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Abstract 

Radiogenomic Analysis of Clinically Relevant MRI Features in Glioblastoma Multiforme 
By William D. Dunn Jr.!

!

Background: Glioblastoma Multiforme (GBM) is a highly malignant form of brain cancer with 
one of the worst median survival times of all cancers. GBM tumors are characterized by several 
types of heterogeneity which ultimately lead to the failure of even the most intensive treatment 
regimens. Current research has uncovered diversity at genetic, epigenetic, and transcription 
levels of tumor cells, suggesting that an optimal standard of care should be tailored to individual 
patients harboring tumor cells with specific genomic aberrations.  

Methods: In Part One of this study, we validate a novel semi-automated in silico volumetric 
image feature segmentation method and explore the potential prognostic power of several 
imaging features. In Part Two, we use both bottom-up and top-down approaches to correlate MR 
imaging features to several genomic aberrations of GBM.  

Results: We find that our segmentation method agrees more with other volumetric techniques 
than with radiologists’ scorings from qualitative standards and that several imaging features, 
notably percent necrosis (HR=1.862, P=0.01), are strongly correlated with survival. Bottom-up 
imaging feature / genomic correlations suggest MGMT promoter methylation status, but not 
EGFR or TP53 mutations or molecular subtype, is associated with certain imaging features. Top-
down analyses using microarray data combined with bioinformatic software correlates anti-
apoptosis, growth and proliferative, and cell death pathways with the percent necrosis imaging 
feature.  

Conclusion: We have developed and verified a robust image feature measurement methodology 
for GBM tumors and show that it has statistical power to both predict survival as well as to 
implicate various molecular pathways with certain imaging features. Magnetic resonance 
imaging features have the potential to serve as non-invasive biomarkers for several clinically 
relevant molecular pathways.    
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Introduction 

Glioblastoma Multiforme (GBM) is one of the most malignant forms of primary brain 

cancer and has a dismal median survival of only 14 months post diagnosis (Van Meir et al., 

2010). GBMs are composed of highly proliferative and invasive anaplastic glial cells that 

typically originate in the white matter of the brain (Rees, et al., 1996). At the histological level, 

tumors are characterized by cellular pleomorphism, dense cellularity, variable mitotic activity, 

neovascularity, and psuedopalisading necrosis (White, et al., 2005). Besides the current standard 

of care involving gross total surgical resection, radiation therapy, and temozolomide 

chemotherapy, affected patients are left with few options. Despite surgical (Tonn & Stummer, 

2008; Westphal et al., 2003), radiation (Stieber & Mehta, 2007), and chemotherapeutic (Norden 

et al., 2008) advances, relatively little progress has been made in the last 20 years in terms of 

overall survival (Mao, et al., 2012; Yamada et al., 1992).  

One possible explanation for the lack of improvement may be that a blanket approach to 

treatment ignores the complex heterogeneity inherent in GBM. As “multiforme” implies, GBMs 

show heterogeneity both within an individual patient as well as between patients. Within an 

individual, the surrounding microglia, macrophages, extracellular matrix, and endothelial cells of 

the microenvironment cause natural selection pressures to increase diversity of proliferation rate, 

chromosomal abnormality, morphology, and even drug resistance of the individual cells 

(Bonavia, et al., 2011). Moreover, even when tumor cells have identical morphology, the 

underlying genetic expression can be markedly dissimilar (Vitucci, Hayes, & Miller, 2011). 

Between patients, GBMs differ in size (M. Y. Wang et al., 2011), location, chromosomal 

aberration patterns, genetic expression (Verhaak et al., 2010), and epigenetic modifications 

(Esteller et al., 2000). For example, despite high histological and clinical similarity between de 
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novo GBM tumors and secondary GBM tumors, the two types differ so markedly in their genetic 

mutation profiles that defining them as separate entities altogether has been considered (Maher et 

al., 2001). This complex heterogeneity implies that the optimal standard of care may need to be 

tailored to specific properties of the tumor. 

The Cancer Genome Atlas (TCGA) project was designed in 2005 to comprehensively 

catalogue the various genome, epigenome, and transcriptome alterations that are involved in 

cancer origination and maintenance. TCGA houses both raw and normalized data from several 

“omic” platforms measuring DNA copy number, gene expression (via mRNA microarray 

analysis), DNA methylation, and nucleotide sequence aberrations of several hundred GBM 

tumors. Results from comprehensive TCGA studies both introduce novel alterations involved in 

tumorigenesis, such as amplifications in the AKT3 gene and deletions in NF1 and PARK2, as 

well as corroborate and extend previous literature describing the three core pathways in 

glioblastoma: RTK/RAS/PI(3)K, p53, and RB signaling pathways (Cancer, T., & Atlas, G. 2008) 

(Figure 1). TCGA research has identified points of deregulation in each of these pathways and 

their frequencies across patients. For instance, epidermal growth factor receptor (EGFR), which 

is involved in the RTK/PAS/PI(3)K pathway and drives proliferation and survival of tumor cells, 

is mutated or amplified in 45% of GBM patients. Tumor protein 53 (TP53), a tumor suppressor 

involved in the maintenance of proper apoptosis and senescence of tumor cells, is mutated or 

deleted in 35% of patients.  

