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Abstract

Changes in State: Simulations of Aggregation and Ordering in Finite
Systems

By Lara A. Patel

This dissertation presents three projects that use molecular dynamics (MD) simula-
tions to investigate finite size effects on changes in state.
The first project aims to explain the exponential decay during the sub-microsecond
phase of melting kinetics of unilamellar vesicle lipid ordering observed in ultrafast
IR temperature-jump experiments. MD simulations of small unilamellar vesicles of
MARTINI coarse-grained DPPC lipids model the response to an instantaneous tem-
perature jump from 280 K to final temperatures of 290 K to 310 K. Instantaneous
heating led to partial or total melting, changes in vesicle shape, and the sizes and
arrangements of the remaining gel-phase domains. At temperatures that produced
partial melting, the gel-phase lipid content of the vesicles followed an exponential de-
cay, consistent in form and timescale with experiment. The changing rate of melting
results from the curvature stress arising from the expansion of the bilayer area upon
melting competing with the confinement effect of a fixed internal volume.
The subsequent projects employ a global fitting analysis method that obtains free en-
ergies of association from equilibrated cluster size frequency distributions of unbiased
constant-temperature MD simulations. Simulated systems are typically too small for
the law of mass action to accurately describe the aggregation statistics. This method
relies on iteratively determining a set of cluster free energies that, using appropriately
weighted sums over all possible partitions of N monomers, best reproduce the cluster
size distributions. To showcase the method, a united-atom model of methyl tert-butyl
ether is simulated in the vapor phase and in explicit water solution over a range of
system sizes and concentrations.
Bypassing the explicit generation of partitions significantly enhances the efficiency
of this method and is named the Partition-Enabled Analysis of Cluster Histograms
(PEACH) method. It is used to calculate the free energy surface of NaCl aggre-
gation in MD simulations in four solvents (pure methanol, pure water, and two
methanol/water mixtures). The presence of non-ideal crowding effects and the sys-
tematic concentration-dependent indicators in the results of the PEACH model fit
are addressed. Insights into the proposed two-step mechanism of crystal nucleation
and its dependence on solvent and degree of supersaturation are discussed.
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Chapter 1 Introduction

In this dissertation, three research projects are presented: 1) the molecular dy-

namics (MD) of the melting phase transitions for small frozen DPPC vesicles following

an instantaneous increase in temperature, 2) the calculation of cluster free energies

for single component aggregation of methyl-tert-butyl-ether (MTBE) clusters, and 3)

the calculation of the cluster free energies for two component aggregation of sodium

chloride (NaCl) clusters in solvent environments where we tune the NaCl solubil-

ity. At a first appraisal, the first project seems rather different in that it deals with

a phase transition in the condensed phase and non-equilibrium dynamics while the

two other projects involve equilibrium simulations of aggregation dynamics. In this

introduction however, we aim to highlight the similarities between the three projects.

In the typical description of phase transitions between two systems of very large

sizes and negligible coupling, thermodynamic equilibrium between the two bulk phases

occurs when the chemical potentials and pressures of the two systems are equal. The

Gibbs phase rule1 determines that the coexistence of two phases occurs (at most) for

a single temperature for a 1-component system at constant pressure; or (at most) a

single concentration for a solution at constant pressure and temperature or vapor at

constant temperature. The assumption here is that the properties of the two phases

are unchanged when molecules exchange between the two phases. The breakdown of

this assumption is vital to our findings in the vesicle melting and small-N nucleation

cases and is exhibited in size dependent interfacial effects and confinement effects.

It is observed in Chapter 3 that even under the DPPC lipid melting phase transi-

tion temperature, small vesicles partially melt upon increasing the system tempera-
1The number of independent intensive thermodynamic variables f = 2 + r − v, where r is the

number of components and v is the number of coexisting phases.[1]
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ture. This is indicative of a range of equilibria between the gel and fluid phases over

a temperature range due to the introduction of curvature, domain size dependent

interfacial effects, and confinement effects. The bulk free energy when the system is

below the phase transition temperature, opposes melting and in an infinitely large sys-

tem, would ensure a single phase transition temperature. However, due to the small

size of the vesicles and the rigidity of the gel phases, the frozen vesicles are faceted.

The lipids melt in the regions where separate gel domains meet in order to relieve

curvature stress. The initial, very fast, melting in the vesicles after a temperature

jump is driven by the curvature stress and that driving force weakens as the melting

progresses. The size dependent interfacial free energy of the finite gel domains on

the vesicles also promotes melting of the vesicle. This driving force increases as a gel

domain size gets smaller. The interplay between the opposing forces of the bulk and

interfacial free energies is what leads to the notion of a critical nucleus size for gel

phase domains melting on a vesicle bilayer, under which a gel domain is unstable and

should melt fully.

The arresting or slowing of the phase transitions is the result of a confinement

effect imposed by the competition between a fixed internal volume2 and an increasing

vesicle surface area as lipids transition from a low surface area gel phase to the higher

surface area fluid phase. So while the temperature jump drives the phase transition

forward, the confined and fixed internal volume acts as an increasing barrier to further

melting. Since the fluid phase is relatively flexible, deformations of the vesicle bilayers

alleviates what could otherwise result in a compression of the fluid phase. The kinetics

of the phase transitions slows down as the opposing stresses on the interface between

the two phases reach a stalemate.

Aggregation involves the collision and then association of components of a sub-
2The internal volume of the vesicles can be considered fixed because diffusion of water across the

bilayer is on the time scale of 10’s of milliseconds[2] and so much slower than the initial melting of
the gel domains.
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stance to form a larger cluster. For aggregation in a bulk solution, the association

and dissociation of small clusters precedes the formation of a critical nucleus clus-

ter size which permits the growth of a stable aggregate. In the two step nucleation

mechanism experienced by crystals such as the NaCl cluster in Chapter 6, there is

a second nucleation step in the phase transition from an amorphous cluster of ions

to an ordered crystal structure. In the limit of a large system with a single large

aggregate, an equilibrium between the aggregate and the solution (NPT) or vapor

(NVT) is only reached at the saturation concentration csat.

The rare event nature of nucleating an aggregate in solution and this propensity

towards a single relatively fixed size aggregate makes it challenging to sample the

initial cluster sizes in a large simulation. The equilibrium cluster sizes are perturbed

by employing finite size effects (in the form of the system sizes and concentrations)

to alter the distributions of populated states (cluster sizes) in the simulations. Small

system sizes means that the effective free monomer concentration that the aggregates

experience is dependent on the clusters present, and thus a range of concentrations

and their associated equilibria are sampled. Across a series of simulations we can

thus achieve continuous sampling of cluster sizes. This continuous sampling is then

used to globally fit a sequence of partition functions which can be used to calculate

the free energy surface of nucleation using the partition enabled analysis of cluster

histograms (PEACH) method (Chapter 4).

These projects also explore perturbations of an environment in the context of

tuning the extent of a transition. In the case of the vesicle melting, increasing the

temperature increases the driving force behind the melting phase transition. The con-

finement effect caused by the fixed encapsulated volume results in a range of phase

coexistence temperature for the DPPC lipids in a vesicle as compared to the single

melting temperature of flat bilayer with an fixed interface length. In the case of the

nucleation of NaCl clusters, solvent environments were found to influence the nu-
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cleation equilibria. Decreasing the solubility by increasing the fraction of methanol

in the solvent, is found to increase the driving force behind the aggregation. More

interesting perhaps is the observation that it also affects the transition from an amor-

phous cluster to an ordered cluster. This can be interpreted as a destabilization of

the amorphous cluster due to a less attractive solvent environment.

We begin this thesis with a general overview of molecular dynamics (MD) and some

of the simulation tools that facilitate performing MD simulations in NPT and NVT

ensembles in Chapter 2. We present the results of temperature jump simulations of

vesicle undergoing melting phase transitions in Chapter 3. In Chapter 4 we introduce

and derive the partition enabled analysis of cluster histograms (PEACH) method

which can be used to globally fit the free energy of nucleation. This method is then

applied to nucleation in a single component system of MTBE amorphous clusters

in Chapter 5 and then a two component system of NaCl amorphous and crystalline

clusters in Chapter 6.
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Chapter 2 Molecular dynamics

Molecular dynamics is a simulation technique that involves the integration of

Newton’s equations of motion to compute the equilibrium and/or dynamic properties

of a classical many-bodied system. The dynamics of the atoms must conform to

classical mechanics such that the force Fi experienced by an atom is determined by

the partial derivative of the chemical potential U (r1, r2, · · · rN) with respect to the

atomic coordinates, ri.

Fi = −∂U
∂ri

(2.1)

∂2ri
∂t2

=
∂vi
∂t

=
Fi

mi

(2.2)

For each time step in a molecular dynamics trajectory, the forces (Eqn. 2.1) are

evaluated for each atom, summing the forces between all the non-bonded atom pairs

and the those due to the bonded interactions. Then the configuration is updated

by moving the atoms according to the forces working on them (Eqn. 2.2). There

are a number of different integration algorithms that can be used, but the following

projects consistently use the Verlet leap-frog integrator[3]:

v (t+ ∆t/2) = v (t−∆t/2) +
∆t

m
F (t) (2.3)

r (t+ ∆t) = r (t) + ∆tv (t+ ∆t/2) (2.4)

2.1 Temperature and pressure coupling

Ensembles for NPT or NVT simulations both require a coupling method that will

maintain the number of atoms in the simulation, and temperature of a system. In

molecular dynamics simulations, the number of atoms is maintained readily, since

there is no addition or removal of particles. The volume of a system is also readily

maintained when needed by not allowing the system dimensions to scale.
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It is however not as simple to set the total system temperature to a single value

(as one might the system volume in an NVT simulation). Temperature is an average

property, reflecting a distribution of kinetic energies. A bulk temperature T , can be

defined as a function of the average kinetic energy 〈K〉:

〈K〉 =

〈
1

2
mv2

α

〉
=

1

2
kBT (2.5)

where α represents a single degree of freedom. The instantaneous temperature at

time t can be calculated as proportional to the average of the kinetic energy over all

N atoms in the system normalized with respect to the degrees of freedom Nf :

T (t) =
N∑
i=1

miv
2
i (t)

kBNf

, (2.6)

Both of the temperature coupling methods that are presented subsequently oper-

ate by scaling the simulation velocities at given intervals throughout a trajectory.

Capturing the ensemble average in a simulation requires a temperature coupling

method that ideally samples the ensemble distributions of kinetic energies.

2.1.1 Berendsen thermostat

The Berendsen thermostat[4] operates on the model of a system that is weakly

coupled to a external temperature bath with a temperature T0. The method corrects

temperature deviations from T0 by:

dT

dt
=
T0 − T
τ

(2.7)

resulting in an exponential decay in the temperature deviation.[5] The temperature

adjustment is performed by scaling kinetic energy of the system (or velocities of each

particle) by a time dependent factor λ every nTC steps such that:

∆K = (λ− 1)2K (2.8)

The scaling factor λ is calculated as:

λ =

[
1 +

nTC∆t

τT

(
T0

T (t−∆t/2)
− 1

)]1/2

(2.9)
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where τT , the temperature coupling time constant, is related to the time constant τ

of the temperature coupling by:

τ = 2CV τT/NfkB (2.10)

where CV is the total heat capacity, kB is Boltzmann’s constant, and Nf is the total

number of degrees of freedom.

2.1.2 Velocity rescaling thermostat

The Berendsen thermostat does not reproduce the kinetic energy ensemble dis-

tribution accurately. The velocity rescaling thermostat[6] remedies this by ensuring

that the reference temperature (or kinetic energy via the relationship in Eqn. 2.5)

that the system is coupled to, samples the canonical distribution of kinetic energies.

The kinetic energy K is modified according to:

dK

dt
=

(K0 −K)

τT
+ 2

dW

dt
√
τT

√
KK0

Nf

(2.11)

where K0 is the average reference kinetic energy, Nf is the number of degrees of

freedom, and dW is a Wiener noise.

The first part of the temperature correction in Eqn. 2.11 is identical to that of the

Berendsen thermostat (Eqn. 2.7). The second half of Eqn. 2.11 is a stochastic term

that ensures proper sampling of the kinetic energy distribution.

2.1.3 Berendsen barostat

One of the more common ways to measure the pressure in a simulations is based

on the virial equation for the pressure:

P = ρkBT +
1

dV

〈∑
i<j

F (rij) · rij

〉
(2.12)

where ρ is the density, d is the dimensionality of the system, V is the volume of the

system, and F (rij) is the force between atoms i and j at a distance rij.[7] In the NPT
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ensemble that is typically used for simulations of solutions, this requires that some

form of pressure coupling is employed. The Berendsen barostat[4] uses a first order

kinetic relaxation of the pressure to the reference pressure P0 according to:

dP

dt
=

P0 −P

τp
(2.13)

This relaxation is accomplished by rescaling the coordinate and simulation dimen-

sions every nPC simulation steps by the scaling matrix with entries of:

µij = δij −
nPC∆t

3τp
βij (P0,ij − Pij (t)) (2.14)

where β is the isothermal compressibility and the actual scaling matrix is[5]:

µ′ =

µxx µxy + µyx µxz + µzx
0 µyy µyz + µzy
0 0 µzz

 (2.15)

In the subsequent studies, we use isotropic and semi-isotropic pressure coupling.

For isotropic pressure coupling, the scaling matrix elements µij where i = j are all

equal and the off-diagonal elements where i 6= j are zero. Semi-isotropic pressure

coupling is used in slab simulations. Assuming that the slab lies in the xy-plane, the

off-diagonal components are zero while the the element for the dimension parallel to

the slab µ‖ is the average of µxx and µyy while the perpendicular direction µzz = µ⊥

is independent of the others.

2.2 Potentials and coarse graining

Some level of smoothing over finer details is used in all classical potentials. In

atomic models, electrons and nuclei of atoms are not explicitly accounted for. Elec-

trostatic interactions are captured using a Coulomb potential by approximating the

charge distribution through point charges located at atom cites:

UCoulomb (rij) = f
qiqj
rij

(2.16)
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where f = (4πε0)−1, rij is the distance between particles i and j, and q is the partial

charge on the particles. Other non-bonded interactions are captured by a Lennard-

Jones potential:

ULJ (rij) = 4εij

((
σij
rij

)12

−
(
σij
rij

)6
)

(2.17)

where rij is the distance between particles i and j, εij is the depth of the interaction

well, and σij is the distance between the particles at which the potential function is

zero. The minimum of the well is located at rm = 21/6σij.

The selection of appropriate potential parameters (q, ε, σ) is typically done while

attempting to reproduce experimental observables in the simulations. Models such

as the MARTINI DPPC model and the TraPPE MTBE model are coarse grained

potentials. This means that rather than having a set of potential parameters for each

atom in the molecule, atoms are grouped together into a single simulation particle

with a single set of potential parameters. For example representing a methyl group

(CH3) with a single ‘bead’. While there are degrees of freedom that are lost by coarse

graining a potential, it significantly reduces the computational load and speeds up

dynamics. Processes that would be otherwise inaccessible given current hardware,

such as the melting of a vesicle (Ch. 3), become feasible and facilitate reaching a

qualitative understanding of such processes.
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Chapter 3 Coarse-grained molecular simula-
tions of the melting kinetics of small unilamel-
lar vesicles

Unilamellar vesicles are closed bilayers encapsulating an internal volume of sol-

vent.1 The bilayer consists of amphiphilic lipids that self-assemble to sequester hy-

drophobic tail groups from polar solvent. With vesicles spanning size scales from

the nm to µm, there are three subcategories: small unilamellar vesicles (SUV) with

diameters less than 100 nm, large unilamellar vesicles (LUV) 100 nm to 1 µm in

diameter, and giant unilamellar vesicles (GUV) with diameters exceeding 1 µm.[9]

Vesicles are convenient simple model systems for biomembranes, and can also be

used as nanoencapsulation agents for drug delivery and related functions.

The phase behavior of lipids in vesicles has been the subject of a number of ex-

perimental and computational studies, and has been exploited in the use of liposomes

as thermosensitive drug delivery agents,[10, 11] that change their permeability at the

phase transition temperature Tm.[12] Here our primary goal is to model the dynamics

of phase change when a vesicle undergoes partial or total melting in response to a

jump in temperature, a phenomenon observed in recent experiments by Nagarajan et

al.[13] In that study, an ultrafast IR laser pulse initiated a temperature jump in a so-

lution of LUV’s of deuterated dipalmitoyl phosphatidylcholine (DPPC) near the main

chain transition temperature (Tm), and the resulting change in phase was followed by

time-resolved IR spectroscopy. A motivation for that study was to develop a method

to induce a rapid change in the environment of lipid-associated proteins, so that the

dynamics of their response can then be followed through time-dependent probe spec-

troscopies just as is common in T-jump experiments on soluble protein folding.[14]
1This chapter is a reiteration of results that were published in ref. [8].
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Understanding the evolving structure of the vesicle following a rapid temperature

jump is important to fully interpret protein responses in future experiments.

The melting process studied by Nagarajan et al.[13] was fit to two distinct stages.

A fast, single-exponential submicrosecond component of the transition was inter-

preted as an initial partial melting from preexisting defect sites. With atomistic

molecular dynamics (MD) simulation data of melting bent lamellar sheets as sup-

porting evidence, pre-melted ridges present at the contact between facets of rigid gel

domains were proposed as the sites of these defects. Faceted structures have been

observed in frozen vesicles imaged by electron microscopy[15] and simulated using

coarse-grained[16–19] and lattice models[20, 21]. In the second stage, melting slowed

down and entered a stretched-exponential phase, which was attributed to complex

coupled rearrangements of domains and the influx of water.

The goal of this research is to gain a qualitative description of the melting phase

transition of a vesicle and to establish if the kinetics qualitatively match experi-

ment. To that end, we analyze the melting dynamics of simulated frozen vesicles

of 13,165 and 31,021 DPPC lipids with diameters of 33 nm and 50 nm. We have

found timescales for melting of single vesicles that are in good qualitative agreement

with the bulk experimental values. In the current simulations we attempt to address

the processes that take place during the sub-microsecond stage and the origin of the

slowing-down in melting; the timescale for the second stage remains out of reach of

our simulations, so we can only offer speculations.

The MARTINI 2.0 coarse-grained potential[22, 23] was used for DPPC and for the

accompanying coarse-grained water. There are some discrepancies between the phase

behavior of this coarse-grained DPPC and the experimental DPPC. The experimental

main phase transition temperature of DPPC is 314 K[24] (or 310 K for perdeuterated

DPPC[25–27]), while estimates for the MARTINI model’s transition temperature are

lower, at 295± 5 K[22] or 302± 1 K[28]. A more important, qualitative difference is
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that the simulation model exhibits a direct transition from an untilted gel phase (Lβ)

to the fluid phase (Lα), while true DPPC undergoes a pretransition from a tilted gel

phase (Lβ′) to the ripple phase (Pβ′) and then to the fluid phase at Tm. The absence

of tail tilt and the ripple phase in the simulation model simplifies the behavior of the

phase transition.

The MARTINI version of DPPC has in common with the experimental system

that it undergoes a considerable increase in area per lipid upon melting, from 0.48

nm2 to 0.63 nm2 in experiment [29–34] and from 0.47 to 0.64 nm2 in the simulation

model[22]. Over the initial microseconds of melting following the temperature jump,

the area of the vesicle will expand. Given that the water content of LUV’s responds to

perturbations on a timescale of 10’s of milliseconds[2] the solvent content and internal

volume remains effectively constant over the initial stages of melting, meaning that

melting will induce changes in local curvature and overall vesicle shape. Nagarajan

et al.[13] rationalized the initial single-exponential melting dynamics by assuming

that surface pressure builds up linearly with the degree of melting. In this study,

the availability of actual structures will afford a more nuanced view of how the shape

changes produced by melting feed back into the melting rate through surface curvature

and interfacial line tension effects.

3.1 Methods

Molecular dynamics simulations are performed using GROMACS 4.6 [35–38] and

the MARTINI 2.0 coarse-grained (CG) force field[22, 23] for DPPC lipids, water and

anti-freeze (included as 10% of all solvent particles for vesicle simulations). CG anti-

freeze particles effectively lower the water freezing temperature from ∼290 K to below

250 K.[23]

A time increment of 25 fs is used for all simulations. Temperature and pressure are

kept constant using velocity-rescaling temperature coupling[6] with a time constant of
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τT = 1.0 ps and Berendsen pressure coupling[4] with a time constant τP = 2.5 ps and

a compressibility of κ = 5×10−5 bar−1. Pressure coupling is fully isotropic for vesicle

simulations and semi-isotropic (allowing the bilayer area to equilibrate independently

of the normal dimension) for patch simulations. Graphical images of molecules were

prepared using VMD.[39]

3.1.1 Bilayer patch simulations

A bilayer patch of 512 MARTINI DPPC lipids and 3656 CG water particles are

equilibrated at 273 K and 1 bar for 600 ns. A similar simulation at 323 K and 1 bar

is equilibrated for 200 ns to provide a base line for the fluid phase lipids. The average

surface area per lipid is 0.46 nm2 for the gel phase in agreement with simulation[22]

and experimental values[32–34] and 0.64 nm2 for the fluid phase, also in agreement

with simulation[22] and experiment[29–31, 34].

3.1.2 Vesicle construction and solvation

Previous simulation studies of forming a gel phase vesicle by freezing encountered

delays associated with the release of internal solvent through pores and with pore

closure.[16] Direct construction of a gel phase vesicle via assembly of bilayer slabs

into a truncated icosahedron was used here instead.

The advantage of a truncated icosahedron starting structure for vesicle simula-

tions is the speed with which a stable vesicle structure in the gel phase is achieved.

Truncated icosahedrons consist of 12 pentagonal faces and 20 hexagonal faces and

closely approximate a spherical shape, while encouraging faceting similar to that ob-

served in other vesicle freezing simulations.[16, 17] Starting structures were prepared

in three ways: with the pentagonal faces excluded to create 12 pores that serve as

defect sinks, with all of the faces present and displaced from the origin sufficiently to

prevent any bad contacts between lipids, and lastly with the faces displaced closer to

the origin so that the bilayers overlap initially. If a pair of lipids are within 0.45 nm
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of each other, one of the lipids is removed. The first two methods lead to pores that

take a long time to close (in excess of 1 µs). The last structure leads to a stable and

closed structure within 1 µs that is used as a starting structure for all subsequent

temperature-jump simulations.

To prepare this structure, larger gel phase bilayer slabs are constructed by re-

moving solvent from the final bilayer patch structure at 273 K and replicating the

membrane in the xy-plane. The large slab is cut into pentagonal and hexagonal slabs

by lipid removal. Assembly of these pentagonal and hexagonal slabs into a truncated

icosahedron is detailed in Appendix B.1.

Vesicles are solvated with CG solvent containing 10% antifreeze at an initial den-

sity of 895 kg/m3, obtained by equilibration at 1 bar pressure and 300 K. Solvent

particles within 0.6 nm of lipid beads are removed.

A summary of the final truncated icosahedron structure constants is given in Table

3.1.

Table 3.1: Summary of the total number of lipids in the initial truncated icosahedrons
before removing bad contact lipids (NLipids,i), the final number of lipids after lipids
with bad contacts are removed from the structure (NLipids,f), the radial displacement
of the pentagon and hexagon slabs (rslab), the edge length of the slabs (ledge), the
number of water particles (NW), and the number of anti-freeze particles (NAF).

NLipids,i NLipids,f rslab/nm ledge/nm NW NAF

19,060 13,165 16.637 8.00 979,144 111,053
39,876 31,021 24.957 11.50 3,062,267 347,324

3.1.3 Vesicle equilibration

The smaller vesicle (13,165 lipids) truncated icosahedron starting structure is run

for 100 ns at 260 K and a pressure of 1 bar to ensure that the vesicle does not melt

completely. The vesicle is then run for 1.1 µs at 280 K, below the reported main

phase transition temperature of 295± 5 K[23]. The transition from the gel phase to

fluid phase tapers off after the first few nanoseconds as is shown in Section 3.2 but the

merging of gel domains persists even after having reached a stable fraction of lipids
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in the gel phase.

The larger vesicle (31,021 lipids) truncated icosahedron structure is run for 1 µs

at 280 K and 1 bar.

3.1.4 Temperature jump simulations

The equilibrated vesicle structure is subjected to temperature jumps with simu-

lations for the smaller vesicle at 290 K, 295 K, 300 K, and 310 K and for the larger

vesicle at 290 K, 295 K, 297 K, and 300K. These temperatures are situated around

the lamellar phase transition temperature of 295± 5 K to allow for simulations that

undergo partial melting. These simulations are run for 500 ns at a pressure of 1 bar.

The configuration from the end of the 500 ns trajectory of the small vesicle sim-

ulated at 295 K is subjected to a refreezing simulation at 280 K and run for 1 µs at

a pressure of 1 bar.

Simulations for the smaller vesicle were performed on the XSEDE computational

resource Trestles. Using five 32 processor nodes, the simulation completed 160 ns/day.

Simulations of the larger vesicle were performed on Comet with five 24 processor nodes

and completed 60 ns/day.

3.1.5 Order parameter

During analysis of simulation results, each lipid is classified as being in the fluid

or gel phase based on an order parameter. The curved surface of a vesicle necessitates

an order parameter defined independently of the lipid plane.

An initial categorization of each lipid as having a gel-like or fluid-like configuration

is made by calculating the angle θT between its two tails. This angle is defined as the
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angle between vectors from C1 to C4 sites in each tail, as illustrated in Fig. 3.1.

vT1 = vC4A − vC1A (3.1)

vT2 = vC4B − vC1B (3.2)

θT = sin−1

(
‖vT1 × vT2‖
‖vT1‖ · ‖vT2‖

)
(3.3)

Figure 3.1: A single MARTINI 2.0 DPPC lipid with each coarse grain bead labeled
and the tail vectors highlighted (black arrows).

Due to tight tail-tail packing in the ordered gel phase we anticipate that the two

tails on a single gel phase lipid samples a limited range of conformations within a

relatively small range of angles θT. The cutoff angle θcut is 15◦ for gel phase lipids

and was chosen based on the angle distribution of gel phase bilayer patch at 273 K

(Fig. 3.2, blue curve) where a strong peak exists between 0◦ and 20◦. By comparison

the angle distribution of a fluid phase bilayer patch at 323 K is significantly broader

(Fig. 3.2, orange curve).

This choice of order parameter does not however account for local environment.

Fluid phase lipids, while sampling a wider range of conformations and thus tail angles,

still sample conformations with θT ≤ θcut, as evident in the overlap of the two distri-

butions in Fig. 3.2. Using only the internal order parameter to differentiate between

the gel and fluid phase leads to an overestimation of the number of gel phase lipids.

Lipids are therefore re-classified as fluid or gel according to their local environment: if



17

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  10  20  30  40  50  60  70  80  90
%

 o
f 
L
ip

id
s

θT

Gel
Fluid

Figure 3.2: A plot of tail angle histogram for the bilayer patch of 512 DPPC lipids
at 273 K (gel) and 323 K (fluid) averaged over the last 100 trajectory frames.

3 or more of a lipid’s 6 nearest neighbors have θT < 15◦, it is classified as belonging to

the gel phase. The implementation of this classification is demonstrated in Fig. 3.3.

Interfacial lipids are then defined as gel phase lipids that have one or more fluid phase

neighbors.

Figure 3.3: A snapshot of two cross sections of the same 13,165 lipid vesicle after
melting at 290K, the left showing the full lipid structure and the right with a single
bead per lipid. Each lipid is colored according to the local environment order param-
eter, orange being the fluid phase and blue the gel phase. Solvent although present
in the simulations, is not shown in snapshots for clarity.
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3.1.6 Relative shape anisotropy

The change in vesicle symmetry is quantitatively measured by the relative shape

anisotropy, κ. The eigenvalues of the gyration tensor,

Sm,n =
1

N

N∑
rmrn (3.4)

S =

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 , (3.5)

are ordered such that S1 ≥ S2 ≥ S3 and κ is a function of those eigenvalues.[40, 41]

κ = 1− 3
S1S2 + S1S3 + S2S3

(S1 + S2 + S3)2 (3.6)

When κ = 0 the vesicle is spherically symmetric and κ = 1 if the vesicle forms a line.

