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Abstract

Site Selective Modification of Proteins and Chemical Tools for Studying Mono-Methyl Lysine

(Kme)

By: Kuei-Chien Tang

Site-selective modification of protein is a significant technique that can allow us to modify a
single amino acid with biologically active small molecules or fluorophores to track and monitor
the enzyme in the living system for biological study. The universal limitation for most of the
current modification methods is the low detection sensitivity of the forming product, poor
stability and low selectivity of probes for lysine modification, and lack of universal
compatibility for the N-terminal modification. In order to circumvent the current limitations, |
designed and synthesized various types of azole, azoline, and azolinium thioethers, which are
highly selective and specific to our desired targets, and the reactivity and selectivity of those
probes are highly tunable by the heteroaromatic ring, and methylation state. Moreover, those
probes are able to act as a chemo-selective charge booster to enhance the mass detection
sensitivity of the forming product. Our probes 1d-yne, 1c-yne, and N3-10 were applied to the
proteomic profiling of lysine and cysteine in HEK293T cell lysate. The probe 1c-yne is highly
selective and reactive to the lysine residues. Moreover, 1c-yne shows high permeability and
hydrolytic stability and is able to label both cytoplasmic and nuclear proteins in live cells without
necrosis those indicating its potential as a probe for rapid live cell labeling and covalent
inhibitor. In tandem with the project above, | have developed two novel chemical tools for
studying lysine methylation post-translation modification (PTM). Methylation of lysine regulates
gene transcription and RNA, DNA binding, and any aberrant change of methylation state and site
will cause various diseases such as cancer and diabetes. In the first method, | used triazene
cyclization to target the mono-methyl lysine selectively. The forming product indazole is highly
stable under basic and acid conditions and easy to modify with different affinity targets.
Moreover, this method is the first chemical technique applied to a single-molecule protein
sequence to read out unknown Kmel sites in a single workflow by fluorosequencing. For the
second method, | develop a strategy that enables site-selective modification of a high-frequency
Lys residue in the mono-methyl lysine containing (Kme) protein for studying, monitoring, and
tracking the PPI between the K-me protein and its reader and eraser proteins. The probes | have
designed have a diazonium salt warhead with a mask group for selective labeling of mono-
methyl lysine. The flexible linker connects with various electrophiles for intramolecular
modification and the light-activated group for capturing the reader and eraser proteins. The probe
Al showed high intramolecular labeling efficiency with a trace amount of intermolecular side
product with different proline, K-me-containing peptides, and Histone-I1l truncated peptides.
Those novel tools offer a chemical platform for identifying and studying the role of monomethyl
lysine (Kme) in the whole proteome and a starting point for therapeutic interventions.
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Chapter 1: Site-Selective Modification of Proteins

1.1 General Introduction to approaches to site-selective protein modification:

Site-specific chemical modification of protein with fluorescent or biologically active small
molecules has a crucial role in the development of novel biologically active protein conjugates
for applications in biology and medicine, the discovery of the tools for biochemical and
biophysical studies, monitoring, modulating, and tracking proteins in living systems for
biological research'?. The chemo-selectivity for certain of the natural 20 amino acids and N-
terminus and mildness of the selected approaches are essential to precisely install modifications

at pre-determined sites without disturbing the structure, function, and activity of the protein®.

Figure 1. Potential site for chemo-selective modification
1.1.1 N terminus modification:

Modification of proteins at a single site with varying synthetic molecules is of high significance
in the field of chemical biology, for efficient drug delivery, material science and synthesis of bio-
hybrid materials. Recently, there has been a significant increase in the number of methods for
site-selective labeling of N-terminus but is limited by the requirement of particular amino acids

at the N-terminus. Such as N-terminal cysteines leading to the formation of thiazolidines with
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aldehydes* (Figure 2a). Periodate oxidation of N-terminal serine and residues for oxime®,
hydrazone®, Wittig, Aldol” and Henry bioconjugation® (Figure 2b). N-terminal tryptophans can
be modified via Pictet-Spengler reactions® (Figure 2a). N-terminal proline can be selectively
labeled by the oxidative coupling with o-aminophenols® (Figure 2a). Some of the methods also
required multiple steps'! (Figure 2c). A few strategies that work with most N-terminal amino
acids have been developed*?*® (Figure 2d). A recent 2 pyridinecarboxaldehyde (2PCA) method
provides one-step approach for the N-terminal modification of proteins'* but is unable to tag
proteins with proline amino acid in the second position, and doubly modify the peptide with
glycine amino acid at the N-terminus, thus lack universal sequence compatibility (Figure 2d).
Another major limitation with the current methods of N-terminal labeling of proteins is the low
mass detection sensitivity of the resulting protein bioconjugates thus making it difficult to
characterize. The low mass sensitivity of the N-terminal labeled bioconjugates is due to the
blockage of the free N-terminus by hydrophobic groups. This is a major issue while analyzing
the conjugated proteins in a proteomic mixture. Consequently, there is a great need to develop
new synthetic methodologies that can circumvent the aforementioned limitations and provide an
efficient strategy for site-selective labeling of proteins with mass sensitive probes and exhibit

universal sequence compatibility.

a. Site selective N-terminal modification of N-terminal tryptophan, cysteine, and proline
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d. N-terminal modification techniques for universal amino acids
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Figure 2. Selective technology for N-terminus labeling a) N-terminal tryptophan, cysteine,
and proline. b) N-terminal serine. c) N-terminal glycine. d) N-terminal modification

techniques for universal amino acids.

The current method to increase the detection sensitivity of bioconjugates involve the addition of
mass sensitive probes but in a non-selective manner'®. This leads to the formation of
heterogeneous mixture which makes the analysis difficult. Multiple methods are usually needed
to achieve all these goals, for example, one method is required for the site-selective modification
and a second method for the addition of chemical tag that enhances mass sensitivity of the
bioconjugate. As a result, a simple, one-step method capable of achieving all the above

mentioned goals with the broad scope of structurally and chemically varied peptides and proteins
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would be highly beneficial. This would enable efficient analysis of the modified peptides in a

complex mixture and aid in the detection of low abundant peptides.

1.1.2 Lysine residue modification:

Lysine shows rich chemistry through its nucleophilic amine group and is abundant in various
active and allosteric sites. Lysines also catalyze multiple reactions and regulate various
biological processes. Moreover, lysines are frequent sites for posttranslational modifications and
regulate the structure and functions of proteins. Lysines have a high frequency in human proteins
( & 6% of all residues)®. Together, these properties make lysine residues desirable targets with
covalent drugs; however, the low nucleophilicity of lysine as compared to cysteine makes
selective targeting by covalent probes a highly daunting task. Several small molecule covalent
ligands for selective proteome profiling of cysteine has been reported; however most of the small
molecule electrophiles for lysines such as dichlorotriazines!’, imidoesters'®, 2-acetyl- or 2-
formyl-benzeneboronic acids®®, isothiocyanates?®?!, pyrazolecarboxamidines®>?3, sulfonyl
fluorides?*%, and vinyl sulfonamides?® also react with other amino acids such as serine, tyrosine
and cysteine (Figure 3). Sulfonyl acrylate reagent has been reported for the regio- and
chemoselective labeling of lysine on pure protein by using low equivalent of the probe but it has
a potential to react with cysteine during profiling (Figure 3). Recently, activated esters such as
NHS-ester?” and STPyne?® have been explored for ligandability of lysine in the human proteome
(Figure 3). Although > 9000 ligandable lysine sites have been discovered using NHSesters?® and
STP-esters, none of these probes act as a covalent ligand/inhibitor for lysine in cells because of
poor hydrolytic stability. Therefore for the discovery of covalent ligands for lysines, new amine

reactive chemotypes are needed that are stable to enzymatic and non-enzymatic hydrolysis, non-
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cytotoxic and generate stable covalent adducts with lysine. These lysine selective, hydrolytically

stable covalent probes would significantly expand the druggable content of the human proteome.
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Figure 3. Reagent for chemo-selective modification of lysine
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1.1.3 Cysteine side chain modification

Among the 20 natural amino acids, cysteine is especially attractive for site-specific chemical
modification owing to its high nucleophilicity at physiological conditions and relatively low
natural abundance®. It is often located in functionally important sites. In addition to stabilizing
proteins through disulfide bonds, cysteine residues have diverse roles in metabolic processes, for
example, in catalysis, allosteric regulation, and metal binding. Various electrophiles have been
reported for tagging cysteines such as haloacetamides (IAA)®, epoxides®!, sulfonate esters®?,
chloro® and acyloxymethyl ketones**, fluorobenzene®®, aryl halides®®, Michael acceptors®’=8 and
heteroaromatic sulfones®*4%4! (Figure 4). However, poor hydrolytic stability of probes or
resulting conjugates, low reactivity and cross-reactivity with other amino acids lead to the
development of several metal-free and transition metal-mediated cysteine bioconjugation
approaches by Davis, Bernardes, Pentelute, Wong, and others*>“® (Figure 4). Bioconjugation
reactions with cleavable linkers have recently gained considerable attention due to their wide
application in many research fields such as protein immobilization, drug development, and
proteomics. Only a few compounds are available for cleavable cysteine-specific modification,
including Ellman's reagent*®*’, bromomaleimides*®, bromopyridazinediones®®, electron deficient
acetylenes®, 5-methylene pyrrolones®, 4-substituted cyclopentenones® and recently discovered
isoxazoliniums®, Despite all these advances, only = 17% of cysteine®**® in the entire proteome
has been identified so far. Moreover, the resulting bioconjugates exhibit poor mass detection
sensitivity limiting their applications in the identification of low abundant cysteine in the
proteome. Therefore, there is a great need to develop new highly efficient cysteine selective
modification methods with cleavable linkers using easily accessible reagents with high stability,

distinct and tunable selectivity and reactivity that increases the mass detection sensitivity of the
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1.2 Results and Discussion

1.2.1 Screening of azoline, azole, and azolinum with standard peptide

In order to discover the new series of warheads that are hydrolytically stable and highly specific
for the site-selective modification of the proteins, we have synthesized different types of
methylthiol azole, azoline, and azlonium since they are stable under physiological conditions.
Moreover, the reactivity of those probes is tunable based on a variety of heteroaromatic rings and
methylation levels. (Figure. 5). With those probes in hand, we incubated those small molecules
with the standard peptide FKVCF 2a, followed by the LC-MS/MS analysis to identify the
tagging site of the pentapeptide (Supplementary Figure. 1). We found four of our probes 1a, 1i,
1m, and 1o are selective to cysteine due to the high nucleophilicity of cysteine, probes 1b, 1d, 1n
are specific to lysine residue because the cysteine-adducts of those probes are reactive
electrophiles towards lysines and unstable towards hydrolysis, 1c and 1j can react both with
cysteine and lysine, the oxazoline (Ox1) probe is specific to N-terminus under optimized
conditions. The rest of the probes do not show significant reactivity toward any amino acid

residue due to the low aqueous solubility.
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Figure 5. Screening of different azole, azoline, and azolinum probes with peptide 2a

1.2.2 Synthesis of Azoline, Azole, and Azolinum and their Analogs

Synthesis of Ox1, 1a, and 1b:

The simple azole thioethers®® were synthesized from the corresponding amino alcohol (1) or
diamine (4) with proper thio reagent (carbon disulfide or thiocarbonyldiimidazole) under basic
conditions. The corresponding thione intermediate (2, 3, 5) was methylated by CHal to obtain the

azole thioether (Ox1, 1a, 1b).
Synthesis of Ox2:
The N-terminal amine of L-serine was protected by tert-butyloxycarbonyl protecting group to

produce intermediate 7, then the amide coupling was performed without protecting of the free
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alcohol®’. After installation of the alkyne group, the intermediate 8 was treated under acid
condition to remove the Boc group. The deprotected intermediate was treated with CS; to obtain
thione intermediate 9, then the final methylation was achieved by Mel under basic conditions to

produce the final product Ox2.
Synthesis of Ox5:

The alcohol intermediate 12 was synthesized by following Song’s procedure®®, then the
intermediate 12 was treated with DSC to generate the pyrrolidine carboxylate intermediate 13 for
the amide bond formation. The intermediate 13 was coupled with Biotin ethylenediamine to

obtain the Ox5.
Synthesis of Ox3, and Ox4:

The alcohol intermediate 12 was treated with TsCl to generate precursor 15, then the substitution
reaction of Ts intermediate with NaN3z was carried out to obtain Ox3. Ox4 was synthesized by

the propargylation of the alcohol intermediate 12.
Synthesis of 1j, 11, and 1k:

The corresponding thioether (1a, 16, 1le) was refluxing with Mel to obtain the corresponding

azolium (1j, 1I, 1Kk).
Synthesis of 1n and 1m:

Compound 1n was synthesized according to Hara’s procedure®. The synthetic conditions for 1m

are modified from Bethge’s procedure®.

Synthesis of 10-N3:
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Compound 10-N3 was synthesized from the commercially available 5-Nitro-2-
benzimidazolinone. First, compound 20 was treated with Mel to afford the double methylated
intermediates 21a and 21p as isomers. Without further purification, the nitrobenzene isomer
mixtures was reduced under Fe/ammonium chloride condition to obtain the intermediate
mixtures 22ap. Next, the aniline intermediates 22ap was treated with sodium nitrite under acid
condition, followed by the addition of NaNs to obtain the aryl azide intermediates 23a. After the

final methylation of intermediate 23a,6, compound 10-N3 was generated as an exclusive product.
Synthesis of 1d and 1c

The synthetic conditions®® for compound 1c and 1d were modified from Bethge’s protocol.
Synthesis of 1d-yne:

Compound 31 was synthesized by Imaizumi’s protocol®:. The intermediate 32 was synthesized
by the methylation of mercaptobenzoxazole intermediate 31. The alcohol intermediate 34 was
generated by the hydrolysis of ester intermediate 32 following by the reduction of the anhydride
precursor®?, After the propargylation of the alcohol intermediate 34, the final methylation was

achieved by MeOTf to obtain 1d-yne.
Synthesis of 1c-yne:

The probe 1c-yne was synthesized through mercapto formation following by the methylation of

mercapto group and the propargylation of the pyridine.
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Synthesis of Ox1
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S S,
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o o
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Synthesis of 1j, 11, and 1k

s s
Mel
[N/% S_ TACN, refulx, 6h [N/f S,
1a 1§01 %)
N N
/ Mel /
[ 7S TACN, refulx, 6h [ )=
N N\+ -
16 11 (95%)
[ ,%s ACN, refulx 6h [ /%5
1e 1k(91 %)
Synthesis of 1n and 1m
s s s
Mel, K,CO. / Mel /
@[N/%SH DMF, rt, 3h @[N/%S ACN, refulx, 12h Nﬂ%rs
\

17 1f (85%)

W

Potassium ethylixanthate
NMP, reflux

CC

P

N7 NH,
18

Synthesis of 10-N3

/ / /
O,N H,N
_ CH3l, KyCO; /92 N/  Fe, NHGI /2 N/
, NH, ,
\C[ =S "M, 60°C. 121 DMF, 60 °C, 12 h /C[ S + \C[ /=S MeOH, reflux, 12h %S + )—S
2N N H,N N
21, (31 %) 21, (31 %) 22, (27 %) 22, (27 %)
1. NaNO, / N / N /
HCI (aq), 0 °C, 1h N/ 3 CHj,l 3 N/
2. NaN, /C[N/%S * /%s ACN, rt, 12h N/fs_
NaOAc (aq), rt, 6h N3 V!
23, (22 %) 23, (22 %) 10-N3 (85 %)
Synthesis of 1d and 1c
/=
NH N N OTf
2 CS,, KOH CHgl, K,CO4 N MeOTf N
FS S>—s S>—s
on  CH3OH/H,0, reflux 6 ho DMF, rt, 8 h o DCM, 0 °C to rt, 4h o
24 25 (91% 26 (82%) 1d (45%)
OH o o)
I et (s —otgpto (0 stear (10
N7 “NH, CH3OH/H:0, reflux 6h DMF 6h N" N ACN, reflux, 12h X3 “~N
2 1", o
27 28 (82%) 29 (79%) | 1c (80%)

1n (92%)

s
\—s _ CHil K;CO; (\/E __we L, T
DMF, 6 h ACN refulx, 12h \ﬁ N
-
19 (65%) 19 (73%) [ 1m (91%)

31



Synthesis of 1d-yne
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Figure 6. Synthesis of various azole, azoline, azolinum, and their analogs.

1.2.2 One-Step Azolation Strategy for Site-and Chemo-Selective Labeling of Proteins with

Mass-Sensitive Probes

1.2.2.2 Studying Universal Sequence Compatibility of N-terminus Azolztion

Next, we evaluated universal sequence compatibility of N-terminus azolztion chemistry by
screening a panel of peptides with varying reactive amino acid residues at the N-terminus. The
incubation of peptides (XAF, 2c-2j X =D, E, F, G, M, P, T, Y (6.25 mM) with 2- methylthio
oxazoline, Ox1 (312.5 mM) in 10 mM phosphate buffer at pH 7.5 for 3 h yielded N-terminus
Ox1- modified peptides 3c-3j with 50-99 % conversion as determined by HPLC and LC-MS
(Figure 7, Supplementary Figure. 2). The conversion of azolation reaction with different N-
terminal amino acid was determine by the steric hindrance of N-terminal amino acids. No
modifications of the reactive side-chains were observed under the reaction conditions thus

reaction is highly specific toward the N-terminus.
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Figure 7. Compatibility of N-terminus azolztion with universal sequence. Various of N-

terminus amino acids were used to confirm the high compatibility of azolztion reaction.

The N-terminal oxazolation of peptides GAF 2f and APF 2k with glycine at the N-terminus and
proline at the second position proceeded smoothly to generate N-terminal oxazoline-modified
peptides (3f-3k) in a quantitative manner (Figure 8). This is in contrast to the 2PCA method
resulting in the double modification with glycine at the N-terminus and no modification of a
peptide with proline at the second position. These studies showed that oxazolation is compatible
with all nature of amino acid sequences thus exhibit universal sequence compatibility (Figure 8,

Supplementary Figure. 3)

NH;
Probe 1a 50eq

| o Map 10 mM, pH 7.5, 25°C, 3 h h(" ?1 o
N o  PH 7.5, 267C, LN
QAL NP,
R i VM o -
2k \© 3k
2-PCA 100ag
Wap 10 mM, pH 7.5, 37 °C, 3 h

No product

Figure 8. Comparison of oxazolation Vs 2- PCA methods using peptide APF 2k. The high
conversion of azolztion with APF (80 %) showed the high compatible property of the
azolztion reaction. The 2-PCA method is incompatible with peptide or protein, which has a

proline at the second position.

33



1.2.2.3 Protein modification-reaction optimization

With those results at hand, we started our initial investigation on protein myoglobin Mb. Detailed
optimization studies with myoglobin Mb showed that the best conditions are 2-methylthio
oxazoline Ox1 in 10 mM phosphate buffer at pH 7.5 and 25 °C for 12 h (Figure 9, Table 1, Entry
2). Long reaction time is needed for high labeling yield (70-99%) but moderate amounts of
labeling are observed even in shorter reaction time (6 h) (50-80%). The concentration of protein
(0.75 mM-3 mM) did not influence the extent of modification (Figure 9, Table 1, Entry 3, 4, and
5). Excellent conversion (70%) to N-terminal oxazoline-modified myoglobin Ox1-Mb was
obtained at the more neutral pH as confirmed through protein digestion followed by the MS/MS
analysis (Supplementary Figure. 4). Low pH 6.5 reduced the conversion to modified protein
(43%, Figure 9, Tablel, Entry 1). An increase in pH 8.5 increased the percentage conversion to
modified protein (52%) but also resulted in the lower selectivity, leading the small amounts of
modification on the side chain of lysine (30%) (Figure 9, Table 1, Entry 3). The increase in the
probe equivalents from 50 to 200 lead to the multiple modifications of protein Mb. High site-
selectivity for the N-terminus was observed with 50 equiv of the probe (Figure 9, Table 1, Entry

2).
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Figure 9. HR-MS of oxazolation on protein Myoglobin Mb. Optimization studies with

myoglobin Mb revealed that the most efficient conditions are 2-methylthio oxazoline 1 a

Ox1 in 10 mM phosphate buffer at pH 7.5 and 25 8C for 12 h. Long reaction time is needed

for high labeling yield (70-99%) but moderate amounts of labeling are observed even in

shorter reaction time (6 h) (50-80%). The concentration of protein (0.75 mM-3 mM) did

not influence the extent of modification.

Table 1 Optimization of the oxazolation on protein Myoglobin Mb

*Entry Equiv. of Temperature | pH Total volume "Conversion (%)
probe (eonc.)
1 50 25°C 6.5 200 pL (3 mM) 43 % mono
2 50 25°C 7.5 200 pL (3 mM) 70 % mono
3 50 25°C 8.5 200 pL (3 mM) 52 % mono, 30 %
double,
4 50 25°C 7.5 | 400 pL (1.5 mM) 65 % mono
5 50 25°C 7.5 | 800 pL (0.75 mM) 45 % mono
6 100 25°C 7.5 200 pL (3 mM) 51 % mono, 33 %
double
7 150 25°C 7.5 200 pL (3 mM) 35 % mono, 37 %
double, 25 % triple
8 200 25°C 7.5 200 pL (3 mM) 6 % mono, 31 %
double, 42 % triple, 21
% quadruple
9 50 40°C 7.5 200 pL (3 mM) 13 % double, 29 %
triple, 36 % quadruple,
22 % quintuple

aCondition: Protein Mb (0.6 pmol) in 10 mM phosphate buffer of pH 7.5 (200-800 pL) and

1a, Ox1 (50-200 equiv.) was incubated overnight. °The conversion was calculated based on
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the relative peak intensity of native protein and labeled protein in the deconvoluted mass

spectrum.

1.2.2.4 Synthesis of functionalized Oxazoles for N-terminal modification

1.2.2.5 Protein Scope for N-terminal Oxazolation

We used several functionalized oxazolines (50-300 equiv) to oxazolate a variety of commercially
available proteins, including cytochrome C (Cy), alpha-lactaloumin, ubiquitin (Ub), and insulin
(Ins) (3 mM). The reactions provided high selectivity and good to excellent yields (50-99%)
(Figure 10). To our surprise, the ubiquitin with seven lysine residues produced a single
modification product at the N-terminus. Due to reactions at both N-termini, double modification
products were produced by insulin with two N-termini (Figure 10). Proteins with various
functional group handles will be modified to varying degrees, depending on the size of the
handles and how accessible the N-terminus is. Higher labeling efficiency was seen when the
handle size was smaller, with > 99 percent labeling of Cytochrome (Cy) with Ox2, > 99 percent
labeling of Insulin (Ins) with Ox2 and Ox4, and 90% labeling of Myoglobin (Mb) with Ox2
(Figure 10). Because Ox5 is bulky, proteins are labeled less frequently (between 40 and 70
percent) (Figure 10). These illustrations showed that the reaction is adaptable to a variety of
molecular weights, three-dimensional architectures, and structurally essential disulfide
connections. The high nucleophilicity of the cysteine thiol group at neutral pH makes it
extremely difficult to modify proteins selectively when cysteine is present. In numerous N-
terminal bioconjugation techniques, the cross-reactivity with cysteine is frequently seen. When
reduced insulin with six free cysteines was used to oxazolate proteins, no such modification of

cysteine was seen (Supplementary Figure. 5). The unique feature of our approach is that it leads

36



to the single-site N-terminal modification of proteins in the presence of highly nucleophilic

cysteines under physiological conditions.
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Figure 10. Site-specific attachment of oxazoline and its derivatives to a variety of different
proteins. Conditions for 3 mM protein, 50-300 equiv oxazoline, 10 mM phosphate buffer at
pH 7.5 and 40 °C. The samples were incubated for 12 h. The conversion with the N-
terminus depends on the size of affinity targets; for the small affinity tags Ox2-Ox4, we
observed a higher conversion (> 90 %); however, the bulky affinity tag Ox5 showed

moderate reactivity ( ca. 50 %).

1.2.2.6 Rate and Stability Studies of Oxazolation

Time-course studies on the linear peptide GAF-OMe 2 f-OMe were conducted to understand
better reaction rates and the products formed. In order to conduct quantitative monitoring for this
experiment, samples were injected for HPLC analysis at regular intervals. Over 60 min, the

oxazolation of tripeptide GAF-OMe 2 f-OMe (2 mM) with 2-methylthio oxazoline Ox1 (100
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mM) at pH 7.5 was observed (Figure 11). These results demonstrate that the initial rate of
production of Ox1-GAF-OMe conjugate 3 f-OMe is quite quick, with 70% conversion in just 10
min (Figure 11). The rate studies of the oxazolation between tripeptide GAF-OMe 2 f-OMe (1
mM) and 2-methylthio oxazoline 1 a (1 mM) at pH 7.5 were monitored over 60 min and showed
that the reaction follows a second-order rate constant (k = 1.66 X 102 M S1) for this process
(Figure 11). For bioconjugation reactions, the stability of protein conjugates is a critical concern.
So, for 48 hours at 25 °C and 37 °C, we tested the stability of the oxazole-peptide conjugate Ox1-
GAF-OMe 3 f-OMe in aqueous buffers with pH ranging from 3.5 to 10.5. High stability of Ox1-
GAF-OMe 3 f-OMe at various pH settings was shown by HPLC analysis (Figure 12).

GAF-OMe, 2f-OMe Ox1-GAF-OMe, 3f-OMe
N. O

o w © - . w @
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Figure 11. Rate study of azolation bioconjugation. Rate studies for synthesis of Ox-GAF-
OMe conjugate 3 f-OMe. The oxazolation of tripeptide GAF-OMe 2 f-OMe (1 mM) with 1

a (1 mM) at pH 7.5 follows a second order rate constant. Time-course study with 50
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equivalents of Ox1 (left plot), rate studies to determine the reactionrate by using 1 equiv. of

Ox1.

a. 25 ° C under different pH conditions b. 37 ° C under different pH conditions
In‘.l.a.ﬂ percentage (%) Im]arﬁt' percentage (%)

80

60

6h 12h 24h 48h 6h 12h 24h 48h

pH3.5 WpHTS pH 105 pH3.5 WpH75 pH 105
Figure 12. Stability study of Ox1-GAF-OMe under different pH conditions at different
temperatures; a. 25 °C. b. 40 °C. Ox-GAF-OMe 3f-OMe peptide (6.25 mM) was incubated
in 10 mM phosphate buffer (Nap) at different pH ranging from 3.5 to 10.5 at room
temperature and at 37 °C. A sample (50 pL) was taken from the mixture and directly
injected into HPLC. The reaction was monitored by injecting samples in HPLC after
regular intervals of time 6 h, 12 h, 24, and 48 h. The small amount of modified peptide Ox-

GAF-OMe 3f-OMe was degraded in pH 10.5 after 48 h at 37 °C.

1.2.2.7 Labeling of Proteolytic Fragments in the Complex Mixture

Oxazolation was carried out with both Ox1 and Ox4 on a combination of peptides with different
amino acids at the N-terminus (XAF (2e-2f, 2I-2n) X = F, G, A, V, L) to see if it could be used to
simultaneously tag the N-termini of several peptides and proteins in a complex system.
According to the results of the quantitative MS analysis, all of the peptides had been fully N-
terminally oxazolate (Figure 13, 14). In proteomics research, the capacity to tag every N-

terminus of the complicated mixture of peptides could be quite useful.
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Figure 13. The ESI-MS spectrum of the reaction mixture for the Ox1-FAF, Ox1-GAF, Ox1-

AAF and Ox1-VAF N-terminal modification of mixed peptide fragments.
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Figure 14. Selective N-terminal labelling of all the peptides by oxazoline Ox4 in the

complex mixture of a variety of peptides.

1.2.2.8 Oxazoline as Mass Sensitivity Booster

The difficulty characterizing the resultant bioconjugates is one of the main drawbacks of existing

N-terminal labeling techniques. LC-MS is frequently used to determine labels and discover the
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site of modification. The hydrophobic tags obstructing the free N-terminus are to blame for the
ineffective ionization of N-terminally labeled peptides. This restriction manifests itself more
clearly in complex mixes. Therefore, approaches that can improve the detection of tagged
proteolytic fragments are needed urgently. Including chemical tags that boost the ionization of
the labeled peptides in the MS is one method of achieving this goal. Some strategies for
improving the ionization ability of peptides have been published, but they modify various amino
acids, thus making the analysis difficult. Our method is distinctive in that it increases the
ionization of the labeled fragments by introducing the oxazoline group, which has a sp2 nitrogen,
in addition to selectively labeling the N-terminus. In order to determine the impact of the
oxazoline tag on mass sensitivity, we mixed equal concentrations of several unlabeled peptides
with methyl ester protected C-termini and rich in hydrophobic groups (XAF-OMe (2e, 2 fOMe,
2I0Me-2mOMe), X = F, G, A, and V) with corresponding N-terminal oxazoline-labeled peptides
(Ox-X (Figure 15). MS analysis showed that the oxazoline moiety affects the detection
sensitivity (Figure 15). Regardless of the peptide sequence, oxazoline-tagged peptides (Ox-XAF-

OMie, 3e, 3f, and 3l0Me-3mOMe) significantly improved signal enhancement (Figure 15).
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Figure 15. Oxazoline tagging of hydrophobic N-terminal peptides increases the mass
detection sensitivity as compared to untagged peptides. The oxazoline-peptide
bioconjugates, showed remarkable improvement in the signal enhancement irrespective of

the unmodified sequence of the peptides.

Inspired by these results, we investigated the mass sensitivity of proteins and their oxazoline-
labeled bioconjugates. In order to investigate the potential of oxazoline as a sensitivity enhancer,
we used cytochrome C and myoglobin. In this study, myoglobin and cytochrome C were
digested with cyanogen bromide and then incubated with 2-methylthio oxazoline, Ox1. Without
any purification, the proteolytic fragments before and after the N-terminal oxazoline tagging
were analyzed by MS (Figure 16, Supplementary Figure. 6). Low MS sensitivity was observed
for unlabeled proteolytic fragments of myoglobin, and some fragments were not visible (Figure
16). All of the myoglobin tagged proteolytic fragments were found to have remarkably high
mass intensities (Figure 16). We saw a significant difference between the myoglobin proteolytic
fragments that were oxazoline-labeled and those that weren't. Very low MS sensitivity was
observed for all the unlabeled myoglobin proteolytic fragments. For the labeled proteolytic
fragments of myoglobin, all the fragments were found to have remarkably high mass intensities

(Figure 16). These investigations demonstrated increased sensitivity of the tagged proteolytic
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fragments in the complex mixture, making them very significant and overcoming the detection
limitations of the current N-terminal bioconjugation approaches. The ability to modify all the N-
termini of digested proteolytic fragments in the complex mixture could be precious in proteomics
studies. We also demonstrated that the N-terminally modified myoglobin by Ox1 greatly
improved in terms of mass sensitivity when compared to the unmodified intact myoglobin
(Supplementary Figure. 7). Additionally, the N-terminal oxazolation technique could be utilized
to identify the distinctive proteolytic fragments produced by chemotherapy-induced cell death,

leading to the identification of novel cell death biomarkers.
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Figure 16. All the proteolytic fragments of myoglobin, peptides a, b, and ¢ are more ionized
and clearly visible after tagging with oxazoline. Oxazoline tagging improves the detection
of proteolytic fragments in a complex mixture. Proteolytic fragment a is barely visible after
cleavage of myoglobin (left MS trace). All the proteolytic fragments of myoglobin, peptides

a, b, and c are more ionized and clearly visible after tagging with oxazoline (right MS

trace).

1.2.2.9 Unmodified Myoglobin and Modified Myoglobin Bioactivity Assay

The activity assay of Ox1-Mb for its capacity to convert 2,3-diaminophenazine from o-
phenylenediamine with hydrogen peroxide further demonstrated the addition of oxazoline to the
N-terminus did not affect the activity of Mb (Figure 17). All of these findings confirmed that the
structure of modified protein and bioactivity were preserved as oxazolation placed a probe

specifically at a single location.
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Figure 17. Enzymatic assay of myoglobin activity before and after the labeling was checked
by oxidation of o-phenylenediamine with hydrogen peroxide. Oxidation of o-
phenylenediamine (OPDA) to 2,3-diaminophenazine was monitored at 426 nm (A426) using
nanodrop. Citric acid-NazHPOa4 buffer (pH 5.6) was prepared by mixing of 0.1 M citric
acid and 0.2 M Na2HPOa4. All solutions were made in aqueous buffer. The myoglobin,
oxazoline labeled myoglobin (Ox1-Mb), ophenylenediamine, and hydrogen peroxide (30 %)

solutions were used for the assay.

1.2.2.10 Conclusion

In conclusion, we have created a unique oxazolation strategy, a one-step method for selectively
tagging proteins with mass-sensitive probes in physiological conditions. Due to the enhanced
availability of deprotonated alpha amino groups and the lack of interference from lysine and
highly nucleophilic cysteine side chains, this technique is very selective for the N-terminus.
Although the nature and order of amino acids can have an impact on some N-terminal

approaches, no such effect was observed with this method. The selective labeling of several
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peptides and proteins with various amino acid compositions, as well as the reaction with
proteolytic fragments in complicated combinations, as illustrated in Figures, provide excellent
evidence of the potency of oxazolation strategy. The N-terminal labeling methods often suffer
from low detection sensitivity of the resulting bioconjugates due to the blockage of the free N-
terminus by the hydrophobic group, and multiple derivatizations are needed for the complete
analysis. The N-terminal oxazolation produced bioconjugates with a remarkably high level of
detection sensitivity. This is caused by the oxazoline's sp2-hybridized nitrogen, which improves
the ionization of the tagged peptides. This method offers a fantastic tool for clearly identifying
bioconjugates in a complicated combination. One of the main benefits of our approach is that,
unlike other mass-sensitive boosters, it performs site-selective modification of the intact protein
at the N-terminus, increasing its mass sensitivity without reducing its activity. Our method
differs from previous mass sensitivity booster techniques in that it is extremely selective and
produces only one modified fragment, as opposed to the combination of several modified
fragments produced by the use of commercial mass sensitivity reagents because of their non-
selective character. It is quite challenging to analyze the mass data when it contains various
modifications. The excellent stability of the N-terminally oxazoline-modified peptides and
proteins over a range of pH levels demonstrates the potential applicability of this chemistry in
the conjugation of biological probes and pharmaceutically active molecules. We believe that this
technique will be extremely helpful in many scientific fields due to its straightforward setup,
chemoselective character, use of readily derivatized mass sensitivity boosters, and effectiveness

in labeling proteolytic fragments from a complicated mixture.
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1.2.3 Tunable heteroaromatic azoline thioethers (HATS) for cysteine profiling

1.2.3.1 Rate and Stability Study of HAT Probe

In order to monitor the reaction between the peptide Ac-GCF 2b (3 mM) and the HAT probe 10
(5-25 equiv.) under optimal conditions (NaP, pH 7.5, 10 mM), we observed the reaction
throughout time at regular intervals (Figure 18). The formation of the coupling product was
analyzed using HPLC and MS. With 25 equivalents of the 1o probe, the reaction progressed
quickly, and more than 80% of the conversion to the cysteine modification product was observed
in 5 min (Figure 18). The comparison experiment with 1AA (25 equiv.) showed a decreased
product formation (30%) in 5 min. In order to understand how the substituent affects the rate of
the reaction, we lastly conducted rate tests using the azide derivative of 1o, (N3-10). A similar
reaction rate to 10 was found in the reaction with N3-10 (25 equiv. ). (Figure 18). Our initial
theory on the adjustment of the core structure to get more predictable reactivity with different
probe-derivatives is confirmed by the same reactivity profile of 10 and N3-10. Then, in a buffer
solution (NaP, pH 7.5, 10 mM) at room temperature, we evaluated the kinetics of the reaction
between HAT probe 10 (0.973 mM) and its oxidized sulfone analog 1i (0.973 mM). The findings
indicated that 10 is 10 times more reactive than 1i (k = 23.43 M S?) at k = 236.77 M* S

(Figure 18, Supplementary Figure. 8).
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Figure 18. Rate study of 1o, N3-lo, and IAA with peptide 2b. Observed rate of the
modification of cysteine of the peptide Ac-GCF 2b (0.003 mM) with 1o (5-25 equiv.), its
azide analog N3-10 (0.6 mM, 25 equiv.) and IAA (0.6 mM, 25 equiv.) in 10 mM phosphate
buffer (pH 7.5, 25 C) at different time intervals (Left). Kinetics study comparison of probe
10 (0.973 mM) and 1i for labelling peptide AcGCF 2b (0.973 mM) showed a 10 fold faster
rate of probe 1o for cysteine modification as compared to sulfone analog 1i (0.973 mM)

under physiological conditions (NaP (10 mM), pH 7.5, 25 C) (Right).

