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Abstract

EDClust: An EM-MM hybrid method for cell clustering in
population-level single cell RNA sequencing

By Xin Wei

Single-cell RNA sequencing (scRNA-seq) technology has revolutionized the genomics research by
enabling the measurement of the transcriptomic profile at the level of single cells. One of the most
fundamental problems in scRNA-seq data analysis is cell clustering, for which a rather large num-
ber of methods have been developed. With the increasing application of scRNA-seq in larger scale
studies, people face the problem of cell clustering when the scRNA-seq data are from more than one
subject. One challenge in analyzing such data is the subject-specific systematic variations: hetero-
geneity from multiple subjects may have a significant impact on the clustering accuracy. However,
existing methods addressing such effect suffered from several limitations. In this work, we develop
a novel statistical method named ‘EDClust’ for scRNA-seq cell clustering when data are from mul-
tiple subjects. EDClust models the sequence read counts by a mixture of Dirichlet-Multinomial
distributions, and explicitly accounts for the cell type heterogeneity, subject heterogeneity, and the
clustering uncertainty. An EM-MM hybrid algorithm is derived for maximizing the data likelihood
and clustering the cells. We perform a series of simulation studies to evaluate the proposed method
and demonstrate the outstanding performance of EDClust. Comprehensive benchmarking on four
real scRNA-seq datasets with various tissue types and species demonstrates the substantial accuracy
improvement of EDClust compared to the existing methods.
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1 . Introduction

Single-cell RNA-sequencing (scRNA-seq) is a powerful technology for measuring the gene expres-

sion at the single cell level. It offers unprecedented opportunities to answer questions related to

cell-specific changes in transcriptome, such as identification of rare cell types and heterogeneity of

cell responses1. Several experimental protocols of scRNA-seq have been developed in the past few

years, including SMART-seq22, CEL-seq23 and Drop-seq4, providing additional choices to meet

diverse research needs. Among all, droplet-based technologies encapsulate each individual cell in a

nanoliter droplet together with a bead4, and substantially reduced the experimental cost. Moreover,

droplet-based methods utilize unique molecular identifiers (UMIs) to eliminate the effects of PCR

amplification bias5. The good scalability, high efficiency and low cost make droplet-based method

the top choice for scRNA-seq experiments in population-scale studies.

In scRNA-seq data analysis, the first step is usually cell clustering. The main purpose of clus-

tering is to group cells by their transcriptomic similarity, and then annotate the groups to cell types

based on existing biological knowledge. This is a fundamental step in scRNA-seq analysis, since

many downstream analyses, including cellular composition estimation, cell type-specific differential

expression, and rare cell type discovery, are all carried out based on the clustering results6. Though

classic unsupervised clustering methods such as K-means and hierarchical clustering can be applied,

in view of the sparse and noisy characteristics of scRNA-seq data, many unsupervised methods cus-

tomized for scRNA-seq data have been developed and widely used. For example, SC3 combines

feature selection and dimension reduction in a consensus clustering framework and has been proven

to be a highly robust clustering method7. Seurat is another popular method that adopts community-

detection to identify similar cells and shows good scalability for large datasets8. TSCAN fits a

mixture of multivariate normal distributions and uses hierarchical clustering to identify cell clus-

ters9. Lastly, observing the needs for clustering large-scale study with thousands to millions of cells,

SHARP is developed recently for ultra-fast clustering through a divide-and-conquer strategy10.

All the aforementioned clustering methods are developed without the consideration of system-

atic biases in the data, that is, the expressions for a gene from all cells in the same cell type are

considered to be identically distributed. However, similar to many other high-throughput technolo-

gies, scRNA-seq data also suffers from a number of technical biases. One such bias in population
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level study is the subject effect: there could be systematic, subject-specific shift in the gene expres-

sion. Thus, the distributions of the gene expression can be different between subjects even within

the same cell type. That shift can be induced by different characteristics of the subjects, such as

demographics or clinical conditions. Or it can be the result of batch effect when different subjects

are profiled at different time/location/lab. It is worth mentioning that the batch effects can be severe

in scRNA-seq, since it is exacerbated by the fact that most scRNA-seq protocols require fresh tissue

for experiments, thus a randomized experimental design for removing batch effect might become

impossible in many cases. Nevertheless, most existing clustering methods do not explicitly address

the heterogeneity among multiple subjects. Direct application of those methods on data from popu-

lation studies can lead to inaccurate clustering results due to correlated measurement errors instead

of biological similarities11.

