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Abstract 

 
Value of SNPs With Very Small Effects in The Predictive Ability of Polygenic Risk 

Score: Illustrated Using Type II Diabetes Mellitus 

 
By Kunru Ning 

 
 
Background: Polygenic risk score (PRS) is an index calculated by summing up multiplications 
of the number of risk alleles and effects of the single nucleotide polymorphism (SNP) to predict 
the risk of developing diseases for individuals. PRSs calculated by thousands and millions of 
SNPs with small effects have become a trend in many studies. We studied the value of 
including SNPs with very small effects when predicting disease risk using PRS, answering the 
following research questions: 1. Will the discriminative accuracy change when changing the 
precision of SNPs with small effects? 2. Will the predicted risks change when changing the 
precision of SNPs? 
 
Methods: The analysis was conducted using simulated data. Hypothetical populations of 
100,000 people, in which we predicted disease using 7502 SNPs associated with type II diabetes 
at a population risk of 10% and 30%. A genetic profile with predicted disease risk and disease 
status was generated for each individual. AUC was calculated to quantify the predictive ability 
of the PRS models using SNPs with small effects that are non-zero in the 6th, 5th, 4th, 3rd, 2nd, and 
1st decimal. Predicted risks were calculated 6 times, using SNP effects that are non-zero in the 6 
decimal levels. Correlation coefficients were obtained for the predicted risks to measure the 
strength of association. 
 
Results: When the SNP effects was kept in the 5th, 4th and 3rd decimals, the predicted ability of 
PRS remained the same (AUC = 0.65, correlation coefficient = 1.0) comparing with when the 
SNP effects was kept in the 6th decimal, for both population risk of 10% and 30%. When SNP 
effects were kept in the 2nd decimal, the AUC remained the same at 0.65 with a slightly lower 
correlation coefficient of 0.97. The AUC and correlation coefficient reduced to 0.64 and 0.74 
when SNP effects kept in the 1st decimal. 
 
Conclusion: The study concluded that including SNPs with very small effects in the predictive 
ability of PRS did not change predicted risks. Therefore, there is no necessity of including SNPs 
with very small effects when predicting PRS in future studies, keeping SNP effects in the 2nd 
decimal with an precision of 0.01 should suffice. 
 
Keywords: Polygenic risk score; Single nucleotide polymorphisms; Genetics; Simulation study 
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INTRODUCTION 

Polygenic risk score (PRS) is an index calculated by summing up multiplications of number of 

risk allele and effect size of the single nucleotide polymorphism (SNP), which derived from 

Genome Wide Associated Studies (GWAS) to predict the risk of developing diseases for 

individual1. PRS has been argued to show its potential in utilization in clinical applications, such 

as PRS-informed therapeutic intervention, in which PRS may provide information on therapeutic 

and preventative intervention selection, and PRS-informed disease screening, in which PRS may 

provide information on disease screening initiation and interpretation.2,3,4 

PRSs are calculated by tens to hundreds of statistically significant SNPs with effect size 

to predict disease risk.3,4 Recent studies get interested in using millions of SNPs when 

calculating PRS.5 Study by Khera validated their genome-wide polygenic scores (GPS) 

conducted from 6.6 million SNPs for five common diseases (coronary artery disease, atrial 

fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer). Following Khera, 

including millions of SNPs when calculating PRS has become a trend.6,7,8 

Khera et al. found that 0.01% of SNPs assumed to be causal for CAD, indicating the rest 

99.9% SNPs have very small effect sizes and have very low impact on disease risk prediction.9 

Bolli et al. recalculated 4 PRSs for the 6.6 million SNPs associated with coronary artery disease 

from Khera et al. at 100%, 1%, 0.1% and genome-wide significant level and found that AUC for 

the full PRS panel was 0.011 higher than AUC for top 1% PRS, suggesting that the millions of 

SNPs with smaller effects do not contribute to disease risk that much.10 Higher AUC can be 

obtained with higher effective sizes of SNPs related to the disease.11 Small effect size with small 

AUC indicates being indiscriminative between cases and non-cases.11 Improvement of AUC (Δ 
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AUC) is used to assess the value of new adding risk factors. New adding risk factor with small Δ 

AUC should be associated small change in predicted risk.12 

From 6.6 thousand to 6.6 million SNPs included, Δ AUC showed a change of  0.011 of 

predictive ability of PRS for CAD.10 A small Δ AUC of 0.011 is reasonably to be assumed to 

have a small change in predicted risk of CAD among the study population. Since the change in 

predicted risk is so low, skepticism arises on the necessity of including millions of SNPs with 

small effect in PRS when predicting diseases risk in clinical setting.13 SNPs with small effects 

reported in PRS, are often kept at the precision level of 0.000001. It is still unclear that when the 

precision of SNP effects is changed to 0.00001, 0.0001, 0.001, 0.01 and 0.1, whether the 

predictive ability of PRS will also be changed, characterized by AUC and the predicted risk 

change. 

