
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory
University, I hereby grant to Emory University and its agents the non-exclusive license to
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or
hereafter now, including display on the World Wide Web. I understand that I may select some
access restrictions as part of the online submission of this thesis. I retain all ownership rights to
the copyright of the thesis. I also retain the right to use in future works (such as articles or
books) all or part of this thesis.

Yu-Jan Ting April 6, 2022

Variance Reduction Methods for High-Dimensional Optimal Control Problems

by

Yu-Jan Ting

Lars Ruthotto
Adviser

Applied Mathematics & Statistics

Lars Ruthotto

Adviser

Yiran Wang

Committee Member

Jeremy Jacobson

Committee Member

2022

Variance Reduction Methods for High-Dimensional Optimal Control Problems

By

Yu-Jan Ting

Lars Ruthotto

Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Science with Honors

Applied Mathematics & Statistics

2022

Abstract

Variance Reduction Methods for High-Dimensional Optimal Control Problems
By Yu-Jan Ting

We evaluate three variance reduction methods for solving high-dimensional optimal control
problems: stochastic variance reduced gradient (SVRG), streaming stochastic variance reduced
gradient (SSVRG), and stochastic recursive gradient (SARAH) algorithms. SVRG has recently
been popular for finite-sum optimization; however, it is unclear whether SVRG can be applied
to high-dimensional optimal control problems in real-time settings. We modify SVRG to solve
the high-dimensional online optimization problem with an infinite dataset. SSVRG and SARAH
are two variants of SVRG. While SSVRG is another streaming version of SVRG, SARAH leverages
past stochastic gradient information to minimize variance. On several multi-agent collision
avoiding problems, we fine-tune and compare the performance of SVRG, SSVRG, and SARAH
with ADAM, a state-of-art algorithm. Our numerical experiments demonstrate the effectiveness
of variance reduction methods for non-convex, high-dimensional optimal control problems. In
particular, SARAH has the best performance in terms of convergence rate, sampling efficiency,
and solution optimality. However, compared with SARAH, SVRG and SSVRG are less stable and
relatively less adaptive to hyperparameter changes.

Variance Reduction Methods for High-Dimensional Optimal Control Problems

By

Yu-Jan Ting

Lars Ruthotto

Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Science with Honors

Applied Mathematics & Statistics

2022

Acknowledgements
I would like to express my heartfelt gratitude to Dr. Lars Ruthotto, my adviser, for his

invaluable support and intellectual guidance throughout the completion of this thesis. Dr.

Ruthotto introduced me to the fascinating field of high-dimensional optimization and op-

timal control, which has greatly influenced my academic path. He has been an excellent

supervisor, always providing me with insightful and constructive feedback and advice.

His enthusiasm for research and impressive work ethic have inspired others to follow

their ideas and dreams, encouraging me to expand my research interests.

I would also like to express my sincere gratitude to my committee members, Dr. Yiran

Wang and Dr. Jeremy Jacobson, for their insightful suggestions and valuable feedback.

Dr. Wang inspired me to become interested in mathematics, assisted me in developing a

solid mathematical reasoning skillset, and taught me mathematical deduction and proof

techniques. Dr. Jacobson encouraged me to explore fascinating research topics in machine

learning while also revealing the importance of cloud computing, which was crucial in my

model training process.

I sincerely thank my parents and friends who have supported my academic interest

and self-motivation throughout this journey with love, kindness, encouragement, and un-

derstanding.

Contents

1 Introduction

1.1 Motivation . 1

1.2 Contributions and Outline . 2

2 High-Dimensional Optimization 4

2.1 High-Dimensional Optimal Control . 5

2.1.1 Overview . 5

2.1.2 Optimal Control Problem . 6

2.1.3 Multi-Agent Control Problem 7

2.1.4 Main Formulation . 9

2.1.5 Numerical Implementation . 10

2.2 Numerical Optimization Algorithms . 11

2.2.1 Stochastic Gradient Descent (SGD) 11

2.2.2 Adaptive Learning Methods (ADAM) 11

2.2.3 Variance-Reduced Methods . 12

2.3 Online Optimization . 14

3 Variance Reduction Methods 15

3.1 Variance Reduction Basics . 15

3.2 Stochastic Variance Reduced Gradient (SVRG) 17

3.3 Streaming Stochastic Variance Reduced Gradient (SSVRG) 20

3.4 Stochastic Recursive Gradient Algorithm (SARAH) 21

3.5 Implementation . 23

4 Numerical Experiments 24

4.1 Experiment Set-Up . 25

4.2 HyperParameter Optimization . 27

4.3 Control Problems . 33

4.3.1 Corridor Experiment . 34

4.3.2 2-agent Swap Experiment . 36

4.3.3 12-agent Swap Experiment . 39

5 Discussion 42

6 Conclusion 46

List of Figures

4.1 Slice plot for 2-agent swap problem . 32

4.2 Hyperparameter importance for 12-Agent swap problem 32

4.3 Comparison of validated loss, running cost (L), and terminal cost (G) for

different algorithms in terms of the number of gradient counts and runtime

on the corridor problem . 34

4.4 Comparison of validated loss, running cost (L), and terminal cost (G) for

different algorithms in terms of the number of gradient counts and runtime

on the 2-agent swap problem . 37

4.5 Comparison of validated loss, running cost (L), and terminal cost (G) for

different algorithms regarding the number of gradient counts and runtime

on the 12-agent swap problem . 40

List of Tables

4.1 Best tuned hyperparameters for variance-reduced algorithms on different

optimal control problems. 33

4.2 Comparison of validated loss for different algorithms at different levels of

gradient counts (left) and runtime (right) on the corridor problem 35

4.3 Comparison of validated loss for different algorithms at different levels of

gradient counts (left) and runtime (right) on the 2-agent swap problem . . 38

4.4 Comparison of validated loss for different algorithms at different levels of

gradient counts (left) and runtime (right) on the 12-agent swap problem . 39

Chapter 1

Introduction

This chapter provides an overview of variance reduction methods and high-dimensional

optimal control problems. We examine the significance of variance reduction

methods by referring to previous studies where our study stems. After laying

out our major contribution, we outline the organization of the thesis.

1.1 Motivation 1

1.1 Motivation

This thesis is inspired and built upon the recent study [1], which formulates the

neural network framework for solving high-dimensional optimal control (OC)

problems. [1] investigates a series of multi-agent optimal control problems with

state-space dimensions ranging from 4 to 150. The authors employ a grid-free nu-

merical approach of parameterizing the value function with a neural network and a

hybrid system of the Pontryagin Maximum Principle (PMP) and Hamilton-Jacobi-

Bellman (HJB) methods to effectively mitigate the curse of dimensionality (CoD)

for high-dimensional optimal control problems. Due to the high-dimensionality

of this approach, an effective optimization algorithm that is both computationally

and memory efficient is needed to facilitate the demanding training process for

high-dimensional OC problems. The optimization problem in [1] is solved by the

ADAM algorithm [2]. While this algorithm is computationally efficient, it can be

relatively slow to converge and requires many samples. This thesis proposes to

use variance reduction (VR) methods to train the same neural networks on high-

dimensional optimal control problems, allowing for higher sampling efficiency

with comparable or faster convergence rates than ADAM. We investigate the fol-

lowing variance reduction methods: stochastic variance reduced gradient (SVRG)

[3], steaming stochastic variance reduced gradient (SSVRG) [4], and stochastic

recursive gradient algorithm (SARAH) [5].