One possible remedy for the problem is to consider the subject effect as batch effect, and correct

for that before cell clustering. Several computational methods have been developed for batch effect

correction and can be applied before clustering. For example, ComBat and ComBat-seq12 are de-

veloped originally for bulk sequencing data and use linear models to remove batch effects. Mutual-

nearest-neighbor (MNN) corrects batch effects by constructing a shared space between datasets13.

Harmony is another popular batch correction method and uses an iterative approach to eliminate

batch effects for cells calculated in PCA space14.

Though it is possible to cluster the cells after removing the subject effects, this “two-step”

approach has some drawbacks. First, the batch effect correction procedure often produces negative

values for gene expressions, which will generate errors in many cell clustering tools. Secondly,

such approach is in general not efficient due to the transformation of data and alteration of data

structure. For example, several clustering methods make distributional assumptions on the count

data, while the data after batch effect correction is not counts anymore. Such discrepancy will lead

to undesirable clustering performances for those methods.

In comparison, a more rigorous and potentially better approach is to design a clustering method

that takes subject effects into consideration. Both BAMM-SC15 and BUSseq16 are tailored methods

for addressing subject effect during clustering. BAMM-SC implements a Bayesian mixture model

which utilizes information across genes and individuals to account for the heterogeneity. BUSseq

adopts a more complicated hierarchical model that strictly follows the data generation process of
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scRNA-seq experiments to correct batch effects and cluster cells. Both methods use Markov Chain

Monte Carlo (MCMC) to solve the model, which do not scale well for large datasets. To provide a

complementary approach to address the cell clustering problem in population-scale scRNA-seq data,

we design EDClust, which is an EM17 and MM18 hybrid method based on Dirichlet-Multinomial

mixture model, for clustering. EDClust takes the raw count data from multiple subjects without

transformation, avoiding the possible destruction of data structure and loss of information. Mean-

while, EDClust explicitly quantifies the effects of heterogeneity from different sources and provides

posterior probabilities for cells being in each cluster. Through extensive simulation studies and four

real datasets, we show EDClust has better clustering accuracy compared with existing methods. In

the following sections, we first introduce the data model and derivation of the EM-MM method.

The simulation design and results are presented in Section 3. Lastly, we showcase the performance

and utility of EDClust using four real scRNA-seq datasets in Section 4.

2 . Methods

To cluster population-scale scRNA-seq data, we propose the following Dirichlet-Multinomial mix-

ture model to capture the cell type and subject effects on gene expression. We assume the number

of cell types in the data, K, is known, and all subjects share the same K cell types. Our aim is to

cluster all the cells from these subjects simultaneously. Note that K can be specified by investigators

based on biological knowledge, or can be determined by a number of software tools. Throughout

this work, we will just assume K is known.

2.1 Data model

Let yl ji represent the sequence counts for gene j in cell i from subject l (16 i6 Il , 16 j 6 J, 16 l 6

L), where Il , J and L indicate the total number of cells (in subject l), genes and subjects, respectively.

Based on the assumption that Yli = (Yl1i,Yl2i, . . . ,YlJi) follows a Dirichlet-Multinomial mixture dis-

tribution, Yli can be viewed as generated in two steps. First, a cell type label Wli ∈ {1,2, . . . ,K}

is assigned to cell i in subject l with probability Pr(Wli = k) = πlk. Second, given the cell label

(i.e., Wli = k), Yli will be generated from a Multinomial distribution by Yli ∼Multinomial(Tli, pli).