Highly reactive probes are typically thought to have low hydrolytic stability. Therefore, we
compared the HAT probes 10 and N3-10 to the sulfone analog 1i in order to test their stability.
The incubation of these probes (38.75 mM) in aqueous phosphate buffer (pH 7.5) at room
temperature was observed periodically by HPLC. Surprisingly, the less reactive 1li probe
degraded by 24 percent over the course of 6 hours whereas the more reactive 10 and N3-10
probes were relatively stable. Probes 10 and N3-1o exhibited hydrolysis of just 14-17% in 24
hours, whereas 1i showed hydrolysis of 40% in 24 hours (Figure 19). According to these
investigations, HAT probes 10 and N3- 1o are hydrolytically more stable than 1i and

demonstrate strong reactivity and excellent selectivity towards cysteine.
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Figure 19. Stability study of probe 10, N3-10, and 1i. High stability of probe 10 (38.75 mM)
and its azide analog N3-10 (38.75 mM) as compared to sulfone probe 1i (38.75 mM) under

physiological conditions (NaP (10 mM), pH 7.5, 25 C).

1.2.3.2 Protein Modification with HAT

Previous studies with carbon electrophiles such as chloroacetamide and sulfonate esters showed
that the solution reactivity of electrophiles with peptides is often not predictive of reactivity
observed with proteins due to the unique protein environment, which modulates the pKa and
reactivity of amino acid side chains. We tested the reaction of all HAT probes (1a-10) with
myoglobin (Mb) (w/o Cys) in order to assess the selectivity and reactivity of HAT probes
towards Cys with proteins. Since Mb lacks the Cys residue, the modification of Mb was seen
with all of the reactive probes (1a, 1b, Ox, 1j, 1n, and 1AA) except for 1i, 1m, and 1o, clearly
demonstrating their strong selectivity for Cys and correlating with the results of peptide
screening (Figure 20). The majority of the additional HAT probes responded with additional Mb
nucleophilic amino acids, like Lys (Figure 20). Due to their low reactivity and reduced water
solubility, which is similar to peptide screening results, the probes 1d-1h and 1k-1I do not react

with Mb (Figure 20, Supplementary Figure. 9).
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Probe, 100 eq
Nap, pH 7.5, rt, 12h

Mb (w/o Cys) Mb (w/o Cys)

Probe Conversion (%) Probe  Conversion (%) Probe Conversion (%) Probe Conversion (%)
la N-terminal (33) 1f No modification 1j Lysine (56) 1in Lysine (99)
1b Lysine (88) 1g No modification 1k No modification 1lo No modification
Ox N-terminal (70) 1h No modification 1 No modification 1p No modification
le No modification 1i No modification im No modification IAA Lysine (88)

Figure 20. Selectivity studies of probes with myoglobin

We performed the reaction with both natural insulin (w/o free Cys) and reduced insulin
containing six free cysteine residues in order to determine the reactivity and selectivity of 1o and
1m for proteins (two in chain A and four in chain B, Figure 21, Supplementary Figure. 10).
Under the same conditions (50 equivalents of 1m, 12 hours, pH 7.5), we observed full
modification of all cysteine residues in both chains A and B of reduced insulin by 1o (>99
percent conversion) as compared to 1m (chain A - 55 percent and chain B - 40 percent) (Figure
22, Supplementary Figure. 11). Both 1o and 1m did not modify the native insulin, demonstrating
the remarkable selectivity of 10 and 1m for Cys. Next, we studied and compared the selectivity
of 1AA for Cys using myoglobin (Mb). Under physiological conditions (NaP, pH 7.5, 10 mM),
the reaction of Mb with IAA (100 equiv.) generated the Mb-conjugate with multiple medications
(Figure 20). This demonstrated that IAA is not primarily selective for Cys and also results in the
modification of other reactive nucleophiles on Mb, such as Lys and the N-terminus, correlating
with published reports. These experiments demonstrated that in comparison to the widely used
IAA and all other HAT probes, HAT probe 10 is more reactive and more selective for cysteine
conjugation. Following a thorough investigation of the effectiveness, chemoselectivity, range,
and stability of the cysteine modification caused by the HAT probe 1o, we further investigated

its suitability for additional protein bioconjugation.
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Figure 21. Labeling of free cysteine in reduced insulin by probelo. Selective modification of

cysteine in reduced insulin with six free cysteines (4 cysteine modifications observed in

chain a, 2 cysteine modifications observed in chain b).
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Figure 22. Modification of free cysteine in reduced insulin by probe 1m. Selective
modification of cysteine in reduced insulin with six free cysteines (1 cysteine modifications

observed in chain a, 1 cysteine modifications observed in chain b).
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For bioconjugation, bovine serum albumin (BSA) with a single free cysteine residue was used.
By LC-MS analysis, the modified protein BSA-10 was obtained after treatment of BSA (0.15
mM) with HAT probe 10 (300 equiv.) in Nap 7.5 buffer at 25 °C for 8 h had a conversion rate of
>99 percent (Fig 23). Under the same reaction conditions, no modification was found in the
lysozyme protein, which contains oxidized cysteine. Reaction with 10 modified 1-3 cysteine
residues in reduced lysozyme produced 8 free cysteines as a result of lysozyme reduction (Nap
7.5 buffer at 25 °C for 8 hours, >99 percent conversion) (Figure 23, Supplementary Figure. 12).
The simple surface accessibility of the probe and the microenvironment influence on the pKa of
specific cysteines in lysozyme contribute to the high reactivity of probe towards those cysteines.
These findings suggested that proteins could be modified using the HAT probe in a very efficient

and chemoselective manner.
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Figure 23. Selective modification of cysteine in BSA and reduced lysozyme by probe 1o0.
Selective modification of cysteine in a protein BSA with one free cysteine and reduced

lysozyme (1-3 cysteine modifications observed).

1.2.3.3 Selective tagging of Cys in a complex mixture

We tried tagging numerous proteolytic fragments in the same solution to explore the possibility
of our approach for enrichment in a complex mixture as a further illustration of the strong
selectivity of HAT probe 1o for Cys. Under optimal reaction conditions, the mixture of
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proteolytic fragments produced by CNBr cleavage of Mb, cytochrome C, and reduced insulin
was incubated with HAT probe 1o for 12 hours. Data from the LCMS analysis of the reaction
showed that only free Cys containing proteolytic fragments were marked with 1lo. (Figure 24,

Supplementary Figure. 13).
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Figure 24. Enrichment of cysteine containing peptides with 1o in mixture of proteolytic
fragments. Probe 1o is able to selective tag the cysteine containing peptides from all the
proteolytic fragments of myoglobin, Cytochrome C and reduced insulin in complex

mixture.

1.2.3.4 Reversibility and stability of the HAT—cysteine conjugation
The stability of the lo-conjugated peptide 1lo-Ac-GCF 3b was then evaluated by HPLC

monitoring under various reaction conditions. We showed that the peptide conjugate 10-Ac-GCF
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3b is stable for 48 hours at low pH 3.5 at both room temperature and 40 °C and that just 10%
degradation was seen in 24 hours at pH 7.5. (Figure 9). Tris(2-carboxyethyl)phosphine (TCEP),
a potent protein disulfide reducer, does not degrade peptide conjugate 10-Ac-GCF 3b when

exposed to it for 48 hours (Figure 25, Supplementary Figure. 14).
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Figure 25. Stability of Ac-GCF-10 at 25 °C and 40 °C under different pH conditions. The
bioconjugate product showed high stability under pH 3.5 at both room temperature and 40
o C. We observed high stability of the conjugate for 24h under physiological conditions (pH

7.5) at room temperature.

The HAT-peptide combination is stable under physiologically relevant conditions, but we
wanted to see whether there was a way to decouple it without leaving any traces in order to get
around any restrictions on irreversible protein inhibition. To do this, it is possible to transform
the nucleophilic Cys residue into electrophilic DHA, enabling reversibility through the assault of
a nucleophile on the unlabeled starting material. In fact, HPLC and MS analysis showed that the
peptide conjugate 10-Ac-GCF 3b rapidly conversed to the unmodified peptide Ac-GCF 2b in 5
min when exposed to reduction conditions in the presence of sodium borohydride (10 equiv., 25

°C, in NaP pH 7.5). (Figure 26).
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Figure 26. Reversible study of Cys-HAT biconjugate with NaBHs4 The resulting

biconjugate is easy to decouple with NaBH4 under mild and rapid conditions.

Next, we applied the reversibility approach for insulin modified with 1o; we subjected lo-
modified insulin chains A and B to reducing conditions and within 5 min observed the complete
reversibility to unmodified insulin chains A and B with full conversion (>99% Figure 27,
Supplementary Figure. 15). It is notable that the reduction produced the original protein with no
modifications. The HAT probes' exceptional benefits in bioconjugation and proteome profiling
are highlighted by their high selectivity and reactivity for Cys under physiological conditions, as
well as their capacity for rapid reversal in a traceless manner to regenerate unmodified protein.

This reduces the drawbacks of producing irreversibly modified proteins.
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Figure 27. Reversibility studies of lo-insulin conjugate. ) Reversibility of the lo-protein
conjugate (0.15 mM) in the presence of sodium borohydride (1.5 mM) in NaP (pH 7.5) in 5

min.

1.2.3.5 Reactivity inversion by HAT probes

Many protein conjugation methods utilize the inherent nucleophilicity of Cys and carry out
reactions with electrophiles. By reversing the reactivity of nucleophilic cysteine residue into
electrophilic DHA, one can achieve a novel method for cysteine modification, allowing for
modification by diverse nucleophiles. By creating a covalent link between the lysine of the
interacting protein partner and the DHA on a peptide or protein, this method may also be used to
capture the proteins that interact with other proteins. By subjecting Boc-Cys-OMe 2c¢ to basic
conditions (NaP, pH 10.5, 37 C), we hoped to accomplish this. We then observed dehydroalanine
Dha 3c was formed directly via the 10-Cys modified intermediate as shown by NMR and LCMS

(86 percent, 8 hours, Figure 28, Supplementary Figure. 16).
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Figure 28. Conversion of peptide Boc-Cys-OMe 2c directly to dehydroalanine DHA 3c.
Conversion of peptide Boc-Cys-OMe 2c¢ directly to dehydroalanine DHA 3c under basic
conditions (NaP, pH 10.5, 8 h) with >99% conversion. H NMR shows the formation of

dehydroalanine (DHA) 3c from the HAT-Cys conjugate in a one step process.

By reacting with nucleophilic amines and thiols, the spontaneous elimination of the 10-Cys
conjugate under basic conditions yields a type 2 alkene, dehydroalanine Dha, which in theory
serves as a handle for further conjugation with different cargoes like polyethylene glycol (PEG)
polymers, fluorophores, or affinity reagents. Using HAT probes, we changed the nucleophilic
Cys from Ac-GCF 2b to Ac-G(Dha)F 3d (88 percent conversion), which was then subjected to
reactions with various nucleophiles, including mercaptoethanol and benzylamine, to create the
thiol addition product 3e and conjugated amine 3f, both of which had a conversion rate of more

than 99 percent (Figure 29, Supplementary Figure. 17).
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Figure 29. Aza-Michael addition and thiol-ene reaction of dehydroalanine. The
dehydroalanine 3d can be further modified by Aza-Michael addition and thiol-ene reaction

to achieve the site-specific modification.

Next, we converted the nucleophilic Cys on reduced protein lysozyme to DHA by treatment with
probe 10 at pH 10.5. Three cysteines from the reduced lysozyme were converted to DHA with a
conversion rate of more than 95%, as we saw. Next, we used the aza-Michael reaction to label
DHA-modified lysozyme with benzylamine to create amine-modified lysozyme with a 78

percent conversion as measured by LCMS (Figure 30, Supplementary Figure. 18).
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Figure 30. Aza-Michael reaction on DHA to generate amine labeled protein. Conversion of
free cysteine of protein lysozyme (0.15 mM) to DHA (conversion >99%) by incubating with
probe 1o (45 mM) at pH 10.5 for 12 h followed by the addition of amine (7.5 mM) by the
aza-Michael reaction on DHA at pH 8.5 for 12 h to generate amine labeled protein

(conversion 78%).

1.2.3.6 HAT as mass sensitivity booster

One of the limitations with current methods of selective labeling of Cys is the difficulty in the
characterization of resulting bioconjugates by MS due to the poor ionization of the labeled
fragments. Due to their limited mass sensitivity, low abundant protein biomarkers for the
detection of early-stage infections are hampered by this constraint, which is especially
pronounced in complex mixtures. Therefore, techniques are urgently needed to increase the
detection sensitivity of tagged fragments. We applied the MS analysis on a mixture of free
peptide Ac-GCF (5 mM), sulfone probe Ac-GCF (5 mM), IAA-labeled peptide Ac-GCF (5 mM),
and HAT probe 10 labeled peptide Ac-GCF (5 mM) and unlabeled peptide Ac-GCF (5 mM) in
water at equal concentrations to compare the ionization efficiency and mass sensitivity

enhancement capabilities of the greatest notable signal amplification was provided by the 1o tag
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on the peptide Ac-GCF (10-Ac-GCF: li-Ac-GCF, 100: 5, 10-Ac-GCF: IAA-Ac-GCF, 100: 8,

and 10-Ac-GCF: Ac-GCF, 100: 1.8). (Figure 31, Supplementary Figure. 19).
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Figure 31. Mass sensitivity booster capability of 1o-modified peptides. To determine the
ionization efficiency and mass sensitivity enhancement capability of HAT probe 10 in
comparison with free peptide, sulfone probe 1i and the 1AA probe, we carried out MS of
the mixture of 1lo-labeled peptide Ac-GCF (5 mM) and li-labeled peptide Ac-GCF (5 mM),
1o labeled peptide Ac-GCF (5 mM) and 1AA-labeled peptide Ac-GCF (5 mM) and 1o
labeled peptide Ac-GCF (5 mM) and unlabeled peptide Ac-GCF (5 mM) in water in equal

concentrations.

The tagged peptide 10-Ac-GCF was then detected up to 0.5 nanomolar concentration, according
to a concentration assay (Figure 32, Supplementary Figure. 20). According to MS, without any
purification, HAT probe N3-1o additionally significantly improved the detection sensitivity of
the labeled protein fragments of the decreased insulin as compared to IAA (Figure 33,
Supplementary Figure. 21). For unlabeled and IAA-labeled reduced insulin fragments, very poor
sensitivity was observed for both chains A and B of insulin. In fact, chain A was undetectable by
MS. Only one of chain B's free cysteines was labeled by IAA, whereas all four of chain A's free
cysteines were labeled by N3-10 (Figure 33, Supplementary Figure. 21). Significantly high mass
intensities of both chains A and B were present in the reduced insulin fragments that had been
HAT N3- 1o tagged. Additionally, it makes chain A in MS, which is commonly undetected and

may be highly significant in proteomics investigations, easier to identify.
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Figure 32. Mass sensitivity of 10-Ac-GCF at 0.5 nM. A concentration assay confirmed that

the tagged peptide 10-Ac-GCF is detected up to 0.5 nanomolar concentration.

67



1AA, b 0
GIVENCCTSICSLYQLENYCN NaP, pH 7.5 )\/
&» NaP pH75 Cha o NaPpH75_ . S.M,Jl,\NHE

-1 #— TCEP, IAA
)Ji'/ ) — > FVNQHLCGSHLVEALYLVC — N3-1o A .
/5 GERGFFYTPKT  NaP,pH7.5 /I\,S N N,
Chain B oy, N
+N-..{? N
SN
S
IAA-labeled reduced insulin chains A and B : HAT-N3-10-labeled reduced insulin chains A and B
2384.1155 M+1 Chain A-IAA ! \ss 782.1055 M+4 . Chain g\_;_N:a{_m )
No-modification ! our-modincations
2384.0437 2385.0847 o oags i 625.8815 m = 3127
2383.0386  2386.0366 :
M+3
1042.4626

698.3912 M+5 : 760.9647 M+5 Chain B-N3-10

Chain B-IAA P
M+4 (mono-modification) : M+6 {two—moiilg%%t{;ons)
872.7277 m=3486 ;6342905 M "
. . +4
e : 950.9478 Vaa

1744.5239 1267.5919

Figure 33. Mass intensity enhancement of N3-10 -reduced insulin bioconjugate products. )
HAT probe 1o significantly increases the mass detection sensitivity of a protein as
compared to 1AA tagged protein. Tagging with HAT probe N3-10 improves the detection of
chain A of reduced insulin significantly (right MS trace). Chain A is not modified after
TCEP reduction and labeling with 1AA (left MS trace). Both chains A and B of reduced
insulin are visible after tagging with the HAT probe, N3-10 (right MS trace). 10 modified
all 4 cysteines and 2 cysteines of chains A and B respectively. IAA modified only one
cysteine of chain B under identical conditions. Reaction conditions: reduced insulin (0.15

mM), probes 10 or IAA (50 equiv.) in NaP buffer at pH 7.5, room temperature for 8 h.

1.2.3.7 HAT probes for gel-based ABPP studies
Finally, because of its excellent selectivity and reactivity toward cysteine, as well as the modest

size of the HAT group, which enables access to a wide range of proteins, we focused on the
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utilization of the HAT N3-10 reagent for activity-based protein profiling (ABPP) applications.
We tested the HAT probe N3-lo by gel-based competitive ABPP with NHS-
tetramethylrhodamine (NHS-Rh) and iodoacetamide-tetramethylrhodamine (IA-Rh) using
HEK293T cell lysate to determine the proteome reactivity of this family of electrophiles (Figure
34, Supplementary Figure. 22). The diminished in-gel fluorescence signal, which is a result of
blocking 1A-Rho labeling by pre-treating with high quantities of N3-1o, is consistent with
cysteine-labeling by N3-1o (Figure 34, Supplementary Figure. 22). In the gel analysis
experiment, large amounts of N3-10 are needed to produce a similar labeling to IAA, despite the
fact that the Kinetic investigation of probes revealed that 10 and N3- 1o are substantially more
reactive than IAA (Figure 18). This is due to the N3-1o cysteine conjugate products’ poor
stability in the gel-based competitive ABPP assays, which required heating at 37 °C and 95 °C.
(SI). N3-10 provided no considerable blockage of proteome tagging by the lysine-reactive probe
NHS-Rh, supporting its selectivity for cysteine labeling (Figure 34, Supplementary Figure. 22).
These gel-based experiments prove that the HAT N3-10 probe's high specificity for identifying

recombinant proteins extends to complicated cell lysates (Figure 34, Supplementary Figure. 22).
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Figure 34. Chemoproteomic studies of the HAT N3-1o probe in HEK293T cell lysate.
Chemoproteomic studies of the HAT N3-1o0 probe by gel-based competitive activity-based
protein profiling (ABPP). Ingel fluorescence analysis of the HAT N3-10 probe at different
concentrations (500 mM to 10 mM) and comparison with the cysteine reactive 1AA probe
(1-200 mM) followed by incubation and detection with 1A-Rh in HEK293T cell lysate.
Fading of bands with an increase in the N3-10 concentration showed labeling with cysteine
(Left). In-gel fluorescence analysis of the HAT N3-10 probe at different concentrations (500
mM to 10 mM) and comparison with the lysine reactive STP-alkyne probe (1 mM) followed
by incubation and detection with NHS-Rh. No fading of bands with increasing

concentration of N3-1o indicates no reactivity with lysine (Right).

1.2.3.8 Conclusion

In conclusion, HAT offers a unique and stable chemotype for chemoselective cysteine
modification free of cross-reactivity with other amino acids. HAT's reactivity is adjusted by
varying the type of aromatic ring, the heteroatom attached to the ring, the oxidation state, and the

methylation state of the heteroatom. The generated HAT probes are resistant to hydrolysis and
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have a high degree of cysteine reactivity. One of the unique features of HAT probes is their
ability to be quickly reversed by external stimuli to generate unmodified units in a traceless
manner, indicating the potential utility of this approach in many research fields, such as protein
immobilization, proteomics, and current drug discovery efforts avoiding the permanent
modification of proteins. Unexpectedly, HAT probes allow for the reversal of the reactivity of
nucleophilic cysteine to electrophilic dehydroalanine under mildly basic conditions (pH 10.5),
allowing for the modification of proteins at the cysteine site by diverse nucleophiles such as
thiols and amines. The ability of HAT probes to increase the mass sensitivity of the resulting
bioconjugates by 100 fold allows for the simple detection of cysteine conjugates in a complex
mixture, which is highly significant in proteomics studies for the identification of protein
fragments with low protein abundance. Finally, we predict that the HAT's selectivity will enable
future research aimed at identifying and pharmacologically modifying functional cysteines in
entire proteomes, as well as a starting point for therapeutic treatments by reversible covalent
inhibition of the reactive cysteines. The toolbox for bioconjugation, proteome probing, and
pursuing otherwise inaccessible protein targets will be significantly widened by these cutting-

edge HAT tools for probing cysteine, which would supplement current detection techniques.

1.2.4 Tunable amine-reactive electrophiles for selective profiling of lysine

1.2.4.1 Chemoselectivity Reaction of TARE Probes with Proteins

We performed the experiment with Myoglobin (Mb) in order to assess the selectivity and
reactivity of probes 1 d and 1 n with proteins (without Cys Figure 35). According to an MS/MS
analysis of Mb-1d and Mb-1n protein conjugates, both probes 1 d (10 equiv, 1 h) and 1n (100
equiv, 12 h) detected numerous modifications of lysines on Mb (Figure 35). Ser, Thr, Tyr, Trp,

Glu, and His were not modified on Mb even after applying an excess of the probe 1n (100 equiv)
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and for a longer reaction period (12 h), further demonstrating the significant reactivity and
selectivity of 1 d and 1n for lysine. The modification of the lysine amino acid only occurred in
the protein conjugates of lactaloumin-1d and cytochrome C-1d, according to MS/MS analysis of
the probes 1d used to examine the modification of other proteins, including Ib and CyC. (Figure
35, Supplementary Figure. 23). We synthesized the alkyne and azide functionalized TAREs N3-
1n, 1 c-yne, and 1 d-yne in order to develop an efficient reaction for the enrichment of lysine
fragments from a complex mixture. The reaction of the azide- and alkyne-functionalized TARES
with proteins like Mb, Ib, and CyC was investigated. Similar to the model probe investigations
with 1 c-1n, azide- and alkyne-modified Lys of proteins Mb, Ib, and CyC were generated under
optimal conditions by TAREs N3-1n (25 equiv, 12 h), and 1 c-yne (1 equiv, 1 h). This
modification was verified by MS/MS. The labeling of significant amounts of lysine residues (6-7
lysines) on pure proteins such as myoglobin, cytochrome C, and lactalbumin without any
cysteine using high equivalents of the probe 1 c-yne demonstrated that the modification of lysine

residue is independent of the presence of the cysteine residue (50 equiv).
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Figure 35. Chemselectivity reaction of probes with proteins. Modification of proteins with
various TAREs. These proteins do not have any cysteine residue and TARESs showed high
selectivity for lysine as analyzed by LC-MS/MS. Reaction Conditions: protein (3 mM in
Nap (pH 7.5), probe 1 d (10 equiv, 30 mM), 1 e (100 equiv, 300 mM), room temperature for
1 h, detection wavelength 200 nm. For | b and CyC modification, probe 1 equiv of 1 d (3

mM) was used for 1 h.

1.2.4.2 Rate, Stability and Reversibility of TARE Probes

Next, we compared the reactivity of the two most reactive TAREs 1 c-yne and 1 d-yne by
carrying out the rate studies using a peptide Ac-GKF (GKF 4a). The reactions were monitored
after regular intervals of time using HPLC and MS. The reaction with 1 d-yne (k = 307.52 M S
1) showed 3-fold higher reactivity than 1 c-yne (k = 99.27 M S (Figure 36). The reaction
rate of STPyne (k = 190.92 M S 1) with a peptide Ac-GKF 4a showed lower reactivity
compared to 1 d-yne but high reactivity than 1 c-yne (Figure 36, SI, Supplementary Figure. 24).
Next, we sought to determine the stability of the reactive TAREs 1 c-yne and 1 d-yne towards
hydrolysis and compare it with hydrolytic stability of NHS-ester and STPyne previously used for
lysine profiling. We incubated probes in aqueous phosphate buffer (pH 7.5) under ambient

conditions and monitored after regular intervals of time by HPLC and MS. Although of almost
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similar reactivity, 1 c-yne probe is more stable towards hydrolysis as compared to 1 d-yne and
only 30% degradation of 1 c-yne probe was observed after 6 h and 50% of 1 c-yne remained
intact even after 12 h (Figure 37, SlI, Supplementary Figure. 24). In contrast, NHS-ester showed
90% degradation in 2 h and completely degraded within 4 h (Figure 37). STPyne showed 90%
degradation in 6 h. These studies showed the high stability of TARE 1 c-yne as compared to
NHS-ester and STPyne thus capable of acting as covalent inhibitors of lysine in cellular
environment (Figure 37). Next, we conducted rate studies with the peptide Ac-GKF to evaluate
the reactivity of the two most reactive TARES, 1 c-yne and 1 d-yne (Ac-GKF 4a). By HPLC and
MS, the reactions were observed at regular intervals (Figure 37). Compared to 1 c-yne (k = 99.27
M7 S, the reaction with 1 d-yne (k = 307.52 M S?) shown a 3-fold higher degree of
reactivity (Figure 36). STPyne's reaction rate with the peptide Ac-GKF 4a (k = 190.92 M S1)

was lower than that of 1 d-yne but higher than that of 1 c-yne (Figure 36, Supplementary Figure.
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Figure 36. Rate study of 1c-yne, 1d-yne and STPyne with peptide OAc-GKF 2e. The result
showed that 1c-yne, 1d-yne, STPyne bioconjugate reactions are second order reaction with

k =99.27 M-1 S-1, 307.52 M-1 S-1, and 190.92 M-1 S-1 respectively.

The stability of the reactive TAREs 1 c-yne and 1 d-yne toward hydrolysis was then determined,
and it was compared to the hydrolytic stability of NHS-ester and STPyne, which had previously
been employed for lysine profiling. We incubated the probes in aqueous phosphate buffer (pH
7.5) at room temperature, and we used HPLC and MS to check the progress at fixed times.
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Despite having practically comparable reactivity, the 1 c-yne probe is more robust to hydrolysis
than the 1 d-yne probe; just 30% of the 1 c-yne probe's degradation was seen after 6 hours, and
50% of the 1 c-yne was still intact after 12 hours (Figure 37, Supplementary Figure. 25). In
comparison, NHS-ester showed 90% degradation in 2 hours and 100% degradation in 4 hours
(Figure 37, Supplementary Figure. 25). In 6 hours, STPyne showed a 90% degradation. These
findings show that TARE 1 c-yne is much more stable than NHS-ester and STPyne, and as a
result, is able to function as covalent inhibitors of lysine in cellular environments (Figure 37,

Supplementary Figure. 25).
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Figure 37. Stability study of 1c-yne, 1d-yne, NHS ester and STPyne. 1c-yne, 1d-yne, NHS
ester, and STPyne (0.035 mmol) were incubated in 400 pL of 10 mM Nap (pH 7.5) at room
temperature. The result shows the probe 1c-yne is more hydrolytically stable than the

widely used lysine labeling and profiling reagents NHS-ester and STP-yne.
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We generated a probe 2-methylthio benzoN-methylthiozolinium ion 1n with decreased reactivity
by switching the O heteroatom for S in the 2-methylthio benzoN-methyloxazolinium ion 1d in
order to demonstrate the reversibility property of our probes. By reacting 1n with the peptide
AcVCF, we were able to isolate modest amounts of 1 n-Cysconjugate (VCF-1n), and we next
treated the cysteine-adduct VCF-1 n with lysine methylester (Figure 38 a). According to the
hypothesis, the reaction produced a stable adduct with lysine methylester (Lys-OMeln),
releasing the free peptide VCF 2d for LCMS analysis (Figure 38 a, Supplementary Figure. 26).
We created a 1d-thio-conjugate under non-agqueous conditions since 1d-Cys conjugate is very
reactive and challenging to isolate under agueous conditions. Complete modification with lysine
methylester was shown in 1 hour under physiological conditions (NaP, pH 7.5, 10 mM) at room
temperature (Figure 38 b). These experiments prove that the thioethers produced when Cys
reacts with TAREs 1 ¢, 1 n go on to react with lysine and can be used to profile lysine
specifically in the human proteome. We also observed full hydrolysis in 1 hour after incubating 1
d-thio-conjugate under buffer (NaP, pH 7.5, 10 mM) at room temperature (Figure 38 b,

Supplementary Figure. 26), indicating the selectivity for lysine profile.

15.22
s VCF-1n |\ VCF2d
LUf 11.55 /
\1/ ‘—f\-..-.,_,_,.__/x._.._l"‘('\_
772
@ AcHN Lys-OMe-1n
o + VCF 2d
NaP, pH 7.5 AcHN 1913
VCF-1n Lys -OMe-1n 7.5 10 15 17.5

79



o — H.N Nap buffer pH 7.5 , o
@ />—S . 2 \/\/YU\O/ rt, 1h />—NH
+ N\*’

AcHN 0—

[

EafafBa
£ yEESS

B IS W 4N M 40 4% B I E I EEE

Figure 38. a). Reactivity of cysteine-TARE conjugate towards lysine to generate stable
product. The cystein conjugated product is able to react with lysine residue to form a more
stable lysine product. b). Reversibility study of 1d-thio-conjugate with lysine methylester.
The cystein 1d-conjugated product is ready to react with lysine side chain to generate the

hydrolytically stable lysine product.

1.2.4.3 Chemo-proteomic studies of TARES

We then investigated whether this chemotype would perform well for activity-based
chemoproteomic applications in complex cell lysates, encouraged by the lysine selectivity and
enhanced reactivity observed in our TARE-protein and peptide-based labeling studies. We
evaluated the relative cysteine- and lysine-reactivity of TAREs using a gel-based competitive
activity-based protein profiling (ABPP) test. lodoacetamide-tetramethylrhodamine (IA-Rh) or
NHS-tetramethylrhodamine (NHS-Rh), respectively, or a pan-cysteine or pan-lysine reactive
fluorescent probe were used to label HEK293T lysates after being first treated with probes 1 d, 1
c-yne, or 1 d-yne (Figure 39). Gel-based ABPP analysis of compound 1 d demonstrated

enhanced selectivity for lysine (Figure 39, Supplementary Figure. 27), as indicated by
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competition of labeling by NHS-Rh but not IA-Rh, whereas 1 c-yne inhibited both cysteine and
lysine labeling. On the other hand, the canonical lysine-reactive probe STPyne (1 mM) competed
for labeling of both probes, consistent with off-target cysteine-reactivity, as reported before. Our
next step was to assess the concentration range compatible with probe labeling because
competitive inhibition of NHS-Rh labeling was only seen at high doses of 1 cand 1 d (e.g. 5 mM
for 1 d, Figure 39, Supplementary Figure. 27). We used an alkyne derivative of 1 d termed 1 d-
yne for these investigations. Cell lysates were treated to 1 d-yne labeling at the specified
concentrations, CUAAC conjugation to biotin azide, and streptavidin blotting to detect the
labeling (Figure 39, Supplementary Figure. 27). Fortunately, 1d-yne demonstrated intense
concentration-dependent labeling, and a banding pattern resembling that of STPyne was
compatible with lysine-directed reactivity. The same labeling intensity was seen when comparing
1 mM of 1 d to 100 mM of STPyne, indicating that the 1 d TARE is a relatively attenuated
warhead. We used mass spectrometry-based chemoproteomics to further evaluate the 1 cand 1 d
TARES' proteome-wide reactivity patterns. Using our SP3 chemoproteomic sample preparation
method, cell lysates were exposed to either probe 1 c-yne or 1 d-yne, labeled proteins were
attached to biotin azide using CUAAC, and the samples were prepared and analyzed (Figure 39,

Supplementary Figure. 27).
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Figure 39. General protocol for proteome profiling by different probes and structure of
probes. In-gel fluorescence analysis of STPyne (1 mM) and 1 d probes at different
concentrations of 1 d (0.5 mM to 5 mM) followed by detection with NHS-Rh for lysine
reactivity and 1A-Rh for cysteine reactivity. 1 d is more selective for lysine as compared to
STPyne. In-gel fluorescence analysis of 1 c-yne at different concentrations (0 to 1 mM)
showed reactivity with both lysine and cysteine. Click gel assay of 1 c-yne and cysteine
reactive 1A-aky probes with cell lysate using fluorescent-biotin azide to determine the total
labeled proteins. High labeling of cell lysate was observed with 1 c-yne. Click gel assay of 1
d-yne at different concentrations (0.1 mM to 1 mM) and STPyne (0.1 mM) probes with cell
lysate using biotin-azide and streptavidin blot to determine the total labeled proteins. Dose-

dependent labeling was observed for 1 d-yne with banding pattern similar to STPyne.

Briefly, magnetic beads with carboxyl coatings were used in single-pot solid-phase enhanced
sample preparation (SP3) decontamination of TARE-labeled proteomes. Neutravidin was used to
enrich biotinylated peptides from the SP3-resin tryptic digest and conduct LC-MS/MS analysis.
Surprisingly, 1 c-yne demonstrated nearly complete selectivity for lysine residues in contrast to
its apparent cysteine-reactivity as reported by competitive gel-based tests (5124 total unique

labeled lysine residues and 27 total unique labeled cysteine residues across two biological
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replicate experiments (Figure 40, Supplementary Figure. 28). Similar to this, chemoproteomic
analysis of 1 d-yne-labeled lysates showed nearly complete lysine selectivity across three
chemical doses examined (1595 total unique lysine residues and 54 total unique labeled cysteine
residues). The 1 c-yne datasets were re-searched using the program MSFragger, which has built-
in PTMProphet for precise mass modification localization, and this discovered 1560 unique
labeled lysines and 17 unique labeled cysteines, further confirming the specificity of the lysine
residue (Figure 40, Supplementary Figure. 28). Consistent with our gel-based analysis, we
observed a dose dependent increase in peptides identified as the concentration of 1 d-yne was
increased from 1 mM to 100 mM. 1 c-yne labeled substantially more peptides (5151) than 1 d-
yne (1649), in contrast with the aforementioned kinetic analysis that revealed 3-fold higher
reactivity for 1 d—yne (k = 307.52 M1 S 1) as compared to 1 c-yne (k = 99.27 Mt S 1) (Figure
36, Supplementary Figure. 28). Surprisingly high reactivity of 1 c-yne in gel and proteomic
studies as compared to 1 d-yne might be due to the high hydrolytic stability of 1 c-yne (95%
intact in 2 h) as compared to 1 d-yne (28% intact in 2 h) under the reaction conditions (Figure

37).
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Figure 40. Percentage of unique peptides and proteins labeled on each nucleophilic amino
acid by 1 c-yne in HEK293T proteome. Cellular lysates are labelled with 1 c-yne at
different concentrations followed by conjugation with azide-biotin tags (blue) using
CuAAC, enrichment of labeled proteins by neutravidin-conjugated beads and digested
stepwise with trypsin to yield 1 c-yne-labeled peptides for LC-MS analysis. Percentage of
unique peptides and proteins labeled on each nucleophilic amino acid by 1 c-yne in
HEK?293T proteome. Probe 1 c-yne preferentially enrich lysine residues in human cell

proteomes. Data represent means :standard deviation for two experiments.

In contrast to our competing gel-based results, the absence of significant cysteine tagging
observed 1 c-yne intrigued us. We hypothesized that this discrepancy might be caused by the
liability of the cysteine adduct, which may result from the reducing CuAAC conditions. To

verify this hypothesis, we used click chemistry to label a peptide GCF with 1 c-yne both with
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and without TCEP. Under click chemistry conditions, we only observed the modification of Cys
in a peptide GCF when TCEP was absent; no modification of a peptide GCF was noticed when
TCEP was present (Figure 41, Supplementary Figure. 29). Next, we isolated the Cys-modified
GCF-1 c-yne adduct and incubated it in TCEP-containing buffer to further confirm. Within five
min, we saw the GCF-1 c-yne adduct completely decompose into the unmodified peptide GCF

(Figure 41, Supplementary Figure. 29).

