 3.678 ± 0.568 88.638 ± 0.988 

AWI000004g 3.677 ± 0.679  88.096 ± 1.099 

AWI0005dlh 3.310 ± 0.789  79.735 ± 1.210 

AWI0000eg6 3.678 ± 0.890 88.637 ± 1.321 

AWI00001q1     3.677 ± 0.901     88.100 ± 1.432 

AWI0000hat 3.678 ± 0.912 88.634 ± 1.543 

AWI0005yix 3.677 ± 0.923 88.626 ± 1.654 

AWI0005zgp 3.678 ± 0.935 88.637 ± 1.765 

AWI0002b9u 3.678 ± 0.946 88.635 ± 1.877 

AWI0000t35 3.678 ± 0.957 89.121 ± 1.988 

AWI00059y8 3.678 ± 0.968 88.607 ± 2.000 

AWI0005dj7 3.311 ± 0.000 79.751 ± 0.000 

AWI0005c3y 
  

3.310 ± 0.000 
  

79.284 ± 0.000 
  

 

Table 6: Average FWHM and Average vsin(i) Values for Lithium-Rich IR Excess Giants. Standard deviations 

represent deviations of FWHM and vsin(i) values between selected iron lines that visually appeared to have rather 

large discrepancies. 

 

3.2  Investigating Correlations Between Spectra Properties 

and Lithium Abundance 

To assess correlations between various spectra properties, empirical associations between 

properties were visually analyzed via plots. Correlations were investigated between lithium 

abundance and metallicity, projected rotational velocity, or IR excess (see Figure 11), as well as 

between IR excess and metallicity or projected rotational velocity (see Figure 12). These objects 

have all been quantified as having IR excess via difference in W1-W4 bands and lithium-rich or 

super lithium-rich via A(Li) value (see Table 7). Already, this correlation is unique, as IR excesses 

are rare in the general K-giant population, as are lithium abundances, suggesting the two 

parameters are related (Kumar et al. 2015).  
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3.2.1  Correlations Between Lithium Abundance and Calculated Stellar 

Parameters 
 

Empirical correlations were explored between A(Li) and calculated stellar parameters 

metallicity, projected rotational velocity, and IR excess (figure 11). The plots reveal interesting 

trends; plot 11A and 11B suggest that this set of K-G giants, although displaying varying levels of 

lithium-richness, tend to have metallicities and projected rotational velocities in the same range of 

values. This alludes to similar qualities regarding these objects’ locations on the stellar 

evolutionary track, and that these giants may have been observed during similar short-lived 

processes associated with excessive lithium production/retained lithium abundance at the surface 

of the star. Relationships between stellar parameters and evolutionary track location is explored 

further using object identifications, seen in table 6, in section 3.2.3. 

The most notable correlation of the plots in figure 11 would have to be A(Li) compared to 

IR excess. Like conclusions drawn by Rebull et al., plot 11C insinuates that if a giant has large IR 

excess, it probably has a large lithium abundance as well, but having significant lithium abundance 

does not necessarily mean the object will have large IR excess (Rebull et al. 2015). However, more 

so than Rebull’s plots, there does seem to be a positive correlation between A(Li) and IR excess, 

even if it is not incredibly strong. Within our set, the relationship between A(Li) and IR excess 

suggests the largest lithium abundances are associated with the largest IR excesses. This alludes 

to a relationship between the processes involved in lithium enrichment also contributing to the IR 

excess in these stars.  
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(A)   

     

 

 

 

 

 

(B) 
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Figure 11: A(Li) vs. Calculated Stellar Parameters. Plot 11A shows A(Li) compared to [Fe/H] values, 11B shows 

A(Li) compared to vsin(i) values, and 11C shows A(Li) compared to IR excess values. Spectral type is indicated by 

plot point color, Balmer emission status remains identified by point type, and the cutoffs for Li-rich and super-Li rich 

were included as horizontal dotted lines labeled in the legend. 
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3.2.2 Correlations Between IR Excess and Calculated Stellar Parameters 

Empirical correlations were explored between IR excess and calculated stellar parameters 

of metallicity and projected rotational velocity (figure 12). The plots reveal little correlation, 

unfortunately. Plot 12A and 12B suggest that this set of K-G giants, although displaying varying 

levels of infrared excess (and all qualifying as infrared excess), tend to have metallicities and 

projected rotational velocities in the same range of values. Like the previously explored 

correlations with lithium abundance, this narrow range of metallicities and projected rotational 

velocity values allude to similar qualities regarding these objects’ locations on the stellar 

evolutionary track. It is worth noting there seems to be a minute negative correlation between IR 

excess, with giants’ exhibiting lower metallicity values seeming to have the highest IR excess.  

(A)  

  

  

  

  

 

 

 

  

(B) 

  
 

 

Figure 12: IR Excess vs. Calculated Stellar 

Parameters. 12A shows IR excess, 

represented by W1-W4, compared to [Fe/H] 

values, and plot 12B shows IR excess 

compared to vsin(i) values.  
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3.4  Comparisons to “On Infrared Excesses Associated with 

Li-Rich K-Giants” (Rebull et al. 2015) 

Structures of plots and investigated correlations were inspired by Rebull et al.’s own 2015 

evaluations of correlations alluding to potential origins of Li-enrichment in red giants. However, 

given GAIA distance parameters that were released following Rebull’s publication, her red giant 

sample was reevaluated to remove unreliable giants. Using this new, confident giant set, 

reevaluation of Rebull’s IR excess and A(Li) correlations were reconstructed using the approach 

of this investigation - identifying IR excess objects and investigating how lithium abundance may 

be correlated. Figure 13 reveals our reconstruction of Rebull’s A(Li) and IR excess correlation 

plot, and documented stellar parameters for Rebull’s IR excess, lithium-rich objects are noted in 

table 6.  