Here, Tli = ∑
J
j Yl ji indicates total read counts, and the proportion pli represents the relative gene ex-
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pressions. We further assume that pli follows a cell-type specific prior distribution Dirichlet(αlk) =

Dirichlet(αlk1,αlk2, . . . ,αlkJ). To simultaneously account for cell type and subject effects, we as-

sume the overall effect αlk can be expressed as the sum of cell type effect α0k j and subject effect

δlk j: αlk j = α0k j + δlk j > 0. Finally, we assume that all cells in all L subjects are independent and

treat cell type label Wli = k as the missing data. Then the observed and complete data log likelihood

can be written as:

l(Y ;T ,Θ) =
L

∑
l=1

Il

∑
i=1

log[
K

∑
k=1

πlkP(Yli|Tli,α0k +δlk)] (2.1)

lc(Y ,W ;T ,Θ) =
L

∑
l=1

Il

∑
i=1

K

∑
k=1

I(Wli = k)[logπlk + logP(Yli|Tli,α0k +δlk)] (2.2)

Here W = {Wli : i = 1, . . . , Il, l = 1, . . . ,L} includes the indicator of cell type labels, and Θ =

{πlk,α0k,δlk : k = 1, . . . ,K, l = 1, . . . ,L} contains all the model parameters. P(Yli|Tli,α0k +δlk) rep-

resents the Dirichlet-Multinomial probability density, which is

P(Yli|Tli,α0k +δlk) =

(
Ti

Yli

)
∏

J
j=1(α0k j +δlk j)(α0k j +δlk j +1) · · ·(α0k j +δlk j +Yli j−1)
‖α0k +δlk‖1 (‖α0k +δlk‖1 +1) · · ·(‖α0k +δlk‖1 +Tli−1)

(2.3)

Here, ‖α0k +δlk‖1 = ∑
J
j=1 |α0k j +δlk j|= ∑

J
j=1(α0k j +δlk j).

2.2 The EM-MM hybrid algorithm for maximum likelihood

The introduction of the latent variable W allows one to implement the EM algorithm to maximize

the observed data likelihood and obtain posterior probabilities for cell type assignment (Wli). An

EM algorithm iterates between two steps: an expectation step (E-step) and a maximization step (M-

step)17. Let Θ(t) be the parameter estimate in iteration t. In the E-step, we compute the conditional

expectation of Wli:
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µ
(t)
lik = E[I(Wli = k)|Y ,Θ(t)] = P(Wli = k|Y ,Θ(t))

=
π
(t)
lk P(Yli|Tli,α

(t)
0k +δ

(t)
lk )

∑
K
k′=1 π

(t)
lk′

P(Yli|Tli,α
(t)
0k′

+δ
(t)
lk′
)

(2.4)

In the M-step, we maximize the “Q function” (the expected complete data log-likelihood with

respect to Θ) to obtain Θ(t+1). The update for πlk can be obtained by solving ∂Q/∂πlk = 0.

Q(Θ|Θ(t)) = E[l(Θ)|Y ,Θ(t)] =
L

∑
l=1

Il

∑
i=1

K

∑
k=1

µ
(t)
lik [logπlk + logP(Yli|Tli,α0k +δlk)] (2.5)

π
(t+1)
lk =

∑
Il
i=1 µ

(t)
lik

Il
(2.6)

The M-step derivation for α0k and δlk is much more difficult, and there is not closed form solu-

tion. For that, we design the following Minorization-Maximization (MM) algorithm18 for updating

α0k and δlk. Conceptually, to maximize an objective function f (θ), an MM algorithm iterates

between two steps. In the first step, one uses the current parameter estimate θ (n) to construct a

surrogate function g(θ |θ (n)) such that g(θ |θ (n)) minorizes f (θ), i.e.,

f (θ)≥ g(θ |θ (n)) ∀θ 6= θ
(n)

f (θ (n)) = g(θ (n)|θ (n))

(2.7)

In the second step, one finds θ to maximize the surrogate function g(θ |θ (n)), which gives a new

parameter estimate θ (n+1). Since

f (θ (n+1))≥ g(θ (n+1)|θ (n))≥ g(θ (n)|θ (n)) = f (θ (n)) (2.8)

f (θ (n)) will never decrease as n increases. The algorithm will converge to a stationary point, usually

a mode of the objective function.

