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Abstract

The Cayley-Bacharach Condition
By Rohan Nair

A set of points I' in n-dimensional complex projective space is said to satisfy the
Cayley-Bacharach condition with respect to degree v hypersurfaces, or is CB(r), if any
degree r hypersurface containing all but one point of I' contains the final point. In
recent literature, the condition has played an important role in computing a birational
invariant called the degree of irrationality. However, the condition itself has not been
studied extensively, and surprisingly little is known about the behavior of C'B(r) sets.
We will discuss a new approach to studying C'B(r) sets, using combinatorial methods
from matroid theory, and present some results to demonstrate how matroid theory
can help us understand this condition in greater depth.
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Chapter 1

Introduction

1.1 This Dissertation: Context and Motivation

Let ' be a finite set of points in projective space. If a degree r hypersurface that
contains all but one point of ' necessarily contains the final point, then we say that
I’ satisfies the Cayley-Bacharach condition with respect to degree r hypersurfaces,
or is C'B(r) for short. Point sets satisfying the Cayley-Bacharach condition occur
most prominently in birational geometry, where their geometric properties can be
exploited to study a birational invariant called the degree of irrationality of a complex
projective variety. Thus, one major motivation for studying C'B(r) sets is to aid in
the classification problem which occupies much of modern algebro-geometric research.

The Cayley-Bacharach condition is also interesting from a historical point of view.
The condition is named after one of the great theorems of 19th century algebraic
geometry, the famous Cayley-Bacharach theorem, which states that under certain
circumstances, the finite intersection set of two curves in the projective plane satisfies
CB(r), for some r dependent on the degree of the curves in question. Furthermore,
the Cayley-Bacharach theorem is a generalization of a much older theorem from the

4th century CE, Pappus’s Theorem, which in modern terms says that point sets



which arise as intersections of certain line configurations in the projective plane must
be C'B(3).

Given the condition’s origins in mathematical antiquity, one might be surprised
to discover that very little is known about how CB(r) sets behave. To emphasize
this point, this dissertation was initially motivated by trying to answer the following
simple question: What conditions guarantee that a CB(r) set also contains a CB(r)
subset? The primary obstruction to answering this question and others like it is that
many of the proof techniques developed to date are ad hoc in nature. For example,
some techniques only work when we make certain restrictive assumptions about our
point sets, such as requiring the points be collinear or contained on some configuration
of linear spaces , and therefore resist generalization.

The primary objective of this dissertation is to present a new tool for studying
CB(r) sets, a tool which is fundamentally combinatorial in nature. The first inkling
that such methods might apply to the Cayley-Bacharach condition comes from Levin-
son and Ullery [6], who observed that many of their proofs could be rewritten using
the language of matroid theory. Matroids are combinatorial structures that simul-
taneously generalize notions of independence, dependence, and rank (or dimension)
found in both linear algebra and graph theory. In exploring this possible connection,
we discovered that the Cayley-Bacharach condition is elegantly described in matroid-
theoretic terms and that many useful facts about Cayley-Bacharach sets which eluded

prior proof follow naturally from the combinatorics.

1.2 Outline

Chapter 2 is expository and begins with some historical background on the Cayley-
Bacharach theorem, followed by a section about the condition itself, including relevant

definitions and examples. We then elaborate on the connections between C'B(r) sets



and birational geometry, and conclude with an overview of what is currently known
about C'B(r) sets to-date. Chapter 3 is also expository, and covers some basic
matroid theory, with an emphasis on material that is most relevant to our results.
We present these results in Chapter 4, where we construct a matroid on point
sets in projective space, and use this combinatorial structure to study C'B(r) sets,

specifically. We conclude with a discussion of possible future avenues of research.



Chapter 2

The Cayley-Bacharach Condition

2.1 Some Historical Background

Our story begins long before the development of modern algebraic geometry, with a

theorem attributed to the late antiquity mathematician Pappus of Alexandria:

Theorem 2.1.1 (Pappus). Fiz two lines in the plane, pick 6 points on these lines,
and label them A, B,C, A’ B',C". Also label the points: P = (AB' N A'B),Q =
(AC"NA'C), and R = (BC'N B'C). Then P,Q, and R are collinear.

Figure 2.1: Pappus’s Theorem



Those familiar with the history of mathematics will recognize Pappus’s Theorem
as the first known theorem in projective geometry !. Indeed, since we have not
specified that the lines be skew nor that the points be chosen in order to guarantee
the existence of the intersection points P, (), and R, the statement as written above
can only be true in the projective plane over a field. If we restrict our attention to the
case of algebraically closed fields, then we find ourselves in the 19th century, closer to
the birth of algebraic geometry as we understand it today, with the Cayley-Bacharach

theorem:

Theorem 2.1.2 (Cayley-Bacharach). Let k be an algebraically closed field, and let
X andY be two curves in P2 of degrees d and e respectively, intersecting at de points.
Then any curve Z of degree d + e — 3 containing all but one of these intersection

points also contains the final point.

The Cayley-Bacharach theorem, as stated above, is not an obvious generalization

of Pappus’s Theorem, but the latter indeed follows from the former by setting d =

e = 3, and letting X = (AB'UA'CUBC"), Y = (ABUAC"U BC'), and Z =

(AC' U AC" U PR) be our three (degenerate) cubic curves. In both cases, the key
observation is that certain special point configurations in the projective plane impose
very strong restrictions on the curves that can contain them. This phenomenon, in
both the projective plane and generalized to projective space of higher dimension, is at
the heart of the Cayley-Bacharach condition. For the remainder of this dissertation,
we will focus our attention away from the theorem and towards the condition which
bears its name. Curious readers who wish to know more about the Cayley-Bacharach
theorem, its history, and its generalizations should read Eisenbud, Green, and Harris’s

excellent account in [5].

! This theorem is often referred to as Pappus’s Hexagon Theorem, to avoid confusion with another
geometric theorem which bears his name.



2.2 Definitions

Throughout the rest of this chapter, we assume we are working over C, and that when
we refer to finite sets of points, we are treating them as zero-dimensional reduced
closed subschemes of some given scheme. Furthermore, although we will focus our
attention on C'B(r) sets, we first state a more general form of the Cayley-Bacharach

condition:

Definition. Let £ be a line bundle on a smooth projective variety X, and let I' =
{p1,...,pm} be a finite set of points on X. We say that I' satisfies the Cayley-
Bacharach condition with respect to the line bundle L if any section f € H°(X, L)

vanishing on all but one point of I' necessarily vanishes at the final point.
This definition restricts to C'B(r) in the following manner:

Definition. Let X =P, let r be a fixed integer, and let £ = Opn (7). A finite set of
points I' = {p1,...,pm} C X is said to be CB(r) if ' satisfies the Cayley-Bacharach

condition with respect to Opa (7).