HPLC trace of pure GCF-1c-yne conjugate
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Figure 41. Stability study of GCF-1c-yne conjugate in TCEP buffer. The reaction between

GCF and 1c-yne can be reversed under TCEP buffer.
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1.2.4.4 Live cell labe lingand amino-acid selectivity in proteome by probelc-yne

The ability of TAREs to profile the lysine proteome was further explored by treating living
human cells with 1 c-yne. Using progressively higher doses of 1 c-yne, NHSester, and STPyne,
we incubated three cancer cell lines—LNCaP, U87MG, and T47D—representing prostate, brain,
and breast malignancies, respectively. Cells were fixed, permeabilized, and washed to get rid of
the unreacted probe after 2 hours. The ability of each probe to mark proteins inside the cell was
then directly imaged by conjugating the reacted probe to a fluorophore through CuAAC.
Confocal fluorescence imaging demonstrated that, at concentrations ranging from 5 mM to 100
mM, all three cell lines had taken up 1 c-yne, STPyne, and NHS-ester into the cytosolic and
nuclear compartments (Figure 42, Supplementary Figure. 30). Protein labeling across molecular
weights as shown by Western blot analysis of LNCaP cells treated with 100 mM of 1 c-yne,
NHS-ester, and STPyne and subsequent fluorescence labeling with CuAAC (Figure 42,
Supplementary Figure. 30). The differences in band intensities may be due to 1 c-lysine yne's
selectivity as opposed to NHS-ester and STPyne probes' cross-reactivity with cysteine. Last but
not least, we looked at how quickly 1 c-yne may enter and mark distinct cellular compartments

in living cells. Within the first five min

, intracellular labeling happens at 1 c-yne concentration as low as 100 nM. (Figure 42,
Supplementary Figure. 31). These findings demonstrate how effective 1 c-yne is as a quick live

cell labeling probe.

86



Probe Merge

Live cell probe labeling lc-yne labeling at drug-like concentrations
]
: £3
> (7]
SEZ 5 min
- 0 Z
kDa
150 *
100| **
75 - 15 min
50 .
-
37
60 min
25| @
20 ¢ 120 min

Probe DNA Merge

Figure 42. Intracellular probe labeling in LNCAP, U87MG, and T47D. Human LNCAP,
U87MG and T47D cells treated with 5 mM 1 c-yne, STPyne, or NHSester for 2 h followed
by fixing the cells, washing of unreacted probes and then conjugation with azide
fluorophore tags using CuAAC show labeling in multiple cellular compartments. b)
Western blot fluorescent analysis of LNCAP cells incubated with 100 mM 1 c-yne, STPyne,
or NHSester for 2 h and then conjugated with azide fluorophore tags using CuUAAC

demonstrates protein labeling across molecular weights.

Then, for the following 24 hours, we performed cell viability tests with 1c-yne utilizing T47D

cells at two different concentrations (5 mM and 20 mM). By comparing the results of the flow
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cytometry analysis to the DMSO control, we found no increase in apoptosis or necrosis (Figure

43, Supplementary Figure. 31).
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Figure 43. Cell viability studies with 1cyne. T47D cells treated with indicated
concentrations of 1c-yne for 24h did not show an increase in apoptosis/necrosis compared

to DMSO control.

1.2.4.5 Computational study of probe 1c-yne

Next Dr. Houk’s group carried out the DFT investigation on the reaction between 1 c-yne and
methyl thiolate in order to further evaluate the observed differences in cysteine- and lysine-
reactivity for the TARES. In order to better understand the observed differences in the amino acid
reactivity profile, we chose compound 1 c-yne as the candidate for our DFT experiments. This is
due to its hydrolytic stability and observed reactivity with both cysteine and lysine residues. In
contrast to the irreversibility of 1 c-yne modification by amine nucleophiles, the DFT
simulations using 1 c-yne supported the reversibility of the reaction between 1 c-yne and thiol

nucleophiles (Figure 44, Supplementary Figure. 32).
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Figure 44. Free energy profiles for SNAr substitution of 1 c-yne with methylamine (blue)
and methyl thiolate (red) in water, computed at the wB97X-D/6-311+ +G(d,p) level of
theory in SMD water. DFT method: wB97X-D/6-311+ +G(d,p) SMD(H20)//B3LYP/6-
31+G(D) SMD(H20), with Grimme correction for entropy and Head-Gordon correction

for enthalpy in 298.15 K. All energies are in kcal mol? .

1.2.4.6 Conclusion

We have created TARES that are highly reactive with both cysteine and lysine, but the reaction
with cysteine generates a lysine-reactive electrophile, making these probes very selective for the
enrichment and production of stable adducts with lysine exclusively. These TARE chemotypes
are more resistant to hydrolysis than other lysine-reactive activated esters, such as STPyne and
NHS esters. They hence have the potential to function as covalent ligands for lysine in the
cellular environment. We demonstrate the remarkable tunability of TARES, where reactivity and
selectivity can be tailored for particular applications by adding various heteroatoms and
methylating them. As was predicted, 1 d and its analog 1 d-yne were the most reactive, soluble,

and selective for lysine due to the strong electron withdrawing nature of O as opposed to S and
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greater electrophilicity and solubility of the charged methylation ions as compared to an
uncharged moiety. Additionally, we demonstrated that 1 ¢ is more hydrolytically stable than
other activated esters. The reactivity of 1 ¢ and 1 d as well as their alkyne derivatives 1 c-yne
and 1 d-yne are comparable, and both are reactive at low micromolar concentrations. The high
permeability, non-toxicity, cellular stability, and cellular activity of TARE probes are shown by
the labeling of both cytoplasmic and nuclear proteins in live cells, demonstrating their promise as
a probe for quick live cell labeling and covalent inhibitor. As a result of the cysteine-adducts in
both probes being reactive electrophiles towards lysines and unstable towards TCEP, both 1 c-
yne and 1 d-yne enriched exclusively lysine peptide fragments from the cell lysate during the
identification of the sites of modification for TARES. Our experimental results demonstrating the
reversibility of the reaction between 1 c-yne and thiol nucleophiles and the irreversibility of the
modification of 1 c-yne by amine nucleophiles are supported by DFT calculations on 1c-yne.
The 2-methylthio pyridiniumoxazoline ion 1 ¢ and its alkyne analog 1 c-yne offer an aromatic,
synthetically tractable, non-cytotoxic, and hydrolytically stable electrophile to the arsenal of
lysine reactive groups available for protein modification. With regard to protein modification,
bioconjugation, material science, activity-based protein profiling, and covalent drug discovery
for intractable human proteins, we anticipate that our design of novel probes, simple synthesis to
a variety of derivatives, and thorough reactivity and selectivity studies with peptides, proteins,

and live cells will encourage their use in a variety of applications.
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Chapter 2: Chemical Tool for Tagging Mono-Methyl Lysine and K-me-Directed

Modification

2.1 General Introduction of Mono-Methyl Lysine

Despite decades of intensive research, the putative roles of lysine monomethylation (Kmel)
PTMs in regulating epigenetics, chromatin assembly, gene expression, and other biological
processes remain unclear and limited*. The main cause of this uncertainty is the inability of
conventional experimental methods to identify methylation lysine PTMs universally. This is
mostly due to the fact that the addition of small methyl groups very slightly alters the
physiochemical characteristics of proteins including mass, charge, and hydrophobicity®>®. To
date, attempts to identify and characterize lysine methylation have depended on the use of
affinity reagents such as antibodies and methyl binding domains MBD"® (Figure 45). However,
these affinity reagents are unable to detect all lysine methylation sites due to their sequence-
specificity and inability to differentiate between mono-, di-, and trimethylated lysine®*. The
fundamental disadvantage of MBDs is that they enrich methylation proteins without identifying
the individual methylated residues. In addition, MBDs require flanking amino acids on both
sides of the methylated lysine for detection, making them incapable of detecting methylation
sites on trypsin digested fragments, which are frequently employed in proteomic study of other
PTMs. Others have investigated functionalizing the methyl donor S-adenosylmethionine (SAM)
with biorthogonal groups such as alkynes or azides, which are transferred to the substrate
proteins in place of the methyl group*??® (Figure 45). However, the unnatural SAM analogs
exhibit cross-reactivity with natural SAM, and not all lysine methyltransferases (KMTSs) accept
the changed cofactors. Mass spectrometry is one of the most common techniques for lysine

methylation detection (MS). Although robust MS analysis is challenged by analytical limitations,
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such as a low natural abundance of methyl lysine PTMs in complex mixtures!’8, In addition, the
change in mass caused by one methyl group is equal to the substitutions of some amino acids

(e.g., Val vs. Leu, Asn vs. GIn, Asp vs. Glu), resulting in false identification (Figure 45).
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Figure 45. Current method for detecting methyl-lysine

Due to the large number of known methyltransferases KMTs and demethylases (KDMs)
involved for lysine methylation, only 5000 Lys methylation sites (combined mono-, di-, or tri-)
have been found thus far, despite evidence of their vast occurrence!®?. Our group has recently
developed STaR chemistry for selective labeling of monomethyl lysine Kme for identifying

proteins with Kmel (Figure 46).
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Figure 46. Selective triazenation reaction (STaR) for tagging monomethyl lysine post-
translational modifications

however, we are unable to (provide residue-specific information) determine the site of
monomethyl lysine, which is necessary for addressing specific biological/fundamental questions.
This was mostly due to the monomethyl lysine triazene product's sensitivity to mildly acidic
conditions?, making it incompatible with the MS-based proteomics and fluorosequencing
required for the detection of Kme sites (Figure 47). All together, none of the previous methods
can be used to selectively label Kmel sites in a pan-specific way. This means that a powerful

chemical method is needed to label Kmel in a specific way.

Figure 47. False identification of labeling site after profiling

2.2 Coarctate Cyclization for Selective labeling of Monomethyl Lysine Posttranslational
Modifications

The Kme-triazene product is stabilized by functionalizing the ortho position of the diazonium
salt with an ethyne group, followed by coarctate cyclization of the triazene-ene-yne product in

the presence of CuCl to yield an acid-stable 2H-indazole-3-carbaldehyde
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fluorophore/chromophore?? (Figure 48). Consequently, it is compatible with both MS-based
proteomics and fluorescence sequencing. We demonstrated that the TCC method is pan-specific
and selectively modifies Kmel in various histone peptides regardless of the sequence, the
presence of nearby PTMs, and the presence of multiple Kmel on a single peptide with different
tags, including affinity tags and fluorophores. Triazenation Coarctate Cyclization (TCC)
process was used to enrich Kmel proteins from the nuclear extract. Notably, we identified Kme
sites on a peptide with high efficiency using single-molecule fluorosequencing, and we identified
unknown Kmel proteins and sites using chemoproteomics. Our approach gives both quantitative
and residue-specific information regarding total protein lysine monomethylation. In the scientific
literature, there are no other pan-selective chemical techniques for the detection of Kmel sites by

fluorosequencing and MS proteomics.

Figure 48. Triazene cyclization for selective tagging monomethyl lysine with chromophore

2.2.1 Development of Triazenation Coarctate Cyclization (TCC)

We inserted azide and alkyne at the ortho position to stabilize triazene product generated by
selective reactivity of secondary amine with phenyl diazonium ion and generate stable indazole
cyclic product at the secondary amine. Starting with a small model chemical, proline
methylester, we performed reactions with 2-azido aniline and 2-ethyne aniline. In the first step,
aniline was transformed in situ to diazonium ion using NaNOz under acidic conditions, which
subsequently reacted selectively with proline methyl ester at pH 7.5 in 1 hour to produce

triazene. The Triazene-ene-azide or Triazene-ene-yne coarctate cyclization of triazene-ene-azide
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or triazene-ene-yne produced benzotriazole?® (43%) and 2H-indazole-3-carbaldehyde (52%) in
reasonable yields (Figure 49, Supplementary Figure. 1), respectively. *H and *C NMR were

used to completely describe the products.

o

o
o o
1.NaNO,, HCI (con), N “o “o
NH, __0°C,10min__ N cucl, or Cul
2 Neutralization N 60 °C, 12h
cr GS Q

Proline methyl ester Aniline analogs Triazene intermediate X= aIkyne (52%) X= N3 (43%)

Figure 49. Synthesis of benzotriazole and 2H-indazole-3-carbaldehyde by TCC reaction.

We further optimized the reaction conditions on a model peptide PAF 1a using 2-ethyne
phenyldiazonium ion 2a and 2-azido phenyldiazonium ion 3a under varied pH (7.5 to 9.5),
temperatures (RT to 60 °C), catalysts (CuCl, Cul, IPrAuCI and AgSbFs) and additives (DPSO).
2-ethyne phenyldiazonium ion 2a (10 equiv.) and CuCl (15 equiv.) resulted in the formation of a
stable 2H-indazole-3-carbaldehyde 4a with a peptide PAF 2a at a high conversion (76%) at 50
°C in ACN:sodium phosphate buffer (9:1) (10 mM, pH 7, Figure 50, Supplementary Figure. 1).
Due to the poor solubility of the 2-ethyne phenyldiazonium ion 2a in aqueous solution, a lower
conversion to 2H-indazole-3-carbaldehyde 4a was observed in ACN:sodium phosphate buffer

(1:9) solvent.
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(1:1)

Entry Catalyst Eq of 2a Temperature °C Solvent Conversion (%)

1 CucCl 3 50 °C ACN/Nap 25 %
(1:1)

2 CuCl 3 50 °C ACN/Nap 46 %
(9:1)

3 CucCl 10 50 °C ACN/Nap 76 %
(9:1)

4 Cul 3 50 °C ACN/Nap 0%
(9:1)

5 CucCl 3 50°C ACN/Nap 3%
(1:9)

6 CucCl 3 50 °C DMF/Nap 142 %
(1:9)

7 CuCl 3 rt ACN/Nap 0%

Figure 50. Optimization of triazene-ene-yne coarctate cyclization with PAF. The best

conversion (76 %) we observed was 10 eq of 2a in ACN/Nap (9:1) at 50 °C for 12 h.

The reaction with azido phenyldiazonium ion 3a produced moderate yields (57%) of

benzotriazole product 5a with peptide PAF 2a (Figure 51, Supplementary Figure. 2). We

continued our investigation with 2-ethyne phenyldiazonium ion 2a since it produced aldehyde

that can be directly utilized for enrichment and functionalization with fluorophores and affinity

tags.
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Entry Catalyst Eq of 3a Temperature °C Solvent Conversion (%)

1 Cul 3 50 °C ACN/Nap 35%
(1:1)

2 CuCl 3 50 °C ACN/Nap 15 %
(1:1)

3 Cul 3 50 °C ACN/Nap 17 %
(9:1)

4 Cul 10 50 °C ACN/Nap 57 %
(9:1)

5 Cul 3 50 °C ACN/Nap 30 %
(1:9)

6 Cul 3 50 °C DMF/Nap 12.5 %
(1:9)

7 Cul 3 rt ACN/Nap 10 %
(1:1)

Figure 51. Optimization of Triazene-ene-azide cyclization PAF. The best conversion (57 %)

we observed was 10 eq of 3a in ACN/Nap (9:1) at 50 °C for 12 h.

2.2.2 Stability Studies

Because of the high sensitivity to moderate acidic conditions in our previously discovered
selective triazene reaction STaR, one of the possible difficulties in employing it to identify the
locations of Kme, we investigated the stability of the 2H-indazole-3-carbaldehyde product under
acidic conditions. Pro-OMe-2H-indazole-3-carbaldehyde was incubated at room temperature in
50% TFA in ACN, and the product's stability was determined by injecting samples into HPLC at
regular intervals. 6 h of acidic conditions resulted in no degradation of Pro-OMe-2H-indazole-3-
carbaldehyde, in contrast to the total destruction of the triazene product in 0.1% TFA solution
within 5 min. Critical to fluorosequencing is the stability of the resultant product towards
pyridine, which is essential for Edman's degradation. We determined that the Pro-OMe-2H-
indazole-3-carbaldehyde product is highly stable under basic conditions (50% pyridine in ACN,
6h), therefore the TCC method is entirely compatible for identifying Kme sites by both MS

proteomics and fluorescence sequencing (Figure. 52, Supplementary Figure. 3).
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Figure 52. Stability study of 2H-indazole-3-carbaldehyde group in 50 % TFA and 50 %
pyridine. The forming product was incubating in 50 % TFA and 50 % of pyridine for 12 h

to confirm the high robustness of indazole product.

2.2.3 Chemoselectivity studies for the formation of 2H-indazole-3-carbaldehyde

The chemoselective studies with 2-ethyne phenyldiazonium ion 2a under optimized conditions
with varying peptides OAc-XAF 1a-1l containing reactive amino acids (X =P, H, R, D, S, C, K,
W, and Y) and varying lysine methylation states (Kmel, Kme2, and Kme3) demonstrated that
the TCC reaction is highly chemoselective (i.e. N-terminal proline 4a and Kme 4b). Under the
reaction conditions, we noticed the formation of a diazo complex with Tyr diazo-OAc-YAF, but

this byproduct did not interfere with the analysis of the Kmel-2H-indazole-3-carbaldehyde

. ' AN
=N
N,BF o o N
(23 :)—Ac . 2574 K,CO4 rt, 60 min . )J\/H M, N
(A Nap/ACN (9:1) HO™ ™ N D
(AD )
X= W! s! H! D! c! R! K! P 2a ©/

product (Figure 53, Supplementary Figure. 4).
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Figure 53. Chemo-selective study of triazene cyclization. Different tripeptides were used to
test the chemo-selectivity of the TCC reaction. The result indicated the high specificity of

the TCC reaction.

2.2.4 Tyrosine Vs Kme modification

To make the TCC reaction highly selective for tagging Kmel, we modified the reaction
conditions by lowering the pH to 7.5, decreasing the reaction time (5 min), quenching the
unreacted probe 2a with potassium iodide KI, and using lower equivalents (3 equiv.) of probe 2a.
Despite the fact that we observed significant selectivity (high conversion) for Kmel over Tyr,
none of these reaction conditions were able to completely stop the modification at Tyr (Figure

54, Supplementary Figure. 5).

BF
2774 1.K,CO4, rt, 30 min, additive _ .
Ac t o » Cyclize product
2. CuCl, 60 °C, 12h
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Chemo-selective study
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Figure 54. Optimization of tyrosine blocking reagents. (i) The pH adjustment: the pH of the
reaction mixture was adjusted to 6.5 by 1.0 M HCI. (ii) The reaction mixture was incubated
at 25 °C in the incubator for 5 min (Triazenation). (iii) The 10 eq of KI was added to

guench the excess diazonium salt. (iv) 3 eq of 2a was used for the first step.

Due to the low abundance of monomethyl lysine Kme relative to tyrosine, high equivalents of
the probe 2a are required for Kme labeling; therefore, we intended to completely block tyrosine
before modifying Kmel with TCC. We proceeded with a peptide containing both Pro Kmel and
Tyr, Im PY, and conducted a reaction with 1,3 diphenyl propynone, a recently discovered
method for selectively labeling Tyr in our lab. We observed the modification of lysine, cysteine,
Kmel, and Tyr with 1,3 diphenyl propynone under the reaction conditions, but the treatment
with acidic solution 1:3 (2 M HCl/co-solvent) for 4 h at room temperature reversed the
modification on lysine, cysteine, and Kmel, leaving only Tyr modified 1m" (100% conversion
determined by HPLC and LC-MS) under the reaction conditions. (as opposed to the well-known

Suttex and Suffex probes that modify other amino acids, such as lysine, and have lower
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conversions with Tyr. Figure 55). We chose 1,3 diphenyl propynone over the well-known Suttex
and Suffex probes due to their non-selective modification of other amino acids, including lysine,
and lower Tyr. With the modified Tyr peptide 1m' in hand, we modified Pro under optimized
TCC reaction conditions and observed the formation of a 2m peptide-2H-indazole-3-
carbaldehyde product with a very high conversion (80%) as determined by HPLC and MS. This
method resulted in the highly efficient dual functionalization of the peptide (Supplementary

Figure. 6).
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Figure 55. Selective modification of proline by TCC reaction with tyrosine blocking reagent
1,3 diphenyl propynone. Compound 1m was treated with 1,3 diphenyl propynone at 38 °C
for 12 h, then HCI was added to reverse the proline modified product for the triazene

cyclization. The benzyl hydroxylamine was applied to enrich 2m from the reaction mixture.

2.2.5 Substrate scope with varying 2-ethyne phenyldiazonium ions.

To determine the scope of the TCC reaction on peptides of different lengths, we modified a long
peptide, OAc-GKmeGKAKF, with 2-ethyne phenyldiazonium ion 2a in ACN:sodium phosphate
buffer (1:9) and observed the selective modification of Kmel but with a lower conversion (30%).
We hypothesized that the lower conversion was due to the second cyclization step and that
adding EWG at the para position to the ethyne group would increase the Kme-indazole product's

reactivity and yields. We synthesized and investigated various ethyne phenyldiazonium ions
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with EWG at the 5th position (Figure. 56), including F (2b), CF3 (2c), and CO2Me (2d), for
selective modification of Kmel on a long peptide OAc-GKmeGKAKF, and obtained high
conversions to corresponding Kme-2H-indazole-3-carbaldehyde (4c; 71%, 4d; 53%, 4e; 83%.
Figure 57, Supplementary Figure. 7), respectively. the maximum conversion to 2H-indazole-3-
carbaldehyde was achieved with ester-substituted ethyne phenyldiazonium ions 2d under
aqueous reaction conditions (ACN:sodium phosphate (1:9) buffer). The diazonium salt analogs
2a, 2b, 2c, and 2d were synthesized form corresponding aniline starting materials. The
installation of trimethylsilylacetylene was achieved by the known Sonogashira coupling®* 2> 26
procedures. Intermediate a9, al0, and all were treated with potassium carbonate for the TMS
deprotection, then the deprotected aniline intermediates al2, al3 and al4 were converted into

corresponding diazonium salt analogs by Jacob’s protocol?’.
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Figure 56. Synthesis of different diazonium salt analogs.
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Figure 57. Substrate scope with varying 2-ethyne phenyldiazonium ion analogs. The ester

analog showed the high reactivity to TCC reaction due to the high solubility in Nap buffer.
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2.2.6 Pan-specificity of TCC: Further Diversification

With the optimized conditions for the formation of peptide-2H-indazole-3-carbaldehyde, we next
demonstrated the pan specificity of the TCC method by carrying out reactions with various
peptides of different sizes and amino acid compositions with Kme at varying positions, including
histone H3.3 peptide fragments, which are known to be frequently methylated at K4, K9, K27,
and K36 and are involved in the regulation of biological processes and disease. Using solid-
phase peptide synthesis, we synthesized H3.3 peptide fragments Kmel4K9
(ARTKmMelQTARKS) 1n and Kmel9K14 (ARTKme2STGGKA) 1o. Under the optimized
reaction conditions using ester-substituted ethyne phenyldiazonium ions 2d, all Kmel containing
peptides were converted to peptide-2H-indazole (Figure 58, Supplementary Figure. 8). These
results collectively confirmed the high chemoselectivity and broad specificity of TCC towards

monomethyllysine Kmel.
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Figure 58. Pan-specificity of triazenation coarctate cyclization with truncated histone
peptides. The TCC reaction is highly specific to the Kme residue, even in the presence of
other reactive amino acids. In 1o example, we observed the lysine side chain was converted

into alcohol which was purposed early?..
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Using aldehyde-specific reactions such as oxime chemistry and thiazolidine chemistry, we
modified peptide-2H-indazole-3-carbaldehyde with a variety of functional groups. The
modification of the peptide OAc-KmeAF 1j with benzylhydroxylamine and cysteine methyl

ester produced 99 % of the oxime-product 5a and 99 % of the thiazolidine-product 5b.
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@AON“Z NN
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Figure 59. Enrichment of modified OAc-KmeAF by cysteine condensation and oxime
chemistry. The indazole product can be easily enrich after modification due to the

aldehyde handle.

In addition, 2H-indazole-3-carbaldehyde products 4f-4g of histone peptides Kmel4K9
(ARTKmMelQTARKS) and Kmel9K14 (ARTKme2STGGKA) were treated with
benzylhydroxylamine to produce oxime-products 5¢ (99 %) and 5d (99 %), respectively (Figure
59, Supplementary Figure. 9). Next, the 2H-indazole-3-carbaldehyde products 4f-4g of histone
peptides KmeldK9 (ARTKmelQTARKS) and Kmel9K14 (ARTKme2STGGKA) were
functionalized with cysteine methyl ester to generate thiazolidine-products 5e (99 %) and 5f (99
%), respectively (Figure 60, Supplementary Figure. 10). These findings demonstrate the capacity

of TCC to modify and diversify Kmel-containing peptides with distinct functional groups.
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Figure 60. Enrichment of labeling histone peptides by cysteine condensation and oxime
chemistry. The indazole product can be easily enrich after modification due to the aldehyde

handle.

2.2.7 Selective labeling of Kmel peptides in a complex cell lysate mixture by TCC

To evaluate the robustness of our TCC method in labeling Kmel peptides in a complex mixture,
the cell lysate spiked with two distinct histone H3 peptides, NH2-FKme2AGSKmeFS 1p and
Ac-AKTKQTAFKmeS 1q, was treated with Suttex for one hour to in pull-down experiments,
2H-indazole-3-carbaldehyde products were enriched from the complex mixture by using
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hydroxylamine. Under a complex cell lysate mixture, both histone peptides with Kmel were
converted to 2H-indazole-3-carbaldehyde products and enriched via oxime chemistry (Figure 61,

Supplementary Figure. 11).
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Figure 61. Selective enrichment of Kmel containing peptides in a complex cell lysate
mixture by TCC. The triazene cyclization reaction is able to selectively tag the Kme

containing fragment from the complex mixture.

2.2.8 Single-molecule sequencing for identification of Kmel sites by TCC

We demonstrated the identification of Kmel sites at the level of a single molecule. We modified
Kmel in a model peptide using the TCC reaction (Figure. 62, Supplementary Figure. 12). The
aldehyde group of peptide-2H-indazole-3-carbaldehyde was then functionalized with Atto647N
fluorophore using dithiolane chemistry under acidic conditions, followed by HPLC purification
and LCMS analysis. The fluorophore-labeled peptide NH2-AKmelAtto647NGSKAF(PRA)A-
CONH: was immobilized on an azide-functionalized microscope slide using PRA on a peptide
by click chemistry as part of a fluorosequencing workflow. Next, the fluorophore-labeled

immobilized peptide was subjected to multiple rounds of Edman's degradation, including two
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rounds of mock Edman's degradation (M1-M2) with all the reagents except
phenylisothiocyanate, and then analyzed using a total internal reflection fluorescence (TIRF)
microscope (Figure. 62). The second position on a peptide was determined to be the site of
Kmel by observing a significant decrease in fluorescence following the second round of
Edman's cycle using a TIRF microscope at the single-molecule level. There are no other
chemical methods for the identification of Kmel by any single molecule protein sequencing

SMPS techniques.
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Figure 62. SMPS techniques for identification of Kmel sites on modified peptide. The Kme
residue was selectively modified by TCC reaction, then the N-terminal amino acid was
removed by Edman degradation, each molecule’s fluorescence intensity was monitoring by

fluorescence microscopy to precisely identify the Kme position in the peptide.
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3.1 Design of Chemical Probes for Kme-Directed Modification (Kme-DM)

In this project, we report a method that enables site-selective modification of a high-frequency
Lys residue in the mono-methyl lysine containing (Kme) protein for studying, monitoring, and
tracking the PPl between the K-me protein and its reader and eraser proteins. The probes we
have designed have a diazonium salt warhead with mask group for selective labeling of mono-
methy! lysine, flexible linker connects with various electrophiles for intramolecular modification
and the light activated group for capturing the reader and eraser proteins (Figure 63). In our
purpose, once the mask group is removed, the diazonium salt will trap the K-me residue
selectively. The nearby nucleophilic amino acids will react with the electrophile to achieve the
site selective intramolecular labeling of the K-me protein. After the modification, we can
decouple the triazene-conjugate to regenerate the unmodified K-me residue. Once the K-me
residue is recognized and bound with its reader or eraser, we will utilize the photo-reactive group
to capture the enzymes by the covalent bond formation. The captured proteins will be analyzed

by SDS-PAGE and LC-MS-MS (Figure. 63).
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Figure 63. Site-selective K(me)-directed lysine modification for Kme-directed modification
(Kme-DM). The Kme protein is selective modified by the Kme-directed intramolecular
modification, then the reader and eraser will come to bind with Kme residue once the
triazene will be selectively removed. The reader and eraser will be captured by the photo

reactive group, the whole complex will be analyzed by SDS-page and LC-MS/MS.

3.2 Design and synthesis of various probes for Kme-DM
In order to optimize the intramolecular reaction, we made several different probes with various
electrophiles and different affinity tag such as acyl imidazole (Al), N-acyl-N-alkyl sulfonamide

(NASA), and N-sulfonyl pyridone (SP) (Figure 64, Supplementary Figure. 1).
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Synthesis of Al-I:

Fragment b3 was synthesized from 2-(2-aminoethoxy)ethan-1-ol b1l by tosylation of free amine
and activation of the alcohol side for the amide bond formation. Intermediate b9 was synthesized
by following Addy’s procedure®. Histamine was coupled with activated ester b9 to afford the
histamine intermediate b11. Next the pre-activated intermediate b3 was treated with b1l to
obtain the finial probe Al-I.

Synthesis of Al-111:

The linker b11 was coupled with activated ester b9 to obtain the precursor b12. The activated
ester b14 was synthesized by hydrolysis of ester intermediate b12 following by activating of the
carboxylic acid with NHS-ester group. Intermediate b14 was coupled with histamine and b3 to
afford the final product Al-I111.

Synthesis of SP-1 and SP-I1:

Intermediate b17 was synthesized by following Matsuo’s procedure?. The reaction condition of
coupling reaction between b18 and b19 was modified from Matsuo’s procedure. The N-sulfonyl
pyridine was synthesized by coupling b20 with b21 under basic condition. The SP-Il was
synthesized by coupling b20 with Ts-CI.

Synthesis of NASA-I and NASA-II:

The synthetic protocols for NASA-I and NASA-11 were modified and optimized from Tamura’s
procedures®.

Synthesis of Al-Coumarin:

The intermediate 31 was synthesized by following Tamura’s protocols®. The intermediate b11
was coupled with intermediate b31 under basic condition to obtain Al-Coumarin.

Synthesis of Al-Azide:
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The azide intermediate b34 was synthesized by the known protocol*. Intermediate b34 was
treated with DSC to obtain the activated intermediate b35 for amide bond formation. The Al-
Azide was generated by coupling between b11 and b35 with pyridine.

Synthesis of Al-Alkyne:

Intermediate b39 was synthesized by Fujishima’s protocol®. Intermediate b11 was treated with
b39 under basic condition to afford Al-Alkyne.

Synthesis of unmasked-Al-I:

Intermediate b42 was synthesized by known protocol®. Next, the intermediate b42 was coupled
with histamine and intermediate b3 to obtain intermediate b44. The Boc group was deprotected
under the acid condition, then the aniline intermediate was treated with sodium nitrite and

tetrafluoroboric acid solution to afford unmasked-Al-I probe.
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Synthesis of Al-lll
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Synthesis of SP-I
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Synthesis of NASA-|
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Synthesis of Al-Coumarin
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Synthesis of Al-Alkyne
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Synthesis of unmasked-Al-I
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Figure 64. Synthesis of Al, SP, and NASA probes for investigation of Kme-DM reaction

3.3 Optimization of intramolecular reaction under UV lamp with different proline
containing peptides and chemo selectivity study.

To optimize the intramolecular reaction with various types of probes, we incubated the probes
with proline-containing peptides which have the lysine residue at position 2 or 3 or 4 (K-2, K-3,
K-4) to determine the efficiency of intramolecular reaction with various position of lysine

residue. After one-hour triazenation at room temperature, the reaction mixture was incubated at
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40 °C for 6 h. After intramolecular reaction the reaction mixture was treated in 10 % TFA to
remove the triazene group from proline in order to determine the conversion of intramolecular

modified product (Figure 65).
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Figure 65. Site-selective proline-directed lysine modification with different probes. The
Acyl imidazole (Al), N-acyl-N-alkyl sulfonamide (NASA), and N-sulfonyl pyridone (SP)
probes were used to test the conversion of proline-directed intramolecular lysine

modification.

We observed high conversion of triazene intermediate (100 %) with probe AL-I and SP-I1I.
However, a significant amount of intermolecular (85 %) side product was observed in NASA-I1
example after 1h at room temperature. After another 6 h incubation, the AL-I resulting
bioconjugates with K-2 and K-3 have been fully converted to the intramolecular product at 40 °C
and 67 % (K-2) and 32 % (K-3) at 25 °C (Table 2, Supplementary Figure. 2) , but we only

observed moderate intramolecular conversion with k-4 peptide due to the short distance between
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the lysine residue and acyl imidazole. The distance effect seems negligible in SP-11 examples

because we observed similar intramolecular reactivity (62 % - 72 %, Table 2, Supplementary

Figure. 2) with different peptides. Moreover, to further confirm, the lysine was modified through

intramolecular reaction, not intermolecular reaction. We incubated the Al-l probe with K-2

peptide at 40 °C under dark conditions. After 12 hours, no intermolecular product was formed

(Figure 66). This result shows that our labeling strategy with the Al-1 probe is a site-selective

reaction that only occurs via the intramolecular pathway, and the reaction cascade is only

triggered by the UV lamp. After the intramolecular reactivity study, we decide to move forward

with our Al-1 probe due to its high intramolecular reactivity and preference for various peptides.

Table 2. Optimization investigation with Al-1, SP-11, NASA-I1 with K-2, K-3, k-4 peptides

Probe Peptide Bioconjugate product Intramolecula
r product
Al-l k-2 100 % 100 %, 67 %
(25 °C)
Al-l K-3 100 % 100 %, 32 %
(25 °C)
Al-l k-4 100 % 58 %
SP-lI k-2 100 % 62.5%
SP-II K-3 100 % 63 %
SP-lI k-4 100 % 72 %
NASA-II k-2 13 % (85 % intermolecular ND
reaction)
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Figure 66. Intermolecular reactivity study of Al-lI. The peptides which have proline at

different position were used to test the compatibility of different probes.

3.4 Chemoselectivity and control study of Al-I probe

In order to test the chemoselectivity of the intramolecular reaction with acyl imdazole, we have
made cysteine and histidine containing peptides (C2, H2) and FRQDW-NH-Ac for
chemoselective investigation. The intramolecular cysteine product was not observed after the
TFA cleavage; however, we observed the 50 % intramolecular conversion with the H2 peptide.
The bioconjugate product and intramolecular product were not observed with FRQDW-NH-Ac
(Table 3, Supplementary Figure. 3).

Table 3. Chemo-selective study of Al-I probe

Probe Peptide Bioconjugate product Intramolecular product
Al-l C-2 100 % 0%
Al-l H-2 100 % 50 %
Al-l FRQDW-NHAc No bioconjugate product No intramolecular product

3.5 Screening of Al-111 probe with K-2, K-3 and K-4 peptides under UV lamp

For the next study, we want to know if the probes' linker length will affect the efficiency of
intramolecular modification. So, we made Al-Il11 analog which has five extra atoms between

acyl imidazole and masked group compared to Al-1. Al-111 probes only showed 72 % (48 %, rt)
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and 42 % (18 %, rt) of intramolecular conversion with K-2 and K-3 at 40 °C, respectively.
However, we observed the complete transformation from conjugate intermediate to the
intermolecular product with K-4. This difference could be due to the flexibility of the longer
linker (Table 4, Supplementary Figure. 4).

Table 4. Intramolecular reactivity investigation of Al-111 probe

Probe Peptide Intramolecular product
Al K2 72% (40 °C), 48 (rt)
Al K-3 42% (40 °C), 18 (rt)
Al K-4 100% (40 °C), xx (rt)

3.6 Site-specific study with multiple lysins containing peptide

In order to study the site-selectivity of our Al probes, we incubated our Al-1 and Al-111 probes
with a long peptide PTAPKSTGGKA to determine the site specificity of our intramolecular
reaction with different Al probes. As a result, we observed completed conversion for the
triazenation with PTAPKSTGGKA in both Al-1 and Al-I11; however, after intramolecular
reaction, we noticed a significant difference in reactivity between Al-1 (50 %) and Al-111(96 %)

due to the difference in length of linker (Figure 67, Supplementary Figure. 5).

Figure 67. HPLC trace of intermolecular modification of lysine. The high intramolecular

conversion of PTAPKSTGGKA most like due to the turn cause by proline.
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In order to identify the site of modification, the modified peptide was treated with trypsin for the
LC-MS/MS mapping. The LC-MS/MS of cleavage fragments indicated the labeling site is in the

K-5 position (Figure 68, Supplementary Figure. 6).
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Figure 68. Trypsin digestion of modified peptide. The LC-MS fragment showed the K-5 is

the labeling site.