Extending the work by Zhou and Lange19, we rewrite the log-likelihood function in (2.2) as the

following.
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l(Θ) =
L

∑
l=1

K

∑
k=1

[
Il

∑
i=1

I(Wli = k)logπlk−∑
c1l

rlkclog(‖α0k +δlk‖1 + c1l)+

J

∑
j=1

∑
c2l j

slk jclog(α0k j +δlk j + c2l j)

]
+ const. (2.9)

rlkc =
Il

∑
i=1

I(Wli = k)I(Tli > c1l +1), slk jc =
Il

∑
i=1

I(Wli = k)I(Yl ji > c2l j +1)

Here the index c1l ranges from 0 to maxi(Tli)−1, and the index c2l j runs from 0 to maxi(Yli j)−1. In

MM algorithm, we design a surrogate function that minorizes the log-likelihood function. Assuming

that α0k j > 0 and δlk j > 0, we can utilize the following inequalities:

−log(c+‖αlk‖1) > − 1∥∥∥α
(n)
0k +δ

(n)
lk

∥∥∥
1
+ c

(‖α0k +δlk‖1)+ const. (2.10)

log(α0k j +δlk j + c) >
α
(n)
0k j

α
(n)
0k j +δ

(n)
lk j + c

log(α0k j)+
δ
(n)
lk j

α
(n)
0k j +δ

(n)
lk j + c

log(δlk j)+ const. (2.11)

For them, the equality holds when α0k j = α
(n)
0k j and δlk j = δ

(n)
lk j . We construct the following surrogate

function g(Θ|Θ(t,n)) as:

g(Θ|Θ(t,n)) =
L

∑
l=1

K

∑
k=1

{
Il

∑
i=1

µ
(t)
lik logπlk−∑

c1l

r(t)lkc
‖α0k +δlk‖1∥∥∥α

(t,n)
0k +δ

(t,n)
lk

∥∥∥
1
+ c1l

+

J

∑
j=1

∑
c2l j

s(t)lk jc

[
α
(t,n)
0k j log(α0k j)

α
(t,n)
0k j +δ

(t,n)
lk j + c2l j

+
δ
(t,n)
lk j log(δlk j)

α
(t,n)
0k j +δ

(t,n)
lk j + c2l j

]}
+ const. (2.12)

r(t)lkc =
Il

∑
i=1

µ
(t)
lik I(Tli > c1l +1), s(t)lk jc =

Il

∑
i=1

µ
(t)
lik I(Yl ji > c2l j +1)

By solving ∂g(Θ|Θ(t,n))/∂δlk j = 0 and ∂g(Θ|Θ(t,n))/∂α0k j = 0, we obtain the MM updates

for δlk j and α0k j as:
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δ
(t,n+1)
lk j =

(
∑
c2l j

s(t)lk jcδ
(t,n)
lk j

α
(t,n)
0k j +δ

(t,n)
lk j + c2l j

)/(
∑
c1l

r(t)lkc∥∥∥α
(t,n)
0k +δ

(t,n)
lk

∥∥∥
1
+ c1l

)
(2.13)

α
(t,n+1)
0k j =

(
L

∑
l=1

∑
c2l j

s(t)lk jcα
(t,n)
0k j

α
(t,n)
0k j +δ

(t,n)
lk j + c2l j

)/(
L

∑
l=1

∑
c1l

r(t)lkc∥∥∥α
(t,n)
0k +δ

(t,n)
lk

∥∥∥
1
+ c1l

)
(2.14)

Within the M-step in each EM iteration, EDClust runs multiple MM iterations to update α0 and

δ . To reduce the computational burden, we only run 3 MM iterations in each M-step. Real data

analyses show that such procedure provides comparable performance as running more (such as 20)

iterations.

2.3 Feature selection

Feature selection is one of the key steps before clustering. We aim to select a subset of informa-

tive genes that can identify the structure of data and thus improve the performance of clustering.