Since we can interpret global sections of Opn(r) as either polynomials or hyper-
surfaces when r > 0, we have two more ways of formulating the definition of C'B(r)

in these cases:

1. (Algebraically) A finite set of points I' C P" satisfies the Cayley-Bacharach
condition with respect to degree r polynomials, or is C'B(r), if any degree r
homogeneous polynomial F' vanishing on all but one point of I'" vanishes at the

final point.

2. (Geometrically) A finite set of points I' C P" satisfies the Cayley-Bacharach
condition with respect to degree r hypersurfaces, or is CB(r), if any degree r

hypersurface containing all but one point of I' contains the final point.



Although all three of these definitions are equivalent, each provides a unique and
useful perspective on C'B(r) sets, and we will often switch between these perspectives

throughout the course of this dissertation.

2.3 Cohomological Interpretation

Since the Cayley-Bacharach condition is defined in terms of line bundles, we can
characterize C'B(r) sets via sheaf cohomology. Given a finite set of points i : I' — P,

we have the following standard closed subscheme short exact sequence:
0—>Ir—>0pn —>Z*O[‘—>O

where Zr is the ideal sheaf corresponding to the closed subscheme I'. Twisting by
an integer r and taking global sections gives us the following four-term exact sequence

on cohomology groups %:
0 — H°(P", Ir(r)) — H(P", Opn(r)) — H°(P",i,.O0r(r)) — H'(P", Ir(r)) — 0

We thus get the following characterization of C'B(r) sets in terms of cohomology

groups:

Proposition 2.3.1. Let I' C P" be a finite set of points, and let r € Z be fixed. Then
I is CB(r) if and only if H*(P",Zr(r)) = H°(P", Zr\py (1)) for allp € T.

Proof. SupposeI'is CB(r), and let p € T be given. Since any section of H(P", Opn (1))
vanishing on I' must vanish on T'\{p}, we have H°(P",Zr(r)) C H°(P",Zr\(p3(r)).
To get the other inclusion, note that if f € HY(P", Opn(r)) vanishes on T'\{p},
then f must vanish on I' by CB(r), so H*(P", Ir\ g (1)) € H°(P",Zr(r)). Hence,
HO(P" Ir(r)) = HO(JP’",IF\{p}(T)).

2The final term of this sequence comes from the fact that H (P, Opx (1)) = 0.



Conversely, suppose H(P", Ir(r)) = HO(P", Ir\ g (r)) for all p € T. Then any
section f € H°(P", Opn(r)) vanishing on I'\{p} also vanishes on T, so I is CB(r). [

The next corollary follows trivially, but is a useful enough fact to state explicitly:

Corollary 2.3.2. Let I C P" be a finite set of points, and let r € Z be fized. Then

T is CB(r) if and only if dim H°(P", Zp(r)) = dim H*(P", I\ g3 (1)) for all p € T.

One fact the cohomological interpretation makes clear is that a set I can be C'B(r)

without being contained in a degree r hypersurface:

Definition. We say a C'B(r) set T' is vacuously CB(r) if dim H°(P", Zr(r)) = 0.

Otherwise, we say that I' is nonvacuously CB(r).

2.4 Examples

We now present examples of C'B(r) sets in P2.

Example. Let ' = {A, B,C} C P? be three collinear points. Then T is CB(1),
since collinearity guarantees that any line passing through two points in I' must pass

through the third.

In P2, the collinearity of at least three points is equivalent to C'B(1). In higher
dimensions, nonvacuously C'B(1) implies cohyperplanarity, but the converse does not
hold.

Our next example is the simplest non-collinear case:

Example. Let I' = {A, B,C, D, E, F'} C P? be six points on a conic X. Let I be
a five-point subset of ', and let Y be a conic (i.e., a degree 2 hypersurface in P?)
containing IV, Suppose X and Y are distinct curves. Then we have I' C X NY, but
by Bezout’s Theorem, | X NY| =4 <5 = |I], a contradiction. Thus ¥ = X and Y

contains every point in I', so I' is CB(2).



Figure 2.2: Six points on a conic X

The configuration in Figure 2.2 can be extended to a configuration that is also
CB(2):
Example. Let Iy = {A,B,C,D,E, F} C P? be six points on a conic X, and let
'y = {G,H} C P? be two points away from X. Let I' = I'; U Ty, and suppose,
without loss of generality, that Y is a conic containing I'y U {G}. Then 'y C X NY,
but by Bezout’s Theorem, | X NY| =4 < 6 = |I';|. Therefore, no such conic Y can

exist, so I' is vacuously C'B(2).

Figure 2.3: Six points on a conic X, two points away from X
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The next example illustrates what happens when we remove the point H from

Figure 2.3:

Example. Let Iy = {A,B,C,D,E, F} C P? be six points on a conic X, and let
Iy = {G} C P? be one point away from X. Then I' = T'; UTy is not C'B(2), since

we've exhibited a degree 2 hypersurface containing all but one point of T'.

G

Figure 2.4: Six points on a conic X, one point away from X

The three examples above demonstrate the major issue with determining when
CB(r) sets contain C'B(r) subsets. Specifically, non-C'B(r) sets can be nested inside
of C'B(r) sets in such a way that simply deleting points arbitrarily from a configuration
does not guarantee that the resulting point set will also be CB(r).

We end this section by reformulating the Cayley-Bacharach theorem in terms of

CB(r) sets:

Theorem 2.4.1 (Cayley-Bacharach). Let X and Y be two curves in P? of degrees d

and e respectively, and let ' =X NY. Then T is CB(d+ e — 3).
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2.5 Measures of Irrationality

In this section, we briefly discuss one major source of recent motivation for studying
the Cayley-Bacharach condition. We first recall the following definition from the

study of algebraic curves:

Definition. Let C be a projective curve. The gonality of C, denoted gon(C'), is the

minimum degree of a dominant rational map C' --» P!,

Gonality is a birational invariant that quantifies the extent to which a curve fails
to be rational. In other words, gon(C') = 1 if and only if C' is birationally equivalent
to P! if and only if C is a rational curve.

In general, the gonality of a curve is not easily computable. In the case of plane

curves, however, we have the following nice theorem, attributed to Max Noether.