1.2 Contributions and Outline 2

1.2 Contributions and Outline

We modify the SVRG algorithm, which is designed for finite-sum minimization

problems, to solve the online optimization problem with an infinite dataset. We

also extend SARAH to its streaming version by applying the recursive update rule

to SSVRG. We implement three variance reduction optimizers (SVRG, SSVRG,

and SARAH) in PyTorch and use them for training various high-dimensional OC

problems given in [1]. We fine-tune hyperparameters for each variance reduction

algorithm on every high-dimensional problem. Then, we conduct numerical ex-

periments to compare the performance of our VR methods with ADAM, a state-of-

the-art optimizer, in terms of the gradient-based computational cost and running

time. Our numerical investigations demonstrate that variance reduction methods,

in general, are effective in optimizing non-convex, high-dimensional multi-agent

optimal control problems. We show that SARAH outperforms all other algorithms

in sampling efficiency, convergence rate, and solution optimality. As the dimen-

sionality of an optimization problem increases, the benefits of SARAH become

more apparent. SVRG and SSVRG are also effective, but they are not as robust as

SARAH, yielding more inconsistent results and requiring more hyperparameter

tuning.

This thesis is outlined as follows. Chapter 2 discusses high-dimensional opti-

mal control problems and gives the main mathematical formulation of our stochas-

tic optimization problem. Then, we briefly summarize related optimization al-

gorithms and introduce the variance reduction methods. Chapter 3 describes

1.2 Contributions and Outline 3

SVRG, SSVRG, and SARAH algorithms in detail and analyzes their convergence

rates. Chapter 4 conducts numerical experiments to optimize three specific high-

dimensional OC problems using SVRG, SSVRG, and SARAH algorithms. We

compare the performance of VR methods with the ADAM algorithm. Chapter 5

summarizes and interprets numerical results and discusses the limitations as well

as future works. Finally, Chapter 6 draws our conclusions.

4

Chapter 2

High-Dimensional Optimization

Recently, high-dimensional optimization problems have received more attention

due to their wide applications in real life. As a result, many numerical approaches

have been developed for solving large-scale, high-dimensional optimal control

problems. We first discuss the main mathematical formulation for our stochastic

optimization problem with multi-agent collision avoiding systems. Then, we ex-

amine some recent optimization algorithms, which include stochastic gradient de-

scent (SGD), adaptive moment estimation (ADAM), and variance reduction (VR)

methods.

2.1 High-Dimensional Optimal Control 5

2.1 High-Dimensional Optimal Control

2.1.1 Overview

Due to its wide range of applications in real-world problems, the optimal control

problem has been extensively researched in many fields, such as finance, engi-

neering, physics, and mathematics. In this thesis, we are interested in non-convex,

high-dimensional optimal control problems on an infinite dataset. While solving

high-dimensional optimal control problems helps in decision-making for compli-

cated dynamic systems, their computational complexity is significantly expensive

due to the high dimensionality.

Recently, [1] proposes a grid-free numerical approach for solving high-dimensional

optimal control problems. This approach combines the Pontryagin Maximum

Principle (PMP) and Hamilton-Jacobi-Bellman (HJB) methods, parametrizing the

value function with a neural network (NN). By incorporating the high-dimensional

scalability from PMP and the global scope from HJB, this NN approach effec-

tively reduces the curse of dimensionality (CoD) in the high-dimensional opti-

mization problem. While this approach is effective, the training process of neural

networks is costly in terms of computational cost and runtime. It also necessi-

tates a significant number of samples to improve the generalizability of the ap-

proach. The need for large amounts of data exacerbates the difficulty of training.

To improve training efficiency, we propose to use variance reduction methods for

training neural networks on high-dimensional OC problems. We use the same op-

timization framework as [1], including the same problem formulation, data simu-

2.1 High-Dimensional Optimal Control 6

lation, and the identical NN model.

2.1.2 Optimal Control Problem

We first consider a deterministic optimal control problem over a fixed time horizon

[0, T]. According to [1], the system’s dynamics can be formulated as

∂szt,x(s) = g (s, zt,x(s),ut,x(s)) , zt,x(t) = x for t ≤ s ≤ T. (2.1)

Here, the initial state of the system at time t ∈ [0, T] is denoted as x ∈ Rd.

zt,x(s) ∈ Rd is the state of the system at time s ∈ [t, T] with initial data (t,x), and

ut,x(s) ∈ U ⊂ Ra is the control applied at time s. The function g : [0, T]× Rd ×

U → Rd models the change in state zt,x : [t, T] → Rd as a result of the control

ut,x : [t, T]→ U .

Assume that the control ut,x : [t, T]→ U and the trajectory zt,x : [t, T]→ Rd

satisfying (2.1) yield a cost C (zt,x,ut,x), our goal is to find an optimal control

u∗
t,x that minimizes the cost C (zt,x,ut,x), i.e, find u∗

t,x such that

Φ(t,x) := C
(
z∗t,x,u

∗
t,x

)
= inf

ut,x

C (zt,x,ut,x) , (2.2)

where Φ is the value function, and u∗
t,x is an optimal control with the corre-

sponding optimal trajectory z∗t,x.

2.1 High-Dimensional Optimal Control 7

Additionally, the Hamiltonian of the system is defined by

H(t, z,p) = sup
u∈U
{−p · g(t, z,u)− L(t, z,u)}

= sup
u∈U
H(t, z,p,u),

(2.3)

where p ∈ Rd is the adjoint state. The Hamiltonian is critical to the main formu-

lation that will be discussed in 2.1.4.

2.1.3 Multi-Agent Control Problem

The multi-agent collision-avoidance problem is representative of high-dimensional

OC problems whose dimensionality grows as the number of agents increases. Ac-

cording to [1], we extend the general mathematical OC framework described in

2.1.2 to multi-agent control problems. In a dynamic system of n agents, the initial

joint-state of the system can be expressed as

x =
(
x(1), x(2), . . . , x(n)

)
∈ Rd, (2.4)

where x(i) ∈ Rq is the initial state of the i th agent, and the dimension of the

initial joint-state is d = q · n. Similarly, the joint-state at time s of the system can

be represented as

zt,x(s) =
(
z
(1)
t,x(s), z

(2)
t,x(s), . . . , z

(n)
t,x (s)

)
. (2.5)

2.1 High-Dimensional Optimal Control 8

The control of the system can be denoted as

ut,x(s) =
(
u
(1)
t,x(s), u

(2)
t,x(s), . . . , u

(n)
t,x(s)

)
. (2.6)

Given the system’s dynamics (2.1), the objective function for multi-agent collision-

avoidance problems is defined as

C (zt,x,ut,x) :=

∫ T

t

L (s, zt,x(s),ut,x(s)) ds+G (zt,x(T)) , (2.7)

where G : Rd → R is the terminal cost, and L : [0, T] × Rd × U → R is

the running cost or the Lagrangian. The terminal cost G measures the distance

between the agents’ final positions zt,x and their target states y ∈ Rd, i.e,

G (zt,x(T)) =
α1

2
∥zt,x(T)− y∥2 . (2.8)

The running cost L is defined as

L(s, z,u) = E(u) + α2Q(z) + α3W (z). (2.9)

Here, E is the energy term that measures how far the agents move along

the trajectories. Q is the terrain function that models obstacles, such as smooth

hills, by agents’ spatial preferences. W models interactions among the individ-

ual agents to avoid collisions. α1, α2, α3 in (2.8) and (2.9) are scalar parameters

inherent to different types of OC problems.

2.1 High-Dimensional Optimal Control 9

2.1.4 Main Formulation

Given the system dynamics defined in 2.1.2 and the multi-agent framework in

2.1.3, [1] blends the Pontryagin Maximum Principle (PMP) with Hamilton-Jacobi-

Bellman (HJB) methods, parametrizing the value function with a Neural Network

(NN), which gives the main formulation of our optimization problem. In this

thesis, we study the following stochastic optimization problem.

min
w

f(w), (2.10)

where
f(w)

def
= Ex∼ρ {ℓx(T) +G (z0,x(T)) + β1cHJt,x(T)

+β2cHJfin,x + β3cHJgrad,x}
(2.11)

subject to

∂s


z0,x(s)

ℓx(s)

cHJt,x(s)

 =


−∇pH (s, z0,x(s),∇zΦ (s, z0,x(s);w))

Lx(s)

PHJt,x(s)

 . (2.12)

Our goal is to minimize the non-convex loss function f(w) (2.11) subject to

constraints (2.12) for initial states x independently sampled from the distribu-

tion with density ρ. Note that our stochastic optimization problem has an infinite

dataset. Here, w is the NN parameter that holds the trainable weights used to

approximate the value function Φ.