3.2 Results and Discussion

3.2.1 Vesicle equilibration

Starting from the truncated icosahedron configurations, melting occurs at the

vertices and edges of domains for both SUVs within the first couple of nanoseconds.

The construction of the vesicle results in there being more free volume at the edges

and vertices of the vesicle for melting to begin. The percentage of gel phase can be

seen dropping from 100% to 60% followed by a recovery in the gel phase (Fig. 3.4).

The vesicles reach a steady state with 59.4% of the lipids in the gel phase for the

13,165 lipid vesicle and 69.8% for the 31,021 lipid vesicle. The average diameters of

the SUVs are 33.47 nm and 50.28 nm.

Although the truncated icosahedron starts with 32 distinct gel domains, both

of the SUVs undergo a significant consolidation of those smaller domains. This is

evident in the snapshots of the vesicles in Fig. 3.5 and 3.6. Consolidation of smaller

domains results in a decrease in interfacial energy between the gel and fluid phase by

decreasing the length of the interfaces.
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Figure 3.4: The percentage of gel phase lipids in the vesicle as it is equilibrated at
260 K (black) and then 280 K (blue) for the 13,165 lipid vesicle and 280K (light blue)
for the 31,021 lipid vesicle.

Figure 3.5: The 13165 lipid vesicle (d = 33 nm) equilibration with the outer leaflet
displayed in the upper row and the inner leaflet below with the gel (blue) and fluid
(orange) phases shown. In the 1.2 µs trajectory, the temperature is increased from
260 K to 280 K 100 ns into the trajectory once it is ascertained that the vesicle does
not melt completely.

In Fig. 3.7 the fraction of interfacial lipids with respect to the gel phase lipids

is plotted, demonstrating that despite the majority of the melting and refreezing

occurring within the first 200 ns of simulation, the decrease in interface takes longer.

Decreasing the interfacial fraction is observed to happen either by domain merging

and/or by some domains melting away while others growing as seen in Ostwald ripen-

ing (Section 3.2.5). Merging to decrease interfacial energy is coupled to an increase

in the local curvature because fewer facets dictates sharper angles between facets. As

discussed previously,[20, 21] this curvature is localized along the fluid phase regions
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Figure 3.6: The 31,021 lipid vesicle (d = 50 nm) equilibration at 280 K with the outer
leaflet displayed in the upper row and the inner leaflet below with the gel (blue) and
fluid (orange) phases shown.

because the fluid phase has the lower bending modulus. Faceting is more pronounced

in the smaller vesicle but present in both.
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Figure 3.7: The fraction of interfacial lipids to gel phase lipids over the course of the
equilibration runs.

There is no lipid flip-flopping observed in any of the simulations, equilibration or

otherwise. The smaller SUV has 41.8% of the lipids in the inner leaflet while the

larger SUV has 44.7%. A disparity between the population of the inner and outer

leaflets is expected due to the radii of the vesicles being so close in magnitude to the

lamellar thickness[22] (4.0 ±0.1 nm).

The phase composition is also asymmetric across the bilayer. In the smaller SUV

44.9% of the inner leaflet is in the gel phase as opposed to 69.8% in the outer leaflet.

The larger vesicle exhibits 62.6% and 75.6% gel phase in the inner and outer leaflets
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respectively.

This disparity could be promoted by curvature environments in the inner and outer

leaflets differing in magnitude and direction. The inner leaflet lipid tails are permitted

a larger volume and thus are more prone to melting. The radii of the vesicles are on

a similar magnitude to the thickness of the bilayer and as such the radii of curvature

could be different enough to have an impact on the degree of melting. The difference

in phase compositions could also be an artifact, introduced by the initial construction

conditions, that under populates the inner leaflet and thus promotes conversion into

the higher surface area phase to compensate. The phase transition being faster than

lipid flip flopping, this would be a way of relaxing any inherent surface tension or

pressure within each leaflet.[42]

3.2.2 Vesicle melting rates: Comparison with experiment

Partial melting is observed in the temperature-jump simulations for the small SUV

(33 nm) at 290 K and 295 K and for the larger SUV (50 nm) at 290 K, 295 K, and

297 K. Averages over the final 100 ns of the temperature jump simulations are given

in Table 3.2. Plots of the percentage of lipids in the gel phase for both vesicle sizes

are shown in Fig. 3.8 with single exponential fits in black. The fit constants to the

single exponential form:

f (t) = A exp (−t/τ) + C (3.7)

are given in Table 3.3. On the 100 ns timescale they exhibit approximately single

exponential melting kinetics in qualitative agreement with the early stages of melting

measured in IR temperature-jump experiments.[13]

The time constants (τ) are not expected to match experimental times exactly due

to the effect of coarse-graining on the dynamics. Multiplying times from MARTINI

model simulations by a factor of 4 to approximate experimental times has been sug-

gested;[22] with this scaling factor, the range of timescales for melting in simulation
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Table 3.2: Averages and standard deviations over the last 100 ns (200 data points) of
the melting simulations for the total, inner, and outer percentages of gel lipids (xGel,
xGel,i, xGel,o), the percentage of lipids in the inner leaflet (xInner), and the number of
gel domains for the inner (Ni) and outer (No) leaflets. The percentages of lipids in
the inner leaflet are 41.8% and 44.7% respectively for the smaller and larger vesicle.

13,165 Lipids (33 nm)
T/K xGel/% xGel,i/% xGel,o/% Ni No

280 59.4 ± 0.8 44.9 ± 0.9 69.8 ± 0.8 6 8
290 46.2 ± 0.5 31.5 ± 0.7 56.7 ± 0.8 5 5
295 30.5 ± 0.5 17.3 ± 0.5 40.0 ± 0.6 2 3
300 0.7 ± 0.1 0.2 ± 0.1 1.2 ± 0.2 0 0
310 0.5 ± 0.1 0.1 ± 0.1 0.7 ± 0.1 0 0
280 54.3 ± 0.4 38.7 ± 0.6 65.4 ± 0.5 2 3

31,021 Lipids (50 nm)
T/K xGel/% xGel,i/% xGel,o/% Ni No

280 69.8 ± 0.3 62.6 ± 0.5 75.6 ± 0.4 8 5
290 61.3 ± 0.3 52.8 ± 0.5 68.2 ± 0.4 8 5
295 51.7 ± 0.3 44.0 ± 3.1 57.7 ± 0.6 8 7
297 41.4 ± 0.5 35.0 ± 0.4 46.5 ± 0.6 5 5
300 0.7 ± 0.1 0.3 ± 0.1 1.1 ± 0.2 0 0

Table 3.3: Fitting constants for the single exponential kinetics (Eqn. 3.7) exhibited
by partially melted vesicles including the time constant τ in simulation time units.
Scale by 4 to compare to experimental time constants.

NLipids T/K τ/ns A C
13,165 290 91.82 7.65 46.66

295 131.28 20.81 29.84
31,021 290 85.35 3.15 61.65

295 133.22 9.91 51.48
297 165.96 18.69 40.72
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Figure 3.8: Percentage of gel phase lipids for a 33 nm SUV (left) melted at 290 K
(cobalt blue), 295 K (blue), 300 K (orange), and 310 K (yellow) at 1 bar of pressure
for 500 ns. Percentage of gel phase lipids for a 50 nm SUV (right) melted at 290 K
(cobalt blue), 295 K (blue), 297 K (magenta), and 300 K (orange). Single exponential
fits to the partially melted vesicles are shown in black.

(340 - 664 ns) matches that in experiment[13] (244 - 310 ns) to within a factor of 1.3

- 2.1.

The experiments, in measuring changes in the gel phase content averaged over

an ensemble of vesicles, do not distinguish between gradual melting occurring over

all the vesicles and rapid melting events distributed over a range of delay times.

The qualitative similarity of the experimental ensemble average to simulated melting

dynamics trends for individual vesicles strongly supports the former interpretation of

the experimental data.

The initial fast melting (< 20 ns) does not fit well to the single exponential func-

tional form indicating a different melting mechanism upon initial heating. A lack of

sufficient time resolution may explain why this initial phase was not seen in experi-

ment.

Experiments using T-jumps to final temperatures where the equilibrium state is

fully melted did not yield a signal in ref. [13], presumably because the recovery time

between laser shots was too short to permit nucleation of new gel phase domains.
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3.2.3 Vesicle melting: Structural changes

All of the vesicles exhibit some degree of shape change upon melting, evinced by

the final structures of the 33 nm vesicle in Fig. 3.9 or the 50 nm vesicle in Fig. 3.10.

The number of domains (Table 3.2) in the case of the vesicle that remain relatively

spherically symmetric are either static (the 50 nm vesicle at 290 K) or change only

slightly (the 33 nm vesicle at 290 K and the 50 nm vesicle at 295 K).

Figure 3.9: Images of the 33 nm SUV after 500 ns temperature-jump simulations
from 280 K to 290 K, 295 K, 300 K, and 310 K. The gel phase (blue) and fluid phase
(orange) are shown. The two rows show the same vesicles viewed down the IA (top)
and the IC (bottom) principle moment of inertia axes. Snapshots of these vesicles
melting progression can be seen in Appendix Fig. B.4.

Figure 3.10: Images of the 50 nm SUV after 500 ns temperature-jump simulations
from 280 K to 290 K, 295 K, 297 K, and 300 K. The gel phase (blue) and fluid phase
(orange) are shown. The two rows show the same vesicles viewed down the IA (top)
and the IC (bottom) principle moment of inertia axes. Snapshots of these vesicles
melting progression can be seen in Appendix Fig. B.5.
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The more drastic shape changes are coupled to a significant decrease in the number

of domains. The partially melted 33 nm SUV at 295 K has asymmetric symmetry that

appears to be converging on an oblate ‘disk’ shape, marred by a single gel domain in

the outer leaflet with no matching inner domain. This domain would likely melt given

a longer simulation. The approximately discoidal structure with two flat gel domains

on opposite faces connected by a curved fluid-phase rim is appealingly symmetric and

may represent a free energy minimum, or at least a long-lived intermediate state, for

a partially melted small vesicle. A similar structure, with a single pair of gel domains

present on opposite sides of a flattened (but less round) structure appears transiently

during the complete melting of the 50 nm vesicle at 300 K (see Appendix Fig. B.6).

The 50 nm SUV at 297 K appears to be asymmetric as well.

Fig. 3.11A and 3.11B plot the relative shape anisotropy (κ), measuring the vesicles’

symmetry as they undergo partial and full melting respectively. The small SUV at

295 K undergoes the most drastic shape change of the partially melted vesicles and

appears to reach a steady state. The large vesicle at 297 K also shows a large shape

change but it is clear from the plot that it has not reached a steady state.

Fig. 3.8 and Fig. 3.11A show that changes in shape and the percentage of gel phase

lipids occur simultaneously for the partially melted vesicles. After an initial (∼20 ns)

increase, the ratio of interfacial lipids to gel phase lipids steadily decreases throughout

the trajectories (Fig. 3.11C). Shape changes are accompanied by the melting and

merging of domains, thereby decreasing the length of gel/fluid interfaces (Fig.3.11E).

These shape changes include changes in curvature and thus curvature energy in the

simulations.

Full melting is observed in the smaller SUV (33 nm) at 300 K and 310 K (Fig. 3.9)

and for the larger SUV (50 nm) at 300 K (Fig. 3.10) and produces structures with

approximately prolate symmetry. Prolate or pear-shaped structures similar to those

seen for the 33 nm vesicle and 50 nm vesicle respectively, have been reported as the
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Figure 3.11: Plot of the relative shape anisotropy κ for the partially melted vesicles
(A) and the fully melted vesicles (B). (More detailed moment of inertial plots can
be seen in Appendix Fig. B.10.) Plot of the fraction of gel phase lipids at a gel-fluid
interface for the partially melted vesicles (C) and the fully melted vesicles (D). Plot
of the absolute fraction of lipids at the gel-fluid interfaces for the partially melted
vesicles (E) and fully melted vesicles (F).



27

elastically stable structures for moderately deflated vesicles;[43] a more quantitative

comparison to those predictions is given in the next section.

3.2.4 Vesicle melting rates: Interpretation

To understand the connection between the changing rate of melting and the evolv-

ing vesicle structure we consider the mesoscale contributions to the structure’s free

energy.

The interplay between curvature energy, line tension, and domain shape in vesi-

cles containing both ordered and fluid domains has been investigated through ex-

periment[44] and theory[45] in the case of GUV’s where long ribbon-like domains

predominate.

Sknepnek et al.[20] have described faceted vesicle structures arising from the pres-

ence of a mixture of soft and stiff bending components with some interfacial free

energy penalty governing their phase separation. The bending stress of the system is

supported entirely by the soft component. The structures of partially melted vesicles

seen here can be understood in the same framework, except that the fraction of the

different mixing components is not fixed but determined by the equilibrium between

gel and fluid phases.

The degree of melting in the vesicle is determined at equilibrium by minimization

of a total free energy,

Ftot = F0 + Finterf + Fcurv (3.8)

composed of the bending energy of the bilayer (Fcurv) and the interface between fluid

and gel phases (Finterf) in addition to the intrinsic free energy balance (F0) between

gel and fluid phases. The state of the equilibrated vesicle before the temperature

jump can be assumed to have reached a local minimum in this overall free energy

with respect to the degree of melting at the edge of each gel domain:

dF

d∆N
= 0 (3.9)
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where ∆N = Nf − Ng is the difference between the number of fluid and gel phase

lipids. Throughout this discussion, we will assume the constraints of constant total

number of lipids, constant internal volume and constant number of lipids in each

leaflet, the latter two imposed by the slow rates of permeability and flip-flop.

For a system brought out of equilibrium through a temperature jump, it is rea-

sonable to assume that melting rate is determined both by the length of the gel/fluid

interface and the magnitude of this driving force. The total interfacial length does

not change enough (Fig. 3.11E) to account for the near total slowing down observed

(Fig. 3.8), so we look to each free energy component to identify how its derivative

with respect to phase composition will evolve during melting. The first, intrinsic or

bulk term in the full free energy can be approximated as:

F0 ≈ Nf∆H

(
1− T

Tm

)
(3.10)

using the fully frozen, planar bilayer as a reference. The derivative of F0 with respect

to the number of fluid lipids is therefore a constant at a given temperature; as Tm =

302 K [28], the bulk tendency opposes melting at all temperatures where incomplete

melting was observed.

The interfacial contribution to the free energy also promotes melting here, because

for the faceted geometry, melting decreases the area of each domain and thus the

length of its boundary. We can assume that Finterf is given by the product of a line

tension Λ and the length of the interface, which for a single circular domain scales as

(Ndomain ag)
1/2. The change in Finterf with respect to melting in a single bilayer leaflet

is:
dFinterf

d∆N
= −Λ

4

(
π ag

Ndomain

)1/2

(3.11)

That is, the driving force towards melting due to the line tension increases as

melting proceeds. It cannot therefore be responsible for the slowing-down of melting

(unless the number of domains changes).
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Table 3.4: Critical nucleus sizes (N∗) for a leaflet of a bilayer based on Eqn. 3.12 for
temperatures below the bulk phase transition temperature (302 K) and a correspond-
ing estimate of the diameter (d∗) of a circular domain consisting of that many lipids.
For the MARTINI DPPC model with a bilayer line tension Λ of 10.0 ± 1.5 pN,[28,
47] a conversion enthalpy ∆H of 25.8±1.5 kJ/mol per molecule,[28] and a bulk phase
transition temperature Tm of 302 K[28]. The approximate diameter ranges for do-
mains in the inner (di) and outer (do) leaflets of the two vesicle sizes are reported
based on structures at the end of the trajectories.

T/K 280 290 295 297 300
N∗ 4 12 37 72 449
d∗/nm 1.5 2.7 4.6 6.4 16.2
33 nm Vesicle
di/nm 9-16 6-20 12-18 - -
do/nm 15-24 14-23 14-33 - -
50 nm Vesicle
di/nm 10 - 50 6 - 42 6 - 35 13 - 34 -
do/nm 16 - 97 15 - 86 17 - 41 19 - 40 -

Equating the tendency of the line tension to shrink the gel phase domain (Eqn. 3.11)

with the bulk tendency to add lipids to it (Eqn. 3.10) yields a temperature-dependent

critical size, below which the (monolayer) domain is unstable:[46]

N∗ = π ag

(
Λ/2

∆H (1− T/Tm)

)2

(3.12)

Using the most recently obtained values for the transition temperature,[28] en-

thalpy of melting,[28] and line tension,[28, 47] the critical diameters of gel phase

domains at the temperatures of interest have been calculated and are given in Table

3.4. In cases where partial melting is seen, the final domain sizes begin and remain

above the critical domain size calculated at that temperature. So, while line tension

is undoubtedly an influence on the melting rates, it cannot account for the abrupt

decrease in melting rate in the first 20 ns or the more graduate slowing down over

100’s of ns seen in experiment and simulation.

Thermal expansion of the internal solvent is a possible source of initial rapid

partial melting, but the degree of expansion over the temperature jumps is limited

to 1.1 − 1.8% as the linear fit in the solvent volume (nm3/bead) as a function of
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temperature shows: vsol = 0.09234+0.00014T . Approximating the vesicle as spherical,

the change in the surface area of the vesicle ∆Amelt due to solvent expansion, the

change in the surface area per lipid transitioning from the gel phase to the fluid phase

∆amelt,and the number of lipids NLip in the vesicle can be used to calculate the change

in the fraction of lipids in the gel phase:

∆Gel =
−2 (∆Amelt/∆amelt)

NLip

(3.13)

=
−2(36π)1/3

(
(nsolvsol,H)2/3 − (nsolvsol,C)2/3

)
NLip (af − ag)

,

where nsol is the number of coarse grained solvent particles encapsulated by the vesicle,

vsol,C and vsol,H are the volume per solvent bead for the temperatures before and after

the T-jump, and the areas per lipid for the gel and fluid phase are respectively af

and ag. The solvent expansion as such would result in a decrease of 1.5 − 2.3% for

the small vesicle and 1.7− 2.9% by comparison to that seen in Fig. 3.8. Thus solvent

expansion alone cannot account for the 20 ns of rapid initial melting.

The coupling of degree of melting to curvature is difficult to treat formally except

under the idealized case of a straight ridge of constant curvature (i.e., a section of a

cylinder) that joins two flat gel phase domains that maintain a fixed relative angle θ.

The radius of curvature of a ridge of length L containing Nf lipids is Nf af (Lθ)−1.

Fcurv =
κ

2

Nfaf
r2

= κ
L2θ2

2Nfaf
(3.14)

At a fixed angle between facets and ridge length, increasing Nf lowers Fcurv:

dFcurv

dNf

= − κ

2af

(
Lθ

Nf

)2

(3.15)

As the number of fluid-phase lipids Nf increases, the favorable contribution of

curvature stress towards bending becomes weaker. This is therefore the only free

energy contribution that can account for the decrease in melting rate observed in the

simulations after the initial ∼ 20 ns, over which the 2-D shapes of the domains and
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the 3-D shapes of the vesicles do not qualitatively change (see Figs. B.4 and B.5) and

the mean domain size decreases (as indicated by the increase in ratio of interfacial

to gel phase lipids, Fig. 3.11C). For the larger vesicle heated to 290 K, this accounts

for nearly the entire extent of the observed melting. In all other cases where partial

melting is seen the melting proceeds in concert with shape changes over the remainder

of the 500 ns trajectories, as evident in the final structures in Figs. 3.9 and 3.10, and

in comparing time dependences of the relative shape anisotropy (Fig. 3.11A) and the

degree of melting (Fig. 3.8).

In general, once the fluid zones separating gel phase domains are wide enough,

the domains can adopt more compact structures (less constrained by the edges of

the overall polyhedral structure) and can migrate to form a different arrangement

of domains and/or fuse with others. Furthermore, complete melting of an isolated

domain was seen in some cases which is expected once melting brings the domain size

below the critical nucleus size.

In the case of the 300 K vesicle, the inner leaflet domain sizes are below the critical

nucleus size which could in part account for the vesicle melting so rapidly that the

shape change lags behind. Values for the 50 nm vesicle (Table 3.4) are also above the

critical domain sizes.

For T-jumps to temperatures above (310 K) or slightly below (300 K) the planar

bulk transition temperature, the initial domain sizes are either below the critical

nucleus size or near enough that a small amount of shrinkage brings them below,

producing complete melting. The shapes of the vesicles continue to evolve after

melting is complete, in the case of the smaller vesicles reaching a peanut- or dumb-bell

shaped, approximately prolate structure that persists for hundreds of nanoseconds.

(The larger 300 K vesicle is continuing to evolve at the end of the trajectory, but

the changes in its moments of inertia (Appendix Fig. B.9) are consistent with an

approach to a prolate structure.)



32

Seifert et al.[43] used two different models to construct phase diagrams for elasti-

cally stable structures for vesicles subjected to a full range of deflated volumes, the

spontaneous-curvature model and the coupled bilayer model.

To make a comparison to the phase diagrams produced by Seifert et al.[43], we

calculated the corresponding reduced area difference, ∆a, and reduced volume, v,

variables based on our simulations. These two variables are normalized with respect

to a spherical, fully hydrated vesicle with the same number of lipids. The radius R0

is related to the fully melted and hydrated vesicle such that,

R0 = (A/4π)1/2 =

(
Ninneraf

4π

)1/2

, (3.16)

where Ninner is the number of inner leaflet lipids and af is the area per lipid in the

fluid phase. The reduced volume variable is:

v =
V

4π/3R3
0

, (3.17)

where V is the vesicles actual encapsulated volume. The 33 nm vesicle encapsulates

approximately 87,250 solvent particles. At a temperature of 300 K, the solvent density

is 7.41 beads/nm3 and the vesicle volume is 11,648.6 nm3. The radius of the inner

leaflet of a vesicle with the same lipid population in the fluid phase and full hydration

is calculated to be 16.7 nm and the reduced volume for the fully melted vesicle at 300

K is 0.59.

The area difference between the leaflets ∆A,

∆A = Aouter − Ainner = (f outer − f inner)NLip ∗ af , (3.18)

where fouter and finner are the fractions of lipids in the inner and outer leaflets re-

spectively, is related to the integrated mean curvature M and distance between the

leaflets D such that M ≈ ∆A/2D. Thus the reduced area is:

∆a =
M

4πR0

≈ ∆A

8πDR0

(3.19)
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Table 3.5: Relative volume v and change in area ∆a parameters for comparison to
the phase diagrams produced by Seifert et al.[43] as they apply to the fully vesicles
at 300 K.

NLip R0/nm V /nm3 v ∆a
13,165 16.7 11648.6 0.59 1.48
31,021 26.6 48783.0 0.62 1.42

The actual value of ∆a is highly sensitive to the definition of D, which depends

on the reference plane. The “pivotal plane” is defined such that the number of lipids

in a curved leaflet is proportional to its area.[48] It has been calculated for MARTINI

DMPC as 0.85 nm away from the midplane, or 0.89 nm closer to the midplane than

the mean distance of the phosphate beads.[48] For MARTINI DPPC, in which the

phosphate beads lie at 2.0 nm from the midplane,[22] we may therefore estimate that

the pivotal plane is at 1.11 nm from the midplane, and the effective thickness of the

bilayer is 2.22 nm. The reduced area difference then is ∆a = 1.48 for the smaller

vesicle and 1.42 for the larger. Fluid vesicles with these combinations of v and ∆a

are predicted to adopt a prolate dumb-bell shape according to the phase diagram

calculated by Seifert et al.[43] The final structures of smaller vesicles simulated at 300

and 310 K (shown in Fig. 3.9) are consistent with this prediction. The larger vesicle at

300 K appears as a pear-shaped structure after 500 ns CG simulation (Fig. 3.10), but

its shape is clearly still changing (as evident from its anisotropy parameter, shown in

Fig. 3.11A) and it is reasonable to assume it will adopt a similarly symmetric prolate

shape as well. Using D = 4.0 nm in Eqn. 3.19 yields ∆a values near 0.8, which would

be predicted to produce cup-like stomatocyte shapes.

For both vesicle sizes, the shape change lags behind the vesicle phase transition.

We can surmise as a result that the driving force behind the melting is larger than the

barrier incurred by a high curvature energy surface ‘transition state’. Ultimately, the

fully melted vesicles would be expected to adopt spherical shapes over timescales long

enough for solvent permeation and lipid flip-flop to remove the effective constraints

on v and ∆a respectively.
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3.2.5 Topological evolution

Changes in curvature occur in two ways - melting at pre-existing gel-fluid interfaces

along the edges of the vesicle and changes in the number and arrangement of gel

domains. In this section we will discuss some of the more interesting trends in the

topological events of vesicles that undergo partial melting.

There are two mechanisms observed that facilitate a change in the number of

domains: complete melting of a domain (inner and outer) and the fusion/fission of

domains. In the first case, the inner leaflet domain is the first to melt completely.

With a smaller domain size, a higher curvature and a different orientation of lipids

with respect to that curvature, the melting phase transition is favored by the inner

leaflet. The outer leaflet can persist for tens of nanoseconds but eventually melts.

Examples of domain fusion can be seen in Fig. B.7 (domain A). In the equilibration

of the smaller 33 nm vesicle, a single outer leaflet domain merged together to bridged

two inner leaflet domains. The evolution of the domain’s continued fusion in the

first case at 290 K shows that one of the inner domains has to melt completely

before the remaining one is permitted to grow and become a single mirroring domain.

Alternatively in the case of the vesicle at 295 K, the two inner domains melt completely

followed by the outer leaflet domain.

Domain fission is shown in Fig. B.8 (domain B) as the other direction that a

bridging domain can take. The vesicle at 290 K first undergoes fission of the outer

leaflet domain. The smaller inner leaflet domain melts completely and is then followed

by it’s mirroring outer leaflet domain. For the vesicle at 295 K the same domain

in the outer leaflet undergoes a similar process except the remaining outer leaflet

domain then fuses with a different neighboring domain in the outer leaflet followed

by complete melting of the smaller inner domain to form a single pair of inner and

outer leaflet domains.

Based on these observations, the fusion of two domains is more easily accomplished
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through the outer leaflet. Subsequently one of the inner leaflet domains has to melt

to facilitate a transition to a single set of inner and outer leaflet domains. Coupling

between the leaflets and the curvature environment of the inner leaflet prevent them

from migrating or growing until forming contact. Similar dynamics were seen in the

larger vesicle as shown in Fig. B.9 (domains C and D).

3.2.6 Refreezing

In the experiments performed by Nagarajan et al. a temperature jump (T-jump)

is affected over a 10 ns dead time during which there are no IR measurements. The

dynamics of the melting is then probed using time resolved infrared spectroscopy

(TRIR) over 109 to 102 s.[13] It is assumed that the sample remains at a constant

temperature for approximately 12 ms before it cools via diffusion of heat.[14]

Thus if the experiments involve cycles of heating and cooling, does the vesicle reach

a true equilibrium structure or simply vacillate between two meta-stable states? By

extension, this brings into question whether the initial structure of the vesicles with

many domains used here, accurately represents the structure of a vesicle in the cool

part of the heating cycle.

To address the question of reversibility in light of the changes in shape and number

of domains, we refreeze the small SUV structure at 295 K to 280 K. The vesicle

structure at 295 K is considered the most interesting case with an almost oblate

symmetry and the most extreme shape change of the partially melted SUVs (see

Fig. 3.11A). The outer leaflet has 3 gel domains while the inner leaflet has 2 gel

domains, thus presenting a situation where one of the gel domains does not have a

mirror in the inner leaflet.