Theorem 2.5.1 (Max Noether). Let C' be a smooth projective plane curve of degree
d > 3. Then the gonality of C, gon(C) = d — 1. Furthermore, any dominant rational

map C --» P of degree d — 1 is obtained by projecting from a point p on C. 3

We can extend the notion of curve gonality to higher dimensions in a few different
ways (see [4] for some examples), but the most straightforward generalization is the

following;:

Definition. Let X be a complex projective variety of dimension n. The degree of
irrationality of X, denoted irr(X), is the minimum degree of a dominant rational map

X ——» P,

As with gonality, the degree of irrationality is a birational invariant that quantifies
the extent to which an n-dimensional complex projective variety fails to be rational,

i.e. irr(X) = 1 if and only if X is rational. We should expect computing degrees of

3In the case when d < 3, gonality can be computed with the help of the genus-degree formula for
smooth plane curves.
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irrationality of various varieties to be at least as difficult as computing curve gonal-
ity, if only because of the heuristic that computing invariants gets harder in higher
dimensions. We might still ask, however, the following question: does there exist an
extension of Max Noether’s theorem for sufficiently “nice” n-dimensional varieties?

The following theorem from Bastianelli et al. gives us a (mostly) affirmative answer:

Theorem 2.5.2 ([4], Theorem C). Let X C P"™! be a very general smooth hyper-
surface of dimension n with degree d > 2n + 1. Then the degree of irrationality of
X, irr(X) = d — 1. Additionally, if d > 2n + 2, then any rational map X --» P™ of

degree d — 1 is obtained by projecting from a point p on X.
The proof of this theorem relies on the following proposition from Bastianelli:

Proposition 2.5.3 ([2], Proposition 4.2). Let X be a complex projective variety of
dimension n. Then the general fiber of a generically finite dominant rational map
X --» P" satisfies the Cayley-Bacharach condition with respect to the canonical bun-

dle wx.

Thus, studying the geometry of points satisfying the Cayley-Bacharach condition
can give us information about maps X --+ P, which we can leverage to bound or
compute irr(X). Furthermore, for many types of varieties, such as hypersurfaces or
complete intersections, the Cayley-Bacharach condition with respect to the canonical

bundle restricts to C'B(r), thereby justifying our decision to focus on this special case.

2.6 An Overview of Known Results

The aim of this section is to present an overview of all major results about C'B(r)
sets found to-date in the literature, with one qualification. The results found here are
answers to the question: Given a C'B(r) set, what can we say about its geometry?

We notably omit results about generating C'B(r) sets in the first place, which fall
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under the umbrella of generalized Cayley-Bacharach theorems. The purpose for this
omission is that the motivation for developing our matroid-theoretic tools comes from
the former type of problem, rather than the latter. Before we can state many of these

results, however, we require the following definition:

Definition. A plane configuration P is a union of finitely-many distinct linear sub-

spaces P; in P", with dim P; > 0 for each . That is,

The dimension of P, dimP = ), dim P, and the length of P, {(P) = k.

Many of the results in this section apply only to special types of plane configura-

tions, called skew and split configurations:

Definition. A plane configuration P = Ule P, is skew if P, N P; = () for all pairs

i,7. A skew plane configuration is called split if dim SpanP = dim(P) + ¢(P) — 1.

In cases when P; and P; have a non-empty intersection, we can replace them in
our configuration with Span(F;, P;), thereby often allowing us to focus our attention
on skew configurations.

The most basic interaction between plane configurations and C'B(r) sets is known

as the excision property:

Proposition 2.6.1 ([6], Proposition 2.5). Let I' C P™ be a CB(r) set, and let P be
a plane configuration of length €. Then U'\'P is CB(r — ().

By taking P to be a single hyperplane disjoint from I', the excision property gives

us the descending property:

Corollary 2.6.2. IfI" is CB(r), then I is CB(d), for all integers d < r.
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The descending property illustrates the utility of our multiple perspectives on
CB(r) sets. From the perspective of polynomials or cohomology, it is not at all clear
that C'B(r) sets actually satisfy multiple Cayley-Bacharach conditions simultaneously,
but this fact follows relatively easily from the geometric perspective. Another fact
which follows from the geometry is that the size of the C'B(r) set depends on r, via

the basic lower bound:
Proposition 2.6.3 ([6], Proposition 2.6). If ' is CB(r), then |I'| > r + 2.

Sometimes we know with certainty that subsets of C'B(r) sets are also C'B(r) sets,

provided they are partitioned by split plane configurations:

Proposition 2.6.4 ([6], Proposition 4.2). Let I' be a finite set of points contained in
a split plane configuration P =J P;. Then I is CB(r) if and only if TN P; is CB(r),

for each 1.

In the case our plane configuration is neither split nor skew, but has a single-point

intersection, we have a weaker result of similar flavor:

Proposition 2.6.5 ([6], Lemma 4.5). Let P = AU B be a length 2 non-skew plane
configuration, meeting at a point p. Suppose ' C AU B is CB(r). Let 'y = (I'N
AN\{p} and let Ty = (I' " B)\{p}. Then:

1. At least one of 'y and I'y U{p} is CB(r).
2. At least one of I'p and I'p U {p} is CB(r).
3. If p¢ T, then at least one of I'y and I'g U {p} is CB(r).
4. If p ¢ T, then at least one of I'p and T'a U {p} is CB(r).

5. If pe T, then at least one of Ty U{p} and I'p U {p} is CB(r).

The next result demonstrates that C'B(r) sets restrict the geometry of skew plane

configurations that contain them:
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Proposition 2.6.6 ([6], Proposition 4.7). Let P = |J P; be a skew plane configuration
containing a CB(r) setI". Then either each plane P; contains at least max(¢(P),r+2)

points of ', or some plane P; contains fewer than ¢(P) points and ((P) > r + 2.

In Propositions 2.6.4 and 2.6.5, we start with a C'B(r) set on a plane configuration,
and determined when they contain C'B(r) subsets. Our next few results answer
something of the opposite question: given a C'B(r) set, what conditions guarantee it
lies on a linear subspace of P" and/or a plane configuration of some given dimension
and length? When our C'B(r) set contains sufficiently few elements, then surprisingly

their geometry is restricted not just to a plane configuration, but to a line:

Proposition 2.6.7 ([3], Lemma 2.4). IfT" is CB(r) and |I'| < 2r+1, then the points

of T' are collinear.

Under weaker restrictions on size, Levinson and Ullery proved in some cases that

CB(r) sets lie on “small” plane configurations:
Theorem 2.6.8 ([6], Theorem 1.3). Suppose |I'| < (d+ 1)r+ 1. Then:

(i) When r <2 and for any d, T lies on a plane configuration with dimP = 3 and
((P) =1.

(i1) For any r and when d < 3, T lies on a plane configuration with dim P = d, and

forr <4, ((P) < 2.

(i1i)) When d = 4 and r = 3, T lies on a plane configuration with dim P = 4 and
((P) <2.