2.1 High-Dimensional Optimal Control 10

In the objective function (2.11), ℓ accumulates the Lagrangian cost, also called

the running cost (L) given in (2.9), along the trajectories. Note that ℓx(0) = 0.

G is the terminal cost defined in (2.8). Terms cHJt,x, cHJfin,x, cHJgrad,x, aim to

penalize violations of the HJB equations. Note that cHJt,x(0) = 0 and s ∈ [0, T].

β1, β2, β3 > 0 are scalar weights for penalty terms and unchanged for different

OC problems. In constraints (2.12), H is the Hamiltonian of the system given in

(2.3). PHJt,x is also a penalty term that penalizes violations of the HJB equations,

and it is accumulated along the trajectories.

2.1.5 Numerical Implementation

We use the same implementation framework as [1] to formulate our main stochas-

tic optimization problem given in 2.1.4. We first discrete the optimization prob-

lem using a Runge-Kutta 4 integrator, which helps eliminate the constraints (2.12)

and compute the objective function (2.11). Then, we employ the backpropagation

(BP) to compute the gradients of the objective function (2.11) with respect to the

weights of neural network parameters w. In this thesis, we use variance reduc-

tion methods to update the NN parameters w and optimize the loss function. In

Chapter 3, we go through the variance-reduced algorithms used in our numerical

experiments in detail.

2.2 Numerical Optimization Algorithms 11

2.2 Numerical Optimization Algorithms

2.2.1 Stochastic Gradient Descent (SGD)

The classic gradient descent algorithms have been widely used in solving convex

OC problems, and stochastic gradient descent (SGD) is one of the most prevailing

methods. SGD iteratively acquires the gradient of the objective function at a ran-

domly chosen data point and updates the parameters until converging. Compared

with the gradient descent (GD) method, SGD has lower computational complex-

ity and performs better in practice. However, SGD has a high variance due to

the noise introduced by random sampling of individual data points. Therefore,

the convergence of SDG is slow and unstable [6]. Moreover, SGD is likely to

be trapped by saddle points in the objective function, thus failing to guarantee

the global convergence of optimization [6]. The step decay in learning rate helps

SGD to perform better in complicated OC problems. When we slowly decrease

the learning rate of SGD, SGD may achieve the same convergence rate as the

batch gradient descent.

2.2.2 Adaptive Learning Methods (ADAM)

ADAM [2], as one of the adaptive learning-method algorithms, is generally the

state-of-the-art algorithm for solving high-dimensional optimization problems.

ADAM leverages the exponential moving average of the gradient as well as the

squared gradient to accelerate the convergence rate and adjust the learning rate

2.2 Numerical Optimization Algorithms 12

during the optimization [6]. Therefore, ADAM is an efficient approach with

strong robustness and a satisfactory convergence rate. Our stochastic optimiza-

tion problem, given by (2.11) and (2.12), is solved initially using ADAM in [1].

Although this approach is usually effective, it has several drawbacks when ad-

dressing our stochastic optimization problem. For example, ADAM requires too

many samples to converge, particularly as the problem dimension grows. When

problem dimension d is exceptionally high, we need more samples to capture the

patterns behind the noisy non-convex objective function (2.11) to attain optimal-

ity. Moreover, to promote the model’s generalizability and ensure the robustness

of the NN approach, a large number of samples are required. Accordingly, finding

a sampling-efficient algorithm is critical for training our stochastic optimization

problem.

2.2.3 Variance-Reduced Methods

Variance-reduced methods have been developed to overcome certain limitations

of SGD and ADAM when solving the high-dimensional optimal control problem.

For example, SGD does not converge on its own with a constant stepsize and

may fluctuate around the solution without converging to the optimum [7]. The

core idea of variance reduction (VR) methods is to shift each gradient by some

approximations of the stochastic gradient at the optimal point [7]. This way, VR

methods update an estimate of the full gradient and overcome the not-converge

nature of stochastic gradients, and naturally terminate when they reach the opti-

mum. Furthermore, for adaptive learning-method algorithms such as ADAM, the

2.2 Numerical Optimization Algorithms 13

moving average of the gradient and the squared gradient give greater importance

to recently sampled gradients. Hence, the weighted sum fails to converge to the

full gradient [7]. In this regard, VR methods provide a more precise gradient es-

timation by using the plain average and are more likely to converge than ADAM

[7].

The stochastic average gradient (SAG) [8] is one of the first variance reduction

techniques that achieve linear convergence under smoothness, strong convexity

conditions [7]. However, SAG has a hefty memory requirement because it keeps

track of the gradient for every data, which is infeasible as state-space dimensional-

ity grows large. SAGA [9] improves on SAG by eliminating a bias in each update

and reduces the variance using covariates [7]. The stochastic variance-reduced

gradient (SVRG) [3] is one of the most well-known and widely used variance re-

duction methods. We are interested in SVRG, its streaming variant SSVRG [4],

and its recursive variant SARAH [5]. SVRG overcomes the high memory needs of

SAG and SAGA while maintaining the same linear convergence rate on strongly

convex and smooth objective functions [7]. As a result, SVRG and its variants are

better suited for high-dimensional applications than other VR methods because of

their lower memory requirements. While our learning problem generally is non-

convex, we may relax the assumptions and generalize SVRG to problems that are

not necessarily perfectly convex and smooth.

2.3 Online Optimization 14

2.3 Online Optimization

So far, we have focused on finite-sum minimization problems. In other words, we

have discussed the offline learning problem, which requires a finite dataset before-

hand. Unlike offline optimization, the online optimization problem has an infinite

dataset. Even though we observe some distribution information, such as the distri-

bution density, we still do not have an expression for the distribution. In this the-

sis, we are more interested in online optimization, where we initialize the dynamic

system with particular initial states and optimize the parameters based on stream-

ing samples. The stochastic optimization problem given by (2.11) and (2.12) is

an online problem, and we keep resampling data from the distribution. However,

SAG and SAGA are unsuitable for online optimization since their high mem-

ory demand is impossible to fulfill with an infinite dataset. SVRG is adapted to

its online variant streaming stochastic variance-reduced gradient (SSVRG), over-

coming the difficulty of sampling from an infinite dataset. SSVRG is an algorithm

for handling streaming data arrivals and processing them in a single pass-through.

The Monte Carlo method is used to estimate the control state more accurately with

each pass of the sampling data, as we keep drawing samples from the distribution.

Therefore, we want more sampling-efficient algorithms to give better performance

in optimization.

15

Chapter 3

Variance Reduction Methods

This chapter goes through the fundamental ideas of variance-reduced optimization

algorithms. Then, we discuss SVRG, SSVRG, and SARAH algorithms in detail.

We explain how they work, their update procedures, and provide a code imple-

mentation framework for these VR techniques. In the next chapter, we compare

the performance of these optimizers with our baseline model ADAM in solving

three different high-dimensional optimal control problems.

3.1 Variance Reduction Basics

As stated in 2.2, SGD is difficult to converge with a constant stepsize because

stochastic gradients, either single gradients or batch gradients, will not converge

towards zero as the full gradient (GD) method does when reaching the optimum.