Furthermore, hierarchical clustering of aggregated genetic expression data from over 200 

GBM patients has recently demonstrated that there are actually four subtypes of GBM tumors: 

classical, proneural, mesenchymal, and neural (Verhaak et al., 2010). Different subtypes are 

characterized by differences in genomic mutations, overall survival following diagnosis, age, and 
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even drug response. For example, patients with the proneural subtype respond significantly less 

to intensive temozolmide chemotherapy than patients with other subtypes of GBM. One 

explanation is that proneural tumors tend to show demethylation of the promoter of the O-6-

methylguanine-DNA methyltransferase (MGMT) gene, which encodes a DNA repair enzyme 

involved in deacetylation. This demethylation increases the transcription of the enzyme which 

likely interferes with the DNA alkylation mechanism of temozolomide (Hegi et al., 2005). Thus, 

variability at the molecular level seems to be the norm, not the exception, of GBM related 

pathogenesis. 

Since the underlying molecular pathways are the ultimate target of chemotherapeutic 

intervention, a better understanding of the potential pathways involved in tumorigenesis will 

ideally drive the selection of more individualized chemotherapeutic regimens and improve 

quality of care (Quant & Wen, 2010). For example, patients with proneural subtypes may 

respond better to drugs that target increased expression of platelet derived growth factor receptor 

(PDGFR!) than temozolomide. Others have proposed that altering chemotherapeutic 

interventions based on a patient’s MGMT promoter methylation status could lead to longer 

survival (Stupp et al., 2005). Likewise, patients with EGFR mutations may be more likely to 

benefit from PI(3)K or PDK1 inhibitors and patients with TP53 mutations could be better 

candidates for CDK inhibitors (Cancer, T., & Atlas, G. 2008). 

Magnetic Resonance Imaging (MRI) is routinely used in GBM clinical care and its role is 

currently limited to initially indicating abnormalities in the skull and to monitoring the tumor’s 

response to therapy. While genomic screenings are becoming increasingly important in the 

characterization of tumors, complementary macroscopic properties of the tumor which reflect 

processes such as growth and infiltration also have significant effects on outcome and are 
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important to investigate. Since the sample that ultimately goes for ‘omics’ analysis only 

represents a small piece of the overall tumor, macro and micro environmental factors both need 

to be considered in order to have a complete understanding of the tumor.  

Cortical GBM tumors often appear on MRI scans as indicated in Figure 2. Different MRI 

sequences provide differential contrast to highlight different tissues and imaging features that 

represent biological processes. T1 weighted, T2 weighted, and fluid attenuated inversion 

recovery (FLAIR) are commonly used sequences for static image properties. Besides contrast 

generated by the MRI itself, exogenous agents such as solutions of gadolinium (Gd) complexes, 

can be administered intravenously to highlight certain features. The imaging feature contrast 

enhancement refers to the increased signal in post Gd contrast T1 weighted scans and is a 

characteristic feature of high grade gliomas (Garzon et al., 2011). Contrast enhancement 

implicates several processes involved in pathogenesis, principally the disruption of the basement 

membrane of capillaries in the blood brain barrier and the alteration of the extra cellular matrix 

(ECM). These disruptions likely result from vascular endothelial growth factor (VEGF) mediated 

angiogenesis, a process critical for supplying neoplastic tissue with oxygen to meet its metabolic 

needs (Zagzag et al., 1989). Gadolinium based contrast agents leak out of the fenestrated 

neovasculature, bind to various proteins, and are easily visualized on MRI (Figure 2C). Edema, 

best visualized as increased signal intensity on FLAIR and T2 weighted images, reflects the 

swelling and accumulation of fluid in different tissues as a result of tumor infiltration (Zinn et al., 

2011) (Figure 2A,B). Necrosis refers to the decreased signal intensity on T1 weighted images 

and represents prematurely killed cells, likely resulting from the high growth rate of glioblastoma 

depleting nutrients and blood supply of the inner cells (Raza et al., 2004) (Figure 2C). 
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MRI has also been a useful tool in understanding the molecular characteristics of brain 

tumors. At the DNA level, sequencing technology has allowed researchers to infer genetic 

correlations between germline mutations in tumor protein p53 gene and multifocal tumors 

(Kyritsis et al., 1994) and between IDH1 mutations and different levels of contrast enhancement 

(Carrillo et al., 2012). Expression microarrays are another useful technology and allow for the 

ability to interrogate the expression of tens of thousands of genes in a single experiment. For 

example, the amounts of VEGF and angiopoetin-2 expression have been correlated to levels of 

edema (Carlson et al., 2007). While elucidating the roles of specific genes is important in 

identifying individual molecular targets, gene expression microarrays can be also combined with 

bioinformatic analyses to understand the mechanisms and pathways that are involved with 

various imaging features. For example, Diehn et al. found that the imaging feature of mass effect 

(resulting from growing tumor pressing against other areas of the brain) was highly correlated to 

the genetic expression of genes involved in proliferation and cell-cycle progression (Diehn et al., 

2008). Likewise, similar procedures were used to conclude that genes involved in blood brain 

barrier maintenance, hypoxia, angiogenesis, and extracellular matrix remodeling were 

significantly up-regulated in high contrast enhancing tumors compared to low contrast enhancing 

tumors (Pope et al., 2008).  

The actual determinants of malignant potential and treatment response are dependent on 

the aberrations at the molecular level, which currently play a very limited role in the clinical 

settings (Colman et al., 2010) due to the financial cost, time, and required manpower to analyze 

and interpret large scale genomic data (George et al., 2011). Reported here is an attempt to assess 

the role that MRI technology could play as a cost effective biomarker to assist physicians with 

prognostic and diagnostic decisions. We believe that by correlating clinically relevant MRI 
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features to genomic aberrations, we can gain a better understanding of the molecular pathways of 

different GBM tumors. This study is divided into two parts.  