Images of the initial and final structures of the vesicle are displayed in Fig. 3.12

from four viewpoints looking down the IA, IB, and IC moment of inertia principle axes

of the 280 K vesicle after 1 µs of simulation.
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Figure 3.12: Snapshots of the 33 nm vesicle’s inner and outer leaflets at 295 K (left)
and at the end of a 1 µs refreezing simulation at 280 K (right).

The total number of domains in the inner and outer leaflets does not change in

the 1 µs simulation. The domains all grow in size with the total percentage of lipids

in the gel phase almost recovering completely at 54.3% (Table 3.2). The refreezing

process is slower than the melting process as seen in Fig. 3.13 A. We propose that the

rate of freezing after the initial increase in the fraction of gel phase lipids is tempered

by processes governing changes in the vesicle curvature such as domain nucleation

and fission.

The domain shown in the third row in Fig. 3.12 and on the left hand side of

the fourth row images is mirrored across the inner and outer leaflets. The process

of splitting the domain is facilitated in part by the domains bending outwards so

that the lipids melt along the ‘hinge’ - a forming edge between two facets. This

would suggest that given more time, the vesicle will revert to a structure with more

domains. In Fig. 3.13B the relative shape anisotropy demonstrates a reversion to a
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Figure 3.13: Plots of the percentage of lipids in the gel phase (A) and the relative
shape anisotropy (B), the fraction of gel phase lipids at a gel-fluid interface (C) and
the absolute fraction of lipids at a gel-fluid interface (D) for the vesicle melting at
295 K (orange) and subsequent refreezing at 280 K (blue).

relatively spherical symmetry that is facilitated by the bending, splitting, and growth

of domains.

The outer leaflet gel domain shown in the second row of Fig. 3.12 lacks a mirroring

gel domain in the inner leaflet from start to finish, although the outer domain grows

quite large upon refreezing. This would confirm that the nucleation of a gel domain

in the inner leaflet is a rare event. The nucleation event is hampered by the curvature

of the inner leaflet. The same domain can be seen from the side on the left side of

the vesicle in the third row. The size of the outer leaflet domain and rigidity of the

gel phase promotes flattening of a portion of the inner leaflet. Although not seen

in simulation, given enough time the flattened portion could facilitate a gel domain

nucleating on the inner leaflet, thus stabilizing the gel domain in the outer leaflet.

Fig. 3.13C shows that the fraction of gel lipids at the interface initially decreases

as a result of the growth of a fixed number of gel domains. The absolute fraction
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of interfacial lipids (Fig. 3.13D) has a fast initial growth followed by a steady in-

crease, indicating that the refreezing process does not reach a steady state within the

simulation time.

3.2.7 Implications for dynamics beyond 500 ns

Although our simulations capture only the initial stages of melting following an

ultrafast temperature jump, based on our observations we may speculate about the

later stages. We hypothesize that the system approaches a plateau level of melting

where the bending, interfacial, and intrinsic effects of further melting balance out,

and that this accounts for the initial single-exponential phase of melting observed

experimentally. Fluctuations around this degree of melting (or fluctuations in the

partitioning of the gel phase fraction among multiple domains) will continue. The

permeation of solvent on a time scale of 10−2 s is likely too slow to account for

the subsequent stretched exponential. Infrequent large fluctuations may break the

stability of the arrangement of domains, provoking (for instance) the complete melting

of a domain and the rearrangement of the remaining gel domains, which will adopt

a new plateau level of melting. Such rare events with high activation barriers could

account for the stretched-exponential melting component observed in experiment.

While the permeation of solvent (and associated volume expansion) is expected to

have a profound effect on the shape and phase composition of the fully equilibrated

vesicle structure, with a time scale of 10−2 s it is apparently too slow to account for

the melting in this regime, approximately half of which takes place between 10−6 and

10−5 s.[13]

3.3 Conclusions

Vesicles with diameters of 33 nm and 50 nm are equilibrated to form faceted

frozen topologies in agreement with previous simulations. The inner leaflet displays
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a greater degree of conformational disorder than the outer leaflet.

Vesicles that undergo partial melting at temperatures below 300 K exhibit sin-

gle exponential kinetics in qualitative agreement with experiment, accompanied by

shape changes driven by changes in the surface area to volume ratio and curvature

stress. The internal volume of the vesicle is constant over the time scale of the phase

transition due to the low permeability of the bilayer to solvent, as lipids convert from

the gel phase to the fluid phase, the surface area of the vesicle increases. This initial

conversion serves to decrease the local curvature of the edges on the faceted structure

where the fluid phase is localized. Further melting after the first (∼ 20 ns) relaxation

changes curvature stress until a domain is fully melted or merges with a neighboring

domain, changing the vesicle shape and thus the curvature stress free energy surface,

thereby influencing the melting rates of other domains.

Further significant melting will then occur upon rare fluctuations large enough to

change the number of domains (complete melting or fusion). The large and hetero-

geneous barriers to such events may contribute to the stretched exponential nature

of the slow phase of melting observed in experiment.

Vesicles that undergo full melting have distinctly different kinetics since the driving

force behind the phase transition exceeds the barrier created by a build up of stresses.

The final structures of these vesicles assume the prolate symmetry of a dumbbell

shaped surface, a shape that has been found as a minimum curvature energy surface

in previous studies using the bilayer-coupling model.[43]

Finally the refreezing of a partially melted vesicle would indicate that the cycles

of heating and cooling of vesicles using T-jumps and TRIR would not simply cause

existing domains to grow and shrink but for there to be significant topological changes

in the number of domains present on the surface of the vesicle. This supports the

hypothesis that the phase transition temperature and thus the rate of melting in

the single exponential phase of the melting kinetics is a dependent on the curvature
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energy of the vesicle.
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Chapter 4 PEACH Method Development

This chapter will present the background in statistical thermodynamics, and in

the area of number theory known as partitions theory, that underly the methods

used to predict and analyze equilibrium cluster size distributions in small systems.

Connection will be made to the law of mass action, the familiar relationship that

governs equilibrium size distributions in the limit where the system is large, and

finite size effects on equilibrium size distributions. We will explain the motivations to

move away from the explicit generation of partitions for the calculation of cluster size

frequencies, the subsequent development of the partition enabled analysis of cluster

histograms (PEACH) method and using the grand canonical partition function Ξ as a

generating function for the canonical partition function Q. We wrap up this chapter

by describing the global fitting method used to extract cluster partition functions q◦i

for a standard state volume V ◦ from a series of simulation cluster size histograms and

how the free energy surface of nucleation is calculated from the partition functions

and in classical nucleation theory (CNT).

4.1 What is a partition function?

A partition function is essentially a sum over all the states available to an atom,

particle, or molecule. For the case where the ground state energy is defined as zero,

the partition function is roughly a count of all the possible states available that have

thermally accessible energies. A molecular partition function can be expressed as the

sum over all possible quantum states j with energies εj,

q =
∑
j

exp [−βεj] (4.1)

The difference between energy levels relative to the energy levels themselves at
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room temperature is orders of magnitude smaller,1 and permits the approximation

of these levels as a continuum. An exception is intramolecular vibration modes; this

is one reason (along with computational efficiency) that in many classical atomic

simulations, bond lengths and some bond angles are constrained to a fixed value. For

the classical partition function for a single particle this is:

qclass =
1

h3

∫
exp [−βH (p,q)] dp dq (4.2)

where β = (kBT )−1, and H (p,q) is the Hamiltonian function dependent on a set of

momenta p and generalized coordinates q. This is an integral over many dimensions

where p and q run over Nf degrees of freedom. The Hamiltonian for a classical

system is composed of the kinetic energy as a function of the momentum p and mass

m of the atoms, and a potential energy as a function, U (q). For a monatomic gas,

the Hamiltonian is expressed as follows:

H (p,q) =
1

2m

N∑
j=1

(
p2
xj + p2

yj + p2
zj

)
+ U (q) (4.3)

The total partition function Qclass, can thus be taken as the total count of states

available to a system of atoms or molecules. Given a monatomic gas with a single

atomic type, the total partition function can be taken as the product of the partition

functions qclass forN atoms normalized with respect to theN ! number of permutations

available to those atoms. Essentially we want to normalize for the indistinguishability

of one atoms of said gas from other atoms of the same gas.

Qclass =
qNclass

N !
=

1

N !

(
2πmkBT

h2

)3N/2

ZN (4.4)

Integration of the potential energy contribution to the Hamiltonian results in ZN , the

classical configuration integral.

ZN =

∫
V

exp [−βU (x1, · · · zN)]dx1 · · · dzN (4.5)

1See chapter 5 of ref. [49] where, in deriving the translational partition function for a monatomic
ideal gas, it is shown that there is approximately 30 orders of magnitude difference between the
difference between the energy levels and a typical value for a translational energy level.



43

In the case where the atoms are non-interacting, U (q) = 0 and the configuration

integral is ZN = V N . This result is equivalent to the calculation of the translational

partition function qtrans (V, T ) for a particle in a box.

Qclass =
1

N !

((
2πmkBT

h2

)3/2

V

)N

=
qtrans (V, T )N

N !
(4.6)

If we extend beyond an ideal monatomic gas to molecules or to atoms/molecules

that interact with one another to form clusters, the partition functions become more

complex, requiring the partition function to include an internal component. The

internal part of the partition functions has to account for all the different configu-

rations that the molecules and/or cluster can assume while also accounting for the

indistinguishability of atoms within the molecule or atoms/molecules in an aggregated

cluster.

q (V, T ) = qclass (V, T ) qinternal (T ) (4.7)

= qtrans (V, T ) qrot (T ) qvib (T ) qelec (T ) qnucl (T )

For a single molecule in a quantum mechanical context, accounting for the permuta-

tions of atoms within the molecule occurs in the rotational partition function qrot(T )

where a symmetry number σ normalizes for permutations in rotational symmetry in

the bonded atoms of the molecule.2

The method we will be outlining in this chapter does not require the formal

evaluation of integrals or hamiltonians to solve for the partition function. It is however

essential to establish what states we define our partition functions to encompass.

We can define a partition function for any grouping of atoms that is distinguish-

able, whether that is on an atomic, molecular or aggregate scale. The level at which we

make this separation is somewhat arbitrary3 but as we discuss the partition functions
2See chapter 8 of ref. [49] for a discussion of the partition functions for polyatomic molecules.
3Caution should be used when defining distinguishable aggregates. Not accounting for the distin-

guishability of the components forming a cluster can lead to very poor fitting of partition functions.
For example, using a single component approach for clusters consisting of two components such as
NaCl leads to very poor results in reproducing cluster frequency distributions.
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for clusters, we assume that the partition function for an i-mer cluster, qi, includes

all of the possible unique conformations that a cluster of i components can assume.

While conformations with different internal coordinates are considered to be unique,

interchanging two identical atoms within a single conformation is a permutation we

assume the partition function does not double count. It is assumed that the parti-

tion function of an i-mer includes the normalization for internal permutations of like

atoms or molecules.

4.1.1 Volume scaling of the partition function

An important concept to reinforce is that the partition functions scale linearly

relative to the system volume. Recall that the partition function can be separated

into a translational and internal portion wherein the translational portion is a function

of both volume and temperature.

q (V, T ) = qtrans (V, T ) qinternal (T ) (4.8)

This linear dependence means that partition functions for the same molecule or cluster

but two different system volumes, V1 and V2 are related by,

q (V1, T )

V1

=
q (V2, T )

V2

. (4.9)

It is this volume scaling that enables us to perform global fitting over simulated

systems with different solute concentrations and system sizes. We can define a stan-

dard state volume V ◦ (which will be the inverse of a standard state concentration

c◦) that can be used to relate each of the simulated systems with a volume V to

the standard state partition function q◦. In section 4.4, the standard state partition

functions are progressively fit using the following function to convert from a standard

state partition function to the partition functions for the simulated volume.

q (V, T ) = q◦ (V ◦, T )V/V ◦. (4.10)
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4.2 The law of mass action

The law of mass action is a relationship that is taught to students in general

chemistry classes as a way to calculate the equilibrium constant for a reaction based on

the reaction stoichiometry and the reaction component concentrations. For example

in a reaction,

νAA+ νBB 
 νCC + νDD (4.11)

the equilibrium constant is defined as the following by the law of mass action:

KLoMA (T ) =
(ρCV

◦)νC (ρDV
◦)νD

(ρAV ◦)
νA (ρBV ◦)

νB =
q◦C

νCq◦D
νD

q◦A
νAq◦B

νB
(4.12)

where ν is the stoichiometric coefficient, ρ is the concentration (N/V ), q◦ is the

partition function for a standard state volume V ◦. Normalizing with respect to volume

serves to make the partition functions only a function of temperature.

There are two assumptions built into this equation:

1. The equilibrium constant, regardless of how we calculate it, is a function of

temperature only for ideal systems. When non-ideal effects such as crowding and

interactions between components beyond the momentary interaction of reacting

or aggregating (as is the case in our studies) occur, the equilibrium constants

begin to be concentration dependent. This can influence the quality of the

PEACH global fitting as will be shown for aggregation of NaCl clusters in water

in section 6.3.3.

2. The law of mass action only works well for systems whose concentrations are

negligibly perturbed by fluctuations in the extent of the forward or backwards

reaction, which is only possible in the limit of large system sizes where the

reactant and product populations can be treated as continuous variables.

This second aspect can be seen in the derivation of the law of mass action from
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equilibrium conditions.[49]4 If we start from the equation for the change in Helmholtz

free energy at constant temperature and volume and define a variable for the extent

of the reaction such that dNj = νjdλ,

dA|T,V =
∑
j

µjdNj =

(∑
j

µjνj

)
dλ. (4.13)

At equilibrium, the change in free energy relative to the progression in the reaction

(∂A/∂λ)T,V = 0:

0 = νCµC + νDµD − νAµA − νBµB (4.14)

If the chemical species are independent and distinguishable, the total partition func-

tions is defined as the product of the partition functions of the components:

Q ({Nj} , V, T ) =
∏
j

Q(Nj, V, T ) =
∏
j

qj
Nj

Nj!
(4.15)

and the chemical potential for a given species can be defined as the partial derivative

of the Helmholtz free energy with respect to the population of that species. In taking

the partial derivative with respect to Nj we are making the assumption that the

number of j in the system is large enough that we can treat Nj as a continuous

variable rather than a discrete one.

µj = −kBT
(
∂ lnQ

Nj

)
∂Ni,i6=j ,V,T

= −kBT ln
qj (V, T )

Nj

. (4.16)

Stirling’s approximation states that N ! ≈ N lnN −N in the limit of large N , and is

what allows us to derive the second expression for the chemical potential. Combining

Eqn. 4.16 and 4.14, and using Eqn. 4.10 to convert the partition functions to a stan-

dard state partition function, allows us to get the equilibrium constant in Eqn. 4.12.

This matters in the context of simulations since the system sizes are typically finite.

So what does this mean in the context of applying the law of mass action to

simulated systems, where computational expense imposes limitations on system sizes
4This derivation is a reiteration of the one given in Ch. 9 of ref. [49]



47

and thus Nj is in the realm of being a discrete variable? We focus on this question

in the context of using the law of mass action to calculate the free energy surface of

aggregation where it is important to continuously sample aggregate sizes up to some

aggregate size limit.

4.2.1 The limitations of the law of mass action

We use a free energy profile for the aggregation of surfactants into micelles de-

rived by Maibaum et al.[50], to illustrate the system size dependence of the law of

mass action equilibrium association constants. Micelle aggregation is ideal for this

demonstration because micelles have a finite optimal cluster size. This allows us to be

at the saturation concentration or critical micelle concentration ρcmc (Eqn. 4.18) and

form the maximum micelle (cluster) size; all while still allowing for a variety of other

cluster sizes or multiples of the maximum cluster size to coexist in the simulation.

The free energy (Eqn. 4.17) is a function of the temperature T (293.15 K), the

oil-water surface tension γow (15.0× 10−3 N m−1), the free energy difference between

a hydrophobic tail within the micelle core and solvated in water ∆µ (11 kJ mol−1),

the surfactant length δ (2 nm), and the girth of the surfactant a (0.5 nm). The values

for these constants were chosen to achieve a free energy minimum at a micelle size of

40 (Fig. 4.1).

∆G

kBT
= − ∆µ

kBT
n+

(36π)1/3 γowa
2

kBT

(
δ

a

)2/3

n2/3 +

(
3

4π

)2/3
96

49

(a
δ

)4/3

n5/3 (4.17)

ρcmc =
1

a3
exp

[(
5832

49

)1/3(
γow a2

kBT

)2/3

− ∆µ

kBT

]
(4.18)

The free energy is used to generate the partition functions for a system with a

surfactant concentration equal to the critical micelle concentration for the free energy

surface for increasing system sizes Nsys and system volume V . For each system size,

the total partition functions were calculated using iterative derivatives of the grand

canonical partition function for that system volume and size (using the formulation
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Figure 4.1: Free energy of association (Eqn. 4.18) relative to the monomer free energy
for micelle aggreagation.

in section 4.3.4). As is demonstrated in Appendix A.2.1, the relative divergence

between the actual equilibrium constant and the law of mass action equilibrium con-

stants (Eqn. A.14) can be calculated solely using ratios of total partition functions

Q (N, V, T ). The results of this analysis is shown in Fig. 4.2.
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Figure 4.2: The ratio (Eqn. A.14) between the exact and law of mass action equilib-
rium association constants for surfactants in clusters of size 5, 10, 20, 30, and 40 as
the total number of surfactants in the systems (NSys) increase.

The oscillation periods in the deviation between the equilibrium constants are

approximately equal to the optimal cluster size of 35-37 surfactants, as determined

by the most frequent large micelles seen in the cluster size distributions in Fig. 4.3

for the largest Nsys. The oscillations and magnitudes of the divergence between the

equilibrium association constants in Fig. 4.2 appear to die away as the system size

increases. For a system size that can accommodate a maximum of 7 micelles (∼260
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surfactants), the error in the law of mass action equilibrium constant for a 40-mer is

an underestimation by ∼ 10%.
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Figure 4.3: Micelle size distributions for systems of size Nsys based on the free
energy surface in Fig. 4.1 and a surfactant concentration equal to the critical micelle
concentration given by Eqn. 4.18.

There are very pronounced finite size effects reflected by the micelle size distribu-

tions in Fig. 4.3 for small systems (Nsys < 100) that lead to a bimodal micelle size

distribution. This comes about as a result of not having enough surfactants in the
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system to form the optimal cluster size in the presence of an ideal monomer concentra-

tion. The two peaks signify two less than optimal cluster sizes that are energetically

competitive for the systems.

Johnston et al. [51] claim that for simulations of micelles to produce relatively good

average micelle size frequencies even for the largest micelles, the system size must

contain enough material to form several micelles. They proposed that simulations

capable of forming at least 5 of the large micelles were likely to produce good statistics

for micelle size distributions. While it is not possible to draw direct comparisons

between their simulations and the results of the theoretical free energy used here,

there appears to be relatively good agreement between the two estimations for how

large the surfactant sizes have to be in order to escape finite size effects.

But what happens when one simulates a nucleating system where there is an

energetic barrier to the formation of a cluster of the critical nucleus size and then,

given a sufficient supply of free monomers, the aggregate continues to grow until the

simulation size limits its growth?

4.2.2 Finite size effects: What happens to the free energy sur-
face in a simulation?

Let us begin by considering nucleation of a crystal in an experimental context

where we have a saturated solvent; no further solute can be solvated in the solution

(csys = csat). It has been posited that the conditions for crystal growth are set

by localized density fluctuations of solute in the solution where clusters form and

break apart in the high density solute regions. The cluster’s growth is furthered

via nucleation, a rare event where a cluster grows sufficiently large to overcome the

nucleation barrier, forming a relatively stable crystal at the critical nucleus size. There

may or may not be a phase transition to an ordered structure as the crystal grows.

Crystal growth in an experimental context is driven by evaporation of the solvent.

We can think of the solute concentration being minutely raised above the satura-
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tion concentration by evaporation. Deposition of the solute onto the crystal nucleus

depletes the free solute (monomers) in the solvent, returning the free solute concen-

tration to the saturation concentration. This mechanism of crystal growth maintains

an equilibrium and thus an equal chemical potential between the free monomers in

solution and those associated with the crystal.

Simulations in the canonical (NVT) and isothermal-isobaric (NPT) ensembles

have a fixed population of solutes and solvents, and thus encounter finite size effects.

In the dilute limit (csys ≤ csat), only small clusters (i << Nsys) form with statistically

relevant frequency since the formation of the clusters deplete the free monomers

solution to below the saturation concentration, impeding further growth. Chen and

Pappu[52] achieved consistent results calculating the equilibrium constants for the

aggregation of small ionic cluster (size ≤ 6) in relatively large and dilute unbiased

molecular dynamics simulations using the law of mass action.

To observe larger cluster sizes, simulations must be performed at concentrations

significantly higher than the saturation threshold.[53] The the formation of a cluster

of solutes depletes the number of available free monomers, decreasing the free solute

concentration. If we start a simulation at the saturation concentration csat, the forma-

tion of a cluster of any size effectively lowers the solvent concentration below csat and

thus destabilizes larger crystals. If the total concentration is not well above csat, this

depletion effect impedes the formation of cluster nuclei.[54] Salvalaglio et al. termed

this a consequence of a confinement effect, like a fixed system size, where the stability

of clusters does not depend on just the supersaturation but also the system size.[55]

Fig. 4.2.2 shows a very simplified effective free energy (blue lines) that exemplifies

how the depletion effect alters the true free energy surface (orange lines) for nucleation

of MTBE clusters in a finite system of 30 molecules. The model assumes that the

system is populated by one cluster of size i, and Nsys−i free monomers.5 The effective
5This is very simplified since it artificially imposes a limit of one partition for each cluster size i.

Even in a finite system, the full scope of partitions N − i should be accounted for.
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Figure 4.4: The effective free energy surfaces for MTBE (Chapter 5) aggregation at
scaled monomer concentrations of the saturation concentration csat (14.52 mM based
on the classical nucleation theory (CNT) fit (Table 5.2)). The blue lines indicate
the effective free energy surface for a system with a total of 30 MTBE at the given
concentrations assuming the presence of one large cluster of size i and the rest of the
monomers. This gives an approximate indication of the depletion effect of forming a
cluster on the free energy surface. The corresponding free energy of a system large
enough to not experience any notable depletion effect is shown in yellow.
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monomer concentration is thus a function of the cluster size i, c1,i = (Nsys − i)Vsys.

The effective free energy for an i-mer is calculated as the true free energy for the

i-mer given the adjusted monomer concentration c1,i and a total system size Nsys. A

similar model has been explored by Wedekind et al..[54]

While the model used in this case likely over estimates the degree of supersat-

uration required to encourage the formation of larger clusters, it does demonstrate

the qualitative behavior of a system under confinement. In systems that undergo a

nucleation type mechanism of growth, once the critical nucleus forms, this propels

the system into rapid cluster size growth. The formation of clusters depletes the

concentration of free monomers in solution to around the saturation threshold. The

equilibrium state consists of some cluster size fluctuation around one large cluster

in the system in the presence of free monomers and small clusters. This makes it

impossible to establish equilibrium constants for the transient intermediate cluster

sizes from high concentration and large unbiased simulation.

However the finite size effects can be used to tune cluster size sampling for a

range of cluster sizes. Across a number of simulations at different concentration (well

above csat) and/or system sizes, the influence of finite size effects allows continuous

coverage of all the cluster sizes around and past the critical nucleus size. At these

smaller system sizes, the formation and breaking of larger clusters significantly alters

the concentration of other cluster sizes in the system and the law of mass action

no longer serves as a good model to calculate the equilibrium association constants.

In the subsequent sections we will derive the PEACH (Partition enabled analysis of

cluster histograms) method functional forms, and explain the global fitting methods

that allow the calculation of equilibrium constants and thus free energy surfaces for a

range of cluster sizes using simulation data from relatively small system simulations.
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4.3 PEACH: Partition enabled analysis of cluster his-
tograms

It is important before proceeding to have a thorough understanding of what we

mean by a partition. In mathematics, an integer partition of N denotes a set of

positive integers whose sum equals N. In its physical manifestation, a partition is

simply one way of grouping N objects and is independent of the order in which those

parts are grouped. The partition count p(N) is the number of distinct partitions that

can be formed from N identical objects independent of ordering.

Fig. 4.3 shows the example for the partitions of five objects which in the context

of the subsequent sections will be individual atoms or molecules. Note that partition

count in this case is p(5) = 7.

Figure 4.5: Each column in this figure shows one distinct way 5 objects can be grouped
and thus is a partition. Clusters of different sizes are given different colors. Note that
permutations on these groupings are not included.

For a large number of parts N the number of partitions p(N) can be approximated

using the Hardy-Ramanujan-Rademacher asymptotic formula,[56]

p (N) ≈ 1

4N
√

3
eπ
√

2N/3. (4.19)

For a set of objects with two distinguishable types, where the number of parts 1 and

the number of parts 2 are equal (N1 = N2 = N), the number of partitions grow even
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more rapidly,

p (N,N) ≈ a

n55/36
exp

[
bN2/3 + cN1/3

]
(4.20)

where a, b, and c are constants.[57, 58]

We begin by outlining how explicit enumeration of partitions can be used to

calculate thermodynamic averages in section 4.3.1 and can be used to fit the free

energies of a system. The exponential growth in the number of partitions rapidly

makes the calculation of ensemble averages though the generation of individual par-

titions very computationally expensive however, and this motivated the development

of the partition-enabled analysis of cluster histograms (PEACH)[59] methods laid

out in section 4.3.2-4.3.4. The derivations herein are for a single component system.

The derivations and equations for two-component (or bipartite) systems are given in

ref. [59].

4.3.1 Canonical ensemble partition function

It is most logical to start an explanation of how partition functions can be used to

generate average quantities in the canonical ensemble where the number of molecules

N , the volume V and the temperature T are kept constant. These are the same

conditions maintained in the MD simulations we have performed for MTBE vapor

phase cluster formation.

We begin with the familiar canonical partition function for N indistinguishable,

non-interacting and thus non-clustering molecules with a partition function q (V, T )

in Eqn. 4.21. This is sometimes referred to as the ideal gas assumption and holds

true in the limit of dilute systems. Admittedly, in order for clusters to form, a system

must be saturated or super-saturated, thus violating this assumption at the very least

when a cluster forms or breaks apart. The extension to a set of clusters is however

similar.

Q(N, V, T ) =
q (V, T )N

N !
(4.21)
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If we make the assumption that the clusters of different sizes are independent and

distinguishable species, we can express the total partition function for a given parti-

tioning of N monomers, {ni}, as the product of the individual partition functions:[49]

Q ({ni} , V, T ) =
N∏
i=1

Qi (ni, V, T ) =
N∏
i=1

qni
i

ni!
(4.22)

where the partition is constrained so that total number of monomers N is constant:

N =
N∑
i=1

i ni (4.23)

Summing Eqn. 4.22 over all possible partitions of N monomers, we get the canon-

ical ensemble partition function:

Q (N, V, T ) =

p(N)∑
k=1

N∏
i=1

q
ni,k

i

ni,k!
(4.24)

To test a set of partition functions {qi} against simulation results we take the

product of a measurable quantity, for example the number of a given cluster size s

(ns,k), in a given partition k multiplied by the probability weighting for that partition

summed over all the possible p(N) partitions for N molecules. It is worth noting that

in this situation, the calculating of the average cluster size frequency would require

the explicit generation of each possible partition. As shown in Eqn. 4.19, the number

of partitions grows exponentially. While Eqn. 4.25 holds true for any system size, the

generation of partitions becomes computationally intractable for larger systems and

even for relatively small bipartite systems (Eqn. 4.20).