In other words, variance inherent in full gradient estimation eventually prevents

3.1 Variance Reduction Basics 16

SGD from further converging. Variance reduction (VR) methods seek to eliminate

the noise and make the convergence faster theoretically. Instead of using stochas-

tic gradients to approximate the full gradient as SGD does directly, VR methods

collect information from stochastic gradients and use it to update the full gradient

estimate [7]. Consider the objective function f given in (2.11) for our stochastic

optimization problem, we denote the full gradient as∇f (wk), the stochastic gra-

dient on data point i at parameter wk as ∇fi (wk), and the full gradient estimate

as gk ∈ Rd. Here, k represents the kth update of the parameter w, and i stands

for the ith data point used for computing the gradient. Then, in k + 1th iteration,

parameters w can be updated with learning rate η as

wk+1 = wk − ηgk, (3.1)

The full gradient estimate gk is derived from shifting the stochastic gradients

at the kth stage fi (wk) by the stochastic gradient at the terminal stage ∇fi (w⋆)

when reaching the optimum point w⋆ [7], i.e,

gk = fi (wk)−∇fi (w⋆) . (3.2)

We can think of the shifted term ∇fi (w⋆) as a bias correction term that re-

duces the bias in the stochastic gradient fi (wk) in each iteration, allowing gk

to converge to an unbiased estimate of the full gradient ∇f (wk) [10]. How-

ever, it is unlikely that we know ∇fi (w⋆) beforehand. Instead of computing the

true∇fi (w⋆), VR methods approximate it using some gradient aggregation tech-

3.2 Stochastic Variance Reduced Gradient (SVRG) 17

niques [10, 7]. These techniques include incorporating the weighted past gradient

information into the current gradient to update the full gradient estimate [10].

This is the core idea behind VR methods, and different VR methods approximate

∇fi (w⋆) (and therefore gk) differently. We will see how this works in the next

section by approximating the bias correction term ∇fi (w⋆) and full gradient es-

timate gk in SVRG, SSVRG, and SARAH.

3.2 Stochastic Variance Reduced Gradient (SVRG)

The stochastic variance reduced gradient (SVRG) algorithm [3], as outlined in

Algorithm 1, employs a nested loop to approximate the bias correction term

∇fi (w⋆), which is defined in (3.2). The original SVRG only works for offline

learning problems with a finite dataset. We modify this method in this thesis to

solve the online high-dimensional optimal control problem over an infinite dataset.

For each outer loop, representing stage s, the original SVRG [3] computes

the full gradient for the optimization parameters w over the entire dataset. How-

ever, since our stochastic optimization problem has an infinite dataset, we mod-

ify SVRG in Algorithm 1 to compute the average gradient for a batch B̃ =

{x̃1, x̃2, . . . , x̃bs} drawn from the distribution ρ, i.e, ∇fB̃ (w̃s). The initial point

w0 for the inner loop is initialized as w̃s. In each inner loop iteration, represent-

ing stage t, SVRG samples a mini-batch B = {x1, x2, . . . , xbs1} from the batch B̃

drawn from the outer loop. Then, we have the following update rule

3.2 Stochastic Variance Reduced Gradient (SVRG) 18

Algorithm 1: Stochastic Variance Reduced Gradient (SVRG) [3]

Input Initial point w̃0, outer-loop batch sizes bs, update frequency m,
learning rate η, inner-loop batch size bs1

for each stage s = 0, 1, 2 . . . do
Sample B̃ = {x̃1, x̃2, . . . , x̃bs} of size bs from ρ, then compute and
store

∇fB̃ (w̃s)
w0 ← w̃s

for t = 0, 1, 2 . . . ,m− 1 do
Sample B = {x1, x2, . . . , xbs1} of size bs1 from B̃ and set
gt ← ∇fB(wt)− (∇fB(w̃s)−∇fB̃ (w̃s))
wt+1 ← wt − ηgt

end
w̃s+1 ← wm

end

gt ← ∇fB(wt)− (∇fB(w̃s)−∇fB̃ (w̃s)) . (3.3)

Here, gt is the gradient estimate given in (3.2), and the bias approximation

term in this case is

∇fi (w⋆) ≈ ∇fB(w̃s)−∇fB̃ (w̃s) . (3.4)

In (3.3), the first term, ∇fB(wt), is the stochastic gradient on batch B at w

in inner-loop stage t; the second term, ∇fB(w̃s), is the stochastic gradient on the

same batch B at w̃ in outer-loop stage s; and the third term, ∇fB̃ (w̃s), is the av-

erage gradient computed in the outer-loop stage s. ∇fB̃ (w̃s) is indeed the expec-

tation of∇fB(w̃s), and∇fB(w̃s)−∇fB̃ (w̃s) is the bias of∇fB(w̃s). Therefore,

3.2 Stochastic Variance Reduced Gradient (SVRG) 19

we may use this bias stated in (3.4) to approximate the bias of∇fB(wt). Accord-

ingly, the variance in the gradient estimate gt is reduced every time ∇fB(wt) is

corrected by the past gradient information and the approximated bias [10]. Then,

the neural network parameter w is updated as

wt+1 ← wt − ηgt. (3.5)

As the inner loop terminates, parameters tracked in the outer loop w̃s+1 are

assigned by the value of wm, and the outer loop continues. The process is repeated

until the loss function no longer decreases.

Convergence

With a finite dataset, SVRG converges linearly under smoothness and strong con-

vexity assumptions for the objective function [3]. When compared to SGD, which

has a sub-linear convergence rate with a decaying learning rate, VR methods con-

verge faster under the same assumptions because the learning rate may stay rather

large without decaying as the inherent variance is reduced during the optimization

[3].

The SVRG method can solve non-convex problems and is a broad technique

for high-dimensional optimization problems with a complex (usually non-convex)

loss function. SVRG can be applied to non-convex problems immediately after

the SDG method runs certain epochs and approaches to the optimum. As a result,

SVRG can accelerate the convergence obtained by SGD [3].

3.3 Streaming Stochastic Variance Reduced Gradient (SSVRG) 20

Furthermore, in non-convex settings, the convergence of SVRG is demon-

strated to be faster than SGD [11]. [11] also emphasizes the effectiveness of

mini-batching in non-convex settings. Mini-batching improves the performance

of SVRG in minimizing non-convex loss functions while also increasing the par-

allelism rate to speed up the training time.

3.3 Streaming Stochastic Variance Reduced Gradi-

ent (SSVRG)

The streaming stochastic variance reduced gradient (SSVRG) algorithm [4], de-

scribed in Algorithm 2, is a streaming variant of SVRG that addresses the online

optimization problem with an infinite dataset. The intuition and broad algorith-

mic framework of SSVRG are similar to those of SVRG. However, two major

differences are occurring within the inner loop:

1). Instead of sampling from B̃, SSVRG samples directly from ρ in each inner

loop.

2). Rather than using the fixed update frequency m, SSVRG begins the inner

loop by uniformly selecting the batch size m̃ from {1, 2, . . . ,m}.

Convergence

SSVRG may produce linear or super-polynomial convergence results, depending

on assumptions for strong convexity, smoothness, and self-concordance. How-

3.4 Stochastic Recursive Gradient Algorithm (SARAH) 21

Algorithm 2: Streaming Stochastic Variance Reduced Gradient
(SSVRG) [4]

Input Initial point w̃0, outer-loop batch size bs, update frequency m,
learning rate η, inner-loop batch size bs1

for each stage s = 0, 1, 2 . . . do
Sample B̃ = {x̃1, x̃2, . . . , x̃bs} of size bs from ρ and compute the
estimate

∇fB̃ (w̃s)
w0 ← w̃s

Sample m̃ uniformly at random from {1, 2, . . . ,m}.
for t = 0, 1, 2 . . . , m̃− 1 do

Sample B = {x1, x2, . . . , xbs1} of size bs1 from ρ and set
gt ← ∇fB(wt)− (∇fB(w̃s)−∇fB̃ (w̃s))
wt+1 ← wt − ηgt

end
w̃s+1 ← wm̃

end

ever, these convergence results are not guaranteed in our completely non-convex

optimization scenario. Similar strategies in Section 3.2 that have been adapted for

SVRG to alleviate the non-convexity may also be beneficial to SSVRG in order

to minimize the non-convex loss function. Similar to SVRG, SSVRG algorithm

is efficient in storage with space complexity linear to the sample size [4].