In Part One, we validated our MRI feature segmentation and measurement methodology 

and investigated its prognostic value using data from 89 individuals. The technique used here is a 

novel semi-automated in silico measurement pipeline that measures various imaging features in 

continuous, volumetric variables. Because there is currently no “gold standard”, this method was 

first validated based on how well the imaging feature measurements agreed with consensus 

measurements made by three board certified radiologists based on a non-quantitative standard 

(VASARI, see below). We also compared our measurements to those made by a collaborating 

group using a different quantitative imaging feature segmentation method. (Zinn et al., 2011). As 

further validation, we briefly investigated how well our method agreed with the literature in 

stratifying patients into high and low survival groups based on imaging features. 

We next tested in depth whether any particular imaging feature was predictive of 

survival, controlling for known prognostic indicators such as the functional status of the patient 

at time of diagnosis (using the Karnofsky Performance Scale, KPS) (Krex et al., 2007), age 

(Curran et al., 1993), and gender (Tugcu et al., 2010). Several metrics derived from combinations 

of features were also tested because prior work has suggested that response to chemotherapy may 

depend on the ratios or relative amounts of imaging features (Najafi et al., 2012) and because 

other studies have determined that some features are not predictive of survival unless they are 

combined (Ellingson et al., 2011). Indeed research from our own lab has shown that patients with 

a high ratio of contrast enhancement to necrosis have lower survival, presumably because the 

high relative amount of contrast enhancement indicates a rapidly growing tumor (Gutman et al., 

in review). We also studied several imaging features in terms of percent of the total abnormal 
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volume to control for tumor size, which may be a significant prognostic factor (Hammoud et al., 

1996). 

Certain MR imaging features have been shown to have prognostic significance directly 

after surgery such as residual tumor volume and relative cerebral blood volume (rCBV) and are 

able to help doctors determine whether or not a patient should advance to radiation and 

chemotherapy (Saraswathy et al., 2009). Several preoperative MRI features, such as tumor 

volume, necrosis, contrast enhancement, and edema, have also been implicated in terms of 

overall survival, though these studies have led to several conflicting results (Table 1). Note the 

actual location of the tumor is also a potential prognostic variable, but due to conflicting results 

of previous studies, we did not analyze its influence in this report. Apart from small sample 

sizes, these disagreements likely arise from the types of methods used in most image feature / 

survival association studies to date. For one, many results are based on the image feature 

measurements of only a single two dimensional image. The central axial slice is usually chosen 

because it typically has the least partial volumes and is thus considered to reflect the most 

accurate tissue features (Soltanian-Zadeh et al., 1998). Moreover, most of these studies involved 

trained neuroradiologists measuring imaging features in categorical variables. For example, in 

their study of survival and necrosis, Ekici et al. quantified the level of necrosis into four quartiles 

(0-III) (Ekici et al., 2011). In a previous study in which our lab was involved, images from a 

subset of the patients used in the current study were scored by three board certified 

neuroradiologists according to the VASARI (Visually Accessible Rembrandt Images) standard. 

VASARI consists of 30 measurement features with specific guidelines on how to score each (i.e. 

0-5%, 6-33%, 34-67%, or 68-95% or >95% contrast enhancing) and it is designed to allow for 

accurate and reproducible MR image scoring (Appendix Figure 1). A number of factors make 
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this type of assessment especially unreliable. The greatest challenge may be the lack of a true 

gold standard to measure our results against, but other challenges arise from the inherent 

probabilistic nature of MRI images, the differences in what different radiologists consider to be 

an imaging feature, and the fact that visualizing certain imaging features depends on arbitrarily-

set relative pixel intensities. Our technique, which actually counts the individual pixels, allows 

the direct measurement of MRI features. We believe that this increased precision will lead to 

more accurate and reproducible results. 

In Part Two, we attempted to connect these imaging features to events occurring at the 

molecular level. We began with a bottom up approach by correlating the measured imaging 

features with pre-established genomic characteristics of our 89 patients. The TCGA database 

contains results from sequencing analyses determining the mutation status of several oncogenes 

and tumor suppressors often mutated in cancer, such as TP53 and EGFR. We wanted to know if 

certain imaging features could give us insight into the mutation status of the respective tumor.  

For each of these two genes, we compared the level of each of our features between both mutated 

tumors and wild type tumors. We used a similar methodology to determine if imaging features 

could be correlated to methylation status of the MGMT promoter or to the molecular subtype of 

the underlying tumor.  If we were able to find mappings between specific imaging features and 

mutation status, MGMT promoter hypermethylation, or molecular subtype, it would strengthen 

our hypothesis that GBM tumors with different genomic fingerprints appear differently at the 

macroscopic MRI level. 

Furthermore, we used a top down approach with the aid of gene expression microarray 

data to explore additional pathways and genomic aberrations associated with specific imaging 

features. We focused on the one imaging feature that we found to be the most predictive of 
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survival, percent necrosis. For this analysis, we used Significance Analysis of Microarray (SAM) 

software to identify genes that are differentially expressed between patients with high and low 

levels of percent necrosis. Based on the results of this analysis, the genes identified were then 

subjected to pathway analysis and key pathways involved in the relevant imaging feature were 

identified.  