〈ns〉 = Q(N, V, T )−1

p(N)∑
k=1

(
ns,k

N∏
i=1

q
ni,k

i

ni,k!

)
(4.25)

4.3.2 Grand canonical ensemble partition function

As in other problems in statistical mechanics (Bose-Einstein condensation, for

instance[49]), some qualities are easier to calculate in the grand canonical ensemble

than in the canonical ensemble. We begin by defining the grand canonical partition
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function Ξ as a function of the absolute activity λ = eµ/kBT and the canonical partition

functions Q with a total number of particles N , a volume V , and temperature T .

Ξ (λ, V, T ) =
∞∑
N=0

Q (N, V, T )λN (4.26)

For an a system of non-interacting, indistinguishable particles that do not form

clusters, the canonical partition function is the rather familiar Eqn. 4.21[49] and

substitution into Eqn. 4.26 garners a sum over all system sizes,

Ξ (λ, V, T ) =
∞∑
N=0

(q1λ
1)
N

N !
= exp

[
q1λ

1
]
. (4.27)

The extension of this function to a system which can form clusters is established

by taking the product of a similar sum for each cluster size. The sum in Eqn. 4.28

accounts for all the possible variations of the number of i-mers that are possible in

a configuration independently of the total number of particles in said configuration.

Addition being equivalent to an ‘or’ statement in probability, it makes sense that the

number of an i-mer in any configuration is exclusive in the sense that a configuration

cannot simultaneously have no i-mers and have n i-mers. The product ensures that

all possible combinations of cluster sizes are accounted for.

Ξ (λ, V, T ) =
∞∏
i=1

[∑
mi=0

(qiλ
i)
mi

mi!

]
(4.28)

The connection back to Eqn. 4.26 can be established by expanding the series up

to the m = 3 terms and grouping according to the power of lambda:

Ξ =
∞∏
i=1

[
(qiλ

i)0

0!
+

(qiλ
i)1

1!
+

(qiλ
i)2

2!
+ · · ·

]

=

(
1 +

q1λ

1!
+

(q1λ)2

2!
+ · · ·

)(
1 +

q2λ
2

1!
+ · · ·

)(
1 +

q3λ
3

1!
+ · · ·

)
· · ·

= 1︸︷︷︸
Q(0,V,T )

λ0 +
(q1

1!

)
︸ ︷︷ ︸
Q(1,V,T )

λ1 +

(
q2

1

2!
+
q2

1!

)
︸ ︷︷ ︸

Q(2,V,T )

λ2 +

(
q3

1

3!
+

q1q2

2! · 1!
+
q3

1!

)
︸ ︷︷ ︸

Q(3,V,T )

λ3 + · · ·
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where Q(N, V, T ) is of the form seen in Eqn. 4.24, and map onto the groupings of

partition functions qi for the integer partitions of 0, 1, 2, and 3 respectively.

The functional form of the grand canonical partition function in Eqn. 4.28 can

again be tweaked by recognizing that the sum in that expression is equal to the

Maclaurin series expansion of an exponential where x = qiλ
i, the probability weighting

per i-mer cluster:

exp [x] =
x0

0!
+
x1

1!
+
x2

2!
+ · · ·+ xk

k!
+ · · · =

∞∑
m=0

xm

m!
. (4.29)

Thus, the third functional form for the grand canonical partition function is,

Ξ (λ, V, T ) = exp

[
∞∑
i=1

qiλ
i

]
. (4.30)

These three expressions for the grand canonical ensemble partition function are

essential to the methods that will be unveiled in the subsequent sections and how

they can be implemented in the calculation of the average cluster size distributions

results in significantly faster algorithms.

4.3.3 〈ns〉N from 〈ns〉λ

It should be a relatively familiar concept that one can calculated the average of a

measurable variable by taking the sum over all products of the value of said variable

and the probability meeting the conditions where that variable holds said value. Thus

the average frequency of a cluster of smolecules 〈ns〉λ in the grand canonical ensemble

under the conditions of a fixed chemical potential and thus a fixed absolute activity

λ this corresponds to:

〈ns〉λ =
∞∑
N=0

〈ns〉N P (N, λ) (4.31)

where 〈ns〉N is the s-mer average cluster size frequency in the canonical ensemble

with a system size of N molecules and P (N, λ) is the probability of that system size

N in the grand canonical ensemble given an absolute activity of λ. This can therefore
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be rewritten as:

〈ns〉λ =
∞∑
N=0

〈ns〉N
Q (N, V, T )λN

Ξ
(4.32)

Suppose now that we take a moment to think about which partitions contribute

to this weighted average. To clarify the matter, it helps to substitute the equation

for 〈ns〉N which was given in Eqn. 4.25.

〈ns〉λ Ξ =
∞∑
N=0

〈ns〉N Q (N, V, T )λN (4.33)

=
∞∑
N=0

λN
p(N)∑
k=1

(
ns,k

N∏
i=1

q
ni,k

i

ni,k!

)
(4.34)

=

(
∞∑

ns=1

ns (qsλ
s)ns

ns!

)(
∞∏

i=1,i 6=s

[∑
m=0

(qiλ
i)
m

m!

])

=

(
1 (qsλs)

1

1!
+

2 (qsλs)
2

2!
+

3 (qsλs)
3

3!
+ · · ·

)(
∞∏

i=1,i 6=s

[∑
m=0

(qiλ
i)
m

m!

])

= qsλ
s

∞∏
i=1

[∑
m=0

(qiλ
i)
m

m!

]
= qsλ

sΞ

Partitions where the cluster size s does not show up (ns,k = 0) do not actually

contribute to 〈ns〉λ Ξ and thus this product is equivalent to multiplying the grand

canonical partition function (Eqn. 4.28) by the probability weighting of a single s-

mer, qsλs.

〈ns〉λ Ξ = qsλ
sΞ (4.35)

4.3.4 Bypassing a sum over partitions in the calculation of
〈ns〉N

In section 4.3.1 we demonstrated that 〈ns〉N can be calculated using a sum over

all partitions of N (Eqn. 4.25).6 In early versions of the algorithms we used to cal-
6This section is a results of a collaboration between Professor James Kindt’s group in the chem-

istry department and Professor Ken Ono’s group in the mathematics department at Emory. In
particular, this is the result of work done by Olivia Beckwith, James Kindt, Lara Patel, Robert
Schneider, and Xiaokun Zhang.
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culate 〈ns〉N we had to generate all the different partitions of N for each iteration

of fitting. This was problematic however since the number of partitions for a sys-

tem grows exponentially with respect to the total number of integer parts. To be

specific, for large N the number of partitions p(N) can be approximated using the

Hardy-Ramanujan-Rademacher asymptotic formula,[56]

p (N) ≈ 1

4N
√

3
eπ
√

2N/3. (4.36)

This means that calculating 〈ns〉N becomes too time consuming using Eqn. 4.25 for

large values of N . For a bipartite system the problem becomes ever more intractable.

These methods and functional forms were derived primarily with the goal of applying

them to bipartite systems. It is easier however to start by discuss the concepts in the

context of a single molecule type aggregation equilibrium.

Before we proceed any further it is helpful to recognize that the grand canonical

ensemble partition function Ξ, for which we have already given several functional

forms already (Eqn. 4.26, 4.28, 4.30), can be expressed as a polynomial expansion in

orders of λ where cN is the coefficient for a system with N molecules.

Ξ (λ, V, T ) =
∞∑
N=0

cNλ
N =

∞∑
N=0

Q (N, V, T )λN (4.37)

Thus for a system with N particles, the cN coefficient is equal to the canonical en-

semble partition function:

cN = Q(N, V, T ) (4.38)

It is this trick that will make it possible to derive an equation for the average

cluster frequency in the canonical ensemble 〈ns〉N in terms of two total canonical

partition functions Q and the partition function of the s-mer qs. The same polynomial

representation can be applied to 〈ns〉λ Ξ in orders of λ with coefficients denoted as

gN :

〈ns〉λ Ξ = qsλ
sΞ =

∞∑
N=0

gNλ
N (4.39)
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Let us begin with the representation for Ξ from Eqn. 4.26:

qsλ
sΞ = qsλ

s
∑

Q (N, V, T )λN

= qs
∑

Q (N − s, V, T )λN (4.40)

Then using Eqn. 4.35, 4.33, and 4.39 the following becomes evident:

∞∑
N=0

gNλ
N = qs

∑
Q (N − s, V, T )λN =

∑
〈ns〉N Q (N, V, T )λN (4.41)

This means that if we look at the gN coefficient of the polynomial expansion,

gN = qsQ (N − s, V, T ) = 〈ns〉N Q (N, V, T ) (4.42)

we are able to get an equation for 〈ns〉N of the canonical ensemble in terms of two

total partition functions Q and the s-mer partition function qs:

〈ns〉N =
qs Q (N − s, V, T )

Q (N, V, T )
(4.43)

You, as the reader, may be asking yourself how exactly this functional form is an

advantage over that given in Eqn. 4.25 since the function we have thus far given for

calculating the total canonical ensemble partition function (Eqn. 4.24) still involves

a sum over all the ways to partition the total number of molecules in the system

N . It turns out that the way by which we can bypass the need to generate all the

possible partitions of N is by recognizing that it is possible to get Q (N, V, T ) from

the grand canonical partition function by taking N derivatives with respect to the

absolute activity λ:

∂N

∂λ
Ξ [λ, V, T ] =

∞∑
N ′=0

(N +N ′)!

N !
Q(N +N ′, V, T )λN

′
(4.44)

Since we are solving for Q, which is independent of λ, we are free to choose any

convenient value of λ and will set λ = 0 to simplify this expression:

Q(N, V, T ) =
1

N !

(
∂N

∂λ
Ξ [λ, V, T ]

)
λ=0

. (4.45)
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Thus is can be seen that the grand canonical ensemble is a generating function for

the canonical ensemble functions.

The reason that this is so convenient is because of the grand canonical ensemble

partition function given in Eqn. 4.30. The exponential functional form is particularly

advantageous in that it is preserved over the iterations of taking the derivatives and

since we take the liberty of setting λ = 0 at the end of each derivative to get the

0th order coefficient, the exponential portion of the equation equals 1 and can be

effectively ignored. On top of this, it is possible to collect a library of Q (N, V, T )

from N = 1 up to N = Ntot for a simulation in a single iterative loop and then

subsequently calculated all 〈ns〉N using Eqn. 4.43.

To give an example of how this would work, let us make make a substitution in

notation for the grand canonical ensemble partition function such that,

Ξ [λ, V, T ] = f2 (λ) exp [f1 (λ)]

f1 (λ) =
Ntot∑
i=1

qiλ
i

f2 (λ) = 1

It is possible to truncate the sum in f1 at the total number of molecules in a given

simulation as we are not really interested in the value of the grand canonical partition

function but rather the constituent canonical partition functions.

In each successive derivative, coefficients with the same power of λ are grouped

and the 0th order coefficient is saved as a canonical ensemble partition function. For

example, the first derivative would give the following where f3 (λ) is the polynomial

function after grouping like terms of λ:

∂1

∂λ
Ξ =

(
∂f2 (λ)

∂λ
+ f2 (λ)

∂f1 (λ)

∂λ

)
︸ ︷︷ ︸

f3(λ)

exp [f1 (λ)] (4.46)

Q (N = 1, V, T ) =
1

1!

(
∂1

∂λ
Ξ

)
λ=0



63

Second derivative would then be:

∂2

∂λ
Ξ =

(
∂f3 (λ)

∂λ
+ f3 (λ)

∂f1 (λ)

∂λ

)
︸ ︷︷ ︸

f4(λ)

exp [f1 (λ)] (4.47)

Q (N = 2, V, T ) =
1

2!

(
∂2

∂λ
Ξ

)
λ=0

This would continue all the way up to the total number of molecules in a given

system Ntot such that the last derivative would be:

∂Ntot

∂λ
Ξ =

(
∂fNtot+1 (λ)

∂λ
+ fNtot+1 (λ)

∂f1 (λ)

∂λ

)
︸ ︷︷ ︸

fNtot+2(λ)

exp [f1 (λ)] (4.48)

Q (N = Ntot, V, T ) =
1

Ntot!

(
∂Ntot

∂λ
Ξ

)
λ=0

The average cluster size frequencies for a given system size and concentration can

be calculated using Eqn. 4.43. This is significantly more efficient than the original

algorithm where partitions had to be generated.[60]

4.4 Global fitting

To obtain globally optimal fitting of the equilibrium association constant param-

eters Ki across the full set of either vapor phase or aqueous phase cluster size distri-

butions, where some cluster sizes i appear frequently in some simulation conditions

and rarely in other, it is useful to quantify the statistical certainty of each cluster size

frequency data point 〈ni,j〉sim in the distribution. To do so, the post-equilibration

portions of the trajectory is split into 25-50 ns segments, the cluster size distribu-

tion is calculated for each, and the standard error of the mean σ
(
〈ni,j〉sim

)
over the

segments is calculated for each cluster size i in trajectory j.

The relative statistical certainty wrel
i,j of that data point is calculated as:

wrel
i,j =

〈ni,j〉sim
σ
(
〈ni,j〉sim

) (4.49)
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Have we completed all the iterations? 
 

m < M

Figure 4.6: Graphical representation of implementing the PEACH method in an
iterative global fitting algorithm.
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To control the degree to which the fit should aim to reproduce a data point for the

i-mer from trajectory j relative to all other trajectories where the i-mer is present, a

normalized relative weighting factor, wi,j is defined:

wi,j = wrel
i,j

Ntraj∑
j=1

wrel
i,j

−1

(4.50)

As in previous work,[61] initial guesses for the values of Ki are based on the

apparent equilibrium constants K ′simi,j , as calculated using the law of mass action.

(We designate “apparent" equilibrium constants with a prime to indicate that they

are not in fact constant upon varying N or Veff for small systems.)

K ′simi,j =
ci,j

(c1,j)
i =

〈ni,j〉 /Veff,j

(〈n1,j〉 /Veff,j)
i (4.51)

The effective volume is assumed to be the free volume in the system or the volume

occupied by solvent.7 As one value of the equilibrium association constant must

be given for each i, and Eqn. 4.51 will give different values for different trajectory

conditions, the initial guess for the true (bulk) equilibrium constants Kfit,0
i is taken

as the weighted geometric mean of K ′simi,j from all trajectories j that feature clusters

of size i:

Kfit,0
i = exp

(
Ji∑
j=1

wi,j log
(
K ′simi,j

))
. (4.52)

We define an energy scale such that q◦1 = 1, such that we may substitute Ki for

q◦i in Eqn. 4.10 so that qi,j = Kfit
i Veff,j/V

◦.

The next step is to calculate the calculate the cluster size distribution 〈ni,j〉fit for

each trajectory j given a total number of solutes Nj and effective volume Veff,j. There

are two ways to go about this. In the analysis of MTBE aggregation (Chapter 5)

the cluster size distribution is calculated following the procedure of generating and
7For example, in simulations of MTBE (Chapter 5), the effective volume is calculated as Veff =

V − NvMTBE , with a molecular volume of MTBE taken as vMTBE = 0.191 nm3 from bulk liquid
simulations . For the simulations of NaCl (Chapter 6), it was calculated as Veff = NSolvSol where
vSol was the average volume per solvent from a solvent only simulation.
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averaging over the integer partitions of Nj as described in ref. [61]:

〈ni,j〉fit = Q−1
tot

p(Nj)∑
k=1

ni,k Nj∏
i′=1

(qi,j)
ni′,k

ni′,k!

 (4.53)

Qtot (Nj, Vj, T ) =

p(Nj)∑
k=1

Nj∏
i′=1

(qi,j)
ni′,k

ni′,k!
(4.54)

For larger or bipartite systems such as NaCl aggregation (Chapter 6), the method

employed for the calculation of 〈ni,j〉fit proceeds as outlined in section 4.3.4 through

iterative derivatives of the exponential form of the grand canonical partition function.

It should be noted that equations 4.55-4.57 are for a single component system.

〈ni,j〉fit =
qi,j Q (Nj − i, Veff,j, T )

Q (Nj, Veff,j, T )
(4.55)

Q (Nj − i, Veff,j, T ) =
1

(Nj − i)!

(
∂(Nj−i)

∂λ
Ξ (λ, Veff,j, T )

)
λ=0

(4.56)

Ξ (λ, Veff,j, T ) = exp

 Nj∑
i=1

qi,j λ
i

 (4.57)

To calculate the next iteration for Kfit
i , we first calculate the apparent equilibrium

constants K ′fit
i,j from the results for each trajectory:

K ′fit
i,j = (Veff,j)

i−1 〈ni,j〉fit(
〈n1,j〉fit

)i (4.58)

An adjustment factor gi is calculated to improve the fit in the equilibrium associ-

ation constants:

Kfit
i ← giK

fit
i (4.59)

The the adjustment factor’s strength is controlled by a user defined variable α

that has a value less than 1. The aim should be to use the largest value of α for the

data set being fit that guarantees stability in the fitting to ensure the fastest fitting.

The adjustment factor can be calculated in two ways:

gi = exp

(
α

Ji∑
j=1

wi,j ln

(
K ′simi,j

K ′fit
i,j

))
(4.60)
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g′i = exp

(
α

Ji∑
j=1

wi,j ln

(
〈ni,j〉sim
〈ni,j〉fit

))
(4.61)

The calculation of 〈ni,j〉 is then repeated based on the updated set of equilibrium

constants. The cycle of Equations 4.53-4.61 are repeated, updatingKfit
i at each cycle,

until the user defined number of iterations are completed. Given enough iterations,

the cluster size distributions calculated by Eqn. 4.53 should match the simulated

distributions for well sampled data points.

In the case of fitting to MTBE aggregation data (Ch. 5), Eqn. 4.60 was found to

be the most reliable. However for the bipartite systems such as the NaCl aggregation

data (Ch. 6), it was found that doing two passes of fitting worked better. In the first

pass, the first guess for the equilibrium association constants was made using the law

of mass action (Eqn. 4.51-4.52) and the adjustment factor in Eqn. 4.60. The resultant

equilibrium association constants are then used as the first guess for the second pass

of fitting where the adjustment factor was calculated as in Eqn. 4.61 which requires

a better first guess to ensure stable convergence in the fit.

4.4.1 Evaluating the quality of the fit

As a quantitative measure of the agreement between the fitted results and the

simulation data, a convergence criterion Ci is calculated for each cluster size i as

a weighted geometric mean of the relative squared difference between the average

cluster frequency from the fit and that of the simulations over the Ji simulations in

which that cluster size is present.

Ci = exp

(
Ji∑
j=1

wi,j log

(
〈ni,j〉fit − 〈ni,j〉sim

〈ni,j〉sim

)2
)

(4.62)

The arithmetic average of these convergence criteria is then defined as the over-

arching convergence criterion Ctot:

Ctot = N−1
max

Nmax∑
i=1

Ci (4.63)
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Figure 4.7: Plot of the final convergence criterion Ctot for different cluster definition
rc distances used in the global fitting to aggregation data for vapor phase MTBE
(left) and solution phase NaCl (right) solvated in pure SPC/E water and the MeOH
mixtures. The plot on the right also shows the scaled radial distribution function
(red line) for the Na+ and Cl− in the region between the first and second peaks.

where Nmax is the maximum cluster size observed in the simulations.

The convergence criterion serves two functions. The primary one indicates whether

the choice in the fit scalar α produces stable fitting, and whether the user has per-

formed a sufficient number of fitting iterations for the criteria to converge. In the

limit where non-ideal effects (such as interactions between clusters) are small, the

convergence criterion can also be used to identify an optimal cluster definition.

In both of the aggregation studies presented here (Ch. 5-6), the clusters are defined

by a series of neighbor associations where molecules or ions within a cutoff rc are

considered part of the same cluster. Thus an optimal choice in the cutoff rc is one

that minimizes Ctot. If there are not enough data sets in the fit that overlap or strong

non-ideal effects are present (as is shown in the NaCl aggregation), the convergence

criterion fails to show a reliable minimum. Both cases are presented in Fig. 4.7.

In section 5.4, it is shown that the selection of rc that minimizes Ctot corresponds

to the cutoff that ensures that the second virial coefficient for the monomer b1,1 is

almost equal to the volume per monomer v1 used to calculate the effective volume

(Veff = V −Nv1).
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4.5 Free energy profile

At constant temperature and pressure, the change in Gibbs free energy can be

expressed as a sum over the i-mer chemical potentials µi and the change in the

population of i-mers dni.[49]

dG|p,T =
∑
i

µi dni (4.64)

For a reaction of i monomers aggregating into a single i-mer at constant temper-

ature and pressure, the change in free energy can thus be expressed as,

∆Gi = µi − iµ1. (4.65)

We assume that in the dilute systems, aggregates exhibit negligible interactions

in between aggregation events. A change in the concentration is therefore related to

the standard state by the change in entropy, and the chemical potential for a given

concentration (c = N/V ) is given by:

µ = µ◦ + kBT ln
( c
c◦

)
(4.66)

where µ◦ and c◦ are the standard state chemical potential and concentration respec-

tively.[49] If we assume that the concentration of i-mer is equal to the concentration

of monomers and substitute Eqn. 4.66 into Eqn. 4.65, the difference in Gibbs free

energy is,

∆Gi = ∆G◦i + kBT (1− i) ln
( c
c◦

)
(4.67)

The standard state change in Gibbs free energy for a reaction can be expressed in

terms of the equilibrium association constant Keq,i for the aggregation of i molecules:

∆G◦i = −kBT lnKeq,i (4.68)

Assuming that the concentrations of the i-mer and monomer are equal, and using

the final globally fitted equilibrium constant K ′fit
i in place of Keq,i, Eqn. 4.67 becomes:

∆Gi

kBT
= − lnK ′fit

i − (i− 1) ln
( c
c◦

)
(4.69)
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Free energy profile for a bipartite system

We start by defining the free energy it in terms of two monomer concentrations,

c1,0 and c0,1, and the equilibrium association constant Ki,j for a cluster composed of

i and j monomers of the two components in the system (for example Na+ and Cl−).

∆Gi,j

kBT
= − lnKi,j − (i− 1) ln

(c1,0

c◦

)
− (j − 1) ln

(c0,1

c◦

)
(4.70)

The problem here is that the free energy from Eqn. 4.70 is not given relative to

the monomer free energies (it does not equal zero for the monomers). If we subtract

the free energy of a monomer we get a free energy surface ∆G
′
i,j for clusters:

∆G
′
i,j

kBT
=

∆Gi,j

kBT
− ∆G1,0

kBT

= − lnKi,j − (i− 1) ln
(c1,0

c◦

)
− (j) ln

(c0,1

c◦

)
(4.71)

For the production of our free energy surfaces in the main paper, we assume that

the monomer concentrations are equal, c1,0 = c0,1 = c1 and thus:

∆G
′
i,j

kBT
= − lnKi,j − (i+ j − 1) ln

c1

c◦
(4.72)

4.5.1 Classical nucleation theory (CNT)

CNT typically defines the free energy of association, ∆Gi, of a cluster of size i

as a function of the cluster size and the concentration of free monomers c1. In an

experimental context, the cluster size is proportional to the dimensions such as cluster

radii but can be expressed in terms of the number i of molecules it contains. If the

aggregate shape is not size-dependent, the area of the interface is proportional to the

cluster size i2/3 with a constant of proportionality Ageom that is shape dependent.[62]

Treating the chemical potential of an MTBE molecule in the bulk liquid as µ = 0,

the chemical potential of an i-mer cluster at the standard state concentration is then:

µ◦ = γAgeomi
2/3 + C (4.73)
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with C a constant. The change in free energy associated with adding a monomer to

an i-mer is:

∆G+ = µi+1 − µi − µ1 (4.74)

= γAgeom

(
(i+ 1)2/3 − i2/3 − 1

)
− C − kBT ln

( c
c◦

)
.

In the limit of large i, the addition of a free monomer produces a negligible (∝

i−1/3) change to the surface area, and this quantity depends only on c1. We can define

the free monomer concentration where ∆G+ equals zero in the bulk limit as c1 = csat,

meaning the concentration where the free monomers have reached saturation in the

vapor or solution phases at equilibrium with the bulk liquid. This yields:

C = −γAgeom − kBT ln (csat/c
◦) (4.75)

Combining equations 4.65, 4.66, 4.73, and 4.75, and assuming that c1 = ci = c

then gives:[63]

∆Gi = γAgeom

(
i2/3 − 1

)
− (i− 1)kBT ln (c/csat) (4.76)

Amorphous clusters are fluid and free to assume a spherical shape, minimizing the

surface area and thus reducing the penalty of the interface. For a relatively spherical

cluster, Ageom = (36πv2
1)

1/3 where v1 is the monomer volume.8

8For the MTBE simulations in Ch. 5, v1 = 0.191 nm3 in bulk phase liquid simulations at 273 K.
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Chapter 5 Cluster free energies from simple
simulations of small numbers of aggregants:
Nucleation of liquid MTBE from vapor and
aqueous phases

The reversible formation of aggregates, whether from the gas phase or from so-

lution, is a phenomenon important to a wide range of biological, technological, and

environmental processes.1 The determination of the free energy of aggregation, as a

function of the number of monomers per aggregate, is a goal that has been pursued via

numerous creative techniques in molecular simulation. One area where experimental

characterization of aggregates is particularly difficult, and simulation has been corre-

spondingly helpful, is in the field of nucleation. The formation of a new condensed

phase from either a supersaturated vapor or a supersaturated solution proceeds via the

formation and growth of finite aggregates that are unstable and transient. Building on

years of development of Monte Carlo (MC) methods to treat nucleation from the va-

por phase,[64, 65] the aggregation volume (AV) bias Monte Carlo[66] has emerged as

an effective approach to evaluate the thermodynamics of aggregation of both single-

component and mixed molecular clusters.[67] This method relies on biased Monte

Carlo exchange moves that efficiently transport monomers between aggregates and

randomly selected positions within the mostly empty space of the vapor phase system.

An umbrella sampling (US) bias potential can then be used to ensure good statistical

sampling over the desired range of aggregate sizes, with monomers exchanging be-

tween a single aggregate and a virtual reservoir of monomers at a well-defined chemical

potential.[68] Although innovations continue in this area,[69] the AV-US method and

other approaches that require insertion moves[70, 71] pose challenges in simulations
1This chapter is a reiteration of results published in ref. [60].
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of aggregates in solution modeled with explicit solvent, because the solvent gets in

the way of the insertion move attempts.

Recently Parrinello and co-workers have used well-tempered (WT) metadynam-

ics[72] to obtain aggregation free energies along the nucleation pathway for urea crys-

tallizing from aqueous solution.[73] In that work, the WT metadynamics algorithm

accelerates the sampling of aggregates of varying size. This is a powerful method,

but the control over sampling aggregate sizes relies on the a priori definition of col-

lective variables and their implementation within the actual simulations, which takes

some customization on a system-by-system basis. The effects of simulating a closed

(constant-N) system are also considered in that work using an approach introduced

by Wedekind et al.[54] and used in studies of nucleation of 2-component systems[74]

to account for the depletion of monomers in the solution phase that accompanies

growth of an aggregate. The main difference between the current method and the

approach of ref. [54] is that the present analysis explicitly accounts for all clusters

present in the system rather than focusing on the largest one.

Here, we approach the thermodynamics of cluster growth using an embarrassingly

simple (by contrast to the methods mentioned above) approach: through conven-

tional, constant NVT (in the vapor case) or NpT (in the solution case) simulations

with N rather small. In previous reports[61, 75] we have described how the free en-

ergy of cluster formation can be related to the equilibrium distribution of cluster sizes

at small constant N without applying the law of mass action, which is unreliable in

small systems.