Interestingly, all the non-IR excess Rebull objects seem to be clustered in the same region. 

Although there are a notably fewer points objects after reclassifying giants using distance 

parameters, Rebull’s set still offers the alluded correlation she originally proposed: if a star has 

large IR excess, it probably has a large A(Li), but large A(Li) is not explicitly indicative of large 

IR excess. These relationships made us curious into how A(Li) and metallicity are correlated for 

her objects, a comparison she did not make in her publication. Interestingly, Rebull’s IR excess 

lithium-rich objects have an average metallicity value of [Fe/H] = -0.185, a trend of IR excess 

lithium abundant giants seeming to be metal-poor as was found in our set of K-G giants. Compared 

to Rebull’s set of objects, the fact that Disk Detective offers a large supply of highly confident IR 

excess objects, and the giants among them have a large portion of Li-rich objects, lends support to 

the likelihood of IR excess giants being lithium enriched 
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Figure 13: Evaluation of A(Li) vs. IR Excess (W1-W4) for Rebull et al. 2015 Objects. The plot represents all identified 

giant objects for Rebull, IR and non-IR excess objects, to elucidate a relationship between presence of IR excess and 

lithium abundance.   

 

 

 

3.5  Classifying Lithium Enrichment Origin and Process 

Hypotheses for Our Lithium-Rich IR Excess K-G 

Giants 

Based on analysis of stellar evolutionary track and calculated stellar parameters, the 

following are our speculative identification of the origins of lithium enrichment and lithium 

production processes for our K-G giants following analysis. 
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Table 7: All Li-Rich IR Excess Giant Identification Parameters. Information includes Zoo ID, effective surface 

temperature, average surface gravity, spectral type, lithium abundance, metallicity, projected rotational 

velocity, average estimated mass in units of solar masses, HR diagram classification, and notes on evolutionary 

stage.  

 

3.5.1 HB Red Clump Lithium-Enrichment Processes 

• Objects: AWI0005d61, AWI0000wqx, AWI0000qxd, AWI000004g, AWI0005dlh, 

AWI0000eg6, AWI00001q1, AWI0005yix, AWI0005zgp, AWI0002b9u, AWI00059y8 

 

These stars are all located in the HB or red clump region of the HB, have large surface 

gravities in the range of 2-3, and have masses ranging from 1.5 to 2.5 M☉. At this stellar 

evolutionary stage, these giants have evolved off the main sequence and begun core helium 

burning, which can lead to internal mixing that may be involved in bringing fresh lithium to the 

stellar surface, enriching the observed abundance of lithium in these stars.  

 

Zoo ID 

 

  

Teff (K) 

 

  

Avg 

log(g) 

 

  

Spectral 

Type 

 

  

  

 

A(Li) 

  

 

[Fe/H] 

  

 

vsin(i) 

  

Avg Est 

Mass 

(M☉) 

  

Class 

 

  

  

 

Location Notes  

AWI0005d61 6000 2.44 G2 3.812 -0.25 79.263 2.0 HB HB 

AWI0000wq

x 5500 2.55 G5 3.364 -0.75 89.106 2.0 HB HB 

AWI0000qxd 5380 2.58 G9 3.542 -0.50 80.198 2.0 HB HB (red clump) 

AWI000621k 5250 1.46 G9 4.984 -2.00 20.358 2.0 AGB AGB/RGB luminosity bump 

AWI0005yjf 5500 3.39 K0 1.917 -1.00 88.638 1.5 RGB RGB-ascent/subgiant 

AWI000004g 5270 2.66 K0 3.414 -0.75 88.096 2.0 HB HB (red clump) 

AWI0005dlh 5270 2.65 K0 4.080 -0.50 79.735 2.0 HB HB (red clump) 

AWI0000eg6 5270 2.73 K0 4.492 -0.75 88.637 2.0 HB HB (red clump) 

AWI00001q1 5270 2.62 K0 3.799 -0.75 88.100 2.0 HB HB (red clump) 

AWI0000hat 5170 0.87 K1 2.946 -0.25 88.634 3.5 AGB AGB/RGB luminosity bump 

AWI0005yix 5170 2.63 K1 3.952 -0.50 88.626 2.0 HB HB (red clump) 

AWI0005zgp 5000 2.58 K3 3.358 -0.75 88.637 2.0 HB HB (red clump) 

AWI0002b9u 4500 2.52 K5 1.780 -0.50 88.635 2.0 HB HB (red clump) 

AWI0000t35 4250 0.87 K5 3.545 -2.00 89.121 3.5 AGB AGB/RGB luminosity bump 

AWI00059y8 5380 2.58 G9 4.236 -0.50 88.607 1.3 HB HB (red clump) 

AWI0005dj7 5270 1.54 K0 2.452 -1.50 79.751 2.0 RGB RGB clump 

AWI0005c3y 

  

5270 

  

0.78 

  

K0 

  

3.247 

  

-0.75 

  

79.284 

  

5.5 

  

AGB/RG

B 

  

AGB/RGB luminosity bump 
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3.5.2 RGB Luminosity Bump Lithium Enrichment Processes 

• Objects: AWI000621k, AWI0005yjf, AWI0006dj7. 