We investigated the AUC and predicted risk change using a hypothetical population of 

100,000, illustrated by SNPs associated with type II diabetes.14 We are conducting simulated 

study since predictive ability of SNPs in genetic risk models can be approached by simulated 

population from other GWAS studies.15 Empirical studies has some limitation that only 

simulated study can overcome, as the predictive ability of empirical studies is only warranted 

when sufficient predictive ability is expected.15 We hypothesize that SNPs with small effect do 

not affect predictive ability of PRS.  

Therefore, we studied the public health relevance of including SNPs with small effects 

when predicting disease risk using PRS, answering the following research questions: 1. Will the 

AUC change when changing precision of SNPs with small effects? 2. Will the risk itself change 

when changing precision of SNPs with small effects? Keeping large amount of statistically 

nonsignificant results while reporting PRS in terms of disease risk prediction may generate 
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confusion when interpretating the results to the general public. Addressing this issue is important 

in public health, as we don't go way beyond what GWAS needs, when the change of disease risk 

is so small to be considered negligible. 
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METHOD 

The analysis was conducted using hypothetical data. We assessed the contribution of including 

SNPs with small effects when calculating PRS, by investigating the change in discriminative 

ability of PRS and the estimates of the risks. We analyzed 1. AUC change between the original 

and 5 updated models, which were the hypothetical populations re-constructed using effect sizes 

with 5 different precision levels; 2. Predicted risk change for the simulated subjects in the 

original model when assigning different precision levels of effect sizes to the risk alleles; 3. 

Whether results seen in the previous two research questions could be applied to both common 

and rare diseases. 

Data Collection 

We simulated a PRS for type 2 diabetes using SNP data from PGS catalog 

(www.pgscatalog.org/downloads/#dl_ftp). The dataset contains 7502 SNPs with the risk alleles, 

effect sizes, and risk allele frequencies.14 

Data Preparation 

The simulated data with genetic profile and disease status for a hypothetical population, the 

AUC, and predicted risks were prepared using the “PredictABEL” package in R. Details are 

explained in the “PredictABEL” package. 

Simulating Population 

To simulate a hypothetical population with individual genetic profile and disease status, the 

population risk, risk allele ORs, risk allele frequencies, and sample size should be specified as 

the input parameters. The population risk for type II diabetes in the United States in 2017 was 

8911 cases per 100,000 individuals, setting the population risk parameter to 8.91%, which we 

rounded to 10% for ease of illustration. ORs and risk allele frequencies are obtained from the 
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PGS catalog dataset.16 We converted the beta coefficient into odds ratios (ORs) using the 

following equation: OR= eβ. Sample size for the reference model was set to be 100,000.  

Calculating AUC 

AUC was calculated as the c-statistic for the model, according to the predicted risk and disease 

status (explained in the package) of the simulated population, to quantify the predictive ability of 

the PRS model. To obtain AUC for each model, we regenerated 5 simulated datasets with 5 

updated models. Each model has a different precision level of risk allele OR. We rounded ORs to 

precision level of 0.00001, 0.0001, 0.001, 0.01 and 0.1 for each model. All other parameters 

were kept the same (population risk, risk allele, and risk allele frequency). 

Calculate predicted risk 

In a separate analyses, we compared the risk prediction at the individual level. Predicted risk for 

each individual was calculated as the probability which converted from posterior odds, using the 

equation probability=odds/(1+odds). Posteriors odds were obtained from Bayes’ theorem using 

likelihood ratios and calculation of  LR has been described previously somewhere else (Janssens 

et al., 2006). We calculated predicted risks for each individual within the reference model, using 

ORs with precisions of 0.000001, 0.00001, 0.0001, 0.001, 0.01 and 0.1. Each individual was 

calculated with 6 predicted risks. 

Statistical Analysis 

We analyzed the changes in discriminative ability of PRS by investigating the AUC in different 

models. The change in predictive values was examined by and change of risk itself within the 

same model when changing the precision level kept for risk allele effects .  
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First, we analyzed AUC change when changing the precision level of risk allele ORs. We 

arbitrarily identified the level of threshold for being considered as a change for the Δ AUC to be 

5%. 