To review how this is achieved, we start by treating a cluster of i molecules within

the quasi-chemical framework as a distinct chemical entity, with its characteristic

single-particle partition function qi that reflects the internal interactions within within

the cluster (and the cluster’s interface with the solvent, if any). This partition function

includes a translational component that is proportional to volume, and so it is useful
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to define a standard partition function q◦ corresponding to a cluster that is free

to move within a standard volume V ◦. As in the conventional derivation of the

equilibrium expression from the canonical partition function of a mixture of reactants

and products,[49] we may set the probability of finding a set of clusters in the system

such that ni clusters of size i are present (where i = 1 indicates a free monomer) as:

P (n1, n2, · · ·nN) =
1

Q (N, V, T )

N∏
i=1

(q◦i )
ni (V/V ◦)ni

ni!
(5.1)

with the sum of the product i × ni constrained to equal N . In the limit of large N ,

the average composition can be found by maximizing this function with respect to

each ni, treating the numbers of clusters of each type as a continuous variable; this

will produce equilibrium expressions consistent with the law of mass action. At small

N , however, fluctuations away from the most probable composition may be large and

the discrete integer nature of the numbers of clusters the system cannot be ignored.

Instead, an average cluster size distribution can be obtained from the partition

functions by calculating the weights for all possible combinations of cluster sizes

(which map on to the integer partitions of N , which can be generated by standard

algorithms[76]) and finding a probability-weighted average number 〈ni〉 of each size

i of cluster. This “small-N" mapping of the equilibrium distribution to a set of q◦i is

rigorous under the assumption that interactions between clusters can be neglected.

An iterative fitting procedure may then be used to find the best set of q◦i to fit an

equilibrium distribution of 〈ni〉 obtained from simulation. The standard partition

function q◦i is related to the equilibrium constant Ki for formation of the cluster from

i monomers and to the standard free energy of aggregation ∆G◦i as:

Ki =
q◦i

(q◦1)i
= e∆G◦i /kBT (5.2)

It is common in the literature on nucleation to define a nucleation free energy for a

specific free monomer concentration c as:[68, 77, 78]

∆Gi = −kBT
[
lnKi + (i− 1) ln

( c
c◦

)]
(5.3)
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In the current study, a series of vapor- and aqueous-phase simulations of methyl

tert-butyl ether (MTBE) in varying numbers and at varying concentrations have been

per-formed. Each simulation yields some distribution of aggregate sizes; simulation

conditions were chosen so that there is some overlap among size ranges in different

simulations. A globally optimized fit of the size-dependent free energies to these dis-

tributions has been performed using a multi-set adaptation of the method in ref. [75].

The results are compared with the predictions of classical nucleation theory based on

surface tensions obtained from simulations of planar slab interfaces. The choice of

MTBE was motivated by its modest solubility in water, which allowed the observation

of distinct clusters that fluctuated in size to an extent that allowed converged equi-

librium distributions to be seen over moderate system sizes and trajectory lengths.

MTBE is in fact soluble enough that leaks of gasoline containing MTBE as an additive

have resulted in groundwater contamination,[79] leading to a shift towards alternative

oxygenating additives.[80]

The remainder of this report will describe the details of the vapor- and aqueous-

phase simulations of MTBE, review the fundamentals of the “small-N" statistical

analysis and describe the extensions made to permit a global fit over several data

sets, and present the results interpreted within the framework of classical nucleation

theory.

5.1 Methods

5.1.1 General MD simulation methods

All simulations are performed using the GROMACS 4.6 software package.[35, 37,

38] Newton’s equations of motion are evaluated with the leap-frog algorithm integrator

with a time-step of 2 fs.

MTBE is simulated using the united-atom TraPPE-UA potential which was pa-

rameterized to reproduce phase behavior.[81] The TIP4P water model[82] is used for
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all aqueous-phase MTBE simulations. TIP4P exhibited the best performance in a

study by Lundsgaard et al.[83] on the partition coefficients of TraPPE-UA squalene

in water/ethanol mixtures with several water models.

The temperature is maintained at a reference temperature of 273 K (τT = 1.0

ps) with the velocity rescaling thermostat.[6] NpT simulations (for aqueous systems)

implement the Berendsen barostat[84] with a reference pressure of 1 bar (τp = 5.0 ps

and compressibility 4.5× 10−5 bar−1).

The Lorentz-Berthelot combining rule for LJ interactions between different atomic

species is used for TIP4P water and the TraPPE-UA MTBE molecules:

σij =
1

2
(σii + σjj) , εij =

√
εiiεjj (5.4)

Electrostatic interactions are calculated by the Particle Mesh Ewald method.[85] The

short-range neighbor list and Coulombic cut-off radius are 1.9 nm. Van der Waals

inter-actions implement a switch function at 1.2 nm with a cut-off radius of 1.4 nm.

5.1.2 Simulations of equilibrium cluster aggregation

Vapor-phase NVT cluster aggregation simulations of MTBE were run for 1 µs

at densities (ρMTBE) of 284 and 510 mM. Simulations were initiated from a random

distribution of MTBE. At each concentration, a set of populations (NMTBE) from

20 to 60 MTBE molecules increasing in increments of 5 molecules are simulated.

The choice in increment size was made to ensure sufficient overlap in cluster size

distributions for continuous sampling of clusters sizes of 1 to 60 MTBE. The 510 mM

simulation set was extended up to a system size of 95 molecules as it shows sufficient

cluster size distribution overlap. The full set of cluster size distribution plots for the

vapor-phase simulations are shown in Appendix Fig. C.1. MTBE coordinates were

saved at intervals of 2.0 ps.

Aqueous-phase NpT cluster aggregation simulations were run for 500 ns at total

MTBE concentrations of 761, 1019, 1275 and 1537 mM. A summary of solution



77

phase configurations is given in Table 5.1 with the number of MTBE (NMTBE) and

the number of TIP4P water molecules (NTIP4P). MTBE coordinates were saved at

intervals of 0.2 ps.

Table 5.1: Solution phase MTBE cluster aggregation simulation parameters

[MTBE] /mM 761 1019 1275 1537
NMTBE 30 40 50 60
NTIP4P 2025 1957 1891 1822

Cluster size distributions are calculated using a modified version of the GROMACS

utility g_clustsize, which was adapted to give results at higher precision. An initial

analysis of each trajectory is performed to determine the equilibration period, which

was taken to be the time required for the system to initially reach its average maximum

cluster size. The equilibration of the vapor phase systems typically took no more than

1 ns while the aqueous phase systems took 5-10 ns. The cluster size distributions for

analysis were calculated with the first 20 ns period excluded, giving the mean number

of clusters of size i, 〈ni〉.

5.1.3 Calculation of surface tension

Simulations of a slab of liquid MTBE in contact with either its vapor phase or

with liquid water were performed to obtain an independent measure of the surface

tensions of these interfaces under the simulation conditions. A slab was placed within

the simulation box forming two interfaces in the xy-plane. Both simulations were run

for 20 ns at 273 K.

The aqueous-phase simulation consists of 384 MTBE and 2822 TIP4P water

molecules. Semi-isotropic pressure coupling at a pressure of 1 bar with a coupling

time constant of 5.0 ps was maintained using the Berendsen barostat.[84] The x and

y dimensions were fixed at 5.2 nm while the z-dimension was permitted to vary with

a compressibility of 4.5× 10−5 bar−1.

The MTBE portion of the final configuration of the aqueous-phase simulation was
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then used as the initial configuration of the vapor-phase simulation. This was run

with a constant volume in a simulation box with dimensions of 5.2× 5.2× 5.8 nm.

The average MTBE slab thickness is 2.9 and 2.7 nm for the vapor and aqueous

phases respectively.

Surface tension, γ, is calculated using the g_energy GROMACS utility based on

the following equation:

γ (t) =
Lz
n

(
Pzz −

Pxx + Pyy
2

)
(5.5)

The interface is assumed to be in the xy-plane of the simulation. The simulation box

dimension perpendicular to the interface is Lz. The variables Pxx, Pyy, and Pzz are

the pressure along the x, y, and z dimensions. The number of interfaces, n, is 2 in

these simulations.

5.2 Estimation of error in the global fit

We account for the sensitivity of the fit to the statistical uncertainty in the input

data by generating ∼100 new sets of cluster size distributions introducing random

fluctuations consistent with the estimated standard errors in 〈ni,j〉 for each trajectory

j, and performing a global fit for each. The resulting standard deviation in the Gibbs

free energy profiles over these 100 fits are shown as the shaded regions in Fig. 5.5 for

the vapor phase and Fig. 5.7 for the solution phase.

Each new cluster size frequency 〈ni,j〉new is generated assuming a Gaussian distri-

bution in the cluster size frequency for a cluster size i in the jth simulation. Accounting

for 95% of the Gaussian distribution in 〈ni,j〉 centered at 〈ni,j〉sim, it is possible to

generate the new cluster frequency and an acceptance probability:

〈ni,j〉new = 〈ni,j〉sim + 4.0 (R1 − 0.5)σ
(
〈ni,j〉sim

)
(5.6)

Pacc =
1

σ
(
〈ni,j〉sim

)√
2π

exp

((
〈ni,j〉new − 〈ni,j〉sim

)2

2σ
(
〈ni,j〉sim

)2

)
(5.7)
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The new cluster frequency is accepted if Pacc > R2 where R1 and R2 are random

numbers generated between 0 and 1.

5.3 Results

5.3.1 Cluster definition

The free energy of a cluster depends on how the cluster is defined, which has been

a concern to researchers from early days of simulations on clusters.[86, 87] Too restric-

tive a definition skews the cluster size distribution towards small cluster sizes while

too loose a definition skews it towards large cluster sizes. The concept of an “opti-

mal" cluster definition has been considered recently using the framework of variational

transition state theory,[88] with the surface dividing the state of an i-mer cluster from

that of an (i− 1)-mer and a free monomer defined so as to minimize the flux between

them, favoring persistent rather than transient groupings of molecules. In the present

work, the global analysis of cluster size distributions allows the comparison of different

cluster definitions from the same set of trajectories, and the optimization of a cluster

criterion based on consistency in fitting size distributions under different system size

and concentration conditions. This enables us to evaluate cluster definitions using

purely structural data with relatively little computational expense.

Here a cluster is defined as a group of MTBE molecules that are linked via a

sequence of neighbor associations, as first implemented by Stillinger.[89] Neighbors

are molecules within a specified radial distance rc of one another. We compared using

the distances between molecular centers of mass (COM) to using distances between

united atom sites of the MTBE molecules for the cluster definitions. While both are

effective, the second definition makes more chemical sense as it measures the closest

contact points between the molecules. The positions of the first peaks (or shoulders)

in the site-site radial distribution functions (Fig. 5.1) indicate that the distance rc

used in the site-site cluster definition should be between 0.40 and 0.60 nm.
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Figure 5.1: Plot of the radial distribution functions (RDF) for the 510 mM vapor
phase MTBE simulation containing 30 molecules. For clarity, the first four distri-
butions are offset by 10 and radial distributions involving the tertiary carbon are
excluded. The bold purple line indicates the RDF for the molecular centers of mass.
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Figure 5.2: Plot of the convergence criterion for different cluster definition rc distances
used in the global fitting to all 25 vapor phase simulation cluster size distributions.

An optimal cut-off distance for the cluster definition is established as the cut-off

that minimizes the convergence criterion (Eqn. 4.63) of the global fit to the vapor

phase simulations. Fig. 5.2 demonstrates that the convergence criterion minimum

is located at 0.50 nm. Decreasing the cut-off by 0.02 nm leads to doubling the

convergence criterion.

Inclusion of simulation data from both concentrations was necessary to constrain

the cluster distance cut-off rc and achieve a consistent minimum in the convergence

criterion. The inclusion of both concentrations ensured that there were two indepen-

dent cluster distributions for each system size (NMTBE). By comparison, when only

a single concentration data set was used, the minimum in the convergence criterion

shifted depending on the number of data sets used in the global fitting procedure.

Plots showing the comparison between using a data set from a single concentration

versus using two concentrations are given in the Appendix Fig. C.1 and C.2. Due to

the smaller number of solution phase simulations it is not possible to reliably estab-

lish the optimal cluster definition distance criteria. The vapor phase cluster distance

criterion is used for the solution phase analysis as well.
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Figure 5.3: A plot of the convergence criterion in Eqn. 4.63 for fitting to the vapor
phase simulations (top) with * marking the iterations displayed in the subsequent
plot and the ∆G of association at intervals over the 1000 fitting iterations (bottom)
as calculated for a monomer concentration of 60 mM.

5.3.2 Global fitting

The fitting exponent α (Eqn. 4.60) used for the global fitting to the 25 vapor

phase simulations is 0.01 and requires approximately 600 iterations to converge. The

progression in globally fitting partition functions to the cluster distributions can be

seen in Fig. 5.3 for the vapor phase simulations. The first plot shows the convergence

criterion for the fitting with asterisks (*) marking the iterations chosen to display the

Gibbs free energy profiles (Eqn. 4.69) plotted in the second plot. Iteration 0 is the

initial guess based on Eqn. 4.52.

The quality of the global fit for vapor phase MTBE is exemplified in Fig. 5.4

where a selection of cluster size distributions from simulation and the global fitting

routine are displayed in tandem. In regions of the distributions where the standard

error of the cluster population is small, the fit has good agreement with the simulated

distribution. Enlarged figures for the distributions for both vapor phase simulation
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Figure 5.4: Plot for the 284 mM MTBE vapor phase of the cluster size distributions
based on the MD simulation data (points) and the cluster distributions produced by
the global fitting routine (lines). Error bars are given for every fifth cluster size as
the standard error calculated by block averaging over nineteen 50 ns segments of the
trajectory.

concentrations of 284 mM and 510 mM are given in Appendix Fig. C.3.

The equilibrium association constants that are the parameters used in the global

fit to simulation data are conveniently expressed as free energies of association using

Eqn. 4.69 assuming a free monomer concentration of 60 mM for the vapor phase, and

are shown in Fig. 5.5 (other choices for the monomer concentration would produce a

linear i-dependent shift in the curve). As discussed in previous work,[61, 75] finite-

size effects shift the equilibrium cluster size distributions (shown in Fig. 5.4) away

from what would be expected for a set of cluster free energies in the limit of large

N. For cluster free energies curves that involve a nucleation barrier, this produces a

flattening of the distribution that allows a broad range of cluster sizes to appear with

reasonably high frequency, improving the sampling efficiency without requiring any

explicit bias to be applied during the simulation. Fig. 5.5 also shows the least squares

linear regression fit of the CNT functional form (Eqn. 4.76) to the final Gibbs free

energy profile.

The standard deviation in the free energy curve due to uncertainties in the input

cluster size distributions have been shown in the shaded region of the top plot in

Fig. 5.5. The standard deviations are shown separately due to their small magnitude.
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Figure 5.5: Plot (top) of the standard deviation (+2σ) in the Gibbs free energy of
association due to uncertainties in the simulated cluster distributions. Plot (bottom)
of the CNT functional form (line) fit to the Gibbs free energy of association for
monomer concentration of 60 mM based on the equilibrium constants of the vapor
phase (points) from the global fit to the simulated cluster distributions.

The fitting exponent α used for the global fitting to the 4 aqueous phase simu-

lations is 0.11 and requires approximately 300 iterations to converge. A plot of the

progression in the globally fitted partition functions to the cluster distributions of the

aqueous phase simulations is exhibited in Fig. C.5. The smaller number of data sets

in the fit is shown to reduce the number of iterations required to reach a converged

fit. The quality of the global fit is demonstrated in Fig. 5.6 by the application of the

equilibrium association constants in reproducing the cluster size distributions for each

of the aqueous phase simulations. Like the vapor phase simulation results (Fig. 5.4)

it is evident that cluster sizes with large standard errors in simulation have worse

consistency with the global fit.

The fit of the CNT functional form (Eqn. 4.76) to the Gibbs free energy curve

(Eqn. 4.69) assuming a monomer concentration of 183 mM is displayed in Fig. 5.7.

The standard deviation in the free energy curve for the solution phase simulations

are large enough to be shown in the same plot as the shaded region surrounding the
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Figure 5.7: Plot of the CNT functional form (line) fit to the Gibbs free energy of
association based on the equilibrium association constants (points) for the aqueous
phase MTBE simulations and a monomer concentration of 183 mM solvated in TIP4P
water. The shaded region corresponds to the standard deviation (±2σ) in ∆Gi due
to uncertainties in the simulated cluster distributions.
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global fit results (points).

The CNT fitting parameters for the vapor and aqueous phases are given in Table

2, with c the monomer concentration used to generate the free energy curve, ln (c/csat)

accounting for the entropic difference between the saturation concentration and given

monomer concentration, and γCNT the surface tension based on the CNT fit.

The uncertainties in ln (c/csat) and γCNT are approximated as the perturbation

in either variable from its optimal value (based on the least squares fitting) required

to double the standard deviation of the CNT fit with respect to the global fit. For

example, to estimate the uncertainty in γCNT, least square regression optimizations

of ln (c/csat) are performed holding γCNT fixed over a range of values near its globally

optimal value. The standard deviation of the fit is calculated as a function of the

deviation of γCNT from its global optimum value, and the uncertainty in γCNT is

defined as the change in γCNT that doubles the standard deviation at the global

minimum.

The surface tension calculated from the MTBE slab simulations µsim (see section

5.1) and the experimental surface tensions γexp are given for comparison. The satura-

tion concentration is given based on (1) the extrapolation from the CNT fit csat
CNT, (2)

the concentration of free monomers in the slab simulations csat
sim−slab, (3) an estimate

based on extrapolation from the Clausius-Clapeyron plot of Fig. 11 in ref. [81] at

273 K, derived from simulations with the TraPPE forcefield, and (4) experimental

saturation concentrations csat
exp for the vapor[90] and aqueous[91] phases.

5.4 Discussion

The success of the global fitting is exemplified in Fig. 5.4 and Fig. 5.6 where

the reproduction of the cluster size distributions show good consistency with the

simulated distributions. The efficacy of the data weighting is demonstrated by the

close agreement (contingent on sufficient sampling and thus smaller standard errors in
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Table 5.2: Fitting parameters to CNT functional form.

Phase Vapor Aqueous
c/mM 60 183
ln (c/csat) 1.24± 0.11 1.12± 0.15
γCNT/mNm−1 16.06± 1.06 10.72± 1.27
γsim/mNm−1 17.68± 0.13 12.60± 0.33
γexp/mNm−1 23.6 a 7.8 b

csat
CNT/mM 14.52 c 59.45 c

csat
sim−slab/mM 13.41± 0.98 e 62.64± 10.91 e

csat
sim−CC/mM 7.05 d -

csat
exp/mM 4.59 f 975.36 g

a Ref. [92] at 273 K. b Ref. [93] at 278 K. c Calculated from
fitting to y = ln (csat/c1) for CNT fits at different monomer con-
centrations. d Estimated by extrapolation from the Clausius-
Clapeyron plot of Fig. 11 in ref. [81] at 273 K. e Saturation
concentration approximated based on the concentration of free
monomers in the slab simulations. f Based on Wagner vapor
pressure equation parameters given in ref. [90] at 273 K. g Ex-
trapolation based on the van’t Hoff thermodynamic parameters
from ref. [91] at 273 K.

the reported populations) between the cluster size frequencies reproduced from single

set of Ki from the global fit, to cluster size frequencies from multiple simulations. As

discussed, optimization of the fit with respect to the size cut-off rc gives an objective

measure for the cluster definitions. The good agreement of the best-fit distributions

with simulation data points under different concentration and system size conditions

indicate that any non-ideal effects here are accounted for using a simple approximation

for the free volume Veff .

The reproduced cluster size distributions based on the global fit appear less noisy

than individual trajectories data sets due to the overlap in data sets. The larger

number of data sets, the degree of overlap in the cluster size distributions, and the

better quality of the data in regions of overlap in the vapor phase simulations results

in smoother distributions by comparison to the solution phase.

The optimization technique converges reliably as is demonstrated in Fig. 5.3 for

the vapor phase. The best parameters used to define the fitting operation (α and
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number of iterations) depend to the number of data sets being fitted over. For a

larger number of data sets, the α value must be smaller and number of iterations

larger to maintain stability (data not shown).

The CNT expression (Eqn. 4.76) fits the free energy profile based on the globally

fitted Ki unexpectedly well even down to cluster sizes with only a few monomers,

although clusters with size i < 20 exhibit the largest deviation from the CNT func-

tional form for the vapor phase simulations. The values for the surface tension γCNT

obtained in fits of both vapor and aqueous MTBE cluster free energies of association

are lower than those (γsim) calculated from simulations of planar slab interfaces. This

discrepancy persisted when clusters with i < 20 were excluded from the fit (data not

shown). Conversely, using the surface tension derived from planar slab simulations to

predict size-dependent free energies would yield excessively large barriers to cluster

growth. Similar deviations have been seen in previous simulation studies of clusters

in gas phase. Chen et al. found that the CNT-based predictions of vapor-liquid

nucleation barriers of alkanes using a planar surface tension were consistently too

high.[78] A lower apparent surface tension for small clusters, relative to the planar

value, was also found in studies of a coarse-grained water model by Factorovich et

al.[70, 71], and characterized in terms of a positive Tolman length. Deviations in

the other direction, involving a higher apparent surface tension for clusters than for

planar interfaces, have been observed in simulation studies of water cluster nucle-

ation.[94, 95] The saturation concentrations csat in the vapor phase or solution phase,

as calculated from the cluster free energies or from the slab calculations, agreed to

within the error estimates. Given that these error bars were rather large, however, it

is difficult draw conclusions.

The concentration in the vapor phase simulated at equilibrium with a slab of

pure liquid can be compared directly with experiment and with the results presented

by the developers of the TraPPE force-field. The vapor pressure obtained in the
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current simulations is nearly twice the value obtained from the Clausius-Clapeyron

parameters reported by Stubbs et al.[81] We believe that the origin of this discrepancy

is our neglect of long-range Lennard-Jones (LR-LJ) interactions. To support this

claim we calculate the ratio of the vapor pressure including the LR-LJ interactions

P Long
vap with respect to the vapor pressure excluding LR-LJ interactions P Short

vap as:

P Long
vap

P Short
vap

= exp

(
−∆GLong

vap + ∆GShort
vap

kBT

)
= exp

(
µLR

kBT

)
(5.8)

where kB is the Boltzmann constant and T is the temperature. The LR-LJ interac-

tions for bulk-phase MTBE with a density ρ, summed over the set of all pairs of sites

i, j in the MTBE molecule with LJ well depth of εij and LJ distance of σij can be

calculated as:[96]

µLR =
16

9
πρ

{i,j}∑
εijσ

3
ij

((
rvdw

σij

)−9

− 3

(
rvdw

σij

)−3
)

(5.9)

where rvdw is the Van der Waals interaction cut-off distance of 1.4 nm. For a tem-

perature of 273 K, the vapor pressure ratio (Eqn. 5.8) is 0.56 and very close to the

ratio in saturation concentrations csat
sim−CC/c

sat
CNT = 0.49. It may also be possible that

the under prediction of the surface tension (with respect to experiment, as it was not

reported in ref. [81] from simulation) is related to the neglect of LR-LJ interactions,

whose effect on surface tension is rather more complicated to estimate.[97]

The greatest discrepancy between experiment and theory here is seen in the solu-

bility of MTBE in water, where simulation yields a solubility that is too low by a factor

of 16. The solubility arises from the competition of MTBE-MTBE interactions with

the MTBE-water interactions. Given that the TraPPE force-field over-predicts the

vapor pressure slightly, the current discrepancy is unlikely to be caused by excessively

strong MTBE-MTBE interactions. Neglect of long-range interactions is unlikely to

play a major part, as the differences between these terms for MTBE in neat liquid and

in aqueous solution are likely to be smaller than between MTBE and in vapor, where

the effect was only a factor of 2. The water-MTBE interactions might be expected
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to also be reasonably good due to the good (within a factor of 2) agreement with

experiment reported for the partitioning of cis-3-hexenol between squalane and water

or water/ethanol mixtures.[83] For an explanation as to why MTBE does not follow

cis-3-hexenol one might blame the methyl site - water interactions, as MTBE contains

four instead of just one. Indeed, Ashbaugh et al.[98] have calculated TIP4P/2005 hy-

dration free energies with the TraPPE parameters for several alkanes, and found that

the value for neopentane (also with four methyl groups) exceeds the experimental

value by about 3.4 kJ/mol at 273 K while n-butane exceeds it only by 1.2 kJ/mol.

Remarkably small adjustments to the water oxygen/CHn site LJ parameters could

bring simulation results in line with experiment.[98]

The model used in our analysis of cluster free energies assumes that the presence of

a cluster of one size does not influence the stability of a different cluster, and that the

effective volume available to all clusters for a given simulation is the difference between

the total box volume and the sum of the monomer volumes Veff = V −NvMTBE. (There

is an important distinction between this “non-interacting cluster" assumption and the

ideal gas or ideal-dilute solution assumptions, which neglect the possibility that the

clusters themselves form. Conditions that lead to clusters are clearly non-ideal from

the perspective of monomer-monomer interactions, but may or may not satisfy the

non-interacting cluster assumption.)

For simulations of MTBE cluster formation in the vapor phase, the distance cut-

off criterion for defining the clusters was selected (as shown in Fig. 5.2 ) to give a set

of cluster size distributions that optimized the global fit to the model under the “non-

interacting" cluster assumption. The quality of the fits across different concentration

and volume conditions would seem to suggest that the assumption is valid, because its

breakdown would imply that the relative weights of different partitions would not scale

consistently with the model under different volume conditions. Another possibility

is that violations of the assumption affect cluster free energies in a consistent way
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across these different conditions. It is useful to examine the conditions under which

real, interacting cluster statistics would agree with the non-interacting cluster model.

To incorporate non-ideal effects at the level of individual partitions of N monomers,

within the second-virial approximation we can write:[99]

P (n1, n2, · · ·nN) = Q−1

(
N∏
i=1

(q◦i )
ni (V/V ◦)ni

ni!

)
×

(
1−

N∑
i=1

N∑
j=1

ni (nj − δij) bij
V

)
(5.10)

where δij is the Kronecker delta function and where bij is the second virial coefficient

that relates to the potential of mean force F between distinct clusters of size i and j

at a distance r between their centers-of-mass:

bij =

∫ ∞
0

2πr2 (1− exp [−βFi,j (r)]) dr (5.11)

Here the force is assumed to behave as a hard wall at any surface where the clusters

merge to become a single cluster. If the potential of mean force is zero beyond that

surface, then bij represents one-half the mutual excluded volume of a cluster of size i

and one of size j.

In the analysis, the influence of composition-dependent non-ideal effects arising

from the second virial terms on the probability weighting of each partition is repre-

sented only by a factor of (1 − NvMTBE/V ) for each cluster, which comes from the

use of Veff in place of V . This will be a good approximation provided that:

1−
N∑
i=1

ni
NvMTBE

V
≈

(
1−

N∑
i=1

N∑
j=1

ni (nj − δij) bij
V

)
(5.12)

on average over the distribution of partitions. The most typical partitions in these

nucleating systems contain a single N ′-mer cluster and the remaining n1 = N − N ′

molecules distributed as free monomers. For these partitions, Eqn. 5.12 simplifies to:

(n1 + 1)NvMTBE ≈ 2 n1 b1,N ′ +
(
n2

1 − n1

)
b1,1 (5.13)

which holds approximately true when b1,N ′ ≈ 1/2N ′vMTBE and b1,1 ≈ vMTBE for all
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N ′. The error in the probability weighting from using the effective volume approxi-

mation then is,

Pmodel/P ∼ (1− (N + n1) vMTBE/V ) (5.14)

Considering first the condition on b1,N ′ , we see that it is likely to be satisfied, as

the excluded volume between a small monomer and a large cluster (= 2b1,N ′) should

approximately equal the volume of the large cluster (N ′vMTBE). The implications of

the second condition are less obvious. For like hard-sphere particles with no attrac-

tions, the excluded volume is a sphere whose radius is the sum of the radii of the two

spheres, giving an excluded volume that is 8 times the actual volume. The condition

b1,1 = vMTBE can only be met then if the monomer-monomer excluded volume is

balanced in part by a medium-to-long ranged attraction between monomers that are

classified as “free".

