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Abstract

Towards Scalable and Privacy-Preserving Integration of
Distributed Heterogeneous Data

By Pawel Jurczyk

With the trend of cloud computing, data and computing are moved away from
desktop and are instead provided as a service from the cloud. Data-as-a-service
enables access to a wealth of data across distributed and heterogeneous data sources
in the cloud. It remains a challenge, however, to ensure the privacy, interoperability,
and scalability for such services.

We designed and developed DObjects, a general-purpose P2P-based query and
data operations infrastructure that can be deployed in the cloud and provides ac-
cess to heterogeneous data sources. The system builds on top of a distributed
mediator-wrapper architecture where individual system nodes serve as mediators
and/or wrappers and interact with each other in a P2P fashion. As an analogy,
the system nodes can be considered as droplets, small elements that provide similar
functionality in the cloud. Just as thousands or millions of droplets form a single
drop in nature, in cloud computing, groups of droplets that provide similar func-
tionality can form a micro-cloud. Micro-clouds are an integral part of the whole
cloud computing system.

The dissertation also discusses the novel dynamic query execution engine within
the data query infrastructure that dynamically adapts to network and node condi-
tions. The query processing is capable of fully benefiting from all the distributed
resources to minimize the query response time and maximize system throughput. In
addition to leveraging the traditional distributed query optimization techniques, the
(sub)queries are deployed on droplets in a dynamic and iterative manner in order
to guarantee the best reaction to network and resource dynamics.

Finally, the dissertation presents an extension to the basic DObjects model that
enables access to private data that is distributed and needs anonymization. The
extension enables droplets to form virtual groups to addresses two privacy issues for
the sensitive data: privacy of data subjects and confidentiality of data providers.
The dissertation discusses decentralized protocols that enable data sharing for hor-
izontally partitioned databases given these constraints. Concretely, given a query
spanning multiple databases, the query results do not contain individually identi-
fiable information. In addition, institutions do not reveal their databases to each
other apart from the query results.
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Chapter 1

Introduction

1.1 Motivation

With the trend of cloud computing12, data and computing are moved away from

desktop and are instead provided as a service from the cloud. Current major compo-

nents under the cloud computing paradigm include infrastructure-as-a-service (such

as EC2 by Amazon), platform-as-a-service (such as Google App Engine), and ap-

plication or software-as-a-service (such as GMail by Google). There is also an in-

creasing need to provide data-as-a-service [55] with a goal of facilitating access to a

wealth of data across distributed, heterogeneous and possibly private data sources

available in the cloud.

1.1.1 Application Scenarios

Consider a nation-wide IT network provider that owns hundreds of thousands of

network devices across the country and utilizes hundreds of small servers with po-
1http://en.wikipedia.org/wiki/Cloud_computing
2http://www.theregister.co.uk/2009/01/06/year_ahead_clouds/
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tentially heterogeneous database systems connecting to local devices to store infor-

mation reported by them. In order to develop applications such as an enterprise-scale

device management system or a report generation tool, data from distributed and

heterogeneous sources must be operated.

Another application scenario emerges from the healthcare domain. For instance,

a national health information technology agenda is to enable the creation of a Na-

tionwide Health Information Network (NHIN)3, a network of networks that will

enable the use of health information for clinical decision making and beyond di-

rect patient care to improve public health. For instance, consider a system that

integrates the air and rail transportation networks with demographic databases and

patient databases in order to model the large scale spread of infectious diseases

(such as the SARS epidemic or pandemic influenza). Rail and air transportation

databases are distributed among hundreds of local servers, demographic information

is provided by a few global database servers and patient data is provided by groups

of cooperating hospitals.

Separate example is the Shared Pathology Informatics Network (SPIN)4 initia-

tive by the National Cancer Institute. The objective is to establish an Internet-based

virtual interface or service that will allow investigators access to data that describe

archived tissue specimens across multiple institutions while still allowing those in-

stitutions to maintain local control of the data.
3Nationwide Health Information Network (NHIN). http://www.hhs.gov/healthit/

healthnetwork/background/
4Shared Pathology Informatics Network. http://www.cancerdiagnosis.nci.nih.gov/spin/
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1.1.2 Research Challenges

While the data-as-a-service scenarios discussed above demonstrate the increasing

needs for integrating and querying data across distributed and autonomous data

sources, it remains a challenge to ensure privacy, interoperability, and scalability

for such data services. To achieve interoperability and scalability, data federation

is increasingly becoming a preferred data integration solution. In contrast to a cen-

tralized data warehouse approach, data federation combines data from distributed

data sources into one single virtual data source, or data service, which can then be

accessed, managed and viewed as if it was a part of a single system. Indeed, the

NHIN will not include a national data store or centralized systems. Instead, it will

use shared architecture (services and standards) to interconnect health information

exchanges.

The implementation of data federation platform for a distributed system, by

itself, poses many challenges. The classical architecture assumes a centralized ap-

proach, where all users use a single endpoint to access the data. While suitable

for smaller and non-distributed systems, such an approach has certain limitations

in larger distributed systems, especially with respect to scalability and availability.

The single endpoint is a bottleneck that limits the number of concurrent operations,

causing the system not to scale well. Moreover, the failure of the endpoint renders

the whole federation system to be non-operational.

To overcome these problems, the system proposed in this dissertation imple-

ments a distributed mediator approach where a set of resources forms a virtual

mediator. Users do not have to interact with one particular system node, but can

connect to any node. Although providing many opportunities, such an approach

generates a number of potential problems that need to be addressed. The resources

3



in distributed mediator need to be used in an efficient way. The query processing

component needs to be aware of all the computational resources, and has to make

possible decisions about migration of workload from one system node to another in

order to increase the throughput and decrease query processing latency.

There are also two important privacy constraints to be considered for such data

federation services due to the fact that the system needs to provide access to data

that is private. The first constraint is the privacy of individuals or data subjects

(such as patients). For example, personal health information is protected under the

Health Insurance Portability and Accountability Act (HIPAA)56. This constraint

can be addressed by data anonymization or de-identification which transforms the

data through techniques such as attribute removal or generalization so that it does

not contain individually identifiable information. In fact, the problem of data ano-

nymization for a single database (in client-server setting) has been extensively stud-

ied in the database community in recent years. However, few have studied the

anonymization problem for distributed data federation services.

The second constraint is the confidentiality of data providers (e.g. institutions)

as they may not want to reveal part of their data or the ownership of the data due to

competition and various other reasons. For example, a hospital may consider its test

compliance rates as sensitive or may not want to reveal its admission of a particular

group of patients. This constraint can be potentially addressed by secure multi-

party computation approaches where we wish to compute an answer given a query

spanning multiple databases without revealing any information of each individual

database apart from the query result. However, these techniques are insufficient
5Health Insurance Portability and Accountability Act (HIPAA). http://www.hhs.gov/ocr/

hipaa/.
6State law or institutional policy may differ from the HIPAA standard and should be considered

as well.
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when the query results alone (without additional intermediate information) reveal

certain ownership of the data.

While there are extensive works dedicated to each of the above aspects and

techniques, very few have taken a systems approach to study them in the context

of data federation services for multiple distributed and autonomous data sources.

This thesis sets out to explore research opportunities directed towards integrating

these building blocks through the development of a new privacy-preserving data

federation architecture. This architecture will deliver data services for the cloud or

any other resource sharing platform.

1.2 Contributions

This thesis describes a system called DObjects that provides an architecture for

scalable and privacy-preserving data federation services for distributed and possibly

private databases in the cloud. Its focus is on presenting system architecture and

components, including query optimization, distributed anonymization and secure

query processing. The work consists of the following innovative contributions.

First, the system builds on top of a distributed mediator-wrapper architecture

where individual system nodes serve as mediators (mediating queries across data

sources) and/or wrappers (retrieving data from individual data sources). They

interact with each other in a P2P fashion and form a virtual system to provide a

seamless and transparent data federation service in a scalable way [44, 36]. As an

analogy, the system nodes can be considered as droplets, small elements that provide

similar functionality in the cloud. An element can be a single physical machine or a

service provided by a physical machine (in that case physical machine can function

5



as several droplets). Just as thousands or millions of droplets form a single drop in

nature, in cloud computing, groups of droplets that provide similar functionality can

form a micro-cloud. Micro-clouds are an integral part of the whole cloud computing

system and can provide specific services to users. In spirit, the data federation

service presented here can be considered as such micro-cloud.

Second, the framework implements a novel dynamic query execution engine

within the data query infrastructure that dynamically adapts to network and node

(or droplet) conditions [44, 40, 41]. In addition to leveraging traditional distributed

query optimization techniques, the optimization is focused on dynamically placing

(sub)queries on the system nodes (mediators) to minimize the query response time

and maximize system throughput. In our query execution engine, (sub)queries are

deployed and executed on droplets in a dynamic and iterative manner with a goal

of achieving the best reaction to network and resource dynamics.

Finally, the dissertation presents an extension to the basic DObjects model that

enables access to private data that is distributed and needs anonymization. This ex-

tension enables droplets to form virtual groups in order to addresses two important

privacy issues for the sensitive data: privacy of data subjects and confidentiality of

data providers. The concept of groups of droplets facilitates two important compo-

nents: secure distributed anonymization [39, 37, 38] and secure query processing [42].

The secure distributed anonymization component constructs a virtual anonymized

database from multiple data providers while preserving the two security goals. The

secure distributed query processing engine enables querying the virtual anonymized

data in a scalable and privacy-preserving way. Secure query operators are integrated

into the query processing engine to preserve privacy for data providers in a transpar-

ent manner. It is worth noting that some data sources may contain personal data

6



that require anonymization while others may not. When sensitive information is

being queried, it is recognized automatically and transparently from users’ point of

view and secure operators are deployed to guarantee the privacy and confidentiality

constraints.

1.3 Organization

The remainder of this dissertation discusses all the components of the system de-

scribed above. First, chapter 2 gives an overview of research in related areas. Next,

chapters 3 and 4 give details of system architecture and novel query processing com-

ponent, respectively. Chapter 5 provides extensions to the base system described

in chapters 3 and 4 that enable access to data that needs anonymization. Finally,

chapters 6 and 7 discuss details of the protocols used to access the private data.

Specifically, those chapters discuss distributed anonymization and secure union al-

gorithm used in query processing, respectively.
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Chapter 2

Related Work

2.1 Introduction

This section provides an overview of topics that are related to the system presented

in this dissertation. The related work can be divided into few major areas: data

federation, data integration and distributed databases. Some elements of stream

processing and continuous queries, especially the query processing and optimization

aspects are also relevant. The work discussed here also builds on some ideas from

distributed system architectures and load balancing in distributed systems. Finally,

the distributed anonymization component and the secure query processing build on

previous work in data anonymization as well as secure multiparty computation.

2.2 Distributed Databases and Query Processing

Distributed databases have been a subject of research for quite a long time [62, 49].

While some attention is given to scalability, earlier distributed database research and
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prototypes focused primarily on various distributed query processing techniques such

as different join algorithms, alternative ways of shipping data from one site to the

other and different architectures such as peer-to-peer, client-server and multi-tier ar-

chitecture. DObjects adopts some of these ”textbook” distributed query processing

techniques such as semi-join.

Later distributed database or middleware systems, such as Garlic [12], DISCO

[75] or TSIMMIS [13], target large-scale heterogeneous data sources. Many of them

employ a centralized mediator-wrapper based architecture to address database het-

erogeneity: that a single mediator server integrates distributed data sources through

wrappers. Query optimization focuses on integrating wrapper statistics with tra-

ditional cost-based query optimization for single queries spanning multiple data

sources. As the query load increases, the centralized mediator may become a bot-

tleneck.

A number of distributed query systems were targeted at Internet-scale in recent

years. HyperQueries framework [47] is based on an idea of electronic market that

serves as an intermediary between clients and providers executing their sub-queries

referenced via hyperlinks. Similar approach is introduced in Active XML1. Instead

of data objects, response to user queries is XML which has references (active links)

to Web services providing given information. PIER [32, 29] is one of the first general-

purpose relational query processors built on top of a distributed hash table (DHT)

structured overlay for massively distributed networks. In many ways, PIER’s ar-

chitecture and algorithms are closer to parallel database systems particularly in the

use of hash-partitioning during query processing. The initial work in Seaweed [59]

targets at ad-hoc query processing for distributed end-systems and their main fo-
1http://www.activexml.net
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cus is on dealing with end-system unavailability. Most of these solutions target at

geographic scalability. In addition, they provide interfaces for querying data and

limit other operations (such as deletions, updates or creation) focusing on efficient

routing of the query to data sources, rather than on integrating data from multiple

data sources. As a result, the query processing in such systems is focused on efficient

query routing schemes for network scalability.

While it is not the aim of DObjects to be superior to these works, our sys-

tem distinguishes itself by addressing an important problem space that has been

overlooked, namely, integrating large-scale heterogeneous data sources with both

network and query load scalability without sacrificing query complexities and trans-

action semantics. In spirit, DObjects is a distributed P2P mediator-based system

in which a federation of mediators and wrappers forms a virtual system in a P2P

fashion (see Figure 3.2). Our optimization goal is focused on building effective sub-

queries and optimally placing them on the system nodes (mediators) to minimize

the query response time and maximize throughput.

Another related body of work such as Piazza [26] and PeerDB [60] are focused

on the semantic challenge of integrating many peer databases with heterogeneous

schemas. We focus on system and structural heterogeneity as the mediator-based

systems and refer to a survey of the issues in semantic integration [69] and a few

recent proposals [27, 15] focusing on schema mediation in distributed systems.

There are also recent works focusing on specific components of query processing

in Internet-scale data networks such as cardinality estimation [61]. A number of

works are focused on distributed query evaluation on semi-structured data or XML

using techniques such as query decomposition [71] and partial evaluation [76].
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The recent software frameworks, such as map-reduce-merge [89] and Hadoop2,

support distributed computing on large data sets on clusters of computers and can

be used to enable cloud computing services. The focus of these solutions, however,

is on data and processing distribution rather than on data integration.

2.3 Data Streams and Continuous Queries

A large amount of efforts was contributed to the area of continuous or pervasive

query processing [57, 80, 88, 76, 30, 84, 87]. A methods of sharing work in the

context of distributed aggregation queries that vary in their selection predicates were

analyzed in [31]. The query optimization engine in DObjects is most closely related

to SBON [64]. SBON presented a stream based overlay network for optimizing

queries by carefully placing aggregation operators. DObjects shares a similar set

of goals as SBON in distributing query operators based on on-going knowledge of

network conditions. SBON uses a two step approach, namely, virtual placement and

physical mapping for query placement based on a cost space. In contrast, we use a

single cost metric with different cost features for easy decision making at individual

nodes for a local query migration and explicitly examine the relative importance of

network latency and system load in the performance.

2.4 Distributed Systems Architectures

Distributed resource sharing paradigm offers great scalability at relatively low price

by sharing distributed resources to solve large-scale computing problems. Grid

systems, such as Globus Toolkit [21] and UNICORE [65], provide general frame-
2http://hadoop.apache.org/core/
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works for running software on grid architecture using different approaches such as

component-based model [7] and distributed objects paradigm [82]. Recently, we can

observe the emergence of applications that use distributed and grid architectures

for query processing. A novel mediator-based database architecture for grids was

proposed in [83]. The grid community has also explored the idea of relocating data

preprocessing closer towards data locations [81].

The most relevant to our work are OGSA-DAI and its extension OGSA-DQP [6]

introduced by a Grid community as a middleware assisting with access and inte-

gration of data from separate sources. While the above two approaches share a

similar set of goals with DObjects, they were built on the grid/web service model.

In contrast, DObjects is built on the P2P model and provides resource sharing on

a peer-to-peer basis.

Grid systems require centralized services for authentication or job submission

which limit these solutions. In contrast, our framework is built on top of a de-

centralized resource sharing platform H2O [50, 33] that avoids the administrative

burden related to using grid systems and makes resource sharing easier for providers,

in the spirit of the P2P model.

It is important to position DObjects among the existing distributed system

frameworks. A number of distributed systems technologies and mechanisms such

as DCOM3, CORBA4, and RMI5 support distributed objects paradigm by allowing

objects to be distributed across a heterogeneous network and can be used to build

distributed applications. Our system builds on top of above technologies and offers

a general platform for metacomputing with support for distributed data integration
3http://msdn2.microsoft.com/en-us/library/ms809340.aspx
4http://www.corba.org/
5http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
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and data operation services. In particular, current implementation of DObjects

builds on top of a resource sharing platform H2O that builds on top of RMIX (an

extension of RMI). The data services provided by DObjects offer query language

and query execution optimization substrate that is fully integrated with the re-

source sharing middleware and can be used easily and transparently in distributed

applications.

2.5 Load Balancing

Past research on load balancing methods for distributed databases resulted in a

number of methods for balancing storage load by managing the partitioning of the

data [2, 23]. Mariposa [70] offered load balancing by providing marketplace rules

where data providers use bidding mechanisms. Load balancing in a distributed

stream processing was also studied in [74] where load shedding techniques for re-

vealing overload of servers were developed.

2.6 Privacy Preserving Data Publishing

Privacy preserving data publishing for centralized databases has been studied ex-

tensively [22]. One thread of work aims at devising privacy principles, such as

k-anonymity [72], l-diversity [56] and t-closeness [52], that serve as criteria for judg-

ing whether a published dataset provides sufficient privacy protection. Another

large body of work contributes to algorithms that transform a dataset to meet one

of the above privacy principles (dominantly k-anonymity). In this study, our dis-

tributed anonymization protocol is built on top of the k-anonymity and l-diversity

principles and the greedy top-down Mondrian multidimensional k-anonymization
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algorithm [51].

The mentioned privacy principles relate to a one-time releasing of a data. A prob-

lem of continuous releases when data gets updated resulted in various algorithms

that support re-publication of data. An example of this body of work includes a con-

cept of m-invariance [85] or anonymization of serial data by role decomposition [11].

There are some works focused on data anonymization of distributed databases.

[34] presented a two-party framework along with an application that generates k-

anonymous data from two vertically partitioned sources without disclosing data from

one site to the other. [94] proposed provably private solutions for k-anonymization

in the distributed scenario by maintaining end-to-end privacy from the original

customer data to the final k-anonymous results.

In contrast to the above work, our work is aimed at horizontal data distribution

and arbitrary number of sites. More importantly, our anonymization protocol aims

to achieve anonymity for data subjects and security for data providers.

2.7 Secure Multi-party Computation

Our approach also has its roots in the secure multi-party computation (SMC) prob-

lem [24, 14, 54, 78, 18]. This problem deals with a setting where a set of parties

with private inputs wish to jointly compute some function of their inputs. An SMC

protocol is secure if no participant learns anything more than the output.

Although a general solution to SMC problems has been proven to exist for any

function, its high computational overhead makes it impractical. Specialized proto-

cols have been proposed for various functions such as sum [67], the kth element [3],

set intersection and intersection size [4], and set union [45, 10].
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A closely related and more recent research area is privacy preserving data mining

and sharing across distributed data sources [14, 78, 54]. It follows the secure multi-

party computation model and the main goal is to ensure that data is not disclosed

among participating parties while allowing certain mining or querying task to be

carried out. Specialized protocols are designed for various mining tasks with varying

degree of accuracy, security, and cost (e.g. [53, 77, 19, 4, 45, 90, 86, 79]).