3.7 Intramolecular reaction study of various Al analogs with different affinity tags
After the intramolecular reactivity, chemo, and site selectivity study, we functioned our Al-I
probe with different affinity tags such as coumarin, alkyne, and azide in order to monitor and

enrich the captured enzymes after proteomic profiling. Although we got the promising result
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from the intramolecular study with Al-1 and Al-I11 probes, we noted that the intense amount of
intermolecular side product was forming with all the affinity tag analogs. We suspected this
inconsistent result was caused by the poor solubility of those hydrophobic affinity tags and

masked groups (Figure 69, Supplementary Figure. 7).
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Al-Alkyne ’

Figure 69. Intermolecular side reaction with various Al affinity tag analogs.

Intermoleculae side product

3.8 Intramolecular reactivity and chemo selectivity study of unmasked Al-1 probe

To solve the solubility issue with masked probe, we synthesized the more water-soluble
unmasked probe for the further investigation. For the fist study we treated our unmasked Al
probe with NH2-PGKAKEF for the intramolecular reactivity and site selectivity study. After one
hour, we observed the formation of both triazene intermediate (49 %) and intramolecular
intermediate (46 %). The triazene intermediate was fully converted to the intramolecular
intermediate after 6 hours incubation at 40 °C based on the HPLC (Figure 70, Supplementary
Figure. 8). After the TFA cleavage we found the 76 % (71 %, 25 °C) conversion of
intramolecular modification on the K-3 position based on the LC-MS/MS and HPLC analysis

(Supplementary Figure. 8).
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Figure 70. Site-selective proline-directed lysine modification with unmasked Al probe with

4

PGKAKF.

To further confirm our K-me-directed modification strategy, the mono-methyl lysine containing
peptide NH>-GKmeGKAKF was utilized for the following study. Our unmasked Al probe
showed moderate intramolecular labeling efficiency (40 %, 40 °C) with the GKmeGKAKF on
the K-3 position (Figure 71, Supplementary Figure. 9). To test the chemo reactivity and the
preference of intramolecular reaction of unmasked Al probe, we incubated our probe with NHa-
GCGKAKEF and NH2-GHGKAKEF at 25 °C for 1 hour. Then, the reaction mixture was allowed to

incubate at 40 °C for another 6 hours.
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Figure 71. Site-selective Kme-directed lysine modification with unmasked Al probe with

GKmeGKAKEF.

The unmasked analog showed high chemo selectivity and favored intramolecular reaction
compared to the parent compound. No triazene intermediate and intramolecular product was
observed with NH>-GCGKAKF; moreover, we only observed poor conversion of intermolecular
side product with NH>-GHGKAKEF (15 %, 1 h; 16 %, 6 h, Figure 72, Supplementary Figure.10),
which can further confirm our unmasked probe is specific to the lysine residue, and the

modification will only occur through intramolecular mechanism.
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Figure 72. Chemo-selective study of unmasked Al probe. High lysine reactivity and

selectivity was confirmed by the chemo-selective study with GCGKAKF and GHGKAKF.
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3.9 Kme-Directed modification of truncated histone peptide:

To test our Kme-DM strategy in a more complicated system, we made the truncated version of
the histone truncated peptide for the next investigation. We observed the more than 99 %
conversion of triazene intermediate after 1 hour at 25 °C without forming the intermolecular side
product (Figure 73). The LC-MS/MS indicated the K-2 lysine residue is the favored site for

intramolecular modification (Supplementary Figure.11) .
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Figure 73. Kme-directed lysine modification of truncated histone peptide. The Kme-DM

technique is compatible with the truncated histone peptide.

3.10. Future work

The protein capturing and analysis of the captured erasers and readers are undergoing.
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Supporting Information for Chapter One:

Supplementary Figure 1 : MS/MS of modified peptide
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Supplementary Figure 2: General method for the verification of the chemo- and site-
selective nature of oxazoline probe with peptides.

Procedure for synthesis of Ox1-XAF (3c-3j)

To peptides XAF (6.25 mM) in 0.4 mL of 10 mM phosphate buffer (Nap, pH 7.5) was added 2-
methylthio oxazoline 1a (50 equiv., 312.5 mM). The solution was stirred at room temperature for
3 h. The reaction was analyzed by LC/MS. LC: water (solvent A): acetonitrile (solvent B);

gradient 0-80 %, acetonitrile in 25 min, flow rate = 1.0 mL/min, detection wavelength 220 nm.

N
: 5 _ : 5 i
HOOC \© NaP pH 7.5, rt, 3n  HOOC \©
2c 3c

Ox1-DAF 3c. LCMS: m/z 420.1 (calcd [M+H]t = 420.1), m/z 442.1 (calcd [M+Na]* = 442.1),

Purity: >95% (HPLC analysis at 220 nm). Retention time in HPLC: 8.50 min.

HRMS of OX-DAF 3c
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Ox1-EAF 3d. LCMS: m/z 434.1 (calcd [M+H]* = 434.1), m/z 456.1 (calcd [M+Na]* = 456.1),

Purity: >95% (HPLC analysis at 220 nm). Retention time in HPLC: 8.11 min.
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Ox1-FAF 3e. LCMS: m/z 452.2 (calcd [M+H]™ = 452.2), m/z 474.2 (calcd [M+Na]* = 474.2),

Purity: >95% (HPLC analysis at 220 nm). Retention time in HPLC: 11.96 min
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Ox1-GAF 3f. LCMS: m/z 362.18 (calcd [M+H]* = 362.2), m/z 384.16 (calcd [M+Na]* = 385.2),

Purity: >95% (HPLC analysis at 220 nm). Retention time in HPLC: 7.21 min
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Ox1-MAF 3g. LCMS: m/z 436.2 (calcd [M+H]* = 436.1), m/z 458.1 (calcd [M+Na]* = 458.1),

Purity: >95% (HPLC analysis at 220 nm). Retention time in HPLC: 10.20 min
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Ox1-PAF 3h. LCMS: m/z 402.2 (calcd [M+H] T = 402.2), m/z 424.1 (calcd [M+Na]*t = 424.2),

Purity: >95% (HPLC analysis at 220 nm). Retention time in HPLC: 8.47 min
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Ox1-TAF 3i. LCMS: m/z 406.2 (calcd [M+H]T = 406.2), m/z 428.2 (calcd [M+Na]*t = 428.2),

Purity: >95% (HPLC analysis at 220 nm). Retention time in HPLC: 11.82 min
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Purity: >95% (HPLC analysis at 220 nm). Retention time in HPLC: 11.50 min
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Supplementary Figure 3. Azolation vs 2-PCA method

Procedure for synthesis of Ox1-APF 3k.

To peptide APF 2k (0.6 mM) in 0.4 mL of 10 mM phosphate buffer (Nap, pH 7.5) was added 2-
methylthio oxazoline 1a (50 equiv.). The solution was stirred at room temperature for 3 h. The
reaction was analyzed by LC/MS. LC: water with 1 % formic acid (solvent A): acetonitrile with
1 % formic acid (solvent B); gradient 0-80 %, acetonitrile in 30 min, flow rate = 1.0 mL/min,
detection wavelength 220.

2-PCA method.

APF 2k (0.1 mM) was reacted with 10 mM 2PCA in 10 mM phosphate buffer (Nap, pH 7.5) for
4 h at 37 °C. The reaction was analyzed by LC/MS. LC: water with 1 % formic acid (solvent A):
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acetonitrile with 1 % formic acid (solvent B); gradient 0-80 %, acetonitrile in 30 min, flow rate =

1.0 mL/min, detection wavelength 220.
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Purity: >95% (HPLC analysis at 220 nm). Retention time in HPLC: 8.50 min
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Supplementary Figure 4. Optimization of the oxazolation on protein Myoglobin Mb.
MS spectrum of Ox1-Mb at pH 7.5
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Supplementary Figure 5. Modification of myoglobin Mb by different oxazoline derivatives.

Functionalized-oxazoline myoglobin bioconjugation.

To a 1 mg of myoglobin (3 mM) in 0.2 mL 10 mM phosphate buffer (pH 7.5) with 10% DMSO,
the oxazoline derivatives (300 equiv.) were added. The reaction was stirred at 40 °C for
overnight. The oxazoline-protein bioconjugates were purified by molecular weight cut off and
characterized by LCMS.

Digestion of functionalized-oxazoline myoglobin.

Protein (1 mg) in 100 mM tris (100 pL, pH 7.5) with urea (6 M) was incubated for 30 min at 37
°C. To reduce the urea concentration to 0.6 M, the sample was diluted with grade | water. To this
solution, 100 pL of enzyme (a-chymotrypsin/trypsin) solution [0.1 mg, enzyme/protein (1:20);
enzyme in 1 mM HCI was dissolved in 0.1 M tris and 0.01 M CaClz] was added and the mixture
was incubated at 37 °C for 18 h. The sample was used for peptide mapping by MS and

sequencing by MS/MS.

Modification of Mb with Ox2:
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Procedure for bioconjugation of functionalized-oxazoline with different proteins.

To proteins (3 mM) in 0.2 mL 10 mM phosphate buffer (pH 7.5), oxazoline 1a (50 equiv., 150
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mM) was added. The reactions were incubated at room temperature for overnight. The
oxazoline-protein bioconjugates were purified by molecular weight cut off and characterized by

LCMS.

Modification of a variety of proteins with compound la
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Procedure of oxazolation of various proteins substrates by Ox2, Ox3, Ox4, Ox5
To proteins (3 mM) in 0.2 mL 10 mM phosphate buffer (pH 7.5) with 10% DMSO, the oxazoline
derivatives (100-300 equiv.) were added. The reaction was incubated at 40 °C for overnight. The
functionalized-oxazoline-protein bioconjugates were purified by molecular weight cut off and
characterized by LCMS.
Procedure for digestion of Ox2-aldolase:
Modified protein (1 mg) in 100 mM tris (100 pL, pH 7.5) with urea (6 M) was incubated for 30
min at 37 °C. To this solution, reducing agent (1 pL, 0.2 M DTT in 0.1 M tris) was added and
sample was incubated for 1 h at 37 °C. Alkylating agent (4 pL, 0.2 M iodoacetamide in 0.1 M
tris) was added to the solution and incubated (in dark) for 1 h at 25 °C for blocking the free
sulfhydryl groups. The unreacted iodoacetamide was quenched with reducing agent (4 uL, 0.2 M
DTT in 0.1 M tris) for 1 h at 25 °C. To reduce the urea concentration to 0.6 M, the sample was
diluted with grade | water. To this solution, 100 pL of enzyme (a-chymotrypsin/trypsin) solution
[0.1 mg, enzyme/protein (1:20), enzyme in 1 mM HCI was dissolved in 0.1 M tris and 0.01 M
CaCl,] was added and the mixture was incubated at 37 °C for 18 h. The pH of digested mixture

was adjusted to < 6 (confirmed by pH paper) with trifluoroacetic acid (0.5%). Subsequently, the
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sample was used for peptide mapping by MS and sequencing by MS/MS.

Modification of a variety of proteins with compound Ox2

(o)
N N
/HJ\[ >—S 0
0ox2\ O N HQJ\ Protein
300 eq o \j/ v N7
Protein > NH o kR H
Nap (10 mM): DMSO (9:1), /

pH 7.5, 40 °C, 12h

HRMS of Ox2-Cytochrome C

Cytochrome C 12507

HRMS of Ox2-a-Lactalbumin

o-Lactalbumin 14326 7
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HRMS of Ox2-Insulin (two N-terminus)
=\

Insulin
5957'50V

HRMS of Ox2-Ubiquitin

Ubiquitin 5000

8715.0000

8200 8300 8400 8500 8600 8700 8500 8200

MS/MS spectrum of Ox2-Aldolase after the digestion with trypsin

IS AT PLE L K K

1372 1235 1147 1010 914 843 730 629 532 403 275

/HO

172



by++ b, ¥

1891750 609.2623
by++ Dy++
o e e 496 2402
-\ NO
)."‘\_ 193.1314 .‘. S B4 byt+ b, v 1o
1471129 267,1982 Y 4457170 4721938 |y, 6203614

P y
2661 5323075

MV%W lv“ﬁ»%m&~~l—klj-«lﬂow~la&“pl.&n&vw va+-

150 200 250 300 450 500 600
Modification of a variety of proteins Wlth compound Ox3

N3/\[N
S 0
o'ox3\ H :
. 200 eq _ /\‘N:\’/N\;)J\H,Protem
Protein " b (10 mM): DMSO (9:1), Na o

pH 7.5, 40 °C, 12h

HRMS of Ox3-Insulin

Insulin N3—>\
N
LW

W

HRMS of Ox3-Ubiquitin

Ubiquitin

173



Modification of a variety of proteins with compound Ox4
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HRMS of Ox5-Insulin
Insulin 62185 Q"/L

HRMS of Ox5-Ubiquitin

Ubiquitin

-

Supplementary Figure 6. Mass intensity enhancement of digested myoglobin by
oxazolation.

Procedure for the digestion of myoglobin by CNBr.

1 mg (0.25 mM) of myoglobin and 0.3 mg of CNBr (0.1875 mM) were mixed in 324 uL 0.1 M
HCI, the reaction mixture was incubated at 40 o C for 24 h. The reaction mixture was quenched
by freezing the sample at -80 °C. The frozen samples were then lyophilized to afford the dry
peptide fragments. Procedure for oxazolation of digested myoglobin. To the 1 mg mixture of

proteolytic fragments in 0.4 mL of 10 mM sodium phosphate buffer (Nap, pH 7.5), 1a Ox1 (50
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equiv.) was added. The reaction was allowed to react at 40 o C in the incubator for 12 h. The

tagged proteolytic fragments were analyzed by LCMS without purification.

H:N—GLSDGEWQQVLNVWGKVE

ADIAGHGQEVLIRLFTGHPET N
LEKFDKFKHLKTEAEM E ‘:>_3
Peptide a O N
CNBr 50 eq

B py *= HN—KASEDLKKHGTVVLTALGGILKK
= 0.1 M HCI, 40 °C, 24h KGHHEAELKPLAQSHATKHKIPI
7 KYLEFISDAINIHVLHSKHPGDFGA
DAQGAM

Peptide b
H;N—TKALELFRNDIAAKYKELGFQG

Nap 10 mM, pH 7.5,40°C, 12 h

MS of Unmodified myoglobin proteolytic fragment a

MS of Ox1-Modified myoglobin proteolytic fragment a

@ ® Modified peptide a
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MS of Unmodified myoglobin proteolytic fragment b

7+ -4

MS of Ox1-Modified myoglobin proteolytic fragment b

Y Modified peptide b

* *
s gl

*
1394.621

MS of Unmodified myoglobin proteolytic fragment ¢

MS of Ox1-Modified myoglobin proteolytic fragment ¢

¢ Modified peptide c
646.5802

Supplementary Figure 7. Mass intensity enhancement of intact Myoglobin by oxazolation
as compared to unmodified myoglobin.

Procedure for oxazolation of myoglobin. Protein Mb (0.6 pmol) in 10 mM phosphate buffer of
pH 7.5 (600 pL) and 1la, Ox1 (50 equiv.) was incubated overnight. The tagged proteins were

analyzed by LCMS.
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Modified Mb-Ox

KCT_MELR 1 304 (5.845) Cm N7 1 TOF MS E8

Supplementary Figure 8: Rate study of HAT bioconjugation.

Procedure for rate study of Ac-GCF with 10, and N3-10. Comparison with IAA

To a solution of Ac-GCF (1.14 mg, 3 mM) in 1 mL of 10 mM NaP (pH 7.5) was added probes
(5-25 equiv., 15-75 mM). For time analysis, a sample (100 pL) was taken from the mixture after
regular intervals of time and quenched by freezing the sample at -80 °C. The frozen samples
were then lyophilized and dissolved in 100 uL of 1:1 H>O/ACN and injected immediately into
the HPLC for determining the % conversion to Ac-GCF-10 or Ac-GCF-N3-10 or Ac-GCF-1AA
(X Terra C18 column {5 pm} with a gradient of 0 to 80% MeCN with 0.1% formic acid in 30
min). The rate study was done in triplet. We use average of three trials to plot the rate curve. 0

min sample is sample taken after addition of all the reagents of the bioconjugate reaction.
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HPLC trace of 1o (25 eq) with Ac-GCF

10

30 min

HPLC trace of Ns-10 (25 eq) with Ac-GCF

N;-10

TCEP

1 H I

HPLC trace of IAA (25 eq) with Ac-GCF

Stability study of 10, N3-10 and 1i
Procedure for stability study of probes. Probes 10, N3-10 and 1i (38.75 mM) was incubated in
400 pL of 10 mM Nap (pH 7.5) at room temperature. A sample (50 pL) was taken from the

mixture and directly injected into HPLC. The reaction was monitored by injecting samples in
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HPLC after regular intervals of time 6 h, 12 h and 24 h.

Stability study of 10 N5-10, and MSBT at 25 °C

100.00
80.00
60.00
40.00
20.00
0.00

6 h 24h

12 h
mlo mN3-lo "mMSBT

Intact rate ( 100 %)

Time

HPLC trace of 10 in Nap pH 7.5 at room temperature

/
N
C[}*S
N+
10

25 5 75 10 125 15 17.5 20 i

HPLC trace of N3-10 in Nap pH 7.5 at room temperature
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\ﬂ\ v/L e 5
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6h

L

12h

HPLC trace of 1i in Nap pH 7.5 at room temperature

s ¢
Ot
N o

1i

A__le i} > 12h
J_“_ 24 h

General procedure for bioconjugation of HAT probes with myoglobin
To a 1 mg of myoglobin (0.15 mM) in 400 uL 10 mM NaP (pH 7.5), probe 1i, or 1m or 10 (100
equiv. 15 mM) was added. The reaction was incubated at room temperature for 12 h. The

reaction mixture was purified by molecular weight cut off and characterized by LCMS.
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Supplementary Figure 9. Modification of myoglobin Mb with different heteroaromatic
azoline compounds la-1c, 1j, and 1n

Probe? Eq Time (h) Site of modification Conversion (%)P
la 50 12 N-terminal 33
1b 50 12 Lysine 81
1c 50 12 N-terminal 70
1 10 8 Lysine 56
1n 10 1 Lysine 99

&Condition: Protein Mb (60 pumol, 0.15 mM) in 10 mM phosphate buffer of pH 7.5 (400 pL) and

probe (10-50 equiv.) was incubated for 1-12 h at 25 °C. "The conversion was calculated based on

the relative peak intensity of native protein and labeled protein in the deconvoluted mass

spectrum.
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Supplementary Figure 10. Selective cysteine bioconjugation of Insulin a chain and b chain
with compound 10
Procedure for labeling of the reduced insulin.

To 0.35 mg of Insulin (60 pumol, 0.15 mM) in 400 uL 10 mM Nap (pH 7.5), 20 uL of TCEP
solution (pH 7.5, 50 mM) was added to reduce the insulin. The mixture was incubated at room
temperature for 20 min. Probe 10 (50 equiv.) was added into this mixture and the reaction was
allowed to react at room temperature for 8 h. The 1lo-chain a, and 1lo-chain b bioconjugates
were characterized by LCMS.

Supplementary Figure 11. Modification of reduced insulin with 1m

Procedure for labeling of the reduced insulin with 1m

To 0.35 mg of Insulin (60 pumol, 0.15 mM) in 400 uL 10 mM Nap (pH 7.5), 20 uL of TCEP
solution (pH 7.5, 50 mM) was added to reduce the insulin. The mixture was incubated at room
temperature for 20 min. Probe 1m (50 equiv.) was added into this mixture and the reaction was

allowed to react at room temperature for 8 h. The 1m-chain a, and 1m-chain b bioconjugates

were characterized by LCMS.
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Supplementary Figure 12. Modification of bovine serum albumin (BSA) and lysozyme with
HAT probe 1o

Procedure for the labeling of commercial proteins with compound 10

To a mixture of protein (60 umol, 0.15 mM) in 400 pL 10 mM Nap (pH 7.5), probe 10 (5.76 mg,

18 mmol, 300 equiv.) was added. The reaction mixture was incubated at room temperature for 8
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h. The crude was analyzed by LCMS.
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Supplementary Figure 13. Enrichment of cysteine containing peptides with 1o in mixture of
proteolytic fragments.

Procedure for the digestion of cytochrome C and Myoglobin by CNBr*

Proteins (81 umol, 0.25 mM) and 0.3 mg of CNBr (0.1875 mM) were mixed in 324 yL 0.1 M
HCI, the reaction mixture was incubated at 40 °C for 24 h. The reaction mixture was quenched
by freezing the sample at -80 °C. The frozen samples were then lyophilized to afford the dry
peptide fragments.
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Procedure of enrichment of cysteine fragments by compound 1o:

To the mixture of proteolytic fragments (0.81 umol of cytochrome C and myoglobin) in 0.4 mL
of 10 mM sodium phosphate buffer (Nap, pH 7.5), insulin (81 pmol, 0.25 mM) in 10 mM Nap
(400 pl, pH 7.5) and 20 pL of TCEP solution (pH 7.4, 50 mM) was added to generate reduced
insulin, the mixture was incubated at room temperature for 20 min. Probe 10 (100 eq) was added
in the mixture of proteolytic fragments at room temperature and reaction was left for 12 h. The

tagged proteolytic fragments were analyzed by LCMS without purification.

H,N— GLSDGEWQQVLNVWGKVE
ADIAGHGQEVLIRLFTGHPET
LEKFDKFKHLKTEAEM
Mb-fragment a

HN—KASEDLKKHGTVVLTALGGILKK
KGHHEAELKPLAQSHATKHKIPI
KYLEFISDAIIHVLHSKHPGDFGA

DAQGAM
Mb-fragment b

CNBr = H,N—TKALELFRNDIAAKYKELGFQG
0.1 M HCI, 40 °C, 24h Mb-fragment ¢ : N/
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Supplementary Figure 14. Stability study of Ac-GCF-10 under different pH conditions.

Ac-GCF-10 conjugate 3b (3.75 mM) was incubated in 10 mM Nap at different pH ranging from
3.5 to0 10.5 at room temperature and at 40 °C. The samples (50 pL) were taken from the reaction
mixtures and directly injected into the HPLC. The reactions were monitored by injecting samples
in HPLC after regular intervals of time 8h, 24h and 48 h. The bioconjugate product showed high
stability under pH 3.5 at both room temperature and 40 °C. We observed high stability of the

conjugate for 24h under physiological conditions (pH 7.5) at room temperature.

Stability of Ac-GCF-10 at 25 °C under different pH conditions
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Supplementary Figure 15. Reversible study of Cys-HAT biconjugate with NaBH4

Procedure for reversible study of 3b by NaBH4
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In a solution of peptide conjugate 3b (6.3 mM) in 0.4 mL of 10 mM Nap (pH 7.5) was added 10
equiv. of NaBH4 (63 mM). The mixture was stirred at room temperature for 5 min. The reaction
was analyzed by HPLC and ESI-MS. HPLC was carried out with 1 % formic acid: water (solvent
A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection wavelength 220

nm.
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Supplementary Figure 15. Reversible study of probe 10
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Procedure for reversible study of modified reduced insulin by NaBH4

In a solution of modified reduced insulin (0.15 mM) in 400 pL of 10 mM Nap (pH 7.5) was
added 10 equiv. of NaBH4 (1.5 mM). The mixture was stirred at room temperature for 5 min. The
reaction was analyzed by HPLC and ESI-MS. HPLC was carried out with 1 % formic acid: water
(solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection

wavelength 220 nm.
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Supplementary Figure 16. Dehydroalanine synthesis from cysteine 2c using 1o at high pH
Procedure for synthesis of dehydroalanine from cysteine 2c

o

o
BocHN\_)J\O/ 10 (10 eq) - BocHN\”)J\O/

Nap 10 mM pH 10.5, 40°C, 8 h
HS™
2c 3c

To 500 mg (2.12 mmol) of Boc-Cys-OMe 2c in 1 mL of 10 mM Nap (pH 10.5), probe 10 (50
equiv.) was added and the reaction was allowed to react at 40 °C for 8 h. The reaction solution
was washed with ethyl acetate and brine for 3 times. The residue was concentrated under reduced

pressure and purified by the column chromatography (hexane: ethyl acetate 3:1) to obtain
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dehydroalanine 3c as colorless oil (312.2 mg, 73 %). NMR. *H NMR (600 MHz, Chloroform-d)
§ 7.00 (br, 1H), 6.15 (s, 1H), 5.72 (d, 1H, J = 1.5 Hz), 3.82 (s, 3H), 1.49 (s, 9H). °C NMR (151

MHz, Chloroform-d) 3 164.6, 152.7, 131.7, 105.3, 80.8, 53.0, 28.4.

NMR spectra of dehydroalanine Dha 3c
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13C NMR spectra of dehydroalanine Dha 3c
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Supplementary Figure 17. Aza-Michael addition and thiol-ene reaction of dehydroalanine.
General procedure for synthesis of Dha peptide 3d

To a solution of Ac-GCF 2b (0.57 mg, 0.0015 mmol) in 400 pL of 10 mM Nap (pH 10.5) was
added 1o (25 equiv., 0.0375 mmol). The reaction mixture was incubated at 40 °C for 12 h. The
crude compound was purified by HPLC and lyophilized to afford dehydroalanine (88 %
conversion). The reaction was analyzed by HPLC and ESI-MS. HPLC was carried out with 1 %
formic acid: water (solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0

mL/min, detection wavelength 220 nm.
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Procedure for Dha peptide thiol-ene reaction

To a solution of Dha peptide 3d (0.0015 mmol) in 400 puL of 10 mM Nap (pH 8.5) was added
K2COs (4 equiv., 0.006 mmol) and 2-mercaptoethanol (10 eq, 0.015 mmol). The reaction mixture
was incubated at rt for 6 h to generate 3e (>99 % conversion). The reaction was analyzed by
HPLC and ESI-MS. HPLC was carried out with 1 % formic acid: water (solvent A): acetonitrile

(solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection wavelength 220 nm.
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Procedure for dehydroalanine aza-Michael addition

Dha peptide 3d (0.0015 mmol) was dissolved in 0.4 mL of 10 mM Nap (pH 8.5), 4 equiv. of
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benzylamine was added and the reaction mixture was stirred at 40 °C for 12 h to generate 3f (>

99% conversion). The reaction was analyzed by HPLC and ESI-MS. HPLC was carried out with

1 % formic acid: water (solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0

mL/min, detection wavelength 220 nm.
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Supplementary Figure 18. Aza-Michael addition of dehydroalanine lysozyme

To a mixture of lysozyme (60 pumol, 0.15 mM) in 400 pL 10 mM Nap (pH 7.5), probe 1o (5.76

mg, 18 mmol, 300 equiv.) was added. The reaction mixture was inubated at room temperature for

8 h and lyophilized to obtain modified lysozyme. To a solution of modified lysozyme (0.15 mM)

in 400 pL of 10 mM Nap (pH 10.5) was incubated at 40 °C for 12 h. The crude compound was
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purified by molecular weight-cutoff and lyophilized to afford dh-lysozyme. In a solution of dh-
lysozyme (0.15 mM) in 400 pL of 10 mM Nap (pH 8.5) was incubated with benzyl amine (7.5

mM) at 40 °C for 12 h. The reaction was analyzed by ESI-MS.
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HRMS of dehydroalanine lysozyme Aza-Michael addition

¥ 66250401

100 @® 62143737
. 574.44890 706.53162
907
. 75055916
80: * ’
4 53338229 794.58653
70}
1 |* . I
60 > A

. 838.61434

. 882.64184

Relative Abundance
9
T

926.66917

970.69667

1014.72371

107 1032.44118

550 600 650 700 750 800 850 900 950 1000
m/z

Supplementary Figure 19. Mass sensitivity booster capability of 1o-modified peptides.
Procedure for checking intensity ratios of IAA-Ac-GCF, li-Ac-GCF and 1o-AcGCF

The peptides 5 umol (IAA-Ac-GCF, li-Ac-GCF and Ac-GCF) were taken in an eppendorf tube
containing acetonitrile (100 pL). The 1o-AcGCF 5 pmol were taken in another eppendorf tube
containing acetonitrile (100 pL). Equal volumes (50 pL) of each solution were taken from the
stock solution in another eppendorf tube. The mixture was vortexed, and 50 puL was transferred

to the HPLC vial for ESI-MS. Subsequently, the intensity ratios were analyzed by MS.

Supplementary Figure 20. Mass sensitivity of 10-Ac-GCF (low concentration)

General procedure for checking mass intensity of 3b at low concentration

The modified peptide 3b (5 umol) in 100 pL Nap pH 7.5 was diluted to 5 nM, 0.5 nM with DI
water. The mixture was vortexed, and 50 puL was transferred to the HPLC vial for ESI-MS.

Subsequently, the mass intensity of each concentration were analyzed by MS.
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Supplementary Figure 21. Mass intensity enhancement of N3-10 -reduced insulin
bioconjugate products.

Procedure for checking intensity ratios of Ns-1o-reduced insulin and 1AA-reduced insulin.
To 0.35 mg of insulin (60 umol, 0.15 mM) in 400uL 10 mM Nap (pH 7.5), 20 uL of TCEP
solution (pH 7.4, 50 mM) was added to reduce the insulin. The mixture was incubated at room
temperature for 20 min. Probe N3-10 or IAA (50 equiv.) was added into this mixture and the
reaction was allowed to react at room temperature for 8 h. Equal volume (50 pL) of each
solution was taken from the reaction mixture then transferred into the HPLC vial for ESI-MS.

Subsequently, the intensity ratios were analyzed by MS.

Supplementary Figure 22. HAT probes for Gel-based ABPP

Cell culture and preparation of cell lysates. Cell culture reagents including Dulbecco’s

phosphate-buffered saline (DPBS), Dulbecco’s modified Eagle’s medium (DMEM)/high glucose
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media, trypsin-EDTA and penicillin/streptomycin (Pen/Strep) were purchased from Fisher

Scientific. Fetal Bovine Serum (FBS) were purchased from Avantor Seradigm (lot # 214B17).

HEK293T (ATCC: CRL-3216) cells were cultured in DMEM supplemented with 10% FBS and
1% antibiotics (Penn/Strep, 100 U/mL). Media was filtered (0.22 um) prior to use. Cells were
maintained in a humidified incubator at 37 °C with 5% CO.. Cell lines were validated prior to
use and tested regularly for myoplasma.

HEK293T cells were harvested once cells were grown to 90 — 95% confluence by centrifugation
(45009, 5 min, 4 °C), washed twice with cold DPBS, resuspended in 300 uL DPBS, sonicated,
and clarified by centrifuging (21,000 g, 10 min, 4 °C). The lysates were then transferred to an
eppendorf tube. Protein concentrations were determined using a Bio-Rad DC protein assay Kit
using reagents from Bio-Rad Life Science (Hercules, CA) and the lysate diluted to the working
concentrations indicated below.

Gel-based ABPP with N3-10. HEK293T proteome (50 pL of 1.5 mg/mL, prepared as described
above) was labeled with various concentration of N3-1o (stock solutions in DMSO, final
concentration as indicated), IAA (1 uL of 5 mM stock solution in DMSO, final concentrations =
1-200 uM) or DMSO for vehicle control for 1h at ambient temperature followed by adding 1 uM
IA-Rh. Samples were allowed to react for another hour at ambient temperature at which point the
reactions were guenched with 4x Laemmli buffer (20 puL). Samples were then denatured (5 min,
95 °C) and then resolved by SDS-PAGE. SDS-PAGE gels were imaged on the Bio-Rad
ChemiDoc™ Imager using rhodamine channel.

Gel-based ABPP with N3-1o0. HEK293T proteome (50 pL of 1.5 mg/mL) was labeled with
different amount of N3-10 (stock solutions in DMSO, final concentration as indicated), STP-

alkyne (1 mM) or DMSO for vehicle control for 1h at ambient temperature followed by adding 1
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MM NHS-Rh. Samples were allowed to react for another hour at ambient temperature at which
point the reactions were quenched with 4x Laemmli buffer (20 pL). Samples were then
denatured (5 min, 95 °C) and then resolved by SDS-PAGE. SDS-PAGE gels were imaged on the
Bio-Rad ChemiDoc™ Imager using rhodamine channel.

Supplementary Figure 23. Modification of myoglobin Mb by 1d and 1e

To a 1 mg of myoglobin (3 mM) in 0.2 mL of 10 mM phosphate buffer (Nap, pH 7.5),
compound 1d (1 or 10 equiv.) was added. The reaction was stirred at room temperature for 1 h.
The Mb-1d protein bioconjugate was purified by molecular weight cut off and characterized by
LC-MS/MS.

Procedure for in-solution digestion and analysis of modified myoglobin

Protein (1 mg) in 10 mM tris (100 pL, pH 7.5) with urea (6 M) was incubated for 30 min at 37
°C. To reduce the urea concentration to 0.6 M, the sample was diluted with grade | water. To this
solution, 100 pL of enzyme (achymotrypsin/trypsin) solution (0.1 mg, enzyme/protein (1:20);
enzyme in 1 mM HCI was dissolved in 0.1 M tris and 0.01 M CaClz) was added and the mixture
was incubated at 37 °C for 18 h. The pH of digested mixture was adjusted to < 6 (confirmed by
pH paper) with trifluoroacetic acid (0.5%). Subsequently, the sample was used for peptide
mapping by MS and sequencing by MS/MS. The protein fragments were analyzed by Thermo
Ultimate 3000 nanoL.C/Orbitrap Q-Exactive Plus MS with positive mode. The identification of

protein sequences was achieved by Thermo BioPharma Finder.

Myoglobin from equine heart amino acid sequence:

GLSDGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKAS
EDLKKHGTVVLTALGGILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISDAIIHVLHSK
HPGDFGADAQGAMTKALELFRNDIAAKYKELGFQG (no cysteine or disulfide)
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Sequence Score Type State Exp. Mass
Exp.
Modified KKGHHEAELK 131.0337 ~K79 100 MS2 | 486.259 4 1940.004 1941.15
Myoglobin PLAQSH

General procedure of tagging multiple lysines with compound 1e

To a 1 mg of myoglobin (3 mM) in 0.2 mL of 10 mM phosphate buffer (Nap, pH 7.5),

compound 1e (10 or 100 equiv.) was added. The reaction was stirred at room temperature for 1

or 12 h. The Mb-1e protein bioconjugate was purified by molecular weight cut off and

characterized by LC-MS/MS.
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Lysine-tagging of a-lactaloumin (Ib) and cytochrome C (CyC) with probe 1d.
To protein (Lb or CyC ) (3 mM) in 0.2 mL 10 mM phosphate buffer (pH 7.5), 1d (1 equiv.) was
added. The reaction was stirred at room temperature for 1 h. The Lb-1d and CyC-1d protein

bioconjugates were purified by molecular weight cut off and characterized by LC-MS.

Cytochrome C from equine heart amino acid sequence:
GDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRKTGQAPGFTYTDANKNK
GITWKEETLMEYLENPKKYIPGTKMIFAGIKKKTEREDLIAYLKKATNE (1-disulfide
bond)

a-Lactalbumin from bovine milk amino acid sequence:

EQLTKCEVFRELKDLKGYGGVSLPEWVCTTFHTSGYDTQAIVQNNDSTEYGLFQINNKI
WCKNDQDPHSSNICNISCDKFLNNDLTNNIMCVKKILDKVGINYWLAHKALCSEKLDQ

WLCEKL (8-disulfide bonds)
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d o _ -
“;;ﬁjf ~) Nap 10mM, pH75,1n > "odfied b
7 g¢ S
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Lb
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Supplementary Figure 24. Rate study of 1c-yne and 1d-yne with peptide Ac-GKF 2c.

To a solution of Ac-GKF 2c¢ (0.56 mg, 0.0014 mmol) in 2.0 mL of 10 mM phosphate buffer
(Nap, pH 7.5) was added 1c-yne or 1d-yne (1 equiv., 0.0014mmol). For analysis, a sample (200
pL) was taken from the mixture after regular intervals of time and quenched by freezing the
sample at -80 °C. The frozen samples were then lyophilized and dissolved in 100 uL of 1:1
H>O/ACN and injected immediately into the HPLC for determining the % conversion to the
modified product (X Terra C18 column {5 um} with a gradient of 0 to 80 % MeCN with 0.1 %
formic acid in 30 min). The rate study was done in triplicate. We use the average of three trials to

plot the rate curve. 0 min sample was taken immediately after addition of all the reagents of the
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bioconjugation reaction. The result showed that 1c-yne, 1d-yne, STPyne bioconjugate reactions

are second order reaction with k = 99.27 M-1S1, 307.52 M-1S1, and 190.92 M-1S™! respectively.
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Supplementary Figure 25. Stability study of 1c-yne, 1d-yne, NHS ester and STPyne
1c-yne, 1d-yne, NHS ester, and STPyne (0.035 mmol) were incubated in 400 pL of 10 mM Nap
(pH 7.5) at room temperature. A sample (50 pL) was taken from the mixture and directly
injected into HPLC. The reaction was monitored by injecting samples in HPLC after regular

intervals of time 2 h, 4h, 6 h, 8h, 10h, and 12 h.
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Supplementary Figure 26. Reversibility study of 1e-Cys-conjugate (VCF-1e) and 1d-thio-
conjugate with lysine methylester.