Banerjee was able to prove a similar result, but with a different relation between

r and d:

Theorem 2.6.9 ([1], Theorem 1.15). Suppose |I'| < (d+ 1)r + 1. If r >> d, then I'

lies on a plane configuration of length d.
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Proposition 2.6.7, Theorem 2.6.8, and Theorem 2.6.9 all represent partial progress

towards the following conjecture:

Conjecture 2.6.10. If |T'| < (r + 1)d + 1, then T lies on a plane configuration of

length d.
If this conjecture is true, then we also have the following result:

Proposition 2.6.11 ([6], Propositions 4.3 and 4.6). Fiz r € Z. Suppose Conjecture
2.6.10 holds up to d—1, and let |T'| < (d+1)r+1. Let A and B be positive dimensional
linear spaces, and suppose ' C AU B. Then if AUB =1 or AU B = {p} for some

point p, then I' lies on a plane configuration of dimension d.

Given the results about plane configurations, an immediate question one might ask
is: under what conditions do C'B(r) sets lie on curves or higher-dimensional schemes?
To date, we only have answers in the case of curves. Stapleton and Ullery were able

to slightly adjust the bound from Proposition 2.6.7 to prove the following result:

Theorem 2.6.12 (][9], Theorem 1.9). Let I be CB(r). If |I'| < (5/2)r + 1, then T is

contained in either a line or on a (not necessarily irreducible) curve of degree 2.
Picoco was able to extend this result to curves of up to degree 4:

Theorem 2.6.13 ([8], Theorem A). Let I" be CB(r). For 3 < d < 5, if |[I'| <
dir —d+3) — 1, then I lies on a curve C' of degree d — 1.

Our final result of this section is also from Banerjee, which extends these results

to curves of any degree, but with a caveat that » must be sufficiently large:

Theorem 2.6.14 ([1], Theorem 1.13). Let I' C P™ be CB(r), and let r >> d > 1.
Then there exists a function f, which depends on n, such that |I'| < rd— f(d) implies

that ' lies on a curve C' with deg C' < d.
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As evidenced by this overview, there is still much work to be done on the geometry
of C'B(r) sets. For posterity, we can broadly categorize most of the results in this
section as answering one of two questions, each of which corresponds to a future

avenue of research. These questions are:

1. Given a C'B(r) set I lying on some scheme X, when does there exist a subscheme

X' of X such that I' N X" is also CB(r)?

2. Given a C'B(r) set I and some extra conditions imposed on I' (such as upper
bounds on its size), are the points of I" contained in some scheme X, the nature

of which is determined by said conditions?

The remainder of this dissertation is dedicated to our matroid-theoretic tools

which might one day help produce new answers to these questions and others.
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Chapter 3

Some Relevant Matroid Theory

The goal of this chapter is to provide the requisite amount of matroid theory to
understand the content of Chapter 4. The reference for this section is James Oxley’s
comprehensive book on the subject [7]. Many of the results we require are either
relegated to the exercises or are not stated explicitly in the text, and in these cases

we have furnished the necessary proofs.

3.1 Matroids as Rank Functions

One unique feature of matroid theory is the fact that there exist several equivalent,
but not obviously equivalent, definitions of a matroid. This equivalence is known as
the “matroid cryptomorphism”. The cryptomorphic definition we will adopt for this

dissertation is expressed in terms of an abstract notion of rank:

Definition. A matroid M is a pair (FE, p), where F is a finite set and p : 28 — Z is

a function satisfying the following conditions:

1. (Boundedness) 0 < p(U) < |U] for all U C E
2. (Monotonicity) If S C U, then p(S) < p(U)

3. (Submodularity) p(SUU) 4+ p(SNU) < p(S) + p(U) for all S,U C E
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The function p is called the rank function of the matroid, and the integer p(E)

is called the matroid’s rank.

One important class of matroids are called linear matroids, which come from

vector spaces in the following manner:

Proposition 3.1.1. Let V' be a vector space over a field k, and let E = {vy,...,v,}
be a collection of vectors in V. For each subset U C E, we let Viy = Span{v : v € U}.

Define a function p : 28 — Z by U — dim(Vyy). Then (E, p) is a matroid.
Proof. Let U and S be subsets of E.

1. (Boundedness) Since p(U) is a dimension of a subspace of V', p(U) > 0. If U is
linearly independent, then p(U) = dim(Vy) = |U|. If U is linearly dependent,
then p(U) = dim(Vy) < |U|. In either case, we have 0 < p(U) < |U].

2. (Monotonicity) Suppose S C U. Then Vs C Vi, and since dimension is mono-

tonic on vector subspaces, p(S) < p(U).

3. (Submodularity) Let v € Vgny. Then v = ZliTUl a;v;, where each a; € k and
each v; € SNU. Thus, v € Vg and v € V7, so Vsny C Vs N Vi, which implies

that p(SNU) < dim(Vs N Vy). Since Vsuy = Vs + Vi, we have:

p(SNU) <dim(Vs N Vy) = dim(Vs) + dim(Vy) — dim(Vs + Vi)
= lel(VS) -+ lel(VU) — dim(VguU)

= p(S) +p(U) = p(SUU)

]

On an arbitrary matroid, it is not guaranteed that the rank function will behave

the way it does on a vector space. Our first lemma establishes, however, that just
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as removing a vector from a subspace can only drop the dimension by at most one,

removing an element from a subset of a matroid will not drop the rank by too much:

Lemma 3.1.2. Let M = (E, p) be a matroid, let U C E, and let p € U. Then:

p(U) =1 < p(U\{p}) < p(U)

Proof. We immediately have p(U\{p}) < p(U) by monotonicity. For the lower bound,

applying submodularity to the sets U\{p} and {p} gives us the following inequality:

p((UN\{p}) U{p}) + p(UN\{p}) N {p}) < p(UN{P}) + p({P})

Boundedness tells us that 0 < p({p}) < 1 and that p((U\{p}) N {p}) = p(@) = 0.

Combining these facts, we have:

p((U\{p}) U{p}) = p(U) < p(U\{p}) + p({r}) < p(U\{p}) +1

Thus we have our result. O

For the remainder of this chapter, we will assume that M is a matroid on a set F

with rank function p, unless stated otherwise.

3.2 Independent and Dependent Sets

Extending the vector space analogy, matroids also come equipped with a notion of
independent and dependent sets. In fact, another common cryptomorphic definition
of matroids begins with independent sets as the primary objects, and defines the rank

function in terms of independent sets. We will do the opposite here:

Definition. A subset U C F is independent if and only if |U| = p(U), and is

dependent if and only if |[U| > p(U).
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The boundedness of rank implies that the above dichotomy is strict: all sets
in a matroid are either independent or dependent. Another way to characterize

independent and dependent sets is via the notion of nullity:

Definition. The nullity of a subset U of E, denoted v(U), is defined as:

v(U) = U] = p(U)

An independent set is therefore a set with zero nullity, and a dependent set is a
set with positive nullity. As before, the boundedness of rank means that sets cannot
have negative nullity.