3.4 Stochastic Recursive Gradient Algorithm (SARAH)

More recently, [5] proposes a variant of SVRG, the stochastic recursive gradient

algorithm (SARAH), to address the non-convex optimization problem effectively

by using the recursive update of the stochastic gradient estimate. The update rule

3.4 Stochastic Recursive Gradient Algorithm (SARAH) 22

for SVRG given in (3.3) is modified as the following recursive version [5]

gt ← ∇fB(wt)−∇fB(w̃s) + gt−1. (3.6)

Here, the gradient estimate gt is updated recursively with its previous value

gt−1 instead of the fixed average gradient g0 = ∇fB̃ (w̃s).

The SARAH algorithm proposed by [5] is used for solving the offline finite-

sum minimization problems. In this thesis, we are interested in the streaming

version of SARAH to solve problems with an infinite dataset. Therefore, we

modify SSVRG by replacing its update rule with the recursive update rule pre-

sented in (3.6). We use the resulting streaming SARAH algorithm to solve the

high-dimensional optimal control problems over an infinite dataset.

Convergence

Similar to SVRG and SSVRG, SARAH achieves a linear convergence rate under

the strong convexity assumption [5]. Additionally, SARAH converges linearly for

inner loops under strong convexity, while SVRG only converges linearly for outer

loops [5]. In other words, SARAH generates more stable and robust convergence

patterns during the training. For non-convex problems, SARAH attains a sublunar

convergence rate [5]. The streaming variant of SARAH, which we use in our nu-

merical experiments for solving optimal control problems with an infinite dataset,

exhibits similar convergence properties.

3.5 Implementation 23

3.5 Implementation

We implement the SVRG, SSVRG, and SARAH optimizers in PyTorch. Py-

Torch provides us torch.optim.Optimizer, which handles all general optimiza-

tion machinery and is the base class for all optimizers in PyTorch. To imple-

ment these optimizers, we inherit and modify two methods init () and step()

in torch.optim.Optimizer. In addition to default parameters given by the base

class, we add extra hyperparameter fields called mean and new param groups in

init (). We add hidden functions get param groups(), get mean(), set mean(),

set grad(), and set mean grad() to calculate the gradient terms∇fB (wt),∇fB (w̃s),

and ∇fB̃ (w̃s) for update rules given in (3.3) and (3.6). We override the step()

method to perform the parameter update once we calculate all required gradient

terms. For higher efficiency, we optimize VR optimizers by using Pytorch Tensor

operations to do gradient-based computations.

For each VR algorithm, we write the driver functions train() and validate() to

fulfill the training and validation procedures. The implementation of the optimiz-

ers follows the standards of PyTorch and includes basic exception handling.

24

Chapter 4

Numerical Experiments

This section demonstrates the potential of variance-reduced algorithms (SVRG,

SSVRG, and SARAH) for training the two-layer residual neural network (ResNet).

We prepare several high-dimensional optimal control problems to compare the ef-

fectiveness of VR methods and the baseline algorithm ADAM in terms of the

sampling efficiency and convergence rate. These high-dimensional multi-agent

collision-avoiding systems include the corridor problem, 2-agent swap problem,

and 12-agent swap problem.

Experiments show that VR methods are efficient when solving non-convex,

high-dimensional optimal control problems, with SARAH having the best perfor-

mance regarding sampling efficiency, solution optimality, and runtime.

4.1 Experiment Set-Up 25

4.1 Experiment Set-Up

Data

Our input data are initial points drawn from the distribution with density ρ. For

each problem, we first initialize the initial joint-state x0 and the respective target

joint-state y with pre-defined values. Then, we form the training set X by ran-

domly sampling initial points from the Gaussian distribution, which is centered

at x0 with an identity covariance [1]. This training set X helps to promote the

model generalizability. We independently sample one batch of initial states from

the distribution and train the NN on that batch for each outer or inner loop iter-

ation. We resample a new batch for the next iteration and continue the process

described in algorithms given in Chapter 3.

Evaluation Metrics

We use the validated loss value f(w) given in (2.11) as an evaluation criterion

for NN training. We assume the training converges when the change over the

validation loss value is less than a pre-defined threshold δ. Besides the validated

loss, we also look at the validated L value, running cost over the trajectory, and

the validated G value, terminal cost that measures how far the final state is from

the goal. Analyzing the L and G helps us validate the benefits of VR methods

more directly. A lower L value indicates a shorter trajectory with fewer collisions

to the other agents or the hills. A lower G value indicates that the final state is

4.1 Experiment Set-Up 26

closer to the goal, leading to a shorter trajectory.

We measure the validated loss, L, and G in terms of the number of gradient

counts and runtime for VR methods (SVRG, SSVRG, and SARAH) and the base-

line algorithm ADAM. Typically, the number of epochs or iterations is frequently

used to assess the effectiveness of optimization algorithms. However, since we

are dealing with the online learning problem, the notion of the epoch is infeasi-

ble in our case. Moreover, because we are using several mini-batching strategies

within complicated nested loops, the number of iterations would not be compa-

rable across different algorithms. Alternatively, gradient counts are accumulated

during the training, and thus the number of gradient counts can be considered a

fair indicator to measure the effectiveness. The number of gradient counts reflects

the number of times the gradient is computed as parameter updating proceeds.

More importantly, gradient computation may be the most intensive operation dur-

ing optimization [3]. Therefore, the number of gradient counts is a meaningful

indicator of the computational cost, unaffected by the training environment and

other system variables. The running time, also called runtime, measures the time

elapsed from the beginning to the current training time. It is the most immediate

measure of how long a method takes to converge.

Training Environment

We perform the experiment on a Macbook running MacOS 10.15.4 with a 2.3 GHz

CPU and 16 GB of RAM for training and validation. In addition, to facilitate and

speed up the training process, we fine-tune some hyperparameters in Colab.

4.2 HyperParameter Optimization 27

Logging and Visualization

To tune the hyperparameters and store the configuration as well as training results,

we use Python package Wandb, which is an online dashboard that keeps track

and visualizes all results. Wandb provides an easy way to understand our data

distribution, save the model configuration, and visualize training performance. We

generate reports on experiments and plot interactive graphs using specific trails to

analyze training performance throughout the experiments.

4.2 HyperParameter Optimization

Optuna

We use the Optuna library [12] to fine-tune hyperparameters. The Optuna li-

brary [12] is a powerful optimization toolkit followed the define-by-run princi-

ple for Bayesian optimization and black-box optimization. It can handle high-

dimensional problems and has rich features, such as automatic model selection

and parallel search. Optuna offers a state-of-the-art hyperparameter sampling

method and efficiently prunes unpromising trials. We employ it to locate the fea-

sible range of optimal hyperparameters within which we fine-tune the hyperpa-

rameters manually.

Tuning Methods

There are two stages in the tuning process:

4.2 HyperParameter Optimization 28

Phase 1: Locate the feasible range of hyperparameters for the model. We em-

ploy the Optuna package to explore the parameter space automatically. Each trial

runs for about 15 minutes. The time duration of 15 minutes may not be enough for

complete training, but it is more than enough to observe the performance of the

optimization algorithms. For example, for the corridor and 2-agent swap prob-

lems, the loss value drops dramatically in the first 200 seconds, while the loss

value drops dramatically in the first 500 seconds for a 12-agent swap problem.

The remaining duration is enough for observing the convergence trends.

Phase 2 We manually fine-tune hyperparameters within the range found in

phase 1 to get the most optimal hyperparameters. In this stage, we run each trial

for a longer duration until the model converges.