Most above work assume an honest or semi-honest adversary model [25]. Other

works consider broader threat space including malicious adversaries [93, 5, 46, 35].

Our distributed anonymization problem can be viewed as designing SMC proto-

cols for anonymization that build a virtual anonymized database and query process-

ing that assembles query results. Our distributed anonymization approach utilizes

existing SMC protocols for subroutines such as computing sum [67], the kth element

[3], and set union [45, 10]. The protocol is carefully designed so that the intermediate

information disclosure is minimal.
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Chapter 3

DObjects Framework

3.1 Introduction

Consider a system that integrates the air and rail transportation networks with de-

mographic databases and patient databases in order to model the large scale spread

of infectious diseases (such as the SARS epidemic or pandemic influenza). In order

to develop such large-scale applications, data from distributed and heterogeneous

sources must be queried and operated. Such applications are characterized by a

number of features and requirements. First, the scale of the applications can vary

from a handful to several hundreds of nodes and requires good scalability. Second,

the heterogeneity of data sources requires a unified and seamless data representa-

tion and query interface for the applications. Lastly, the dynamics of resource and

network conditions require applications to adapt dynamically in query processing in

order to achieve scalability.

As mentioned in the introduction section, data federation is increasingly becom-

ing a preferred data integration solution to achieve interoperability and scalability
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Figure 3.2: P2P-based architecture

in the process of accessing heterogenous data. In contrast to a centralized data

warehouse approach, a data federation combines data from distributed data sources

into one single virtual data source, or a data service, which can then be accessed,

managed and viewed as if it was part of a single system.

Many traditional data federation systems employ a centralized mediator-based

architecture (Figure 3.1). We propose an alternative approach called DObjects that

is a P2P-based architecture (Figure 3.2) for data federation services. In our system

each system node can take the role of either a mediator or a mediator and wrapper

at the same time. The nodes form a virtual system in a P2P fashion. The framework

we propose is capable of extending cloud computing systems with data operations

infrastructure, exploiting at the same time distributed resources in the cloud.
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DObjects builds on top of a distributed mediator-wrapper architecture where

individual system nodes serve as mediators (mediating queries across data sources)

and/or wrappers (retrieving data from individual data sources). As an analogy,

our system nodes can be considered as droplets, small elements that provide similar

functionality in the cloud. An element can be a single physical machine or a service

provided by a physical machine (in that case a physical machine can function as

several droplets). Just as thousands or millions of droplets form a single drop in

nature, in cloud computing, groups of droplets that provide similar functionality can

form a micro-cloud. Micro-clouds are an integral part of the whole cloud computing

system and can provide specific services to users. In spirit, our data federation

service which we propose here can be considered as such micro-cloud.

In addition to leveraging traditional distributed query optimization techniques,

query processing and optimization in DObjects is focused on dynamically placing

(sub)queries on the system nodes (mediators) to minimize the query response time

and maximize system throughput. In our query execution engine, (sub)queries are

deployed and executed on system nodes in a dynamic (based on nodes’ on-going

knowledge of the data sources, network and node conditions) and iterative (right

before the execution of each query operator) manner. Such an approach guarantees

the best reaction to network and resource dynamics.

This chapter is focused on an architecture of DObjects system as well as query

API [44, 36]. Specifically, we describe the details of system concepts, configuration

and system usage. The details of a novel query execution and optimization engine

that is implemented within the system are discussed in the following chapter.
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3.2 DObjects Overview

A novel aspect of our architecture is that it is implemented on top of a distributed re-

source sharing framework. It consists of multiple decentralized system nodes which

can serve as wrappers and/or mediators and form a virtual system in a P2P fash-

ion. Figure 3.3 depicts DObjects framework deployed for the cloud. The system

has no centralized services and uses the resource sharing paradigm to benefit from

computational resources available in the cloud. Each node in the system can be

considered a droplet as it provides similar functionality to other nodes and all the

droplets form a micro-cloud. Each droplet serves as a mediator that provides its

computational power for query mediation and results aggregation. Each droplet

can also serve as a data adapter or wrapper that pulls data from data sources and

transforms it to a uniform format that is expected while building query responses.

Users can connect to any system node; however, while the physical connection is

established between a client and one of the system nodes, the logical connection is

established between a client node and a virtual system consisting of all the available

nodes, or the micro-cloud.

Current implementation builds on top of a Java distributed framework, H2O,

that provides light-weight, decentralized and peer-to-peer resource sharing substrate.

3.2.1 Data Model

When user starts a query, DObjects returns persistent entities which are data rep-

resented as objects. From user’s perspective, query responses are objects of desired

type. Each data object has a set of attributes, divided into two groups: simple and

referential. Simple attributes represent simple types, such as numbers or strings.
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Figure 3.3: DObjects architecture.

<data-sources>
<data-source name="place_a"

location="http://lab8a:7799/dobjects"/>
<data-source name="rails_a"

location="http://lab8b:7799/do-node1"/>
<data-source name="rails_b"

location="http://lab8c:7799/do-node2"/>
</data-sources>

Figure 3.4: Configuration of available DObjects nodes.

Referential attributes follow an object-oriented idiom and allow the definition of

association, composition or collection relations between data objects. Thus, when a

referential attribute is accessed, another persistent entity, or a collection of persis-

tent entities, is obtained. A set of available data types in the system along with their

attributes is defined in the system configuration. The first step of configuration is

to provide addresses of data sources and nodes available in the system. An example

of such configuration is presented in Figure 3.4.
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The second step of configuration is to provide the data types available in the sys-

tem. Each configuration entry for persistent entity has a full description of an object,

i.e. its type name and a list of simple attributes and referential attributes. When a

referential attribute is defined, one has to specify the foreign key information that

is required to join the referencing object and referenced object. The configuration

also specifies a list of nodes (sources) where given objects can be found.

An example configuration for two types, CityInformation and RailroadConnec-

tion, is presented in Figure 3.5 (details of the Flight type configuration are omitted).

The CityInformation object provides three attributes: name, lRails and lFlights.

The first attribute is a simple attribute, while the two latter are referential at-

tributes. The RailroadConnection persistent entity provides two attributes: id and

fromCity, both being simple attributes. Each configuration entry also provides a list

of data sources. Each source is specified with: 1) name of the node, 2) remote data

object name (e.g., table name in case of data source based on relational model), and

3) attribute mappings that define the semantic mappings between the remote data

object and the current object. In the example configuration, CityInformation object

is provided by one data source with name place a. The RailroadConnection objects

are provided by two data sources, rails a and rails b. Note that in the process of

defining the sources of given object, one has to use data source names defined in the

first step of the configuration.

There is no centralized copy of the global configuration. For systems with a

handful of DObjects nodes (the number of data sources can be still large), the

configuration can be replicated and synchronized at every node as the cost of syn-

chronization will be relatively small. For larger scale systems with more DObjects

nodes, the global schema can be replicated at a subset of the DObjects nodes such
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<distributed-objects>
<persistent-entity name="CityInformation">

<definition>
<attribute name="name" type="String"/>
<list name="lRails" type="RailroadConnection"

local-key="name" remote-key="fromCity"/>
<list name="lFlights" type="Flight" local-key="name"

remote-key="city_name"/>
</definition>
<sources>

<source name="place_a" remote-object="cities">
<attribute-mapping name="name"

remote-attr="city_name"/>
</source>

</sources>
</persistent-entity>
<persistent-entity name="RailroadConnection">

<definition>
<attribute name="id" type="String"/>
<attribute name="fromCity" type="String"/>

</definition>
<sources>

<source name="rails_a" remote-object="rail_conns">
<attribute-mapping name="id" remote-attr="rail_id"/>
<attribute-mapping name="fromCity"

remote-attr="from"/>
</source>
<source name="rails_b" remote-object="trains">

<attribute-mapping name="id" remote-attr="id"/>
<attribute-mapping name="fromCity"

remote-attr="from"/>
</source>

</sources>
</persistent-entity>
<persistent-entity name="Flight"> . . . </persistent-entity>

</distributed-objects>

Figure 3.5: Example of persistent entities configuration.
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DOClient system = new DOH2OClientImpl(
new DOH2OConnPoint("http://lab8a:7799/dobjects"));

system.start();

Figure 3.6: Creating a reference to DObjects system

as landmark nodes.

3.2.2 Data Operations and Query Language

DObjects supports all standard data operations including queries and updates. Both

synchronous and asynchronous queries are supported. In case of the latter user can

get results incrementally and operate on partial results.

DObjects provides its internal query language API which strictly follows the

object-oriented fashion of the data representation of persistent entities. A user

creates queries by building a hierarchy of objects. Each query is created for a given

persistent entity type and specifies which simple or referential attributes should be

populated. In case of referential attribute, the user builds the referenced object which

again specifies simple and referential attributes to be populated. The process can be

continued until desired level in the hierarchy is reached. In addition, the query can

specify conditions for objects in the hierarchy for simple attributes and recursively

for referential attributes (objects).

To use the system, users first need to create a connection. To create it, an

address of at least one DObjects node has to be known. Listing presented in Figure

3.6 presents how a connection can be created to a DObjects node. The user needs

to obtain a reference to instance of DOClient interface that will provide a gateway

to the whole system. The example shows how to create DOClient instance using

an implementation of DObjects based on H2O resource sharing platform. Once the
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DOClient instance is created, the actual connection can be established by calling

the method start(). This method is blocking, and it returns once a connection

between user’s application and given DObjects node is established.

As mentioned before, the current implementation of DObjects is based on H2O

resource sharing platform. The addresses of nodes are therefore addresses of pluglets

in H2O. Generally, the pluglet address URI schema is as follows:

<scheme>://<authority>/<pluglet-path>

An example of an address is http://lab8a:7799/dobjects, where http is the

scheme, lab8a:7799 is an authority (host name followed by a port number) and

dobjects is a DObjects pluglet name located on the specified authority.

Once the reference to DObjects system is successfully created, users can build

and submit queries. The query building API allows one to specify what objects will

be returned by given queries, and what attributes of these objects will be populated.

When specifying query, users need to decide what attributes of a given object type

should be filled in (or populated), as only these attributes can be accessed. If there

is an attempt to access attribute that has not been populated, an error is reported.

An example to build a query is shown in Figure 3.7. The code shows how to build

a query for objects of type CityInformation. The objects will have populated two

attributes: name and lF lights. In case of lF lights attribute, the value will be a

list of Flight objects associated with given city. Each Flight object in this list will

have only flightNumber attribute populated. The query also specifies conditions

that have to be satisfied by each object returned in the result. In the given example,

only the cities that have names starting with San will be returned. Additionally,

only the flights that have a value of flightNumber attribute equal to DT4533 will
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Query query = system.getQuery("CityInformation");

//Populated attributes in NetworkDevice
AttributePopulator populator = query.createAttributePopulator();
populator.addPopulatedAttribute("name");

//Populated attributes in each Alarm object
AttributePopulator fPop =

populator.createRefPopulator("lFlights");
fPop.addPopulatedAttribute("flightNumber");
populator.addPopulatedRefAttribute(fPop);

//Prepare constraints for results
QueryCondition condition = query.cerateQueryCondition();
condition.addCondition("name", "San%",

QueryCondition.LIKE);
QueryCondition fCondition =

condition.createQueryCondition("lFlights");
fCondition.addCondition("flightNumber", "DT4533",

QueryCondition.EQUAL);
condition.addCondition(fCondition);

Figure 3.7: Sample query using DObjects API.

be contained in the list of flights for each city.

As mentioned before, DObjects supports both synchronous and asynchronous

queries. Every DObjects query can be executed using either of these two methods.

Figure 3.8 shows how to execute a synchronous query. In order to execute the syn-

chronous query, a method executeImmediate() located in Query interface should

be used. In this case, execution of user code is blocked until the query comple-

PersistentEntity[] ents = query.executeImmediate();

Figure 3.8: Execution of query (synchronous method).
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public interface PersistentEntity {

/* Returns a list of populated simple attributes */
public String[] getPopulatedAttributes();

/* Returns a list of populated referential attributes */
public String[] getPopulatedRefAttributes();

/* Gets value of simple attribute */
public Object getAttribute(String name)

throws AttributeNotPopulatedException;

/* Gets value of referential attribute (1-1 relationship) */
public PersistentEntity getRefAttribute(String name)

throws AttributeNotPopulatedException;

/* Gets value of referential attribute (1-n relationship) */
public PersistentEntity[] getRefArrayAttribute(String name)

throws AttributeNotPopulatedException;

/* Gets type of this object */
public String getType();

}

Figure 3.9: PersistentEntity interface

tion. The query returns an array of PersistentEntity instances that can be used.

PersistentEntity can be understood as a wrapper for data that is returned to users.

The most important methods of PersistentEntity interface are presented in Figure

3.9.

An example of an asynchronous query execution is presented in listing in Figure

3.10. In this case users should use the method execute(ResultCallback) of Query in-

terface. This method does not block execution of user code, and the results of query

are provided to the callback object passed as an argument. The ResultCallback
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QueryRef reference = query.execute(callback);

Figure 3.10: Execution of query (asynchronous method).

public interface ResultCallback {
/*

Notification of result arrival.
queryReference - reference to query
result - list of results

*/
public void resultArrived(QueryRef queryReference,

PersistentEntity[] result);
/*

Notification of error during query execution.
queryReference - reference to query
e - exception

*/
public void exceptionArrived(QueryRef reference,

RemoteException e);
}

Figure 3.11: Callback interface for asynchronous query.
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select c.name, f.flightNumber
from CityInformation c, c.lFlights f, c.lRails r, f.lPassengers p
where c.name like "San%" and f.flightNumber = "DT4533"

Figure 3.12: Example of query using OQL-like query language.

interface that should be passed to the method is defined in Figure 3.11. In case

of an asynchronous query execution, user can also work on partial results, as the

notification on available results is sent once some part of the final query result is

available.

DObjects query API provides a convenient way of querying the system. On top

of this API one could also implement a parser for any language that allows one to

specify populated attributes and/or conditions for a given attribute in the objects

hierarchy. XPath or XQuery as well as OQL-like (or SQL-like) languages are all

valid approaches. An example of query for DObjects using OQL-like language is

presented in Figure 3.12. This query is an extended version of the query expressed in

DObjects query API presented in Figure 3.7. It queries not only for the list of Flight

objects in each CityInformation object, but also for a list of RailroadConnection and

Passengers (the query assumes that Flight type has a referential attribute called

lPassengers that provides information about passengers of given flight).
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Chapter 4

Dynamic Query Processing in

DObjects

4.1 Introduction

Previous chapter discussed details of an architecture of DObjects system as well as

query API that can be used to build and execute queries by users. The focus of

this chapter is a novel query execution and optimization component that attempts

to increase the throughput and decrease the query latency by benefitting from the

available resources in an underlying distributed system in the most efficient way.

In addition to leveraging traditional distributed query optimization techniques,

the optimization is focused on dynamically placing (sub)queries on the system nodes

(mediators) to minimize the query response time and maximize system throughput.

In our query execution engine, (sub)queries are deployed and executed on droplets

in a dynamic (based on nodes’ on-going knowledge of the data sources, network and

node conditions) and iterative (right before the execution of each query operator)
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manner [44, 40, 41]. Such an approach attempts to achieve the best reaction to

network and resource dynamics.

4.2 Query Execution and Optimization

The key to query processing in our framework is a decentralized and distributed

query execution engine that dynamically adapts to network and resource condi-

tions. In addition to adapting ”textbook” distributed query processing techniques

such as distributed join algorithms and the learning curve approach for keeping

statistics about data adapters, our query processing framework presents a number

of innovative aspects. First, instead of generating a set of candidate plans, mapping

them physically and choosing the best ones as in a conventional cost based query

optimization, we create one initial abstract plan for a given query. The plan is

a high-level description of relations between steps and operations that need to be

performed in order to complete the query. Second, when the query plan is being

executed, placement decisions and physical plan calculation are performed dynam-

ically and iteratively. Such an approach guarantees the best reaction to changing

load or latency conditions in the system.

It is important to highlight that our approach does not attempt to optimize

physical query execution performed on local databases. Responsibility for this is

pushed to data adapters and data sources. Our optimization goal is at a higher

level, focusing on building effective sub-queries and optimally placing those sub-

queries on the system nodes to minimize the query response time.

The query execution and optimization consists of several steps. First, when a

user submits a query, a high-level query description is generated by the node that
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Figure 4.1: Example of high-level query plan.

receives it. An example of such a query plan is presented in Figure 4.1. The plan

corresponds to the query introduced in Figure 3.12 that queries for cities along with

related referential attributes: railroad connections and flights. In addition, each

flight will provide a list of passengers. Note that each type is provided by a different

physical database. The query plan contains elements such as joins, horizontal and

vertical data merges, and select operations that are performed on data adapters.

Each element in the query plan has different algorithms of optimization (see Section

4.2.1).

Next, the node chooses active elements from the query plan one by one in a

top-down manner for execution. Execution of an active element, however, can be

delegated to any node in the system in order to achieve load scalability. If the system
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1: generate high-level query plan tree
2: active element ← root of query plan tree
3: choose execution location for active element
4: if expensive operation and chosen location 6= local node then
5: delegate active element and its subtree to chosen location
6: return
7: end if
8: execute active element
9: do

10: for all child nodes of active element do
11: go to step 2
12: end for
13: done
14: return result to parent element

Algorithm 4.1: Local algorithm for query processing

finds that the best candidate for executing the current element is a remote node, the

migration of workload occurs. In order to choose the best node for the execution, we

deploy a network and resource-aware cost model that dynamically adapts to network

conditions (such as delays in interconnection network) and resource conditions (such

as load of nodes) (see Section 4.2.2). If the active element is delegated to a remote

node, that node has full control over the execution of any child steps. The process

works recursively, therefore the remote node could decide to move child nodes of

submitted query plan element to other nodes or execute it locally in order to use

the resources in the most efficient way to achieve good scalability. Algorithm 4.1

presents a sketch of the local query execution process. Note that our algorithm

takes a greedy approach without guaranteeing the global optimality of the query

placement. In other words, each node makes a local decision on where to migrate

the (sub)queries.
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4.2.1 Execution and Optimization of Operators

In previous section we have introduced the main elements in the high-level query

plan. Each element has different goals in the optimization process. It is important to

note that the optimization for each element in the query plan is performed iteratively,

just before given element is executed. We describe the optimization strategies for

each type of operators below.

Join. Join operator is created when user issues a query that needs to join data

across sites. In this case, join between main objects and the referenced objects have

to be performed (e.g., join flights with passengers). The optimization is focused on

finding the most appropriate join algorithm and the order of branch executions. The

available join algorithms are nested-loop join (NLJ), semi-join (SJ) and bloom-join

(BJ) [49]. In case of NLJ, the branches can be executed in parallel to speedup the

execution. In case of SJ or BJ algorithms, the branches have to be executed in a

pipeline fashion and the order of execution has to be fixed. Our current implementa-

tion uses a semi-join algorithm and standard techniques for result size estimations.

There is also a lot of potential benefits in parallelization of the join operator execu-

tion using such frameworks as map-reduce-merge [89]. We leave this to our future

research agenda.

Data merge. Data merge operator is created when data objects are split among

multiple nodes (horizontal data split) or when attributes of an object are located on

multiple nodes (vertical data split). Since the goal of the data merge operation is

to merge data from multiple input streams, it needs to execute its child operations

before it is finished. Our optimization approach for this operator tries to maximize

the parallelization of sub-branch execution. This goal is achieved by executing
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each sub-query in parallel, possibly on different nodes if such an approach is better

according to our cost model that we will discuss later.