 

These giants like along the RGB luminosity bump, or ascent of the RGB. A large surface 

gravity ranges from 1.5 to 4 and mass range from 1.5 t0 3 M☉ allude to these intermediate mass 

objects evolving onto the RGB. This evolutionary stage is associated with convective mixing, 

particularly during the first dredge-up associated with the luminosity bump. As the convective 

envelope depends, this may bring processed material containing lithium to the surface, thus 

enriching the surface lithium abundance. 

3.5.3 AGB Bump Lithium Enrichment 

• Object: AWI0000hat, AWI0000t35, AWI0005c3y. 

 

Positioned near the AGB ascent region of the HR diagram, somewhat above the RGP tip 

region, these objects having a large mass range from 3.5 to 5 M☉ yet a low surface gravity range 

of around 0.5 to 1 suggests evolution onto the AGB, or the AGB ascent/bump location. During 

AGB ascent evolution, the second dredge up is likely responsible for generating convective mixing 

that brings fresh lithium to these objects’ stellar surfaces, resulting in significant lithium 

enrichment. 
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Chapter 4: Conclusion 

Based on high-resolution optical spectra obtained from the FAST spectrograph, we 

conducted a thorough analysis of lithium abundances in K-G type giant stars, which defy 

conventional models of stellar evolution by exhibiting large lithium enrichments during their giant 

phase. Utilizing equivalent widths of the lithium absorption line at 6707.8 Angstroms, we derived 

lithium abundances and compared them with infrared excess objects. Our investigation focused on 

stars identified as HB or red clump giants, RGB luminosity bump candidates, subgiants, and stars 

nearing the RGB tip. 

 Analyzing potential processes related to the origin of lithium enrichment in these giants 

required considering specific stellar evolutionary phases attributed to stars of certain masses. For 

stars in the HB or red clump phase, characterized by masses ranging from 1.5 to 2.5 M☉, the 

process of core helium burning likely induces internal mixing, potentially bringing fresh lithium 

to the stellar surface and enriching observed lithium abundances. Similarly, stars positioned near 

the RGB luminosity bump, with masses ranging from 1.5 to 4 M☉, likely experience convective 

mixing during the first dredge-up associated with the luminosity bump, contributing to lithium 

enrichment. Objects appearing to ascend the AGB had location confirmed by low surface gravity 

values and large mass values associated with extreme expansion of the star during this evolutionary 

phase, before mass loss along the AGB. AGB ascent objects likely have lithium enrichment due 

to the second dredge up process generating more internal convective mixing. 

Our analysis not only quantifies peculiar lithium abundances and infrared excess but also 

examines stellar spectral lines to derive metallicities and rotational velocities. By comparing our 

findings with existing literature on lithium-enriched K-G giants, we aimed to uncover potential 

correlations between additional stellar properties and lithium enrichment origins, and our findings 
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are supported by existing hypotheses – primarily auto-generation mechanisms association with 

transitionary phases during giant evolution. 

Our results contribute to discussions considering reevaluating traditional models of stellar 

evolution. Further investigations incorporating more observational constraints and robust 

procedures for gathering stellar parameter information will enhance our understanding of these 

intriguing phenomena. 
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Chapter 5: Future Work & Applications 

Expanding exploration with PyMOOG by continuum normalizing synthetic spectra and 

utilizing Kurucz models to refine our understanding of stellar atmospheres and evolutionary 

processes could provide more robust measurements, especially for metallicities. By leveraging 

PyMOOG's capabilities, we can delve deeper into the intricacies of stellar spectra, enhancing our 

ability to extract valuable insights from observed data. Using pyMOOG to investigate other 

parameters like diffusive mixing coefficients related to processes such as thermohaline mixing 

could reveal more about the intricate interplay between internal mixing mechanisms and lithium 

enrichment at the stellar surface. 

Further comparative analyses between our identified objects and typical K-G giants in 

surveys like the Disk Detective Survey hold immense potential for elucidating commonalities and 

discrepancies in their properties. By leveraging large datasets and advanced data analysis 

techniques, we can uncover patterns that shed light on the origins and evolution of lithium 

enrichment in these stars. Continuing the approach of finding established IR excess objects and 

then looking for associated lithium abundance in other surveys and published sets of spectra could 

provide further useful insight into correlations between parameters like lithium abundance, IR 

excess, and metallicity. 

Investigating the metallicity of our sample sparks intriguing questions about their 

formation and evolutionary history. The observation of metal-poor giants prompts speculation 

about their potential classification as Population II red giants, opening doors to exploring unique 

stellar populations and their contributions to galactic dynamics and chemical evolution. 

Furthermore, exploring the link between lithium enrichment in K-G giants and the broader 

primordial lithium puzzle offers a fascinating avenue for future research. By probing the 
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mechanisms behind lithium production and destruction in evolving giants, we can contribute 

valuable insights to one of the fundamental puzzles in astrophysics, shedding light on the early 

universe's chemical evolution. 
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Appendix A 

Doppler Shift Calculation and Graphing Protocol 

import numpy as np 

import matplotlib.pyplot as plt 

from astropy import units as u 

from astropy.modeling import models, fitting 

from specutils import Spectrum1D 

 

# Load list of objects 

filepaths = np.loadtxt('allspectrafiles.txt', dtype=str) 

filepathsLinesCount = 0 

with open('allspectrafiles.txt', "r") as f: 

lines = f.readlines() 

linesCount = len(lines) 

  filepathsLinesCount = linesCount 

 

# Define a spline model to fit the continuum (with least squares filter) 

spline_model = models.Chebyshev1D(degree=200)   

 