Next, we analyzed the risk change when changing the precision level of risk allele 

effects. To show the relationship between risks obtained from different effects precision levels, a 

set of scatterplots was generated, having the predicted risk calculated from effects precision level 

of 0.000001 on the x-axes, and predicted risk from effects precision level of 0.00001, 0.0001, 

0.001, 0.01 and 0.1 on the y-axes. Correlation coefficients(r) were also obtained for the 

scatterplots to show the strength of relationship. 

In addition,  we analyzed the AUC and risk change for common and rare diseases when 

using effects with different precision levels, by repeating the previous analysis steps by a 

changing disease population risk to 30%, holding the rest of the parameters constant. 

All analyses were performed with R (version 4.0.2) using “PredictABEL” package. 
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RESULTS 

Table 1 presents the general information of the reference model and updated models for the 

hypothetical populations, including different precision levels of effects, number of SNPs 

included for calculation in the model, model performance demonstrated by AUC and Δ AUC 

between the reference and updated models. When precision of ORs changed from 0.000001 to 

0.001, over 7000 SNPs in the model had a OR did not equal to 1, whereas the number of SNPs 

reduced to 2442 when ORs were rounded to 0.01 in model 4 and 60 when ORs were rounded to 

0.1 in model 5, saying that 60 of the 7502 SNPs were included in model 5 to calculate the 

predictive ability of PRS. The discriminative accuracy of the models was presented by AUC. Δ 

AUC has also shown the change in AUC between the reference and updated models. 

When changing the precision of ORs of the SNPs, we observed no change in AUC 

between the reference and updated models (Table 1). The AUC for the reference model was 

0.65. The AUC calculated from SNPs with OR precision of 0.1 was 0.64. 
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Table 1. General information of models using ORs with different precisions for a simulated 

population (Sample size=100,000, population risk =10%) 

Model a Precision Level b Number of SNPs c AUC d Δ AUC e 

Reference Model 0.000001 7502 0.653 - 

Model 1 0.00001 7502 0.655 0.2% 

Model 2 0.0001 7502 0.652 0.1% 

Model 3 0.001 7361 0.654 0.1% 

Model 4 0.01 2442 0.656 0.3% 

Model 5 0.1 60 0.637 1.6% 

a Models were used to simulate a hypothetical population of 100,000. Odds ratios (ORs) with 
precision of 0.000001 from the original dataset was set to generate the reference model. For 
updated models, ORs were rounded to precisions of 0.00001, 0.0001, 0.001, 0.01, and 0.1 for 
population simulation. 
b Precisions were rounded to different levels for each updated model. 
c Number of SNPs remaining in the model that had a OR not equal to 1 after rounding. 
d Area under the receiver operating characteristic (ROC) curve. 
e Absolute difference of AUC between the reference model and updated model, shown in %. 
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The ROC curves for the reference and updated models are shown in Figure 1. The ROC 

curves overlapped for the reference and updated models, except for the ROC curve using OR 

with precision of 0.1, which showed a slightly lower discriminative ability by having a lower 

AUC. 

  

 

Figure 1. ROC curves for the reference and updated models when simulating a population of 
100,000 at population risk of 10%. 
Reference model: hypothetical population simulated using ORs with precision level of 0.000001. 
Model 1: Hypothetical population simulated using ORs with precision level of 0.00001. 
Model 2: Hypothetical population simulated using ORs with precision level of 0.0001. 
Model 3: Hypothetical population simulated using ORs with precision level of 0.001. 
Model 4: Hypothetical population simulated using ORs with precision level of 0.01. 
Model 5: Hypothetical population simulated using ORs with precision level of 0.1. 
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Figure 2 showed scatterplots of predicted risk change when changing the precision level 

of ORs for the hypothetical population in the reference model. The predicted risk was calculated 

5 additional times, each time using ORs from different precisions. Correlation coefficients 

between the reference predicted risks and updated predicted risks were also calculated and 

presented in the scatterplots. When using ORs showing an effect only in the 6th, 5th, 4th, 3rd ,and 