Select. Select operator is always the leaf in our high-level query plan. There-

fore, it does not have any dependent operations that need to be executed before

it finishes. Moreover, this operation has to be executed on locations that provide

queried data. The optimization issues are focused on optimizing queries submitted

to data adapters for a faster response time. For instance, enforcing an order (sort)

to queries allows us to use merge-joins in later operations. Next, response chunks

are built in order to support queries returning large results. Specifically, in case of

heavy queries, we implement an iterative process of providing smaller pieces of the

final response. In addition to helping to maintain a healthy node load level with

respect to memory consumption, such a feature is especially useful when building a

user interface that needs to accommodate a long query execution.

4.2.2 Query Migration

The key of our query processing is a greedy local query migration component for

nodes to delegate (sub)queries to a remote node in a dynamic (based on current

network and resource conditions) and iterative (just before the execution of each

element in the query plan) manner. In order to determine the best (remote) node

for possible (sub)query migration and execution, we first need a cost metric for the

query execution at different nodes. Suppose a node migrates a query element and

associated data to another node, the cost includes: 1) a transmission delay and

communication cost between nodes, and 2) a query processing or computation cost

at the remote node. Intuitively, we want to delegate the query element to a node

that is ”closest” to the current node and has the most computational resources or
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is the least load in order to minimize the query response time and maximize system

throughput. We introduce a cost metric that incorporates these two costs taking

into account current network and resource conditions. Formally Equation 4.1 defines

the cost, denoted as ci,j , associated with migrating a query element from node i to

a remote node j:

ci,j = α ∗ (DS/bandwidthi,j + latencyi,j) + (1− α) ∗ loadj (4.1)

where DS is the size of the necessary data to be migrated (estimated using statis-

tics from data sources), bandwidthi,j and latencyi,j are the network bandwidth and

latency between nodes i and j, loadj is the current (or most recent) load value of

node j, and α is a weighting factor between the communication cost and the com-

putation cost. Both cost terms are normalized values between 0 and 1 considering

the potential wide variances between them.

Basic migration model. To perform a query migration, each node in the system

maintains a list of candidate nodes that can be used for migrating queries. For each

of the nodes, it calculates the cost of migration and compares the minimum with

the cost of local execution. If the minimum cost of migration is smaller than the

cost of local execution, the query element and its subtree are moved to the best

candidate. Otherwise, the execution will be performed at the current node. To

prevent a (sub)query being migrated back and forth between nodes, we require each

node to execute at least one operator from the migrated query plan before further

migration (except for the node accepting the query from user, in this case the first

node can migrate the whole query without executing any operators). Alternatively,

a counter, or Time-To-Live (TTL) strategy, can be implemented to limit the number
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of migrations for the same (sub)query. TTL counter can be decreased every time

a given (sub)tree is moved, and, if it reaches 0, the node has to execute at least

one operator before further migration. The decision of a migration is made if the

following equation is true:

minj{ci,j} < β ∗ (1− α)loadi (4.2)

where minj{ci,j} is the minimum cost of migration for all the nodes in the node’s

candidate list, β is a tolerance parameter typically set to be a value close to 1 (e.g.

we set it to 0.98 in our implementations). Note that the cost of a local execution

only considers the load of the current node.

Probabilistic migration model. The basic migration model as described above

poses a risk of overloading one node when large number of queries is submitted to

given node in a short period of time. In this case, the decision about migration of all

the submitted queries could be made. If all the queries were migrated to the same

remote node, a contention can occur. To minimize the risk of such a phenomenon,

we have implemented a probabilistic workload distribution. In our probabilistic

query migration model a query can be migrated to any of the remote nodes that

have smaller processing cost than the local node. We will assume that set S contains

all the possible candidates for query migration:

S = {ci,j : ci,j < β ∗ (1− α) ∗ loadi} (4.3)

When the decision on migration is made, one of the nodes is chosen randomly

from set S, and the subquery is migrated to that node. The nodes are chosen with

inverse probability to the cost of migration what guarantees that the least loaded
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node is chosen the most often. Specifically, the probability of choosing remote node

j from set S is calculated as follows:

p(j) =
1

ci,j∑ 1
ci,j

(4.4)

Estimation of optimal α value. An important issue in our workload migration

model is the α parameter and its proper value. Although our experimental evalu-

ation contains indication of its optimal value for our deployment, one can expect

that this value will vary from one deployment to another. For instance, in systems

where differences between latency are small, the α should favor load information.

On the other hand, if latency differences are significant, the load information should

have less impact.

The optimal value of α parameter needs to be estimated based on the knowledge

of the system by each node independently. Our framework for predicting this value

works as follows. Once started, each node is in the initial phase where there is

little or no information about load of other nodes or latency to other nodes, and

the default α value is used. The default α value is currently set to 0.3 (this value

was found to be the most efficient in our initial experiments; see the experimental

evaluation section). As the nodes are present in the system, they learn more and

more facts about the systems. As the situation about load of other nodes and

distance to other nodes is propagated among nodes, they switch from the initial α

estimation to the final phase. In the final phase each node calculates its local α by

analyzing the load of other nodes and latency to other nodes.

We already mentioned that in a system with a uniform latency, load information

should have bigger impact. On the other hand, in a system with a uniform load,

37



Node 1 
Load=0.54 

Node 2 
Load=0.53 

Node 4 
Load=0.3 

Node 3 
Load=0.65 

Node 5 
Load=1.0 

City 
information 

Flights 

Passengers, 
Railroad 
connections 

1  2  3  4  5 

1  0  10  30  30  50 

2  10  0  20  40  50 

3  30  20  0  40  30 

4  30  40  40  0  20 

5  50  50  30  20  0 
Latency between nodes (ms) 

Fig. 4.2: Setup for optimization illustration

latency should have bigger impact. Based on this premise, our system for predicting

the optimal α looks at standard deviation of latency and load, and tries to find a

correlation between those two factors and the optimal α value. The two standard

deviations can be calculated based on the node’s knowledge of the current system

conditions. Once those values are known, the system can predict the optimal α

values using an experimentally defined function that correlates values of standard

deviation of load and latency with the α value. We will show how to find such a

function in the experimental evaluation section where we use a series of experiments

in a simulated environment and show how to use a non-linear least squares fitting

to find the relation between latency, load and α.

Illustration. To illustrate our query optimization algorithm, consider a query

from Figure 3.12 with a sample system deployment as presented in Figure 4.2.

Let us assume that a client submits his query to Node 5 which then generates a

high-level query plan as presented in Figure 4.1. Then, the node starts a query

execution. The operator at the root of the query plan tree is join. Using the
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equation 4.1 the active node estimates the cost for migrating the join operator.

Our calculations will neglect the cost of data shipping for simplicity and will use

α = 0.3 and β = 1.0. The cost for migrating the query from Node 5 to Node 1

is: c5,1 = 0.3 ∗ (50/50) + (1 − 0.3) ∗ 0.54 = 0.68. Remaining migration costs are

c5,2 = 0.671, c5,3 = 0.635 and c5,4 = 0.33. Using the equation 4.2 Node 5 decides

to move the query to Node 4 (c5,4 < 1.0 ∗ (1 − 0.3) ∗ 1.0). After the migration,

Node 4 will start execution of join operator at the top of the query plan tree. Let

us assume that the node decides to execute the left branch first. CityInformation is

provided by only one node, Node 1, and no data merge is required. Once the select

operation is finished on Node 1, the right branch of join operation can be invoked.

Note that Node 4 will not migrate any of the sub-operators (besides selections) as

the cost of any migration exceeds the cost of local execution (the cost of migrations:

c4,1 = 0.558, c4,2 = 0.611, c4,3 = 0.695 and c4,5 = 0.82; the cost of local execution:

0.21).

4.2.3 Cost Metric Components

The above cost metric consists of two cost features, namely, the communication

latency and the load of each node. We could also use other system features (e.g.

memory availability), however, we believe the load information gives a good estimate

of resource availability at the current stage of the system implementation. Below

we present techniques for computing our cost features efficiently.

Latency between nodes. To compute the network latency between each pair of

nodes efficiently, each DObjects node maintains a virtual coordinate, such that the

Euclidean distance between two coordinates is an estimate for the communication

latency. Storing virtual coordinates has the benefit of naturally capturing latencies
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Figure 4.3: Illustration of virtual coordinates computation for network latency

in the network without a large measurement overhead. The overhead of maintaining

a virtual coordinate is small because a node can calculate its coordinate after probing

a small subset of nodes such as well-known landmark nodes or randomly chosen

nodes. Several synthetic network coordinate schemes exist. We adopted a variation

of Vivaldi algorithm [16] in DObjects. The algorithm uses a simulation of physical

springs, where each spring is placed between any two nodes of the system. The

rest length of each spring is set proportionally to current latency between nodes.

The algorithm works iteratively. In every iteration, each node chooses a number of

random nodes and sends a ping message to them and waits for a response. After

the response is obtained, initiating node calculates the latency with remote nodes.

As the latency changes, a new rest length of springs is determined. If it is shorter

than before, the initiating node moves closer towards the remote node. Otherwise,

it moves away. The algorithm always tends to find a stable state for the most recent

spring configuration. An important feature about this algorithm is that it has great

scalability which was proven by its implementation in some P2P solutions (e.g. in

OpenDHT project [68]).

Figure 4.3 presents an example iteration of the Vivaldi algorithm. The first
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graph on the left presents a current state of the system. New latency information is

obtained in the middle graph and the rest length of springs is adjusted accordingly.

As the answer to the new forces in the system, new coordinates are calculated. The

new configuration is presented in the rightmost graph.

Load of nodes. The second feature of our cost metric is the load of the nodes.

Given our desired goal to support cross-platform applications, instead of depending

on any OS specific functionalities for the load information, we incorporated a so-

lution that assures good results in a heterogeneous environment. The main idea is

based on time measurement of execution of a predefined test program that considers

computing and multithreading capabilities of machines [63]. The program we use

specifically runs multiple threads. More than one thread assures that if a machine

has multiple CPUs, the load will be measured correctly. Each thread performs a

set of predefined computations including a series of integer as well as floating point

operations. When each of the computing threads finishes, the time it took to ac-

complish operations is measured which indicates current computational capabilities

of the tested node. In order to improve efficiency of our load computation method,

we can dynamically adjust the interval between consecutive measurements. When

a node has a stable behavior, we can increase this interval. On the other hand, if

we observe rapid changes in the number of queries that reside on a given node, we

can trigger the measurement.

After the load information about a particular node is obtained, it can be propa-

gated among other nodes. Our implementation builds on top of a distributed event

framework, REVENTS1, that is integrated with our platform for an efficient and

effective asynchronous communication among the nodes.
1http://dcl.mathcs.emory.edu/revents/index.php
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Table 4.1: Experiment setup parameters. * - varying parameter
Test Case Figure # of Nodes # of Clients α

(Mediators)
α vs. Query Workloads 4.4 6 14 *
α vs. # of Nodes 4.5 * 32 *
α vs. # of Clients 4.6 6 * *
Comparison of Query
Optimization Strategies

4.7 6 14 0.33

System Scalability 4.8, 4.9 20 * 0.33
Impact of Load of
Nodes

4.10 * 256 0.33

Impact of Network La-
tencies

4.11 6 14 0.33

Workload distribution
comparison

4.12 20 * 0.33

Alpha estimation 4.13 20 * N/A

4.3 Experimental Evaluation

Our framework is fully implemented with a current version available for download2.

In this section we present an evaluation through simulations as well as a real de-

ployment of the implementation.

4.3.1 Simulation Results

We ran our framework on a discrete event simulator that gives us an easy way

to test the system against different settings. The configuration of data objects

relates to the configuration mentioned in Section 4.2 and was identical for all the

experiments below. The configuration of data sources for objects is as follows:

object CityInformation was provided by node1 and node2, object Flight by node3

and node4, object RailroadConnection by node1 and finally object Passenger by
2http://www.mathcs.emory.edu/Research/Area/datainfo/dobjects
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node2. All nodes with numbers greater than 4 were used as computing nodes.

Load of a node affects the execution time of operators. The more operators were

invoked on a given node in parallel, the longer the execution time was assumed.

Different operators also had different impact on the load of nodes. For instance, a

join operator had a larger impact than merge operator. In order to evaluate the

reaction of our system to dynamic network changes, the communication latency was

assigned randomly at the beginning of simulation and changed a few times during

the simulation so that the system had to adjust to new conditions in order to operate

efficiently. The change was based on increasing or decreasing latency between each

pair of nodes by a random factor not exceeding 30%. Table 4.1 gives a summary

of system parameters (number of nodes and number of clients) and algorithmic

parameter α with default values for different experiments.

To test the system we used a variable number of clients that submitted queries

one by one. The distribution of submitted queries by each client was uniform. Once

the response was received, a client waited a random time within specified range and

then submitted another query. Alternatively, we could also assume a non-uniform

distribution of queries from each site (e.g., a gaussian distribution). However, as the

query routing mechanism is activated only when load between nodes in the system

varies significantly (or some parts of the system nodes are overloaded) a uniform

distribution of queries will present the query processing performance.

Parameters Tuning - Optimal α. An important parameter in our cost metric

(introduced in equation 4.1) is α that determines the relative impact of load and net-

work latency in the query migration strategies. Our first experiment is an attempt

to empirically find optimal α value for various cases: 1) different query workloads,

2) different number of nodes available in the system, and 3) different number of

43



0 

1000 

2000 

3000 

4000 

5000 

6000 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

A
ve

ra
ge

 e
xe

cu
tio

n 
tim

e 
[e

po
ch

] 

Alpha value 

Small query 
Medium query 
Heavy query 

Figure 4.4: Parameter tuning - query
workloads

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

0.0 0.33 0.66 1 

A
ve

ra
ge

 e
xe

cu
tio

n 
tim

e 
[e

po
ch

] 

Alpha value 

4 nodes 
8 nodes 
16 nodes 
32 nodes 

Figure 4.5: Parameter tuning - number
of nodes

clients submitting queries.

For the first case, we tested three query workloads: 1) small queries for City-

Information objects without referential attributes (therefore, no join operation was

required), 2) medium queries for CityInformation objects with two referential at-

tributes (list of Flights and RailroadConnections), and 3) heavy queries with two

referential attributes of CityInformation of which Flight also had a referential at-

tribute. The second case varied the number of computational nodes and used the

medium query submitted by 32 clients simultaneously. The last case varied a number

of clients submitting medium queries.

Figures 4.4, 4.5 and 4.6 report average execution times for different query loads,

varying number of computational nodes, and varying number of clients, respectively,

for different α. We observe that for all three test cases the best α value is located

around the 0.33. While not originally expected, it can be explained as follows. When

more importance is assigned to the load, our algorithm will choose nodes with smaller
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Figure 4.7: Comparison of different
query optimization strategies

load rather than nodes located closer. In this case, we are preventing overloading

a group of close nodes as join execution requires considerable computation time.

Also, for all cases, the response time was better when only load information was

used (α = 0.0) compared to when only distance information was used (α = 1.0).

For all further experiments we set the α value to be 0.33.

Comparison of Optimization Strategies. We compare a variety of optimization

strategies with some baseline approaches. We give average query response time for

the following cases: 1) no optimization (a naive query execution where children

of current query operator are executed one by one from left to right), 2) statistical

information only (a classical query optimization that uses statistics to determine the

order of branch executions in join operations), 3) location information only (α = 1),

4) load information only (α = 0), and 5) full optimization (α = 0.33).

The results are presented in Figure 4.7. They clearly show that, for all types

of queries, the best response time corresponds to the case when full optimization
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is used. In addition, the load information only approach provides an improvement

compared to the no optimization, statistical information only, and location infor-

mation only approaches (the three lines overlap in the plot). The performance

improvements are most manifested in the heavy query workload.

System Scalability. An important goal of our framework is graceful scaling with

respect to increase in the number of clients and in the query load. Our next exper-

iment attempts to look at the throughput and average response time of the system

when different number of clients issue queries. We again use three types of queries

and a similar configuration to the above experiment.

Figures 4.8 and 4.9 present the throughput and average response time for differ-

ent number of clients respectively. Figure 4.8 shows the average number of queries

that our system was capable of handling during a specified time frame for a given

number of clients. As expected, the system throughput increases as the number of

clients increases before it reaches its maximum. However, when the system reaches
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Figure 4.11: Impact of network latency

a saturation point (each node is heavily loaded), new clients cannot obtain any new

resources. Thus, the throughput reaches its maximum (e.g., around 3950 queries per

specified time frame for the case of small queries at 64 clients). Figure 4.9 reports

the average response time and shows a linear scalability. Note that the figure uses

logarithmic scales for clarity.

Impact of Available Computational Resources. In order to answer the ques-

tion of how the number of nodes available in the system affects its performance, we

measured the average response time for varying numbers of available system nodes

with 256 clients simultaneously querying the system. The results are provided in

Figure 4.10. Our query processing effectively reduces the average response time

when more nodes are available. For small queries, 10 nodes appear to be sufficient

as an increase to 16 nodes does not improve the response time significantly. For

medium size queries, 16 nodes appear to be sufficient. Finally, for heavy queries we

observed improvement when we used 32 nodes instead of 16. The behavior above is
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not surprising and quite intuitive. Small queries do not require high computational

power as no join operation is performed. On the other hand, medium and heavy

queries require larger computational power so they benefit from a larger number of

available nodes.

Impact of Network Latency. This experiment was aimed to find the impact of

a network latency on the performance. We report results for three network speeds:

a fast network that simulates a Fast Ethernet network offering speed of 100MBit/s,

a medium network that can be compared to an Ethernet speed of 10MBit/s, and

finally a slow network that represents a speed of 1MBit/s.

The result is reported in Figure 4.11. The network speed, as expected, has a

larger impact on the heavy query workload. The reason is that the amount of data

that needs to be transferred for heavy queries is larger than medium and small

queries, and therefore the time it takes to transfer this data in slower network will

have much larger impact on the overall efficiency.

Workload distribution strategies. Our next experiment in the simulated envi-

ronment had a goal of comparing the workload distribution strategies. We wanted

to compare the two possible solutions. First is the probabilistic distribution that

we implemented in our system where the best candidate is chosen from a set of

candidate nodes based on the probability that is inversely proportional to the cost.

Second is the naive distribution in which the workload is always migrated to the

node with a minimum migration cost. The results are in Figure 4.12. The plot

presents an average number of executed heavy queries during the simulation for 20

system nodes and variable number of clients. The α value we used in this experiment

was 0.33.

Again, the results confirm what we expected. The probabilistic distribution
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outperforms the naive one, and this phenomenon is more significant as the overall

load of the system increases (the number of clients increases).

Estimating α based on load and latency. As we have already mentioned in

section 4.2.2, the optimal α value will depend on particular system deployment char-

acteristics. In this section we attempt to devise a technique for estimating optimal

value of this parameter based on information about load and latency between nodes.