# Define the wavelength ranges for each subplot 

wavelength_ranges = [ 

     (3920, 3980), 

     (5150, 5190), 

  (5870, 5930) 

] 

 

# Define a function to apply doppler shift 

def apply_shift(spectral_axis, mean_doppler_shift): 

     return spectral_axis / (1 + mean_doppler_shift) 

 

# Define empty lists 

all_shifts = [] 

all_statuses = [] 

all_std_shifts = [] 

 

# Lab standard rest wavelengths 

reference_lines = {'Ca II 1': 3933.663 * u.AA, 'Ca II 2': 3968.469 * u.AA, 

                   'Mg I': 5183.604 * u.AA, 'Na I': 5895.92 * u.AA} 

reference_lines_filtered = {name: line for name, line in reference_lines.items()} 

 

# Define doppler shift processing 

def process_spectrum(file_path): 

     wavarr, fluxread = np.loadtxt(file_path, unpack=True) 

     

     # Fit the spline model to the data to estimate the continuum 

     fitter = fitting.LinearLSQFitter() 

     spline_fit = fitter(spline_model, wavarr, fluxread) 

 

     # Calculate continuum by evaluating spline fit 

     continuum = spline_fit(wavarr) - 1 
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     # Normalize the spectrum by dividing by the continuum 

     norm_flux = fluxread / continuum 

 

     spectrum = Spectrum1D(spectral_axis=wavarr*u.AA, flux=norm_flux*u.Unit('erg cm-2 s-1 AA-1')) 

     

     # Calculate the nearest peaks for the reference lines in the spectrum 

     nearest_peaks = {} 

     for name, line in reference_lines_filtered.items(): 

indices_within_range = np.where((spectrum.spectral_axis.value >= min(wavarr)) & 

(spectrum.spectral_axis.value <= max(wavarr)))[0] 

nearest_index = 

indices_within_range[np.argmin(np.abs(spectrum.spectral_axis[indices_within_range] - line))] 

          nearest_peaks[name] = nearest_index 

 

     # Calculate the doppler shift for each reference line 

     doppler_shifts = {(name, peak): (spectrum.spectral_axis[peak].value - line.value) / line.value 

                       for (name, line), peak in zip(reference_lines_filtered.items(), nearest_peaks.values())} 

 

print("{:<10} {:<15} {:<12} {:<15}".format("Peak Name", "Reference Line", "Nearest Peak", "Doppler 

Shift")) 

     print("-" * 60) 

 

     for (name, peak), shift in doppler_shifts.items(): 

          nearest_peak_value = round(spectrum.spectral_axis[peak].value, 3)   

          reference_line_value = round(reference_lines[name].value, 3)   

          shift = round(shift, 7) 

          print("{:<10} {:<15} {:<12} {:<15}".format(name, reference_line_value, nearest_peak_value,  

shift)) 

 

     # Calculate the mean doppler shift 

     mean_doppler_shift = np.mean([shift for (name, shift) in doppler_shifts.items()]) 

 

 # Calculate the mean doppler shifts’ standard deviation 

     std_doppler_shift = np.std([shift for (name, shift) in doppler_shifts.items()]) 

     

     if mean_doppler_shift < 0: 

          print("Blue-shifted") 

          shift_status = "blue-shifted" 

         

     else: 

          print("Red-shifted") 

          shift_status= "red-shifted" 

  

     # Apply doppler shift to the original spectrum 

     shifted_wavarr = apply_shift(spectrum.spectral_axis.value, mean_doppler_shift) 

shifted_spectrum = Spectrum1D(spectral_axis=shifted_wavarr*u.AA, flux=norm_flux*u.Unit('erg cm-2 

s-1 AA-1')) 

     

return spectrum, shifted_spectrum, shifted_wavarr, mean_doppler_shift, shift_status, nearest_peaks, 

std_doppler_shift 

 

# Call doppler shift processing for all spectra 

for file_path in filepaths: 

spectrum, shifted_spectrum, shifted_wavarr, mean_doppler_shift, shift_status, nearest_peaks, 

std_doppler_shift = process_spectrum(file_path) 
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     # Create a new figure for each spectrum 

     fig, axs = plt.subplots(len(wavelength_ranges), 1, figsize=(10, 10)) 

 

     # Iterate over each wavelength range and corresponding subplot 

     for i, (wav_min, wav_max) in enumerate(wavelength_ranges): 

          ax = axs[i]   

 

          # Filter observed spectrum within the current range 

mask = (spectrum.spectral_axis.value >= wav_min) & (spectrum.spectral_axis.value <= 

wav_max) 

          wav_range = spectrum.spectral_axis.value[mask] 

          flux_range = spectrum.flux[mask] 

 

          # Filter shifted spectrum within current range 

          mask2 = (shifted_spectrum.spectral_axis.value >= wav_min) & ( 

                     shifted_spectrum.spectral_axis.value <= wav_max) 

          shifted_wav_range = shifted_spectrum.spectral_axis.value[mask2] 

          shifted_flux_range = shifted_spectrum.flux[mask2] 

 

          # Plot original and doppler shifted spectra 

ax.plot(wav_range, flux_range, label=f'Original Spectrum ({wav_min}-{wav_max})', 

color='blue')  

ax.plot(shifted_wav_range, shifted_flux_range, label='Doppler Shifted Spectrum', 

color='orange')   

 

          # Plot observed and reference lines within the wavelength range 

          for ref_line_name, nearest_peak_index in nearest_peaks.items(): 

               if wav_min <= reference_lines[ref_line_name].value <= wav_max:   