A recently developed feature selection tool tailored to scRNA-seq, FEAture SelecTion (FEAST)20,

shows great potential for improving clustering accuracy. FEAST computes the F-statistics for each

feature based on embedded consensus clustering results and provides a ranking list of feature sig-

nificant. By default, EDClust applies FEAST to obtain the top 500 features for clustering. In the

software implementation, users have option to specify the gene features.

2.4 Determine the initial values

It is known that EM algorithm often suffers from locally optimal solutions. Our problem, due to the

high dimensionality and complex nature of the data, is particularly prone to such problem. Thus,

it is crucial to provide good initial values for the parameters, especially α0 and δ . For that, we run

unsupervised clustering on a randomly chosen subject to obtain initial clusters, and then the initial

value for α0 can be computed from these initial clusters. To be specific, we set a randomly chosen

subject as the baseline, and thus its overall effect is entirely contributed by the cell type effect α0.

Based on the initial clusters, we obtain a naive estimate α̂0 according to the relative gene expression

in each initial cluster and take it as the initial value. We set the selected subject with a subject effect

of zero, and set initial values for the rest of δ ’s to be small positive numbers (10−5 by default).
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We use SHARP10 as the unsupervised clustering method to determine initial values due to its good

computational performance.

2.5 Software implementation

Overall, the complete EDClust algorithm is summarized in Figure 1. EDClust is designed as an R

package with core algorithm written in Julia for better computational efficiency. Scripts for EDClust

are available at https://github.com/weix21/EDClust. We are working to develop a software package

and will submit to Bioconductor soon.

https://github.com/weix21/EDClust
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INITIALIZE PARAMETERS

Initial clusters:
l Randomly select one subject
l Run SHARP

Cell type effects (𝜶𝟎):
l Estimated by the relative gene
expressions in each initial cluster

Subject effects (𝜹):
l 10!" by default

Cell type probability 𝝅 :
l ⁄1 𝐾 by default, where 𝐾 is the
number of cell types

E-STEP 

Conditional expectation (𝝁):
l Closed form update in (2.4)

M-STEP-1 

Cell type probability (𝝅):
l Closed form update in (2.6)

M-STEP-2 

Subject effects (𝜹):
l Closed form update in (2.13)

Cell type effects (𝜶𝟎):
l Closed form update in (2.14)

INPUT DATA

UMI count matrix:
l Quality control
l Feature selection

FURTHER ANALYSIS

EM-MM HYBRID ALGORITHM

Figure 1: Summary of the EDClust algorithm.
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3 . Simulation studies

We design a series of simulation studies to comprehensively evaluate the performance of EDClust,

and compare it to a number of competing methods. The simulations are based on a set of real

scRNA-seq from human skin studies (described later). We evaluate the methods when data have

different levels of subject specific effects (low, medium and high), and with different sample size

selections (5, 10, 15). Specifically, for gene j, cell i and subject l, we generate observed sin-

gle cell RNA-seq counts from a Dirichlet-Multinomial distribution by Yli ∼ Multinomial(Tli,pli)

where pli ∼ Dirichlet(αlk). The total read counts Tli match the real data. We specify a log-normal

prior distribution on αlk as αlk ∼ LogNormal(µk,σ
2
k ). The mean µk and variance σ2

k are first pre-

defined for each random sample and cell types by adopting hyper-prior µk ∼ Uniform(0,1) and

σ2
k ∼ Gamma(β ,τ). In all the simulations, we specify τ as 1 and changed the value of β to control

the cross subject heterogeneity in the data. Larger heterogeneity indicates stronger subject-specific

effects, and thus it is more difficult to cluster.

We compare EDClust with the other four unsupervised clustering methods (SC3, Seurat, SHA-

RP and TSCAN) which embed Harmony for batch effect correction before clustering. We use

adjusted Rand index (ARI)21 as the evaluation criterion to benchmark the predicted cell type labels.

All the simulation results are summarized over 20 Monte Carlo data sets.