2nd decimals, the correlation coefficients of predicted risk between the 6th and 5th, 4th, 3rd, 2nd 

decimals were all 0.99, indicating strong associations. The correlation coefficient between 

predicted risk calculated with ORs showing an effect in 6rd and 1st decimal was 0.74, indicating a 

moderate association. 
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Figure 2. Scatterplots of predicted risks using ORs with different precision levels at population 
risk of 30%. Each dot represent the predict risk of one person. a) – e), Scatterplots of predicted 
risks calculated using ORs with precision of 0.000001 vs. predicted risks calculated using ORs 
with precision of 0.00001, 0.0001, 0.001, 0.01 and 0.1, of the reference model population. 
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Furthermore, we investigated the predictive ability of PRS at a population risk of 30%, 

holding the rest of the analysis constant. We observed a similar result for AUC, Δ AUC and 

predicted risk comparing with population risk at 10%. At population risk of 30%, ROC curves 

overlapped for the 6th and 5th, 4th, 3rd and 2nd model with OR showing an effect in the 1st decimal 

(Figure 3).  

 

 
Figure 3. ROC curves for the reference and updated models when simulating a population of 
100,000 at population risk of 30%. 
 

Predicted risk calculated with reference and updated precisions of ORs all had correlation 

coefficients of 0.99, except for the predicted risk using OR with precision of 0.1(correlation 

coefficient = 0.75) (Figure4.) 
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Figure 4. Scatterplots of predicted risks using ORs with different precision levels, at population 
risk of 30%. Each dot represent the predict risk of one person. a) – e), Scatterplots of predicted 
risks calculated using ORs with precision of 0.000001 vs. predicted risks calculated using ORs 
with precision of 0.00001, 0.0001, 0.001, 0.01 and 0.1, of the reference model population.   
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DISCUSSION 
 

We investigated the value of including SNPs with small effects in the predictive ability of 

PRS, by investigating the AUC and predicted risk change, when changing the precision of SNP 

effects. We found that for both of the simulated populations with the disease population risk of 

10% and 30%, the AUC and predicted risk showed no difference when the precision of SNP 

effects were changed from 0.000001 to 0.01 (AUC = 0.65; r = 1.0). At SNP effects precision 

level of 0.1, the AUC and the correlation coefficient of predicted risk were slightly lower than 

when using SNP effects with 0.000001 (AUC = 0.64; r = 0.74 for population risk of 10%; r = 

0.75 for population risk of 30%). The results showed that the value of including SNPs with every 

small effects in the predictive ability of PRS is low. There is no necessity of keeping the 

precision of SNP effects at 0.000001 since the predictive ability of PRS remains the same 

comparing with when the precision of SNP effects was kept at 0.01. 

One key finding of our study was that when modeling with SNP effects of different 

precision levels, the AUC showed no change for SNP effects with precision of 0.000001 and 

0.01 (AUC = 0.65). Previous study also using simulated data for a population of 10,000 found 

that when AUC remained the same, the predictive ability of the reference and updated model 

remained the same as well, indicating the discriminative accuracy remained the same.17 When 

precision of SNP effects changed to 0.1, we did observe a change in AUC of 0.1% for population 

risk at 10% and 0.2% for population risk at 30%. Both of the Δ AUCs remained within the 

threshold we set earlier for Δ AUC to be considered small. 

We also investigated the predicted risk change when calculating PRS using SNPs with 

different precisions for the reference population. With the genetic profile for each individual 

remaining constant, predicted risk was calculated for 6 times, using SNPs with different 
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precision of effects. The correlation coefficients between the reference predicted risk (SNP 

effects precision at 0.000001) and updated predicted risk (SNP effects precision at 0.00001, 

0.0001and 0.001) were 1.0 for both population risk of 10% and 30%, and 0.97 for SNP effects 

precision of 0.01 when population risk was 10%. Correlation coefficient of 0.97 indicates a 

strong association that predicted risk when using SNP effect precision of 0.01. 

Strength and Limitations 
 

The strength of the study was able to perform a simulation study for a population of 

100,000. Simulation study has the advantage of including large sample size when empirical data 

is unavailable. Nevertheless, our study had the limitation of only being able to include 7502 

SNPs when modeling the populations. Our purpose was to investigate the value of including 

SNPs with very small effects in predictive ability of PRS, according to the study with 6.6 

millions of SNPs by Khera et al.. But we were not able to model 6.6 million variants due to 

computer limitations. 

Conclusion and Implications 
 

Overall, we quantified the predictive ability change of PRS, with different precisions of 

SNP effects using simulated data. We found that predictive ability of PRS did not change when 

the precision of SNP effects changed from 0.000001 to 0.01. Therefore, keeping SNP effects at 

precision of 0.01 should suffice for future studies when calculating PRS.  
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