 

Materials and Methods 

Patient Population 

MRI sets from 129 patients from various institutions, including Emory University, were 

downloaded from the Cancer Imaging archive (TCIA). Image sets containing both FLAIR and 

post Gd T1 weighted images were downloaded in DICOM-format and were individually 

reviewed before feature segmentation (see below) to confirm pre-surgical and treatment-naive 

status as well as to exclude images of exceptionally poor quality. As the patients had been 

previously de-identified by the TCGA and are available for public download, no Institutional 

Review Board approval was required.  

Image segmentation, volumetric measurement, and feature classification 

 Brain tumor regions were broadly identified as regions showing signal enhancement (e.g. 

increased brightness) following gadolinium contrast administration. Cases where the tumor 

margin was not readily identifiable were flagged for secondary review by a physician. For post 

Gd T1 images, binary masks were manually drawn over the tumor and the region it surrounds 

using a segmentation tool in Velocity AI (Figure 3A). Velocity AI (Atlanta, GA) is a software 

platform developed at Emory for radiation therapy treatment and image fusion, and is ideally 

suited for the markup/masking and visualization of MRI images. 
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Similarly, for FLAIR-based sequences, FLAIR “envelopes” were drawn in an analogous 

manner to the post-Gd T1 images (Figure 3B). The total volume marked up on the FLAIR 

sequence included bright areas indicative of edema/swelling as well as other regions that showed 

signal abnormalities (Pavlisa et al., 2009). Because we were interested in the FLAIR signal as an 

estimation of overall tumor involvement, we limited the FLAIR segmentations to the ipsilateral 

side of the tumor and did not include the signal that may be due to ventricular spread. 

Following initial tumor markup, the masks were exported from Velocity AI as DICOM-

RT objects. These image markups were subsequently converted to NIFTI and PNG formats to 

allow further visualization and segmentation. As a secondary quality check, a custom 

visualization platform was developed as part of a larger project in our lab (“TumorView”, Figure 

4) which allowed for rapid screening of the image volumes that were analyzed for this study. 

This tool helped to eliminate post surgical image sets (and hence not amenable to estimation of 

pre-surgical tumor volume) and images of particularly poor quality, as well as to ensure that the 

masks and accompanying images were overlaid and exported properly.   

 Contrast enhancing and necrotic volumes were calculated from the masked region on post 

Gd T1 images using FAST (FMRIB Automated Segmentation Tool, 

http://www.fmrib.ox.ac.uk/fsl/fast4/index.html). Briefly, for the masks drawn on the post Gd T1 

images, which included both contrast enhancing and necrotic regions, k means clustering 

identified two clusters based on relative pixel intensity. This resulted in a binary classification of 

tumor into either bright (contrast enhancing) or dark (necrotic) regions (Figure 5). This voxel-

based measure could then be directly converted into volumetric measures by multiplying the 

number of bright or dark voxels by the voxel size in mm3.  
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 For subsequent analysis, we defined the total tumor volume as the sum of the necrotic 

and contrast enhancing volumes. For the FLAIR images, the entire “envelope” volume is 

referred to as the total abnormal volume (Figure 3B). The edema volume refers to the area 

resulting from the subtraction of total tumor volume from total abnormal volume. Percent 

necrosis, percent edema, or percent contrast enhancement refers to the necrotic, edematous, or 

contrast enhancing volume, respectively, divided by the total abnormal volume.  

Semi-automated in silico measurement technique validation 

To assess the accuracy of our tumor markups, we identified a subset of patients that have 

been used in a previous study involving the TCGA GBM data set. Working with collaborators at 

the National Cancer Institute (NCI), we obtained qualitative assessments of neuroimaging 

features for these patients. These assessments were made by three board certified radiologists 

who estimated the necrotic, edematous, and contrast enhancing volumes of the tumor based on 

the VASARI standard. A consensus rating was generated for each patient, and we compared 

these ratings to our continuous volumetric measurements. Specifically, our necrosis, contrast 

enhancement, and edema volume measurements from 59 overlapping patients were transformed 

into the appropriate VASARI features (percent necrosis, percent contrast enhancing, and percent 

edema) and we measured the Cohen’s " metric of agreement (Cohen, 1960) for how often our 

volumetric measurements fell within the range of the consensus ratings for each variable. 

 For additional validation, we obtained an additional data set from our collaborator at 

Massachusetts General Hospital (R. Colen, personal communication, and (Zinn et al., 2011)).  

This data set also consisted of continuous volumetric assessments of the tumor into necrosis, 

contrast enhancement, and edematous regions, but was generated using a completely different 

platform (3d-SLICER, MGH, http://www.slicer.org/). In addition, a board-certified 
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neuroradiologist (R. Colen) manually performed the actual image segmentations of necrotic and 

contrast enhancement regions. As described above, the volumes in this dataset were transformed 

into the applicable features of the VASARI standard and were compared to the consensus ratings 

for the 59 patients with overlapping data.    

The concordance between each of the two volumetric data sets (Zinn et al./Gutman et al.) 

with the neuroradiologists’ ratings according to the VASARI standard was also compared. 

Percent agreement indicated the frequency that our measurements or those made by (Zinn et al., 

2011) fell within the VASARI ranges divided by the number of patients with overlapping data 

(n=59). To determine if one of the two volumetric data sets agreed more with the radiologists’ 

scores than the other, our percent agreement for each feature was compared with that of Zinn et 

al. using a pooled two proportion z test. 

We also used a metric from Gutman et al. (in review) to determine how well our 

measurements and those from Zinn et al. agreed with previous studies implicating necrosis with 

lower overall survival (Table 1). Briefly, the levels of necrosis in patients living more than 

twelve months are compared to those living less than twelve months. Thus, significant 

differences in levels of necrosis between these two groups would reflect more agreement with 

previous literature.  