                   # Plot observed peak as a vertical line 

ax.axvline(x=spectrum.spectral_axis[nearest_peak_index].value, color='gray', 

linestyle='--') 

                  # Plot reference line as a vertical line 

                   ax.axvline(x=reference_lines[ref_line_name].value, color='gray', linestyle='-') 

 

          # Plot all observed peak lines with specified colors 

          for ref_line_name, nearest_peak_index in nearest_peaks.items(): 

# Check if the reference line is within the specified wavelength range 

if ref_line_name in reference_lines_filtered:   

# X-coordinate of the observed peak 

ref_line_x = spectrum.spectral_axis[nearest_peak_index].value   

 

                   if ref_line_name.startswith('Ca II'):   

                        line_color = 'red' 

                   elif ref_line_name.startswith('Mg'):   

                        line_color = 'purple' 

                   elif ref_line_name.startswith('Na'):   

                        line_color = 'blue' 

                   obs_line_label = f'{ref_line_name} - Observed Peak' 

                   ax.axvline(x=ref_line_x, color=line_color, linestyle='--', label=obs_line_label) 

 

          # Plot the rest wavelength lines 

          if i == 0: 

               for name, line in reference_lines_filtered.items(): 

                   ax.axvline(x=line.value, color='gray', linestyle='--') 

 

          ax.set_xlim(wav_min, wav_max)   
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          ax.set_xlabel('Wavelength (Angstroms)')   

          ax.set_ylabel('Flux')   

          ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) 

          ax.set_title(f'Comparison of Original and Doppler Shifted Spectra for {file_path}')   

          ax.grid(True) 

 

     plt.tight_layout()   

     plt.show()   

 
# Save the data to a text file  

with open("spectra_dopplershift_status.txt", "w+") as file: 

file.write("{:<25} {:<20} {:<20} {:<15}\n".format("File Path", "Mean Doppler Shift", "Std Dev Doppler 

Shift", "Shift Status")) 

     file.write("-" * 85 + "\n") 

for file_path, shift, std_doppler_shift, status in zip(filepaths, all_shifts, all_std_shifts, all_statuses): 

file.write("{:<25} {:<20} {:<20} {:<15}\n".format(file_path, round(shift, 9), 

round(std_doppler_shift, 9), status)) 
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Appendix B 

Manual Evaluation of Lithium Abundance via FGK LTE 

Gaia-ESO Curve of Growth 

import numpy as np 

from scipy.optimize import curve_fit 

import matplotlib.pyplot as plt 

import os 

import re 

import sys 

 

file_path = 'Teff 5250 logg 2.5.txt' 

 

with open(file_path, "r") as file: 

     lines = file.readlines()[3:] 

 

T_eff, log_g, Fe_H, A_Li, equivalence_width_LTE = np.loadtxt(lines, unpack=True) 

 

# Create bounds for log_g and T_eff 

log_g_bounds = (2.45, 2.55)   

T_eff_bounds = (5245, 5255)  

 

 

# Find indices of values within the bounds 

indices = np.where((log_g >= log_g_bounds[0]) & (log_g <= log_g_bounds[1]) & 

                   (T_eff >= T_eff_bounds[0]) & (T_eff <= T_eff_bounds[1])) 

 

# Get the corresponding values for the other two variables 

equivalence_width_LTE_within_bounds = equivalence_width_LTE[indices] 

A_Li_within_bounds = A_Li[indices] 

 

# Define quadratic function fit 

def func(x, a, b, c): 

    return a * x ** 2 + b * x + c 

 

popt, pcov = curve_fit(func, A_Li_within_bounds, equivalence_width_LTE_within_bounds) 

 

a_fit, b_fit, c_fit = popt 

 

x_fit = np.linspace(2, 3, 100) 

y_fit = func(x_fit, a_fit, b_fit, c_fit) 

 

plt.plot(A_Li_within_bounds, equivalence_width_LTE_within_bounds, label = 'Gaia-ESO Survey Curve of 

Growth') 

plt.plot(x_fit, y_fit, 'r-', label = 'Function Fit') 

plt.xlabel('A(Li) (dex)') 

plt.ylabel('Equivalence Width (mA)') 

plt.legend(loc='best') 

plt.title('Function Fit of Gaia-ESO FGK Curve of Growth', fontweight = 'bold') 

plt.show() 
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# Define function to calculate A(Li) via Curve of Growth 

def inverse_func(y, a, b, c): 

     return np.roots([a, b, c - y]) 

 

# Input a y value (manual gaussian-fit EW) to find the corresponding x value 

y_input = 519.426 

x_corresponding = inverse_func(y_input, a_fit, b_fit, c_fit) 

 

print("For EW =", y_input, "the corresponding A(Li) value is:", x_corresponding) 
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Appendix C 

pyMOOG Metallicity Evaluation Using Chi-Squared 

Minimization Scheme 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import pymoog 

import os 

import re 

import sys 

import astropy.units as u 

from astropy.modeling import models, fitting 

from scipy.optimize import minimize 

from itertools import cycle 

from tabulate import tabulate 

import csv 

import time 

import os 

from tabulate import tabulate 

from scipy.interpolate import make_interp_spline 

 

# Load list of doppler shifted spectra with corresponding teff and logg values 

fast_spectra = np.loadtxt('FAST_teff_logg2.txt', dtype = str, skiprows=1) 

 

# Determine number of lines in fast_spectra 

fastSpectraLinesCount = 0 

with open('FAST_teff_logg2.txt', "r") as f: 

    lines = f.readlines() 

    linesCount = len(lines) 

    fastSpectraLinesCount = linesCount 

 