Ac-VCF-NH: (6.3 mM) was dissolved in 0.4 mL of 10 mM phosphate buffer (Nap, pH 7.5), and
then 10 equiv. of 1e was added. The mixture was stirred at room temperature for 3 hours. The
reaction mixture was purified by HPLC then dried by lyophilized to afford pure VCF-1e. To a
solution of pure VCF-1e (6.3 mM) in Nap buffer pH 7.5, 400 pL, 10 eq of lysine methyl ester
was added. The reaction was incubated at 40 °C for 12 h. The reaction was analyzed by HPLC
and ESI-MS. HPLC was carried out with 1 % formic acid: water (solvent A): acetonitrile

(solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection wavelength 220 nm.
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Synthesis of 1d-thio-conjugate

2-Mercaptobenzoxazole B (500 mg, 3.31 mmol), potassium carbonate (456 mg, 3.31 mmol), and
tert-butyl (2-bromoethyl)carbamate (738.4mg, 3.31 mmol) were sequentially added into dry
DMF (10 mL) at 0 °C. The mixture was warmed to room temperature and stirred for 12 hours.
The reaction mixture was washed with ethyl acetate and brine for 3 times. The organic layer was

collected, dried over anhydrous MgSOs, filtered, and concentrated under the reduced pressure.
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The residue was purified by the column chromatography (hexane: ethyl acetate 3:1) to yield
conjugate as colorless crystal (739.6 mg, 76 %). 'H NMR (600 MHz, CDCl3 & 7.54 — 7.50 (m,
1H), 7.37 (dd, J = 7.9, 1.1 Hz, 1H), 7.26 — 7.15 (m, 2H), 3.59 — 3.49 (m, 2H), 3.36 (t, J = 6.2 Hz,
2H), 1.36 (s, 9H). 3C NMR (151 MHz, CDCl3) & 172.62, 172.09, 141.88, 124.49, 124.12,
118.53, 110.06, 98.46, 40.29, 32.51, 28.48.

To a mixture of conjugate (93 mg, 0.316 mmol) in dry DCM (10 mL), MeOTf (41.8 pL, 0.379
mmol) was added at 0 °C. The reaction mixture was warmed to room temperature. After 12 h,
solvent was removed by rotary evaporation to afford brown oil product. The 1d-thio-conjugate

was directly used without purification.
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13C NMR of 1d-thio-conjugate
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Reversibility study of 1d-thio-conjugate with lysine methylester.
General procedure for reversibility study of 1d-thio-conjugate: Ac-Lys-OMe (7.23 mg,

0.030 mmol, 10 eq) was dissolved in 0.4 mL of 10 mM phosphate buffer (Nap, pH 7.5), and then
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1 equiv. of 1d-thio-conjugate was added. The mixture was stirred at room temperature for 1

hour. The reaction was analyzed by LC-MS.
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1d-thio-conjugate
Procedure for stability study of 1d-thio-conjugate in sodium phosphate buffer.
1d-thio-conjugate (0.035 mmol) was incubated in 400 pL of 10 mM Nap (pH 7.5) at room
temperature. A sample (10 pL) was taken from the mixture and directly injected into LC-MS.

The stability study was monitored by LC-MS.

LC-MS of pure 1d-thio-conjugate at 0 min
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Supplementary Figure 27. Chemoproteomic analysis of residue selectivity

Cell culture and preparation of cell lysates.

Cell culture reagents including Dulbecco’s phosphate-buffered saline (DPBS), Dulbecco’s
modified Eagle’s medium (DMEM)/high glucose media, trypsin-EDTA  and
penicillin/streptomycin (Pen/Strep) were purchased from Fisher Scientific. Fetal Bovine Serum

(FBS) were purchased from Avantor Seradigm (lot # 214B17).
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HEK293T (ATCC: CRL-3216) cells were cultured in DMEM supplemented with 10% FBS and
1% antibiotics (Penn/Strep, 100 U/mL). Media was filtered (0.22 um) prior to use. Cells were
maintained in a humidified incubator at 37 °C with 5% CO.. Cell lines were validated prior to

use and tested regularly for myoplasma.

HEK293T cells were harvested once cells were grown to 90 — 95% confluence by centrifugation
(4500g, 5 min, 4 °C), washed twice with cold DPBS, resuspended in 300 uL DPBS, sonicated,
and clarified by centrifuging (21,000 g, 10 min, 4 °C). The lysates were then transferred to an
eppendorf tube. Protein concentrations were determined using a Bio-Rad DC protein assay kit
using reagents from Bio-Rad Life Science (Hercules, CA) and the lysate diluted to the working

concentrations indicated below.

Gel-based ABPP with 1d. HEK293T proteome (50 pL of 1.5 mg/mL, prepared as described
above) was labeled with various concentrations of 1d (stock solutions in DMSO, final
concentration as indicated), STPyne (1 uL of 5 mM stock solution in DMSQO, final concentration
=100 uM) or DMSO for vehicle control for 1h at ambient temperature followed by adding 1 pM
NHS-Rh or IA-Rh. Samples were allowed to react for another hour at ambient temperature at
which point the reactions were quenched with 4x Laemmli buffer (20 puL). Samples were then
denatured (5 min, 95 °C) and then resolved by SDS-PAGE. SDS-PAGE gels were imaged on the

Bio-Rad ChemiDoc™ Imager using rhodamine channel.

Gel-based ABPP with 1c-yne. HEK293T proteome (50 pL of 1.5 mg/mL) was labeled with
different amounts of 1c-yne (stock solutions in DMSO, final concentration as indicated) for 1h at
ambient temperature followed by adding 1 uM NHS-Rh or IA-Rh. Samples were allowed to
react for another hour at ambient temperature at which point the reactions were quenched with

4x Laemmli buffer (20 pL). Samples were then denatured (5 min, 95 °C) and then resolved by
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SDS-PAGE. SDS-PAGE gels were imaged on the Bio-Rad ChemiDoc™ Imager using

rhodamine channel.

Gel-based ABPP with CUAAC using 1c-yne. HEK293T proteome (50 pL of 1.5 mg/mL) was
labeled with 1A-alkyne (1A-aky) (1 pL of 5 mM stock in DMSO, final concentration = 100 pM)
or 1c-yne (1 pL of 50 mM stock in DMSO, final concentration = 1 mM) for 1h at ambient
temperature followed by copper-mediated azide-alkyne cycloaddition (CUAAC). CuUAAC was
performed with biotin-azide (200 uM for 1A-alkyne treated sample and 2 mM for 1c-yne treated
sample), tris(2-carboxyethyl)phosphine hydrochloride (TCEP; 1 pL of fresh 50 mM stock in
water, final concentration = 1 mM), Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]lamine (TBTA,
3 pL of 1.7 mM stock in DMSO/t-butanol 1:4, final concentration = 1 00 uM), and CuSO4 (1 uL
of 50 mM stock in water, final concentration = 1 mM). Samples were allowed to react for 1h at
ambient temperature at which point the reactions were quenched with 4x Laemmli buffer (20
pL). Samples were then denatured (5 min, 95 °C) and analyzed by SDS-PAGE, using
Criterion™ TGX Stain-Free™ gels obtained from Bio-Rad. Loading control images were

obtained using the stain-free workflow on a Bio-Rad ChemiDoc™ Imager.

Gel-based ABPP with CuAAC using 1d-yne. HEK293T proteome (50 pL of 1.5 mg/mL) was
labeled with different concentrations of 1d-yne or STPyne (1 pL of 5 mM stock solution in
DMSO, final concentration = 100 pM) for 1h at ambient temperature followed by copper-
mediated azide-alkyne cycloaddition (CUAAC) as described above and the labeling was resolved

by SDS-PAGE.

Streptavidin blot. Gels were transferred to either polyvinylidene difluoride (PVDF, Bio-Rad,
1620177) or nitrocellulose (Bio-Rad, 1704271) membranes using a Trans-Blot Turbo transfer

system (Bio-Rad) following the manufacturer's instructions. After transfer, the membranes were
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then blocked (2% wi/v of BSA in TBS-T, 30 min) and probed with streptavidin-IRDye® 800CW
(Fisher, NC0883593, 1:4000) in TBS-T. Blots were incubated overnight at 4 °C with rocking and
were then washed (3 x 5 min, TBS-T). The membranes were then imaged with a Bio-Rad

ChemiDoc™ Imager using the 800 NIR channel.
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Supplementary Figure 28. TAREs for gel-based ABPP
Proteomic sample preparation using 1lc-yne. HEK293T proteome (200 puL of 2 mg/mL,
prepared as described above) was labeled with 1c-yne (10 pL of 10 mM stock solution in

DMSO, final concentration = 500 puM) for 1h at ambient temperature. CUAAC was performed
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with biotin-azide (4 pL of 50 mM stock in DMSO, final concentration = 1 mM), TCEP (4 pL of
fresh 50 mM stock in water, final concentration = 1 mM), TBTA (12 pL of 1.7 mM stock in
DMSO/t-butanol 1:4, final concentration = 100 uM), and CuSQOs (4 uL of 50 mM stock in water,
final concentration = 1 mM). Samples were allowed to react for 1h at ambient temperature. The
samples were then subjected to SP3 sample preparation and LC-MS/MS analysis, as described

below.

SP3 proteomic sample preparation. After CUAAC labeling, each sample was then treated with
0.5 pL benzonase (Fisher Scientific, 70-664-3) for 30 min at 37 °C. DTT (10 pL of 200 mM
stock in water, final concentration = 10 mM) was added into each sample and the sample was
incubated at 65 °C for 15 min. To this iodoacetamide (10 pL of 400 mM stock in water, final
concentration = 20 mM) was added and the solution was incubated for 30 min at 37 °C with
shaking. SP3 sample cleanup was performed at a bead/protein ratio of 10:1 (wt/wt). For each 200
puL sample (1 mg/mL protein concentration), 20 pL Sera-Mag SpeedBeads Carboxyl Magnetic
Beads, hydrophobic (GE Healthcare, 65152105050250, 50 pg/pL, total 2 mg) and 40 pL Sera-
Mag SpeedBeads Carboxyl Magnetic Beads, hydrophilic (GE Healthcare, 45152105050250, 50
po/ulL, total 1 mg) were aliquoted into a single microcentrifuge tube and gently mixed. Tubes
were then placed on a magnetic rack until the beads settled to the tube wall, and the supernatants
were removed. The beads were removed from the magnetic rack, reconstituted in 400 pL of MB
water, and gently mixed. Tubes were then returned to the magnetic rack, beads allowed to settle,
and the supernatants removed. Washes were repeated for two more cycles, and then the beads
were reconstituted in 80 pL MB water. The bead slurries were then transferred to CUAAC
samples, and incubated for 5 min at RT with shaking. Absolute ethanol (400 pL) was added to

each sample, and the samples were incubated for 5 min at RT with shaking. Samples were then
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placed on a magnetic rack, and beads allowed to settle. Supernatants were then removed and
discarded. Using the magnetic rack as described above, the beads were further washed three
times with ethanol (400 pL of 80% solution in water). Beads were then resuspended in 100 pL
PBS containing 2 M urea followed by addition trypsin solution (Worthington Biochemical,
LS003740, 5 uL, 1 mg/mL in 666 pL of 50 mM acetic acid and 334 pL of 100 mM CacCly, final
weight = 10 ng). Digest was allowed to proceed overnight at 37 °C with shaking. The samples
were then acidified to a final concentration of 3% (v/v) FA. After incubation for 5 min at RT
with shaking, ~ 2 mL acetonitrile (> 95% of the final volume) was added to each sample and the
mixtures were then incubated for an additional 10 min at RT with shaking. Supernatants were
then removed and discarded using the magnetic rack, and the beads were washed (3 x 500 pL
acetonitrile). Peptides were then eluted from SP3 beads with 100 pL of 2% DMSO in MB water

for 30 min at 37 °C with shaking. The elution will be used for NeutrAvidin enrichment.

NeutrAvidin enrichment of labelled peptides. For each sample, 50 puL of NeutrAvidin®
Agarose resin slurry (Pierce, 29200) was washed twice in 10 mL IAP buffer (50 mM MOPS pH
7.2, 10 mM sodium phosphate, and 50 mM NaCl buffer) and then resuspended in 500 puL IAP
buffer. Peptide solutions eluted from SP3 beads were then transferred to the NeutrAvidin®
Agarose resin suspension, and the samples were then rotated for 2h at RT. After incubation, the
beads were pelleted by centrifugation (21,000 g, 1 min) and washed by centrifugation (6 x 700
puL water). Bound peptides were eluted with 60 puL of 80% acetonitrile in MB water containing
0.1% FA (10 min at RT). The samples were then harvested by centrifugation (21,000 g, 1 min)
and residual beads separated from supernatants using Micro Bio-Spin columns (Bio-Rad). The
remaining peptides were then eluted from pelleted beads with 60 puL of 80% acetonitrile in water

containing 0.1% FA (10 min, 72 °C). Beads were then separated from the eluants using the same
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Bio-Spin column. Eluants were then collected by centrifugation (21,000 g, 1 min) and the
combined eluants were dried (SpeedVac). The samples were then reconstituted in 40 uL water

containing 5% acetonitrile and 1% FA and analyzed by LC-MS/MS.

Liquid-chromatography tandem mass-spectrometry (LC-MS/MS) analysis. The samples
were analyzed by liquid chromatography tandem mass spectrometry using an Q Exactive™ mass
spectrometer (Thermo Scientific) coupled to an Easy-nLC™ 1000 pump. Peptides were resolved
on a C18 reversed phase column (3 uM, 100A pores), packed in-house, with 100 nm internal
diameter and 18 cm of packed resin. The peptides were eluted using a 140 min gradient of Buffer
B in Buffer A (Buffer A: water with 3% DMSO and 0.1% FA; Buffer B: acetonitrile with 3%
DMSO and 0.1% FA) and a flow rate of 220 nL/min with electrospray ionization of 2.2 kV. The
regular gradient includes 0 — 5 min from 1% to 5%, 15 — 130 min from 5% to 27%, 15 — 137 min
from 27% to 35%, and 137 — 138 min from 35% to 80% buffer B in buffer A. The steep gradient
for this study includes 0 — 5 min from 1% to 5%, 5 — 20 min from 5% to 15%, 20 — 130 min from
15% to 35% and from 130 — 135 min from 35 to 95% buffer B in buffer A. The detailed gradient
includes 0 — 15 min from 1% to 15%, 15 — 110 min from 15% to 35% and from 130 — 135 min
from 35 to 95% buffer B in buffer A. Data was collected in data-dependent acquisition mode
with dynamic exclusion (15 s), and charge exclusion (1,7,8,>8) was enabled. Data acquisition
consisted of cycles of one full MS scan (400 — 1800 m/z at a resolution of 70,000) followed by

12 MS2 scans of the nth most abundant ions at resolution of 17,500.

Peptide and protein identification. The MS2 spectra data were extracted from a raw file using
RAW Xtractor (version 1.1.0.22; available at http://fields.scripps.edu/rawconv/). MS2 spectra
data were searched using the ProLuCID algorithm (publicly available at

http://fields.scripps.edu/yates/wp/?page_id=17 using a reverse concatenated, nonredundant
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variant of the Human UniProt database (release-2020 _01). Lysine or cysteine residues were
searched with a variable modification for carboxyamidomethylation (+57.02146) and an
additional variable modifications at either lysine or cysteine residues, which is +526.2231 for
probe 1d-yne and +483.19213 for 1c-yne. Peptides were required to have at least one tryptic
terminus and to contain the biotin modification. ProLuCID data was filtered through DTASelect
(version 2.0) to achieve a peptide false-positive rate below 1%. The Xcorr score was used for
match confidence criteria. Mass tolerance of the peptide precursor was set to 50 ppm. The built

in localization features on IP2 were used predict the PTM index.

The fraction of lysine-labeled peptides that contain cysteine residues

100
75
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25

0 _ _

1c-yne 1d-yne

% of labeled peptides that contain

1-cyne datasets were also searched using MSFragger v15 with a precursor mass window of 50
ppm and a fragment mass tolerance of 20 ppm and variable modifications of +483.19213 on K
and C as well as a variable modification for carbamidomethylation on cysteine. The options --
decoyprobs --ppm --accmass --nonparam —expectscore were used for PeptdieProphet and --static

--em 1 --nions b --mods C:483.19213, K:483.19213 --minprob 0.5 for PTMProphet.
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Distribution of labeling sites identified for 1cyne by MSFragger,
using PTMProphet to score modification sites

Identified Counts
Cysteine Protein IDs 17
Cysteine Peptide IDs 20

Lysine Protein IDs 1560
Lysine Peptide IDs 4460

Lysine selectivity of 1c-yne and 1d-yne. To further analyze the lysine-selective labeling, we
conducted an analysis of the amino acid content of all peptides identified as labeled by the TARE
probes. The probability score was used for match confidence criteria. Mass tolerance of the
peptide precursor was set to 50 ppm. In addition to using the build in localization features on 1P2
to predict the PTM index, to further analyze the lysine-selective labeling, we conducted an
analysis of the amino acid content of all peptides identified as labeled by the TARE probes.
Gratifyingly <15% of the labeled peptides contained one or more cysteine residues, which again

supports preferential labeling for lysine residues.

To further investigate the specificity of the modification, we additionally reprocessed the 1c-yne
data using MSFragger using the built in PTMProphet tool to improve our confidence in the
localization of the modifications. This analysis revealed that >95% of all labeled residues are

lysines, which is consistent with our initial analysis using the ProLuCID/IP2 search.
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Supplementary Figure 29. Stability study of GCF-1c-yne conjugate in TCEP, and 1d-thio-
conjugate under sodium phosphate buffer.

Procedure for stability study of GCF-1c-yne conjugate in TCEP buffer

Ac-GCF-NH: (6.3 mM) was dissolved in 0.4 mL of 10 mM phosphate buffer (Nap, pH 7.5), and
then 10 equiv. of 1c-yne was added. The mixture was stirred at room temperature for 3 hours.
The reaction mixture was purified by HPLC then dried by lyophilization to afford pure modified
peptide, GCF-1c-yne conjugate. To a solution of pure GCF-1c-yne conjugate (6.3 mM) in Nap
buffer (pH 7.5, 400 uL), TCEP buffer (pH 7.4, 200 uL) was added. The reaction was incubated
at 25 °C for 5 min. The reaction was analyzed by HPLC and ESI-MS. HPLC was carried out
with 1 % formic acid: water (solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate =

1.0 mL/min, detection wavelength 220 nm.

HPLC trace of pure GCF-1c-yne conjugate
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Supplementary Figure 30. Live cell labeling of proteins using different probes.

Cell Culture — Cells were maintained at 37° C and 5% CO». T47D and LNCaP cells were
cultured in RPMI supplemented with 10% (V/V) fetal bovine serum (FBS) and 1% (V/V)
penicillin/streptomycin (100 pg/mL). US7MG cells were cultured in DMEM supplemented with

10% (V/V) fetal bovine serum (FBS) and 1% (V/V) penicillin/streptomycin (100 pg/mL).

Copper Azide-Alkyne Cycloaddition (CuAAC) reaction — CuAAC on fixed cells was
performed using 4 mM CuSOs, 8 mM THPTA, 75 uM picolyl azide-conjugated fluorophore

(ClickChemistryTools), and 10 mM sodium ascorbate. For confocal microscopy, cells were fixed

244



in 3.7% PFA and permeabilized with 0.5% Triton-X. CUAAC reagents were added directly to

cells, then incubated, rocking, for 45 min.

Confocal microscopy — LNCaP, T47D, and U887MG cells were plated on glass coverslips
(Fisherbrand) in supplemented RPMI or DMEM media. After 16 h, cells were incubated with the
indicated concentrations of 1c-yne, STPyne, or NHS-ester. Prior to imaging, cells were fixed in
3.7% PFA and permeabilized with 0.5% Triton-X. CUAAC reaction was performed to attach a
488 nM picolyl azide-conjugated fluorophore (ClickChemistryTools) and Hoechst counterstain
was used to image nuclei. Cells were imaged on Leica SP8 confocal microscope and images

processed and analyzed using ImageJ.
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Live cell Labeling using TAREs and other probes at different concentrations. LNCAP and
U87MG cells treated with 25-100 uM 1c-yne, STPyne, or NHSester for 2h show labeling in
multiple cellular compartments.

Supplementary Figure 31. Cell viability studies with 1cyne.

Annexin V/PI staining of T47D cells treated with increasing concentrations of 1c-yne.

To assay for cell death, T47D cells were seeded and treated with the indicated concentration (5
uM and 20 uM) of 1c-yne for 24hrs, after which cells were detached using trypsin (Biolegend)
and stained using Annexin V/PI following manufacturer’s protocol (BioLegend). Cells were
analyzed by flow cytometer (BDFACSymphony A3) within 1h. The reaction was done in
triplicates. T47D cells treated with indicated concentrations of 1c-yne for 24h did not show an
increase in apoptosis/necrosis compared to DMSO control.

Supplementary Figure 32. General Computation Procedure

Quantum Mechanical Calculations

All  conformational searches were carried out wusing CREST, Conformer—
Rotamer Ensemble Sampling Tool version 2.7.1, of the XTB program version 6.2 RC2
(SAW190805).4® The RMSD threshold for each conformational search was set to 0.5 A. Density
functional theory calculations were performed using the Gaussian 09 software package.® Ground

state and transition state structures were optimized at the

B3LYP/6-31+G(d) level with SMD solvation model for water, the D3 version of Grimme’s
empirical dispersion correction, and the integration grid set to ultrafine.” Frequency calculations
were carried out at the same level of theory. The GoodVibes program was used for quasi-

harmonic correction of Gibbs free energies at 298 K. Single point energy calculations of the
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optimized geometries were performed at ®B97X-D/6-311++G(d,p) level with SMD solvation

model for water and the integration grid set to ultrafine.

Proposed SnAr mechanism of TARE probe 1c with methylamine

¥ s
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Optimized structures of methylamine calculations at ®B97X-D/6-311++G(d,p)
SMD(H20)//B3LYP/6-31+G(d) SMD(H20) level

TS1-A INT-A TS2-A

Proposed SnAr mechanism of TARE probe 1c with methyl thiolate
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Optimized structures of methyl thiolate calculations at ®B97X-D/6-311++G(d,p)
SMD(H20)//B3LYP/6-31+G(d) SMD(H20) level
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TS1-B

Cartesian Coordinates of Calculated Structures

MeNH2
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Supporting Information of Chapter Two:

Supplementary Figure 1: Synthesis of 2H-indazole-3-carbaldehyde and benzotriazole

(0] 1.NaNO HC|( ) OYO
.Na , con),
NH, oz el N
+ o 0 °C, 10 min - _0 N‘\N
HN 2. Neutralization
%

G H |
(o]
\O
Catalyst -~
ACN/H,0 (1:1), rt, 12h /N\N,N
/
(0}

2H-indazole-3-carbaldehyde

Entry Catalyst Yield (%)
1 IPrAuCl, AgSbFg, 20 % (isolated yield two
DPSO steps)?
2 CuCl, DPSO No reaction®
3 CuCl No reaction¢
52 % (isolated yield two
steps)d

Condition: a) 4 eq DPSO, 0.1 eq AgSbF6, 0.1 eq IPrAuCl b) 15 eq CuCl, 4 eq DPSO c) 15
eq CuCl d) 60 °C.

General procedure for the synthesis of compound |

2-ethynylaniline compound G (0.40 mmol, 1.0 equiv) was dissolved in 1 mL H2O at room
temperature, and then 1 mL of concentrated hydrochloric acid was added. The solution was
stirred and cooled to 0 °C. After 15 min, a solution of NaNO (0.48 mmol, 1.2 equiv, in 1 mL
water) was added dropwise. The resulting solution of the diazonium salt was stirred for 10 min
and then added to a solution of proline methyl ester H (1.2 mmol, 3 equiv) and K.COz3 (0.6

mmol, 1.5 equiv) in 1 mL of H20 under 0 °C. The reaction mixture was warmed to room
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temperature and stirred for 30 min. After completion, monitored by thin layer chromatography
(TLC), the reaction mixture was extracted with ethyl acetate. The organic layer was dried over
anhydrous Na>SO4, concentrated under reduced pressure to obtain the triazene intermediate 1.
The intermediate was directly used for next step without further purification.

Condition a:

Methyl ((2-ethynylphenyl)diazenyl)prolinate | (1eq, 1.2 mmol) was dissolved in 5 mL of ACN
and 5 mL of H.O. Diphenyl sulfoxide (4 eq, 4.8 mmol) was added followed by premixed
IPrAuCl (10 mol%, 0.12 mol) and AgSbF6 (10 mol%, 0.12 mmol). The reaction mixture was
maintained room temperature for 12 h. The crude reaction mixture was purified by flash
chromatography (hexane: ethyl acetate 10:1) to obtain 2H-indazole-3-carbaldehyde as a white

solid (57.1 mg, 20%).

Condition b:

Methyl ((2-ethynylphenyl)diazenyl)prolinate | (1eq, 1.2 mmol) was dissolved in 5 mL of ACN
and 5 mL of H20O. Diphenyl sulfoxide (4 eq, 4.8 mmol) and CuCl (15 eq, 18 mmol) were added
to the solution. The reaction mixture was stirred at room temperature for 12 h. The reaction was
monitored by thin layer chromatography (TLC) to confirm no 2H-indazole-3-carbaldehyde was
forming.

Condition c:

To a solution of methyl ((2-ethynylphenyl)diazenyl)prolinate 1 (1eq, 1.2 mmol) in 5 mL of ACN
and 5 mL of H20O, CuCl (15 eq, 18 mmol) was added to the mixture. The reaction mixture was
stirred at room temperature for 12 h. The reaction was monitored by thin layer chromatography

(TLC) to confirm no 2H-indazole-3-carbaldehyde was forming.
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Condition d:

To a solution of methyl ((2-ethynylphenyl)diazenyl)prolinate 1 (1eq, 1.2 mmol) in 5 mL of ACN
and 5 mL of H2O, CuCl (15 eq, 18 mmol) was added to the mixture. The reaction mixture was
allowed to stir at 60 °C for 12 h. The crude reaction mixture was purified by flash
chromatography (hexane: ethyl acetate 10:1) to obtain 2H-indazole-3-carbaldehyde as a white
solid (148 mg, 52%). 'H NMR (600 MHz, CDCls) 8 10.51 (s, 1H), 8.21 (dt, J = 8.4, 1.1 Hz, 1H),
7.75 (dt, J = 8.6, 1.0 Hz, 1H), 7.42 (ddd, J = 8.6, 6.7, 1.2 Hz, 1H), 7.36 (ddd, J = 8.3, 6.8, 1.0 Hz,
1H), 3.74 — 3.71 (m, 1H), 3.63 (s, 3H), 2.60 — 2.55 (m, 1H), 2.31 — 2.21 (m, 3H), 2.18 — 2.14 (m,

2H). 188
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General procedure for the synthesis of benzotriazole

9 1.NaNO,, HCI (con), OYO
@NHZ \0% 0 °C, 10 min f}l N
+ - . > _0 N ~ 3
N, HN 2. Neutralization °N
E H J

(0]

N
o

Cul

ACN/H,0 (1:1), 60°C, 12h NN
1
< />//N

Benzotriazole, 43 % (two step isolated yield)

N

2-azidoaniline E (0.40 mmol, 1.0 equiv) was dissolved in 1 mL H2O at room temperature, and
then 1 mL of concentrated hydrochloric acid was added. The solution was stirred and cooled to 0
°C. After 15 min, a solution of NaNO: (0.48 mmol, 1.2 equiv, in 1 mL water) was added
dropwise. The resulting solution of the diazonium salt was stirred for 10 min and then added to a

solution of proline methyl ester H (1.2 mmol, 3 equiv) and K>COsz (0.6 mmol, 1.5 equiv) in 1
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mL of H20 under 0 °C. The reaction mixture was warmed to room temperature and stirred for 30
min. After completion, monitored by thin layer chromatography (TLC), the reaction mixture was
extracted with ethyl acetate. The organic layer was dried over anhydrous NaSOa, concentrated
under reduced pressure to obtain the triazene intermediate J. The intermediate J was directly used
for next step without further purification. To a solution of methyl ((2-
azidophenyl)diazenyl)prolinate compound J (1eq, 0.37 mmol) in 2 mL of ACN and 2 mL of
H>0, Cul (15 eq, 5.6 mmol) was added to the mixture. The reaction mixture was allowed to stir
at 60 °C for 12 h. The crude reaction mixture was purified by flash chromatography (hexane:
ethyl acetate 10:1) to obtain compound benzotriazole

as a white solid (39 mg, 43%). *H NMR (600 MHz, CDCls3) § 7.81 — 7.76 (m, 2H), 7.35 (dd, J =
6.2, 3.1 Hz, 2H), 3.77 — 3.75 (m, 1H), 3.73 — 3.72 (m, 3H), 3.49 (s, 1H), 2.51 (ddt, J = 11.8, 6.3,

2.8 Hz, 1H), 2.27 — 2.18 (m, 4H). 8

261



8
o~
L

—

——=

Benzotriazole

ey

FET

=1t

T'E
€1

=Te'T

50 85 80 75 70 65 6.0 55 45 40 35 3.0 25 20 15 10 0.5
f1 (ppm)

9.5

0.0

262



[M+1] 0

100 247.11638 \o%
95
N
N.y-

Relative Abundance
o
[=]

200 250 300 350 400 450 500 550 600 650 700 750 800
miz

Supplementary Figure 2: General procedure for the modification of FAP with probes 2a
and 3a.

General procedure for the synthesis of compound 4a

To a 1 mg of PAF 1a (7.5 mM) in 0.4 mL of solvent was added K>COs (3 eq or 10 eq) and
diazonium salt 2a (3 eq or 10 eq). The reaction was incubated at room temperature after 30 mins
CuCl or Cul (15 eq) in 100 ul ACN was added. The reaction mixture was allowed to incubate at
50 °C for 12 h. The reaction was analyzed by HPLC and MS/MS. HPLC was carried out with 1%
formic acid: water (solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0

mL/min, detection wavelength 220 nm.

o o]
N, BF E
A 7 . (:( 4 1. K,CO; solvent, rt, 30 min OG
(A 2. CuCl, solvent, 50 °C, 12h N_..N
HN SN v N
i )
1a 2a 4a

263



Entry Catalyst Eq of 2a Temperature °C Solvent Conversion (%)

1 CucCl 3 50 °C ACN/Nap 25%
(1:1)

2 CuCl 3 50 °C ACN/Nap 46 %
(9:1)

3 CucCl 10 50 °C ACN/Nap 76 %
(9:1)

4 Cul 3 50°C ACN/Nap 0%
(9:1)

5 CuCl 3 50°C ACN/Nap 3%
(1:9)

6 CuCl 3 50 °C DMF/Nap 14.2 %
(1:9)

7 CuCl 3 rt ACN/Nap 0%
(1:1)

HPLC trace of 4a
o]

o

/N‘N’N
Geﬁ HN @ﬁk;o

Diazonium salt side product

Diazonium salt side product
mAU

2500
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General procedure for the synthesis of compound 5a

To a 1 mg of PAF 1a (7.5 mM) in 0.4 mL of solvent was added K>COs (3 eq or 10 eq) and
diazonium salt E (3 eq or 10 eq). The reaction was incubated at room temperature after 30 mins
Cul or CuCl (15 eq) in 100 ul ACN was added. The reaction mixture was allowed to incubate at
50 °C for 12 h. The reaction was analyzed by HPLC and MS/MS. HPLC was carried out with 1%

formic acid: water (solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0

mL/min, detection wavelength 220 nm.
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Entry Catalyst Eq of E Temperature °C Solvent Conversion (%)

1 Cul 3 50 °C ACN/Nap 35 %
(1:1)

2 CucCl 3 50 °C ACN/Nap 15 %
(1:1)

3 Cul 3 50 °C ACN/Nap 17 %
(9:1)

4 Cul 10 50 °C ACN/Nap 57 %
(9:1)

5 Cul 3 50 °C ACN/Nap 30 %
(1:9)

6 Cul 3 50 °C DMF/Nap 12.5 %
(1:9)

7 Cul 3 rt ACN/Nap 10 %
(1:1)

Y

+
N,BF, .
G + 1. K,CO; solvent, rt, 30 min
(AP HN N, 2. Cul, solvent, 50 °C, 12h

1a E 5a

HPLC trace of 5a

o

o]
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—
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Supplementary Figure 3: Stability study of 2H-indazole-3-carbaldehyde group in TFA and
pyridine.

General procedure for stability study in TFA

Methyl (3-formyl-2H-indazol-2-yl) prolinate (4.5 mM) was incubated in 400 puL (TFA : ACN
1:1) at room temperature for 6 h. The samples (50 pL) were taken from the reaction mixtures and
directly injected into the HPLC. The reactions were monitored by injecting samples in HPLC
after regular intervals of time 0 h, and 6 h. The bioconjugate product showed high stability in

TFA and pyridine for 6 h.
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Stability study of 2H-indazole-3-carbaldehyde group in pyridine.

General procedure for stability study in pyridine

Methyl (3-formyl-2H-indazol-2-yl) prolinate (4.5 mM) was incubated in 400 pL (pyridine ACN
1:1) at room temperature for 6 h. The samples (50 pL) were taken from the reaction mixtures and
directly injected into the HPLC. The reactions were monitored by injecting samples in HPLC
after regular intervals of time 0 h, and 6 h. The bioconjugate product showed high stability in

and pyridine for 6 h.
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Supplementary Figure 4: Chemoselectivity studies for the TCC reaction

Procedure for chemo-selectivity studies for the TCC reaction

To peptides Ac-XAF (0.0027 mmol) with 10 eq of K,COs in 360 pL of 10 mM sodium
phosphate buffer (Nap, pH 7.5), and 10 eq of 2a in 40 uL ACN was added, the reaction mixture
was incubated at 25 °C in the incubator for 1 h. The reaction mixture was analyzed by LC/MS.
LC: water (solvent A): acetonitrile (solvent B); gradient 0-80 %, acetonitrile in 25 min, flow rate

= 1.0 mL/min, detection wavelength 220 nm.
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Supplementary Figure 5: Restriction of TCC side reaction with tyrosine
General procedure for optimization of triazene cyclization:

pH adjustment:

1. K,CO,, 1h, 1t _ |

g =

5 /
JN-N

Tyrosine-side product (47 %)
+ -
m’“ N;BF, 0
+

% 2. CuCl, 60 °C, 12 h, pH 6.

B+ R
%@ﬂ\c (73 %)

To peptides Ac-KmeAF or Ac-YAF (0.0027 mmol) with 10 eq of K2CO3z in 360 pL of 10 mM
sodium phosphate buffer (Nap, pH 7.5), and 10 eq of 2a in 40 uL ACN was added, the pH of the
reaction mixture was adjusted to 6.5 by 1.0 M HCI, then the reaction mixture was incubated at 25
°C in the incubator for 1 h. Next, 15 eq of CuCl (0.0405 mmol) in 100 pL of ACN was added
into this mixture, then the mixture was allowed to stir at 40 °C for 12 h. The reaction mixture
was analyzed by LC/MS. LC: water (solvent A): acetonitrile (solvent B); gradient 0-80 %,

acetonitrile in 25 min, flow rate = 1.0 mL/min, detection wavelength 220 nm.

5 min:

1. K,CO3, 5 min, rt |

2.CuCl,60°C,12h
S /N\r‘j

e -
%Ac (0 %)

Tyrosine-side product (0 %)
+ -
QFD—~ N,BF, 0
+

To peptides Ac-KmeAF or Ac-YAF (0.0027 mmol) with 10 eq of KoCO3z in 360 pL of 10 mM
sodium phosphate buffer (Nap, pH 7.5), and 10 eq of 2a in 40 uL ACN was added, the reaction
mixture was incubated at 25 °C in the incubator for 5 min. Next, 15 eq of CuCl (0.0405 mmol) in
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100 pL of ACN was added into this mixture, then the mixture was allowed to stir at 40 °C for 12
h. The reaction mixture was analyzed by LC/MS. LC: water (solvent A): acetonitrile (solvent B);

gradient 0-80 %, acetonitrile in 25 min, flow rate = 1.0 mL/min, detection wavelength 220 nm.