Survival analysis 

To identify imaging features of potential prognostic value for GBM patients, hazard 

ratios were computed from both univariate and multivariate Cox regression models (H. Wang et 

al., 2008). First, to explore the effects of individual imaging features and patient variables on 

survival, univariate models were used to calculate the hazard ratio for each variable. The 
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differences in prognostic power were assessed by examining the relative hazard ratio and P value 

for each variable.  

Forward variable selection was used to build a multivariate model consisting of 

significant univariate patient and imaging feature variables. For our study, only the significant 

univariate patient variables and the significant imaging feature variable with the highest 

univariate hazard ratio were used.  

To obtain manageable hazard ratios, all independent variables were log-transformed. If 

the patient was still alive at the end of the study, his/her status of survival was considered to be 

right-censored and the days to last follow-up were used as the survival time (10/89 patients). 

Kaplan-Meier survival curves were also constructed to visualize survival differences between 

patients dichotomized in terms of having levels of percent necrosis above and below the median: 

(19.5%). 

Radiogenomic correlation  

For the bottom up study, correlations were made between imaging features and molecular 

features already available through TCGA. Mutation statuses of EGRF and TP53 were previously 

inferred from Sanger sequencing as described elsewhere (Cancer, T., & Atlas, G. 2008). MGMT 

promoter methylation status was previously identified in level three data downloaded from the 

TCGA data portal as “methylated” or “unmethylated” according to the method used by 

(Grasbon-Frodl et al., 2007). GBM molecular subtypes were previously determined by consensus 

clustering (Verhaak et al., 2010). Independent samples t tests were used to compare the average 

levels of each of the 17 imaging features (Table 3A) between patients with or without EGFR or 

TP53 mutations as well as between patients with or without MGMT promoter hypermethylation. 

Unless indicated otherwise by Levene’s test for equality of variance, all t tests were conducted 
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on the assumption of equal variance. One way between subjects analyses of variance (ANOVAs) 

were used to compare the level of each imaging feature between the four different molecular 

subtypes.    

For the top down analyses, genetic expression was measured using an Affymetrix Human 

Genome U133A chip, which measures approximately 22,000 probes, corresponding to 

approximately 14,000 genes. Level two expression data was downloaded from the TCGA data 

repository and probe expression was normalized against housekeeping genes and eliminated if 

expression was not significant as performed in a previous study (Cooper et al., 2012). 

To identify genes correlated with percent necrosis, patients were divided into thirds in 

terms of percent necrosis as performed elsewhere (Zinn et al., 2011). Expression data from the 

top third was compared to that of the bottom third using SAM (Statistical Analysis of 

Microarray), an Excel plug-in developed at Stanford (http://www-stat.stanford.edu/~tibs/SAM/). 

An advantage of SAM is that it uses permutation testing to estimate false discovery rates (FDR) 

which helps eliminate those genes whose differential expression is likely due to chance (Tusher 

et al., 2001). A visual representation of a SAM analysis output is demonstrated in Appendix 

Figure 2. For our study, 500 permutations were used in each analysis. To account for the large 

variability in microarray expression values between subjects and to control for the effect of 

outliers, the Wilcoxon signed ranks tests option was used in lieu of the standard t test option to 

compare expression of each gene between high and low percent necrosis groups.  

Similar tests were computed for individual molecular subtypes and a set of genes that 

were consistently differentially expressed between high and low levels of percent necrosis 

independent of molecular subtype was chosen. To ensure the significance of our gene list, only 

genes with false discovery rates below 40% were considered for the analysis.  
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Molecular Pathway Analysis 

To understand the molecular pathways associated with an image feature, the above gene 

set was analyzed through Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com). The 

associations of our genes with relevant networks, well-characterized canonical pathways, and 

pathological pathways were investigated. 

Statistics 

All independent t tests, one way between subject analyses of variance (ANOVAs), and 

Kaplan Meier survival curves were computed using Graphpad Prism (La Jolla, CA). SPSS (IBM 

Corporation, Armonk, NY) was used to compute Tukey’s post hoc tests for one way ANOVAS 

and both univariate and multivariate Cox regression models. Unless otherwise specified, P values 

less than 0.05 were considered significant.  

 

Results 

89 of the original 129 patients had images that were amenable to complete necrosis, 

contrast enhancement, and edema measurements and were used in this study (57/89 male). 

Patient age ranged from 14 to 84 years with a median age of 60 (Figure 6). Median survival from 

date of diagnosis was 399 days, consistent with previous reports (Krex et al., 2007). Sample 

statistics of several image feature volumes across these 89 patients are listed in Table 2.  

 

Part One – Semi-automated in silico feature measurement validation 

Agreement with neuroradiologists’ scores based on VASARI reference data.  

The measurements made from our methodology and those made by board certified 

neuroradiologists agreed fairly in terms of percent contrast enhancement and percent necrosis 
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(Cohen’s "=0.238 and 0.304 respectively), but agreed poorly in regards to percent edema 

(Cohen’s "=-0.07) (Landis & Koch, 1977).  For comparison, the Cohen’s " between Zinn et al. 

and the consensus VASARI scores for percent contrast enhancement, percent necrosis, and 

percent edema was 0.183, 0.198, and -1.24 respectively. Percent agreement with VASARI of 

both our measurements and those from Zinn et al. is plotted in Figure 7. For each imaging 

feature, there was no significant different between our data and that from Zinn et al. in terms of 

agreement with the neuroradiologists ratings: percent edema: Z(59) = 0.604, P=0.546 (two 

tailed); percent contrast enhancement: Z(59) = 0.828, P=0.408 (two tailed); percent necrosis: 

Z(59) = 1.848, P=0.065 (two tailed). 