# Load MARCS data 

marcs_data = np.loadtxt('MARCS_teff_logg_metallicity.txt') 

 

csv.field_size_limit(sys.maxsize) # Increase the maximum field size limit of csv file to handle large inputs 

csv_file_path = "cache.csv" 

cache = {} 

 

# Define a spline model to fit the continuum (with least squares filter) 

spline_model = models.Chebyshev1D(degree = 200)   

 

# Define resolution 

resolution = 1200 

 

mc_plots_directory = "Chi2_vs_Metallicity_Plots" 

spectra_plots_directory = "observed_synthetic_bestchi2range" 

 

def calculate_chi2(synthetic, observed): 

    chi2 = np.sum(((synthetic - observed) ** 2)/observed) 

     return chi2 
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def write_to_csv(key, synth_wav, synth_flux): 

     with open(csv_file_path, mode='a', newline='') as f: 

          writer = csv.writer(f, delimiter=',') 

          writer.writerow([key, ','.join(map(str, synth_wav)), ','.join(map(str, synth_flux))]) 

 

def process_spectrum(file_path, Teff, logg, i, wav_min, wav_max): 

     print("status: ", f"{round((i + 1) / fastSpectraLinesCount, 5) * 100}%") 

 

     wavarr, fluxread = np.loadtxt(file_path, unpack=True) 

 

     # Fit the spline model to the data to estimate the continuum 

     fitter = fitting.LinearLSQFitter() 

     spline_fit = fitter(spline_model, wavarr, fluxread) 

 

     # Calculate the continuum by evaluating the spline fit 

     continuum = spline_fit(wavarr) 

 

     # Normalize the spectrum by dividing by the continuum 

     norm_flux = fluxread / continuum 

     

     # Load observed spectrum 

     observed_wav = np.array(wavarr) 

     observed_flux = np.array(norm_flux) 

 

     # Indices corresponding to desired wavelength range 

wav_indices = np.where((observed_wav >= wav_min) & (observed_wav <= wav_max))[0] 

     observed_wav_range = observed_wav[wav_indices] 

     observed_flux_range = observed_flux[wav_indices] 

     

     # Trim observed arrays to ensure consistent length 

     min_length = min(len(observed_wav_range), len(observed_flux_range)) 

     observed_wav_range = observed_wav_range[:min_length] 

     observed_flux_range = observed_flux_range[:min_length] 

 

     # Find closest teff and logg values in the dataset 

     closest_teff = marcs_data[:,0][np.argmin(np.abs(marcs_data[:,0] - Teff))] 

     closest_logg = marcs_data[:,1][np.argmin(np.abs(marcs_data[:,1] - logg))] 

 

     # Filter data to get available metallicity for teff & logg 

     mask = (marcs_data[:,0] == closest_teff) & (marcs_data[:,1] == closest_logg) 

     available_metallicities = marcs_data[mask][:,2] 

 

     # Sort available unique metallicities in ascending order 

     marcs_metallicities = np.sort(np.unique(available_metallicities)) 

marcs_metallicities = marcs_metallicities[(marcs_metallicities >= -2)&(marcs_metallicities <= 2)] 

         

     # Initialize variables 

     best_chi2 = np.inf 

     best_metallicity = None 

      

     # Define empty lists to store best results 

     best_chi2_values = [] 

     best_metallicity_values = [] 

     metallicities = [] 

     chi2_values = [] 
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    # Loop over different metallicities 

    for metallicity in marcs_metallicities: 

          synth_wav = None 

          synth_flux = None 

key = f"{closest_teff} {closest_logg} {metallicity} {wav_min} {wav_max} {resolution}" 

# Note: key = (closest_teff, closest_logg, metallicity, wav_min, wav_max, resolution) 

          if key in cache: 

              synth_wav = cache[key][0] 

              synth_flux = cache[key][1] 

          else: 

# Generate synthetic spectra 

s = pymoog.synth.synth(closest_teff, closest_logg, metallicity, wav_min, wav_max, 

resolution) 

              s.prepare_file() 

              s.run_moog() 

              s.read_spectra() 

             

              synth_wav = np.array(s.wav) 

              synth_flux = np.array(s.flux) 

             

              # Write to cache 

              write_to_csv(key, synth_wav.tolist(), synth_flux.tolist()) 

             

              # Check if the CSV file exists 

              file_exists = os.path.isfile(csv_file_path) 

              write_to_csv(key, synth_wav.tolist(), synth_flux.tolist()) 

     

          # Normalize the synthesized spectra to have a mean value of 1 

          mean_flux = np.mean(synth_flux) 

          norm_synth_flux = synth_flux / mean_flux 

     

          # Interpolate generated synthetic spectrum 

interpolated_synth_flux = np.interp(observed_wav_range, synth_wav, norm_synth_flux) 

     

          # Calculate chi-squared for synthetic spectrum 

          chi2 = calculate_chi2(interpolated_synth_flux, observed_flux_range)   

         

          metallicities.append(metallicity) 

          chi2_values.append(chi2) 

 

          if chi2 < best_chi2: 

              best_chi2 = chi2 

              best_metallicity = metallicity 

     

      plt.scatter(metallicities, chi2_values, marker = 'o') 

plt.plot(metallicities, chi2_values, color ='red', linestyle = '-', linewidth = 0.5, label = f'Wavelength 

Range {j+1}') 

     

return best_metallicity, best_chi2, observed_wav_range, observed_flux_range, 

interpolated_synth_flux, (wav_min, wav_max), metallicities, chi2_values 

 

results = [] 