To collect the data we ran a simulation of DObjects query processing for different

configurations. The configuration for our simulations used 16, 32 and 64 DObjects

nodes. The number of clients submitting queries varied, and we tested 16, 32, 64,

128 and 256 clients. Each possible combination of number of system nodes and

clients was tested for 11 possible values of α parameter (values between 0.0 - 1.0,

increasing by factor of 0.1). In total, we had 165 possible combinations of simu-

lation configurations. For each, we further used three different sub-configurations,

each using different network characteristics (e.g., different configurations had dif-

49



ferent standard deviation of latency). This gave us a total number of 495 possible

configurations.

Each possible simulation configuration was ran 10 times, and an average query

response time was recorded. To obtain a standard deviation of load and latency,

during each of the simulations we recorded a latency and load information at few

time stamps, and once the simulation was finished we calculated standard deviation

of both factors. Additionally, for each combination of number of system nodes,

number of clients and network latency, we selected an optimal α value (e.g., the

value that resulted in the smallest query response time). We normalized values for

both standard deviations. Given the final data set, we analyzed the correlation

between standard deviation of load, latency and optimal α.

In the fitting process we used four possible functions. To find the correlation

between our parameters we used R programming language and its implementation

of the Nonlinear Least Squares fitting method to find the parameters of our fitting

functions. The functions we tried in the fitting process were as follows: 1) α =

a ∗ load+ b ∗ lat+ c, 2) α = a ∗ log(load) + b ∗ lat+ c, 3) α = a ∗ load+ b ∗ log(lat) + c

and 4) α = a ∗ log(load) + b ∗ log(lat) + c, where lat and load are standard deviation

of latency and load, respectively. The functions using logarithm were suggested by

the initial plots of the optimal α values, where we plotted optimal values for fixed

latency deviation and variable load deviation and vice versa.

The results of our analysis are presented in table 4.2. The table presents values

of parameters for each of the chosen functions, and the residual sum of squares,

RSS. The RSS is calculated as follows:

RSS =
n∑

i=1

(yi − f(xi))2 (4.5)
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Table 4.2: Results of parameters fitting for used functions
Function Estimated RSS

parameter
α = a ∗ load+ b ∗ lat+ c a=0.21 b=0.21 c=0.23 0.635

α = a ∗ log(load) + b ∗ lat+ c a=0.05 b=0.21 c=0.38 0.589
α = a ∗ load+ b ∗ log(lat) + c a=0.2 b=0.074 c=0.42 0.553

α = a ∗ log(load) + b ∗ log(lat) + c a=0.05 b=0.074 c=0.51 0.506

where yi is a predicted value of the function and f(xi) is the real value.

The best results were achieved for the fourth function (RSS was the lowest for this

function). We also tried more complex functions, including polynomials of higher

degree and mix of polynomials and logarithms. However, for all those functions the

RSS was only slightly lower than that for the fourth function.

The results of the analysis indicate that our best predicting function can serve as

a reasonable estimate for finding the optimal α value given the standard deviation

of load and latency. To verify our analysis, we ran another simulation where latency

was changed many times during the runtime. The simulation was ran for 8, 16, 32,

64, 128 and 256 clients. One set of experiments was for a fixed α value, and the

other one used the formula we devised in our experiments that calculated value of

α based on load and latency. The results of our experiment are presented in Figure

4.13, which clearly confirm that the throughput of the system increases when using

the framework for estimating value of α.

4.3.2 Testing of a Real Implementation - Small Scale

We also deployed our implementation in a real setting on four nodes started on

general-purpose PCs (Intel Core 2 Duo, 1GB RAM, Fast Ethernet network connec-

tion). The configuration involved three objects, CityInformation (provided by node
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1), Flight (provided by nodes 2 and 3) and RailroadConnection (provided by node

3). Node 4 was used only for computational purposes. We ran the experiment for

10,000 CityInformation, 50,000 Flights (20,000 in node 2 and 30,000 in node 3) and

70,000 RailroadConnections. The database engine we used was PostgreSQL 8.2.

We measured the response time for query workloads including small queries for all

relevant CityInformation and medium queries for all objects mentioned above. We

used various number of parallel clients and α = 0.33.

Figure 4.14 presents results for small and medium queries. It shows that the re-

sponse time is significantly reduced when query optimization is used (for both small

and medium queries). The response time may seem a bit high at the first glance.

To give an idea of the actual overhead introduced by our system, we integrated all

the databases used in the experiment above into one single database and tested a

medium query from Java API using JDBC and one client. The query along with re-

sults retrieval took an average of 16s. For the same query, our system took 20s that

is in fact comparable to the case of a local database. While the overhead introduced

by DObjects cannot be neglected, it does not exceed reasonable boundary and does

not disqualify our system as every middleware adds some overhead. In this deploy-

ment, the overhead is mainly an effect of the network communication because data

was physically distributed among multiple databases. In addition, the cost of dis-

tributed computing middleware and wrapping data into object representation also

add to the overhead which is the price a user needs to pay for a convenient access

to distributed data. However, for a larger setup with larger number of clients, we

expect our system to perform better than centralized approach as the benefit from

distributed computing paradigm and load distribution will outweigh the overhead.
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4.3.3 Testing of a Real Implementation - PlanetLab

Previous section shows that query optimization in DObjects works well in tightly-

coupled systems, where machines are connected using a fast network and are not

geographically distributed. To complete the picture, we have also run these tests us-

ing PlanetLab3 platform to see how significant geographical distribution influences

the query execution. To run the experiment we used the same databases as de-

scribed in previous section (10,000 CityInformation, 50,000 Flights and 70,000 Rail-

roadConnections). This time, however, the system consisted of 20 system nodes.

The machines we used were modern general-purpose PCs available in PlanetLab

network that varied in CPU power and memory size4. The latency between nodes

also varied significantly. We chose nodes so that some of them had relatively low

communication latency, while other nodes had significant communication overhead.
3http://www.planet-lab.org/
4Each PlanetLab node has to satisfy minimum requirements; currently the minimum is set to a

machine with 4 cores @ 2.4Ghz, 4GB RAM and 500GB HDD.

53



PlanetLab experiment poses also an additional challenge. The users do not have

control over PlanetLab nodes, so the conditions in the network can change rapidly.

First, the latency to some nodes can increase or decrease. Second, the load of some

machines can also significantly vary in time.

To run the experiment we loaded our system using 8 - 512 clients. The clients

were started from independent PlanetLab nodes, and each node could start up to

32 clients. We measured the average response time for the medium-sized queries,

and the results are presented in Figure 4.15.

Our optimization scheme clearly improves the query response time. What can be

noticed, the improvement is less drastic than for the tightly coupled system presented

in previous subsection. This phenomenon is understandable, as PlanetLab network

is much less predictable than the setup used in the previous subsection.

4.4 Conclusion

In this chapter we have presented the dynamic query processing mechanism for our

P2P based data federation services to address both geographic and load scalability

for data-intensive applications with distributed and heterogeneous data sources.

Our approach was validated in different settings through simulations as well as

real implementation and deployment. Ongoing and future efforts continue in a few

directions. First, we are planning on further enhancement for our query migration

scheme. Second, we plan to extend the scheme with a dynamic migration of active

operators in a real-time from one node to another if load situation changes. This

issue becomes important especially for larger queries which persist longer time in

the system. Finally, we plan to improve the fault tolerance design of our query
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processing. Currently, if a failure occurs on a node involved in the execution of a

query, such a query is aborted and an error is reported to the user. We plan to

address this behavior with failure detection and allocation of new nodes to continue

execution of the operator that was allocated to the failed node.
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Chapter 5

Access to Private Data in

DObjects

5.1 Introduction

Previous chapters provide details on the general architecture and the query execution

process of the basic DObjects system. In this chapter we discuss how the basic

architecture can be extended to accommodate access to private and sensitive data.

Privacy preserving data publishing or data anonymization for a single database

has been extensively studied in recent years. A large body of work contributes to

algorithms that transform a dataset to meet privacy principles such as k-anonymity

using techniques such as generalization, suppression (removal), permutation and

swapping of certain data values so that it does not contain individually identifiable

information [22].

Ensuring privacy in distributed query processing is significantly more challeng-

ing. As an example, one can consider a group of hospitals where each hospital main-
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tains its own database of patients. Users who want to access information about all

the patients cannot access just one database, but they need to find a union of all the

databases owned by each of the hospitals. Moreover, users cannot simply access the

databases in a non-anonymized form as this would violate the privacy constraints.

There is a number of potential approaches one may apply to enable data ano-

nymization for distributed databases as discussed in the scenario above. A naive

approach is for each data provider to perform data anonymization independently

as shown in Figure 5.1a. Data recipients or clients can then query the individual

anonymized databases or an integrated view of them. One drawback of this ap-

proach is that data is anonymized before the integration and hence will cause the

data utility to suffer. In addition, individual databases reveal their ownership of the

anonymized data.

An alternative approach assumes an existence of third party that can be trusted

by each of the data owners as shown in Figure 5.1b. In this scenario, data owners

send their data to the trusted third party where data integration and anonymization

are performed. Clients can then query the centralized database. However, finding

such a trusted third party is not always feasible. Compromise of the server by

hackers could lead to a complete privacy loss for all the participating parties and

data subjects.

Here we propose a distributed data anonymization approach as illustrated in

Figure 5.1c. Data providers participate in distributed protocols to produce a virtual

integrated and anonymized database. Important to note is that the anonymized

data still reside at individual databases and the integration and anonymization of the

data is performed through the secure distributed protocols. The local anonymized

datasets can be unioned using secure union protocols [45, 10] and then published or
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Figure 5.1: Architectures for privacy preserving data publishing

serve as a virtual database that can be queried. In the latter case, each individual

database can execute the query on its local anonymized dataset, and then engage

in distributed secure union protocols to assemble the results that are guaranteed to

be anonymous.

This chapter provides details of an extension to the basic DObjects architecture

that enables the distributed anonymization component in the system [37, 38, 43].

The extension enables droplets to form virtual groups in order to address two im-

portant privacy issues for the sensitive data: privacy of data subjects and confi-

dentiality of data providers. The secure distributed anonymization component we

present can be used for constructing a virtual anonymized database from multiple

data providers while preserving privacy for data subjects and confidentiality for data

providers. In addition, the extension provides a secure distributed query processing

engine for querying the virtual anonymized data in a scalable and privacy-preserving

way. Secure query operators are integrated into the query processing engine. It is

worth noting that some data sources may contain personal data that require ano-
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Figure 5.2: Proposed architecture for scalable and privacy-preserving database fed-
erations in the cloud

nymization while others may not. When sensitive information is being queried, it

needs to be recognized automatically and transparently from users’ point of view

and secure operators should be deployed to guarantee privacy of the data.

5.2 Private Data in DObjects

The proposed conceptual architecture of our system containing extension to provide

access to data that needs to be anonymized is illustrated in Figure 5.2. It employs a

distributed mediator-based architecture for data federation and contains two logical

layers: wrapper and mediator. As in the basic architecture, the wrapper layer is

responsible for retrieving data from individual data sources while the mediator layer

is responsible for mediating queries spanning across multiple data sources, routing
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subqueries to wrappers, and aggregating the results.

Novel aspects of our architecture presented here are the concepts of virtual group

of wrappers, virtual anonymized database and secure query processing. To address

the privacy issues for data sources that contain personal data, 1) the wrapper layer

employs a secure distributed anonymization engine that builds a virtual anonymized

view of the data while preserving privacy for data subjects and confidentiality for

data providers, and 2) the mediator layer employs a secure distributed query process-

ing engine to aggregate results from multiple data sources. Importantly, users do not

need to be aware of the fact that data is distributed or private and secure anonymi-

zation and query processing engines are employed automatically and transparently

if a query involves private data. The execution of distributed anonymization and

secure query processing algorithms is enabled in the system by the concept of a

virtual group of droplets. Such a virtual group is a collections of droplets that will

cooperate in order to execute the distributed protocols.

We note that data sources can also perform anonymization independently with-

out participating in the distributed anonymization. However, as discussed above,

such an approach does not guarantee optimal results as an anonymization of local

data is done without accounting for data present on other sites. Our system also

assumes that public and private databases coexist in the system, and thus public

databases that do not contain any personal data can also be a part of the virtual

database available for users. Below we describe the two major components of our

extended system, the mediator and the wrapper.
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5.2.1 Wrapper and Distributed Anonymization

The wrapper layer is responsible for retrieving data from individual data sources and

forming a virtual database. We assume that public and private databases coexist

in the system. Public databases are simply a part of the virtual database. Private

databases with personal data, on the other hand, need to have their data anonymi-

zed before contributing it to the virtual database. In addition to support a single

database anonymization, we support a distributed data anonymization scheme.

Distributed anonymization. In distributed anonymization, data providers par-

ticipate in distributed protocols to produce a virtual integrated and anonymized

view of their data. The distributed anonymization protocol is presented in the next

chapter. In order to protect the privacy for data subjects, our current approach is

based on a distributed implementation of Mondrian algorithm [51].

Important to note is that in our approach each database produces a local ano-

nymized dataset that still resides at individual databases. Individual local ano-

nymized dataset is not required to be k-anonymous by itself, but their integration

that forms a virtual database must guarantee k-anonymity. When users query the

virtual database and get routed to individual wrappers, the wrappers execute the

query on the local anonymized datasets, and then engage in a distributed protocol

to assemble the results that are guaranteed to be k-anonymous (see below).

Each wrapper in our system can be a part of none, one or many virtual anonymi-

zation groups. If the wrapper is not a part of any group, it will not participate in a

distributed anonymization protocol. Data that is accessible through such wrapper is

either data that does not need anonymization, or data that was anonymized locally

by a data provider. If the wrapper is a part of a virtual group, it will participate
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in a distributed anonymization protocol for each virtual group in which it partici-

pates. The virtual groups are defined by data that is accessible through the given

wrapper. For instance, if there were two types of data that needs to be anonymized,

patients and clients of pharmacy, then all wrappers that provide access to patients

data would be a part of a virtual group working on anonymization of this data. On

the other hand, all wrappers that provide access to clients data would be a part of a

virtual group anonymizing clients data. Finally, if any wrapper provides an access

to both patients and clients, such a wrapper would be a part of both virtual groups.

Trust assumptions. Wrappers in our system are assumed to be trusted by data

providers. Trusted wrapper can access private data of data provider, and can analyze

this data locally. However, no private data is sent from one wrapper to other system

nodes. In other words, no private information is sent from one site to another in

the process of distributed data anonymization and secure query processing. Such

an approach requires there to be at least one DObjects node that can be trusted

by given data provider. This requirement can be satisfied for instance by starting

a local DObjects node acting as a wrapper by each data provider. We can consider

this as a cost that needs to be paid for enabling the distributed anonymization. A

wrapper that is trusted by data provider can be thought of as an agent that serves

as a gateway to private data.

Note that our notion of a wrapper is a bit different than what is used in many

other systems. Usually, wrappers are passive elements that only enable access to

heterogeneous data sources. When given wrapper receives a request, it processes

it, gets the data that is required and returns the result to a mediator. In our

case wrappers exhibit more complex functionality as they can form the group and

communicate with other wrappers within the group to calculate an anonymized view
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of the data.

5.2.2 Mediator and Secure Query Processing

The mediator layer is responsible for mediating and decomposing queries, and for

assembling query results. Due to the fact that the mediator is distributed, new issues

and opportunities arise during query execution. (Sub)queries can be migrated from

one node to another to speedup execution, increase system throughput or decrease

load of particular parts of the system. The migration scheme we use is both network-

aware and load-aware and was presented in previous chapter.

In the extended architecture described in this chapter the query execution com-

ponent provides two major types of database operators: classical and secure. The

classical operators include well-understood query operators like selection, projection,

join and distributed join that were described in previous chapter. The secure op-

erators are integrated into our query processing engine to handle anonymized views

of private data sources. We consider this as one of the main contributions of our

system.

The secure operators are designed to protect confidentiality of data providers

when querying the virtual database. For instance, in our current implementation,

the distributed anonymization protocol discussed above enables a group of droplets

to produce a virtual k-anonymous database based on the union of the data horizon-

tally split among the nodes (see chapter 6). When a query is received, individual

wrappers run the query against its local anonymized dataset, and the results are

integrated using a secure union protocol executed by the virtual group of droplets

to protect confidentiality for the participants (see chapter 7).
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Chapter 6

Distributed Anonymization

6.1 Introduction

Current information technology enables many organizations to collect, store, and use

various types of information about individuals in large repositories. Government and

organizations increasingly recognize the critical value and opportunities in sharing

such a wealth of information across multiple distributed databases.

The scenarios in which access to private data has to be provided was discussed

in section 1.1.1. These scenarios can be generalized into the problem of privacy-

preserving data publishing for multiple distributed databases with two security

goals. First, multiple data custodians or providers wish to publish an integrated

view of the data for querying purposes while preserving privacy for data subjects.

Second, a confidentiality of a data for data providers has to be also satisfied. We

consider these two privacy constraints in the problem of distributed data anonymiza-

tion. The first one, the privacy of individuals or data subjects (such as the patients),

requires that the published view of the data should not contain individually iden-
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tifiable information. The second one, the confidentiality of data providers (such as

the institutions), requires that data providers should not reveal their private data

or the ownership of the data to each other besides the published view.

As we discussed in chapter 5, there are three potential solutions to provide access

to data that is distributed and needs to be anonymized: independent anonymization

by each provider, trusted third party approach and a distributed anonymization

approach where providers participate in a set of distributed protocols that lead to

anonymized view of the data. For DObjects, we adopt the third option.

In this chapter we study a problem of data anonymization for horizontally parti-

tioned databases and present the distributed anonymization approach for the prob-

lem. Our approach consists of two main contributions. First, we propose a dis-

tributed anonymization protocol that allows multiple data providers with horizon-

tally partitioned databases to build a virtual anonymized database based on the

integration (or union) of the data. As the output of the protocol, each database

produces a local anonymized dataset and their union forms a virtual database that

is guaranteed to be anonymous based on an anonymization principle. The proto-

col utilizes secure multi-party computation protocols for sub-operations such that

information disclosure between individual databases is minimal during the virtual

database construction.

Second, we propose a new notion, l-site-diversity, to ensure confidentiality for

data providers in addition to the privacy of data subjects for anonymized data. We

present heuristics and adapt existing anonymization algorithms for l-site-diversity

so that the anonymized data achieve better utility.

We note that the work discussed in this chapter has been presented in a few

conference publications [39, 37, 38].
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6.2 Privacy Model

In this section we formulate the privacy goals that we focus on, followed by models

and metrics for characterizing how these goals are achieved, and propose a new

notion for protecting confidentiality for data providers based on anonymized data.

As identified in Section 1.1.2, we have two privacy goals. First, the privacy of

individuals or data subjects need be protected, i.e. the published virtual database

and query results should not contain individually identifiable information. Second,

the confidentiality of data providers needs to be protected, i.e. individual databases

should not reveal their data or their ownership of the data apart from the virtual

anonymized database.

Privacy for data subjects based on anonymity. Among the many privacy

principles that protect against individual identifiability, the seminal works on k-

anonymity [66, 72] require that a set of k records (entities) to be indistinguishable

from each other based on a quasi-identifier set. Given a relational table T , attributes

are characterized into: unique identifiers which identify individuals; quasi-identifier

(QID) which is a minimal set of attributes (X1, ..., Xd) that can be joined with

external information to re-identify individual records; and sensitive attributes that

should be protected. The set of all tuples containing identical values for the QID

set is referred to as an equivalence class. An improved principle, l-diversity [56],

demands every group to contain at least l well-represented sensitive values.