K1 quench:
Tyrosine-side product (17 %)
+ -
%A‘: NBF, o
+ 1. K,CO3, 1h, rt . |
2. KI o @
AN :

N-N

3.CuCl, 60 °C, 12 h —N
%&Ac
%@em (40 %)

To peptides Ac-KmeAF or Ac-YAF (0.0027 mmol) with 10 eq of K2COz in 360 pL of 10 mM
sodium phosphate buffer (Nap, pH 7.5), and 10 eq of 2a in 40 uL ACN was added, the reaction
mixture was incubated at 25 °C in the incubator for 1 h, then the K1 (0.027 mmol) was added to
quenched the excess diazonium salt. Next, 15 eq of CuCl (0.0405 mmol) in 100 pL of ACN was
added into this mixture, then the mixture was allowed to stir at 40 °C for 12 h. The reaction
mixture was analyzed by LC/MS. LC: water (solvent A): acetonitrile (solvent B); gradient 0-80

%, acetonitrile in 25 min, flow rate = 1.0 mL/min, detection wavelength 220 nm.

Tyrosine-side product (10 %)
+ -
m“ N;BF, 0
+ (;K 1.KCOu thyrt 1
2.CuCl,60°C,12h
S /

N-N

%Ac N
%Ac (40 %)

3 eq of diazonium salt.
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To peptides Ac-KmeAF or Ac-YAF (0.0027 mmol) with 10 eq of K2COgz in 360 pL of 10 mM
sodium phosphate buffer (Nap, pH 7.5), and 3 eq of 2a in 40 uL ACN was added, then the
reaction mixture was incubated at 25 °C in the incubator for 1 h. Next, 15 eq of CuCl (0.0405
mmol) in 100 pL of ACN was added into this mixture, then the mixture was allowed to stir at 40
°C for 12 h. The reaction mixture was analyzed by LC/MS. LC: water (solvent A): acetonitrile
(solvent B); gradient 0-80 %, acetonitrile in 25 min, flow rate = 1.0 mL/min, detection

wavelength 220 nm.

Chemo-selective study

80
70
60
50
40
30
20

10

pH adjustment 5 min KI-quench 3 eq of salt

B FAY-Ac H FAK(me)-Ac

Supplementary Figure 6: Selective blocking of tyrosine by 1,3 diphenyl propynone

General procedure for tyrosine labeling by 1,3 diphenyl propynone

To the peptide 1m (1 eg., 0.0034 mmol) with K.COz (2 eq., 0.0068 mmol) in 200 pL of 10 mM
sodium phosphate buffer (Nap, pH 7.5), 3.5 mg of 1,3 diphenyl propynone (5 eg, 0.017 mmol) in

200 pL of ACN was added, the reaction was allowed to stir at 40 °C for 12 h. After 12 h, the
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reaction mixture was incubated with 50 ul of 1 M HCI at 25 °C for 4h to decouple the proline
modified product, the mixture was dried by lyophilization for next step.

Procedure for oxime enrichment:

10 eq of K2CO3(0.034 mmol) in 100 pL of 10 mM sodium phosphate buffer (Nap, pH 7.5) and
10 eq of 2d (0.034 mmol) in 100 pnL ACN were mixed with 1m’ (0.0034 mmol), the reaction
mixture was incubated at 25 °C for 1 h. The mixture was directly used for next step without
further purification.15 eq of CuCl (0.051 mmol) in 50 pL ACN was mixed with triazene
intermediate (0.0034 mmol) in 100 uL of 10 mM sodium phosphate buffer (Nap, pH 7.5) and
100 puL ACN, the reaction mixture was allowed to stir in incubator at 60 °C for 12 h. The
reaction mixture was directly used for next step without further purification. O-
benzylhydroxylamine (5 eq, 0.017 mmol) was mixed with 2m, the mixture was incubated at 25
°C in the incubator for 5 h. The reaction mixture was filtered and purified by HPLC to obtain the
oxime-2m. HPLC was carried out with 1 % formic acid: water (solvent A): acetonitrile (solvent

B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection wavelength 220 nm

rf‘i \__~coome

Oxime-2m
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Supplementary Figure 7: Optimization of triazenation coarctate cyclization with different

diazonium salts analogs.

R4 R; R4 R;
Br HCI, MeOH, Refluxing, 6h Br

1. Ry= COOMe, R,= NO, 4. R,= COOMe, R,= NH, (55%)
\©: Pd(PPh;),Cl,, Cul -
o >
R, TMSA, TEA, rt or 60 °C, 12h §
™S
2. R‘|= F! R2= I! R3= NHZ 5. R1= F, R3= NH2 (81%)
3. R4= CF3;, Ry= Br, R;= NH, 6. Ry= CF3, R3= NH, (82%)
4. R4= COOMe, R;= Br, R3= NH, 7. R4= COOMe, R;= NH, (84%)
+ —_
R, NH, R, NH, X N,BF,
K2C03 - NaNOz o
- X —
\\ MeOH, rt, 2h % HBF,, H,0, 0 °C, 45 mins %
TMS
5.R,=F 8. R,=F (85%) 2b. Ry=F (90%)
6. Ry= CF; 9. Ry= CF; (65%) 2c. Ry= CF;(92%)
7. R4= COOMe 10. R= COOMe (90%) 2d. R4= COOMe (88%)
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Compound 5.
A mixture of compound 3 (948 mg, 4 mmol), Pd(PPh3).Cl> (56.2 mg, 0.08 mmol), Cul (30.4mg,

0.08 mmol), and TMS-acetylene (620 ul, 4.8 mmol), in TEA (16 mL) was allowed to stirred at rt
12 h under nitrogen, when the reaction was completed, TEA was removed under pressure, and
the residues were purified by column chromatography (hexane: ethyl acetate 10:1) to obtain

compound 6 as brown oil (786 mg, 81 %). *H NMR (600 MHz, CDCl3

)87.25 (ddd, J = 9.2, 6.1, 3.3 Hz, 1H), 6.36 (ddt, J = 10.7, 8.3, 5.7 Hz, 2H), 4.34 (s, 2H), 0.25 (s,
9H). 13C NMR (151 MHz, CDCls) § *C NMR (151 MHz, CDCls) & 163.81 (d, JC-F = 246.0
Hz), 149.98 (d, JC-F = 12.0 Hz), 133.87 (d, JC-F = 10.5 Hz), 105.06 (d, JC-F = 22.5 Hz),

103.94, 100.87 (d, JC-F = 25.5 Hz), 100.85, 99.45, 0.13.
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Compound 8.

To a solution of 6 (825 mg, 4 mmol), MeOH (20 mL), K.COz (1.1 g, 8 mmol) was added. The
resulting mixture was allowed to stir at room temperature for 2 h then concentrated in vacuo. The
residue was extrated with ethyl acetate and the combined organic layers were washed with brine,
dried over Na;SQOg4, and concentrated under reduced pressure. The crude material was purified by
column chromatography (hexane: ethyl acetate 10:1) to obtain the pure compound 8 as brown oil
( 459 mg, 85 %). 'H NMR (600 MHz, CDCl3) § 7.32 — 7.27 (m, 1H), 6.46 — 6.22 (m, 2H), 4.38
(s, 2H), 3.37 (s, 1H). 3C NMR (151 MHz, CDCI3) & 163.97 (d, JC-F = 246.0 Hz), 150.27 (d,
JC-F = 12.0 Hz), 134.23 (d, JC-F = 10.5 Hz), 105.13 (d, JC-F = 22.5 Hz), 102.71 (d, JC-F = 3.0

Hz), 100.01 (d, JC-F = 25.5 Hz), 82.16, 79.78.
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Compound 6.

A mixture of compound 4 (1.25 g, 5.23 mmol), Pd(PPhs).Cl> (91.2 mg, 0.13 mmol), Cul (25 mg,
0.13 mmol), and TMS-acetylene (900 ul, 6.3 mmol), in TEA (20 mL) and DMF (1 mL) was
allowed to stirred at 60 °C 12 h under nitrogen, when the reaction was completed, TEA was
removed under pressure, and the residues were purified by column chromatography (hexane:
ethyl acetate 10:1) to obtain compound 7 as brown oil ( 1.1 g, 82 %). *H NMR (600 MHz,
CDCl3) § 7.36 (d, J = 8.1 Hz, 1H), 6.91 (s, 1H), 6.88 (d, J = 8.0 Hz, 1H), 0.27 (s, 8H). 3C NMR
(151 MHz, CDCls) 6 148.33, 132.78, 114.14 (d, JC-F = 4.5 Hz), 110.65 (d, JC-F = 4.5 Hz),

110.31 (d, JC-F = 3.0 Hz), 108.17, 102.32, 100.39, 0.13.
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Compound 9.

To a solution of compound 7 (624.8 mg, 2.43 mmol) in CH3OH (12 ml). Potassium carbonate
(671 mg, 4.86 mmol) was added, and the resulting mixture was allowed to stir at room
temperature for 2 h then concentrated in vacuo. The residue was extracted with ethyl acetate and
the combined organic layers were washed with brine, dried over Na>SO4, and concentrated under
reduced pressure. The crude material was purified by column chromatography (hexane: ethyl
acetate 30:1) to obtain the pure compound 9 as brown oil ( 292 mg, 65 %). *H NMR (600 MHz,
CDCls) 5 7.39 (d, J = 8.0 Hz, 1H), 6.92 — 6.88 (m, 2H), 4.45 (s, 2H), 3.46 (s, 1H). 3C NMR (151
MHz, CDCls) § 148.65, 133.01,113.86 (d, JC-F = 4.5 Hz), 110.62 (d, JC-F = 4.5 Hz), 109.62,

108.00, 84.39, 79.29.
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Compound 2.

To a solution of compound 1 (1 g, 3.8 mmol) in MeOH (10 mL), iron (646 mg, 11.5 mmol) and
HCI (3.8 mL) were added sequentially. The reaction mixture was stirred at 80 °C for a hours. The
reaction solution was filtered through Celite and washed with ethyl acetate and sodium
bicarbonate for 3 times. The organic layer was dried over MgSOg, and the solvent was removed
under reduced pressure. The residue was purified by the column chromatography (hexane: ethyl

acetate 9:1) to obtain compound 2 as white solid (483 mg, 55 %). [INIR

Compound 7.
A mixture of compound 2 (485 mg, 2.1 mmol), Pd(PPhz).Cl> (73.7 mg, 0.1 mmol), Cul (20 mg,

0.1 mmol), and TMS-acetylene (450 ul, 3.1 mmol), in TEA (3.2 mL) was allowed to stir at room
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temperature 12 h under nitrogen. when the reaction was completed, triethylamine was removed
under pressure, and the residues were purified by column chromatography (hexane: ethyl acetate
9:1) to obtain compound 5 as brown oil ( 435 mg, 84 %). *H NMR (600 MHz, CDCls) § 7.37 —
7.36 (M, 1H), 7.34 — 7.29 (m, 2H), 4.37 (s, 2H), 3.87 (s, 3H), 0.26 (s, 9H). 13C NMR (151 MHz,

CDClI3) 6 166.93, 148.15, 132.29, 131.03, 118.65, 115.04, 108.14, 102.85, 100.98, 52.28, 0.12.
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Compound 11.

To a solution of compound 5 (100 mg, 0.404 mmol) in CH30H (2 mL). Potassium carbonate
(111.5 mg, 0.808 mmol) was added, and the resulting mixture was allowed to stir at room
temperature for 2 h then concentrated in vacuo. The residue was extracted with ethyl acetate and
the combined organic layers were washed with brine, dried over Na.SQO4, and concentrated under
reduced pressure. The crude material was purified by column chromatography (hexane: ethyl
acetate 50:1) to obtain the pure compound 11 as yellow solid ( 63.7 mg, 90 %). *H NMR (600
MHz, CDCl3) & 7.38 — 7.34 (m, 2H), 7.31 (dt, J = 8.0, 1.5 Hz, 1H), 3.88 (s, 3H), 3.51 (s, 1H). 3C
NMR (151 MHz, CDClz) ¢ 166.73, 148.36, 132.53, 131.26, 118.47, 115.02, 108.00, 84.83,

79.86, 52.20.
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General procedure for synthesis of different diazonium salts

To the aniline derivative (1 eq., 4.27 mmol) in a mixture of 48% HBF4 (1.5 mL), EtOH (1mL)
and H20 (1.7 mL), the reaction mixture was cooled down to 0 °C, the NaNO2 (1.2 equiv., 5.12
mmol) in distilled H2O (1 mL) was added dropwise to the mixture over a period of 5 min. The
reaction was allowed to stir at 0 °C for 45 min. The precipitate was collected, washed with cold
Et20, and dried under vacuum to afford diazonium salt (2b-2d) as yellow or white powder (80%-

92%).

Compound 2b

H NMR (600 MHz, Acetonitrile-ds) & 8.39 — 8.33 (m, 1H), 8.11 — 8.03 (m, 2H), 4.56 (s, 1H).
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Procedure for triazenation of kme peptide:
1 mg ( leq., 1.26 mmol) of Kme peptide with 10 eq of K2COs in 360 pl of 10 mM sodium
phosphate buffer (Nap, pH 7.5), and 10 eq of diazonium salt derivative in 40 pL ACN were
mixed together, the reaction mixture was incubated at 25 °C in the incubator for 1 h. The reaction
mixture was directly used for next step without further purification.
General procedure for cyclization of modified peptide:
15 eq of CuCl in 100 ul ACN was added into the reaction mixture, the reaction mixture was
allowed to stir in incubator at 60 °C for 12 h. The reaction mixture was filtered and purified by
HPLC to obtain the aldehyde product. HPLC was carried out with 1 % formic acid: water
(solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection
wavelength 220 nm.
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Supplementary Figure 8: Pan-specificity of triazenation coarctate cyclization with
truncated histone peptides.

General procedure for cyclization of modified histone peptide:

(1eq., 0.0027 mmol) of truncated histone peptides with 10 eq of K2CO3 (0.027 mmol) in 360 pL
of 10 mM sodium phosphate buffer (Nap, pH 7.5), and 10 eq of 2d (0.027 mmol) in 40 pL ACN
were mixed together, the reaction mixture was incubated at 25 °C for 1 h. The reaction mixture

was directly used for next step without further purification. 15 eq of CuCl (0.04 mmol) in 100 ul
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ACN was added into the reaction mixture, the reaction mixture was allowed to stir in incubator
at 60 °C for 12 h. The reaction mixture was filtered and purified by HPLC to obtain the aldehyde
product. HPLC was carried out with 1 % formic acid: water (solvent A): acetonitrile (solvent B);

0-80 % in 30 min, flow rate = 1.0 mL/min, detection wavelength 220 nm.
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Supplementary Figure 9: Enrichment of modified peptides by cysteine condensation and
oxime chemistry.

Procedure for enrichment of modified kme peptide with cysteine methyl ester and O-
benzylhydroxylamine:

Modified Kme peptide (1eq., 0.027 mmol) in 360 puL of 10 mM sodium phosphate buffer (Nap,
pH 7.5), and 40 pL of ACN, 5 eq of cysteine methyl ester or O-benzylhydroxylamine (5eq, 0.135
mmol) was added. The reaction mixture was incubated at 25 °C in the incubator for 5 h. The
reaction mixture was filtered and purified by HPLC to obtain the product. HPLC was carried out
with 1 % formic acid: water (solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate =

1.0 mL/min, detection wavelength 220 nm.
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Supplementary Figure 10: Enrichment of modified truncated peptides by cysteine

condensation and oxime chemistry.

Procedure for enrichment of modified truncated peptide with cysteine methyl ester and O-

benzylhydroxylamine:

Modified Kme peptide (1eq., 0.027 mmol) in 360 puL of 10 mM sodium phosphate buffer (Nap,

pH 7.5), and 40 pL of ACN, 5 eq of cysteine methyl ester or O-benzylhydroxylamine (5eq, 0.135

mmol) was added. The reaction mixture was incubated at 25 °C in the incubator for 5 h. The

reaction mixture was filtered and purified by HPLC to obtain the product. HPLC was carried out

with 1 % formic acid: water (solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate =

1.0 mL/min, detection wavelength 220 nm.
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Supplementary Figure 11: Selective enrichment of Kmel containing peptides in a complex
cell lysate mixture by TCC

General procedure for tyrosine blocking bySuttex

To the peptide NH2-FK(me)>AGSSKmeFS (1 eq., 0.00088 mmol), Ac-AKTK(me)QTAFKS (1
eq., 0.00088 mmol) and cell lysate (100 ul) in 200 pL of 10 mM sodium phosphate buffer (Nap,
pH 7.5), 2mg of Suttex (10 eqg, 0.0088 mmol) was added, the reaction was allowed to stir at 25
°C for 60 min. The reaction mixture was directly used for next step without further purification.

Procedure for oxime enrichment of Kmel containing peptide:

300
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20 eq of K2CO3(0.0176 mmol) in 50 pL of 10 mM sodium phosphate buffer (Nap, pH 7.5) and
20 eq of 2d (0.0176 mmol) in 50 uL. ACN were added, the reaction mixture was incubated at 25
°C for 1 h. The reaction mixture was directly used for next step without further purification. 30
eq of CuCl (0.0264 mmol) in 50 ul ACN was added into the reaction mixture, the reaction
mixture was stirred in incubator at 60 °C. After 12 h, O-benzylhydroxylamine (15 eq, 0.014
mmol) was added to the mixture, the reaction mixture was incubated at 25 °C in the incubator for
5 h. The crude was filtered and purified by HPLC to obtain the oxime product. HPLC was
carried out with 1 % formic acid: water (solvent A): acetonitrile (solvent B); 0-80 % in 30 min,

flow rate = 1.0 mL/min, detection wavelength 220 nm
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Supplementary Figure 12: Single-molecule sequencing for identification of Kmel sites by

TCC
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Supporting Information for Chapter Three:
Supplementary Figure 1. Synthesis of different K-me-DM probes

Synthesis of intermediate b3

DSC, NEt
/\/0\/\ TSC', Nth - O ’ 3 -
HO NH: “pemrt, an > HO™ > > "NHTs "acN, a0°c, 1h
b1 b2, 95%
o
o
N_ o
oJ\o/\/ ~"NHTs
o b3, 83 %

Synthesis of intermediate b2

2-(2-aminoethoxy)ethan-1-ol b1 (3.1 g, 21.0 mmol), Netz (4.4 ml, 31.5 mmol), and TsCI (4 g, 21
mmol) were added sequential into dry DCM at 25 °C. The mixture was warmed to room
temperature and stirred for 3 hours. The reaction mixture was washed with saturated aqueous
NaHCOz solution for 3 times. The organic layer was collected, dried over anhydrous MgSQsa,
filtered, and concentrated under the reduced pressure. The residue was purified by the column
chromatography (hexane: ethyl acetate 2:1) to yield compound b2 as colorless oil (5.16 g, 95 %).
1H NMR (600 MHz, Chloroform-d) & 7.75 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 3.71 —

3.66 (M, 2H), 3.48 (ddd, J = 7.9, 5.0, 4.0 Hz, 4H), 3.11 (dd, J = 5.4, 4.5 Hz, 2H), 2.41 (s, 3H).
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Synthesis of intermediate b3

Compound b2 ( 1 g, 3.86 mmol) was dissolved in 28 mL dry ACN. To the solution,
triethylamine ( 1 mL, 7.72 mmol) and disuccinimidyl carbonate (DSC, 2 g, 7.72 mmol) was
added. The reaction was stirred at 40 °C. After 1 hour The reaction mixture was concentrated

under reduced pressure and purified by flash column chromatography (hexane: ethyl acetate 1:1)

to obtain compound b3 as colorless oil (1.29 g, 83 %).

Synthesis of compound b9
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Synthesis of intermediate b5

1. NaNO,, HCI, 10 min

> o/
2. NaN,, H,0, 4h
N

3
b6, 78 %
Mes

N
N'N:<N]

N:

b8, 90 %

4-Aminobenzoic acid (10 g, 73 mmol) was dissolved in dried methanol 100 ml and the mixture

was cooled with an ice bath to 0°C. Subsequently, thionyl chloride (15.8 mL, 219 mmol) was

added dropwise and the solution was stirred at room temperature overnight. The solution was

neutralized with saturated NaHCOs-solution and then K,COs was added till a pH-value of eight

was acquired. Precipitating salts were dissolved by addition of water. Afterwards the organic

phase was extracted with DCM and the combined organic layers were dried over sodium sulfate,

filtered off, and concentrated under the reduced pressure to obtain compound b5 as white solid

(10.4 g, 95%). H NMR (600 MHz, Chloroform-d)  8.06 — 8.00 (m, 2H), 7.09 — 7.02 (m, 2H),

3.91 (s, 3H).
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Compound b5 (3 g, 19.8 mmol) was dissolved in concentrated HCI 13 ml and H2O 7 ml and the

mixture was cooled to 0 °C. A solution of NaNO (1.34 g, 20.06 mmol) in 3 ml of water was

added dropwise with a dropping funnel and the reaction was allowed to stir for 10 min at 0 °C.

At 0 °C, a solution of NaN3 (1.3 g, 20.06 mmol) in 7 ml of water was added dropwise with a

dropping funnel and the reaction was allowed to heat to r.t for 4 h. The crude reaction mixture

was extracted two times with diethyl ether and one time with water. The organic layer was dried

using anhydrous sodium sulphate and concentrated under reduced pressure yielding the azide as

yellow crystal (2.74 g, 78%). The crude products were directedly used for the next step without

the purification.
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Synthesis of intermediate b7

To a solution of methyl 4-azidobenzoate b6 (0.4 g, 1.18 mmol) in 10 mL dry THF, 1,3-
dimesitylimidazolium chloride (0.2 g, 1.18 mmol) was added and the solution was cooled for 20
min. To this solution, 0.11 g NaH (1.24 mmol, 60% in mineral oil) was added at 0 °C, and the
reaction was allowed to stir for 18 h at room temperature .Next, the reaction was quenched with
10 mL water and 30 mL ethyl acetate was added to it. The organic layer washed with 10 mL
brine and dried on anhydrous sodium sulfate. Finally, the organic layer was evaporated to give
compound b7 as bright yellow solid (369.1 mg, 65%). 1H NMR (600 MHz, Chloroform-d) 6
7.69 (d, J = 8.8 Hz, 2H), 7.00 (s, 4H), 6.63 (d, J = 1.1 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 3.85 (s,

3H), 2.37 (s, 6H), 2.15 (s, 12H).
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Synthesis of intermediate b8
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To a methanolic solution of intermediate 7 (57 mg, 0.118 mmol in 3 mL methanol), 380 pl of
NaOH solution was added (from a stock solution of 0.1 g NaOH in 5 mL water) in a drop-wise
manner and the reaction was refluxed for 12 h. Next, few drops of glacial acid were added to
neutralize the reaction mixture. The precipitate was collected and dried under reduced pressure to
obtain compound b6 as bright yellow powder (49.6 mg, 90 %). *H NMR (600 MHz, Methanol-

da) § 7.65 (d, J = 8.2 Hz, 2H), 7.12 (s, 2H), 7.07 (s, 4H), 6.42 (d, J = 8.2 Hz, 2H), 2.36 (s, 6H),

2.13 (s, 12H).
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Synthesis of intermediate b9

0.17 g of intermediate b8 was dissolved in 7 mL dry DMF. To this solution 0.14 g of EDC (0.73
mmol) and 83.7 mg of NHS (0.73 mmol) and was added and stirred for 12 h. Next, the reaction
mixture was washed with ethyl acetate and brine for 3 times. The ethyl acetate solution was dried
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over anhydrous sodium sulfate and evaporated to give the crude compound. The crude
intermediate was purified by resolidification with Hex:DCM (95:5) to obtain the pure compound
b9 as bright yellow powder (147.9 mg, 72%). *H NMR (600 MHz, Chloroform-d) § 7.76 (d, J =
8.6 Hz, 2H), 7.00 (s, 4H), 6.66 (d, J = 0.8 Hz, 2H), 6.58 (d, J = 8.6 Hz, 2H), 2.87 (s, 4H), 2.36 (s,
7H), 2.14 (s, 12H). 3C NMR (151 MHz, cdcl3) & 172.47, 169.48, 161.86, 139.07, 134.80,

133.69, 130.97, 129.42, 121.15, 117.54, 98.39, 98.38, 98.37, 36.85, 25.66, 21.09, 17.88.
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Mes”
OSu pog b11, 43 %O
(0]
o
SuOJ\O/\/ " NHTs .
b11 + b3 Pyridine _ Al

DMF, rt, 12h  (73%)
Synthesis of intermediate b11

To a solution of intermediate b9 (0.27 g, 0.48 mmol) in 25 mL of ACN, histamine
dihydrochloride (83.2 mg, 0.45 mmol) in 1.2 mL of 1M NaOH(aq) was added dropwise at 0 °C.

The reaction was allowed to stir for 2 h at room temperature .Next, the ACN was removed under
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the reduced pressure, the mixture was washed with EA and brine for three times. The organic
layer was dried using anhydrous sodium sulphate and concentrated under reduced pressure. The
crude product was purified by resolidification with Hex:DCM (95:5) to obtain the pure
compound b11 as bright yellow powder (115.2 mg, 43%). *H NMR (600 MHz, Methanol-d4) §
7.56 (d, J = 2.4 Hz, 1H), 7.44 (dt, J = 8.6, 1.9 Hz, 2H), 7.05 (d, J = 2.6 Hz, 4H), 7.02 (t, J = 2.0
Hz, 2H), 6.82 (s, 1H), 6.43 (dt, J = 8.6, 2.0 Hz, 2H), 3.55 (tt, J = 7.4, 1.9 Hz, 2H), 2.88 — 2.81 (m,
2H), 2.36 (s, 6H), 2.13 (t, J = 1.9 Hz, 13H). 3C NMR (151 MHz, cd3od) & 179.70, 172.47,
161.24, 156.91, 141.66, 139.09, 137.87, 134.74, 134.60, 128.94, 127.14, 119.95, 118.03, 94.34,

94.32, 41.99, 39.55, 19.79, 16.60.
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Synthesis of probe Al-I

A solution of b11 (50 mg, 89 umol), b3 (139 mg, 134 umol), and pyridine (65 pL, 267 pmol) in
dry DMF (5 mL) was stirred for 12 h at rt. After removal of the solvent in vacuo, the residue was
washed with EA and brine for 3 times . The organic layer was drying over Na,SOa4. After
removal of the solvent by evaporation, the residue was purified by flash column chromatography
on SiO2 (DCM : MeOH =50 : 1 — 20 : 1) to produce the probe Al-I as a bright yellow oil (55
mg, 73%). *H NMR (600 MHz, Chloroform-d) & 8.07 (d, J = 1.3 Hz, 1H), 7.68 (d, J = 8.3 Hz,
1H), 7.43 (d, J = 8.7 Hz, 2H), 7.26 — 7.22 (m, 6H), 7.05 (s, 2H), 6.97 (s, 4H), 6.59 (s, 1H), 6.53
(d, J = 8.1 Hz, 1H), 4.49 — 4.40 (m, 2H), 3.71 — 3.68 (M, 4H), 3.51 (t, J = 5.2 Hz, 2H), 3.09 (g, J

= 5.4 Hz, 2H), 2.82 (t, J = 6.2 Hz, 2H), 2.37 (s, 3H), 2.34 (s, 6H), 2.13 (s, 13H).
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N=N NEt N=N N
/ NH — 3 /
Mes + \OJ\/\/ 2 DMF, rt, 3h Mes
b9 b11 b12
o (o}
o D9 NH
N °>_/_/
(o]
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Mes\ Mes.\
N N
N ] N=C
N=N N N=N /N
Mes/ Mes
NaOH b13, 82% (2 steps) \us Epcy b14
—_——
MeOH, rt, 2 h o DMF, rt, 12 h o
NH NH
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HO 0
Su
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N
/N:< ]
N=N /N
Histamine 3 Mes
DMF, rt, 2h

H

o
H N
I/N o) >_/—/ b15, 24% (2 steps)
l\)—\>
/
N NH

Synthesis of compound b12

To a solution of intermediate b9 (0.29 g, 0.53 mmol) in 9 mL of dry DMF, compound b1l (121
mg, 0.79 mmol), and triethyl amine (110 uL, 0.79 mmol) were added at room temperature. The
reaction was allowed to stir for 3 h at room temperature .Next, the mixture was washed with EA
and brine for three times. The organic layer was dried using anhydrous sodium sulphate and
concentrated under reduced pressure. The crude product b12 was applied to the next step directly

without further purification.
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Synthesis of compound b13

To a methanolic solution of intermediate b14 (0.53 mmol in 5 mL methanol), 5 mL of 25 M
NaOH solution was added in a drop-wise manner and the reaction was stirred at 25 °C for 12 h.
Next, few drops of glacial acid were added to neutralize the reaction mixture. The mixture was
washed with EA and brine for three times. The organic layer was dried using anhydrous sodium
sulphate and concentrated under reduced pressure. The crude product was purified by
resolidification with Hex:DCM (95:5) to obtain the pure compound b13 as bright yellow powder

(239.9 mg, 82% for 2 steps).

Synthesis of compound b14

0.24 g of intermediate b13 (0.43 mmol) was dissolved in 12 mL dry DMF. To this solution 0.16
g of EDC (0.87 mmol) and 100 mg of NHS (0.87 mmol) and was added and stirred for 12 h.
Next, the reaction mixture was washed with ethyl acetate and brine for 3 times. The ethyl acetate
solution was dried over anhydrous sodium sulfate and evaporated to give the crude compound.

The crude product b14 was applied to the next step directly without further purification.

Synthesis of intermediate b15

To a solution of intermediate b14 (0.43 mmol) in 10 mL of dry DMF, histamine (241 mg, 2.17
mmol) was added at room temperature. The reaction was allowed to stir for 2 h at room
temperature. Next, the mixture was washed with EA and brine for three times. The organic layer
was dried using anhydrous sodium sulphate and concentrated under reduced pressure. The crude
product was purified by resolidification in water to obtain the pure compound b15 as bright

yellow powder (66.5 mg, 24% for 2 steps). *H NMR (600 MHz, Methanol-d4) & 7.55 (s, 1H),
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7,51 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 12.9 Hz, 7H), 6.82 (s, 1H), 6.47 (d, J = 8.7 Hz, 2H), 3.40 (t,

J=7.2Hz, 2H), 3.34 (d, J = 6.9 Hz, 2H), 2.74 (t, = 7.2 Hz, 2H), 2.38 (s, 6H), 2.22 (d, J = 7.4

Hz, 2H), 2.15 (s, 12H), 1.88 — 1.83 (m, 2H).
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Synthesis of probe Al-I111

A solution of b15 (50 mg, 104 pumol), b3 (139 mg, 156 pumol), and pyridine (60 pL, 312 pmol) in
dry DMF (6 mL) was stirred for 12 h at rt. After removal of the solvent in vacuo, the residue was
washed with EA and brine for 3 times . The organic layer was drying over Na>SOs. After
removal of the solvent by evaporation, the residue was purified by flash column chromatography
on SiO2 (DCM : MeOH =50 : 1 — 20 : 1) to produce the probe Al-I as a bright yellow oil (54.1
mg, 56%).

Synthesis of SP-I
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0\\3// Propargylamine, TEA _ 0\ 2
C|/ ci DCM, 0°C, 1h
b16 b17 81%
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0 (0]

NH ||
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N=N o
[ —N b8 b19 b20, 5%

@*Nﬂ
HN O, // TEA > SP-l
DCM, rt, 12h
Mes\N r‘I,Mes (64%)
b20 HO

Synthesis of mtermedlate bl7

To the solution of b16 (chlorosulfonyl)benzoyl chloride (287 mg, 1.2mmol) and TEA (280 pL,
2.0 mmol) in DCM (5mL) was added dropwise the solution of propargylamine (64 pL,1.0mmol)
in DCM (10 mL).The reaction mixture was stirred for 1 h at 0°C. After removal of the solvent by
evaporation, the residue was purified by flash column chromatography on SiO2 (DCM : AcOEt
=9: 1) to give b17 as a colorless oil (231 mg, 96 %). *H NMR (600 MHz, Chloroform-d) § 8.45
(s, 1H), 8.23 (dd, J = 7.8, 1.4 Hz, 1H), 8.16 — 8.09 (m, 1H), 7.70 (t, J = 7.9 Hz, 1H), 7.44 (t, ] =

5.3 Hz, 1H), 4.29 — 4.22 (m, 2H), 2.27 (s, 1H).
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Synthesis of intermediate b18

To a solution of intermediate b9 (0.088 mmol) in 5 mL of dry DMF, ethylenediamine (245 pL,
3.67 mmol) was added at room temperature. The reaction was allowed to stir for 2 h at room
temperature. Next, the mixture was washed with EA and brine for three times. The organic layer
was dried using anhydrous sodium sulphate and concentrated under reduced pressure. The crude
product was purified by resolidification in DCM : Hex = (95:5) to obtain the pure compound b18
as bright yellow powder (38.0 mg, 85%). 'H NMR (600 MHz, DMSO-d6) § 7.49 (d, ] = 8.7 Hz,
2H), 7.26 (s, 2H), 7.09 (s, 4H), 6.35 (d, J = 8.6 Hz, 2H), 3.22 (g, J = 6.3 Hz, 2H), 2.66 (t, J = 6.5

Hz, 1H), 2.36 (s, 6H), 2.07 (s, 13H).
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Synthesis of intermediate b20

The solution of 6-Hydroxynicotinic acid (14.6 mg, 0.106 mmol), b18 (79 mg, 0.155 mmol),
HOBt*H20 (20 mg, 0.13 mmol), EDCI*HCI (25 mg, 0.13 mmol) and TEA (36.5 pL, 0.26 mmol)
in DMF (0.5 mL) was stirred for 12 h at rt. After removal of the solvent by evaporation, the
residue was purified by resolidification in Hex : DCM (95:5) to obtain the pure compound b20 as
bright yellow powder (36.7 mg, 55%). *H NMR (600 MHz, Chloroform-d) & 7.99 (s, 2H), 7.75
(d, J = 9.2 Hz, 1H), 7.32 (d, J = 8.1 Hz, 2H), 6.91 (d, J = 17.5 Hz, 4H), 6.60 (d, J = 2.9 Hz, 2H),

6.36 — 6.23 (M, 2H), 3.49 — 3.44 (m, 2H), 3.44 — 3.39 (m, 2H), 2.29 (s, 6H), 2.07 (s, 13H).
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Synthesis of probe SP-I

To the solution of b20 (25 mg, 39 pmol) and TEA (5.5 mL, 39 mmol) in DCM (10.4 mL), b17
(101 mg, 396 pmol) was added. The reaction mixture was stirred for 12 h at rt. After removal of
the solvent by evaporation, the residue was purified by flash column chromatography on SiO>
(DCM : MeOH =50 : 1 — 20 : 1) to produce the probe SP-1 as a bright yellow solid (31.2 mg,
64%). *H NMR (600 MHz, Chloroform-d) & 8.38 (d, J = 38.9 Hz, 1H), 8.23 (d, J = 8.6 Hz, 1H),
8.02 (dd, J = 24.4, 8.1 Hz, 1H), 7.40 — 7.29 (m, 2H), 7.27 (s, 1H), 7.01 — 6.90 (m, 5H), 6.78 (s,
1H), 6.29 (d, J = 8.4 Hz, 1H), 4.14 (d, J = 5.6 Hz, 1H), 3.54 (s, 2H), 3.47 (g, J = 6.5, 5.5 Hz, 4H),

2.31 (s, 6H), 2.07 (s, 12H).
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Synthesis of SP-II

o}
o
N
_N HN__O o
N + e TEA o SP-II
P& “=3 DCM, rt, 3h ~  (70%)
Mes— - > N-Mes = (o] Y 0
- g
b2o0 HO™ 'N b22
Synthesis of probe SP-11

To the solution of b20 (20 mg, 31.7 umol) and TEA (5.2 mL, 31.7 mmol) in DCM (8.1 mL), b22
(60.4 mg, 317 umol) was added. The reaction mixture was stirred for 3 h at rt. After removal of

the solvent by evaporation, the residue was purified by flash column chromatography on SiO-
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(DCM : MeOH=20:1—15:1— 7: 1) to produce the probe SP-1I as a bright yellow solid
(17.4 mg, 70%).