 

row_index = 0 
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# Define wavelength ranges 

wavelength_ranges = [ 

    (5000, 5500), 

    (5500, 6000), 

    (6000, 6500) 

] 

 

for i, row in enumerate(fast_spectra): 

     file_path, Teff, logg = row 

     Teff = float(Teff) 

     logg = float(logg)     

     plt.figure(figsize=(10, 6)) 

     

     # Initialize table_data 

     table_data = [ 

         ["Wavelength Range", "Best Metallicity", "Best Chi2"] 

     ] 

     

     # Initialize lists to store all metallicities and chi2 values for all wavelength ranges 

     all_metallicities = [] 

     all_chi2_values = [] 

     

     for j, wav_range in enumerate(wavelength_ranges): 

mask = (np.array(all_metallicities) >= wav_range[0]) & (np.array(all_metallicities) <= 

wav_range[1]) 

 

best_metallicity, best_chi2, observed_wav_range, observed_flux_range, interpolated_synth_flux, 

(wav_min, wav_max), metallicities, chi2_values = process_spectrum(file_path, Teff, logg, i, wav_range[0], 

wav_range[1]) 

         

         # Add data to table 

         table_data.append([wav_range, best_metallicity, best_chi2]) 

         

         # Store metallicities and chi2 values 

         all_metallicities.extend(metallicities) 

         all_chi2_values.extend(chi2_values) 

         

     # Find the optimal metallicity (associated with the lowest chi-squared value) 

     optimal_index = all_chi2_values.index(min(all_chi2_values)) 

     optimal_metallicity = all_metallicities[optimal_index] 

     optimal_chi2 = min(all_chi2_values) 

 

     # Highlight the point with optimal metallicity 

plt.scatter(optimal_metallicity, optimal_chi2, color='blue', label=f'Optimal Metallicity 

({optimal_metallicity}, {optimal_chi2:.2f})') 

 

 

     plt.xlabel('Metallicity [Fe/H]') 

     plt.ylabel('Chi-Squared Value') 

     plt.title(f'Chi-squared Values vs. Metallicities for {file_path}') 

     plt.legend() 

     plt.grid(True) 

     plot_filename = f'chi2_metallicity_plot_{os.path.basename(file_path)}.png' 

     plt.savefig(os.path.join(mc_plots_directory, plot_filename)) 

     plt.show() 
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    # Add data to results 

     results.append({ 

         'file_path': file_path, 

         'Teff': Teff, 

         'logg': logg, 

         'best_metallicity': optimal_metallicity, 

         'best_chi2': optimal_chi2 

     }) 

     

     # Print table data 

     print(tabulate(table_data, headers="firstrow")) 

     print() 

 

# Print results 

for result in results: 

     print(result) 
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Appendix D 

Neutral Iron Lines’ Identification, FWHM Calculation, and 

Projected Rotational Velocity Specutils Protocol 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import pymoog 

import os 

import re 

import sys 

import csv 

import time 

from astropy.modeling import fitting 

from astropy.modeling.models import Chebyshev1D 

 

import astropy.units as u 

from astropy.modeling import models, fitting 

from astropy.nddata import StdDevUncertainty 

from astropy.utils.exceptions import AstropyUserWarning 

from astropy.utils.exceptions import AstropyWarning 

from scipy.optimize import minimize 

from itertools import cycle 

from tabulate import tabulate 

 

from specutils import Spectrum1D, analysis 

from specutils import SpectralRegion 

from specutils.fitting import fit_lines 

from specutils.fitting import fit_generic_continuum 

from specutils.analysis import snr, equivalent_width, centroid, gaussian_sigma_width 

 

# IRON LINES IDENTIFICATION 

 

# Define the spline model for continuum fitting 

spline_model = Chebyshev1D(degree=200) 

 

# Read lines from the file 

input_file = "FAST_teff_logg_metallicity_redshift.txt" 

with open(input_file, 'r') as file: 

    lines = file.readlines() 

 

# Initialize an empty list to store the data 

data = [] 

 

# Iterate over lines, splitting and converting values 

for line in lines: 

     values = line.strip().split() 

     if len(values) >= 4:   

          file_path, Teff, logg, metallicity = values[:4]   

          redshift = values[4] if len(values) > 4 else None   
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        # Check if each value is a valid float 

         try: 

             # Convert '-' to a negative float if necessary 

             Teff = float(Teff) if Teff != '-' else -float(Teff[1:]) 

             logg = float(logg) if logg != '-' else -float(logg[1:]) 

             metallicity = float(metallicity) if metallicity != '-' else -float(metallicity[1:]) 

             redshift = float(redshift) if redshift is not None and redshift != '-' else 0.0 

         except ValueError: 

             # Handle the case where a value couldn't be converted to float 

             print(f"Skipping line due to invalid float value: {line}") 

             continue 

 

         data.append([file_path, Teff, logg, metallicity, redshift]) 

     else: 

          print(f"Skipping line: {line}") 

 

# Define the wavelength ranges for each subplot 

wavelength_ranges = [ 

    (5850, 6000), 

    (6100, 6300), 

    (6500, 6600) 

] 

 

# Iterate over each spectrum file 

for row in data: 

     file_path = row[0] 

     Teff = row[1] 

     logg = row[2] 

     metallicity = row[3] 

     redshift = row[4] 

 

     # Load spectrum data 

     wavarr, fluxread = np.loadtxt(file_path, unpack=True) 

 