H+SC3 H+Seurat H+SHARP H+TSCAN EDClust

Low Medium High

0.1

0.3

0.5

0.7

Subject effect

A
R

I 

a 5 10 15

0.1

0.2

0.3

0.4

0.5

Number of Subjects

A
R

I 

b

Figure 2: Barplots of average ARIs for 5 clustering methods across over 20 simulations, where “H +”
indicates that the simulation data are processed by Harmony to remove the subject effects. a Influence of
subject effect on clustering results. Simulation data is consisted of 10 subjects. b Influence of the number of
subjects on clustering results with medium level of the subject effect.

As shown in Figure 2a, across three scenarios with different levels of cross subject heterogeneity,

EDClust constantly achieves the highest average ARI. The performance of EDclust remains stable
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even as the subject effect varies from medium level to high level. Figure 2b presents the influence

of number of subjects on clustering. As the number of subjects increased, so did the sources of

heterogeneity. As expected, the average ARIs for most of the clustering methods decrease when

the number of subjects increases. EDClust consistently outperforms other four methods in terms of

ARI. The simulation studies showcase great potential of EDClust in accounting for subject-specific

effects and clustering population-scale scRNA-seq data with outstanding performance.

4 . Real data analyses

We benchmark EDClust and other methods on four sets of real scRNA-seq with multiple subjects.

More description of the datasets and data processing procedures are provided in each of the sub-

sections below. Here in Table 1, we present the overall results for all four datasets, including the

mean and standard deviation of ARIs from 50 runs in each datasets. In addition to the four clus-

tering methods compared in the simulation study, we also compare EDClust with DIMM-SC and

BAMM-SC, which have similar model assumptions. Since both TSCAN and Seurat are determin-

istic clustering methods, they don’t have standard deviation in the results. The average ARIs are

also displayed in Figure 3. These results show that for three out of the four dataset, EDClust has

the best performance, and the performance improvement can be significant. For example in the

Mouse Retina data, EDClust has mean ARI 0.87, while the second best performer (Harmony+SC3)

only has ARI 0.70. In the Mouse Lung data, EDClust performs slightly worse than BAMM-SC and

Harmony+SC3, but not very far off.

Table 1: The ARI of fifty times clustering analyses for each method on four real datasets

Method
Mouse Retina Baron Pancreas Human Skin Mouse Lung

Mean SD Mean SD Mean SD Mean SD

BAMM-SC 0.4273 0.0058 0.6411 0.0686 0.7732 0.0688 0.7354 0.0323
DIMM-SC 0.4221 0.0065 0.6968 0.0692 0.7975 0.0839 0.7003 0.0643

Harmony+SC3 0.6972 0.0687 0.5590 0.1035 0.8260 0.0249 0.7652 0.0026
Harmony+Seurat 0.1024 - 0.5137 - 0.6520 - 0.5307 -

Harmony+SHARP 0.6572 0.0095 0.3115 0.0236 0.8369 0.0533 0.7029 0.0271
Harmony+TSCAN 0.2905 - 0.6392 - 0.6486 - 0.6354 -

EDClust 0.8735 0.0251 0.8047 0.0747 0.9191 0.0813 0.7227 0.0435
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Figure 3: Bar plots of performance of EDClust and competing methods measured by average ARI across 50
clustering results. “H +” represents that the clustering methods are implemented on the real datasets which
have been processed by Harmony to remove the batch effects.

4.1 Mouse Retina dataset

We first evaluate the clustering performance of EDClust in mouse tissues through a mouse retina

dataset, which is collected from 14-day-old mice in seven batches4. Cells are first pooled together

to filter out low-expression genes based on dropout rate. We apply FEAST to generate a ranking list

of features, and select top 500 genes based on it. Five major cell types are retained and the number

of cells is 43,603.

As shown in Table 1 and Figure 3, most of the methods struggle on this dataset with very low

average ARI. Though the performances of Harmony+SC3 and Harmony+TSCAN are slightly better,

their average ARIs are still below 0.70. EDClust achieves the highest ARI (0.8735), suggesting the

excellent performance of EDClust. To visualize the clustering results, we generate some t-SNE

plots as shown in Figure 4. The t-SNE plot generated based on the clustering result of EDClust

is highly similar to the t-SNE plot with the true labels. We also show the t-SNE plot based on

the clustering results from BAMM-SC and Harmony+SC3, where the circled regions highlight the

incorrectly clustered cells. These plots provide clear visualization for demonstrating the improved

performance of EDClust.