Synthesis of NASA-|
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O H
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Synthesis of intermediate b24

To a stirred solution of 4-sulfamoylbenzoic acid b23 (40 mg, 0.19 mmol) in dry DMF 1 mL was
added b18 (100 mg, 0.19 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
(EDC) (56.2 mg, 0.29 mmol), HOBt*H>O (20 mg, 0.13 mmol) (45 mg, 0.29 mmol) and N, N-

diisopropylethylamine (DIEA) (0.1 mL, 0.59 mmol). The mixture was stirred overnight at room
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temperature. The solution was dissolved in DCM and washed with Sat. NaHCQO3 for three times.
The organic layer was dried over MgSO4, filtered and evaporated to yield crude compound. The
residue was purified by resolidification in ether : methanol (95:5) to obtain the pure compound
b24 as bright yellow powder (43.4 mg, 32%). *H NMR (600 MHz, Methanol-d4) § 7.98 — 7.91
(m, 4H), 7.51 (d, J = 8.7 Hz, 2H), 7.17 — 7.12 (m, 2H), 7.08 (s, 3H), 6.47 (d, J = 8.7 Hz, 2H),

3.59 (s, 4H), 2.37 (s, 6H), 2.15 (s, 12H).
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Synthesis of intermediate b26

To a stirred solution of compound b24 (27 mg, 0.04 mmol) in dry DMF (0.5 mL) was added
hexynoic acid b25 (7 pL, 0.06 mmol), EDC (11.2 mg, 0.058 mmol), 4-dimethylaminopyridine
(DMAP) (1.5 mg, 0.011 mmol) and DIEA (34 pL, 0.2 mmol). The mixture was stirred 8 h at

room temperature. The solvent was removed under reduced pressure, and the residue was
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purified by resolidification in Hex : DCM (95:5) to obtain the pure compound b256 as bright

yellow powder (8.1 mg, 32%).

Synthesis of NASA-I

To a stirred solution of compound b26 (8.3 mg, 10 umol) in dry DMF (0.1 mL) was added
iodoacetonitrile (7.6 pL, 0.105 mmol) and Cs2COs (5.1 mg, 15 pmol). The mixture was stirred 1
h at room temperature. The solvent was removed under reduced pressure, and the residue was
purified by flash chromatography on silica gel (DCM : MeOH = 50:1—30:1—10:1) to yield

NASA-I as brown oil (2.9 mg, 35%).

Synthesis of NASA-II
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Synthesis of intermediate b28

To a stirred solution of compound b24 (40 mg, 0.057 mmol) in dry DMF (0.7 mL) was added
b27 (24.3 mg, 0.086 mmol), EDC (17 mg, 0.086 mmol), 4-dimethylaminopyridine (DMAP) (2.5
mg, 0.017 mmol) and DIEA (50 pL, 0.285 mmol). The mixture was stirred 12 h at room
temperature. The solvent was removed under reduced pressure, and the residue was purified by
flash chromatography on silica gel (DCM : MeOH = 10:1) to yield b28 as yellow oil (13.6 mg,
25%).

Synthesis of NASA-II
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To a stirred solution of compound b28 (10 mg, 10 umol) in dry DMF (0.1 mL) was added
iodoacetonitrile (2.2 pL, 0.03 mmol) and Cs2COs (5.1 mg, 15 pmol). The mixture was stirred 1 h
at room temperature. The solvent was removed under reduced pressure, and the residue was
purified by flash chromatography on silica gel (DCM : MeOH = 50:1—30:1—10:1) to yield

NASA-II as brown oil (4.6 mg, 46%).

Synthesis of Al-Coumarin

O~ OH EDC'HCI, HOBt
HO NH, + DMF, rt, 12h N\/\o/\/OH
b29
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\Q\( o \ﬂ/ DMF, rt, 8h 579 (2 steps)

Synthesis of intermediate b30

To a solution of 2-Oxo-2H-chromene-6-carboxylic acid (1.4 g, 7.65 mmol) in anhydrous DMF
(15 mL) was added 1-hydroxybenzotriazole monohydrate (HOBt) (1.5 g, 9.79 mmol) and 1-
ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) (1.94 g, 10.12 mmol). After
stirring at room temperature for 10 min, 2-(2-aminoethoxy)ethanol (990 pL, 9.98 mmol) was
added to the above solution. The mixture was allowed to stir at 25 °C for 12h. After evaporation,

the crude was dissolved in DCM and washed three times with saturated aqueous NaHCOs. The
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organic layer was dried over anhydrous Na2SQOg, filtered, and concentrated. The resulting residue
was recrystallized with Et,O to yield compound b30 as yellow solid (1.52 g, 53%). *H NMR
(600 MHz, Chloroform-d) & 9.09 (s, 1H), 8.87 (d, J = 2.9 Hz, 1H), 7.73 — 7.59 (m, 2H), 7.35
(ddd, J = 10.4, 7.3, 2.4 Hz, 2H), 3.76 — 3.73 (m, 2H), 3.66 (d, J = 1.8 Hz, 4H), 3.63 — 3.60 (m,

2H).
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Synthesis of intermediate b31

Compound b30 (500 mg, 1.8 mmol) was dissolved in 13 mL dry ACN. To the solution,
triethylamine ( 0.5 mL, 3.6 mmol) and disuccinimidyl carbonate (DSC, 924.2 mg, 3.6 mmol)
was added. The reaction was stirred at 40 °C. After 1 hour the reaction mixture was concentrated
under reduced pressure and purified by flash column chromatography (DCM : MeOH =50 : 1) to
obtain compound b31 as yellow oil. The intermediate b31 was applied to the next step directly

without purification.
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Synthesis of probe Al-Coumarin

A solution of b11 (50 mg, 89 umol), b31 (56 mg, 134 umol), and pyridine (50 pL, 267 pumol) in
dry DMF (5 mL) was stirred for 12 h at rt. After removal of the solvent in vacuo, the residue was
washed with EA and brine for 3 times . The organic layer was drying over Na,SOa4. After
removal of the solvent by evaporation, the residue was purified by flash column chromatography
on SiO2 (DCM : MeOH =50 : 1 — 20 : 1) to produce the probe Al-I as a bright yellow oil (43.9
mg, 52% for 2 steps).

Synthesis of Al-Azide

TsCl - OTs NaN3 - N
/\/\/\/OH 1 » NN T » N N\ &
HO pyridine, 6 h,rt  HO DMF, 12h,rt HO

b32 b33, 90% b34, 75%

o

DSC, NEt, )J\
> N_ /\/\/\/N
ACN, 40°C, 1h </;/ro o 3

F\N—Mes =1
Mes/ \<\ 0 lo)
NN ¥ q L Pyridine ,  Al-Azide
07 0 TN,

N@NH DMF, rt, 8h 45% (2 steps)
(0]

b1 © b35

Synthesis of intermediate b33

To a stirring solution of 1,6-hexanediol (4.6 g, 39.1 mmol) in pyridine (5 mL) was added Ts-Cl
(4.03 g, 19.5 mmol) and the reaction mixture was stirred 6 h at room temperature. Next, the
reaction was quenched by the addition of an excess of 1 M HCI. The organic layer was isolated
and washed sequentially with saturated aquesous NaHCO3, then brine. The organic layer was
then dried over Na>SO4 and concentrated by rotary evaporation. The crude compound was

purified by flash silica gel chromatography (EtOAc/hexanes = 1 : 2) to afforded b33 as a
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colorless oil in 90% vyield (9.5 g, 90%). *H NMR (600 MHz, Chloroform-d) & 7.71 (d, J = 8.3
Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 3.96 (d, J = 6.5 Hz, 2H), 3.52 (d, J = 6.6 Hz, 2H), 2.38 (s, 3H),

2.25 (s, 1H), 1.61 — 1.57 (m, 2H), 1.47 — 1.43 (m, 2H), 1.26 — 1.25 (m, 2H), 1.19 (t, J = 7.2 Hz,
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Synthesis of intermediate b34

To a stirring solution of the b33 (326 mg, 1.2 mmol) in DMF (5 mL) was added sodium azide
(94 mg, 1.45 mmol) and the mixture was stirred at 25 °C for 12h. The reaction was diluted with
water and extracted with ethyl acetate for three times. The combined organic extracts were
washed with brine for three times. The orgaic layer was then dried over Na.SO4 and concentrated
by rotary evaporation to afford the crude. The residue was purified by flash silica gel

chromatography (EtOAc/hexanes = 1 : 10) to afforded b34 as a yellow oil (128 mg, 75%). *H
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NMR (600 MHz, Chloroform-d) & 3.56 (t, J = 6.6 Hz, 2H), 3.22 (t, J = 6.8 Hz, 2H), 2.44 (s, 1H),

1.61 - 1.47 (m, 4H), 1.41 — 1.30 (m, 4H).
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Synthesis of intermediate b35

Compound b34 (227 mg, 1.58 mmol) was dissolved in 12 mL dry ACN. To the solution,
triethylamine ( 0.44 mL, 3.17 mmol) and disuccinimidyl carbonate (DSC, 813.3 mg, 3.17 mmol)
was added. The reaction was stirred at 40 °C. After 1 hour the reaction mixture was concentrated
under reduced pressure and purified by flash column chromatography (EtOAc/hexanes =1 : 1) to
obtain compound b35 as yellow oil. The intermediate b35 was applied to the next step directly

without purification.

Synthesis of Al-Azide
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A solution of b1l (44 mg, 78.5 umol), b35 (33.4 mg, 117 umol), and pyridine (44 uL, 235.5
pmol) in dry DMF (4.5 mL) was stirred for 8 h at rt. After removal of the solvent in vacuo, the
residue was washed with EA and brine for 3 times. The organic layer was drying over Na>SOa.
After removal of the solvent by evaporation, the residue was purified by flash column
chromatography on SiO2 (DCM : MeOH = 50 : 1 — 20 : 1) to produce the probe Al-Azide as a
bright yellow oil (25.7 mg, 45% for 2 steps).

Synthesis of Al-Alkyne

o)

o o)
NHS, EDC.HCI \
HO X DCM,0°Ctort, 2h "0 A
b36 o b37, 85%
o)
o TEA g o
HO > \/\NHZ DCM, rt, 3h HO " ~""N S
H S
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Mes/N\<\ j\ o
N-N - o o/\/o\/\H)K/\\\ __Pyridine _,_ Al-Alkyne
0

N NH DMF, rt, 8h 79% (2 steps)

b11 o b39

Synthesis of intermediate b37
0.3 g of 4-pentynoic acid b36 was dissolved in 15 mL dry DCM. To this solution 1.17 g of EDC
(6.1 mmol) and 402 mg of NHS (3.49 mmol) and was added and stirred for 2 h. Next, the

reaction mixture was washed with ethyl acetate and brine for 3 times. The ethyl acetate solution
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was dried over anhydrous sodium sulfate and evaporated to yield compound b38 as colorless
crystal (507.4 mg, 85%).

Synthesis of intermediate b38

To the solution of b37 (1.2 g, 6.15 mmol) and TEA (1.7 mL, 12.3 mmol) in DCM (20 mL), 2-(2-
aminoethoxy)ethan-1-ol bl (2.6 ml, 25.84 mmol) was added. The reaction mixture was stirred
for 3 h at rt. Next, the reaction mixture was washed three times with saturated aqueous NaHCO3,
The organic layer was then dried over Na;SO4 and concentrated by rotary evaporation to yield
compound b38 as colorless oil (933.9 mg, 82%). *H NMR (600 MHz, Chloroform-d) & 3.96 (s,
1H), 3.61 (d, J = 4.1 Hz, 2H), 3.45 (g, J = 5.3, 4.9 Hz, 5H), 3.34 (g, J = 5.3 Hz, 2H), 2.39 (dt, J =

7.0, 3.5 Hz, 2H), 2.31 (t, J = 7.6 Hz, 2H).
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Synthesis of intermediate b39
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Compound b38 (240 mg, 1.29 mmol) was dissolved in 9.4 mL dry ACN. To the solution,
triethylamine ( 0.36 mL, 2.59 mmol) and disuccinimidyl carbonate (DSC, 664.6 mg, 2.59 mmol)
was added. The reaction was stirred at 40 °C. After 1 hour the reaction mixture was concentrated
under reduced pressure and purified by flash column chromatography (EtOAc/hexanes =1 : 1) to
obtain compound b39 as yellow oil. The intermediate b39 was applied to the next step directly
without purification.

Synthesis of Al-Alkyne

A solution of b11 (62 mg, 110 umol), b39 (54 mg, 166 pmol), and pyridine (54 uL, 332 umol) in
dry DMF (6 mL) was stirred for 12 h at rt. After removal of the solvent in vacuo, the residue was
washed with EA and brine for 3 times. The organic layer was drying over Na;SOa. After removal
of the solvent by evaporation, the residue was purified by flash column chromatography on SiO;
(DCM : MeOH =50:1 — 20 : 1) to produce the probe Al-Alkyne as a bright yellow oil (67.0

mg, 79% for 2 steps).
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Synthesis of unmasked-Al-I

(o}

COOH COOH
/©/ Boc,0, NaOH /©/ NHS,DCC osu
H,N dioxane, rt, 24h g, 1N DMF, rt, 12h BocHN
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N=\

~_ NH
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i JU
. . (o]
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b44, 51%

BocHN
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Synthesis of intermediate b41

4-aminobenzoic acid b40 (73 mmol) was dissolved in a mixture of 1,4 dioxane (30 mL) and
NaOH 0.5 N (30 mL) at 0° C and Boc20(80.3 mmol) was added. Then the mixture was allowed
to react at room temperature, under magnetic stirring for 24 hours. Next, the dioxane was
removed under reduced pressure and the pH of the reaction was adjusted to 2 with 2N HCI. The
obtained mixture was then extracted with ethyl acetate for three times, and the combined organic

phases were dried over Na>SOg, filtered off and concentrated under reduced pressure to give the
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desired intermediates b41 (15.9 g, 92%). *H NMR (500 MHz, DMSO-d6) § 9.73 (s, 1H), 7.82 (d,

J=8.3 Hz, 2H), 7.54 (d, J = 8.7 Hz, 2H), 1.46 (s, 9H).
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Synthesis of intermediate b42

2 g of b4l was dissolved in 30 mL dry DMF. To this solution 2.1 g of DCC (10.12 mmol) and
1.16 g of NHS (10.12 mmol) was added and stirred for 12 h at room temperature . Next, the
reaction mixture was washed with ethyl acetate and brine for 3 times. The ethyl acetate solution
was dried over anhydrous sodium sulfate and evaporated to yield the crude compound. The
residue was purified by resolidification in Hex : DCM (95:5) to obtain the pure compound b42 as
white solid (2.45 g, 87%). H NMR (600 MHz, Chloroform-d) § 8.02 (d, J = 8.9 Hz, 2H), 7.48

(d, J = 8.9 Hz, 2H), 2.92 — 2.87 (m, 4H), 1.51 (s, 9H).
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Synthesis of intermediate b43

To a solution of intermediate b42 (1.49 mmol) in 10 mL of dry DMF, histamine (332.6 mg, 2.99
mmol) was added at room temperature. The reaction was allowed to stir for 2 h at room
temperature. Next, the mixture was washed with EA and brine for three times. The organic layer
was dried using anhydrous sodium sulphate and concentrated under reduced pressure. The crude
product was purified by resolidification in Hex : DCM = 95 : 5 to obtain the pure compound b43
as white solid (740 mg, 75%). *H NMR (600 MHz, Methanol-ds) § 7.71 (ddd, J = 9.1, 5.5, 2.2
Hz, 2H), 7.59 (s, 1H), 7.51 — 7.45 (m, 2H), 6.86 (s, 1H), 3.58 (d, J = 6.2 Hz, 2H), 2.88 (t, J = 7.2

Hz, 2H), 1.52 (s, 10H).
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Synthesis of intermediate b44

A solution of b43 (27.5 mg, 83 umol), b3 (50 mg, 125 pmol), and pyridine (50 pL, 250 pmol) in
dry DMF (5 mL) was stirred for 12 h at rt. After removal of the solvent in vacuo, the residue was
washed with EA and brine for 3 times. The organic layer was drying over Na>SOa. After removal
of the solvent by evaporation, the residue was purified by flash column chromatography on SiO-
(DCM : MeOH =50 : 1 — 20 : 1) to produce the intermediate b44 as a colorless oil (26.0 mg,
51%).

Synthesis of unmasked-Al-I

The appropriate compound b44 (0.083 mmol) was dissolved in a mixture of dioxane (5 mL) and

HCI 4N (2 mL) and stirred for 24 h. Then the solvent was evaporated under vacuum and the

crude was purified resolidification in ether : methanol = 95 : 5 to obtain the pure deprotect
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intermediate. To this 48% HBF4 (100 pL), EtOH (50 pL) and H.O (50 pL), the reaction mixture
was cooled down to 0 °C, the NaNO- (1.2 equiv., 0.1 mmol) in distilled H,O (50 pL) was added
dropwise to the mixture over a period of 5 min. The reaction was allowed to stir at 0 °C for 45
min. The residue was washed with Et2O, and dried under vacuum to afford unmasked-Al-I as

yellow powder (3.6 mg, 72%)

Supplementary Figure 2. Optimization of intramolecular reaction under UV lamp with
different proline containing peptides and chemo selectivity study

General procedure for triazene cyclization:

1 mg (1eq, 0.0014 mmol) of k-2, k-3, k-4 peptide with 3 eq of K2CO3z (0.0042 mmol) in 240 pl
of 10 mM sodium phosphate buffer (Nap, pH 7.5), and 3 eq of Al, SP, NASA (0.0042 mmol) in
160 ul DMF were mixed together, the reaction mixture was incubated at 25 °C for 1 h under 365
nm light. Next, the rection mixture was incubated at 37 °C. After 12 h, 20 pl of TFA was added
to yield the intermolecular modification product. The reaction mixture was filtered and purified
by HPLC to obtain the aldehyde product. HPLC was carried out with 1 % formic acid: water
(solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection

wavelength 220 nm.
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Supplementary Figure 3. Chemoselectivity and control study of Al-I probe

General procedure for triazene cyclization:

(1leq, 0.0014 mmol) of C2, H2, FRQDW-NH-Ac with 3 eq of K2COz (0.0042 mmol) in 240 pl
of 10 mM sodium phosphate buffer (Nap, pH 7.5), and 3 eq of Al-1 (0.0042 mmol) in 160 pl
DMF were mixed together, the reaction mixture was incubated at 25 °C for 1 h under 365 nm
light. Next, the rection mixture was incubated at 37 °C. After 12 h, 20 pl of TFA was added to
yield the intermolecular modification product. The reaction mixture was filtered and purified by
HPLC to obtain the aldehyde product. HPLC was carried out with 1 % formic acid: water
(solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection

wavelength 220 nm.
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Supplementary Figure 4. Screening of Al-111 probe with K-2, K-3 and K-4 peptides under
UV lamp

General procedure for triazene cyclization:

1 mg (1eq, 0.0014 mmol) of k-2, k-3, k-4 peptide with 3 eq of K.CO3 (0.0042 mmol) in 240 pl
of 10 mM sodium phosphate buffer (Nap, pH 7.5), and 3 eq of Al-I1l (0.0042 mmol) in 160 pl
DMF were mixed together, the reaction mixture was incubated at 25 °C for 1 h under 365 nm
light. Next, the rection mixture was incubated at 37 °C or 25 °C. After 12 h, 20 pl of TFA was
added to yield the intermolecular modification product. The reaction mixture was filtered and
purified by HPLC to obtain the aldehyde product. HPLC was carried out with 1 % formic acid:
water (solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection

wavelength 220 nm.
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Supplementary Figure 5. Site-specific study with multiple lysins containing peptide

General procedure for triazene cyclization:

(1eq, 0.98 pmol) of PTAPKSTGGKA peptide with 3 eq of KoCO3 (2.94 umol) in 120 pl of 10
mM sodium phosphate buffer (Nap, pH 7.5), and 3 eq of Al-11I (2.94 pmol) in 80 pl DMF were

mixed together, the reaction mixture was incubated at 25 °C for 1 h under 365 nm light. Next, the

rection mixture was incubated at 37 °C. After 12 h, 20 ul of TFA was added to yield the
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intermolecular modification product. The reaction mixture was filtered and purified by HPLC to
obtain the aldehyde product. HPLC was carried out with 1 % formic acid: water (solvent A):

acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection wavelength 220

nm.

o .

B - HN NH,
~ TN A
rNH VST ém@

96 %

o

S NHy
/\W‘NH ) aﬁc‘ :ﬁeégc

o
R U OYheroy
o D983
N
N.
./.):_;\
\ 2
—
/—NH
o
)a;,]
N@_‘N\(l,‘.o
c:.‘1
“o
1
NHTs M+Na
1561
1539 \
L‘[leinh.hdn 1.\.. Amishaal AL Aol e

345



M+1]
1299

Me2)2
850

o
NH;,

Ge HN e ‘
w O OUFID B,

_m N Fy A Lk .’

600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Supplementary Figure 6. Digestion of modified peptide.

Modified peptide (0.98 umol) in 120 ul of 10 mM sodium phosphate buffer (Nap, pH 7.5) for 30
min with 20 % of trypsin at 37 °C. The reaction mixture was filtered and purified by HPLC to
obtain the fragments. HPLC was carried out with 1 % formic acid: water (solvent A): acetonitrile

(solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection wavelength 220 nm.

Supplementary Figure 7. Intramolecular reaction study of various Al analogs with
different affinity tags.

1 mg (1eq, 0.0014 mmol) of k-2 peptide with 3 eq of K2CO3z (0.0042 mmol) in 240 ul of 10 mM
sodium phosphate buffer (Nap, pH 7.5), and 3 eq of Al analogs (0.0042 mmol) in 160 pul DMF
were mixed together, the reaction mixture was incubated at 25 °C for 1 h under 365 nm light.
Next, the rection mixture was incubated at 37 °C or 25 °C. After 12 h, 20 pl of TFA was added to
yield the intermolecular modification product. The reaction mixture was filtered and purified by
HPLC to obtain the aldehyde product. HPLC was carried out with 1 % formic acid: water
(solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection

wavelength 220 nm.
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Supplementary Figure 8. Intramolecular reactivity and chemo selectivity study of
unmasked Al-I probe

1 mg (1eq, 0.00155 mmol) of PGKAKF with 3 eq of K2COs (0.0042 mmol) in 320 ul of 10 mM
sodium phosphate buffer (Nap, pH 7.5), and 3 eq of unmasked-Al (0.0042 mmol) in 80 pl DMF
were mixed together, the reaction mixture was incubated at 25 °C for 1 h. Next, the rection
mixture was incubated at 37 °C. After 6 h, 20 ul of TFA was added to yield the intermolecular
modification product. The reaction mixture was filtered and purified by HPLC to obtain the
aldehyde product. HPLC was carried out with 1 % formic acid: water (solvent A): acetonitrile

(solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection wavelength 220 nm.
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Supplementary Figure 9. Intramolecular reactivity and chemo selectivity study of

unmasked Al-I probe with K-me peptide

1 mg (1eq, 0.00155 mmol) of Ac-GKmeGKAKF with 3 eq of K2CO3z (0.0042 mmol) in 320 pl of

10 mM sodium phosphate buffer (Nap, pH 7.5), and 3 eq of unmasked-Al (0.0042 mmol) in 80

pul DMF  were mixed together, the reaction mixture was incubated at 25 °C for 1 h. Next, the

rection mixture was incubated at 37 °C. After 6 h, 20 ul of TFA was added to yield the

intermolecular modification product. The reaction mixture was filtered and purified by HPLC to

obtain the aldehyde product. HPLC was carried out with 1 % formic acid: water (solvent A):

acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection wavelength 220

nm.
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Supplementary Figure 10. Chemo-selective study of unmasked Al probe

(1eq, 0.00155 mmol) of NH2-GHGKAKF or NH>-GCGKAKF with 3 eq of K>COz (0.0042
mmol) in 320 pl of 10 mM sodium phosphate buffer (Nap, pH 7.5), and 3 eq of unmasked-Al
(0.0042 mmol) in 80 ul DMF were mixed together, the reaction mixture was incubated at 25 °C
for 1 h. Next, the rection mixture was incubated at 37 °C. After 6 h, 20 ul of TFA was added to
yield the intermolecular modification product. The reaction mixture was filtered and purified by

HPLC to obtain the aldehyde product. HPLC was carried out with 1 % formic acid: water
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(solvent A): acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection

wavelength 220 nm.

Supplementary Figure 11. Kme-Directed modification of truncated histone peptide

1.8 mg (1eq, 0.00155 mmol) of Ac-AKTK(Me)QTARKS with 3 eq of K2CO3z (0.0042 mmol) in
320 pl of 10 mM sodium phosphate buffer (Nap, pH 7.5), and 3 eq of unmasked-Al (0.0042
mmol) in 80 ul DMF were mixed together, the reaction mixture was incubated at 25 °C for 1 h.
Next, the rection mixture was incubated at 37 °C. After 6 h, 20 pl of TFA was added to yield the
intermolecular modification product. The reaction mixture was filtered and purified by HPLC to
obtain the aldehyde product. HPLC was carried out with 1 % formic acid: water (solvent A):

acetonitrile (solvent B); 0-80 % in 30 min, flow rate = 1.0 mL/min, detection wavelength 220

nm.
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NMR for Chapter One
Synthesis of Ox1

o o
ThioCDI CHal, K,CO
/\/\ - |: S 3 2 3 = |: S
HoN OH "THF rt,3 h N/E DMF, rt, 12 h N/>_ \
H
1 2 (74 %) Ox1 (79 %)

To a stirred solution of ethanolamine 1 (1.0 ml, 16.37 mmol) in THF (20 mL) was added
thiocarbonyldiimidazole (3.2 g, 16.37 mmol) at 0 °C. The reaction was allowed to warm to room
temperature and stirred at room temperature for 3 h. The reaction mixture was concentrated,
washed with aqueous sodium bicarbonate solution three times, and dried over anhydrous MgSOa.
The crude was purified by flash chromatography (hexane: ethyl acetate 1:1) to afford compound

2 as white solid (74 %, 1.4q).
0]
Was
N
H 2

IH NMR (600 MHz, d-DMSO): 5 9.89 (s, 1H), 4.56 (¢, J = 9.1 Hz 2H), 3.65 (t, J = 9.1 Hz, 2H).

13C NMR (150 MHz, d-DMSO): & 188.63, 69.82, 43.81.

To a solution of oxazolidine-2-thione 2 (967 mg, 9.35 mmol), in 10 mL DMF at 0 °C, K>.CO3
(2.3g, 9.35 mmol) was added. After 10 mins methyl iodide (641 pL, 10.3 mmol) was added drop
wise and the reaction mixture was stirred at room temperature for 12 h. The reaction mixture was
washed with ethyl acetate and brine. The organic part was dried over anhydrous MgSQOg, filtered,

and concentrated to afford compound Ox1 as brown oil (79%, 864 mg).
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N
e

o)

Ox1

IH NMR (600 MHz, CDCls): 8 4.34 (t, J = 9.4 Hz 2H), 3.85 (t, J = 9.4 Hz, 2H), 2.41 (s, 3H). 13C

NMR (150 MHz, CDCls): 6 166.81, 69.35, 54.49, 14.34.

'H NMR spectra of 2

13C NMR spectrum of 2
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13C NMR spectrum of Ox1

N\ /
LS
1a
'l l_..ll_lLlLLLl—

Synthesis of 1a

S S

A~ CS,, KOH .~ [> s __CHal, MeOH, reflux,2h [> s

HoN OH MeOH/H,0, reflux, overnight N NaOH(aq)/DCM N/ N
H

1 3 (81 %) 1a (78 %)
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IH NMR of 1a
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'H NMR of 1b
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Synthesis of Ox2
o

(o] o
+
HO NH3 Bocanhydride HO NHBoc |sobutyl chloroformate, 4-methylmorpholine - //\N NHBoc
HCl  NaHCOj; (aq), dioxane, rt, 24 h propargylamine, THF, rt, 24 h ~  H
OH OH OH
6 7 (90 %) 8 (72 %)

o o
1.3 M HCl in dioxane, rt, 12h ="\ i Mel, K,CO, ="\ NG
2. CS,, NEt;, DCM, reflux, 12 h H =s DMF, rt, 12 h H S—s
o o

9 (69 %) Ox2 (61 %)

The solution of L-serine 6 (3.5 g, 33.3 mmol) in saturated aqueous sodium bicarbonate solution
(20 mL) was cooled to 0 °C. To this, Boc2O (8.97 g, 40 mmol) in dioxane (20 mL) was added.
The reaction mixture was warmed to room temperature and stirred for 24 h. The pH of aqueous
layer was adjusted to 2 by 1M HCI (aq), followed by addition of brine. The solution was
extracted with ethyl acetate. The organic layers were dried over magnesium sulfate. Filtration
and concentration under reduced pressure afforded 7 as a colorless syrup (90%, 6.1g), which was
used without further purification. H and 3C NMR spectrum was consistent with that previously

reported?.

N-tert-butoxycarbonyl-L-serine 7 (1 g, 4.88 mmol), isobutylchloroformate (638 L, 4.88 mmol),
and 4-methymorpholine (532 pL, 4.88 mmol) were added sequentially into dry THF (20 mL)
and stirred at room temperature for 10 mins. Then, propargylamine (310 pL, 4.88 mmol) was
added into the reaction mixture stirred at 25 °C for 24 h. The reaction mixture was concentrated
under reduced pressure, then wash with ethyl acetate and brine. The organic layer was dried over
anhydrous MgSOs and concentrated by rotary evaporation. The crude was purified by

recrystallization from hexane and DCM to obtain compound 8 as white solid (72%, 850mg).

367



IH NMR (600 MHz, CDCls): 5 7.03 (s, 1H), 5.59 (s, 1H), 4.17-4.00 (m, 4H), 3.66 (m, 1H), 3.10
(s, 1H), 2.23 (s, 1H), 1.46 (s, 3 H). 3C NMR (150 MHz, d-DMSO): & 170.42, 157.14, 156.26,

80.44, 80.00, 79.08, 71.59, 55.47, 42.12, 31.56, 29.08.

N-tert-butoxycarbonyl-D-serine-N’-propargylamide 8 (500 mg, 2.06 mmol) was treated with 3M
HCI in dioxane 10 mL for 12 h. The reaction solution was removed under reduced pressure. The
intermediate was used in next step without further purification. 2-amino-3-hydroxy-N-(prop-2-
yn-1-yl) propanamide hydrochloride (2.06 mmol) was dissolved in 20 mL DCM, and
triethylamine ( 344 pL, 2.47 mmol), CS2 (150 pL, 2.47 mmol) were sequentially added. The
reaction mixture was refluxed for 12 hours. The reaction solution was concentrated by rotary
evaporation, and the residue was purified by column chromatography (hexane: ethyl acetate 1:1)

to afford compound 9 as yellow powder (69%, 261 mg).

)
H
=N N
H =5
9 o

IH NMR (600 MHz, d-DMSO): & 10.24 (s, 1H), 8.69 (t, J = 5.4 Hz 1H), 4.73 (t, J = 9.2 Hz 1H),
4.52-4.45 (m, 2H), 3.92-3.89 (m, 2H), 3.32 (s, 1H), 3.19 (s, 1H). 3C NMR (150 MHz, d-

DMSO): & 188.78, 168.47, 80.31, 73.63, 72.65, 57.66, 28.31.
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To a solution of (S)-N-(prop-2-yn-1-yl)-2-thioxooxazolidine-4-carboxamide 9 (200 mg, 1.08
mmol) in DMF (10 mL), K>COs (179 mg, 1.30 mmol) and methyl iodide (80.6 pL, 1.30 mmol)
were added sequentially. The reaction mixture was allowed to stir at room temperature for 12
hours. The reaction solution was washed with ethyl acetate and brine for 3 times. The residue
was concentrated under reduced pressure, and purified by the column chromatography (hexane:

ethyl acetate 5:1) to obtain compound Ox2 as yellow oil (130 mg, 61%).

(o]

=N N
B JK[ >
o

Ox2

IH NMR (600 MHz, CDCls): § 6.81 (s, 1H), 4.70-4.53 (m, 4H), 4.12-4.05 (m, 2H), 2.50 (s, 3H),
2.26 (M, 1H). 3C NMR (150 MHz, CDCl3): & 171.14, 170.23,79.17, 72.26, 71.93, 68.67, 29.04,

68.67.

!H NMR spectra of 8
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13C NMR spectrum of 9
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Synthesis of Ox5

o o
HO NH3 __CS,NEt; CH;l, K,CO, o N NaBH, HO N\ s
HCI THF reflux, 12 h >:s DMF, rt, overnight \%S\ CH;0H, rt,2 h O% \

OH (o]

6 10(70 %) 11 (65 %) 12 (95 %) \S
sc g /lL NH H N5<o
D N-[2-(D-bioti : .
[2-(D blotlnyIamlno)ethyI]amlng HN MN/\/ T \/K/
NEt;, DCM, rt, 3 h \ NEt;, DMF, rt, 12 h 5
13 (92 %) 0x5 (25 %)

To a suspension of L-serine methyl ester hydrochloride 6 (6.5 g, 41.8 mmol) in 60 mL of
tetrahydrofuran at 0 °C was added triethylamine (5.8 mL, 41.8 mmol), followed by the addition
of 25 mL of carbon disulfide. The reaction mixture was refluxed for 12 h. Dichloromethane was
added, and the organic solution was washed with aqueous sodium bicarbonate, dried over
MgSOa, filtered, and concentrated to provide crude as an orange-yellow oil. Column
chromatography on silica gel eluting with ethyl acetate-hexanes (1:2) provided compound 10 as

orange oil (4.8 g, 70%).

o

H
AN
(o) N
NS

(0]

IH NMR (600 MHz, CDCls): 5 7.93 (s, 1H), 4.85 (m, 2H), 4.65 (dd, J = 6.2 3.6 Hz 1H), 3.83 (s,

3H). 3C NMR (150 MHz, CDCls): § 189.95, 168.81, 72.09, 57.11, 53.41.

To a mixture of methyl (S)-2-thioxooxazolidine-4-carboxylate 10 (2 g, 12.4 mmol) and K>CO3 (2
g, 14.9 mmol) in dry DMF, CHal (924 pL, 14.9 mmol) was added. The reaction mixture was
allowed to stir at room temperature for 14 h. The reaction solution was washed with ethyl acetate

and brine for 3 times. The organic layer was collected, dried over anhydrous MgSQ, filtered,
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and concentrated under the reduced pressure. The residue was purified by the column

chromatography (hexane: ethyl acetate 3:1) to yield compound 11 as colorless oil (1.4 g, 65%).

o

~
(o) N
W

o

IH NMR (600 MHz, CDCls): § 4.58 (m, 1H), 4.42-4.51 (m, 2H), 3.68 (s, 3H), 2.38 (s, 3H). 3C

NMR (150 MHz, CDCls): 6 171.08, 169.51, 71.22, 67.95, 52.52, 52.50, 14.37.

To a solution of methyl (S)-2-(methylthio)-4,5-dihydrooxazole-4-carboxylate 11 (1.5 g, 8.6
mmol) in dried methanol (30 mL), NaBHa4 (976 mg, 25.8 mmol) was added over a period of 1 h
under ice bath. The reaction solution was allowed to warm to room temperature and stir for 3
hours. The reaction mixture was quenched by addition of water, then washed with ethyl acetate
and brine three times. The organic portion was collected, dried over anhydrous magnesium
sulfate, filtered and concentrated by rotary evaporation to obtain compound 12 as colorless oil

(1.2 g, 95%). Which was used without further purification.

HO/\[N\
S
12 >_ \

o

IH NMR (600 MHz, CDCl3): & 4.42 (t, J = 6.9 Hz, 1H), 4.25 (m, 2H), 3.57 (d, J = 10.5 Hz, 1H),
3.55 (t, J = 10.5 Hz, 1H), 2.45 (s, 3H). 3C NMR (150 MHz, CDCls): § 171.30, 168.46, 71.26,

68.15, 63.91, 60.52, 21.6, 14.3.
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(R)-(2-(methylthio)-4,5-dihydrooxazol-4-yl) methanol 12 (142 mg, 0.97 mmol) was dissolved in
10 mL dry DCM. To the solution, triethylamine (201 pL, 1.45mmol) and disuccinimidyl
carbonate (DSC, 371 mg, 1.45 mmol) was added. The reaction was stirred for 3h at room
temperature and extracted with DCM and aqueous sodium bicarbonate solution. The organic part
was collected and dried over anhydrous MgSOs, filtered, and concentrated to obtain compound
13 as colorless oil (257 mg, 92%). The NHS ester derivative 13 was used directly without further

purification.

A mixture of 13 (140 mg, 0.49 mmol) and triethylamine (67 pL, 0.49 mmol) in 5 mL of DMF
was added to biotinylethylenediamine (139 mg, 0.49 mmol) dissolved in 5 mL of DMF. The
solution was stirred under nitrogen at room temperature for 12 h, after which the solution was
evaporated to dryness under reduced pressure to give a yellow oil. The crude was purified by
column chromatography (MeOH: ethyl acetate 1: 50 to 1:7) to afford compound OXx5 as colorless

oil (56 mg, 25%).