Given our research goals of extending the anonymization techniques and inte-

grating them with secure computation techniques to preserve privacy for both data

subjects and data providers, we based our work on k-anonymity and l-diversity to

achieve anonymity for data subjects. While they are relatively weak compared to
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principles such as differential privacy, we chose them for their intuitiveness and many

practical applications such as privacy-preserving location services. In addition, they

have served as a basis for many other principles and there is a rich set of algorithms

for achieving k-anonymity and l-diversity. We can study the subtle differences and

effects of different algorithms and their interactions with secure multi-party com-

putation protocols. Finally, our protocol structure and the underlying concepts are

orthogonal to these privacy principles, and our framework is extensible to more

advanced privacy principles.

Confidentiality for data providers based on secure multi-party computa-

tion. Our second privacy goal is to protect confidentiality for data providers. It

resembles the goal of secure multi-party computation (SMC). In SMC, a protocol

is secure if no participant can learn anything more than the result of the function

(or what can be derived from the result). It is important to note that, for practical

purposes, we may relax the security goal in exchange for increased efficiency. Instead

of attempting to guarantee absolute security in which individual databases reveal

nothing about their data apart from the virtual anonymized database, we wish to

minimize data exposure and achieve a sufficient level of security.

We also adopt the semi-honest adversary model commonly used in SMC prob-

lems. A semi-honest party follows the rules of the protocol, but it may attempt

to learn additional information about other nodes by analyzing the data received

during the execution of the protocol. The semi-honest model is realistic for our

problem scenario where multiple organizations are collaborating with each other to

share data and will follow the agreed protocol to get the correct result for their

mutual benefit.

Confidentiality for data providers based on anonymity: a new notion. Now
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we will show that a method of simply coupling the above anonymization principles

and the secure multi-party computation principles is insufficient in our scenario.

While the secure multi-party computation can be used for anonymization to preserve

the privacy of data providers, the anonymized data itself (considered as results of

the secure computation) may compromise the confidentiality of data providers. The

data partitioning at distributed data sources and certain background knowledge can

introduce possible attacks that may reveal the ownership of some data by certain

data providers. We illustrate such an attack, a homogeneity attack, through a simple

example.

Table 6.1 shows anonymized data that satisfies 2-anonymity and 2-diversity at

two distributed data providers (QID: City, Age; sensitive attribute: Disease). Even

if SMC protocols are used to answer queries, given some background knowledge on

data partitioning, the ownership of records may be revealed. For instance, if it is

known that records from New York are provided only by node 0, then the records

with ID 1 and 2 can be linked to that node directly. As a result, confidentiality of

data providers is compromised. Essentially, the compromise is due to the anonymi-

zed data and cannot be solved by secure multi-party computation. One way to fix

the problem is to generalize the location for records 1 and 2 so that they cannot be

directly linked to a particular data provider.

To address such a problem, we propose a new notion, l-site-diversity, to enhance

confidentiality protection for data providers. We define a quasi-identifier set (QID)

with respect to data providers as a minimal set of attributes that can be used with

external information to identify the ownership of certain records. For example,

the location is a QID with respect to data providers in the above scenario as it

can be used to identify the ownership of the records based on the knowledge that
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Table 6.1: Illustration of homogeneity attack for data providers
ID City Age Disease
1 New York 30-40 Heart attack
2 New York 30-40 AIDS

Node 0
ID City Age Disease
3 Northeast 40-43 AIDS
4 Northeast 40-43 Flu

Node 1

certain providers are responsible for patients from certain locations. The parameter,

l, specifies minimal number of distinct sites that records in each equivalence class

belong to. This notion protects the anonymity of data providers in that each record

can be linked to at least l providers. Formally, the table T ∗ satisfies l-site-diversity

if for every equivalence class g in T ∗ the following condition holds:

count(distinct nodes(g)) ≥ l (6.1)

where nodes(g) returns node IDs for every record in group g.

Note that our definition of l-site-diversity is closely related to l-diversity. There

are subtle differences. l-diversity protects a data subject from being linked to a

particular sensitive attribute, and is a special instance of l-site-diversity if we treat

the data provider that owns a record as a sensitive attribute for a record. However, in

addition to protecting the ownership for a data record, l-site-diveristy also protects

the anonymity of the ownership for data providers. In other words, it protects a

data provider from being linked to a particular data subject. The QID set of data

providers for l-site-diversity could be completely different from the QID set of data

subjects for k-anonymity and l-diversity. l-site-diversity is only relevant when there
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are multiple data sources and it adds another check when data is being anonymized

so that the resulting data will not reveal the ownership of the records. It is worth

mentioning that we could also exploit much stronger definitions of l-diversity such

as entropy l-diversity or recursive (c, l)-diversity as defined in [56].

Analysis of l-site-diversity. As mentioned before, l-site-diversity is close to the

notion of l-diversity. The l-diversity limits specific attack models based on the distri-

bution of sensitive attributes by measuring changes in belief due to data publishing.

Specifically, given a prior belief (belief before publication of an anonymized data)

and posterior belief (belief after the publication of an anonymized data), the analy-

sis of l-diversity looked at changes in those two values assuming the complete joint

distribution f of Q and S (Q and S are quasi-identifier and sensitive attribute, re-

spectively). The prior belief considered only background knowledge of an adversary

about the value of sensitive attribute s given the value of non-sensitive attribute q:

α(q,s) = Pf (t[S] = s | t[Q] = q)

On the other hand, the posterior belief considered additional knowledge that an

adversary can gain after looking at anonymized table T ∗ given the fact that data

subject is present in this data set:

β(q,s,T ∗) = Pf (t[S] = s | t[Q] = q ∧ ∃t∗ ∈ T ∗, t ∗→ t∗)

As can be noticed, the change of belief is due to the nature of information that

is being released in the anonymized set. Specifically, as sensitive attribute values

within each equivalence group are released, this anonymized dataset can be used

to help an adversary to gain new knowledge. There is a subtle difference, however,
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between the notions of l-site-diversity and l-diversity. The prior probability in case of

the latter changes due to the fact that values of sensitive attributes (or values that are

supposed to be protected by the l-diversity) are in fact released in the anonymized

data. On the other hand, in case of the l-site-diversity notion the protected values

remain unknown in the released dataset. In that case an adversary can gain a new

believe based on the anonymized groups of records, and the knowledge that each

such group contains data from at least l sites. We will assume that an adversary

has background knowledge about data distribution across sites in the following form

(prior probability):

P (t ∈ Provideri | t[p ∈ Q] = val) = probi

The background knowledge gives a probability of given record in not-anonymized

data belonging to a specific data source. For each of the anonymized groups the

posterior probability can be estimated as follows:

P (t∗ ∈ Provideri | t∗[p ∈ Q] = val) = max(
1
l
, probi)

Given the two probabilities, we can estimate information gain as the difference

between the posterior and prior probabilities defined above.

6.3 Distributed Anonymization Protocol

In this section we describe our distributed anonymization approach. We first de-

scribe the general protocol structure and then present the distributed anonymization

protocol.
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We assume that the data are partitioned horizontally among n sites (n > 2) and

each site owns a private database di. The union of all the local databases, denoted

d, gives a complete view of all data (d =
⋃
di). In addition, the quasi-identifier of

each local database is uniform among all the sites. The sites engage in a distributed

anonymization protocol where each site produces a local anonymized dataset ai and

their union forms a virtual database that is guaranteed to be k-anonymous. Note

that ai is not required to be k-anonymous by itself. When users query the virtual

database, each individual database executes the query on ai and then engage in

a distributed querying protocol to assemble the results that are guaranteed to be

k-anonymous.

6.3.1 Selection of Anonymization Algorithm

Given our privacy models, we need to carefully adapt or design new anonymization

algorithms with an additional check for site-diversity and implement the algorithm

using multi-party distributed protocols. Given a centralized version of anonymi-

zation algorithm, we can decompose it and utilize SMC protocols for sub-routines

which are provably secure in order to build a secure distributed anonymization pro-

tocol. However, performing one secure computation, and using those results to

perform another, may reveal intermediate information that is not part of the fi-

nal results even if each step is secure. Therefore, an important consideration for

designing such protocols is to minimize the disclosure of intermediate information.

There are a large number of algorithms proposed to achieve k-anonymity. These

k-anonymity algorithms can also extend to support l-diversity check [56]. How-

ever, given our design goal above, not all anonymization algorithms are equally

suitable for a secure multi-party computation. Considering the two main strategies,
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top-down partitioning and bottom-up generalization, we discovered that top-down

partitioning approaches have significant advantages over bottom-up generalization

ones in a secure multi-party computation setting because anything revealed dur-

ing the protocol as intermediate results will in fact have a coarser view than the

final result, and can be derived from the final result without violating the security

requirement.

Based on the rationale above, our distributed anonymization protocol is based

on the multi-dimensional top-down Mondrian algorithm [51]. The Mondrian algo-

rithm uses a greedy top-down approach to recursively partition the (multidimen-

sional) quasi-identifer domain space. It recursively chooses the split attribute with

the largest normalized range of values, and (for continuous or ordinal attributes)

partitions the data around the median value of the split attribute. This process

is repeated until no allowable split remains, meaning that the data points in a

particular region cannot be divided without violating the anonymity constraint, or

constraints imposed by value generalization hierarchies.

6.3.2 Distributed Anonymization Protocol

The key idea for the distributed anonymization protocol is to use a set of secure

multi-party computation protocols to realize the Mondrian method for the dis-

tributed setting so that each database produces a local anonymized dataset which

may not be k-anonymous itself, but their union forms a virtual database that is

guaranteed to be k-anonymous. We present the main protocol first, followed by

important heuristics that is used in the protocol.

We assume a leading site is selected for the protocol. The protocols for the

leading and other sites are presented in Algorithms 1 and 2. The steps performed
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1: function split(set d0, ranges of QID attributes)
2: Phase 1: Determine split attribute and split point
3: do
4: Select best split attribute a (see text)
5: If split is possible, send split attribute to node 1. Otherwise, send

finish splitting to node 1 and finish.
6: Compute median of chosen a for splitting (using secure k-th element

algorithm).
7: done
8: Phase 2: Split current dataset
9: do

10: Send a and m to node 1
11: Split set d0, create two sets, s0 containing items smaller than m

and g0 containing items greater than m. Distribute median items
among si and gi.

12: Send finished to node 1
13: Wait for finished from last node (synchronization)
14: done
15: Phase 3: Recursively split sub datasets
16: do
17: Find sizeleft = |

⋃
si| and sizeright = |

⋃
gi| (using secure sum protocol)

18: If further split of left (right) subgroup is possible, send split left=true
(split right=true) to node 1 and call the split function recursively
(updating ranges of QID attributes). Otherwise send split left=false
(split right=false) to node 1.

19: done
20: end function split

Algorithm 1: Distributed Anonymization Algorithm - Leading Site Version (i =
0)

at the leading site are similar to the centralized Mondrian method. Before the

computation starts, range of values for each quasi-identifier in set d =
⋃
di and the

total number of data points need to be calculated. A secure kth element protocol

can be used to securely compute the minimum (k=1) and maximum (k = n where n

is the total number of tuples in the current partition) values of each attribute across
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the databases [3].

1: function split(set c)
2: Read split attribute a and median m from node (i− 1); pass them to node

(i+ 1)
3: if finish splitting received then return
4: Split set c into si containing items smaller than m and gi containing items
greater than m. Distribute median items among si and gi.

5: Read finished from node i− 1 (synchronization); Send finished to node i+ 1
6: Read split left from node i− 1 and pass it to node i+ 1
7: if split left then call split(si)
8: Read split right from node i− 1, Send split right to node i+ 1
9: if split right then call split(gi)

10: end function split

Algorithm 2: Distributed Anonymization Algorithm - Non-leading Node Version
(i > 0)

In Phase 1, the leading site selects the best split attribute and determines the

split point for splitting the current partition. In order to select the best split at-

tribute, the leading site uses a heuristic rule that is described in details below. If

required, all the potential split attributes (e.g., the attributes that produce sub-

groups satisfying l-site-diversity) are evaluated and the best one is chosen. In order

to determine the split medians, a secure kth element protocol is used (k = dn2 e)

with respect to the data across the databases. To test whether a given attribute

can be used for splitting, we calculate a number of distinct sites in subgroups that

would result from splitting on this attribute using the secure sum algorithm. The

split is considered possible if records in both subgroups are provided by at least l

sites. In Phase 2, the algorithm performs the split and waits for all the nodes to

finish splitting. Finally in Phase 3, the node recursively checks whether further split

of the new subsets is possible. In order to determine whether a partition can be

further split, a secure sum protocol [67] is used to compute the number of tuples of
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original data anonymized data
ID ZIP Age
1 30030 31
2 30033 32

ID ZIP Age
1 30030-36 31-32
2 30030-36 31-32

node 0

ID ZIP Age
3 30045 45
4 30056 32

ID ZIP Age
3 30037-56 32-45
4 30037-56 32-45

node 1

ID ZIP Age
5 30030 22
6 30053 22

ID ZIP Age
5 30030-36 22-30
6 30037-56 22-31

node 2

ID ZIP Age
7 30038 31
8 30033 30

ID ZIP Age
7 30037-56 22-31
8 30030-36 22-30

node 3

Figure 6.1: Distributed anonymization illustration

the partition across the databases.

We illustrate the overall protocol with an example scenario shown in Figure 6.1

where we have 4 nodes and k = 2 for k-anonymization, l = 1 for l-site-diversity.

Note that the anonymized databases at node 2 and node 3 are not 2-anonymous by

themselves. However the union of all the anonymized databases is guaranteed to be

2-anonymous.

Selection of split attribute. One key issue in the above protocol is the selection

of split attribute. The goal is to split the data as much as possible while satisfying

the privacy constraints so as to maximize discernibility or utility of anonymized

data. The basic Mondrian method uses the range of an attribute as a goodness
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indicator. Intuitively, the larger the spread, the easier it is to determine a good

split point where the resulting data can be further split. In our setting, we also

need to take into account the site diversity requirement and adapt the selection

heuristic. The importance of doing so is demonstrated in Figure 6.2. Let’s assume

that we want to achieve 2-anonymity and 2-site-diversity. In the first scenario, the

attribute for splitting is chosen only based on the range of the QID attributes.

The protocol finishes with 2 groups of 5 and 4 records (further split is impossible

due to 2-site-diversity requirement). The second scenario exploits information on

records distribution when the decision on split attribute is made (the more evenly

the records are distributed across sites in resulting subgroups, the better). This rule

yields better results, providing three groups of 3 records each.

28  29  30 33 
Age 

30030 
30031 
30033 

30034 
ZIP  28  29  30 33 

Age 
28  29  30 33 

Age 

Ini1al data  Step 1  Step 2 

28  29  30 33  28  29  30 

Step 1  Step 2 

33 

Scenario 1  Scenario 2 

Age  Age 

Figure 6.2: Impact of split attribute selection. l-site-diversity (l = 2) is considered.
Different shades represent different owners of records.

Based on the illustration, intuition suggests that we need to select a split at-

tribute that results in partitions with even distribution of records from different data

providers. This makes further splits more likely while meeting the l-site-diversity

constraint. Similar to decision tree classifier construction [28], information gain can

be used as a scoring metric for selecting attribute that results in partitions with

most diverse distribution of data providers. Note that this is in contrast to decision
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tree construction where the goal is to partition the data into homogeneous classes.

The information gain of a potential splitting attribute ak is computed through the

information entropy of resulting partitions:

e(ak) = −
n−1∑
i=0

p(i,lk)log(p(i,lk))−
n−1∑
i=0

p(i,rk)log(p(i,rk)) (6.2)

where lk and rk are partitions created after splitting the input set using attribute

ak (and its median value) and p(i, g) is the portion of records that belong to node i

in group g. It is important to note that the calculations need to take into account

data on distributed sites and thus secure sum protocol needs to be used.

Our final scoring metric combines the original range value based metric and the

new diversity-aware metrics using a linear combination as follows:

∀ai∈Qsi = α
range(ai)

max
aj∈Q

(range(aj))
+ (1− α)

e(ai)
max
aj∈Q

(e(aj))
(6.3)

where range function returns the range of the given attribute, e(ai) returns values

of information entropy as defined above when attribute ai is used for splitting and

α is a weighting parameter.

Important to note is that if l-site-diversity is not required (e.g., l=1), then the

evaluation of the heuristic rule above is limited to checking only the range of at-

tributes, and choosing the attribute with the widest range.

6.3.3 Security Analysis

We will now analyze the security of our distributed k-anonymity protocol. We show

that, given the result, the leaked information (if any) and the site’s own input, any
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site can simulate the protocol and everything that was seen during the execution.

Since the simulation generates everything seen during execution of the protocol,

clearly no one learns anything new from the protocol when it is executed. The

proofs use a general composition theorem [24] that covers algorithms implemented by

running many invocation of secure computations of simpler functionalities. Assume

a hybrid model where the protocol uses a trusted third-party to compute the result

of such smaller functionalities f1...fn. The composition theorem states that if a

protocol in a hybrid model is secure in terms of comparing the real computation to

the ideal model, then if a protocol is changed in such a way that calls to trusted

third-party are replaced with secure protocols, the resulting protocol is still secure.

We will assume that there are p attributes in QID (P1...Pp). We will also assume

that the final result of the distributed anonymization is denoted T ∗. T ∗ is a table

where each record has the following form:

R1, R2, ..., Rp, s

with Ri being a range of attribute Pi and s being a sensitive attribute. Each range

Ri has a form [rF
i − rT

i ].

The first theorem states that a centralized k-anonymization algorithm is a special

instance of distributed k-anonymity protocol in terms of security when no l-site-

diversity is required. We show that the information that is released by the two

protocols is the same.

Theorem 1. The distributed k-anonymity protocol privately computes a k-anonymous

view of horizontally partitioned data in the semi-honest model when l = 1.

Proof. Consider a computation in a hybrid model. We show that any given node
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can simulate the algorithm and all what was seen during its execution given only the

final result and its local data. As the distributed k-anonymity algorithm is recursive,

to simulate the execution of the algorithm node will use a special data structure that

will help to identify a group of records being considered at every step of recursion.

The data structure will have the following form: (Pi → relevant rangei) and can

be understood as a constraint on values of attributes from QID. The initial values

for relevant ranges can be simply identified by scanning the table T ∗, and setting

the ranges to the following values:

relevant rangei = [min
t∈T ∗

(rF
i ),max

t∈T ∗
(rT

i )]

At this point the recursive algorithm starts. The arguments of the algorithm are

relevant ranges for all the QID attributes, and the initial relevant ranges computed

above are used for the first time. The algorithm first analyzes relevant ranges to

identify the attribute Pi that was used for splitting. As no l-site-diversity is required

(l = 1), the attribute that was used for splitting is actually the attribute with the

largest relevant range. Let’s assume that attribute Pj has the widest range. Now

the site knows that this attribute was used for splitting. The next step requires

identification of the split point. It turns out that such a point of splitting can be

easily identified. First, using the relevant ranges the site identifies a set of relevant

records from T ∗. Relevant record is a record that has all the ranges overlapping

with the current relevant ranges:

F = {(R1, ..., Rp, s) ∈ T ∗ : ∀PiRi ∈ relevant rangei}

Now the node analyzes all relevant records. The next step is to identify all
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possible splitting points that could be used when the algorithm was executed. Note

that as the same QID attribute could be used for splitting on different steps of the

recursion, there can be a few possible points of splitting. Formally the points of

potential splits are the distinct values of rT
j that appear in the set of relevant items

F (assuming that Pj was the attribute with the largest range). To identify the

median value (or the value that was used for split) the node checks which of the

potential splitting points is actually a median. This can be easily done by choosing

a value that divides the set of relevant records into two sets with the sizes closest

to |F |/2 (note that the subsets resulting from spitting might not have equal sizes -

for instance if number of records is odd).