In the case of linear matroids, independent and dependent sets are precisely those
subsets of E which are linearly independent and linearly dependent, respectively.
We know from basic linear algebra that subsets of linearly independent sets are also
linearly independent, and that linearly dependent sets can only be contained in other
linearly dependent sets. The following proposition confirms that this behavior holds

in the case of all matroids, thus strengthening the vector space analogy:
Proposition 3.2.1. Let M = (FE, p) be a matroid, and let U C E.

1. If I is independent and U C I, then U s independent.

2. If D is dependent and D C U, then U is dependent.

Proof. For the first claim, it suffices to prove that I\{p} is independent for all p € I.
For a contradiction, suppose that I\{p} is dependent. Then by the boundedness
property of rank and the independence of I, p(I\{p}) < |[I\{p}| = |I| =1 = p(I) —
1. On the other hand, Lemma 3.1.2 gives us p(I) — 1 < p(I\{p}) < p(I) — 1, a
contradiction. Thus I'\{p} is independent.

The second claim follows from the first, since if we suppose U is independent, then

it would contradict the dependence of D. O
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Corollary 3.2.2. The empty set is independent.

Lemma 3.1.2 tells us that deleting an element from a set can only drop the rank
by one at most. In fact, our next lemma establishes that independent sets can also

be characterized by how their rank changes in response to removing an element:
Lemma 3.2.3. [ is independent if and only if, for any p € I, p(I\{p}) = p(I) — 1.

Proof. Suppose I is independent. Then |I| = p(I). For any p € I, we have p(I\{p}) <
I\{p}] = 11| - 1 < |T] = p(I). By Lemma 3.1.2, p(I\{p}) = p(I) — 1.
Conversely, suppose there exists a p € I such that p(I\{p}) = p(). Then by
boundedness and monotonicity, p(I) = p(I\{p}) < [I\{p}| < |I|, so I is dependent.
O

Finally, independent sets are an especially useful notion from our perspective

because they are “rank-regulating”:

Lemma 3.2.4. Let U be a subset of E/, and let I be a independent subset of U of

mazimal size. Then p(U) = p(I)

We omit the proof of the above proposition, because we would first have to prove
the cryptomorphic equivalence of the rank and independent set definitions of a ma-
troid, which is beyond the scope of this exposition. Interested readers can consult

Chapter 1.3 in [7].

3.3 Bases, Circuits, and Connectivity

One major consequence of Proposition 3.2.1 is that a matroid must contain maximal
independent and minimal dependent sets, in a manner made precise by the following

definition:
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Definition. A basis of a matroid is a maximal independent set, i.e. a subset B such
that B U {p} is dependent for all P € E\B. A circuit is a minimal dependent set,

i.e. a subset C such that C\{p} is independent for all p € C'.

One can check that every independent set is contained in a basis, and that every
dependent set contains a circuit. Conceiving of matroids in terms of bases and cir-
cuits is often useful, and in fact each notion corresponds to another cryptomorphic
definition. Bases are specifically useful because, just as maximal independent subsets
regulate the ranks of the sets that contain them, bases regulate the rank of the entire

matroid:

Proposition 3.3.1. Let B be a basis of a matroid M. Then p(B) = p(E). Further-

more, for any other basis B' of M, |B| = |B/|

Proof. Since B is a maximal independent subset of E, p(B) = p(E) by Lemma 3.2.4.
For the second part, note that |B| = p(B) = p(E) = p(B") = |B’|. O

Unlike bases, circuits do not all need to have the same rank and size. However,

all circuits do have the same nullity:
Lemma 3.3.2. Let C be a circuit in M. Then v(C) = 1.

Proof. Since C' is a circuit, C'\{p} is independent for all p € C, so v(C\{p}) = 0.
By Lemma 3.2.4, p(C) = p(C\{p}). Combining these two facts, we have v(C) =
|C1 = p(C) and |C = {p}| = p(C\{p}) = p(C). Thus, »(C) = 1. O

We can use the notion of a circuit to define some other distinguished subsets of a

matroid.
Definition. Let p and ¢ be elements in E.
1. We say p is a loop in M if {p} is a circuit in M.

2. We say p is a coloop in M if {p} is not contained in any circuits.
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3. We say p and q are parallel in M if {p, ¢} is a circuit.
Definition. A matroid containing no loops or parallel elements is called simple.

Coloops are of special interest to the results in the next chapter, and are related

to bases as follows:

Lemma 3.3.3. An element p € E is a coloop if and only if p is contained in every

basis B of M.

Proof. Suppose p is a coloop in M. For a contradiction, suppose there exists a basis
B that does not contain p. Then B U {p} is dependent, and thus contains a circuit
C. Since B is independent, it cannot contain a circuit, so p € C'. This contradicts
the fact that p is a coloop, so no such basis can exist.

Conversely, suppose p is contained in every basis B of M. If p is contained in
a circuit C, then C'\{p} is independent and thus contained in a basis B. But since
p € B, we have C\{p} C C' C B, which cannot occur since B is independent and C'
is dependent. Thus p is not contained in any circuits, and is hence a coloop.

O
We can also use circuits to import from graph theory the notion of connectivity:

Definition. A matroid M is connected if for any two points p,q € E, there exists

a circuit C' of M such that {p,q} C C.

In some cases, it is also useful to think of connectivity in terms of the rank function.

To see how this works, we first need a definition:

Definition. A separator of a matroid M is a subset U of F such that:

p(U) + p(E\U) = p(E)

Proposition 3.3.4. A matroid is not connected if and only if it contains a separator.
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Again, we omit the proof of the above proposition, since it requires invoking a
notion called matroid duality, which is not required to understand the results of the
next chapter. This result, however, follows immediately by combining Proposition

2.1.9. and Proposition 4.2.4. in [7].

3.4 Rank Hyperplanes

Rank-maximal sets, called flats, are also important in matroid theory. For our pur-

poses, we only need to consider the following types of flats.
Definition. A rank hyperplane! is a subset H of E such that:
L p(H) =p(E) -1
2. For any element p € E\H, p(H U{p}) = p(H)+ 1= p(E)

Not all rank hyperplanes have the same cardinality. This distinction will be im-

portant later on:

Definition. A rank hyperplane H of M is maximal if |H| > |H’| for all other rank

hyperplanes H' of M.

However, all rank hyperplanes are “maximal” in the sense that no rank hyperplane

can contain another:
Lemma 3.4.1. If H and H' are rank hyperplanes such that H C H', then H = H'.