HyperParameters

Our experiments only consider and tune hyperparameters associated with our op-

timization algorithms (SVRG, SSVRG, and SARAH). Hyperparameters inherent

to the NN model are not tuned in our case. Instead, we use default settings for

these hyperparameters given in [1]. The following are the hyperparameters we

consider for tuning:

Learning rate (lr): We tune the learning rate (denoted as η in Algorithm 1,

2) because it can significantly affect the convergence of optimization algorithms.

A too-large learning rate might cause the algorithm to diverge, while a too-small

learning rate will slow the training process. We search learning rate in the range

of [1e−1, 1e−2, . . . , 1e−7].

4.2 HyperParameter Optimization 29

Batch size: We also tune the batch size because it can affect both the training

time and the accuracy of models. Larger batch size will lead to faster training but

might not lead to better results, while a smaller batch size will take more time to

train but might lead to better results. We will tune two batch size parameters:

• batch size: Outer-loop batch size (denoted as bs in Algorithm 1, 2),

• mini bs: Inner-loop batch size (denoted as bs1 in Algorithm 1, 2).

Both parameters are sampled from the range of [21, 22, . . . , 211, 212]. We nor-

mally choose values of batch size in factor of 2 due to the efficiency of matrix-

matrix multiplications and parallelisms [13].

Update frequency (m1): We also tune the update frequency, which deter-

mines how often the model parameters are updated during training. A higher

value for m will cause the model to be updated more frequently, but this might

not always lead to better results. Note that this hyperparameter is only used by

SSVRG and SARAH algorithms but not SVRG. We search update frequency m1

in the range of [21, 22, . . . , 211, 212].

Learning rate decreasing frequency (lr freq): Another hyperparameter we

consider is the learning rate decreasing frequency. This parameter determines

how often the learning rate is reduced during training. Reducing the learning rate

can help the model converge faster and lead to better results. We search lr freq

uniformly in the range of [30, 200].

4.2 HyperParameter Optimization 30

Tuning Process

In phase 1, we use package Optuna to perform the automatic tuning, and we cre-

ate a database to store the tuning results. Each row in our database corresponds to

one trial, consisting of hyperparameters and corresponding performance metrics

such as loss value and training time. To ensure the efficiency of the searching, we

set a pruner to early stop the unnecessary trials. We apply the following stopping

rules:

• If the current trial has run for more than 15 minutes, we stop the training.

We choose this value because it is long enough to observe the performance

trends of algorithms in terms of loss value and training time.

• If the trial’s best intermediate result is worse than the median of intermediate

results of previous trials at the same step, we prune the trial. We disabled

the pruning until the first 5 trials are finished.

• If the validation loss value becomes nan, we stop the trial.

After long trial-and-error training, we retrieve the searching results from the database

to prepare for fine-tuning in Phase 2. We first draw the slice plot Figure 4.1, which

shows the correlation between the loss value and different hyperparameters. Based

on the plot, we have several observations.

First, most low loss values appear around the batch size of 128 or 512. [13]

suggests that the utility curve of choosing the batch size is a U shape. A trade-off

of choosing batch sizes exists: a larger batch size means we can take advantage of

4.2 HyperParameter Optimization 31

efficient matrix multiplication or parallelism to make computation faster, while a

smaller batch size means more numbers of updating per computation. Therefore,

we decide to manually search the optimal batch size in the range of [128, 512] to

maximize the utilization.

Second, we can see that lr freq is not a deterministic hyperparameter that

affects the loss value, while lr is relatively deterministic. A good guess about

learning rate and frequency is 0.001 and 180, respectively. A good strategy pro-

posed by [13] is that if the initial learning rate diverges, we should try with a new

learning rate three times smaller than the old learning rate until no divergence is

observed.

Third, the values of m1 are scattered around 128, 512, and 1024. Note that m1

determines the number of iterations; thus, the parameters will be more accurate if

the parameters have been updated more frequently with larger m1. However, each

iteration comes at the cost of increasing gradient computation. Therefore we start

with a smaller value of m1 (e.g., 128) and gradually increase m1 if the models do

not converge.

We also run ANOVA tests to examine the importance of hyperparameters on

loss value (Fig 4.2a) and the training duration (Fig 4.2b). First, the right choice of

lr produces good loss values because lr controls how much we direct along the

gradients in each step. The second important is m1, which is intrinsically deter-

ministic. Thus, m1 is the hyperparameter we need to tune carefully. Finally, it can

be seen from Figure 4.2 (b) that mini bs is the most crucial factor determining

the duration. The larger mini bs, the more iterations the algorithm takes.

4.2 HyperParameter Optimization 32

Figure 4.1: Correlations between hyperparameters and validated loss values for the 2-
agent swap problem. We can see that lr freq and batch size are less deterministic to the
loss value, while lr, m1, and mini bs are relatively deterministic.

(a) Importance for Objective Value (b) Importance for duration

Figure 4.2: Hyperparameter importance by running ANOVA tests between hyperparam-
eters and loss value (left) or runtime (right) for the 12-agent swap problem.

Tuning Results

The best sets of hyperparameters for each VR algorithm on each optimal control

problem are selected based on the lowest validation loss. The results are summa-

4.3 Control Problems 33

rized in Table 4.1.

lr batch size mini bs m1 lr freq
Corridor

SVRG 0.001 1024 32 - 45
SSVRG 0.001 128 32 64 70
SARAH 0.01 128 32 128 80

2-Agent Swap
SVRG 0.001 128 32 - 180

SSVRG 0.001 128 32 128 180
SARAH 0.001 128 32 128 180

12-Agent Swap
SVRG 0.00001 256 4 - 180

SSVRG 0.001 256 32 128 180
SARAH 0.00001 256 4 1024 180

Table 4.1: Best tuned hyperparameters for variance-reduced algorithms on different op-
timal control problems.

4.3 Control Problems

We compare numerical results of SVRG, SSVRG, and SARAH with the state-

of-the-art adaptive method ADAM on three optimal control problems by employ-

ing the optimized hyperparameters summarized in Table 4.1. ADAM is trained

with the default hyperparameters given in [1]. We measure the validated loss

value (valLoss), the validated running cost (valL), and the validated terminal

cost(valG) in terms of the number of gradient counts and the runtime for each

method on each problem. The following is a description of each scenario and the

corresponding numerical findings.

4.3 Control Problems 34

4.3.1 Corridor Experiment

(a) Loss/# Gradient Counts (b) Loss/Runtime

(c) L/Runtime (d) G/Runtime

Figure 4.3: Comparison of validated loss, running cost (L), and terminal cost (G) for
different algorithms in terms of the number of gradient counts and runtime on the corridor
problem. It can be seen that SARAH outperforms all other methods regarding the num-
ber of gradients counts and runtime, resulting in a more optimal loss. VR methods are
generally more sampling efficient than ADAM, although ADAM is more stable.

The corridor experiment was designed to be a d = 4 dimensional optimal con-

trol problem. In this experiment, two agents attempt to cross the narrow corridor

4.3 Control Problems 35

Gradient Counts Runtime (min)

Optimizers 200,000 500,000 600,000 5.75 7.38 13.59

ADAM 129.61 106.53 100.31* 112.22 100.31 100.31*
SVRG 107.76 98.20* 99.23 108.59 98.20* 98.20

SSVRG 107.07 101.87* 102.12 92.37 101.87* 101.21
SARAH 92.37* 92.56 98.76 92.37* 99.72 97.14

Table 4.2: Comparison of validated loss for different algorithms at different levels of
gradient counts (left) and runtime (right) on the corridor problem. * denotes the optimal
loss value obtained when the algorithm starts to converge at the specific # of gradient
counts/runtime.

between two hills to their predetermined destination with the shortest paths while

avoiding collisions. The corridor between the hills is kept as narrow as feasible to

allow just one agent to pass through. An agent must wait before the other agent

passes through the corridor. We use the same problem formulated in [1], with

more details available in [1].