To check whether this condition is in fact satisfied for the cluster criterion used,

we used data from a simulation of 20 MTBE molecules in the vapor at 0.049 M, where

87% of the molecules on average remained as free monomers and the largest cluster

observed was a hexamer, to estimate b1,1 using Eqn. 5.11. The radial distribution

function g (r) based on center-of-mass distances rCOM for free monomers alone was

calculated under site-site cut-off distances of 0.5 nm (the apparently optimal value)

as well as for 0.48 and 0.52 nm. These are shown, with the full g (r) function that

includes monomers within clusters, in Fig. 5.4. (If a center-of-mass cut-off had been

used, the g (r) functions that exclude monomers within clusters would equal zero at

distances below the cut-off and coincide with the center-of-mass g (r) for distances

greater than the cut-off.) The function g (r) in the dilute limit provides a good

approximation[100] to the Boltzmann factor in Eqn. 5.11. The value of the integral is

sensitive to small deviations of g (r) from 1 at large r, so we evaluated the integral in

b1,1 with an upper limit of r = 1.75 nm. As evident from Fig. C.5, the cut-off distance

of 0.5 nm gives b1,1 = 0.16 nm3, near the theoretical optimum of b1,1 = vMTBE = 0.191
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Figure 5.8: Left panel: radial distribution function of MTBE center-of-mass positions
from simulation of 20 molecules in vapor phase at 0.049 M. Red curve: all molecules;
black curve: only molecules classified as free monomers for a site-site cutoff distance
of 0.50 nm; green curve: free monomers only using a 0.48 nm cutoff; blue curve: free
monomers only using a 0.52 nm cutoff. Right panel: b2 integral evaluated for the free
monomer radial distribution functions shown on the left, with x-axis giving the upper
limit to the integral.

nm3, while nearby cut-offs of 0.48 nm or 0.52 nm give much worse agreement (-0.02

nm3 and 0.32 nm3 respectively).

It appears, therefore, that by optimizing the cluster criterion to give the most

consistent fit (across different simulation conditions) between simulated and model

cluster size distributions, we are finding the position of the dividing surface between

monomer and dimer that comes closest to the condition b1,1 = vMTBE. When this is

true, the exchange of an MTBE from a large cluster into the surrounding gas has a

minimal effect on non-ideal contributions to the free energy: the net unfavorable effect

on the non-ideal interaction free energy of the free monomers from adding one to their

number (itself coming from a balance between excluded volume and attractive terms)

is balanced by the favorable effect of reducing the volume occupied by the cluster.

Some cut-off definition that satisfies the condition b1,1 = vmonomer should exist in most

cases where attractions between monomers are strong enough to nucleate a cluster.

We can estimate the error in free energy (in units of kBT ) determined by the fitting

procedure to a given cluster size i as the logarithm of the proportional weighting



94

error of a partition containing that cluster. If the optimal condition is met, then

per Eqn. 5.14 there remains an error of order NvMTBE/V , the volume fraction of the

box occupied by all monomers, which is consistent with the magnitude in errors that

we see between simulation data and fits in the well-sampled conditions. The error

introduced by non-ideal effects in the difference in free energies of an i-mer and an

(i+ 1)-mer is then on the order of vMTBE/V in units of kBT , which suggests that the

error in csat from non-ideal effects is similarly small for the vapor-phase simulations.

(For the solution phase, the data obtained were insufficient to give a clearly optimal

choice of cut-off, and much greater errors due to non-ideal effects are possible there.)

If non-ideal effects were ignored completely (that is, if the total volume V and not

the effective volume Veff were used), this error would be increased by a factor of the

number of monomers in the cluster, with catastrophic consequences for fitting in all

but the most dilute systems. Non-ideal effects are far from negligible in this system,

but their effect on cluster free energies can be controlled with a simple definition of an

effective free volume and an adjustment of the cluster definition to tune the second

virial coefficient of free monomers.

5.5 Conclusions

A global fitting analysis of cluster size distributions obtained from standard un-

biased, equilibrated constant-temperature molecular dynamics trajectories has been

used to obtain cluster free energies that are consistent over a range of simulation

conditions. The analysis allows the definition of what constitutes a cluster to be

determined after the simulations have been completed and provides a guide to opti-

mizing the cluster definition based on achieving best consistency in fitting trajectories

with different volumes and numbers of particles. The ability to achieve consistency

across different concentrations furthermore provides confirmation that cluster-cluster

interactions have little effect on aggregation statistics, a condition achieved in turn
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by the optimized cluster definition.

Although the thermodynamics of MTBE clusters formations studied here present

no special surprises, these calculations have demonstrated that cluster free energies

can be extracted from the simplest, most modest simulations of equilibrium aggrega-

tion behavior. In principle these same trajectories could be analyzed to extract rate

constants for monomer addition to and dissociation from clusters, providing enough

information to make predictions of nucleation rates.[67] The ability to extract cluster

free energies from unbiased simulations should find also applications in phenomena

other than nucleation, for instance in the modeling of micelles, where unbiased sim-

ulations are part of standard protocol and finite-N effects are a common worry.[51]

This approach is optimally suited for systems with relatively weak association

energies, as the rates of association and dissociation under the temperature and con-

centration conditions modeled need to be high enough to observe many events over

the course of the simulation. For aqueous solutions, monomer solubilities or criti-

cal micelle concentrations below ∼2 mM would require inconveniently large systems

(>100,000 solvent molecules) to obtain a spread of cluster sizes in a single trajec-

tory. On the other hand, for clusters that are only observed at high monomer con-

centrations, non-ideal effects (monomer-monomer or cluster-cluster interactions) will

complicate the analysis but could in principle be incorporated.
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Chapter 6 Simulations of NaCl aggregation
from solution: Solvent determines topogra-
phy of free energy landscape

6.1 Introduction

Nucleation is a ubiquitous process by which molecules, atoms, or ions in a solution,

a melt or a gas phase locally adopt a density, order, or composition that initiates the

formation of a new phase.1 Its influence can be seen across disciplines ranging from

the formation of fullerenes from a hot gas of carbon dimers,[101] the impact of water

ice-crystal nucleation on climate change or intracellular freezing, the formation of the

amyloid fibers associated with Alzheimer’s disease, crystal formation in kidney stone

disease and gout, and clathrate hydrate aggregation in natural gas pipelines.[102]

Nucleation of NaCl crystals may seem comparatively mundane, but in recent years it

has been found that the nucleation mechanism is rather nuanced. The simplicity of the

system, and the availability of experimental data on nucleation rates and solubility,

have made it an appealing system to simulate.

Crystal nucleation begins on a size scale of nm that is not currently accessible

using experimental methods and therefore lends itself to being understood through

atomistic simulations. Great strides have been made in understanding NaCl crys-

tallization since molecular dynamics (MD) simulations were first attempted in the

1990s by Ohtaki and Fukushima.[103] MD has been used to capture the dynamics

of nucleation in supersaturated systems with many ions in a number of studies;[104–

109] a drawback of this approach is that the nucleation event typically occurs only

once per trajectory. Trajectory path sampling (TPS), an unbiased improved sam-
1This chapter present results that are under review to be published in the Journal of Computa-

tional Chemistry.
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pling technique, has also been used with success to examine the nucleation pathway

of NaCl.[110–113] The rare event nature of nucleation has also encouraged the de-

velopment of improved sampling methods include biased MD simulations techniques

like umbrella sampling,[114–116] and metadynamics.[53, 72, 73, 117, 118] A draw-

back of these methods is that the user is required to dictate the final state and/or

the pathway to some extent.[119]

Classical nucleation theory (CNT),[120] while able to describe the growth of the

critical nucleus in advanced stages, fails to adequately describe the initial stages of

nucleation most often because it is very difficult to adequately describe the interfacial

energy of small clusters. Furthermore, there is a growing body of research indicating

that NaCl nucleation (like a number of other cases of crystal formation from solu-

tion[121]) proceeds via a two-step nucleation mechanism consistent with Ostwald’s

rule of stages.[122]

The two-step nucleation mechanism involves the formation of amorphous clusters

or liquid droplets that then transition into an ordered NaCl crystal nucleus. Unbiased

MD simulations of NaCl crystallization from solution performed by Chakraborty and

Patey indicate that nucleation is preceded by density fluctuations that lead to regions

of high concentrations of Na+ and Cl− ions but in an amorphous arrangement;[104,

105] nucleation events were observed only where the local concentration exceeded the

average concentration. Spatial ordering of the ions into the crystalline arrangement

was then the rate-determining step.[105] Lanaro and Patey performed direct MD

simulations revealing that 90% of the clusters that failed to nucleate had lifetimes

shorter than 2 ns.[106] Clusters with higher crystallinity had longer survival times

for all cluster sizes (s ≤ 6) and it was concluded that cluster crystallinity/order has

significant influence over the probability of nucleating.

Giberti et al.[53] performed metadynamics biased MD simulations on NaCl nucle-

ation and also observed the formation of relatively unstable small amorphous clusters
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that would redissolve in 1-2 ns in unbiased MD simulations. Unlike the direct sim-

ulation techniques, they saw two longer lived ordered structures (taking 25-30 ns to

re-dissolve): the expected rocksalt structure and a wurtzite structure. Geometric

optimization of the wurtzite structure showed that it corresponds to a metastable

minimum of the bulk NaCl potential energy landscape. They proposed that the

wurtzite polymorphism would be more stable for small NaCl clusters (radii< 5.7 nm)

due to the lower surface tension at a wurtzite/water interface. Zimmerman et al.[123]

use the analysis of the growth of nanocrystalline seeds at high concentration to de-

termine an apparent surface tension (which can be related to a cluster free energy via

CNT) as well as to estimate nucleation dynamics overall.

A full characterization of the thermodynamic landscape that influences NaCl crys-

tal nucleation from solution requires calculation of the free energy of formation of or-

dered and/or amorphous NaCl clusters from aqueous solution. Chen and Pappu used

the law of mass action on relatively large, unbiased simulations of ionic cluster forma-

tion in the dilute limit to extract equilibrium association constants for small clusters

(s ≤ 6) with consistent results across a range of simulated salt concentrations.[52,

73] Using the law of mass action to calculate the equilibrium association constant,

and thus the free energy surface, works rather well for bulk solutions. It requires a

system where the formation of a cluster does not significantly alter the concentration

of the other clusters in the system. Extracting equilibrium association constants for

larger clusters is more challenging in large systems. At the dilute limit, only small

clusters form with statistically relevant frequency. The solute concentration must be

near or above the saturation concentration to form larger clusters. In systems that

undergo a nucleation type mechanism of growth, once the critical nucleus forms, this

propels the system into rapid cluster size growth. The equilibrium state consists of

some cluster size fluctuation around one large cluster in the system in the presence of

free monomers and small clusters. This makes it impossible to establish equilibrium



99

constants for intermediate cluster sizes as they are transient.

To observe larger cluster sizes in a small system, simulations must be performed at

concentrations significantly higher than the saturation threshold.[53] In simulations of

a small system, the formation of clusters depletes the concentration of free monomers

in solution to around the saturation threshold. If the total concentration is not well

above the saturation concentration, this depletion effect can impede the formation

of cluster nuclei.[54] Salvalaglio et al. termed this a consequence of a confinement

effect, like a fixed system size, where the stability of clusters does not depend on just

the supersaturation but also the system size.[55] Across a number of simulations at

different concentration and/or system sizes, this allows continuous coverage of all the

cluster sizes around and past the critical nucleus size. At these smaller system sizes,

the formation and breaking of larger clusters significantly alters the concentration

of other cluster sizes in the system and the law of mass action no longer serves

as a good model to calculate the equilibrium association constants. Our previous

work on methyl t-butyl ether (MTBE) cluster formation shows that the deviation

from the real association constants increase as cluster size increases.[60] The recently

developed Partition Enabled Analysis of Cluster Histograms (PEACH) method avoids

this problem as it accounts for the discrete nature of state partitions explicitly.[59]

It allows extraction of free energies of formation from cluster distributions obtained

through unbiased simulations of small systems, even when a large fraction of the

monomers are involved in cluster formation, and has been applied to the free energy

of assembly of anionic surfactant micelles.[59]

In this paper, the PEACH method is used to calculate the free energy surface

for the nucleation of NaCl clusters solvated in water, methanol, and a mixture of

water and methanol from atomistic MD simulations. Differences among the free

energy landscapes inferred from these simulations indicate that the cluster size at

which ordered clusters become more stable than amorphous clusters is sensitive to
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solvent environment. This factor, and the accompanying effects on the rate of the

ordering transition, suggest how solubility influences whether nucleation proceeds via

a two-step process. Furthermore, results from PEACH analysis of the aqueous system

highlight the importance of non-ideal effects in promoting cluster formation at high

concentrations.

6.2 Methods

All atomistic molecular dynamics simulations were performed using GROMACS[35–

38] (version 4.6.5). Molecular images from the trajectories were made using VMD.[124]

Simulations were performed in the NPT ensemble for four different system com-

positions of NaCl solvated in: pure SPC/E water,[125] pure OPLS-AA (all atom)

methanol,[126] and a mixture of the two solvents with a mole fraction, xMeOH, of

methanol to total solvent of 0.4 and 0.5. The Na+ and Cl− ions were simulated using

the OPLS force field parameters[39, 127] given in Table 1; these parameters were

chosen for consistency with the work of Chakraborty and Patey showing two-step

nucleation.[104, 105]

Table 6.1: Ion force field parameters.

Ion σ/nm ε/kJ mol−1

Na+ 3.330× 10−1 1.160× 10−2

Cl− 4.417× 10−1 4.928× 10−1

Simulation pressure was maintained at 1 atm with τP = 0.2 ps and a compress-

ibility of 4.5× 10−5 bar−1 using an isotropic Berendsen barostat.[4] The temperature

was maintained at 300 K (pure water) or 323 K (all other solvent environments)

by velocity rescaling with τT = 0.1 ps.[6] Non-bonded interactions between different

species were handled using the εij = (εiiεjj)
1/2 and σij = 0.5 (σii + σjj) combination

rules. Lennard-Jones interactions were truncated at 1.0 nm for aqueous systems and

1.2 nm for methanol-containing systems. Coulomb interactions were handled using
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Particle Mesh Ewald (PME)[128] summations with a real space cutoff of 1.0 nm.

Simulations of all systems containing methanol are performed with a time step

of 1 fs. Trajectory configurations were saved every 500 steps for the ions, and every

5000 steps for the whole system. Simulations of NaCl clustering in pure methanol

were run for 1000 ns for the simulations with 1 to 5 NNaCl and for 500 ns otherwise.

Composition details are given in Table 6.2.

Table 6.2: Simulation details for NaCl aggregation in pure methanol (xMeOH = 1.0)
at 323K and 1 bar.

NNaCl [NaCl]/m NSol [NaCl]/m NSol

1 0.05 672 0.03 988
2 0.09 670 0.06 986
3 0.14 668 0.10 984
4 0.19 666 0.13 982
5 0.24 664 0.16 980
6 0.28 662 0.19 978
7 0.33 660 0.22 976
8 0.38 658 0.26 974
9 0.43 656 0.29 972

The simulations of NaCl clustering in solvent mixtures of SPCE/E water and

OPLS-AA methanol were run for 200 ns for concentrations of 0.42-1.69 molal (m).

Details about the composition are given in Table 6.3.

Table 6.3: Simulation details for NaCl aggregation in solvent mixtures consisting of
methanol and SPC/E water at 323 K and 1 bar with 20 ion pairs.

NNaCl [NaCl]/m [NaCl]/m
500 1.69 1.60
700 1.21 1.14
800 1.06 1.00
900 0.94 0.88
1000 0.85 0.80
1500 0.56 0.53
1900 - 0.42
xMeOH 0.4 0.5

Simulations of NaCl solvated in pure water were performed for systems containing

20, 30, and 45 NaCl pairs. The simulation composition details are given in Table 6.4
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for each concentration and system size. These MD simulations were performed with a

time step of 2 fs. Snapshots of the trajectory are printed every 500 steps for the ions

and every 50,000 steps for the whole configuration. These simulations were run for

500 ns except for the simulations of 30 NaCl pairs at concentrations of 2.78-3.89 m,

which were run for 2000 ns. Only amorphous clusters were observed in the 0.56-3.89

m simulations, which were used for the multiset fitting.

Table 6.4: Simulation details for NaCl aggregation in SPC/E water at 300 K and 1
bar. Only simulations with concentrations of 0.56-3.89 m were used in the PEACH
global fit analysis.

[NaCl]/m NSol NSol NSol tc/ns
7.21 - 231 346 170
6.66 - 250 375 -
6.10 - 273 409 320
5.55 - 300 450 10
5.00 - 333 500 -
4.44 - 375 562 610
3.88 286 429 643 -
3.33 333 500 750 -
2.78 400 600 900 -
2.22 500 750 - -
1.67 667 1000 - -
1.11 1000 1500 - -
0.56 2000 3000 - -
NNaCl 20 30 45

The higher concentration simulations (4.44-7.21 m) were performed for systems

with 30 and 45 NaCl pairs to see if ordered crystals would appear. The trajectories

for the 30 and 45 NaCl simulations were respectively 2000 ns and 500 ns long. A

large crystal with a rocksalt structure was formed in the 45 NaCl simulation at con-

centrations of 4.44 and 5.55-7.21 m. No large ordered crystals were formed in the

simulations with 30 NaCl pairs or in the simulation at 5.00 m with 45 NaCl pairs.

The approximate time to crystalize, tc, is given in Table 6.4 for systems with 45 NaCl

pairs.

To ascertain whether the simulations of NaCl clusters in water are limited to the



103

formation of relatively small amorphous clusters at the lower set of concentrations

(Table 6.4) by kinetic or thermodynamic factors, a fully formed crystal with a rock-salt

structure was taken from the simulation of 45 NaCl ion pairs at 5.55 m and “seeded” in

solvent environments mimicking those used in the aggregation simulations (Table 6.5).

Each seed was constrained for a 1 ns period to allow for solvent equilibration around

the crystal and then the constraints were removed to see if the crystal structure

persists over a 100 ns trajectory. The first set of simulations were performed at

the same concentration (3.88 m) while decreasing the total number of ion pairs in

the system. The second set of simulations maintained a total of 45 ion pairs while

decreasing the concentration.

Table 6.5: Simulation details for testing the resilience of an NaCl crystal with a
rock-salt configuration under solvation conditions equivalent to those used for the
aggregation simulations (Table 6.4).

NNaCl [NaCl]/m NSol

35 3.88 500
40 3.88 571
45 3.88 643
45 3.33 750
45 2.78 900
45 2.22 1125

For the application of the PEACH method, it is assumed that the cluster size

frequency distribution data of a simulation is gathered over a set of equilibrium con-

figurations. Simulations of the cluster formation started from configurations with

ions randomly dispersed in solution. We consider the equilibrium condition to be

met when the maximum cluster size in the trajectory reaches the average maximum

cluster size in the simulation and then proceeds to fluctuate around that value. For

the simulations in SPC/E water this process took 5-10 ns, for the mixed solvent sim-

ulations it took 5-15 ns, and for the pure MeOH solvent simulations the equilibration

took 5-10 ns with the exception of the 0.22 m simulation containing 7 NNaCl where

it took ∼40 ns. In the averaging of the cluster size frequency distributions over each
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trajectory, we excluded the first 20 ns of simulation time. The trajectories were split

into 20 ns blocks to generate the standard error in the cluster size distributions.

6.2.1 Cluster definition

We use a cluster definition that was first implemented by Stillinger.[89] A cluster

consists of a group of ions that are linked by a sequence of neighbor associations. Ions

of a different charge from the observation ion that are within a cutoff distance rc are

defined as neighbors. The choice of cutoff distance rc = 0.34 nm was made based on

a distance intended to capture the first peak of the Na-Cl radial distribution function

(Fig. 6.1).
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Figure 6.1: Radial distribution function g(r) for Na and Cl ions of the simulation of
20 NaCl ion pairs at 1.60 m in the solvent mixture with xMeOH = 0.5.

There was no consistent correlation between the the quality of fit and the cluster

definition (see Appendix D.1 Fig. D.1) and thus it was not possible to identify a cutoff

that minimized the error of the global fit as was done in ref. [60].

6.2.2 Order parameter definition

To identify ordered rock-salt structures the second and third order invariant Stein-

hardt order parameters[129] within clusters were calculated. There are a number of

papers that have used Ql, the second order invariant Steinhardt order parameter.[106,

130–132] While it is less expensive to compute than the third order invariant, Mickel
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et al. found that that the value of Ql is not independent of the number of nearest

neighbors used to calculate its value,[133] limiting its usefulness for very small clus-

ters. The magnitude of the third order invariant Steinhardt order parameter Ŵl is

however supposed to be unaffected by changing the definition of the nearest neighbor

and
∣∣∣Ŵl

∣∣∣ provides a direct index of the symmetry for a particular cluster.[129] This

does not mean that changing the number of nearest neighbors does not change the

value of Ŵl for a very small cluster.

To calculate the third order Steinhardt invariant Ŵl, we must first define Qlm (~r),

where l and m are quantum numbers and l ≤ m ≤ −l. Qlm (~r) is the value of a

spherical harmonics function for a bond with a vector ~r between two atoms that

satisfies |~r| < rc. This definition of ~r differs slightly from the original publication[129]

but produces the same results.

Qlm (~r) = Ylm (θ (~r) , φ (~r)) (6.1)

For each ion, Qlm (~r) is averaged over the nearest neighbors within the cutoff dis-

tance rc and we define the nearest neighbor bonds as only existing between oppositely

charged ions.

Q̄lm = 〈Qlm (~r)〉 (6.2)

From the second order Steinhardt invariant Q̄lm, the third order Steinhardt order

parameters is calculated as,

Ŵl =

(
l∑

m=−l

∣∣Q̄lm

∣∣2)−2/3 ∑
m1,m2,m3

m1+m2+m3=0

[
l l l
m1 m2 m3

]
× Q̄lm1Q̄lm2Q̄lm3 (6.3)

where the coefficients in the matrix are Wigner 3j symbols.

Since we are interested in evaluating the structure of small clusters, we evaluate the

third order invariants for each atom and its direct neighbors individually to ascertain

whether it meets the criteria of a rock-salt structure. Table 6.6 shows the Steinhardt

third order invariant for a central ion coordinated with 3−6 ions of a different charge,



106

assuming a rock-salt structure. Depending on which of the six bonds are excluded in

a rock-salt conformation, the Ŵl values are liable to change.

Table 6.6: Third order Steinhardt invariants for l = 4, 6, 8 for the typical conforma-
tion of a coordinated ion in the rock-salt for a range of possible coordination numbers.

Coord. # 6 5 4 3 4* 3*

Ŵ4 0.1593 0.1529 0.1534 0.1593 0.1250 0.1275
Ŵ6 0.0132 -0.0067 -0.0341 0.0132 -0.0072 -0.0433
Ŵ8 0.0585 0.0599 0.0608 0.0585 0.0638 0.0659

Ŵl values for l = 4 are sufficient in distinguishing between the rock salt ordered

states and the amorphous states. We show in Fig. 6.2 that in a simulation where the

ordered state forms regularly (1.60 m) versus a simulation where the ordered state

is comparatively infrequent (1.14 m), the presence of an ordered state shifts Ŵ4 to

values greater than 0.14. We define ordered atoms as having Ŵ4 > 0.145 (indicated

with a grey line in Fig. 6.2).
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Figure 6.2: The figure on the right shows the results from the mixed solvent simula-
tion with xMeOH = 0.5 and 20 NaCl pairs solvated at 1.60 and 1.14 m. The simulation
at 1.60 m transitions between a large ordered cluster and amorphous clusters.
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6.2.3 Implementation of the PEACH method

The partition-enabled analysis of cluster histograms (PEACH) method uses simu-

lation cluster size distributions from a set of simulations over a range of concentration

and/or system sizes to generate equilibrium association constants Ki,j for each cluster

with i and j representing the numbers of Na+ and Cl− ions in the cluster.[59] Using

the exact relationship between the single-cluster partition functions qi,j (= q◦i,jV/V
◦,

with q◦ the partition function of a single cluster in a standard volume V ◦ = 1/c◦)

and the canonical partition functions Q (NA, NB, V, T ) for a system with a total of

NA and NB parts of each molecule type, the average cluster frequency is,

〈ni,j〉NA,NB
= qi,j ×

Q (NA − i, NB − j, V, T )

Q (NA, NB, V, T )
. (6.4)

The PEACH method thus generates a set of average cluster frequencies that are

then used in tandem with the raw simulation cluster size frequencies to adjust the

standard state partition functions q◦i,j to better reproduce the simulated average clus-

ter size frequencies. If the cluster definitions and observed statistics are consistent

with an equilibrium distribution of non-interacting clusters, the PEACH method con-

verges to an optimal fit in the partition functions which can then be used to generate

a final set of equilibrium associations constants, Ki,j. The free energy of aggregation

of each cluster is defined for some free monomer concentration c as,

∆Gi,j = −kBT ln
(
Ki,j (c/c◦)i+j−1

)
(6.5)

In an actual system there may be different concentrations of the two free ions

(see Appendix section 4.5), but Eqn. 6.5 is most convenient for representing the

association constants. Using the same assumption of equal concentrations of free

anions and cations, we can assume that at equilibrium the relative populations of

clusters with the same total number of ions n = i + j, will be proportional to Ki,j.

The average and standard deviation of cluster charge z = i−j can then be calculated

as a function of n.
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6.3 Results

Results from simulations of NaCl cluster formation from methanol, mixed methanol/water,

and pure water solutions will be presented and followed by a comparative discussion

of how solvent affects the free energy landscape of cluster formation.

6.3.1 Pure methanol

NaCl cluster formation from methanol solution proves to be the simplest cluster

formation system, although the most computationally challenging for the PEACH

method. Due to the low solubility and high ion-ion affinity, the dissociation rate

of individual ions or ion pairs is slow on the simulation timescale (resulting in slow

convergence of cluster size distributions) and the average numbers of free ions or ion

pairs are also low (resulting in narrow equilibrium cluster size distributions). The

infrequent monomer exchange does not allow cluster size distributions with sufficient

overlap between the cluster size distribution of different simulations for an effective

global fit. Fig. 6.3 demonstrates that the ions in most of the simulations spend more

than 60% of the simulation time in a single maximum cluster size for the system. This

propensity is slightly less pronounced for the dilute set of simulations of 900 molecules

and ions, but not enough to improve the overlap of cluster size distributions.

The surface resulting from the global fitting method is shown in Fig. 6.4 for a

monomer concentration of 0.0009 NaCl/nm3 ( 0.002 m) for the Na+ and Cl− ions.

The free energies of clusters with extra negative charge are lower than those with extra

positive charge, presumably from the greater desolvation energy of the (smaller) Na+

relative to Cl−.

In contrast to the relatively infrequent changes in cluster size, we observe rapid

fluctuation in cluster structures over the lifetimes of individual clusters, including

oscillations between ordered and disordered structures. Fig. 6.5 shows the fraction of

clusters that contain at least 50% of their ions in rock-salt environments as measured
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Figure 6.3: Cluster size distributions in terms of cluster number frequency for the
simulations of Na and Cl ions solvated in methanol with a total of 674 (top) and 900
(bottom) molecules and ions. The legend on the right side of each plot indicate the
number of NaCl ion pairs are present in each simulation. Cluster constituents are not
distinguished in this plot for clarity.

by the Ŵ4 order parameter (see Methods). It is noteworthy that this a measurable

fraction even for the smallest cluster that can form a complete NaCl unit, i.e. Na4Cl4,

and that the degree of order grows non-monotonically with cluster size. “Magic num-

bers” with higher degree of order are observed, as expected, for cluster sizes of 8 (a

single “box”), 12 (pair of “boxes” sharing a face), and 18 (cluster of 4 “boxes” arranged

in a square, see Fig. 6.6). The degree of order vs. size is nearly superimposable for

two independent simulations in different volumes, indicating that sampling of different

structures is well-converged over the simulation runs.
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Figure 6.4: Free energy surface for the formation of NaCl cluster solvated in
methanol as a 2-D (left) and 3-D surface (right) for a monomer concentration of
0.0009 NaCl/nm3 ( 0.0021 m).