Proof. Let p € H'\H. Since H is a rank hyperplane, p(H U {p}) = p(H)+1 = p(E).
By monotonicity, however, we have p(E) = p(H U{p}) < p(H') = p(E) — 1, a
contradiction. Thus H = H'. O

Coloops and rank hyperplanes are intimately related, as per the following lemma:

'In matroid theory, these are simply referred to as “hyperplanes”. The term “rank hyperplane”
is used here to distinguish these from geometric hyperplanes.
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Lemma 3.4.2. An element p € E is a coloop if and only if E\{p} is a rank hyperplane
of M.

Proof. Suppose p is a coloop of M. Then p(E\{p}) = p(E)—1 and p(E\{p} U{p}) =
p(E), so E\{p} is a rank hyperplane of M.

Conversely, suppose E\{p} is a rank hyperplane of M. Suppose there exists a basis
B disjoint from p. Then B C E\{p}, which implies that p(B) < p(E\{p}) = p(E)—1,
which contradicts the fact that B is a basis of M. Thus, no such basis exists. By

Lemma 3.3.3, p is a coloop of M. O

3.5 Deletion and Restriction

Finally, we discuss two operations we can perform on matroids to construct new
matroids. The first operation constructs a new matroid by removing a subset from
the original matroid and restricting the rank function accordingly, via a process called

“deletion”:

Definition. Let M be a matroid, and let U C E. The deletion of U from M is the
matroid M\U = (E\U, pp\v), where for any subset S C E\U,

pev(S) = p(S)

Using this operation, we can restrict a matroid to a subset:

Definition. The restriction of a matroid M to a subset U, denoted M|y, is the
deletion M\ (E\U). For notational simplicity, we will write M|y = (U, py), and if

S CUCT, we will let vy (S) = |S| — pu(S) denote the restriction of the nullity to U.

We end this chapter with a lemma about how circuits behave with respect to

matroid deletion:
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Lemma 3.5.1. Let U be a subset of E. If C is a circuit in M\U, then C' is a circuit
wmn M

Proof. Since C'is a circuit of M\U, we have py(C) < |C] and py(C\{q}) =
|C\{q}| for all ¢ € C. Since both C' and C\{q} are contained in F\U, these two

conditions hold when we replace py with p. Hence, C' is a circuit of M. [
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Chapter 4

Hilbert Function Matroids

This chapter contains the novel results of this dissertation. As with most of Chapter 2,
we will assume we are working over C, and that when we refer to finite sets of points,

we are implicitly treating them as zero-dimensional reduced closed subschemes of P".

4.1 A Matroid on Projective Points

We first establish some notation. Let I' C P" be a finite set of points, and fix r € Z.
For a subset A C T, let hy(r) = codim(H° (P, Zx(r)), H(P", Opx(r))) denote the
Hilbert function of A evaluated at r. Let p : 2 — Z be the function given by

p(A) = ha(r). With this notation established, we state our first major theorem:
Theorem 4.1.1. The pair I', = (I, p) is a matroid.

We call this matroid the degree r Hilbert function matroid of I'. Before we

prove Theorem 4.1.1, we recall the following definition from linear algebra:

Definition. Let V be a vector space, and let W be a subspace of the dual space V*.

The annihilated subspace of W is

Wl={veV:¢pw)=0forallpc W} CV
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Lemma 4.1.2. Let V be a vector space, and let W be a subspace of the dual V*.
Then dim W + dim W= = dim V

Proof. Fix a basis {¢1,..., ¢} for W, and consider the map F : V — CF given by
v = (¢1(v),...,¢r(v)). This map is surjective since the set {¢y,..., @} is linearly
independent in V*, and by construction, ker F = W=, Then by the Rank-Nullity

Theorem, we have dimV =k 4+ dim W= = dim W + dim W~°. O

Proof of Theorem 4.1.1. For each p € T', we fix coordinates [py : -+ : p,], and let
ep € H(P", Opn(r))* denote the map f +— f(po,...,pn). For each subset A C T, let
E\ ={e, : p € A}. By Proposition 3.1.1, the pair M = (Er, p) is a matroid, where
0: 25" — 7 is the map F — dim Span{e, : e, € Ex}.

We now want to relabel M to get our Hilbert function matroid. The first step is
to establish that the map I' = Er given by p — e, is a bijection. It suffices to prove
injectivity, since the definition of Er guarantees surjectivity. Let p and ¢ be distinct
points in ', let f € H°(P", Opx (1)) be a hyperplane that contains p but not ¢, and let
g € HY(P", Opn(r — 1)) be a hypersurface that avoids both p and g. Then e,(fg) =0
and e,(fg) # 0, so e, # e,. Thus, our map is injective.

Next, we aim to show that p is the same function as p. For each subset A C T,
let W) = Span{e, : e, € Ex} C HY(P", Opn(r))*. We claim that the annihilated

subspace of Wy, Wi = HO(P", Zx(r))!, where T, is the ideal sheaf of A < P". To

'Here we are identifying H(P™, Z5(r)) with its image under the inclusion H(P™, Zx(r)) —
HO (]P)n, O[Pn (7'))
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this end, let h € H°(P", Opn(r)). We then have the following equivalences:

heW? «—

¢(h) =0 for all p € W) <—
eqh) =0forallg e A <
h(g) =0forall g e A <

h e H(P",Z\(r))

Thus we have our equality. By Lemma 4.1.2:

dim Wy = (P, Opn (1)) — dim W;°
= hO(P", Opn(r)) — hO(P", Zx(r))

= hA(T)

Hence, o(A) = p(A) for all A € 2¥, so T, = (T, p) is a matroid. O
Corollary 4.1.3. Hilbert function matroids are simple.

Proof. T, is a linear matroid, so it contains no loops, since a singleton set in a vector
space can never be linearly dependent. Now given two points p and ¢ in [', we
can always find a degree r hypersurface containing one but not the other, which is
equivalent to the claim that e, # Ae, for all non-zero A € C. Thus {p, ¢} is not a

circuit. OJ

One useful consequence of our new matroid structure is that the notion of nullity

has a very simple cohomological interpretation:

Lemma 4.1.4. Let I' C P" be a finite set of points with Hilbert function matroid T,

and let A CT. Then the nullity of A in T, v(A) = (P, Zx(r)).
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Proof. Fixing a closed immersion 7 : A < P", recall we have the following exact

sequence:

0 — HY(P",Zp(r)) — H°(P", Opn(r)) — H°(P",i,0x(r)) — H(P",Zp(r)) — 0

Then by exactness, we have:

RY (P Ta(r)) = hO(P",i,On(r)) — h°(P"™, Opn (1)) + KO (P", Za(7))

= h(P",i,On(r)) — ha(r)

= [A] = ha(r)
= [A] = p(A)
=v(A)

O

We now recall the following definition, which is often used to delineate between

two types of configurations in projective space:

Definition. A set of points I' C P™ is said to be in general position (with respect
to degree r polynomials) if h'(P", Zr(r)) = 0. If h'(P",Zr(r)) > 0, then we say that

I' is r-superabundant.