4.2 Baron Pancreas dataset

To evaluate the performance of EDClust in human tissue, we analyze a set of human pancreas data

(named “Baron Pancreas” dataset). The original data includes over 12,000 pancreatic cells from

four human donors and two mouse strains22. We extract cells from the human donors and filter out
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BAMM−SC (ARI=0.43) H + SC3 (ARI=0.69)
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Figure 4: The t-SNE plots of cells in the mouse retina dataset4. Each plot is colored by the ground truth,
labels inferred by EDClust, BAMM-SC, and Harmony+SC3 (H+SC3), respectively.
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the lowly expressed genes. The processed data contains 500 genes a total of 8,506 cells. Some very

rare cell types with only a few cells (such as T cells) are removed and 10 major cell types are kept

for further analysis.

Both Table 1 and Figure 3 show that the average ARI of EDClust is up to 0.8047 while all other

methods fail to achieve the average ARI of 0.70. Figure 5 elucidates that Harmony+SC3 mixed

massive cells. Compared to BAMM-SC, EDClust correctly identifies beta cells. Based on EDClust,

for most of the cells, we are able to assign labels that are close to the approximated truth. These

results showcase the outstanding performance of EDClust in the Baron Pancreas dataset.

BAMM−SC (ARI=0.66) H + SC3 (ARI=0.58)

Ground Truth EDClust (ARI=0.81)
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Figure 5: The t-SNE plots of cells in the Baron Pancreas dataset22. Each plot is colored by the ground truth,
labels inferred by EDClust, BAMM-SC, and Harmony+SC3 (H+SC3), respectively.

4.3 Human Skin dataset

We further evaluate the clustering performance of EDClust in another human tissues through a

human skin dataset, which includes skin samples collected from three health donors in a systemic
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sclerosis study15. In their study, Sun et al.15 identified eight major types of cells. We use their

results as the ground truth, but remove cells with uncertain cell type. After quality control and

feature selection, 3,067 cells with 500 selected genes are used in the clustering analysis.

From Table 1 and Figure 3, we can find that EDClust has the most outstanding performance

(average ARI = 0.9191) among all the methods. Although the average ARIs for most methods

are close to 0.80, EDClust is more accurate in the clustering of several cell types. As shown in

Figure 6, compared with BAMM-SC and Harmony+SC3, macrophages/DC, basal keratinocytes

and suprabasal keratinocytes can all be classified by EDClust and each is assigned a specific cell

type label, which points out the superior performance of EDClust on the Human Skin dataset.

BAMM−SC (ARI=0.79) H + SC3 (ARI=0.83)

Ground Truth EDClust (ARI=0.94)
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Figure 6: The t-SNE plots of cells in the Human Skin dataset15. Each plot is colored by the ground truth,
labels inferred by EDClust, BAMM-SC, and Harmony+SC3 (H+SC3), respectively.
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4.4 Mouse Lung dataset

At last, we evaluate the performance of EDClust in a real dataset with fewer cells. We mainly

analyze a mouse lung dataset, which is obtained by collecting lung mononuclear cells from four

mouse samples in Streptococcus pneumonia (SP) infected group and control group15. After data

processing step, we obtain 500 top features provided by FEAST and a total of 1,756 cells. Each cell

is assigned a cell type label according to previous study by Sun et al.15 and the expected number of

clusters is set as six.

All methods have similar performances on the Mouse Lung dataset (Table 1 and Figure 3). The

performance of EDClust (average ARI = 0.7227) is slightly lower than Harmony+SC3 and BAMM-

SC. Figure 7 presents consistent pattern. In general, despite some mixed cell types, EDClust has an

excellent performance in characterization of endothelial cells and neutrophils.