110

674

990

4 6 8 10 12 14 16 18
0.00

0.05

0.10

0.15

0.20

Maximum cluster size, i

f O
rd
er
ed
[
i]

Figure 6.5: Order parameter trends for the maximum cluster size present in the NaCl
cluster formation simulation solvated in methanol with systems containing 674 and
990 molecules. A cluster is considered ordered if there are 50% or more atoms in the
cluster with Ŵ4 ≥ 0.145.

One particularly interesting mode of fluctuation of the Na9Cl9 structure is cap-

tured in snapshots shown in Fig. 6.6. Two well-ordered rocksalt structures, which

differ only in which internal Na-Cl bonds are formed, interconvert through an inter-

mediate state consisting of 3 stacked hexagons. (It should be noted that there are no

solvent molecules within the cylindrical cavity.) The transition is complete in under

100 ps.

Figure 6.6: Snapshots of a 9 Na and 9 Cl cluster fluctuating between two cubic
ordered states through a stacked hexagonal configuration transition state when the
internal Na-Cl bonds break. The snapshots correspond to 499.647, 499.691, and
499.731 ns in the trajectory. A short movie of this transition is included in the
supplemental material.
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Figure 6.7: Plots of the cluster size frequency distributions based on the simulated
raw results from NaCl in methanol/water mixtures (points) with the standard error
(grey shaded regions) and the result of the global fit from the PEACH analysis (lines).
The distributions were split into two plots for visibility with data for simulation with
xMeOH = 0.4 given in plots (a) and (b), and xMeOH = 0.5 given in plots (c) and (d).

6.3.2 Mixed solvent simulation results

The mixed MeOH/H2O solvent simulations (with solvent mole fractions xMeOH =

0.4 and 0.5) are characterized by frequent monomer exchange at concentrations where

large clusters can form and then break apart. Simulations of 20 NaCl over a range

of concentrations sample neutral clusters of all sizes as well as clusters with charge

asymmetries of up to ±4.

The PEACH analysis produced a good fit over a range of concentrations for

xMeOH = 0.4, but was less successful in the xMeOH = 0.5 system, where the fit under-

predicted the prevalence of large clusters at high concentrations. Fig. 6.7 shows the

observed and fitted levels of neutral clusters only; full plots showing all species are

given in the Appendix Fig. D.6 and D.7.

We propose that the less successful fitting in the case of the xMeOH = 0.5 system is
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likely due to the onset of crystalline ordering in large clusters. We find that the size at

which clusters display ordering is larger in these mixed solvents than in pure methanol.

Whereas over 10% of very small (Na4Cl4 or Na6Cl6) clusters aggregating from pure

methanol adopt an ordered rocksalt structure, in the mixed solvents this fraction

was under 1%. (Fig. 6.8). The proportion of clusters showing significant ordering

climbs steeply for sizes over 30 total ions. In principle the existence of multiple forms

(e.g. ordered and disordered) of a cluster of a certain size s does not invalidate

the framework used here to analyze cluster distributions; the partition function qi,j

associated that size cluster will incorporate contributions from all varieties. The

kinetics of the order/disorder transition may, however, introduce a sampling problem.

Fig. 6.8 (center plots) shows the maximum cluster size and the fraction of atoms in

the maximum cluster size that meet the order criteria, xOrdered, over the course of

the trajectories. The latter plot has the appearance of a two-state system, but with

considerable “noise” overlaid. Transitions between an ordered and amorphous state

occur 10 times over a 200 ns trajectory for the 1.60 m simulation, which is insufficient

to establish the equilibrium populations of the two states. In the lower concentration

simulations, 1.14 and 1.00 m, the transitions are even less frequent. Since most of

the trajectories have minimal sampling of ordered states for the larger cluster sizes,

the one simulation where the ordered state is present more than 30% of the time

for clusters sizes larger than 35 is poorly reproduced by a global fit that favors the

amorphous state.

In contrast to the simulations in pure methanol, here the sampling issue is not

so much the formation of a cluster of a given size but the transition between con-

formations for that cluster size. The rapid oscillations in the fraction of ions in

ordered environments, in both the ordered and amorphous states, reflects the dy-

namic restructuring of surface ions (in the ordered case) and the rapid appearance

and disappearance of locally ordered environments within the amorphous clusters.
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Figure 6.8: Order parameter trends for the three highest concentration simulations
of NaCl solvated in the 0.5 xMeOH solvent mixture. The figures on the left show the
fraction of clusters of size i where more than 50% of the atoms meeting our order
criteria (blue line and points) fOrdered [i], and the 1-D cluster size histogram shaded
in light grey in the background to indicate the relative cluster size frequencies for
that simulation (irrespective of the cluster composition). The plots on the right show
the maximum cluster size (teal green line) and xOrdered, the fraction of atoms in that
cluster that meet the order criteria, versus the simulation time.
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Figure 6.9: The snapshots show the ordered (blue bonds) and disordered (red bonds)
structures of a 36-mer from the simulation of NaCl solvated in the 0.5 xMeOH solvent
mixture at a solute concentration of 1.60 m.

The transitions within this small, fluctuating cluster are presumably closely related

to the nucleation of ordered crystals from within larger amorphous clusters observed

by Chakraborty and Patey.[104]

Poor sampling may also explain why the degree of ordering vs. cluster size was

not consistent over three concentrations in the xMeOH = 0.5 mixed solvent (Fig. 6.8),

in contrast to the consistent degree of order observed in clusters forming in pure

methanol under different simulation conditions (Fig. 6.5). Two other explanations

related to systematic effects are also plausible. The first relates to the mixed solvent.

In a small constant-composition system with a mixed solvent, if the number of one

solvent type solvating some population of free ions or clusters is a significant fraction

of the total number of waters in the system, the remaining solvent will be depleted of

water to a degree that depends on system size and will provide a different solvation

environment for the other clusters. It is also possible that there are non-ideal effects

relating to the interaction between the cluster and surrounding “free” ions or other

clusters. This possibility can be ruled out as a sole cause (although it might be a

contributing factor) since the discrepancy is observed even for the 40-mer cluster,

which will always be the only ion cluster in the simulation box.

With the caveat that the fitting may not properly capture the equilibrium between
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Figure 6.10: Gibbs free energy of association for NaCl cluster formation in mixed
solvent with a monomer concentration of 0.085 NaCl/nm3 ( 0.17 m) for the xMeOH =
0.4 solvent mixture and 0.050 NaCl/nm3 ( 0.10 m) for the xMeOH = 0.5 solvent
mixture. The right column of plots shows the average cluster charge 〈z〉i for cross
sections of the free energy surface where the total cluster size i is the same. The
region shaded in grey indicates the weighted standard deviation in the cluster charge.

ordered and disordered clusters at large sizes, it is interesting to examine the free

energy surfaces themselves, shown in Fig. 6.10. In both cases, free energies rise and

fall again moving from small to large cluster sizes, qualitatively consistent with the

nucleation of a new phase of amorphous NaCl, which at some point (at or near the

upper size limit here) will become unstable with respect to the formation of ordered

nanocrystallites. The free energy curves are roughly symmetrical with respect to

sodium and chloride content. Considering charge as the second dimension of the

growth of NaCl clusters, with fluctuations away from the neutral necessary if the

growth is made by single ions, we plot the mean and rmsd charge as a function
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Figure 6.11: Plot of the cluster size frequency distributions for clusters solvated
in SPC/E water (xMeOH = 0) based on the simulated raw results (points) with the
standard error (grey shaded regions) and the result of the global fit from the PEACH
analysis (lines). The two plots display the data for simulation containing 30 and 20
NaCl pairs; a plot showing results from 45 NaCl pairs is given in Appendix Fig. D.3
and full 2D surface plots are given in Appendix Fig. D.3-D.5.

of cluster size (Fig. 6.10, right), assuming the concentrations of free ions of either

charge are identical. From the data we infer that there is no definitive cluster charge

preference for clusters solvated in either of the mixed solvent environments in this

size range.

6.3.3 Pure SPC/E water solvent simulation results

NaCl cluster formation in pure SPC/E water requires significantly higher salt

concentrations than the other two solvent environments to promote the formation

of large and/or ordered clusters. Large amorphous clusters that contain strings of

alternating anions and cations, could form cycles across periodic boundaries; such

structures are artificially stabilized by the boundary conditions, so trajectories that

produced such structures were not used in the PEACH analysis. First, we will discuss

the set of 7 concentrations from 0.56 m to 3.88 m with numbers of NaCl pairs 20, 30,

and 45, in which exclusively amorphous clusters were observed.

As we saw for the mixed solvent simulations, the agreement in magnitude between

the cluster size distributions from simulation and those reproduced using the global fit

equilibrium association constants is at first glance rather good, shown in Fig. 6.11 for

neutral clusters. Closer inspection, however, shows discrepancies between the fitted
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and observed distributions that are significant both for their magnitude relative to the

standard error in the simulation and because they are systematic in their dependence

on total NaCl concentration. At concentrations below 3.33 m, the fit consistently

predicts higher levels of large cluster formation than observed in simulation, while at

the single concentration above 3.33 m, the fit predicts lower levels for large clusters.

So, even after finite-N effects are handled using the PEACH analysis, the equilibrium

constants describing aggregation into large clusters (> 8 ions) appear to be growing

with increased concentration. Unlike the mixed-solvent simulations where sampling

of the transitions between the ordered and amorphous states was a complication,

no persistent ordered structures were observed in the simulations used for the global

fitting. The inability to achieve a satisfactory global fit across concentrations is there-

fore most likely due to non-ideal effects associated with cluster-cluster interactions

(where “cluster” encompasses cluster of size 1, i.e. free ions.)

An obvious origin for non-ideal effects is the long-ranged Coulomb interaction

among clusters and free ions. The qualitative trend predicted by the Debye-Hückel

screening formalism is that increased ionic strength will reduce the activity of charged

species but not of neutral species,[134] and so would reduce the apparent equilibrium

constants for the formation of neutral products. The trend observed in the simula-

tions, that high concentrations are more favorable to clustering than an ideal model

would suggest, runs contrary to this prediction. Even though Debye-Hückel theory is

not expected to be quantitatively accurate for the concentrations of concern here, its

failure to predict the qualitative trend away from ideal behavior suggests that elec-

trostatics are not the main source of non-ideality. (Electrostatic interactions within

a cluster, and between cluster and solvent, are accounted for in the cluster formation

free energy and do not contribute to non-ideality.)

A better explanation for the observed systematic error is a non-ideal crowding

effect. Crowding in solution can be viewed from two (equivalent) perspectives: as
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an effect of excluded volume or of solute effects on solvent chemical potential.[135]

Free ions and clusters are associated with tightly bound waters of hydration, some of

which are released upon aggregation. In dilute solution, the water chemical potential

depends only very weakly on concentration. Free solvent becomes scarcer at high

solute concentrations, lowering the chemical potential of water and making the release

of a given number of waters an increasingly favorable contribution to the free energy

of cluster formation. The effect is a greater association constant for clustering at high

concentration, as seen in the data.

From the excluded volume perspective, the release of solvent upon aggregation

increases the effective volume available to other ions and clusters. The numbers of

closely associated solvent per ion (estimated here as 5.4 for Na+ and 7.2 for Cl−,

similar to values in the literature;[136–138] see Appendix section D.3.1 for details)

are comparable to than the total number of solvents per ion pair (14) in the 3.88

m system, it is not surprising that solvent scarcity will influence aggregation in a

non-ideal way.

Our previous report of MTBE cluster formation discussed how non-ideal contri-

butions to cluster free energies from excluded volume effects might be finessed with

an appropriate choice of cluster cut-off,[60] through which a change in free volume

associated with monomer association or dissociation is balanced by changes in attrac-

tive interactions between monomers. Varying cut-offs did not, however, improve the

systematic non-ideal effects revealed in the present NaCl systems. This case might

be different because the volumes associated with the free ion solvent shells are too

large for this balancing to work.

If the systematic errors in the fit are indeed the result of non-ideality, the corre-

sponding free energy surface can be seen as an effective free energy surface averaged

over the environments represented in the simulations. With this caveat, the free en-

ergy surface obtained from global fit to three sets of simulations with 20, 30 and 45
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Figure 6.12: Gibbs free energy surface for NaCl cluster aggregation solvated in SPC/E
water with a monomer concentration of 0.58 NaCl/nm3 ( 0.97 m). The top plot shows
a contour plot of the free energy resulting from the PEACH method being applied
to simulations containing 20, 30, and 45 NaCl pairs at concentrations of 0.56-3.88 m
and the bottom plot shows a 3-D representation of the same free energy surface.

NaCl at concentrations of 0.56-3.88 m is presented in Fig. 6.12.

Charge distributions as a function of cluster size, derived from this plot are rep-

resented in Fig. 6.13. In contrast to the cluster formation in methanol-containing

solvents, this free energy surface favors the incorporation of positive ions into the

cluster, especially for larger cluster sizes, and also predicts a wider distribution of

charges for any given cluster size. The observed trend that the standard deviation in

charge increases with cluster size is not surprising, as a larger cluster allows a greater

distance between excess charges and so reduces Coulomb repulsion. An explanation

for the preference for formation of positively charged clusters might come from the

stability of the cluster and/or the stability of the free ion. Noting that this prefer-

ence is much weaker or absent in the mixed solvent systems, solvation effects must

be playing a role; differences in how the ions pack in the clusters themselves will not

address this question, unless these differences are solvent-dependent. Na+ may lose

less of its favorable hydration enthalpy upon adding to the surface of a neutral cluster

than Cl−. It is unlikely that the release of waters of hydration is a driving force for

the cluster charge preference since Cl− ions are more hydrated than Na+ ions but it
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Figure 6.13: Plot of the average cluster charge 〈z〉i for cross sections of the free
energy surface where the total cluster size i is the same. The region shaded in grey
indicates the weighted standard deviation in the cluster charge.

may be the case that sodium desolvates more completely than chloride.

The cluster charge trend has been touched on in several other simulations.[106,

139, 140] In developing a polarizable potential for water and ions, Soniat et al. re-

ported a very clear preference for the formation of positively charged clusters with

an increasing average charge as the cluster size increased.[140] Lanaro and Patey re-

ported a preference for positively charged Na+ to be in a more ordered environment

than the Cl− ions for small clusters, a trend that decreased with increasing cluster

size.6 In a study by Oh et al. on the nucleation of water and methanol droplets around

a Lenard Jones cations and anions of the same size, it was found that the formation

of a SPC/E water droplet around the anion was slightly more favorable.[141] While

there are size effects that must be taken into account, a lower solvation energy for

the anions could lead to the trend in favoring positively charged clusters.

6.3.4 Ordered clusters in water

Aqueous systems of 30 NaCl pairs did not form ordered clusters over 500 ns of

simulation even for concentrations up to 7.2 m. Larger systems (45 NaCl pairs)

displayed irreversible formation of an ordered cluster at concentrations as low as 4.44

m, with widely varying onset times (between 10 ns and 610 ns, see tc values in Table
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Figure 6.14: Plots of the maximum cluster size in the trajectory (green) and the frac-
tion of ions in that cluster that would be considered ordered (orange), from simulation
of 35 NaCl nanocrystallite seeded into a box of 500 SPC/E water.

6.4). In two runs, at 5.00 and 6.66 m, ordering was not observed over 500 ns of

simulation. When placed into solvent boxes, ordered clusters of 45 NaCl pairs were

stable over 100 ns at concentrations as low as 2.22 m. The concentration of free

ions in solution in these cases appears to stabilize at about 0.5 m, which suggests

the true solubility of this model NaCl in SPC/E water is far lower than reported

previously.[105] An ordered cluster of 35 NaCl pairs was seen to reach this stable

plateau initially (Fig. 6.14) with 10 ions entering the solvent in the initial 4 ns and

the remaining 60-ion cluster remaining stable and ordered for an additional 10 ns.

Over an additional 6 ns, the cluster shrank and lost its crystalline order rapidly upon

reaching a total size of about 40 ions. From this we conclude that the threshold size,

above which ordered clusters are more stable than disordered clusters in aqueous

solution, is between 40 and 90 ions for the current force field. The barrier between

the ordered and disordered forms is apparently too large for a more precise conclusion

from the current data.

This uncertainty is not surprising since sampling rare events like nucleation using

unbiased MD can require extremely long simulation times to see a single nucleation

event, especially at low supersaturations.[119, 142] Even in situations where it is

possible to see nucleation events within the simulation time, the time required to
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observe a nucleation event is concentration and system size dependent. Chakraborty

and Patey compared systems with 4000 and 500 NaCl ion pairs at a concentration

of 3.97 m and found that the nucleation onset times were ≤ 10 ns and ≈ 90 ns

respectively.[104]

6.3.5 Classical nucleation theory and amorphous NaCl clusters

The 1-D effective cluster free energy surfaces (for even-numbered, neutral clusters)

for all four solvent systems were fit to a functional form taken from classical nucleation

theory (CNT),[143]

∆Gi = γAgeom

(
i2/3 − 1

)
− (i− 1) kBT ln

(
c

csat

)
(6.6)

where γ is the interfacial surface tension, Ageom is a geometric area constant for

the cluster, and c is the monomer concentration. The values are shown in Table

6.7. Cluster free energies for all four systems, with corresponding fits, are shown

in Fig. 6.15 under conditions of equivalent supersaturation, specifically at a degree

of supersaturation s = 1.5, i.e. a free monomer concentration of 1.5 csat. The csat

values, although derived from a simple model and from primarily amorphous rather

than crystalline structures, are conspicuously low compared with experimental NaCl

solubilities for the pure solvents (6.17 m for H2O and 0.214 m for MeOH).[144] The

results are therefore to be taken for the phenomena and trends that they illuminate

rather than for accurate predictions about NaCl in these solvents.

Table 6.7: Values from the fits to neutral cluster free energies using the classical
nucleation theory functional form (Eqn. 6.6).

Solvent (xMeOH) γAgeom/kBT csat/m
1.0 3.63 3.7× 10−4

0.5 2.42 0.044
0.4 1.97 0.081
0.0 1.46 0.70
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Figure 6.15: Plot of neutral clusters ∆Gi calculated using Eqn. 6.5 (circles) with
the PEACH analysis results for NaCl cluster simulations under different solvent con-
ditions, and the results of the fit to the CNT expression in Eqn. 6.6 (line). The
values for the CNT fit are given in Table 6.7. Both calculations assume a monomer
concentration of cNa+ = cCl− = 1.5 csat.

Except for the pure methanol case and the largest cluster sizes in the solvent

mixtures, these curves describe primarily or exclusively amorphous clusters. They

can therefore be interpreted as depicting the nucleation barrier and critical nucleus

size to form a metastable amorphous phase as the endpoint to unrestricted amorphous

cluster growth. We would identify the result of this growth with the “liquid droplet”

invoked in the 2-step nucleation mechanism.[121]

As discussed above, non-ideal effects complicate the interpretation of the curve and

fitting parameters given for pure water, but they should be adequate for this qualita-

tive discussion; it is physically reasonable that increasing solvent quality would lower

the effective surface tension. Given that the crystalline structure becomes the more

stable structure at large cluster sizes, these curves will be crossed by a more steeply

descending curve that describes the free energy of crystalline clusters. Changing su-

persaturation will shift the position of the maximum along the amorphous phase curve

(the critical nucleus size), and so can influence whether the crossover occurs before

or after this critical size is reached. If the crossover occurs at a higher cluster size

than the critical nucleus size for the amorphous phase, a two-step nucleation process
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is much more likely. We identify the crossover size near 40 total ions for the two

mixed-solvent cases and at a larger size (between 40-90 total ions) for pure water.

Accordingly, at s = 1.5 we would expect crystal nucleation in pure water to proceed

via a 2-step mechanism, since the nucleation barrier to forming a dense amorphous

phase occurs at cluster sizes where the ordered state is not yet stable. In the mixed

solvents at the same supersaturation, the growing amorphous cluster would have the

opportunity to cross over to an ordered state near the critical nucleus size, and might

bypass the formation of a larger amorphous cluster or “liquid droplet”. Greater confi-

dence in this type of prediction would require more study of the rates of growth of the

amorphous cluster relative to the (size-dependent) rate of change of the amorphous

cluster to a crystalline one.

The fit of Eqn. 6.6 to the free energies of NaCl clusters in pure methanol is shown

only for completeness. It does not account for “magic number” effects discussed above,

and contains significant contributions from both amorphous and ordered structures,

so does not represent the pathway to a dense amorphous phase. The 2-step mecha-

nism would not be a possibility under any supersaturation conditions for this system,

because the ordered structure becomes stable at small cluster sizes where the barrier

to crossing over from amorphous to ordered is negligible; growth and ordering can

follow an smooth path across the global free energy surface.

6.4 Conclusions

Although the three solvent conditions presented challenges to the determination

of a global free energy of association for NaCl cluster formation, the forms these

challenges took illustrate contrasting free energy landscapes. In pure methanol, crys-

talline structures became stable even at low cluster sizes (10 NaCl pairs); furthermore,

dissociation was slow relative to structural transformations. The implication for the

effectiveness of the PEACH method is that sampling across different cluster sizes was
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poor; hybrid methods that combine PEACH with enhanced sampling approaches are

needed to treat cases like this. The implication for crystal nucleation is that we ex-

pect a growing cluster to cross smoothly over from amorphous to ordered structures

at small cluster sizes, so that no two-step process would be observed.

In 40% or 50% aqueous methanol, ordered structures become more stable than

amorphous structures once clusters grow to about 20 NaCl pairs. Transitions between

ordered and disordered forms for clusters near this transitional size are significantly

slower than exchange of ions with the surroundings but are fast enough to observe

occurring reversibly in simulations. It is conceivable that a growing cluster, at high

enough supersaturation, could grow larger than this crossover size before making the

transition. To draw firm conclusions about the likelihood of a two-state mechanism,

more information would be needed on how the rate of the ordering transition depends

on the size of the amorphous cluster size. In 40% methanol, fast sampling across wide

ranges of cluster sizes allowed for excellent fits to the data using PEACH. In 50%

methanol, slow interconversion between ordered and disordered states of the largest

clusters may be the cause of somewhat poorer fits.

In pure water, the crossover to favoring the ordered cluster appears to be shifted

to yet larger cluster sizes, apparently in the 20-40 NaCl pair range. It is hard to be

more precise about the crossover because transitions were so slow that they could

only be seen under conditions where they were irreversible. The slow rate of dehydra-

tion involved in conversion from a partially hydrated amorphous cluster to a compact

crystal is a likely contribution to this slowness. For this reason, it is easy to imag-

ine conditions favoring two-step nucleation:[105, 121] an initially formed amorphous

cluster grows beyond the crossover size (even into a metastable amorphous phase)

without undergoing ordering, and an ordered crystal nucleates from within this high-

concentration, disordered environment. The systematic deviation between simulation

data and PEACH best-fit models (which rely on the assumption of non-interacting
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clusters) suggests that non-ideal effects are an important factor favoring the growth

of amorphous clusters at high concentrations. We propose that the release of solvent

into a crowded solution environment is the source of this non-ideality and a driving

force for amorphous cluster formation in this aqueous NaCl model. Further elabora-

tion of the PEACH method to incorporate non-ideal effects explicitly is an important

goal for the future.
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Appendix A Derivations

A.1 Ensemble averages

In the following section we derive a number of useful ensemble averages related

the the cluster size histograms that are and could be useful. In particular we want to

use the relationships between the generating function (the grand canonical partition

function Ξ), the canonical partition functions Q, the partition functions for individual

clusters qi, and ensemble averages.

A.1.1 Cluster co-frequency 〈mjms〉N
Similarly to the derivation of the cluster size frequency in section 4.3.3, we begin by

defining the grand canonical ensemble average in the cluster size co-frequency as a sum

over the canonical ensemble cluster size co-frequencies weighted by the probability

of the system having N particles and a given activity λ, Q(N, V, T )λN/Ξ(λ, V, T ) as

related by a probability P (N, λ) weighted average over all the possible system sizes

N .

〈mjms〉λ =
∞∑
N=0

P (N, λ) 〈mjms〉N

=
∞∑
N=0

Q (N, V, T )λN

Ξ
〈mjms〉N (A.1)

Expanding the expression for the canonical ensemble average of the co-frequency

〈mjms〉N to a sum over all partitions of N , P (N), where an s-mer and j-mer are
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present,

〈mjms〉λ Ξ =
∞∑
N=0

Q (N, V, T )λN

Q (N, V, T )

P (N)∑
k=0

mj,kms,k

N∏
i=1

qmi,k

mi,k!


=

 ∞∑
mj=0

mj
(qjλ

j)
mj

mj!

( ∞∑
ms=0

ms
(qsλ

s)ms

ms!

) ∞∏
i=1
i 6=j,s

∞∑
mi=0

(qiλ
i)
mi

mi!


= qjqsλ

j+s

 ∞∑
mj=1

(qjλ
j)
mj−1

(mj − 1)!

( ∞∑
ms=1

(qsλ
s)ms−1

(ms − 1)!

) ∞∏
i=1
i 6=j,s

∞∑
mi=0

(qiλ
i)
mi

mi!


= qjqsλ

j+s

(
∞∏
i=1

∞∑
mi=0

(qiλ
i)
mi

mi!

)

the expression is rearranged to extract a factor of qjqsλj+s and return to the grand

canonical function Ξ such that the following hold true:

〈mjms〉λ Ξ = qjqsλ
j+sΞ (A.2)

Using the relationship expressed in eqn. A.1 for the left side of eqn. A.2 and

expanding the expression for Ξ on the right side of eqn. 4.34 into a polynomial in

powers of λ we get the following relationship:

∞∑
N=0

Q (N, V, T )λN 〈mjms〉N = qjqs

∞∑
N=0

Q (N − (s+ j) , V, T )λN (A.3)

By isolating the coefficients for the N th power of λ we can get an expression for

the canonical ensemble average of the co-frequency in j-mers and s-mers as a function

of the partition functions q and the canonical ensemble partitions functions Q:

〈mjms〉N = qjqs
Q (N − j − s, V, T )

Q (N, V, T )
(A.4)

A.1.2 Frequency of seeing two of the same cluster size simul-
taneously

〈
m2
j −mj

〉
N

The derivation of cluster size co-frequency here is a variant of the previous deriva-

tion except the assumption in this case is that the cluster sizes are the same (s = j).
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We begin by stating the relationship between the cluster size co-frequencies in the

canonical ensemble 〈mj(mj − 1)〉N and grand canonical ensemble 〈mj(mj − 1)〉λ.〈
m2
j −mj

〉
λ

=
∞∑
N=0

P (N, λ)
〈
m2
j −mj

〉
N

=
∞∑
N=0

Q (N, V, T )λN

Ξ(λ, V, T )

〈
m2
j −mj

〉
N

(A.5)

Expanding the expression for the canonical ensemble cluster size variance
〈
m2
j −mj

〉
N

to a sum over all the partitions of N , P (N), we are then able to rearrange the ex-

pression until a factor of (qjλj)
2 can be extracted.

〈
m2
j −mj

〉
λ

Ξ =
∞∑
N=0

Q (N, V, T )λN

Q (N, V, T )

P (N)∑
k=1

(
m2
j,k −mj,k

) N∏
i=1

q
mi,k

i

mi,k!