'H NMR spectra of 10
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13C NMR spectrum 12

11 [ ]
HO N
s
o \
i , [
N\
%s
O o N=
NH H H
HE;é\\“\/\)J\N/\/N\H/Od\/O
AN o s 0

IH NMR (600 MHz, DMSO): 7.80 (s, 1H), 7.22 (s, 1H), 6.42 (s, 1H), 6.36 (s, 1H), 4.43 (t, J =
8.6 Hz, 1H), 4.31-4.29 (m, 2H), 4.13-4.11, 4.13-4.11 (m, 2H), 4.02-3.95 (m, J = 2H), 3.10-3.06
(m, 2H), 3.02-2.98 (M, 2H), 2.81 (dd, J = 7.3 5.1 Hz, 1H), 2.59-2.56 (M, 2H), 2.41 (s, 3H), 2.04
(t, J = 7.4 Hz, 2H), 2.36 (s, 3H) 1.63-1.44 (m, 4H) 1.33-1.23 (m, 2H). 3C NMR (150 MHz,
DMSO): § 177.70, 172.17, 165.92, 162.68, 156.11, 71.24, 65.20, 65.13, 61.01, 59.19, 55.37,

35.19, 30.94, 28.17, 28.02, 25.17, 22.06, 14.09.
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'H NMR spectra of Ox5
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Synthesis of Ox3

HO N TsCl, NEt;  _ TsO/\[N NaN, o Ns/\[N
S— > N\ —> \
/\[o S DCM,rt,24h o>_s\ DMF, 60°C, overnight o> S,
12

15 (64 %) (Ox3) 57 %

To (R)-(2-(methylthio)-4,5-dihydrooxazol-4-yl)methanol 12 (1g, 6.8 mmol) in triethylamine (1.9
mL, 13.6 mmol) p-toluenesulfonyl chloride (1.95 g, 10.2 mmol) was added at 0 °C. The reaction
mixture was stirred at room temperature for 24 hours. Then, the reaction mixture was washed
with aqueous sodium bicarbonate solution and extracted with DCM for 3 times. The combined
organic phase was dried over anhydrous MgSQOs. The solvent was removed under reduced
pressure. The crude product was purified by column chromatography on silica gel (hexanes:

ethyl acetate 3:1) to afford compound 15 as yellow oil (1.3g, 64%).
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IH NMR (600 MHz, CDCls): 5 7.78 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.41-4.33 (m,
2H), 4.24 (t, J = 7.0 Hz, 1H), 4.16 (dd, J = 10.3 3.6 Hz, 1H), 3.92 (t, J = 8.5 Hz, 1H), 2.45 (s,
3H), 2.39 (s, 3H). 3C NMR (150 MHz, CDCl3): § 169.39, 145.24, 132.67, 130.08, 128.12,

71.82, 70.056, 64.96, 21.79, 14.55.

To a solution of (S)-(2-(methylthio)-4,5-dihydrooxazol-4-yl)methyl 4-methylbenzenesulfonate
15 (580 mg, 3.2 mmol) in dry DMF (20 mL), sodium azide (1.3 g, 32.2 mmol) was added at
room temperature. The reaction mixture was stirred at 40 °C for 24 h. Then, the reaction was
quenched by addition of water and extracted with ethyl acetate. The combined organic phase was
washed with brine and dried over anhydrous MgSQOs. The yellow oil was purified by column
chromatography on silica gel (hexanes: ethyl acetate 5:1) to afford compound Ox3 as colorless
oil (313 mg, 57%).

N 3/\[ N\
o>_ 3

Ox3

IH NMR (600 MHz, CDCls): § 4.41 (t, J = 8.9 Hz, 1H), 4.36-4.31 (m, 1H), 3.46 (dd, J = 12.7
5.0 Hz, 1H), 3.31 (dd, J = 12.7 5.0 Hz, 1H), 2.46 (s, 3H). 3C NMR (150 MHz, CDCls): &

168.85, 71.96, 66.30, 54.15, 14.6

H NMR spectra of 15
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'H NMR spectra of Ox3
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Synthesis of Ox4

HO N\ Propargyl bromide, K,CO; /\0 N\
>—S\ DMF, rt, 8 h >—S

o o \
12 (Ox4) 65 %

To a solution of (R)-(2-(methylthio)-4,5-dihydrooxazol-4-yl) methanol 12 (200 mg, 1.36 mmol),
in 5 mL of dry DMF at 0 °C, NaH (40 mg, 1.36 mmol) was added. After 10 mins propargyl
bromide (123 pL, 1.63 mmol) was added drop wise and the reaction mixture was allowed to
warm to room temperature. After 8 h reaction mixture was washed with ethyl acetate and brine.
The organic part was dried over anhydrous MgSQg, filtered, and concentrated. The crude was
purified by flash column (hexane: ethyl acetate 3:1) to afford compound Ox4 as yellow oil (163

mg, 65%).

386



R

O ox4
IH NMR (600 MHz, CDCls): 4.35 (t, J = 8.6 Hz, 1H), 4.27-4.23 (m, 1H), 4.17 (t, J = 7.6 Hz,
1H), 4.11 (m, 2H), 3.64 (dd, J = 13.8 5.0 Hz, 1H), 3.42 (dd, J = 16.3 2.6 Hz, 1H), 2.84 (d, J = 8.0
Hz, 1H), 2.36 (s, 3H). 3C NMR (150 MHz, CDCls): & 167.65, 162.42, 79.37, 74.79, 72.30,

71.49, 65.91, 58.50, 14.39.

'H NMR spectra of Ox4
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13C NMR spectrum of Ox4

Synthesis of 1j, 11, and 1k

[S>_ Mel S
S > [ S
N/ \ ACN, refulx, 6h N/+>__ \
\
1a 1j (91 %)

/ /
N/ Mel N
[N/>_S ACN, refulx, 6h [N/Z_S
VI

16 11 (95%)
S S
Mel
| )—s - [ s
[N>_ \  ACN, refulx, 6h | N/+>__ \
\
le 1K (91 %)

Synthesis of compound 1j.
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[S Mel S
pa= > [ S
N, \  ACN, reflux, 6h e A

1a ;i\
To a solution of 2-(methylthio)-4,5-dihydrothiazole 1a (300 mg, 2.20 mmol) in ACN (5 mL),
methyl iodide (137 pL, 2.20 mmol) was added. The reaction mixture was refluxed for 6 hours.
The reaction solution was cooled down to room temperature and concentrated by rotary
evaporation to obtain the yellow powder. The crude powder was purified by recrystallization
with ethanol / hexane (1:10) to afford pure 1j as yellow powder (91 %, 295 mg). *H NMR (600
MHz, DMSO-ds) & 4.47 (t, J = 8.8 Hz, 2H), 3.76 (t, J = 8.8 Hz, 2H), 3.34 (s, 3H), 2.90 (s, 3H).

13C NMR (150 MHz, DMSO-de): 6 191.72, 62.70, 38.62, 31.27, 18.81.

1H NMR of 1j
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Cys-7.20.fid
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Synthesis of compound 11

/ /
N / Mel > N /
[N/>_S ACN, reflux, 6h [N/Z_S
VI

16 11

To a solution of 1-Methyl-2-(methylthio)imidazole 16 (200 mg, 1.56 mmol) in dry acetonitrile (5
mL), CHasl (486 pL, 7.8 mmol) was added. The reaction mixture was refluxed for 6 hours. The
reaction solution was cooled to room temperature and concentrated by rotary evaporation to
afford the white solid. The crude was purified by recrystallization with ethanol / hexane (1:10) to
afford pure 1l as white powder (95 %, 211.9 mg). *H NMR (600 MHz, DMSO-dg) & 7.89 (s,
2H), 3.88 (s, 6H). 13C NMR (151 MHz, DMSO-de) & 140.78, 124.68, 36.18, 17.14.
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'H NMR spectra of 1l
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Synthesis of compound 1k

S / S
Mel o /
[/> S TACN, reflux, 6h [/> S
N N+ -

\
1e 1k

To a solution of 2-(methylthio)thiazole 1e (203 mg, 1.56 mmol) in dry acetonitrile (5 mL), CHal
(486 uL, 7.8 mmol) was added. The reaction mixture was refluxed for 6 hours. The reaction
solution was cooled to room temperature and concentrated by rotary evaporation to afford the
white solid. The crude was purified by recrystallization with ethanol / hexane (1:10) to afford

pure 1l as white powder (91 %, 386 mg). *H NMR (600 MHz, DMSO-ds) & 8.34 (d, J = 4.0 Hz,
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1H), 8.10 (d, J = 4.0 Hz, 1H), 3.92 (s, 3H), 2.99 (s, 3H). 3C NMR (151 MHz, DMSO-ds) 5

211.47,175.09, 172.00, 138.36, 121.86, 18.85.

'H NMR spectra of 1K
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Synthesis of 1n and 1m

s s s
Mel, K,CO / Mel /
»>—SH — =23 —S ———— T ____» >—S
@[N/ SH "DWF, t, 3n @[N/ ACN, refulx, 12h N/+|_

\
17 1f (85%) 1n (92%)

cl s s .
| N Potassium ethylxanthate [\/E /Es M_;E\/E />—S/ Ml = | />—S/
N” > NH NMP, reflux N° N DMF, 6 h NZ N ACN, refulx, 12h Sy A~
2 H l I )
18 19 (65%) 19 (73%) 1m (91%)

Synthesis of compound 1f
Mercaptobenzothiazole 17 (3 g, 18.0 mmol), potassium carbonate (2.48 g, 18.0 mmol), and
methyl iodide (1.1 mL, 18.0 mmol) were added sequential into dry DMF (20 mL) at 0 °C. The

mixture was warmed to room temperature and stirred for 3 hours. The reaction mixture was

395



washed with ethyl acetate and brine for 3 times. The organic layer was collected, dried over
anhydrous MgSOs, filtered, and concentrated under the reduced pressure. The residue was
purified by the column chromatography (hexane: ethyl acetate 3:1) to yield compound 1f as
colorless crystal (2.77 g, 85 %). *H NMR (600 MHz, CDCl3) 6 7.88 (d,J= 8 Hz, 1 H), 7.75
(d,J=8Hz, 1 H), 7.42 (t, J= 8 Hz, 1 H), 7.29 (d, J = 8 Hz, 1 H), 2.97 (s, 3 H). 3C NMR (151

MHz, CDCl3) 6 167.94, 153.29, 135.09, 125.97, 124.00, 121.30, 120.88, 15.85.

Synthesis of compound 1n

The mixture of 2-(Methylthio)benzothiazole 1f (1.5 g, 8.28 mmol) and Mel (2.6 mL, 41.43
mmol) in dry ACN (10 mL) was refluxed for 12 hours. The reaction mixture was cooled to room
temperature and solvent was removed by rotary evaporation. The recrystallization was carried
out in EtOH : Hexane (1:20) to obtain pure compound 1n as yellow powder (92 %, 1.49 g). *H
NMR (600 MHz, DMSO-ds) & 8.42 (d, J = 8.1 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H), 7.88 — 7.82 (m,
1H), 7.74 (t, J = 7.7 Hz, 1H), 4.11 (s, 3H), 3.13 (s, 3H). 3C NMR (151 MHz, DMSO-ds) &

181.13, 142.45, 129.10, 128.18, 126.93, 123.94,115.66, 36.53, 18.20.

'H NMR of compound 1f
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'H NMR of compound 1n
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Synthesis of compound 19

2-Amino-3-chloro-pyridine 18 (1 g, 7.78 mmol) was dissolved in NMP (15 mL) and potassium
ethyl xanthate (1.87 g, 11.6 mmol) was added. The solution was heated to 160 °C for 12 h. The
solution was then cooled to RT and treated with glacial acetic acid (5 mL) and diluted with water
(100 mL). The resulting precipitate was filtered off and washed with diethyl ether for three
times. The off-white precipitate was dried under high vacuum to obtain compound 19 as off-
white powder (65 %, 850 mg). *H NMR (600 MHz, DMSO-ds) & 14.28 (s, 1H), 8.35 (dd, J =
4.9, 1.5 Hz, 1H), 8.12 (dd, J = 7.9, 1.5 Hz, 1H), 7.30 (dd, J = 7.9, 4.9 Hz, 1H). 3C NMR (151
MHz, DMSO-de) 6 191.01, 153.73, 146.80, 130.52, 124.17, 119.58, 39.94.

Synthesis of compound 1g

To solution of thiazolo[4,5-b]pyridine-2(3H)-thione H (400 mg, 2.38 mmol) in dry DMF (10

mL) was added K>COs (328 mg, 2.38 mmol), Mel (149 uL, 2.38 mmol) sequentially at 0 °C,
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then the reaction was warmed to room temperature and stirred for 6 h. The reaction mixture was
washed with ethyl acetate and brine for three times. The organic layer was collected and dried
over anhydrous MgSOs, filtered, and concentrated. The crude was purified by flash
chromatography (hexane: ethyl acetate 2:1) to afford compound 1g as colorless crystal (73 %,
312 mg). *H NMR (600 MHz, CDCls) & 8.58 (dd, J = 4.7, 1.7 Hz, 1H), 8.07 (dd, J = 7.9, 1.7 Hz,
1H), 7.19 (dd, J = 7.9, 4.7 Hz, 1H), 2.84 (s, 3H). 13C NMR (151 MHz, CDCls) 5 172.47, 163.86,

147.50, 129.68, 128.77, 118.83, 15.88.

Synthesis of compound 1m

2-(Methylthio)thiazolo[4,5-b]pyridine 1g (150 mg, 0.82 mmol) was dissolved in dry ACN (10
mL), and treated with methyl iodide (258 uL, 4.12 mmol). The reaction mixture was refluxed for
12 h. The mixture was cooled to room temperature and ACN was removed by rotary
evaporation. The crude was purified by recrystallization with methanol / hexane (1:20) to obtain
compound 1m as bright yellow powder (91 %, 242 mg). 'H NMR (600 MHz, DMSO-ds) 6 9.18
(d, J =8.1 Hz, 1H), 9.00 (d, J = 6.1 Hz, 1H), 7.92 (d, J = 1.9 Hz, 1H), 4.48 (s, 3H), 2.98 (s, 3H).
13C NMR (151 MHz, DMSO-ds) & 210.72, 177.17, 171.96, 150.60, 147.50, 139.71, 125.23,

120.49, 92.78, 41.69, 15.02.

'H NMR of compound 19
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Synthesis of 10-N3

/ / /
O,N O,N HoN
_ CHilK,CO; /s ON N/  Fe NH,CI /2 N/
— TS WMl
\C[ =S "DMF, 60°C. 121 DMF, 60°C, 12h N/C[ S + \C[N/%s MeOH, reflux, 12h N %s + N/%S
2 2
21, (31 %) 21, (31 %) 22, (27 %) 22, (27 %)

1. NaNO,

N/ N / N N/
HCI (aq), 0 °C, 1h / 3 CHjl 3 /
—_— > __ohl o
2. NaN, N,%s + /%S ACN, rt, 12 N/fs_
NaOAc (aq), rt, 6h 3 o
23,(22 %) 23, (22 %) 10-N3 (85 %)

Synthesis of isomers 21ap

To a stirred solution of 2-Mercapto-5-nitrobenzimidazole 20 (1 g, 5.12 mmol) in dry DMF (15 mL), K2CO3s
(707.7 mg, 5.12 mmol) and Mel (320 pL, 5.12 mmol) were added consecutively at room temperature,
then the reaction was heated to 60 °C for 12 h. The mixture was cooled to room temperature and
extracted with ethyl acetate and brine for three times. The organic portion was collected and dried over
anhydrous Na:SOu, filtered, and concentrated under reduced pressure. The crude was purified by flash
chromatography (hexane: ethyl acetate 1:1) to afford isomers 21, and 21, as yellow powder (62 %, 707.9
mg). *H NMR (600 MHz, Chloroform-d) & 8.53 (d, J = 2.1 Hz, 1H), 8.19 — 8.12 (m, 3H), 7.65 (d, J = 8.7
Hz, 1H), 7.26 (d, J = 8.8 Hz, 1H), 3.73 (d, J = 12.7 Hz, 6H), 2.84 (d, J = 5.1 Hz, 6H). 13C NMR (151 MHz,
Chloroform-d) 6 159.58, 157.90, 147.92, 143.32, 142.75, 142.62, 141.09, 136.34, 118.05, 117.79, 117.59,

114.34, 107.84, 104.94, 30.33, 30.31, 14.53.

'H NMR spectra of isomers 21ab
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Synthesis of isomers 22ab

f1 (ppm)

A mixture of the isomers 21a and 21p (500 mg, 2.24 mmol), iron powder (125 mg, 2.24 mmol)

and ammonia chloride (600 mg, 11.2 mmol) in methanol (50 mL) was vigorously stirred and

refluxed for 12 h. The suspension was cooled and filtered through a pad of Celite. The filtrate

was diluted with water and extracted with dichloromethane for 3 times. The combined organic

layers were washed with saturated aqueous NaHCOg solution for 3 times, dried over sodium

sulfate, and concentrated in vacuo to afford isomers 22a and 22 as purple oil (54 %, 233 mg).

The isomers 22a and 22, were used directly without further purification.
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Synthesis of isomers 23a,b

To a solution of isomers 22a and 22p (200 mg, 1.04 mmol) in 3M HCI (2.5 mL) was added a
solution of NaNO (71.7 mg, 1.04 mmol) in H2O (2.5 mL) at 0°C. After 60 min at 0°C a solution
of NaN3 (202.7 mg,10.5 mmol) in saturated NaOAc solution (2.5 mL) was added dropwise and
the mixture was stirred for 60 min at 0°C. The reaction was warmed to room temperature and
allowed to stir for 6 h. The mixture was extracted with ethyl acetate and brine for three times,
dried over MgSOs, filtered and the solvent was removed under reduced pressure. The crude
mixture was purified by flash chromatography (hexane : ethyl acetate 5:1) to get isomers 23a and
23p as bright yellow oil (45 %, 102.5 mg). *H NMR (400 MHz, Chloroform-d) & 7.55 (d, J = 8.5
Hz, 1H), 7.29 (d, J = 1.9 Hz, 1H), 7.07 (ddd, J = 8.5, 2.1, 1.3 Hz, 1H), 6.82 (dddd, J = 17.9, 8.5,
2.1, 0.8 Hz, 2H), 6.75 (t, J = 1.7 Hz, 1H), 3.57 — 3.55 (m, 3H), 3.55 — 3.52 (m, 3H), 2.74 (d, J =
1.0 Hz, 6H). 13C NMR (151 MHz, Chloroform-d) & 154.18, 153.33, 143.68, 140.61, 137.10,
134.11, 133.74, 133.66, 118.33, 112.88, 112.78, 108.47, 107.47, 98.34, 76.83, 76.62, 76.41,
29.47,29.41, 14.08, 14.04.

IH NMR isomers of 23a,b

407



LT
SL°CT

.vm.m/

9S°€
9S°€

mh.wg

90°L
80°L ]
80°L 1

~fr—

AL

Fevo

Feeo

0.5

3.5 3.0 2.5 2.0 1.5 1.0

4.0

4.5

5.0
f1 (ppm)

6.0 5.5

6.5

8.0 7.5 7.0

8.5

9.0

9.5

13C NMR isomers of 23a,b

408



20200831-KCT-08312020C-8.10.fid N
13C N ANHYLOAN ®IMQQ

77.37

—98.88
77.16
76.95
30.01
29.95
14.62
14.58

L
\
<
<

.. | Ll

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20
f1 (ppm)

Synthesis of compound Ns-10

To the isomers of 23a and 23 (50 mg, 0.22 mmol) in the dry acetonitrile (7 mL), was added Mel
(71.3 uL, 1.14 mmol) under nitrogen at room temperature and reaction was stirred for 12 h. The
solvent was removed by rotary evaporation to afford crude powder. The crude was washed with
diethyl ether three times, dried under vacuum to obtain pure compound Ns-10 as bright yellow
powder (85 %, 257.7 mg). *H NMR (500 MHz, DMSO-ds) 5 8.12 — 8.03 (m, 1H), 7.92 (d, J =
4.5 Hz, 1H), 7.49 — 7.40 (m, 1H), 4.10 (s, 6H), 2.72 (s, 3H). 3C NMR (151 MHz, DMSO-ds) &
150.51, 139.12, 133.08, 129.63, 118.97, 114.84, 103.40, 33.46, 33.40, 17.20.

'H NMR spectra of N3-10
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Synthesis of 1d and 1c
/-
NH, N N-OTF,
CS,, KOH CHjl, K,CO,4 N MeOTf N
>:s s [T s - s
o  CH3OHMH,0, reflux 6 ho DMF, rt, 8 h o DCM, 0 °C to rt, 4h o
24 25 (91% 26 (82%) 1d (45%)
OH o]
B CS,, KOH @ \—s _CHilLK;CO; (" o/%s/ Mel . (] /%s/
= CH30H/H,0, reflux Gh DMF, 6h Z~N ACN, reflux, 12h X * N
N~ "NH, N l“ll-
0,
27 28 (82%) 29 (79%) 1c (80%)

Synthesis of compound 25

2-aminophenol 24 (1 g, 18.3 mmol) was dissolved in methanol / water (9:1, 90 mL) and KOH (1

g, 18.3 mmol) and CS> (3.3 mL, 55.5 mmol) were added sequentially. The reaction mixture was

refluxed for 6 h. The reaction solution was washed with ethyl acetate and brine thrice. The
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residue was concentrated under reduced pressure and purified by the column chromatography
(hexane: ethyl acetate 2:1) to obtain compound 25 as off-white powder (91 %, 2.1 g). 'H NMR
(600 MHz, DMSO-dg) 6 13.8 (br s, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.27-7.20 (m, 3H).13C NMR

(151 MHz, DMSO-ds) 6 180.11, 148.10, 131.15, 125.06, 123.69, 110.42, 109.91.

Synthesis of compound 26

2-Mercaptobenzoxazole 25 (1 g, 6.62 mmol), potassium carbonate (914 mg, 6.62 mmol), and
methyl iodide (412 pL, 6.62 mmol) were sequentially added into dry DMF (13.5 mL) at 0 °C.
The mixture was warmed to room temperature and stirred for 8 hours. The reaction mixture was
washed with ethyl acetate and brine for 3 times. The organic layer was collected, dried over
anhydrous MgSOs, filtered, and concentrated under the reduced pressure. The residue was
purified by the column chromatography (hexane: ethyl acetate 5:1) to yield compound 26 as
yellow oil (895.7 mg, 82 %). *H NMR (600 MHz, CDCl3) 6 7.54 (dd, J = 8.0, 4.5 Hz, 1H), 7.38
— 7.30 (m, 1H), 7.24 — 7.06 (m, 2H), 2.67 (s, 3H). 3C NMR (151 MHz, CDCls) & 165.53,

165.51, 151.84, 151.83, 141.84, 124.09, 124.07, 123.61, 118.16, 118.15, 109.66, 109.65, 14.37.

Synthesis of compound 1d

To a mixture of 2-(methylthio)benzoxazole 26 (86 mg, 0.52 mmol) in dry DCM (10 mL),
MeOTf (70 L, 0.625 mmol) was added at 0 °C. The reaction mixture was warmed to room
temperature. After 4 h, solvent was removed by rotary evaporation to afford crude compound.
The crude sample was purified by recrystallization in hexane to obtain pure compound 1d as

white powder (214.6 mg, 45 %). 'H NMR (600 MHz, DMSO-de) & 8.08 (d, J = 8.6 Hz, 1H),
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8.03 (d, J = 7.5 Hz, 1H), 7.76 — 7.66 (m, 2H), 3.94 (s, 3H), 3.05 (s, 3H). 3C NMR (151 MHz,

DMSO-de) 6 172.04, 127.52, 127.49, 123.85, 122.17, 113.44, 112.28, 32.51, 14.
'H NMR of compound 25
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2-Amino-3-hydroxypyridine 27 (1.1 g, 10 mmol) was dissolved in methanol / water (10:1, 81
mL) and KOH (1.38 g, 10 mmol) and CS, (1.8 mL, 30 mmol) were added sequentially. The
reaction mixture was refluxed for 6 h. The solution was then cooled to RT and treated with
glacial acetic acid (5 mL) and diluted with water (150 mL). The resulting precipitate was filtered
off and washed with hexane for three times to obtain compound 28 as off-white powder (82 %,
1.24 g). 'H NMR (600 MHz, DMSO-ds) & 14.47 (s, 1H), 8.19 (d, J = 5.0 Hz, 1H), 7.88 — 7.80
(m, 1H), 7.24 (d, J = 5.3 Hz, 1H). 3C NMR (151 MHz, DMSO-ds) & 181.33, 146.97, 144.16,

141.59, 119.09, 117.02, 117.01.

Synthesis of compound 29

To solution of oxazolo[4,5-b]pyridine-2(3H)-thione 28 (500 mg, 3.29 mmol) in dry DMF (12
mL) was added K>COs (454 mg, 3.29 mmol), Mel (206 pL, 3.29 mmol) sequentially at 0 °C,
then the reaction was warmed to room temperature and stirred for 6 h. The reaction mixture was
washed with ethyl acetate and brine for three times. The organic layer was collected and dried
over anhydrous MgSOs, filtered, and concentrated. The crude was purified by flash
chromatography (hexane: ethyl acetate 5:1) to afford compound 29 as white powder (79 %, 431
mg). *H NMR (600 MHz, CDCl3) & 8.47 — 8.36 (m, 1H), 7.74 — 7.60 (m, 1H), 7.20 — 7.07 (m,
1H), 2.78 (s, 3H). 3C NMR (151 MHz, CDCl3) & 170.35, 156.22, 145.89, 145.87, 144.25,

118.86, 117.08, 14.82.

Synthesis of compound 1c
2-(Methylthio)oxazolo[4,5-b]pyridine 29 (166 mg, 1 mmol) was dissolved in dry ACN (10 mL),

and treated with methyl iodide (313 pL, 5 mmol). The reaction mixture was refluxed for 12 h.
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The mixture was cooled to room temperature and ACN was removed by rotary evaporation. The
crude was purified by recrystallization with methanol / hexane (1:15) to obtain compound 1c as
bright yellow powder (80 %, 246 mg). *H NMR (600 MHz, DMSO-ds) & 8.88 — 8.84 (m, 1H),
8.82 (d, J = 8.2 Hz, 1H), 8.07 — 7.78 (m, 1H), 4.37 (s, 3H), 2.94 (s, 3H). 13C NMR (151 MHz,
DMSO-dg) 177.23, 171.99, 150.63, 147.54, 139.75, 125.25, 125.24, 120.52, 120.50, 41.69,

15.01.

'H NMR of compound 28
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Synthesis of 1d-yne

(o] o H
) NH; potassium ethyl xanthate _ >0 N _CH3l, K,CO3 | LiOH .
oH pyridine, reflux, 12h OFS TDMF, rt, 4h %s THF/H,OMBUOH, rt, 12h

o 30 31 (75 %) 32 (87 %)
1. Methyl chloroformate
N .
HO /__NEts, THF, 0 °C, 30 min Propargyl bromide, NaH N
N\ , THF, ) > HO / pargy "0 /
)KCEO%S 2. NaBH,, H,0, rt, 30 min /\C[ S—s DMF, rt, 6h =z o\}s
33 (95 % 34 (66 % 35 (67 %
( 0)/\0 (.6 ory (66 %) (67 %)
_ MeOTf , _~ N
DCM, rt, 120~ %S
1d-yne (93 %)

Synthesis of compound 31

Methyl 3-amino-4-hydroxybenzoate 30 (4 g, 24 mmol) was dissolved in dry pyridine (30 mL)
and potassium ethyl xanthate (4.05 g, 25.27 mmol) was added. The solution was refluxed for 12
h. The solution was then cooled down to RT and treated with DI water (500 mL) and acetic acid
(50 mL). The precipitate was filtered off and washed with hexane for three times. The off-white
precipitate was dried under vacuum to obtain compound 31 as off-white powder (75 %, 3.8 g).
IH NMR (600 MHz, DMSO-dg) & 7.96 (d, J = 1.4 Hz, 1H), 7.90 (dd, J = 8.2, 1.6 Hz, 1H), 7.31
(d, J = 8.2 Hz, 1H), 3.85 (s, 3H).}3C NMR (151 MHz, DMSO-ds) & 181.27, 165.54, 147.97,

135.43, 126.96, 124.98, 110.47, 110.31, 52.43.

Synthesis of compound 32

Methyl 2-thioxo-2,3-dihydrobenzo[d]oxazole-5-carboxylate 31 (2.35 g, 11.2 mmol), potassium
carbonate (1.54 g, 11.2 mmol), and methyl iodide (700 pL, 11.2 mmol) were added sequentially
into dry DMF (11.2 mL) at 0 °C. The mixture was warmed to room temperature and stirred for 4
hours. The reaction mixture was washed with ethyl acetate and brine for 3 times. The organic
portion was collected, dried over anhydrous MgSQOyg, filtered, and concentrated under reduced
pressure. The residue was purified by the column chromatography (hexane: ethyl acetate 7:1) to
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yield compound 32 as colorless oil (2.17 g, 87 %). *H NMR (600 MHz, CDCls) § 8.12 (d, J =
1.5 Hz, 1H), 8.03 (dd, J = 8.3, 1.5 Hz, 1H), 7.61 (d, J = 8.3 Hz, 1H), 3.94 (s, 3H), 2.78 (s, 3H).
13C NMR (151 MHz, CDCl3) & 172.64, 169.30, 166.78, 151.83, 146.03, 126.49, 117.93, 111.50,

52.48, 14.73.

Synthesis of compound 33

To a stirred solution of methyl 2-(methylthio)benzo[d]oxazole-6-carboxylate 32 (160 mg, 0.71
mmol) in THF (3.55 mL) were added t-BuOH (1.42 mL) and a solution of LiOH-H.O (120 mg,
2.86 mmol) in water (1.42 mL), followed by stirring at rt for 12 h. The solvent was evaporated
under reduced pressure. The mixture was extracted with ethyl acetate. The organic layer was
washed with 0.5-N HCI solution, water, and brine, and dried over anhydrous MgSQOa. After
filtration, the solvent was evaporated under reduced pressure to afford compound 33 as white

solid (141 mg, 95 %). Compound M was directly used without further purification.

Synthesis of compound 34

To a solution of 2-(methylthio)benzo[d]oxazole-6-carboxylic acid 33 (150 mg, 0.71 mmol) in
THF (10 mL) was added EtzN (130 pL, 0.93 mmol), followed by dropwise addition of methyl
chloroformate (66 L, 0.86 mmol) at 0 °C for 30 min. The appeared salt was filtered off. To the
resulting filtrate, NaBH4 (108 mg, 2.86 mmol) in water (800 pL) was added dropwise. The
reaction mixture was stirred at rt for 30 min, diluted with water and washed with ethyl acetate
and brine, and dried over MgSOa. After filtration, the solvent was concentrated under reduced
pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate

3:1) to obtain compound 34 as white solid (92.2 mg, 66 %)*H NMR (600 MHz, CDCl3) & 7.53
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(d, J = 0.6 Hz, 1H), 7.46 (dd, J = 1.6, 0.7 Hz, 1H), 7.26 (d, J = 8.9 Hz, 1H), 4.78 (s, 2H), 2.76 (s,
3H).13C NMR (151 MHz, CDCls) § 172.63, 152.34, 141.54, 137.44, 123.42, 118.19, 108.62,

65.29, 14.66.

Synthesis of compound 35

To a solution of (2-(methylthio)benzo[d]oxazol-6-yl)methanol 34 (36 mg, 0.184 mmol) in dry
DMF (5 mL) at 0 °C, NaH (5.31 mg, 0.22 mmol) was added. After 10 mins propargyl bromide
(20 pL, 0.22 mmol) was added dropwise and the reaction mixture was allowed to warm to room
temperature. After 6 h reaction mixture was washed with ethyl acetate and brine. The organic
part was dried over anhydrous MgSOs, filtered, and concentrated. The crude was purified by
flash column (hexane: ethyl acetate 5:1) to afford compound 35 as yellow solid (28 mg, 67 %).
IH NMR (400 MHz, CDCl3) & 7.59 (d, J = 8.1 Hz, 1H), 7.49 (dd, J = 1.5, 0.7 Hz, 1H), 7.31 (s,
1H), 4.72 (s, 2H), 4.21 (d, J = 2.4 Hz, 2H), 2.78 (s, 3H), 2.51 (s, 1H). *C NMR (101 MHz,
CDCl3) 6 166.36, 152.29, 141.90, 133.67, 124.60, 118.14, 109.78, 79.59, 74.96, 71.47, 57.19,

53.57, 14.67.

Synthesis of compound 1d-yne

2-(methylthio)-5-((prop-2-yn-1-yloxy)methyl)benzo[d]oxazole 35 (86 mg, 0.52 mmol) and
methyl trifluoromethanesulfonate (70 pL, 0.625mmol) were mixed in 10 mL of DCM in a
nitrogen environment at 0 °C. The reaction mixture was allowed to warm to 25 °C for 12 h.
Precipitation with hexane was followed by filtration and yielded compound 1d-yne as white
powder (192 mg, 93 %). 'H NMR (600 MHz, Methanol-ds) & 7.92 (s, 1H), 7.83 (d, J = 8.4 Hz,

1H), 7.68 (d, J = 8.4 Hz, 1H), 5.46 (dd, J = 2.8, 1.4 Hz, 2H), 4.77 (s, 2H), 3.95 (s, 3H), 3.31 (s,
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1H), 3.08 (s, 3H). 3C NMR (151 MHz, DMSO-ds) & 172.04, 131.98, 123.62, 113.21, 111.03,

109.18, 108.70, 80.16, 77.47, 70.59, 56.71, 28.11, 14.71.

'H NMR of compound 31
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13C NMR of compound 35
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13C NMR of compound 1d-yne
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Synthesis of compound 37

2-Amino-3-hydroxypyridine 36 (1.1 g, 10 mmol) was dissolved in methanol / water (10:1, 81
mL) and KOH (1.38 g, 10 mmol) and CS> (1.8 mL, 30 mmol) were added sequentially. The
reaction mixture was refluxed for 6 h. The solution was then cooled to RT and treated with
glacial acetic acid (5 mL) and diluted with water (150 mL). The resulting precipitate was filtered
off and washed with hexane for three times to obtain compound 37 as off-white powder (82 %,
1.24 g). 'H NMR (600 MHz, DMSO-de) & 14.47 (s, 1H), 8.20 (d, J = 5.0 Hz, 1H), 7.86 — 7.83
(m, 1H), 7.25 (d, J = 5.3 Hz, 1H). 3C NMR (151 MHz, DMSO-ds) § 181.33, 146.97, 144.16,

141.59, 119.09, 117.01.
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Synthesis of compound 38

To solution of oxazolo[4,5-b]pyridine-2(3H)-thione 37 (500 mg, 3.29 mmol) in dry DMF (12
mL) was added K>COz3 (454 mg, 3.29 mmol), Mel (206 pL, 3.29 mmol) sequentially at 0 °C,
then the reaction was warmed to room temperature and stirred for 6 h. The reaction mixture was
washed with ethyl acetate and brine for three times. The organic layer was collected and dried
over anhydrous MgSOs, filtered, and concentrated. The crude was purified by flash
chromatography (hexane: ethyl acetate 5:1) to afford compound 38 as white powder (79 %, 431
mg). *H NMR (600 MHz, CDCls) § ) § 8.46 — 8.44 (m, 1H), 7.70 — 7.69 (m, 1H), 7.18 (dd, J =
8.0, 5.0 Hz, 1H), 2.81 (s, 3H).23C NMR (151 MHz, CDCls) & 170.35, 156.22, 145.89, 144.25,

118.86, 117.08, 14.82.

Synthesis of compound 1c-yne

2-(Methylthio)oxazolo[4,5-b]pyridine 38 (83 mg, 0.5 mmol) was dissolved in dry ACN (3 mL),
and treated with propargyl bromide (600 uL, 5 mmol). The reaction mixture was refluxed for 24
h. The mixture was cooled to room temperature and ACN was removed by rotary evaporation.
The crude was purified by recrystallization with ether to afford compound 1c-yne as brown
powder (80%, 246 mg). *H NMR (600 MHz, DMSO-ds) & 9.01 — 8.99 (m, 1H), 8.89 (dd, J =
8.8, 4.5 Hz, 1H), 8.00 — 7.97 (m, 1H), 5.71 (s, 2H), 3.99 (s, 1H), 2.95 (s, 3H). 13C NMR (151

MHz, DMSO-ds) 6 172.02, 150.31, 147.93, 137.91, 126.18, 121.09, 80.54, 75.00, 44.04, 15.02.
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'H NMR of compound 38
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