BAMM−SC (ARI=0.74) H + SC3 (ARI=0.77)

Ground Truth EDClust (ARI=0.73)
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Figure 7: The t-SNE plots of cells in the Mouse Lung dataset15. Each plot is colored by the ground truth,
labels inferred by EDClust, BAMM-SC, and Harmony+SC3 (H+SC3), respectively.
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4.5 Computational performance

The EM algorithm usually converges slowly and has heavy computational burden. Our proposed

method embeds a few MM iteration within each EM iteration, which brings higher computational

cost. However, we implement the software in Julia, with an interface to R, and achieves reasonable

computational performance. We benchmark the computational performances of all methods under

comparison shown in Table 2. It shows that for the biggest dataset we have tried (Mouse Retina

dataset with 7 batches and 43,603 cells), it takes about 35 minutes on a normal computer with a

single process. This is considerably faster than BAMM-SC, which serves the same purpose but

uses MCMC. Other methods either ignore the subject effects or perform a two-step approach (batch

effect removal then cell clustering), which are not really comparable to EDClust. We will continue

our development of EDClust and implement parallel computing to further improve the performance.

Overall, EDClust provides satisfactory computational performance.

Table 2: The average computational time (in min) of each method on four real datasets

Method Mouse Retina Baron Pancreas Human Skin Mouse Lung

BAMM-SC 180 90 13 7
DIMM-SC 4 3 2 1

Harmony+SC3 57 24 6 8
Harmony+Seurat 34 4 1 <1

Harmony+SHARP 37 4 2 <1
Harmony+TSCAN 33 4 1 <1

EDClust 35 60 25 10

5 . Discussion

In this work, we develop a novel statistical method for cell clustering in multi-subject scRNA-seq

data. We model the read counts by a Dirichlet-Multinomial mixture distribution, where the Dirichlet

parameters contain subject and cell type effects. We develop an EM-MM hybrid algorithm for fitting

the mixture model and performing model-based clustering.

Compared to existing clustering methods that ignore the subject specific effects, EDClust has the

following advantages: (1) EDClust provides a tool to describe data heterogeneity among multiple

subjects and more effectively identify subject-specific cell types. (2) Utilizing the shared infor-
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mation among subjects, EDClust clusters all the cells from all subjects at the same time, which

improves the accuracy of cell clustering. (3) Most of the clustering methods can only be performed

after several preprocessing approaches, e.g. normalization and batch effect removal, while EDClust

offers a one-stop service which can be directly applied on raw count data. (4) EDClust quantifies

cluster uncertainty with the probability that each cell belongs to a given cluster, contributing to

further statistical inference and biological interpretation.

In our simulation studies, we investigate the influence of heterogeneity among multiple sub-

jects on clustering results. We generate simulated data from Dirichlet-Multinomial distribution with

specifying different subject effects and different sample size selections. In real data analyses, we

compare the performance of EDClust with competing methods in four droplet-based scRNA-seq

datasets with multiple subjects collected from different tissue types or species. In contrast to ex-

isting clustering methods that work on data with batch-effect removal through Harmony, EDClust

considerably improves clustering accuracy under various experimental designs. Compared to exist-

ing clustering methods which account for subject variability, EDClust adopts a straightforward and

highly explanatory model but at the same time outperforms those methods in terms of ARI on most

of the datasets we tested.

For real data analysis, since the initial values of the cell type effects are set as the naive estimates

based on the clustering results given by SHARP, we recommend running EDClust multiple times,

each time using a different random seed, and select the one with the best likelihood as the final

result. Estimation of ∑
J
j=1 α0k j provide by Ronning23 or moment estimates proposed by Weir and

Hill24 can also be an appropriate choice for obtaining initial values. Moreover, determination of the

number of clusters is a crucial step. We suggest predefining it based on prior biological knowledge

or model selection criteria such as AIC25 and BIC26.

There are several limitations of EDClust. First, similar to all the methods using EM algorithm,

EDClust could be sensitive to the initial values. The current algorithm computes initial values based

on existing unsupervised clustering method. How to better determine initial values is our research

direction in the near future. For example, we could use a small subset of cells with strong confidence

in cell types, or apply prior biological knowledge. Secondly, EDClust is computationally heavy,

especially when the dataset contains some cells with a large total count. We will investigate whether

we can build a different surrogate function in order to improve the computational performance.
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