With the splitting attribute and point identified, the site is ready to simulate

the split. If the size of any of the two groups resulting from splitting is greater than

or equal to 2 ∗ k, this group can be further split. In such a case the node updates

relevant ranges for that group and calls the recursive function. When relevant ranges

are updated, the ranges of all the attributes from QID remain the same as before

except for the quasi attribute Pj that was used for splitting.

Since we showed that the execution of the protocol in a hybrid model can be

efficiently simulated by any node with only knowledge of the final result (we even did

not have to use site’s local dataset), such an execution is secure (note that we have

not even used any calls to the trusted third party). From the composition theorem

follows that if we change the hybrid model and replace calls to trusted third-party

with secure algorithms, the resulting protocol will still be secure. This finishes the

proof.

The second theorem considers a case when l-site-diversity is required. It states

that the distributed k-anonymity protocol releases only a specific statistical infor-
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mation when compared with a centralized k-anonymization algorithm.

Theorem 2. The distributed k-anonymity protocol privately computes a k-anony-

mous view of horizontally partitioned data in the semi-honest model, revealing at

most the following statistics of the data, when l > 1:

1. Median values of each attribute from QID for groups of records of size ≥ 2∗k,

2. Entropy of distribution of records for groups resulting from potential splits,

3. Number of distinct sites that provide data to groups resulting from potential

splits (the identity of those sites are confidential).

Proof. Consider a computation in a hybrid model. We show that any given node

can simulate the the algorithm given only the final result, its local data and the

statistical data that is revealed in points 1, 2 and 3 defined above. The proof

strictly follows the proof of Theorem 1. The same data structure is used to help

the node identify a group of records being considered at every step. The recursive

algorithm is also implemented in the same way as above. The only difference is the

decision step when a node decides on the split attribute. This time, not only the

range of attribute has to be considered, but also the distribution of records in groups

resulting from splitting. We assume that in order to get the information from points

1, 2 and 3, the node makes a call to trusted third party. Using the final result, calls

to trusted third party in order to get information from points 1, 2 and 3, and the

current relevant ranges of QID attributes, any node can decide on split attribute in

the following way. First, the node identifies a set of relevant records:

F = {(R1, ..., Rp, s) ∈ T ∗ : ∀PiRi ∈ relevant rangei}
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Using the information from point 2 and the relevant ranges, the node can now

calculate score defined in equation 6.3 for each attribute Pi. Next, using the infor-

mation from points 1 and 3 the node can decide which of the attributes Pi can be

used for splitting (first, the node uses knowledge from point 1 to find the ranges of

attributes of groups resulting from potential split and then the node uses knowledge

from point 3 to decide whether such a split is possible). Finally, the node chooses

an attribute with the largest possible score that satisfies l-site-diversity. Once the

attribute is chosen, the node can continue simulation in the same way as in the proof

of Theorem 1.

We again showed that the execution of the protocol in a hybrid model can

be efficiently simulated by any node with knowledge of the final result and the

information from points 1, 2 and 3. Therefore such an execution is secure. From the

composition theorem follows that if we change the hybrid model and replace calls

to trusted third-party with secure algorithms, or we assume that the information

from those calls is available to the node, the resulting protocol will still be secure.

6.3.4 Protocol Overhead

Our protocol introduces additional overhead due to the fact that the nodes have

to use additional protocols in each step of computation. The time complexity of

the original Mondrian algorithm is O(nlogn) where n is the number of items in the

anonymized dataset [51]. As we presented in Algorithm 1, each iteration of the

distributed anonymization algorithm requires calculation of the heuristic decision

rule, median value of an attribute, and the count of tuples of a partition. The

secure sum protocol does not depend on the number of tuples in the database. The

secure k-th element algorithm is logarithmic in number of input items (assuming
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the worst - case scenario that all the input items are distinct). As a consequence,

the time complexity of our protocol is O(nlog2n) in terms of number of records in

a database.

The communication overhead of the protocol is determined by two factors. The

first is the cost for a single round. This depends on the number of nodes involved

in the system and the topology which is used and in our case it is proportional to

the number of nodes on the ring. As future work, we are considering alternative

topologies (such as trees) in order to optimize the communication cost for each

round. The second factor is the number of rounds and is determined by the number

of iterations and the sub-protocols used by each iteration of the anonymization

protocol. The secure sum protocol involves one round of communication. In the

secure k-th element protocol, the number of rounds is logM (M being the range of

attribute values) and each round requires secure computations twice. It is important

to note that the distributed anonymization protocol is expected to run offline on an

infrequent basis. As a result, the overhead of the protocol will not be a major issue.

6.4 Experimental Evaluation

We have implemented the distributed anonymization protocol in Java within the

DObjects framework [44] which provides a platform for querying data across dis-

tributed and heterogeneous data sources. To be able to test a large variety of

configurations, we also implemented the distributed anonymization protocol using a

simulation environment. In this section we present a set of experimental evaluations

of the proposed protocols.

The questions we attempt to answer are: 1) What is the advantage of using the
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distributed anonymization algorithm over centralized or independent anonymiza-

tion? 2) What is the impact of the l-site-diversity constraint on the anonymization

protocol? 3) What are the optimal values for α parameter in our heuristic rules

presented in equation 6.3?

6.4.1 Distributed Anonymization vs. Centralized and Independent

Anonymization

We first present an evaluation of the distributed anonymization protocol compared

to the centralized and independent anonymization approaches in terms of the quality

of the anonymized data.

Dataset and setup. We used the Adult dataset from UC Irvine Machine Learning

Repository. The dataset contained 30161 records and was configured as in [51].

We used 3 distributed nodes (30161 records were split among those nodes using

round-robin protocol). We report results for the following scenarios: 1) the data is

located in one centralized database and classical Mondrian k-anonymity algorithm

was run (centralized approach), 2) data are distributed among the three nodes and

Mondrian k-anonymity algorithm was run at each site independently (independent

or naive approach) and 3) data are distributed among the three nodes and we

use the distributed anonymization approach presented in section 6.3. We ran each

experiment for different k values. All the experiments in this subsection used 1-site-

diversity.

Results. Figure 6.3 shows the average equivalence class size with respect to differ-

ent values of k. We observe that our distributed anonymization protocol performs

the same as the non-distributed version. Also as expected, the naive approach (in-

dependent anonymization of each local database) suffers in data utility because the
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Figure 6.4: Histogram for partitioning
using city and age

anonymization is performed before the integration of the data.

6.4.2 Achieving Anonymity for Data Providers

The experiments in this section again use the Adult dataset. The data is distributed

across n = 100 sites unless otherwise specified. We experimented with distribution

pattern that we will describe in detail below.

Metric. The average equivalence group size as shown in previous subsection pro-

vides a general data utility metric. The query imprecision metric provides an

application-specific metric that is of particular relevance to our problem setting.

Given a query, since the attribute values are generalized, it is possible only to re-

turn the tuples from the anonymized dataset that are contained in any generalized

ranges overlapping with the selection predicate. This will often produce a larger

result set than evaluating the predicate over the original table. For this set of ex-

periments, we use summary queries (queries that return count of records) and we

use an algorithm similar to the approach introduced in [85] that returns more accu-

rate results. We report a relative error of the query results. Specifically, given act
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as an exact answer to the query and est as an answer computed according to the

algorithm defined above, the relative error is defined as |act − est|/act. For each

of the tested configurations, we submit 10,000 randomly generated queries, and for

each query we calculate a relative error. We report an average value of the error.

Each query uses predicates on two randomly chosen attributes from quasi-identifier.

For boolean attributes that can have only two values (e.g. sex), the predicate has a

form of ai = value. For other attributes we use a predicate in the form ai ∈ R. R

is a random range and has a length of 0.3 ∗ |ai|, where |ai| denotes the domain size

of an attribute.

Data partitioning. In a realistic scenario, data is often split according to some

attributes. For instance, the patient data can be split according to cities, i.e. the

majority of records from a hospital located in New York would have a New York

address while those from a hospital located in Boston would have a Boston address.

Therefore, we distributed records across sites using partitioning based on attribute

values. The rules of partitioning were specified using two attributes, City and Age.
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The dataset contained data from 6 different cities, and 1/6th of all nodes were

assigned to a different city. Next, records within each group of nodes for a given

city were distributed using the Age attribute: records with age less than 25 were

assigned to the first 1/3rd of nodes, records with age between 25 and 55 to the

second 1/3rd of nodes, and the remaining records to the last 1/3rd. The histogram

of the records per node in this setup is presented in Figure 6.4 (please note the

logarithmic scale of the plot).

Results. We now present the results of evaluating the impact of the α value. Figure

6.5 presents the average query error for different α and l values for the heuristic rule

we used. We can observe a significant impact of α value on the average error. The

smallest error value is observed for α = 0.3 and this seems to be an optimal choice for

all tested l values. One can observe 30% decrease in error when compared to using

only range as in original Mondrian (α = 1.0) or using only diversity-aware metrics

(α = 0.0). It is worth mentioning that we have also experimented with different

distributions of records, and the results were consistent with what we presented

above.

The next experiment was focused on the impact of k parameter on average error.

We present results for l=30 in Figure 6.6 for three different split heuristic rules: using

range only, information gain only, and the combined range and information gain with

α = 0.3. We observe that the heuristic rule that takes into account both range and

information gain gives consistently the best results and a reduction of error around

30%. These results do not depend on the value of k.

Next, we tested the impact of the l parameter for l-site-diversity. Figure 6.7

shows an average error for varying l and k = 200 using the same heuristic rules as

in the previous experiment. Similarly, the rule that takes into account range and
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Figure 6.8: Average error vs. n (k =
200 and l = 30)

information gain gives the best results. With increasing l, we observe an increasing

error rate because the data needs to be more generalized in order to satisfy the

diversity constraints.

So far we have tested only scenarios with 100 nodes (n = 100). To complete the

picture, we plot the average error for varying n (k = 200 and l = 30) in Figure 6.8.

One can notice that the previous trends are maintained - the results do not appear

to be dependent on the number of nodes in the system. Similarly, the rule that

takes into account range and information gain is superior to other methods and the

query error is on average 30% smaller than that for the others.

6.5 Conclusion

We have presented a distributed and decentralized anonymization approach for

privacy-preserving data publishing for horizontally partitioned databases. Our work

addresses privacy of data subjects and confidentiality of data providers. We for-

mulated a new principle, l-site-diversity, to take into account anonymity for data
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providers in anonymized dataset. Our work continues along several directions. We

are interested in developing a protocol toolkit incorporating more privacy princi-

ples and anonymization algorithms. In particular, dynamic or serial releases of data

with data updates are extremely relevant in our distributed data integration setting.

Such concepts as m-invariance [85] or l-scarsity [11] are promising ideas to explore

in future research.
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Chapter 7

Secure Union

7.1 Introduction

In this chapter we focus on the secure union problem in which multiple entities

wish to collaborate and share the union of their data without disclosing which party

contributed which item. As in the previous chapter, we assume the semi-honest (or

honest but curious) adversary model commonly used in SMC problems. A semi-

honest party follows the rules of the protocol, but it can attempt to learn additional

information about other nodes by analyzing the data received during the execution

of the protocol.

The secure union protocol we describe here is an integral part of extended DOb-

jects architecture discussed in chapter 5. Previous chapter discussed distributed

anonymization protocol which enables a group of nodes to create an anonymized

view of the data. However, as the result of the protocol, each node owns its local

part of the virtual anonymized database. In order to integrate the data from all

the sites, a union of all the local anonymized datasets has to be calculated. To
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guarantee the security of data providers, we need to employ a secure union protocol

where ownership of the data is protected. Such a secure union protocol will be a

part of the secure query processing component.

Secure union protocols discussed in this section [42], in addition to serving as a

building block of our secure query processing, can also be used as a tool for general

secure data mining tasks. For instance, consider a scenario in [58] for genomic data

sharing. A patient, John Smith, visits a local hospital and is diagnosed via DNA

diagnostic test with some DNA-influenced disease. After the visit, the hospital

stores both clinical and medical data in its local database. Next, John visits a few

other hospitals for treatment where his medical data and DNA are also collected

and stored. For research purposes, the hospitals forward their DNA databases to a

research group for sharing. While the sequences are only tagged with pseudonyms

of patients, the submitting institution of the DNA records are disclosed. As a result,

if an adversary knows which hospitals John Smith visited, called a trail, s/he can

track his DNA information by the unique features of the trails. To prevent such a

risk, we can use secure union protocol to share the DNA information such that the

contributing institutions of the DNA records are not disclosed.

We start with analysis of existing representative secure union protocols. Then,

we present an alternative simple yet effective protocol based on random shares ap-

proach. In contrast to traditional SMC protocols, the approach we suggest achieves

sufficient (but not absolute) security for participating parties at much lower cost

for a practical usage. We present a set of formal analysis evaluating and comparing

the protocols with respect to their complexity, security characteristics and cost. We

also implemented all the protocols including the existing ones and experimentally

evaluate their cost.
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7.2 Existing Protocols for Secure Union

7.2.1 Secure Union Problem Definition

Given n ≥ 2 sites, each site holding a local set of data tuples or items xi, we

wish to compute X =
⋃
xi while minimizing the probability of a node revealing its

ownership of xi to other nodes. Note that secure union does not have a practical

sense when there are only 2 parties.

Various solutions for computing set union have been proposed in the literature.

They generally fall into three categories: general circuit-based protocols, specialized

cryptography-based protocols, and probabilistic protocols. We briefly describe them

or their variants below. We discuss their adaptability from set union to bag union

or vice versa. When available, we cite the analysis results from the original papers.

Otherwise, we conduct an analysis and present our results.

In addition, anonymous communication protocols, while not directly designed for

secure multi-party computations, can be also used for set operations. We describe

how to adopt them for secure set operations and analyze their security and cost.

7.2.2 Circuit-Based Secure Union

The secure union can be implemented using a secure circuit evaluation [1]. Yao

[92] showed that any multi-party computation task can be solved by building a

combinatorial circuit, and simulating that circuit by participating nodes. The secure

union can be computed as follows. First, each node creates a bit vector with as many

bits as there are items in the domain. We will assume that the domain of items is

denoted by M . Therefore, each site will have a vector Vi with the length of |M | bits.

Next, the nodes generate a circuit that computes bitwise OR on all the vectors. The
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result of such a circuit is a vector that represents the union.

The circuit-based algorithm defined above can be modified to compute a bag

union as well. The only change that has to be done is to modify the circuit so that

instead of calculating the OR, it will calculate sum. The result of such a protocol

will be a vector of numbers representing item multiplicity rather than a vector of

bits.

The circuit-based protocol, although provably secure, is computationally pro-

hibitive in practice. First, the size of a circuit depends on the domain size for the

data items. For larger domains the circuit calculation can take very long. Second,

the size of data being transferred between nodes does not depend on size of the

result, but on the domain size. As a result, the cost of secure circuit generation and

evaluation add significant overhead.

Cost. We estimated the cost of communication and computation for a semi-honest

variant of Yao’s protocol using a similar analysis as the one presented in [4]. The

number of gates the protocol requires is n(|M |)Ge and the corresponding commu-

nication and computation costs are 4k0n(|M |)Ge and 2Crn(|M |)Ge, respectively,

where k0 is the size (in bits) of keys used for circuit gates, Ge is the number of

gates required to compare 2 numbers, and Cr is the cost of pseudorandom function

evaluation.

7.2.3 Commutative Cryptography-Based Secure Union

As the general circuit-based solution is extremely expensive, specialized cryptography-

based protocols are proposed for the union operation based on commutative encryp-

tion schemes[14, 45, 10] or homomorphic encryption schemes and polynomial repre-

sentation of sets [48]. We will focus on protocols based on commutative encryption
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as a representative for this category of protocols. A given encryption protocol is

said to be commutative if for given encryption keys K1,K2, ...,Kn ∈ K and any

permutation i, j, the following equations hold:

∀m∈MEKi1
(...EKin

(m)...) = EKj1
(...EKjn

(m)...) (7.1)

and ∀m1,m2∈M (m1 6= m2) there exists k such that:

Pr(EKi1
(...EKin

(m1)...) = EKj1
(...EKjn

(m2)...)) <
1
2k

(7.2)

Given the commutative encryption scheme, secure union protocol can be imple-

mented as follows [45]. First, all nodes are arranged in a ring. Each site encrypts its

own items using its own encryption key and ships the result to the next site in the

ring. Each site then encrypts the received items using its encryption key and sends

the result to another site and so on. Assuming there are n nodes, in the n-th step,

each node receives his items encrypted by itself and all other nodes. Since the equa-

tion 7.1 holds, any duplicate in original items will also be a duplicate in encrypted

set and the decryption of the items can occur using decryption keys K1...Kn in any

order. All the nodes send its fully encrypted data to one of the nodes. Then, the

selected node calculates the union of all the items it received and decrypts those

items using its key and sends the result to the next node in the ring. The next node

decrypts items and sends the result to the next node and so on. Once every node

decrypts every item, the union is found and can be broadcasted to all the interested

nodes.

The algorithm above finds a bag-union without revealing which item was con-

tributed by which node. To calculate the set union, one can remove the duplicates
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in the fully-encrypted set before the decryption phase. This of course would prevent

revealing which items are duplicates (node 1 only knows the encrypted format of

the duplicate items), however, the number of items that exist commonly between

sites would be known.

Security. As proved in [45], the discussed protocol securely computes union, re-

vealing a bounded set of innocuous information such as size of the intersection of

the data items and number of items at the sites.

Cost. Using a similar analysis as the one presented in [4] the estimate for the

communication cost is n2dk(2n + 1) and the computation cost is 2n2Ced, where n

is a number of nodes, d is an average number of items provided by each node, k is

the size of encrypted item (in bits) and Ce is the cost of encryption/decryption of

an item.

7.2.4 Probabilistic Secure Union

A probabilistic secure union algorithm was proposed in [8] to address the concerns

of high overhead associated with traditional SMC protocols. The protocol also uses

a bit vector Vi to represent the data items at each node and calculates the logical

OR of the bit vectors. The main idea is to use r rounds and to use randomization

in each round when generating the result of the algorithm. In the protocol, a global

vector V is passed from one node to another along the ring (initially V is filled in

with random values). When the vector is received from a predecessor, the node

performs probabilistic bit flipping in the received vector, and passes the result of

this operation to his successor. After r rounds, the vector V contains result of the

algorithm and can be broadcasted to all interested nodes.

The algorithm finds a set union and its modification to calculate a bag union can
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be problematic. In case of a bag union, the intermediate vector V should store counts

of items, and thus the probabilistic bit flipping approach is not easily applicable.

Correctness. As shown in [8], the protocol is not deterministic and the result

is correct only with certain probability guarantee. For a given number of rounds,

r ≥ max(3,−log[1 − {8
7(1 − ε)}1/(n−1)]), the probability of having an error in each

bit of the result vector is at most ε.