Figure 4.3 shows the numerical results of validated loss over the number of

gradient counts (a) and validated loss (b), validated L (c) as well as validated

G (d) over runtime, respectively. Table 4.2 summarizes the specific validated

loss values at different levels of gradient counts (left) and runtime (right), where

specific algorithm starts to converge.

As we can see from Figure 4.3 (a), SVRG and SSVRG algorithms perform

similarly on this problem in terms of gradient counts. Both converge faster than

ADAM while using the same number of gradient counts. SARAH algorithm out-

performs ADAM, SVRG, and SSVRG algorithms in terms of gradient counts. Ac-

cordingly, we found that VR methods are more sampling efficient, requiring fewer

4.3 Control Problems 36

samples than ADAM. SARAH is the most sampling efficient among the three VR

methods as SARAH requires only 200, 000 gradient counts to converge, which is

67% less than ADAM (Table 4.2). We can also observe that SVRG and SSVRG

have comparable runtime durations, whereas ADAM outperforms them by con-

verging faster in terms of runtime (Fig 4.3b). The quickest-running algorithm is

SARAH, which spends 5.75 minutes to converge (Table 4.2). More importantly,

SARAH finds slightly more optimal solutions, achieving the lowest loss value of

92.37, which is 7.9% more optimal than ADAM (Table 4.2). Based on Figures

4.3 (c) and (d), we discovered that ADAM has lower G values, whereas SARAH

has lower L values. This implies that SARAH is better at reducing running costs,

whereas ADAM decreases terminal expenses.

In summary, for corridor problems, VR methods are more sampling efficient

than ADAM with comparable runtime. Still, SARAH outperforms all other meth-

ods in terms of gradient counts and runtime to reach more optimal loss values.

However, ADAM is the most stable algorithm, while VR methods oscillate more

frequently.

4.3.2 2-agent Swap Experiment

Inspired by the corridor experiment, we conduct a 2-agent swap experiment. In-

stead of directly passing through the narrow corridor between two hills, the two

agents begin at opposite ends of the corridor and aim to exchange their positions.

Details for the problem formulation can be found in [1].

Numerical results are summarized in Figure 4.4 and Table 4.3. Figure 4.4

4.3 Control Problems 37

(a) Loss/# Gradient Counts (b) Loss/Runtime

(c) L/Runtime (d) G/Runtime

Figure 4.4: Comparison of validated loss, running cost (L), and terminal cost (G) for
different algorithms in terms of the number of gradient counts and runtime on the 2-agent
swap problem. VR methods converge to lower loss values than ADAM. Moreover, VR
methods are more sampling efficient, but they take longer runtime to converge. SARAH
is the most sampling efficient and achieves the lowest loss value.

(a) shows that VR methods outperform ADAM in terms of the gradient counts

because all VR methods achieve lower loss values than ADAM when using the

same number of gradient counts. For example, when ADAM converges to the

4.3 Control Problems 38

Gradient Counts Runtime (min)

Optimizers 2,000k 8,000k 9,000k 10,000k 7.35 205.4 240.9 266.31

ADAM 967.21* 953.66 953.66 953.66 967.21* 953.66 953.66 953.66
SVRG 929.63 722.19 668.63 715.98* 1032.56 744.027 673.73 715.98*

SSVRG 905.49 658.55 649.08* 646.45 1016.06 696.97 649.08* 640.42
SARAH 844.56 603.01* 641.40 603.08 1055.55 603.01* 624.5 680.04

Table 4.3: Comparison of validated loss for different algorithms at different levels of
gradient counts (left) and runtime (right) on the 2-agent swap problem. * denotes the
optimal loss value obtained when the algorithm starts to converge at the specific # of
gradient counts/runtime.

loss of 967.21 with two million gradient counts, SARAH reduces the loss to

844.56 (12.7% more optimal than ADAM), SVRG to 929.63 (3.9% more opti-

mal), and SSVRG 905.49 (6.8% more optimal) using the same number of gradient

counts (Table 4.3). However, ADAM converges slightly faster than VR methods

in runtime, but their convergence rates regarding runtime are still of a comparable

magnitude (Fig 4.4b). When ADAM spends 7.35 minutes to converge, SARAH

reaches the loss of 1055.55 (9.1% less optimal than ADAM), SVRG to 1032.56

(6.8% less optimal), and SSVRG to 1016.06 (5.1% less optimal) when spending

the same runtime (Table 4.3). After ADAM converges and stops reducing the loss,

VR methods still improve the solution by dropping the loss. Eventually, SARAH

converges to the loss of 603.01 (37.7% more optimal than ADAM), SVRG to

715.98 (26.0% more optimal), and SSVRG to 649.08 (32.9% more optimal). The

runtime of VR solutions, on the other hand, rises significantly. SARAH takes

28 times more time than ADAM, SVRG 36 times more, and SSVRG 33 times

more to reach the optimal points. Based on Figures 4.4 (c) and (d), we found

4.3 Control Problems 39

that ADAM has lower G values, while VR methods have lower L values. This

indicates that VR methods are focused on reducing running costs, but ADAM is

focused on minimizing terminal costs.

In conclusion, all VR methods are more effective than ADAM in terms of

gradient counts and also achieve lower loss values. Like the corridor problem,

SARAH performs best in gradient counts and reaches the lowest loss values. Re-

garding the runtime, VR methods converge slightly slower than ADAM but still

achieve comparable convergence rates at the beginning. However, after ADAM

converges, the time VR methods spent on training is much greater than the rate at

which the value of loss decreases.

4.3.3 12-agent Swap Experiment

Gradient Counts Runtime (min)

Optimizers 300,000 600,000 700,000 2,000,000 45.67 106.48 139.52 165.01

ADAM 470589 85811 244819 9827.56* 8253.13 7803.86 6398.18 9827.56*
SVRG 8265.41 6529.64* 5915.58 6529.64** 8430.76 6529.64* 6520.64 5620.07

SSVRG 9727.17* 9567.25 9294.09 9727.17** 9727.17* 9345.56 9173.66 9370.37
SARAH 7204.48 5953.54 5764.09* 5764.09** 7437.45 5770.99 5764.09* 6503.17

Table 4.4: Comparison of validated loss for different algorithms at different levels of
gradient counts (left) and runtime (right) on the 12-agent swap problem. * denotes the
optimal loss value obtained when the algorithm starts to converge at the specific # of
gradient counts/runtime. ** indicates that we did not run long enough to achieve the same
number of gradient counts but used the values obtained at the point of convergence.

In the 12-agent swap experiment mentioned in [14], six pairs of agents swap

their position without any collisions. More details for the problem set-up can be

4.3 Control Problems 40

(a) Loss/# Gradient Counts (b) Loss/Runtime

(c) L/Runtime (d) G/Runtime

Figure 4.5: Comparison of validated loss, running cost (L), and terminal cost (G) for
different algorithms regarding the number of gradient counts and runtime on the 12-agent
swap problem. It can be seen that SARAH is the most efficient at sampling and takes
the shortest time to converge among all of the methods. SARAH also delivers the most
optimal solutions. SVRG and SSVRG perform well in terms of gradient computation
cost, runtime, and solution quality.

found in [1].

The numerical outcomes of the 12-agent swap experiment are shown in Fig-

4.3 Control Problems 41

ure 4.5 and Table 4.4. From Figure 4.5 (a) and (b), we see that all VR methods

(SVRG, SSVRG, and SARAH) outperform ADAM in terms of gradient compu-

tational cost and runtime. This implies that VR methods have higher sampling

efficiency than ADAM and can obtain more optimal solutions with better conver-

gence rates. In particular, SARAH performs the best among all three VR methods.

Compared to ADAM, SARAH converges to a 41.3% more optimal solution while

taking 15% less runtime and spending 65% less gradient computation cost. SVRG

performs slightly worse than SARAH but much better than SSVRG in terms of

gradient counts, runtime, and solution quality. Figures 4.5 (c) and (d) suggest that

VR methods have lower L values, and all four algorithms have similar G values.