It turns out that this delineation is the correct characterization of independent

and dependent sets in a Hilbert function matroid:

Proposition 4.1.5. Let I', = (', p) be a Hilbert function matroid, and let A C T.

Then:

1. A is independent if and only if it is in general position.

2. N\ is dependent if and only if it is r-superabundant.

Proof. This follows immediately from Lemma 4.1.4. O
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4.2 Matroids and CB(r) Sets

We now turn our attention again to the Cayley-Bacharach condition. Our first result
demonstrates that special Hilbert function matroids precisely correspond to C'B(r)

sets:

Proposition 4.2.1. Let I', = (I, p) be a Hilbert function matroid. The point set T’

is CB(r) if and only if p(T') = p(T\{p}) for allp € T.

Proof. This follows from Corollary 2.3.2, replacing dimension with codimension. [J
Furthermore, C'B(r) sets are dependent:

Proposition 4.2.2. CB(r) sets are r-superabundant.

Proof. Let I"be a CB(r) set. Then v(I') = |I'| —p(T"). Let p € I". Then by Proposition
4.2.1:

v(C\{p}) = [\{p}| — p(T\{p})
=[] =1 —p(T)

Combining these two equations, we get v(I') = v(I'\{p}) + 1 > 1. Thus, T is

r-superabundant. O

Hilbert function matroids also correspond to C'B(r) sets in another way, via

coloops:
Proposition 4.2.3. T" is CB(r) if and only if ', has no coloops.

Proof. Suppose I' is CB(r). Then for any point p € I', p(I'\{p}) = p(I'), so T'\{p} is
not a rank hyperplane. By Lemma 3.4.2, p is not a coloop of I',, so I', contains no
coloops.

Conversely, suppose I',. contains no coloops. Then I'\{p} is not a rank hyperplane

for all p € I', so p(I'\{p}) = p(I"). Thus I" is CB(r). O
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A simple consequence of Proposition 4.2.3 is that C'B(r) sets can be decomposed

as follows:

Corollary 4.2.4. T is CB(r) if and only if ' = HUT, where H is a mazimal rank

hyperplane of T, and |T| > 2.
Finally, we can use nullity to characterize C'B(r) sets in a third way:
Lemma 4.2.5. I is CB(r) if and only if v(I') = v(I'\{p}) + 1 for allp € T.

Proof. By Proposition 4.2.1, I is C'B(r) if and only if p(I') = p(I'\{p}) for all p € T,
which is true if and only if |I'| — v(T") = [I'\{p}| — v(I'\{p}), which is true if and only
if v(T') = v(I'\{p}) + 1. O

4.3 Circuits and CB(r) Sets

In this section, we examine the connection between circuits and C'B(r) sets, ultimately
culminating in a partial answer to one of our earliest motivating questions: when do

CB(r) sets contain C'B(r) subsets?

Proposition 4.3.1. Let I" be a finite set of points with v(I') = 1. Then T" is CB(r)

if and only if T is a circuit in T',.

Proof. Suppose I' is CB(r). By Proposition 4.2.2, I is dependent. Furthermore, by
Lemma 4.2.5, v(I'\{p}) = 0 for all p € ', so I'\{p} is independent. Thus, I' is a
circuit.

Conversely, suppose I is a circuit in I',. Then T'\{p} is independent for all p €
['. Since I' is dependent, I'\{p} must be a basis for I',, so by Proposition 3.3.1,
p(I\{p}) = p(I"). Thus, I" is CB(r). O

Our next result answers our question very broadly:
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Proposition 4.3.2. Let I" be a finite set of points with v(I') > 1. Then I' contains a

proper subset that is CB(r).

Proof. Since v(I') > 1, we know I' is dependent, and by Lemma 3.3.2, T' is not a
circuit in I',.. Thus it contains a circuit C' # I'. Restricting I, to this circuit C gives
us the matroid T'.|c = (C, pc). By Lemma 3.5.1, the circuits of I',|¢ are precisely
those circuits of I', contained in C, so C'is a circuit in I';|¢. Furthermore, because C
is a circuit in [',, Lemma 3.3.2 tells us that v(C) = 1. As p(C) = pc(C), C satisfies

the nullity condition of Proposition 4.3.1. Hence, C' is a C'B(r) set. O

An interesting consequence is that circuits in Hilbert function matroids are actu-

ally bounded below in size, which is not usually the case for arbitrary matroids:

Corollary 4.3.3. Let I' be a finite set of points, and let C' be a circuit in I'.. Then

|IC| > r+2.

Proof. Since C'is a circuit in I', it also satisfies CB(r). Then by Proposition 2.6.3,

|IC| >r+2. O

Though Proposition 4.3.2 technically answers our initial question, it turns out we
can say more in the case of C'B(r) sets specifically. First, we will require the following

lemma:

Lemma 4.3.4. Let " be CB(r). If H is a rank hyperplane in T, then for allp € T\ H,
H is a rank hyperplane in T'.\{p}. Furthermore, if H is mazimal in T, then H is

mazimal in ', \{p}.

Proof. Since H C I'\{p}, pr\(y(H) = p(H) = p(I') = 1. By CB(r), pr\(u(I'\{p}) =
p(I\{p}) = p(I'), so pr\py (H) = pr\py (M\{p}) — 1.
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Next, let ¢ € (I'\{p})\H. Then:

prvpy(H U{q}) = p(H U {q})
=p(I)
= p(T'\{p})

= pr\ipy(T\{P})

Thus, H is a rank hyperplane in I',\{p}.
Now, suppose H is maximal in T',, and let H' be a hyperplane in T',\{p}. Observe

that:

p(H') = pr\gpy (H')
= pr\ipy (C\{p}) — 1
= p(I"'\{p}) =1

=p(I') =1

Thus, the set H' is either a rank hyperplane of I', or contained in a rank hyperplane

of I';. In either case, |H'| < |H|, by the maximality of H, so H is maximal in
I'Ap}- O

Theorem 4.3.5. Let I" be a CB(r) set satisfying the following two conditions:
1. T' = HUT, where H is a maximal rank hyperplane and |T| > 2
2. v(l) >1
Then for any point p € T', T\{p} is CB(r).

Proof. The nullity condition guarantees that both I" and I'\{p} are dependent. Next

we have the decomposition I'\{p} = HU(T\{p}). By Lemma 4.3.4, H is still maximal
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in I';\{p}. Since |T\{p}| > 2, Corollary 4.2.4 allows us to conclude that I'\{p} is
CB(r). O

Corollary 4.3.6. Let I' be a CB(r) set satisfying the conditions of Theorem 4.3.5.
Then there exist points {p1,...,px} such that, for all subsets I C {1,...,k}, T\{p; :
iel}is CB(r).