Agreement with Zinn et al. 

Our measurements were also directly compared to those of Zinn et al. for the 70 patients 

represented in both data sets. Patient TCGA-06-0162 was removed from the analysis due to 

diffusely contrasting tumor (Figure 8). Significant Pearson correlations between Zinn et al. and 

Gutman et al. were obtained for each of five general imaging features. The highest correlations 

were seen in total abnormal volume (r(70)=0.949, P<0.0001), total tumor volume (r(70)=0.944, 

P<0.0001), and edema volumes (r(70)=0.928, P<0.0001). The lowest correlations were seen in 

contrast enhancing volume (r(70)=0.770, P<0.0001) and necrotic volume r(70)= 0.612, 

P<0.0001) (Fig 9). 

 The measurements from our data showed a much stronger significance in the difference 

between the levels of necrosis in patients surviving more than a year and patients surviving less 

than a year (t(69)=3.43, P=0.0006) than the difference using data from Zinn et al. (t(69)=2.087, 

P=0.0212) (Figure 10).   
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Imaging Features as Predictors of Survival 

To identify imaging features of potential prognostic value for GBM patients, univariate 

analyses of each variable were performed in regards to overall survival time. Six imaging feature 

variables and one patient variable showed significant prognostic value and are indicated in Table 

3A. Of particular interest, the ratio of necrotic volume over total abnormal volume (percent 

necrosis) appeared to have the highest significant effect on survival (HR=1.862, P=0.01). 

Patients with lower Karnofsky Performance Scale (KPS) scores also appeared to have shorter 

overall survival times (HR=1.473, P=0.046). 

Percent necrosis and KPS variables were then used to build the multivariate Cox 

regression model shown in Table 3B. The results of the multivariate analysis showed that only 

percent necrosis was a significant prognostic factor in overall survival (HR = 1.713, P=0.03). 

Kaplan Meier survival curves for low and high levels of percent necrosis also showed significant 

separation (P=0.0209, log-rank test) (Figure 11).   

For the subsequent microarray analysis, we focused on global changes in gene expression 

related to different levels of the percent necrosis imaging feature as this was the imaging feature 

most predictive of survival in our analysis.   

The levels of necrosis did not differ as a function of age (one way ANOVA 

F(2,86)=1.133, P=0.327) (Figure 12A) or as a function of gender (t(87)=0.236, P=0.814) (Figure 

12B). However, a one way between subjects ANOVA showed a significant effect of KPS score 

on percent necrosis (F(2,66)=3.293, P=0.0433, #2 = 0.091). Post hoc analysis (Tukey’s HSD) 

revealed that the mean percent necrosis of patients with KPS of 60 (x!  = 30.6, SD = 13.51) was 

significantly greater than patients with KPS of 100 (x!  = 19.77, SD = 11.6, P=0.043) (Figure 

12C). 
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Part Two – Genomic correlates to MR imaging features 

Bottom-Up Analyses 

For patients with complete data, 14 out of 62 (22.6%) and 9 out of 62 (14.5%) patients 

had TP53 mutations and EGFR mutations respectively. Independent samples t tests showed no 

significant difference in the level of any of the 17 imaging features as a function of mutation 

status (Tables 4 and 5). A non-significant trend suggested that patients with TP53 mutations 

where characterized by smaller total abnormal volumes than patients without the mutation 

(t(83)=1.475, P=0.144).  

For patients with complete data, 10 out of 51 (19.6%) patients had hypermethylated 

MGMT promoters. Patients with hypermethylated MGMT promoters tended to have higher 

contrast enhancement / total tumor ratios (t(49)=2.932, P=0.005) and contrast enhancement / 

necrosis ratios (t(49) = 2.969, P=0.005) (Table 6) (Figure 13).  

Lastly, at the transcriptome level, the levels of each imaging feature in Table 3 were 

compared between the four molecular subtypes of GBM (20/85 proneural, 30/85 mesenchymal, 

21/85 classical, 14/85 neural). A one-way between subjects ANOVA for each imaging feature 

failed to show any statistical significance between molecular subtypes of GBM (Table 7). The 

effect of molecular subtype on five general imaging features is illustrated in Figure 14. 

Top: Down analyses: Imaging/Microarray Analyses 

The results of our initial two-class non-parametric SAM analysis showed 1049 genes up-

regulated between tumors with high and low percent necrosis below a false discovery rate of 

30%. As we were originally interested in the genetic expression patterns for the necrosis imaging 

feature independent of molecular subtype, we next performed separate analyses for each of the 

four molecular subtypes of GBM in hopes of finding a consistent set of differentially expressed 



19 

!

genes between high and low necrosis groups. However, due to the inability to find a consistent 

set of genes at reasonable false discovery rates, we randomly divided our total group into a 

Discovery group and Validation group, again compared the genes differentially expressed 

between the top and bottom thirds of percent necrosis patients, and identified overlapping genes 

in both groups according to the method performed Zinn et al. (2011). 118 genes were 

consistently differentially expressed between these two groups at a false discovery rate below 

40%.   