     # Fit continuum to the spectrum 

     fitter = fitting.LinearLSQFitter() 

     spline_fit = fitter(spline_model, wavarr, fluxread) 

     continuum = spline_fit(wavarr) 

 

     # Normalize the spectrum by dividing by the continuum 

     norm_flux = fluxread / continuum 

 

     # Create a new figure for each spectrum 

     fig, axs = plt.subplots(3, 1, figsize=(10, 10)) 

 

     # Iterate over each wavelength range and corresponding subplot 

     for i, (wav_min, wav_max) in enumerate(wavelength_ranges): 

          ax = axs[i]  # Select the subplot 

 

          # Filter wavelength and flux within the current range 

          mask = (wavarr >= wav_min) & (wavarr <= wav_max) 

          wav_range = wavarr[mask] 

          flux_range = norm_flux[mask] 

 

          # Plot the spectrum in the current subplot 

          ax.plot(wav_range, flux_range, label=file_path) 
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          ax.set_xlabel('Wavelength (Angstroms)') 

          ax.set_ylabel('Flux') 

         

          # Add vertical lines for Fe I lines 

          fe_lines = [5916.25, 6188.00, 6240.65, 6574.23] 

          for fe_line in fe_lines: 

              if wav_min <= fe_line <= wav_max: 

ax.axvline(fe_line, color='red', linestyle='--', label=f'Fe I ({fe_line})' 

           

# Add legend for the subplot 

          ax.legend() 

 

      # Adjust layout 

      fig.tight_layout() 

      fig.subplots_adjust(top=0.92) 

 

# Show the plot 

plt.show() 

 

# FWHM & PROJECTED ROTATIONAL VELOCITY CALCULATION 

 

input_file = "FAST_teff_logg_metallicity_redshift.txt" 

 

# Read lines from the file 

with open(input_file, 'r') as file: 

     lines = file.readlines() 

 

# Initialize an empty list to store the data 

data = [] 

 

# Iterate over lines, splitting and converting values 

for line in lines: 

     values = line.strip().split() 

     if len(values) >= 4:   

          file_path, Teff, logg, metallicity, *redshift = values 

data.append([file_path, float(Teff), float(logg), float(metallicity), float(redshift[0]) if redshift else 

None]) 

     else: 

          print(f"Skipping line: {line}") 

 

# Convert the list of lists to a NumPy array 

fast_spectra = np.array(data) 

 

# Iron wavelengths 

wavelengths = [5916.25, 6188.0, 6240.65, 6574.23] 

 

# Error from instrumental broadening 

instrumental_broadening = 6 * u.angstrom 

 

# Define the speed of light 

c = 299792.458 * u.km / u.s 

 

vsini_values = [] 

 

for row in fast_spectra: 

      file_path = row[0] 
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      wavarr, fluxread = np.loadtxt(file_path, unpack=True) 

      corrected_wavarr = wavarr - row[-1] if row[-1] is not None else wavarr 

     

      vsini_row = [file_path]   

     

      vsini_values_per_path = [] 

      fwhm_values_per_path = [] 

     

      print(f'file path:', file_path) 

      print(f'wavarr, fluxread:', wavarr, fluxread) 

     

      # Iterate over each iron line wavelength 

      for wavelength in wavelengths: 

           # Find the index of the wavelength closest to the desired wavelength 

           index = np.argmin(np.abs(corrected_wavarr - wavelength)) 

 

           # Extract a small window around the desired wavelength for fitting 

           window_width = 10.0   

window = (corrected_wavarr >= wavelength - window_width / 2) & (corrected_wavarr 

<= wavelength + window_width / 2) 

           wav_window = corrected_wavarr[window] 

           flux_window = fluxread[window] 

         

           flux_window = flux_window * u.Jy 

           wav_window = wav_window * u.angstrom 

     

           # Convert the flux and wavelength arrays to a Spectrum1D object 

           spectrum = Spectrum1D(flux=flux_window, spectral_axis=wav_window) 

 

           # Assume fwhm_value is in Angstroms 

           fwhm_value = fwhm(spectrum) 

           print(f'FWHM:', fwhm_value) 

 

           # Convert the spectral line wavelength to Angstroms (if not already) 

          lambda0 = wavelength * u.angstrom 

           print(f'lambda0:', lambda0) 

 

           # Compute projected rotational velocity (v * sin(i)) 

numerator = np.sqrt((fwhm_value*u.angstrom**2)-(instrumental_broadening**2)) 

 

           denominator = lambda0 

     

           v_sin_i = (numerator / denominator) * (c / 2) 

 

          vsini_row.append(v_sin_i) 

          vsini_values_per_path.append(v_sin_i.value)   

fwhm_values_per_path.append(fwhm_value.value)   

         

     # Calculate average vsini for this file path 

     avg_vsini = np.mean(vsini_values_per_path) 

 

     # Calculate average FWHM for this file path 

     avg_fwhm = np.mean(fwhm_values_per_path) 

     

     # Append average vsini and FWHM to the row 

     vsini_row.extend([avg_fwhm, avg_vsini]) 
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     # Append the vsini row to the vsini values list 

     vsini_values.append(vsini_row) 

 

# Convert vsini values to a NumPy array 

vsini_array = np.array(vsini_values) 

 

# Print results table with file paths 

print("Filepath |   Avg_FWHM |   Avg_vsini |") 

print("+==========+============+=============+") 

for row in vsini_array: 

     print("| {:<10} | {:<10.5f} | {:<10.5f} |".format(row[0], float(row[-2]), float(row[-1]))) 

print("+----------+------------+-------------+") 
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