Proof. We can choose any |T'| — 2 points from 7" and label them arbitrarily. We then
delete one point at a time from I'. At each step of this process, note that I'\{p; : i €
I} =HU(T\{p; : i € I). By Lemma 4.3.4, H remains a maximal rank hyperplane
after each point deletion, and |T\{p; : i € I}| = |T| — |I| > |T| — (|T| —2) = 2, so
M\{p;i:ie€l}is CB(r) for all I C {1,...,k}. Furthermore, I'\{p; : @ € I} only fails
to satisfy the conditions of Theorem 4.3.5 once we've deleted all of our chosen points,

thereby justifying our repeated application of the theorem. O

4.4 Connected Hilbert Function Matroids

We now examine the relationship between C'B(r) sets and matroid connectivity:
Proposition 4.4.1. If T, is connected, then I is C'B(r).

Proof. Suppose I' is not CB(r). Then there exists a point p € I' such that
p(T' —{p}) + p({p}) = p(T'). Thus, the set {p} is a separator of I',, so I, is not
connected. [

Our next three results demonstrate that the converse is also true, under certain

restrictions:

Proposition 4.4.2. Let I' be a CB(r) set such that p(I') < r + 1. Then I, is

connected.

Proof. Let p and ¢ be two distinct points of I'. Since I, is simple, {p} and {q} are

independent, and hence contained in some basis B. Since I' is dependent, there exists
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a point t ¢ B, with BU {t} dependent. Thus B U {t} contains a circuit C. However,

we have:

r+2<|C<[BU{t}[=p)+1<r+2

Thus, B U {t} is a circuit containing both p and ¢, so M, is connected. ]
Proposition 4.4.3. Let I" be a CB(r) subset with |I'| = r+2. Then I, is connected.

Proof. Suppose |I'| = r+2. Let C be a circuit of M,. Thenr+2 < |C| < |I'| =r+2,

so I' is a circuit. Thus, I', is connected. O
Theorem 4.4.4. Let " be a CB(r) set satisfying the following two conditions:

1. I'=HUT, where H is a mazximal rank hyperplane in M,, H is independent,

and |T| > 2.
2. v(l) >1
Then I', is connected.

Proof. We proceed by induction on v(I'). Suppose v(I') = 2. Let p and g be two
points in T'. Since |T| > 2, we know there exists a point s € T such that s # p and
s # q. By Lemma 4.2.5 and Theorem 4.3.5, I'\{s} is CB(r) with vp\((I'\{s}) = 1.
By Proposition 4.3.1, I'\{s} is a circuit in I',\{s}. By Lemma 3.5.1, I'\{s} is also
circuit in I',., and it contains both p and ¢. Since we can find a circuit containing any
pair of points in ', T', is connected.

Suppose our claim holds for v(A) = k£ > 1, where A is any C'B(r) set whose
Hilbert function matroid satisfies the conditions above. Let I" be a C'B(r) set also
satisfying these conditions, and such that v(I') = k£ + 1. Fix two points p and ¢ in
[. Again, since |T| > 2, there exists a point s € T such that s # p and s # ¢. Then
I'\{s} is CB(r). Since we immediately know that vp\ (o (I'\{s}) = k > 1, we only

need to show that I'\{s} satisfies Condition 1.
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We have I'\{s} = H U (T\{s}). We know H is maximal in I',\{s} since it is
maximal in I, and that H is independent in I',\{s} since |H| = p(H) = pp\(s3(H).
We now need to show that |7\{s}| > 2. Since H is an independent rank hyperplane,

[H| = pr\(s}(H) = pr\(sp(T'\{s}) — 1. Then:

IT\{s} = [(T\{s)\H]
= [I\{s}| - [H]|
= [I\{s} = (pr\s3 () = 1)
= vr\sp(I\{s}) + 1
— k1

> 2

Thus, I';\{s} is connected by our induction hypothesis, so there exists a circuit C' in
[, \{s} that contains both p and ¢q. Then C' is also a circuit in I', containing p and g,

so I', is connected. [

4.5 Future Research

We now present some possible extensions of the work done in this dissertation. The

first conjecture is similar to Theorem 4.3.5:

Conjecture 4.5.1. Let I be a CB(r) set satisfying the following two conditions:
1. '=HUT, where H is a maximal rank hyperplane and |T| = 2
2. v(l)>1
Then there ezists a point p € H such that T'\{p} is CB(r).

Before stating the next conjecture, we need a definition:
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Definition. Let I' C P" be a finite set of points. We say that I' satisfies the strong

CB(r) condition if T is CB(r) and if, for any p € T, T'\{p} is not C'B(r).

If Conjecture 4.5.1 is true, then in tandem with Theorem 4.3.5, it should be

possible to prove the next conjecture:

Conjecture 4.5.2. Every strong CB(r) set is of the form I' = HU T, where H is

an independent mazimal rank hyperplane and |T| = 2.

Next, we can consider matroids satisfying a more general notion of connectivity.
Given a matroid M = (FE, p), we define a connectivity function Ay : 28 — Z, where

for any subset U of F,

A(U) = p(U) + p(E —U) — p(E)

We say that the pair (U, E — U) is a j-separation of M if \y(U) < j and
min{|U|,|E — Ul|} > j. A matroid M is k-connected if M contains no j-separations
for 1 < j <k —1. An immediate consequence of this definition is that a matroid is
connected if and only if it is 2-connected. However, this does not preclude a connected
matroid from satisfying higher connectivity conditions.

As per Proposition 4.4.1, if T, is 2-connected, then I' is C'B(r). However, nothing
is known about what happens when & > 2, and this suggests the possibility of a

classification of all C'B(r) sets in terms of higher connectivity conditions:
Problem. Classify CB(r) sets by k-connectivity.

Finally, we can examine generalized Cayley-Bacharach conditions. One gener-
alization, suggested by Levinson and Ullery [6], is to consider a zero-dimensional
subscheme X C P" of finite length ¢. In this case, we say that X is C'B(r) if, when-
ever a homogeneous degree r polynomial F' vanishes on a closed subscheme X’ C X

of length t — 1, then F' vanishes on all of X.
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The second generalization is to higher dimensions, by considering the Cayley-
Bacharach condition on algebraic k-cycles in P (or on some projective variety X).
We say, in this case, that a k-cycle Z = X; +--- 4+ X, is CB(r) if any homogeneous

degree r polynomial vanishing on Z — X; must vanish at X;, for all 1 <i < m.

Problem. Determine if there exists an analogue for Hilbert function matroids in the

case of these generalized CB(r) sets.

In the higher-dimensional generalization, a Hilbert function matroid on alge-
braic cycles would present many interesting opportunities to extend matroid-theoretic

methods to problems in intersection theory and enumerative geometry.
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