Bioinformatic Analysis of selected genes associated with percent necrosis 

We further analyzed the 118 genes whose expression was consistently correlated to 

percent necrosis using Ingenuity Pathway Analysis (IPA). The top associated molecular 

networks were cellular function and maintenance, cellular movement, hematological system 

development and function (59 genes), cancer, hematological disease, lipid metabolism (39 

genes), cell to cell signaling, cellular growth and proliferation, connective tissue development 

and function (33 genes), and cell cycle, cell morphology, cellular growth and proliferation (17 

genes). Figure 15 shows the involvement of several of the necrosis-associated genes within a 

subset of the growth and proliferation network.  

Next, we analyzed the associated pathological pathways that were enriched in our gene 

set. Results show that significant pathways were hypoxia inducible factor signaling 

(P=0.0000643), anti apoptosis (P=0.0159), cell cycle: G2/M DNA damage checkpoint regulation 

(P=0.0341), and mitochondrial dysfunction (P=0.0501) (Figure 16). Table 8 shows the 

significance and genes associated with each of these pathways.  

Finally, we analyzed the well established canonical pathways in which our genes were 

involved. Results showed that the top canonical pathways were EIF2 Signaling (P=2.08x10-06), 
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Regulation of eIF4 and p70S6K signaling (P=2.84x10-04), cardiac hypertrophy signaling 

(P=3.92x10-04), systemic lupus erythematosus signaling (P=3.92x10-04), and CREB signaling in 

neurons (P=3.78x10-03). The P values in IPA estimate the likelihood that the association between 

our gene set and the respective pathways was due to random chance.  

 

Discussion  

In this study, we present a methodolgy to systematically and accurately analyze genomic 

correlations to MR imaging features in glioblastoma multiforme. In Part One, we showed that the 

results of our feature extraction measurements agreed more with other volumetric segmentation 

techniques than with the scorings made by radiologists according to the VASARI standard. This 

suggests that the visual estimations performed by neuroradiologists are likely inexact and not 

particularly sensitive. This is most likely due to the fact that using only one axial slice fails to 

give a complete representation of the tumor. In fact, during the segmentation process, we noticed 

that the relative amounts of contrast enhancement varied from slice to slice. For example, slices 

near the top and bottom of the tumor (representing the surface) often showed more contrast 

enhancement than those in the middle, a pattern not taken into account with a single 2D image.   

While our volummetric assessment of tumor features is relatively consistent with those of 

Zinn et al., one key difference is worth highlighting. In our methodology, only two markups are 

generated: an envelope covering the total abnormal signal in the FLAIR image and a mask 

covering the total tumor volume in the post Gd T1 images. Within the post Gd images, the total 

tumor volume consisted of interdigitated “necrosis” and “contrast enhancing” regions which 

FAST automatically separated. In contrast, the method used by Zinn et al. involved the manual 

segmentation of the region within the total tumor volume, which, besides being tedious and time-
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consuming, can be highly subjective. Thus, the inherent differences in our volumetric methods 

could explain why there is more disagreement in contrast enhancing and necrotic volumes than 

in total tumor volume. Since a true gold standard does not exist, we determined which method 

was more “accurate”, by how well it stratified short survivers and long survivers in terms of 

necrosis, a feature commonly implicated in the literature as having strong prognostic value. The 

results displayed in Figure 10 provide additional validation of our data set, as it suggests our 

measurements are not only consistent with past literature, but are as good if not better than the 

Zinn et al. dataset in predicting outcome.  

Our edema measurments and those of Zinn et al. (2011) showed noticabely little 

agreement to the radiologists’ scorings. This may be due to the fact that our definition of edema 

was based on the total abnormal volume, which contains both edema and other regions such as 

non-enhancing tumor (Carrillo et al., 2012; Kelly et al., 1987; Prastawa et al., 2005). As 

expected, when we did not agree with the VASARI standard, we over estimated the edema 

volume 98% of the time (data not shown). While there are several radiologist-based imaging 

standards other than VASARI (Therasse et al., 2000; Macdonald et al., 1990), there is not yet a 

volumetric, in silico based standard to objectively measure GBM imaging features that is 

routinily used in the clinic. We have shown that our method has statistically significant 

prognostic predictive power and we hope that our results will demonstrate that an objective, 

volumetric-based feature measurement pipeline is easy to implement and has the potential to 

provide meaningful guidence in prognostic and diagnostic decisions.    

After having established the validity of our image segmentation technique, Part Two of 

this study focused on identifying associations between imaging features and genomic 

aberrations. In the first part of Part Two, we used a bottom up approach to correlate imaging 
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features to previously established genetic, epigenetic, and transcriptional characteristics of GBM 

tumors. We found that MGMT promoter methylation, but not EGFR mutations, TP53 mutations, 

or molecular subtype, was associated with several imaging features. Determination of MGMT 

methylation status is an important factor in estimating response to chemotherapy, but it is 

difficult to measure without taking large samples of tissue, usually only available from a biopsy 

or an tumor resection (Drabycz et al., 2010). Several studies have shown an association with 

MGMT promoter methylation and certain imaging features such as tumor location and ring 

enhancement patterns (Eoli et al., 2007). Future research could determine if a model could be 

built from combined imaging features to reliably predict the MGMT promoter methylation status 

of an individual before their initial surgical resection.  

We were surprised that none of our 17 imaging features showed significant differences 

from each other across the molecular subtypes. Preliminary data from pilot studies with smaller 

sample sizes suggested at a borderline significance that the proneural subtype was characterized 

by less contrast enhancement compared to the other three subtypes. However, we did not find 

this trend in the current study (one way ANOVA: F (3, 63) = 7.13, P=0.548), suggesting that 

pathways other than those which differentiate molecular subtypes may be associated with various 

MRI features. To explore these pathways, a top-down approach was undertaken with the help of 

genetic expression microarray data. 