Security. The protocol is not absolutely secure and does reveal information about

the local data [8]. The probability of one node deducing that its successor has a

given data item (a term in the context of the paper) is 0.71. Unfortunately, when

nodes collude, this probability is much higher (however, no details are given in the

paper).

Cost. We also conducted a cost analysis of the protocol. The estimate for the

communication cost is rn|M | and the computation cost is rn|M |Cc, where Cc is the

cost of evaluating if statements in the protocol.

7.2.5 Anonymous Communication-Based Secure Union

Anonymous communication [17] is a technique of bouncing communications around

a distributed network of relays in order to prevent, for instance, somebody watching

an Internet connection from learning what sites one visits or to prevent the sites one

visits from learning one’s physical location. Instead of taking a direct route from

source to destination, data packets take a random pathway through several relays.

The pathway between source and destination, called a circuit, is usually used for

some short time and after that a new random circuit is created in order to increase

anonymity.

Due to the nature of the set union operation and its main goal to protect the
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anonymity of the data owners, anonymous communication techniques are particu-

larly suitable for implementing secure union computations. The algorithm could

simply use an anonymous communication protocol to ship all the data items to a

single node. Once this step is completed, the union is found and can be sent to

all the interested parties. As the recipient does not know the message originator,

the ownership of items in the union is protected. The protocol finds a bag union.

It can be also modified to remove duplicates, in a similar way as the commuta-

tive cryptography-based approach. Another variant of anonymous-communication

protocol was also presented in [91].

Security. The protocol described above guarantees security provided that no nodes

collude, revealing the size of intersection between nodes (the intersection can be cal-

culated using encrypted items sent to the node computing union) and size of subsets

owned by other nodes (protecting the identity of those nodes). If the recipient of

data items colludes with some nodes from the communication circuit, the risk of

corrupting privacy increases. Such a risk can be greatly minimized by using longer

circuits. Note also that the security of the protocol can be further increased. In

the description above, even though the exact node is unknown, the recipient gains

knowledge about a given set of items being owned by some node. To minimize this

exposure, the nodes can ship data in a few random packets. We also note that in the

case of set union which removes duplicates, the recipient node learns exact duplicate

items (not only the encrypted values).

Cost. The estimate for the communication cost of the protocol is ndk(c + 1) and

the computation cost is 2nCedc, where n, d, k and Ce have the same meaning as in

the previous subsection and c is the number of nodes in a circuit.
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7.3 Random Shares-Based Union Protocol

In this section we present our set union protocol that uses a random shares approach

similar to that of a secure sum protocol. The protocol we describe computes a bag

union. However, the protocol can also be modified to remove duplicates if necessary.

To facilitate the discussion, we first describe a simple secure sum protocol to

illustrate the random shares idea and then present the details of our random shares

secure union protocol.

7.3.1 Secure Sum

The secure sum protocol works as follows [14]. Assume that the sum value is known

to lie in the range [0..m] and that all the participating nodes are arranged in a ring.

The first node generates a random number r and passes to the second node value

v1 = (x1 + r) mod m. The second node receives the value v1 from the first node,

computes v2 = (v1 + x2) mod m and passes v2 to the third node and so on. The

last node sends value vn to the first node. Then, the first node can use equation

(vn − r) mod m to find the sum. The protocol can be modified in order to address

the problem of colluding nodes. Instead of using only one round, it can use p rounds.

In each round the ring is permuted and, instead of adding its xi to the intermediate

result, each node adds a random share of xi. The random shares have to satisfy the

following:
∑p

j=1 sij = xi (sij denotes a share contributed by node i in round j).

7.3.2 Random Shares-Based Secure Union

Now we present the secure union protocol utilizing a similar random shares based

approach. Our main design goal for the protocol is to be able to make a tradeoff
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between security and efficiency so that it can achieve reasonable and probabilisti-

cally bounded security at a much lower cost. Note that the probabilistic secure

union protocol discussed in 7.2.4 also gives a probabilistic security bound and al-

lows tradeoff between security and efficiency as well as accuracy. In contrast, our

protocol is designed to be deterministic in terms of accuracy and its cost does not

depend on the domain size.

There are three key ideas to the protocol. First, each node introduces random

items so that it will not suffer from a provable exposure of its ownership of items.

Second, a starting node is randomly selected so that nodes close to the starting node

on the ring will not suffer from a high probability of data disclosure. Finally, the

protocol uses multiple rounds and for each round the nodes are permuted and each

node participates with a random share of its data items. This random shares based

approach further minimizes the effect of potential collusion of the nodes.

The protocol works as follows. First each node i generates a random set ri and

a leading site l is chosen randomly. Next the p rounds of the protocol begin where

each node adds its random share to the intermediate result. In each round, all the

nodes are arranged in a ring topology randomly. This can be done for instance by

selecting a random number ti by each node. Then, the nodes can be arranged in

the order indicated by growing values of ti using a secure k-th element algorithm

[3]. Once the nodes are arranged, the leading site adds a random share of its local

set xl and a random share of its random set rl to the intermediate result from the

previous round and passes the result to its successor. The other nodes performs

the computation similarly. When node l receives the result from its predecessor,

the next round begins. Note that each node has to choose random shares so that:

∪p
j=1xij = xi and ∪p

j=1rij = ri where xij and rij denote a random share of the data
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1: INPUT: xi: local subset contributed to union
2: Generate random set ri, choose leader, set IR← ∅
3: Phase1
4: for k = 1 to p do
5: Arrange nodes in a ring topology randomly
6: if leader then
7: Send IR ∪B xik ∪B rik to successor
8: Receive IR from predecessor
9: else

10: Receive IR from predecessor
11: Send IR ∪B xik ∪B rik to successor
12: end if
13: end for
14: Phase 2
15: Arrange nodes in a ring topology randomly
16: if leader then
17: Send IR−B ri to successor
18: Receive IR from predecessor
19: Result← IR
20: else
21: Receive IR from predecessor
22: Send IR−B ri to successor
23: end if

Algorithm 3: Random shares secure bag union protocol.

items and random items added to the intermediate result by node i in round j.

When p rounds are completed, the protocol moves to the next phase.

In the second phase the new random ring topology is generated (note that the

leading site remains the same though). Next, the leading site l subtracts its random

items rl from intermediate results received in the previous phase and passes the

result to the successor. Then, each node i subtracts its local random set ri from

the intermediate result and passes the result along the ring. When node l receives

the result from its predecessor, the protocol finishes and the union is found. To

further enhance the security of the protocol, one could also use p rounds for the
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Figure 7.1: Random shares set union protocol (single-round version). IR1/IR2

represent intermediate result in the first/second phase.

second phase. A sketch of the algorithm is presented in Algorithm 3 and Figure 7.1

presents phases of the protocol when only one round is used (p = 1).

An important issue in the protocol is the random data item generation. The

questions we need to answer are: 1) how to generate a good random set of items r

that look legitimate to other nodes and are indistinguishable from real data, and 2)

what should be the size of r? We defer the second question to the next subsection

when we analyze the protocol in detail and briefly discuss the first question here.

There are a number of factors that need to be considered for generating legitimate

items. First, the random item has to come from a legitimate domain. For numeric

attributes, we assume the domain range is known to all the nodes. For discrete

attributes with closed set of values (such as geographic entities), well-known dictio-

naries can be exploited. Second, we have to follow the underlying distribution of

the data. Most attributes, such as age or weight, can be expected to follow nor-
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mal distribution and thus a random item can be generated using such distributions.

Finally, a good random item generation also needs to take into account correla-

tion between attributes (e.g., one can expect that the weight and height values are

strongly correlated). Therefore, a node can perform certain correlation analysis on

its local data and generate attribute values based on their dependencies.

The random shares protocol could potentially reveal data distribution from a

given site. In cases where this is an issue, the analysis of distribution of data should

take into account data on all sites. Alternatively, the distribution of data obtained

from local node can be distorted in order to perturb the real distribution statistics.

7.4 Analysis of Random Shares Secure Union

In this section we analyze our protocol in detail. We first introduce the security

metric that we use for evaluating how well we achieve our security goal and present

a formal analysis using this metric. We will plot the analytical bounds derived in

this section along with our experimental results in the experiment section.

7.4.1 Security Metric and Attack Models

Our security goal is to prevent an adversary from being able to determine the own-

ership of items from the final result. Given the goal, we need to quantify the degree

of data exposure for each node. We adopt the loss of privacy (LoP) metric [86]

for this purpose. Let R denote the final result of the algorithm and IR denote the

intermediate result during execution of the protocol. Suppose an adversary, as an

attack, makes a claim C about the data at a node, we define two probabilities. The

first, P (C|IR,R), is the probability of claim C being true when a node has both IR
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and R. The second, P (C|R), is the probability of claim C being true when a node

has only the final result R. The loss of privacy is defined as follows:

LoP = P (C|IR,R)− P (C|R) (7.3)

It essentially measures the difference between the posterior probability (with inter-

mediate result) and the prior probability (without intermediate result) with respect

to an attack. This, in spirit, is similar to the metric presented in [20, 73] which

measures the information disclosure for anonymization using the notion of posterior

probability (with published dataset) and the prior probability (without published

dataset).

In our case, there are two kinds of data exposure (or attacks) with corresponding

claims that can be made by an adversary, namely, set exposure and item exposure.

For set exposure, an adversary is able to make a claim on the whole set of items a

node contributes to the final union result (C = node i contributed subset ai to the

final result). For item exposure, an adversary is able to make a claim on a particular

item a node contributes to the final result (e.g. C = node i contributed item vi to

the final result).

In addition to the data exposure above, we can also talk about negative item

exposure. For the negative item exposure an adversary is able to make a claim on

particular node not contributing given item to the final result. Below we analyze

the loss of privacy for all these attacks, respectively.
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7.4.2 Security Analysis

We first focus our analysis on single-round versions of the protocol (p = 1). The

multi-round version of the protocol is a subject of the last four theorems.

Theorem 3. The Loss of Privacy (LoP) for the random shares based union protocol

with respect to set exposure attack is bounded by:

LoP ≤ 1
n− 1

∗
(
m− c+ c/n

m

)|r|
(7.4)

where n is the number of nodes, m is the count of items in the domain, and c is the

size of the result.

Proof. As the worst case scenario, consider the starting node (we assume node 1 is

the starting node) as the victim and the second node (node 2) as the adversary. We

also assume that node 2 is aware that node 1 is the starting node. This is the worst

case because node 2 only has to identify a set of real data items (not randomly

generated items) from the intermediate result it receives from node 1 while any

further adversary nodes will have to not only identify the real items, but also the

owner of the items.

Suppose node 2 is trying to identify the whole set of items of node 1 by making

a claim C: x1 = a1. We estimate P (C|R) and P (C|IR,R) below and derive the

LoP .

Start by computing P (C|R), the probability of the claim being true given only

the final result X. Given only X, the best an adversary (node 2) can do for guessing

x1 is to select a random number of items from X which are not among his own items

x2. If we assume that X contains c distinct items, the probability the claim is true

is given by (note that x1 can contain any number of items, so the adversary has to

105



guess the size of this set and the items):

P (C|X) =
1

c∑
a=0

( |X − x2|
a

) ≈ 0 (7.5)

We are limiting the analysis above to the case when the result set contains only

distinct items. As having duplicates helps an adversary, we are actually finding a

lower bound for the probability P (C|R) (and an upper bound for the LoP).
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Figure 7.2: Example of data exposure of node 1 to node 2 (ralg - guessed r, x1alg -
guessed x1, IR1

1 - intermediate result in Phase 1)

We now compute P (C|IR,R), the probability of the claim being true given the

intermediate result IR1
1 (intermediate result in phase 1) and the final result X. The
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intermediate result IR1
1 contains the random set r1 generated by node 1 and the

subset x1 contributed by node 1. If no item from the random set r1 appears in

the final result set, node 2 can determine r1 using r1 = IR1
1 −X and consequently

determine x1 using x1 = IR1
1 − r1. Thus the best an adversary can do for guessing

x1 is to make a claim C: x1 = IR1
1 − (IR1

1 −X). Figure 7.2 presents a few possible

scenarios for the claim. The probability of this claim being true can be derived as

follows:

P (C|X, IR1
1) = P (x1 = r1 ∪ x1 − (r1 ∪ x1 −X))

= P (x1 = r1 ∪ x1 − (r1 − (X − x1))) (7.6)

= P (r1 ∩ (X − x1) = ∅)

We will call the probability above P∅. If we assume that the domain M of

items contains m distinct items and if we assume that the result of union algorithm

contains c distinct items and that nodes contribute on average c/n distinct items to

the final set, the probability that a random set r1 not containing any item from the

set X − x1 is given by:

P∅ =
(
m− c+ c/n

m

)|r1|
(7.7)

Now we can derive the LoP for the starting node (given the knowledge of the

starting node by the adversary). If the intersection r1 ∩ (X − x1) is empty, the

adversary can identify whole subset contributed by the first node. If this subset is

not empty, then any subset of the items from x1 can actually be provided by the
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first node. Therefore, the probability of identifying the true subset x1 is:

P (C|IR,R) = P∅ + (1− P∅)
1

|x1|∑
i=0

( |x1|
i

) = P∅ + (1− P∅)
1

2|x1|
(7.8)

As the factor 2|x1| grows very fast, the second number in the equation above

will be very small. Therefore, we can assume that P (C|IR,R) = P∅. Moreover,

the above analysis assumed that node 2, the adversary node, is aware that node

1 is the starting node. As our protocol utilizes a randomized starting scheme, the

probability of a node being the starting node is 1
n−1 (assuming an adversary node is

not the starting node). Note also that the attack associated with P∅ is possible only

if the attacker is the second node. Thus we derive the bound of LoP as presented

in equation 7.4.

Theorem 4. If k sites collude, the LoP for the union protocol with respect to set

exposure attack is bounded by:

LoP ≤ max(
k(k − 1)(n− k)
(n− 1)(n− 2)

∗
(
m− c+ c/n

m

)|r|
,
k2(k − 1)2

n3
) (7.9)

Proof. Assume that in the ring nodes i − 1 and i + 1 collude in order to identify

items provided by node i. To alleviate the problem of nodes collusion, the fact that

each node generates random items helps to limit the LoP . If the nodes collude in

the first phase of the protocol, they can identify set (xi + ri) using the following

formula: (xi + ri) = IR1
i+1 − IR1

i . If in the second phase nodes do not end up in

the same positions in the ring, the best they can do is to proceed according to the

algorithm described for the case of the second node being an adversary. As the ring

is generated randomly, the probability of two colluding nodes being arranged in the
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way that makes this attack possible is 2
n−1 (for the attack to be possible the first

colluding node can be placed in any place in the ring; then the second colluding

node can be placed two positions before the first one or two positions after). In this

case, the analysis will be similar to the analysis above with respect to the attack

from the second node guessing the set provided by the first node, and LoP can be

estimated using equation 7.8 as:

LoP =
2

n− 1
∗
(
m− c+ c/n

m

)|r|
(7.10)

If colluding nodes surround the same node in the first and second rounds, the pri-

vacy of the surrounded node can be clearly compromised, as the whole set provided

by this node can be identified. The probability of such scenario can be estimated

as follows: 2
n−1 ∗

2
n−1 ∗

1
n−2 (the colluding nodes have to surround the same node in

the first and second phases). For larger n the probability can be approximated as

4
n3 and the LoP can be estimated as:

LoP = max(
2

n− 1
∗
(
m− c+ c/n

m

)|r|
,

4
n3

) (7.11)

When more than two sites collude, the probability of one of the scenarios ana-

lyzed above is higher. In the general case of k colluding sites, the probability can

be calculated as k(k−1)(n−k)
(n−1)(n−2) (any 2 of the k nodes can surround a node that will

be attacked). On the other hand, the probability of surrounding attacked node by

colluding sites in both phases of the union algorithm can be estimated as follows:
k(k−1)(n−k)
(n−1)(n−2) ∗

k
n−1 ∗

k−1
n−2 which for larger n can be estimated as k2(k−1)2

n3 . Thus, the

LoP when k sites collude is bounded by the equation 7.9.

Theorem 5. The LoP of the protocol with respect to item exposure if no sites
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collude is:
LoP ≤

∑n−1
i=1

1
i

n− 1
∗ 2

1 + |r| ∗ n−1
m

− 1
n− 1

(7.12)

Proof. Consider the starting node (node 1) as the victim and the second node (node

2) as an adversary. Suppose node 2 is trying to identify a single item contributed

by node 1, x1, by making a claim C: v1 ∈ x1.

We first compute P (C|R). Given only X, the best an adversary can do for

guessing a single item in x1 is to select an item from X. The probability that the

claim is true is P (C|R) = 1
n−1 .

We now compute P (C|IR,R), the probability of the claim being true given the

intermediate result IR1
1 and the final result X, and analyze how the intermediate

result can help this node to find the owner of some items. Using a similar approach

as in the set exposure scenario, the adversary can try to find items contributed by its

predecessor. The less items from random set r1 are in the algorithm’s final result, the

easier the second node can identify items contributed by the first node. Specifically,

observing again the scenarios presented in Figure 7.2, and assuming that node 2 is

aware of node 1 being the leader, the probability P (C|IR,R) is given by (we assume

that each node contributes in average c
n items and generates |r| random items):

P (C|IR,R) =
|x1|+ |x1 ∩ (r1 ∩ (X − x2))|
|x1|+ |(r1 ∩ (X − x2))|

≤

2 ∗ c
n

c
n + |r| ∗ c− c

n
m

=
2

1 + |r| ∗ n−1
m

(7.13)

The equation above considers only the case when adversary is the second node in

the ring. The attack is also possible when adversary is in third or any later position.

The attack is successful if the adversary identifies a real item in the intermediate

result, and if it can guess the real owner of the real item. If adversary is at the
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third position, the probability of guessing an owner is 1
2 , if it is at 4th position, the

probability is 1
3 and so on. As the adversary can be located at any position in the

ring, the overall probability P (C|IR,R) can be thus estimated as the sum of all

those factors. Considering this fact and the randomized startup scheme, the item

exposure is as stated in equation 7.12.

Theorem 6. If k sites collude, the LoP of the protocol with respect to item exposure

is as follows:

LoP ≤ max(k(k−1)(n−k)
(n−1)2(n−2)

∗ 2
1+|r|∗n−1

m

, k2(k−1)2

n3 )− 1
n−1 (7.14)

Proof. The analysis of a scenario with collusion between nodes is quite similar to

that for the set exposure. If colluding nodes surround a victim node only in the first

phase, the fact of generating random items by each node brings the analysis to a

similar scenario as discussed above in Theorem 5. On the other hand, if colluding

nodes surround the same node in both rounds, all the items of the attacked node can

be compromised. If there are k colluding nodes, the overall LoP can be estimated

as in equation 7.14.

Theorem 7. If each node contributes in average c/n items to the final result, the

negative item exposure is bounded by the following:

LoPneg ≤
1

n− 1
(1−

c−c/n∏
i=1

|r| − i
m− |r|+ i

) (7.15)

Proof. Consider the case when node 1 is a victim and node 2 is an attacker, as this

case is the worst case scenario. Following a similar attack scenario as in the previous

analysis, the adversary is sure that the items from set X − IR1
1 do not belong to
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node 1. The probability of this set not being empty can be estimated as:

Pne = 1−

(
m

|r1|−(c−c/n)

)
(

m
|r|

) = 1−
c−c/n∏
i=1

|r| − i
m− |r|+ i

(7.16)

When node knows only the final result, the probability of identifying item not be-

longing node 1 by node 2 is P (C|R) = 1 − 1
n−1 . Therefore, the negative LoP can

be estimated as Pne ∗ (1− (1− 1
n−1)), and is presented in equation 7.15.