This indicates that VR methods outperform ADAM when reducing running costs.

In conclusion, SARAH is the most sampling efficient and takes the shortest

runtime to converge among all the techniques we have evaluated. SARAH also

yields the lowest loss value. Furthermore, SVRG and SSVRG perform well on

12-agent swap problems.

42

Chapter 5

Discussion

Our experiments demonstrate the effectiveness of VR methods in solving high-

dimensional optimal control problems, especially for multi-agent collision avoid-

ance systems in non-convex settings. In particular, we find that VR methods have

higher sampling efficiency than ADAM, requiring less gradient-based computa-

tions while maintaining a similar or faster convergence rate. A sampling-efficient

method requires less computational cost to achieve a certain level of accuracy

and therefore improves applicability [15]. VR methods use the data from each

sample to its maximum potential because they minimize the variance in each NN

parameter updating, improving sampling efficiency. High-dimensional problems

can suffer from a lack of or poor-quality samples in real life. Given high sampling

efficiency, VR methods may perform well in practice since they offer improved

generalization errors.

In the experiments, we also observe that as the dimensionality of the optimal

43

control problem increases, the convergence rate for VR methods becomes faster

compared to ADAM. For example, when the dimensionality is small, as in the

corridor and 2-agent swap problems where d = 4, VR methods generally yield a

comparable convergence rate as ADAM. When the dimensionality of the problem

becomes higher, as in the 12-swap problem where d = 24, the advantage of the

VR methods in terms of convergence speed becomes obvious. Accordingly, VR

methods are well suited for optimizing high-dimensional OC problems.

Furthermore, VR methods generally converge to more optimal solutions with

lower loss values than ADAM. For example, SARAH obtains 7.9% more optimal

solutions in the corridor experiment, 37.7% more optimal solutions in the 2-agent

swap experiment, and 41.3% more optimal solutions in the 12-agent swap exper-

iment.

Based on the numerical results, we found that SARAH has the best perfor-

mance among all methods we have evaluated. SARAH has the highest sampling

efficiency, quickest convergence rate, and lowest loss values. SARAH’s outstand-

ing performance in non-convex high-dimensional optimization problems is due

to the fact that it utilizes accumulated past stochastic gradient information and

continually decreases the variance in the inner loop, whereas SVRG and SSVRG

only reduce variance as the number of outer iterations increases [15]. SARAH is,

therefore, more stable and will converge to the optimum at a faster convergence

rate. SVRG and SSVRG are also very effective, making them viable alternatives.

However, SVRG and SSVRG are not particularly robust as SARAH and are vul-

nerable to changes in hyperparameters. They require a well-tuned learning rate

44

and other hyperparameters to reach their peak performance. In contrast, SARAH

is more robust to hyperparameter changes. Therefore, SVRG and SSVRG are

relatively sensitive to different types of high-dimensional optimal control prob-

lems and may produce inconsistent results for each trial. Compared to ADAM,

VR methods are less stable since they apply mini-batching strategies for better

performance in non-convex settings.

We also discovered that VR methods have lower L values on average, while

ADAM has lower G values. Note that L values and the total loss have a similar

magnitude, while G is virtually zero in all cases. This implies that the agents can

get to the small circle centered on the targets most of the time. On the contrary, the

running cost (L) is relatively difficult to minimize, and VR methods outperform

ADAM in reducing the running costs. Further study is needed to analyze the

underlying reasons.

Despite these promising results, this study has several limitations that future

work could address. First, we only tune the least set of hyperparameters inherent

to the algorithms. Future work should consider more hyperparameters such as

the weight decay and the dropout rate to optimize the performance. Second, we

only evaluate the performance of VR methods on three specific OC problems.

Future work should apply VR methods to a wider variety of problems with higher

dimensionality to see if the successful results can be generalized. Third, each

inner loop iteration of VR methods has to compute the loss function twice to

get the first and second gradient terms given in (3.3). According to the code

profiling, the backward propagation is responsible for 39.79% of the training time,

45

and 48.19% of the runtime is spent computing the loss function. As a result,

avoiding recomputing the loss function in each inner loop iteration may help speed

up VR methods’ convergence rate. For example, using a weighted moving average

to estimate the second gradient term given in (3.3) may be beneficial. However,

there may be other drawbacks, such as the bias introduced by the estimation. We

leave this for future work.

Despite these limitations, our study provides empirical evidence that VR meth-

ods (particularly SARAH) are more effective at solving non-convex high-dimensional

optimal control problems than ADAM.

46

Chapter 6

Conclusion

We modify, implement, and evaluate the performance of three variance reduction

algorithms (SVRG, SSVRG, and SARAH) on high-dimensional optimal control

problems. On three high-dimensional optimal control problems, we fine-tune and

compare the effectiveness of SVRG, SSVRG, and SARAH with the baseline al-

gorithm ADAM. The numerical experiments show that variance reduction meth-

ods are effective for non-convex, high-dimensional optimal control problems and

generally outperform ADAM. SARAH has the best performance in terms of con-

vergence rate, sampling efficiency, and solution optimality because it continually

utilizes past gradient information to decrease variance. Compared with SARAH,

SVRG and SSVRG are less stable and less adaptive to hyperparameter changes.

Future investigations will focus on more challenging high-dimensional optimal

control problems with higher dimensionality.

Bibliography

[1] Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley

Osher, and Lars Ruthotto. A neural network approach for real-time high-

dimensional optimal control, October 2021. arXiv:2104.03270.

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization, 2014. arXiv:1412.69800.

[3] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent us-

ing predictive variance reduction. In C.J. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Informa-

tion Processing Systems, volume 26. Curran Associates, Inc., 2013.

[4] Roy Frostig, Rong Ge, Sham M. Kakade, and Aaron Sidford. Compet-

ing with the empirical risk minimizer in a single pass, December 2014.

arXiv:1412.6606.

[5] Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A

novel method for machine learning problems using stochastic recursive gra-

dient. June 2017. arXiv:1703.00102.

47

BIBLIOGRAPHY 48

[6] Sebastian Ruder. An overview of gradient descent optimization algorithms,

September 2017. arXiv:2017.00892.

[7] Robert M. Gower, Mark Schmidt, Francis Bach, and Peter Richtarik.

Variance-reduced methods for machine learning, October 2020.

arXiv:2010.00892.

[8] Mark Schmidt Nicolas Le Roux and Francis Bach. A stochastic gradient

method with an exponential convergence rate for finite training sets, March

2013. arXiv:1202.6258.

[9] Francis Bach Aaron Defazio and Simon Lacoste-Julien. Saga: A fast in-

cremental gradient method with support for non-strongly convex composite

objectives, December 2014. arXiv:1407.0202.

[10] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for

large-scale machine learning, June 2016. arXiv:1606.04838.

[11] Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex

Smola. Stochastic variance reduction for nonconvex optimization, March

2016. arXiv:1603.06160.

[12] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. Optuna: A next-generation hyperparameter optimization frame-

work, July 2019. arXiv:1907.10902.

[13] Yoshua Bengio. Practical recommendations for gradient-based training of

deep architectures, June 2012. arXiv:1206.5533.

BIBLIOGRAPHY 49

[14] Thulasi Mylvaganam, Mario Sassano, and Alessandro Astolfi. A differential

game approach to multi-agent collision avoidance. IEEE Transactions on

Automatic Control, 62(8):4229–4235, 2017.

[15] Hans Janssen. Monte-carlo based uncertainty analysis: Sampling efficiency

and sampling convergence. Reliability Engineering System Safety, 109:123–

132, 2013.

	Yujan Ting - Honors Thesis Preliminary Pages 2022
	Honors_Research_Numerical_Methods_for_NN_based_Optimal_Control__revised_reference_