=

 ∞∑
mj=0

(
m2
j −mj

) (qjλ
j)
mj

mj!

( ∞∏
i=1,i 6=j

[
∞∑

mi=0

(qiλ
i)
mi

mi!

])

=
(
qjλ

j
)2

 ∞∑
mj=2

(qjλ
j)
mj−2

(mj − 2)!

( ∞∏
i=1,i 6=j

[
∞∑

mi=0

(qiλ
i)
mi

mi!

])

=
(
qjλ

j
)2

(
∞∏
i=1

[
∞∑

mi=0

(qiλ
i)
mi

mi!

])
In this last expression we can see that we have returned to the grand canonical

partition function, Ξ, such that the relationship between the grand canonical ensemble

average of the cluster size variance can be expressed as:

〈
m2
j −mj

〉
λ

Ξ =
(
qjλ

j
)2

Ξ (A.6)

Substituting eqn. A.5 for the left side of the eqn. A.6 and expanding the right

side of eqn. A.6 as a polynomial in powers of λ, allows us to reach an expression that

relates two polynomials of λ as:
∞∑
N=0

〈
m2
j −mj

〉
N
Q (N, V, T )λN = q2

j

∞∑
N=0

Q (N − 2j, V, T )λN (A.7)

Upon isolating the coefficients of the polynomials with the same power, we are able to

find the functional form for the canonical ensemble average of the cluster size variance
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for a j-mer in terms of the partition function qj and the canonical ensemble partition

functions Q: 〈
m2
j −mj

〉
N

= q2
j

Q (N − 2j, V, T )

Q (N, V, T )
(A.8)

A.2 Defining the exact equilibrium association con-
stant as a function of co-frequency

We begin by defining the exact equilibrium association constant in terms of the

standard state partition functions q◦j for the association/dissociation of a j-mer and

an s-mer. Using the volume scaling qj = q◦jV/V
◦ between the standard state partition

function and a partition function for a given volume V ,

Kactual,j+s =
q◦j+s
q◦j q
◦
s

=
(V/V ◦)

(V/V ◦)2

qs+j
qjqs

(A.9)

We apply a mathematical trick of multiplying Eqn. A.9 by 1 (i.e. the total parti-

tion functions divided by themselves). Upon rearranging the equation so that we can

see the equivalence to Eqn. 4.43 and Eqn. A.4,

Kactual,j+s =
(V/V ◦)

(V/V ◦)2

qs+jQ (N − (s+ j) , V, T )

Q (N, V, T )

Q (N, V, T )

qjqsQ (N − (s+ j) , V, T )

we get the following:

Kactual,j+s =
〈mj+s〉N
〈mjms〉N

(V/V ◦)

(V/V ◦)2 (A.10)

This naturally raises a question concerning the global fitting method (section 4.4):

why do we not use this to calculate the first guess for the equilibrium association

constants rather than the law of mass action? The answer is that we could use

the co-frequencies to generate the initial guess for the equilibrium constants but the

generation of the data we use to improve the fit (in practice the cluster size frequency

〈ns〉N) would still involve choosing one reaction pathway for each cluster size for a

1-1 mapping in the Eqn. 4.58 and thus the subsequent calculation of the adjustment

factor (Eqn. 4.60-4.59).
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A.2.1 Deriving ln [Kactual,j/KLoMA,j]

In the search from a correction to the law of mass action based association constant

for j monomers associating into a j-mer
(
j [ 1 ]

assoc



dissoc
[ j ]

)
, the question arose as to

whether we could exactly calculate the difference between it and the exact association

constant. It is understood qualitatively that the law of mass action only works well

in the limit of bulk solutions where the formation of a product does not significantly

perturb the concentration of reactants or products. As the system size increases, the

ability of the law of mass action to reproduce the equilibrium association constant

improves.

Kactual,j =
q◦j

(q◦1)j
=

qj

(q1)j

(
V

V ◦

)j−1

(A.11)

KLoMA,j =
cj

(c1)j
=
〈nj〉
〈n1〉j

(
V

V ◦

)j−1

(A.12)

To quantify the convergence between these two functional forms, they must both

be reframed in terms of the partition functions. Using the definition for the average

cluster frequency 〈nj〉 from Eqn. 4.43, the law of mass action equilibrium association

constant in Eqn. A.12 becomes:

KLoMA,j =
qj

(q1)j

(
V

V ◦

)j−1
Q (N − j, V, T )

Q (N, V, T )

(
Q (N, V, T )

Q (N − 1, V, T )

)j
(A.13)

The ratio of the exact association constants (Eqn. A.11) and the law of mass

action (Eqn. A.13) is:

ln

[
Kactual,j

KLoMA,j

]
= j ln

[(
Q (N − 1, V, T )

Q (N, V, T )

)]
− ln

[
Q (N − j, V, T )

Q (N, V, T )

]
(A.14)

and reaches 0 as the law of mass action converges on the true equilibrium association

constant in the limit of N →∞.

Deriving ln [Kactual,j/KLoMA,j] using co-frequencies

Another variant of the derivation is based on the relationship between an exact

equilibrium constant Kactual,j′ and the cluster co-frequencies as defined in Eqn. A.10
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in section A.2. Suppose we define an aggregation pathway for the formation of a

j-mer as the association of a monomer and a (j − 1)-mer.

[ 1 ] + [ j − 1 ]
assoc



dissoc
[ j ]

Kactual,j′ =
〈nj〉
〈n1nj−1〉

(V/V ◦)

(V/V ◦)2 =
q◦j

q◦1 q
◦
j−1

=
qj

q1 qj−1

(V/V ◦)

(V/V ◦)2 (A.15)

KLoMA,j′ =
〈nj〉

〈n1〉 〈nj−1〉
(V/V ◦)

(V/V ◦)2 (A.16)

We denote the equilibrium association constants with a j′ since this is a different

pathway to the reaction described in the previous section.

To make the connection to an equivalent expression of Eqn. A.14, one must recog-

nize that the reaction for the equilibrium constant there is for the reaction pathway:

j [ 1 ]
assoc



dissoc
[ j ]

And we can get to this though a progression of reactions such that,

Kactual,j =

n=j−2∏
n=0

Kactual,(j−n)′ (A.17)

This definition results in an equilibrium association constant based on the law of

mass action that is no different from the one reported in Eqn. A.12. Likewise, if we

use the definition for Kactual, j
′ based on the partition functions q◦ and substitute it

into Eqn. A.17 gets back to the same expression for the equilibrium constant given

in Eqn. A.11. The equilibrium constant as a function of the co-frequencies can be

expressed as:

Kactual,j =
〈nj〉
〈n1nj−1〉

〈nj−1〉
〈n1nj−2〉

〈nj−2〉
〈n1nj−3〉

· · ·〈
nj−(j−3)

〉〈
n1nj−(j−3+1)

〉 〈nj−(j−2)

〉
〈n1(n1 − 1)〉

(
(V/V ◦)

(V/V ◦)2

)j−1

(A.18)

= 〈nj〉
〈nj−1〉
〈n1nj−1〉

〈nj−2〉
〈n1nj−2〉

· · · 〈n2〉
〈n1n2〉

1

〈n1(n1 − 1)〉

(
(V/V ◦)

(V/V ◦)2

)j−1

=

[
〈nj〉

〈n1(n1 − 1)〉

j−1∏
m=2

〈nm〉
〈n1nm〉

](
(V/V ◦)

(V/V ◦)2

)j−1

(A.19)
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The ratio of equilibrium association constants can therefore be calculated as a

function of co-frequencies:

ln

[
Kactual,j

KLoMA,j

]
= ln

[
〈n1〉j

〈nj〉
〈nj〉

〈n1(n1 − 1)〉

j−1∏
m=2

〈nm〉
〈n1nm〉

]

= ln

[
〈n1〉j

〈n1(n1 − 1)〉

j−1∏
m=2

〈nm〉
〈n1nm〉

]
(A.20)
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Appendix B Coarse-grained molecular sim-
ulations of the melting kinetics of small unil-
amellar vesicles

B.1 Truncated icosahedron assembly

It is possible to calculate internal dihedral angles between faces that share an

edge for a truncated icosahedron through application of geometric identities and the

constraints that:

1. Every vertex of a truncated icosahedron is the product of an intersection of a

pentagonal face and two hexagonal faces.

2. The length of all pentagon and hexagon edges are equal.

3. The edge length ledge is directly correlated to the distance, rface, between the

center of the truncated icosahedron and any face on the shape.

The results of this can be seen in sections B.1.1 and B.1.2.

The displacement of the lipid slabs if they were a two-dimensional surface is

given by Eqn. B.1 for a given edge length ledge. The slabs however occupy a three-

dimensional space and their displacement must account for the thickness of the bilayer

lthick (∼4 nm). If we assume that the distance rface is defined as the distance to the

center of mass of the pentagonal or hexagonal slab, a good first approximation to the

appropriate slab displacement is given by Eqn. B.2. In practice, we generated a series

of truncated icosahedron with different displacements, chose the displacement that

provided sufficient overlap of lipids in both leaflets at edges. That configuration was

then subjected to a script that identifies lipid pairs that have a minimum separation
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less than 0.45 nm and removes one of the lipids.

rface (ledge) = ledge

9

2

√
17 + 6

√
5

109

 (B.1)

rslab (ledge) = rface (ledge) + lthick/2 (B.2)

B.1.1 Hexagonal faces

The dihedral angle between a pentagon face and a neighboring hexagon face θph

is 37.4◦ (Eqn. B.3) and the dihedral angle between two hexagon faces θhh is 41.8◦

(Eqn. B.4).

θph =
180

π

(
π − sin−1

[
2
√

65− 22
√

5

15− 3
√

5

]
− sin−1

[
3 +
√

5

6

])
(B.3)

θhh =
180

π

π − 2 sin−1

√3 +
√

5

6

 (B.4)

θrot =
2π

5

(
180

π

)
(B.5)

Starting with a hexagonal slab, Fig. B.1 shows that a strip of the truncated icosa-

hedron hexagons can be constructed by rotating a hexagonal slab displaced from the

origin by a distance rslab by the angles θph and θhh. Rotating the whole strip by the

angle θrot of 72.0◦ about a Ĉ5 rotational axis of the truncated icosahedron four times

gives rise to the hexagon-only structure in the center of the top row of Fig. B.3.1

B.1.2 Pentagonal faces

The angle between two pentagons separated by the edge of two intersecting

hexagons θpp is 62.2◦ (Eqn. B.6).

The first pentagonal slab of lipids is displaced from the origin by a distance rslab.

The next pentagon is generated by rotating the first by 36.0◦ about the radial vector

that goes from the origin of the truncated icosahedron to the middle of the pentagon
1A variation of this structure with 12 intentional pores (the pentagonal faces) to serves as defect

sinks was used in early calculations but the resulting structure was slow to close.
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Figure B.1: The diagram above illustrates the relevant angles used in the construction
of a strip of four hexagonal slabs. The angle between two hexagonal faces θhh and
the angle between a hexagonal and pentagonal face θph are marked on the right side
image relative to a Ĉ5 rotational axis. Four subsequent rotations of the strip around
that axis are then used to place the rest of the hexagons as shown in the left side
image of Fig. B.3.

slab (the Ĉ5 rotational axis) and then rotating by θpp towards the Ĉ2 rotational axis

which is marked in Fig. B.2. This pentagon is then subsequently rotated about the

Ĉ5 rotational axis by θrot four more times so that the hemisphere in Fig. B.2 is the

result. This structure is then rotate by 180.0◦ around the axis perpendicular to the

Ĉ2 and Ĉ5 axes to get the pentagon-only structure seen in the first image in the first

row of Fig. B.3.

θpp =
180

π

(
cos−1

[
36419 + 5296

√
5

52369

]
+

2 cos−1

−9
(
55 + 13

√
5
)

−5 +
√

5

√
5−
√

5

122149 + 49863
√

5

 (B.6)

The pentagon-only truncated icosahedron (Fig. B.3, left) and hexagon-only trun-

cated icosahedron (Fig. B.3, center) are combined (Fig. B.3, right), and a bad contact

distance of 0.45 nm is implemented. Any pair of lipid within 0.45 nm of one another

are flagged and one of the lipids is removed. The result of the combination and effect

of removing bad contacts can be seen in the bottom row of snapshot in Fig. B.3.
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Figure B.2: The diagram illustrates the the relevant angles used in the construction
of the first half of the pentagons used to construct a truncated icosahedron. This half
is constructed by first rotating the middle pentagon out towards the Ĉ2 axis by θpp.
This pentagon is then rotated around the central pentagon by θrot. The half of the
pentagons is then rotated around the Ĉ2 by 180.0◦.

B.2 Supplementary figures

B.2.1 Topological evolution
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Figure B.3: The first row of images are a ’blown up’ schematic of the vesicle assembly.
From right to left we have the pentagonal faces of a truncated icosahedron constructed
from gel phase slabs of DPPC lipids, the hexagonal faces of a truncated icosahedron
constructed likewise from gel phase DPPC lipids, and the result of concatenating
the two sets of lipids to form the full truncated icosahedron. The second row shows
what happens when a shorter displacement is used. The first vesicle is one with bad
contacts between lipids and the second is the same vesicle after lipids within 0.45 nm
of another lipid have been removed.
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0.0 ns 10.0 ns 30.0 ns 100.0 ns 250.0 ns 500.0 ns

290 K

295 K

300 K

310 K
Figure B.4: Melting progression for the 33 nm vesicle melting at 290 K, 295 K, 300
K and 310 K.
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0.0 ns 10.0 ns 30.0 ns 100.0 ns 250.0 ns 500.0 ns

290 K

295 K

297 K

300 K
Figure B.5: Melting progression for the 50 nm vesicle at 290 K, 295 K, 297 K, and
300 K.

θy 0.0 ns 50.0 ns 140.0 ns 268.5 ns 359.0 ns 415.0 ns 500.0 ns

0◦

90◦

180◦

Figure B.6: Shape of the 50 nm melting at 300 K over a 500 ns trajectory. The rows
show the vesicle rotated about the vertical axis of the vesicle by 90◦.



141

Bridging domain A melting at 290 K.

0 ns 175.0 ns 188.0 ns 500.0 ns

Bridging domain A melting at 295 K.

0 ns 16.5 ns 73.5 ns 500.0 ns

Figure B.7: Snapshots of one of the bridging domains melting in the inner and outer
leaflets of vesicles with diameters of 33 nm.



142

Bridging domain B melting at 290 K.

0 ns 171.0 ns 413.0 ns 500.0 ns

Bridging domain B melting at 295 K.

0 ns 46.0 ns 138.0 ns 500.0 ns

Figure B.8: Snapshots of a second bridging domains melting in the inner and outer
leaflets of vesicles with diameters of 33 nm.
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Bridging domain C melting at 295 K.

0 ns 73.0 ns 180.0 ns 500.0 ns

Bridge domain C melting at 297 K.

0 ns 39.5 ns 96.5 ns 500.0 ns

Bridging domain D melting at 297 K.

0 ns 118.5 ns 287.5 ns 500.0 ns

Figure B.9: Snapshots of bridging domains melting in the inner and outer leaflets of
vesicles with diameters of 50 nm.
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Figure B.10: Plots of the primary moments of inertial for the 33 nm vesicle (A) and
the 50 nm vesicle (B) over the 500 ns trajectory of melting. The moments of inertial
are arranged such that IA ≤ IB ≤ IC. Partial melting occurs for the 33 nm vesicle at
290 and 295 K with full melting to a prolate symmetry at 300 and 310 K. Partial
melting for the 50 nm vesicle occurs at 290, 295, and 297 K and complete melting at
300 K to end with a pear shape.
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Appendix C Cluster free energies from sim-
ple simulations of small numbers of aggre-
gants: Nucleation of liquid MTBE from vapor
and aqueous phases

C.1 Establishing an optimal cluster definition

In section 5.3.1, we mentioned that the optimization of the Stillinger cluster defi-

nition cutoff distance between atoms of the molecules in the same cluster required:

1. Two independent sets of data at two different concentrations.

2. Simulations in both independent data set with the same total number of MTBE

molecules.

The evidence for this requirement is given in Fig. C.1 and C.2.

The final convergence criterion Ctot for cutoff distance rc used for the Stillinger

cluster definition is plotted for a given number of data sets, NDataSets, for simulations

that had a total number of MTBE molecules up to Nmax.

In Fig. C.1 we show the progression in the Ctot plots when increasing the number

of data sets (NDataSets) and thus Nmax for the simulations at a concentration of 510

mM or 284 mM in the vapor phase. It is immediately evident that using the data from

a single sequence of simulations where the cluster size distributions overlap but the

system sizes are not repeated, results in inconsistent minima in Ctot. By contrast, the

inclusion of both data sets (Fig. C.2) results in a consistent minimum in Ctot at 0.5

nm with only two exceptions where the minimum rests at 0.51 nm. We are therefore

able to conclude that at least two independent sets of simulations covering the same

range of cluster sizes at different concentrations are needed to use the quality of the

fit to determine an optimum cluster definition.
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Figure C.1: The convergence criterion Ctot (over a range of inter-atomic cutoff dis-
tances rc used to define member of a cluster) from the global fitting procedure using
cluster size distributions from simulations at only a concentration of 510 mM (left)
and from simulations at only a concentration of 284 mM (right) in the vapor phase.
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Figure C.2: The convergence criterion Ctot (over a range of inter-atomic cutoff dis-
tances rc used to define member of a cluster) from the global fitting procedure using
cluster size distributions from simulations at both concentration (284 mM and 510
mM).
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C.2 Cluster size distributions and global fitting for
the aqueous phase simulations
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Figure C.3: Equilibrium cluster size distributions from MD simulation data (points)
and the global fitting routine (lines) are displayed for the vapor-phase MTBE for
simulations with a concentration of 284 mM over systems sizes of 20-60 molecules
(top) and a concentration of 510 mM over systems sizes of 20-95 molecules (bottom).
Error bars are given every fifth cluster size as the standard error calculated by block
averaging over 19 50 ns segments of the trajectory.
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Figure C.4: Equilibrium cluster size distribution from MD simulation data (points)
and the global fitting routine (lines) are displayed for MTBE solvated in Tip-4p water
at concentrations of 761, 1019, 1275 and 1537 mM for system sizes of 30-60 MTBE.
Error bars are given every fifth cluster size as the standard error calculated by block
averaging over 19 25 ns segments of the trajectory.
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Figure C.5: A plot of the convergence criterion in Equation 4.63 for fitting to the
aqueous phase simulations (top) with * marking the iterations sampled in the sub-
sequent plot of the ∆Gi of association at intervals over the 500 fitting iterations
(bottom) for a monomer concentration of 184 mM.
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Appendix D Simulations of NaCl aggrega-
tion from solution: Solvent determines topog-
raphy of free energy landscape

D.1 Cluster definition and the convergence criteria

The convergence criterion was calculated as,

Ctot =
1

Nmax

NA∑
i=1

NB∑
j=1

Ci,j (D.1)

where Nmax is the number of unique cluster compositions observed in the simulation,

NA andNB are the maximum number of monomers from the two different components

in the system (in this case Na+ and Cl−), and Ci,j is the convergence criterion for a

cluster composed of i and j monomers of the two components. The later is defined as

a weighted geometric average of the standard deviations in the cluster size frequency

from fit 〈ni,j,k〉fit and the simulation 〈ni,j,k〉sim for simulation k over the Ji,j simulations

where the cluster presents:

Ci,j = exp

 Ji,j∑
k=1

wi,j,k log

(
〈ni,j,k〉fit − 〈ni,j,k〉sim

〈ni,j,k〉sim

)2
 (D.2)

The weighting appropriated to each data point in a simulation is given by the nor-

malized relative statistical certainty of a data point:

wi,j,k = wrel
i,j,k

 Ji,j∑
k=1

wrel
i,j,k

−1

, wrel
i,j,k =

〈ni,j,k〉sim
σ
(
〈ni,j,k〉sim

) (D.3)

In Fig. D.1 we show the total convergence criterion Ctot for the global fits to

data for NaCl cluster formation in the solvent environments where the fraction of

methanol, xMeOH is 0.0, 0.4, and 0.5.

It can clearly be seen that there is no apparent trend in the quality of fit that would

indicate an optimal cutoff that minimizes the deviation in the fit. We discussed in the
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Figure D.1: The total convergence criterion Ctot for NaCl cluster formation in pure
SPC/E water and the MeOH mixtures for a series of radial cutoff distances rcutoff

plotted along side the radial distribution function for the Na+ and Cl−.

paper that the quality of the fit where xMeOH = 0.0 is impacted by non-ideal effects

that the fitting method does not explicitly account for. In the case of xMeOH = 0.5

the sampling proves to be somewhat challenging since the ordered NaCl crystal is

observed but the frequencies of transitions between the ordered and amorphous state

is low. However the trend does not even present in the case of xMeOH = 0.4 where

non-ideal effects and sampling challenge do not present a challenge to the global fit.

We chose a cluster definition in terms of a radial cutoff distance rcutoff = 0.34

based on the tail from the first peak of the radial distribution function (red line,

Fig. D.1) for Na+ and Cl− ions.

D.2 Implementation of the PEACH method

In the partition-enabled analysis of cluster histograms (PEACH) method, an ini-

tial guess at the equilibrium associations constants is obtained using a geometric

average over the simulation association constants generated using the law of mass

action
(
K
′
i,j = ci,j/

(
ci1,0c

j
0,1

))
weighted by the standard error in the cluster size fre-

quencies across all the simulations where that cluster size manifests. The equilibrium
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constant is related to the standard state partition functions q◦i,j (V ◦, T ) as,

Ki,j =
q◦i,j(

q◦1,0
)i (

q◦0,1
)j (D.4)

where for our purposes the standard state is defined as 1 ion/nm3. For each system

size we define the partition function qi,j = q◦i,jV/V
◦.

Following our previous work,[59] the relationship between the grand canonical par-

tition function Ξ(zA, zB, V, T ) and the canonical partition function Q(NA, NB, V, T ),

Ξ (zA, zB, V, T ) = exp

(
∞∑
i,j

qi,jz
i
Az

j
B

)
=

∞∑
NA,NB=0

zNA
A zNB

B Q (NA, NB, V, T ) (D.5)

where zA and zB are the chemical activity of the distinct chemical components, enables

us to use an iterative loop of partial derivatives to generate the canonical partition

functions:

Q (NA, NB, V, T ) =
1

NA!NB!

(
∂NA

∂zA

∂NB

∂zB
Ξ (zA, zB, V, T )

)
zA,zB=0

(D.6)

Using the explicitly exact relationship between the partition functions and the

canonical partition functions Q (NA, NB, V, T ) for a system with a total of NA and

NB parts of each molecule type, the average cluster frequency is,

〈ni,j〉NA,NB
=
qi,j Q (NA − i, NB − j, V, T )

Q (NA, NB, V, T )
(D.7)

The PEACH method thus generates a set of average cluster frequencies that are

then used in tandem with the raw simulation cluster size frequencies to adjust the

standard state partition functions to better reproduce the simulated average cluster

size frequencies. Assuming that the user has a good cluster definition and that the

system does not have egregious non-ideal effects, the PEACH method converges to

an optimal fit in the partition functions which can then be used to generate a final

set of equilibrium associations constants, Ki,j.
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D.3 Quality of the fits

The following figures show the quality of the global fits from the PEACH method

for all of the cluster sizes as 2-D plots. For each data set, there are two surfaces

shown. The left plot is the log of the cluster size frequency from simulation. The

right plot shows the quality of the fit in two ways:

1. The relative difference in magnitude between the cluster size frequency from the

fit and that of the raw data. This is shown using a color spectrum, cool colors

denoting an underestimation in the fit and warm colors indicating the opposite.

Green indicates data points where the relative magnitudes of the frequencies

are close to equal.

log10

(
〈ni,j〉fit

〈ni,j〉sim

)
(D.8)

2. The error in the fit relative to the quality of the data point as denoted by the

standard error for each data point σErr = σ
(
〈ni,j〉sim

)
. This quality evaluation

is only indicated for data points where the error has exceeded ±1σErr where an

open circle indicates a relative overestimation in the fit and filled black point a

relative under estimation of the fit.

〈ni,j〉fit − 〈ni,j〉sim
σErr

(D.9)

D.3.1 Pure SPC/E solvated NaCl aggregation

Quality of fit plots are provided for the simulations of NaCl cluster formation in

pure SPCE water (xMeOH = 0.0) for systems with 20 (Fig. D.5), 30 (Fig. D.4), and

45 (Fig. D.3) NaCl pairs. It should again be noted that in the simulations used in

the PEACH fit, the formation of an ordered crystal did not occur. There is however

a systematic trend in the errors which can be seen in the quality of fit.

Fig. D.4 for the simulations with 30 NaCl pairs showcases this trend very well. At

high concentrations the large cluster are underestimated and the small clusters over
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estimated by the fit. As the concentration of the system is lowered, the trend changes

like a seesaw so that the smaller cluster are underestimated and the large clusters

overestimated. We posited in the main paper that this is the result of a non-ideal

crowding effect that occurs at these high concentrations that the current PEACH

method does not account for. The global fit attempts to find the best fit resulting in

this seesawing trend in the quality of the fit.

Table D.1: Coordination numbers for Na+ and Cl− ions in pure SPC/E water as
calculated through integration over the first solvent shell of the radial distribution
functions.

[NaCl] 〈nNa−O〉 〈nCl−O〉
(m)
0.56 5.3 7.2
1.11 5.0 7.1
1.67 4.7 7.0
2.22 4.5 6.9
2.78 4.3 6.7
3.33 4.1 6.6
3.88 3.9 6.5

rshell (nm) 0.32 0.39
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Figure D.2: The radial distribution functions between the Na+ (left) and Cl− (right)
ions and the oxygen atom on the SPC/E water for simulations of 30 NaCl pairs
solvated in pure SPC/E water.

On a cautionary note, although the data presented in Table D.1 indicates a con-

centration dependent trend, it cannot be assumed that this is a trend held by the

monomer-solvent coordination numbers. The radial distribution functions that were

calculated (Fig. D.2) average over all ions in the system, including those in large
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clusters. The depletion effect that we see in the coordination numbers may simply

be a result of including ions that are coordinated to other ions and thus would have

a lower solvent coordination number simply due to geometric factors.
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Figure D.3: Quality of fit 2-D plots for NaCl cluster formation in systems with 45
NaCl pairs in pure SPC/E water (xMeOH = 0.0). The legends on the first plot apply to
all other 2-D surface plots in this figure. The linear plot on the left shows the results
for only the neutral clusters where the line represents the results of the global fit, the
points are the simulated data, and the grey shaded region signifies the standard error.
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Figure D.4: Quality of fit 2-D plots for NaCl cluster formation in systems with 30
NaCl pairs in pure SPC/E water (xMeOH = 0.0). The legends on the first plot apply
to all other plots in this figure.
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Figure D.5: Quality of fit 2-D plots for NaCl cluster formation in systems with 20
NaCl pairs in pure SPC/E water (xMeOH = 0.0). The legends on the first plot apply
to all other plots in this figure.
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D.3.2 NaCl aggregation in a solvent mixture of methanol and
SPC/E water

The 2-D surface quality of fit plots are displayed for the systems with xMeOH of

0.4 and 0.5 in Figures D.6 and D.7 respectively. It can be seen that in both sets of

simulations, the quality of the fit is rather good and neither case presents systematic

trends in error.
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Figure D.6: Quality of fit 2-D plots for NaCl cluster formation in systems with 20
NaCl pairs in a mixture of SPC/E water and methanol (xMeOH = 0.4). The legends
on the first plot apply to all other plots in this figure.
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Figure D.7: Quality of fit 2-D plots for NaCl cluster formation in systems with 20
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