Theorem 8. When p rounds of the protocol are used in the first phase and no sites

collude, the Loss of Privacy (LoP) for the random shares based union protocol with

respect to set exposure attack is bounded by:

LoP ≤ 1
n− 1

∗
(

1
c/n+ 1

)p−1

∗ 1
p
∗
(
m− c+ c/n

m

)|r|/p

(7.17)

Proof. Assume that each site contributes in average c
n items, where c is the size of

the result set. As for the single-round algorithm (p = 1), the set exposure attack

is possible with high probability only when an adversary is the second node in the

system. Moreover, for the attack scheme presented in equation 7.6 to be successful,

all the real items have to be contributed by the first node in the first round of the

algorithm. We will assume that the following protocol is applied by each of the

nodes to calculate the random shares of real items. The node i generates p random

numbers sj that have values between 0 and |xi|. If it happens that all the numbers

are 0, they all are changed to 1. In each of the p rounds the node contributes portion

of its real items equal to sj∑
sj

. Given this, we will now calculate a probability of

that the leader contributes all its items in the first of p rounds. Such a situation is

possible only if the node generates first random value that is non-zero followed by
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p−1 random values that are 0s. The probability of such a drawing can be estimated

as:

|xi|
|xi|+ 1

∗
(

1
|xi|+ 1

)p−1

∗ 1
p
≈
(

1
|xi|+ 1

)p−1

∗ 1
p

We will assume that nodes contribute in average |r|p random items in each round.

Considering the randomized starting scheme we can derive the bound for the LoP

as presented in equation 7.17.

Theorem 9. If k sites collude, the LoP for the union protocol with respect to set

exposure attack when p rounds in the first phase are used is bounded by:

LoP ≤ max(
k(k − 1)(n− k)
(n− 1)(n− 2)

∗
(

k

n− 1
∗ k − 1
n− 2

)p−1

∗
(
m− c+ c/n

m

)|r|
,

k(k − 1)(n− k)
(n− 1)(n− 2)

∗
(

k

n− 1
∗ k − 1
n− 2

)p

) (7.18)

Proof. The proof will analyze similar cases as the proof of Theorem 4. For the

attack to be possible the colluding sites have to surround the attacked node in all of

the rounds of the first phase. In the first round the adversaries can surround any of

the sites. However, in all the following rounds the same site has to be surrounded as

in the first round. The probability of such a scenario can be estimated as k(k−1)(n−k)
(n−1)(n−2) ∗(

k
n−1 ∗

k−1
n−2

)p−1
. The probability of colluding sites surrounding the same node in

all the p rounds of the first phase and in the second phase of the algorithm can

be estimated as k(k−1)(n−k)
(n−1)(n−2) ∗

(
k

n−1 ∗
k−1
n−2

)p
. Applying the same reasoning as in the

proof of Theorem 4 we can estimate the LoP as presented in equation 7.18.

Theorem 10. If p rounds are used in the first phase of the protocol, the LoP of
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the protocol with respect to item exposure if no sites collude is the same as LoP

presented in Theorem 5.

Proof. Assume that in average each site contributes 1
p part of its real and random

items in each round of the first phase. In such a case, to estimate P (C|IR,R) in the

first round we can use equation 7.19. The P (C|IR,R) can be estimated as follows:

P (C|IR,R) =
1
p |x1|+ 1

p |x1 ∩ (r1 ∩ (X − x2))|
1
p |x1|+ 1

p |(r1 ∩ (X − x2))|
≤

2 ∗ c
n

c
n + |r| ∗ c− c

n
m

=
2

1 + |r| ∗ n−1
m

(7.19)

The key observation is that the proportion of records in the IR will increase in

every round by the factor 1
p . The attack modes in the case of multi-round protocol

are the same as for the single-round protocol. In such case, the LoP for item exposure

can be estimated as presented in equation 7.12.

Theorem 11. If p rounds are used in the first phase of the protocol, the LoP of

the protocol with respect to item exposure if k sites collude is the same as LoP

presented in Theorem 6.

Proof. Assume that in average each site contributes 1
p part of its real and random

items in each round of the first phase. If colluding nodes surround a victim node

in one of the rounds in the first phase, the fact of generating random items by each

node brings the analysis to a similar scenario as discussed in proofs of Theorems

6 and 10. If colluding nodes surround the same node in one of the rounds in the

first phase and in the second phase, all the items of the attacked node contributed

in given round of the first phase can be compromised (situation similar to the one
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discussed in Theorem 6). Therefore, the LoP for item exposure can be estimated as

presented in equation 7.14.

7.4.3 Comparison with Probabilistic Secure Union

It is worth comparing our analysis with the probabilistic union protocol since both

of them give a probabilistic security bound. The probability bound derived in [8] for

the probabilistic union protocol, in fact, corresponds to our definition of P (C|IR,R)

with respect to item exposure when there is no collusion. So the LoP for the item

exposure of probabilistic union protocol without collusion can be estimated as 0.71−
1

n−1 . This probability is constant and cannot be changed.

7.4.4 Generating Random Items

One remaining issue is how many random items a node should generate in the first

phase. Here we devise rules which guarantee certain LoP bounds. Our analysis is

again divided into two cases, namely, set exposure and item exposure.

Set exposure. Given Equation 7.4 that bounds the LoP for set exposure, we obtain

the following:

|r| = dlog m−c+c/n
m

(n− 1) ∗ LoPexpectede (7.20)

The minimal number of random items in the case of collusion can be similarly

estimated using the factor of equation 7.9 that depends on size of ri. In this case,

however, the minimal LoP cannot be smaller than the factor k2(k−1)2

n3 which does

not depend on the size of the random set.

Item exposure. The LoP bound with respect to item exposure was presented in

equation 7.12. From this equation we can estimate a minimal number of random
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items as follows:

|r| = d m

n− 1
∗
(

2
∑n−1

i=1
1
i

(n− 1)LoPexpected + 1
− 1

)
e (7.21)

To estimate a minimal number of random items that need to be generated in case

of collusion, equation 7.14 can be used.

7.4.5 Cost Analysis

The communication and computation costs of the protocol are kn(d
2 + 3

2nd + nr)

and nCs(2p + 1), respectively, where k is an average size of item, d is an average

number of items owned by node, r is size of random set generated by each node and

Cs is a cost of set operation (union/intersection/difference) on two input sets.

7.5 Experimental Evaluation

In this section we present a set of experimental evaluations of the proposed protocol.

The questions we attempt to answer are: 1) How does the secure set union protocol

perform in various settings and how does it compare with the analytical results, and

2) What is the cost of our protocol in comparison to other options?

7.5.1 Security of Random Shares Union Protocol

We have implemented the random shares based secure union protocol. To answer

the first question above, we prepared a simulation of a distributed environment and

used synthetically generated data with varying parameters which allowed us to test

and evaluate the protocol in multiple scenarios and settings. A summary of the set

of simulation parameters is presented in Table 7.1. In all the experiments the default
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Parameter
name

Description Default
value

m Size of domain 100,000
n Number of participating

nodes
20

c Size of algorithm result 1000
r Number of generated random

items
varies

Table 7.1: Simulation parameters

values are used unless otherwise specified. We have assumed that nodes contribute

on average c
n items to the final result. We report the results for both set exposure and

item exposure attacks. Our experiments assume no collusion scenario. We believe

such a setting is sufficient to demonstrate the correctness of our analysis. Moreover,

the collusion of a small number of nodes will not increase LoP by significant factor.

Set exposure. The first part of the experimental results is focused on the set

exposure attacks when p = 1. Figure 7.3 presents the analytical LoP bound (recall

Equation 7.8) and the actual LoP obtained from the experiments when a given

number of random items is generated. As can be noticed, given the default number

of nodes 20, even when no random items are generated, the algorithm provides

quite high security (expected LoP is 0.05) by utilizing the inherent anonymity of

the network of nodes. Generation of only 100 random items by each node causes

actual LoP to drop below the level of 0.02. Given a smaller number of nodes,

generation of random items becomes more essential. The analytical bound of the

expected LoP is always higher than the value of the actual LoP .

The second experiment was focused on the impact of number of nodes partici-

pating in the algorithm on LoP . The result of this experiment is presented in Figure

7.4. For each tested n each node generated 100 random items. As expected, both

expected and actual LoP decreased as n increased. Again, the value of actual LoP
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number of generated random items
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is always lower than the analytical bound.

The LoP of random shares secure union is also compared with LoP for com-

mutative cryptography-based and probabilistic secure union protocols. While the

cryptographic protocols do not reveal additional information (LoP = 0), and prob-

abilistic protocol introduces very low LoP ≈ 0, the LoP introduced by our protocol

is also relatively small.

The experiments above show the security level of a single-round version of the

protocol (p = 1). As the number of rounds is increases, the LoP of the set exposure
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drops significantly. To show the impact of multi-round version of the algorithm

we started the random shares-based secure union protocol using 2 rounds (p = 2).

Figures 7.5 and 7.6 compare the single-round version of the protocol (p = 1) with

the new results for p = 2, and report the expected and real LoP for both cases. The

results demonstrate that increasing number of rounds reduces the average LoP by

significant factor. Similar as for single-round version of the protocol, the expected

LoP of the protocol with 2 rounds is always higher than the real LoP , although the

difference is almost invisible in the plots.

Item exposure. The second part of the experimental evaluation was focused on

the item exposure attacks. Recall that Equation 7.12 identifies expected LoP for

item exposure. Figure 7.7 presents the value of expected and actual LoP metrics

as a function of the number of generated random items. It is worth noting that

the value of actual LoP metric is around half of the value of expected LoP . Such

a phenomenon is worth an explanation. When we derived Equation 7.21, we have

assumed the worst case scenario and assumed that |x1 ∩ (r ∩ (x− x2))| = |x1|. On

the other hand, in most cases the value of |x1 ∩ (r ∩ (x− x2))| will be significantly

smaller.

The second experiment for item exposure attacks measured the impact of number

of participating nodes on the LoP value. For each tested value n we have generated

5,000 random items in total. The result is presented in Figure 7.8. Similar to the

previous case, an increase in the number of participants leads to a reduction in the

value of expected and actual LoP .

As for the set exposure, we compared LoP of our protocol with that of commuta-

tive cryptography-based and probabilistic protocols. While cryptographic protocols

perform better in this regard (LoP = 0), the probabilistic protocol introduces the
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constant LoP of item exposure of value ≈ 0.68. In this respect our protocol performs

much better as the LoP is much smaller, and can also be adjusted as desired.

7.5.2 Cost of Secure Union Protocols

To compare the cost of all the secure union protocols, we have implemented the

circuit-based, commutative cryptography-based, probabilistic, as well as the anony-

mous communication-based protocols we described earlier. The circuit-based pro-

tocol was implemented using the FairplayMP [9] framework. The implementation

of the cryptography-based protocol was based on RSA cipher. For the anonymous

communication protocol, we used a communication circuit of 4 machines (excluding

the sender and recipient).

We simulated a distributed environment with n = 20 nodes1 and measured time

of execution for each of the protocols except the circuit-based protocol. Due to

a large time of execution, the runtime of the circuit-based protocol was estimated

based on a performance analysis of the FairplayMP presented in [9]. We ran each
1The implementation of all the protocols in the simulated environment we used for evaluations

can be downloaded from http://www.mathcs.emory.edu/Research/Area/datainfo/dobjects/sec
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Figure 7.9: Comparison of secure union
protocols (m = 220)
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Figure 7.10: Comparison of secure
union protocols (|result| = 1000)

of the other protocols for different domain sizes (m = 217, m = 220 and m = 222

items) and for different result size (100, 1000 and 10000 items). In the random

shares protocol we set the size of the generated random set at each node to 10000

items. The cost of leader/ring selection is not reported. However, this cost will be

insignificant and very small if compared with the cost of the protocol itself.

The results are presented in Figures 7.9 and 7.10. First, we observe that the

commutative cryptography-based, anonymous communication-based and random

shares-based protocols do not depend significantly on size of the domain. On the

other hand, for the probabilistic protocol, the runtime is strongly determined by this

size. Form = 222 the protocol runtime is significantly larger than the random shares-

based protocol even though the security provided by our solution is better. Finally,

the costs of commutative cryptography-based and anonymous communication-based

protocols increase as the result size increases. This is the result of both protocols

depending on an encryption. For a small result size, these protocols perform better

than the random shares protocol. However, for larger result size, the random shares

protocol performs much better.

Runtime of the circuit-based protocol was not placed on the plots due to very
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large values. For the domains we tested, FairplayMP generated circuits of size

2.8 ∗ 107, 2.2 ∗ 108 and 9 ∗ 108 gates. The estimated runtime for such circuits is 15

days, 127 days and 1.4 years, respectively. This makes the protocol impractical for

most real life problems.

7.6 Conclusion

We have discussed different secure union protocols that have been proposed in lit-

erature. We have analyzed and evaluated the cost and feasibility of each of the

approaches. In terms of the cost, while the circuit-based and probabilistic protocols

turned out to be too costly for larger domain size, the commutative cryptography

and anonymous communication-based approaches performed quite well. However,

for larger result size even these protocols incur significant overhead.

We also presented a simple and intuitive secure union protocol based on the

random shares approach. We have analyzed the security of our approach including

both regular attacks and collusion between nodes. Our protocols guarantee desired

level of security that can be adjusted by users and incurs a reasonable cost.
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Chapter 8

Conclusions and Future Work

8.1 Summary

Most of distributed applications that run on resource sharing platforms or in the

clouds need access to heterogeneous, distributed and possibly private data. Usually,

when such an access is required, it is the responsibility of the application developer

to manage efficient access to all the data sources, and to integrate the data obtained

from heterogeneous databases. Such a burden in the application development is not

desired, and can be greatly reduced by using data services providing uniform access

to distributed data.

This dissertation discussed a novel data-as-a-service architecture for resource

sharing platforms and cloud computing systems called DObjects. The system greatly

facilitates development of distributed applications that require access to distributed,

heterogeneous and possibly private data sources. The system builds on top of a dis-

tributed mediator-wrapper architecture where individual system nodes, or droplets,

serve as mediators (mediating queries across data sources) and/or wrappers (re-
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trieving data from individual data sources). They interact with each other in a

P2P fashion and form a virtual system to provide a seamless and transparent data

federation service in a scalable way.

The novel query processing component, in addition to leveraging traditional dis-

tributed query optimization techniques, is focused on dynamically placing (sub)queries

on the system nodes (mediators) to minimize the query response time and maximize

system throughput. In our query execution engine, (sub)queries are deployed and

executed on system nodes in a dynamic (based on nodes’ on-going knowledge of the

data sources, network and node conditions) and iterative (right before the execution

of each query operator) manner. Such an approach addresses dynamics of network

and resource conditions. A set of experiments conducted using simulated environ-

ment as well as small scale and large scale real system deployment confirmed that

the workload migration scheme implemented in DObjects is effective and increases

system throughput by significant factor.

In addition to the base system, the dissertation presented an extension to DOb-

jects model that enables access to data that needs anonymization. The secure

distributed anonymization component can be used for constructing a virtual ano-

nymized database from multiple data providers while preserving privacy for data

subjects and confidentiality for data providers. In addition, the extension provides

a secure distributed query processing engine for querying the virtual anonymized

data in a scalable and privacy-preserving way. Secure query operators are inte-

grated into the query processing engine, and the distributed anonymization and

secure query processing algorithms are enabled though a concept of a virtual group

of droplets.

The distributed anonymization algorithm allows multiple data providers with
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horizontally partitioned databases to build a virtual anonymized database based on

the integration (or union) of the data. As the output of the protocol, each database

produces a local anonymized dataset and their union forms a virtual database that

is guaranteed to be anonymous based on an anonymization principle. The proto-

col utilizes secure multi-party computation protocols for sub-operations such that

information disclosure between individual databases is minimal during the virtual

database construction. The protocol uses a new notion, l-site-diversity, to ensure

confidentiality for data providers in addition to the privacy of data subjects for

anonymized data.

Finally, we analyzed existing secure union protocols that can be a part of secure

query processing component. We presented a simple alternative yet effective proto-

col based on random shares approach. In contrast to traditional SMC protocols, the

new approach achieves sufficient (but not absolute) security for participating parties

at much lower cost for a practical usage. All the discussed secure union protocols

were implemented and experimentally evaluated with respect to their cost.

8.2 System Limitations

Although DObjects framework facilitates development of distributed applications,

it is not well suited for all types of applications or deployments. There is a large

body of works that can be used as an alternative. Such systems as legacy distributed

databases offer good option when one considers a simple data distribution and ho-

mogeneous backend databases. Later distributed systems (e.g., Garlic [12], DISCO

[75] or TSIMMIS [13]) target large-scale heterogeneous data sources and employ a

centralized mediator-wrapper based architecture. These options are good if the cen-
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tralized wrapper is not an issue. The Internet-scale query systems (HyperQueries

framework [47], PIER [32, 29]) provide alternative approaches to access distributed

data for systems where one needs to integrate data from very wide-scale heteroge-

neous datasources and where limited set of data operations and relaxed consistency

is acceptable. Finally, OGSA-DAI and its extension OGSA-DQP [6] can be used to

access data from separate sources in Grid systems. It is not the aim of DObjects to

surpass these works. DObjects can be used to integrate heterogeneous data sources

with both network and query load scalability without sacrificing query complexities

and transaction semantics. The system uses a novel distributed mediator-based ar-

chitecture in which a federation of mediators and wrappers forms a virtual system

in a P2P fashion. The optimal deployment of DObjects would be an enterprise-scale

application that requires P2P interactions between components and needs access to

heterogeneous data.

8.3 Future Work

DObjects provides a complete framework enabling access to distributed data. Al-

though all the components of the system are complete, there is a lot of room for

future research.

Further research in query execution component can follow in a few directions.

First, enhancements to the query migration scheme are possible. For instance,

one promising direction is consideration for data replication or larger number of

cost features. Another direction is an extension of the migration scheme to enable

dynamic migration of active operators in a real-time from one node to another if load

situation changes. This issue becomes important especially for larger queries which
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last longer time in the system. Finally, a potential research area is an improvement

of the fault tolerance design of the query processing. Currently, if a failure occurs

on a node involved in execution of a query, such a query is aborted and an error is

reported to the user. Extending this behavior with a possibility of failure detection

and allocation of a new node to continue execution of the operator that was allocated

to the failed node can increase system stability.

Extended DObjects architecture provides a few directions for possible future

research. There is a big potential in developing a protocol toolkit incorporating

more privacy principles and anonymization algorithms. In particular, dynamic or

serial releases of data with data updates are extremely relevant in the distributed

data integration setting. Such concepts as m-invariance [85] or l-scarsity [11] are

promising ideas. The distributed protocols for anonymization and secure union

discussed in this dissertation were based on a ring topology between nodes. Another

possible research direction is to evaluate usefulness of other topologies, such as trees.

Finally, integration of additional SMC and secure query processing protocols (e.g.,

secure join) also can be beneficial.
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