In our microarray analysis, we were unable to find a consistent set of differentially 

expressed genes between high and low percent necrosis tumors across the four molecular 

subtypes of GBM. This may be due to the small sample sizes of the resepective subgroups 

compounded by the already decreased transcriptional activity of tumors with a high proportion of 
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dead cells. We therefore compared the differential expression between high and low necrosis 

using a discovery and validation set according to Zinn et al. (2011).  

We decided to study the percent necrosis imaging feature for several reasons. For one, 

necrosis is consistently implicated throughout the literature as a poor prognostic indicator for a 

wide range of cancers (Fisher et al., 1978; Frank et al., 2002; Swinson et al., 2002). In regards to 

GBMs, necrosis is a strong prognostic MR imaging feature even when age, KPS, and gender is 

controlled for (Barker et al., 1996) and is often a defining hallmark at the histological level that 

differentiates GBM from lower grade gliomas (Louis et al., 2007). We also note that higher 

necrosis is associated with lower KPS scores and thus could influence overall patient health as 

well. Importantly, necrosis had historically been thought to be removed only by surgical 

measures, but recent research has demonstrated that it can actually be decreased 

chemotheraputically in patients with certain MRI features undergoing certain treatment regimens 

(Najafi et al., 2012). This suggests that it is possible to reduce necrosis by targeting pathways 

implicated in the phenotype. However, relatively little literature is available on the molecular 

pathways behind necrogenesis in regards to glioblastomas (Raza et al., 2004).  

Apoptosis refers to the natural, programmed cell death that 99% of the cells in our bodies 

will undergo during our lifetimes. It is the orderly process that is defined by tightly regulated 

caspase-depdendent pathways and involves cooperation with the immune system to facilitate 

engulfment and to produce the least amount of immune disruption as possible. Necrosis, on the 

other hand, refers to unprgrammed cell death and is characterized by cytoplasmic swelling, 

plasma membrane rupture, organelle breakdown, and proinflammatory spilling of cellular 

contents into the surrounding tissue (Denecker et al., 2001). An important observation is that 

apoptosis and necrosis are the two possible pathways that a dying cell can take and which 
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pathway occurs depends on several factors such as intracellular ATP concentration (Lemasters, 

1999). Therefore, one way to decrease necrosis in GBM could be to restore proper apoptotic 

pathways. 

As expected, pathway analysis results demonstrated that several of our necrosis-related 

genes were involved in hypoxia, notably several eukaryotic initiation factor 2 subunits. Hypoxic 

situations and mitochondrial damage have been shown to lead to the phosphorylation of certain 

subunits of EIF2B and the inhibition of cellular protein synthesis (Lou et al., 2010). However, 

there is limited literature describing its role in tumorgenesis. Bioinformatic results also 

implicated several anti-apoptotic genes in our gene set. One potential anti-apoptotic target gene 

is baculoviral inhibitor of apoptosis (IAP) repeat-containing protein 7 (BIRC7), also referred to 

as livin, whose up-regulated expression has been reported in several cancers (Vucic et al., 2000) 

and is associated with lower overall survival in neuroblastoma due to its ability to attenuate 

apoptotic stimuli of chemotherapeutic agents (Kim et al., 2005).  

It would also be expected that many of our necrosis-related genes would be involved in 

mitochondria dysfunction, as mitochondria play intricate roles in apoptosis. In order for cells to 

die in a controlled manner, the mitochondria undergoes a mitochondrial permeability transition 

(MPT) which is characterized by an increase in permeability to solutes with a simultaneous 

controlled release of proapoptotic proteins such as cytochrome c and various procaspases 

(Denecker et al., 2001). As mitochondrial integrity fails, apoptosis pathways are disrupted and 

cell death pathways shift to favor necrosis.   

The top molecular networks enriched in our necrosis-associated genes involved cellular 

growth and proliferation, cell signaling, and connective tissue development and function (33 

genes). Complementary studies in our lab investigating the expression patterns of patients with 
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increased levels of contrast enhancement, a feature which reflects the infiltration and 

angiogenesis of high-grade gliomas, have also implicated several of these pathways. It may seem 

counter-intuitive at first that pathways involved in new cell growth would be associated with 

tumors exhibiting marked patterns of cell death. However, a review of recent literature suggests 

the continuity between the two events and paints a picture of contrast enhancement and necrosis 

being two different sides of the same coin. 

As tumor cells are stimulated to grow and proliferate uncontrollably, they release signals 

such as TNF! and NF$B, which are necessary for the coagulation required to stabilize 

neovasculature and ECM (Raza et al., 2004). This coagulation, combined with intravascular 

thrombosis resulting from high cellular density, is thought to strangle nutrient and energy sources 

and eventually lead to hypoxia (Brat & Van Meir, 2004). Hypoxic situations, in turn, cause 

interference with ligand-receptor interactions in the apoptosis pathway and shifts the death 

pathway to favor necrosis (Raza et al., 2004). Hypoxia also induces hypoxia inducible factors 

(HIFs) which, among other things, increase the transcription of vascular endothelial growth 

factor (VEGF) (Liu et al., 1995), leading back to angiogenesis, invasion, activation, and 

proliferation at the beginning of the cycle (Figure 17). This connection may explain both the high 

malignancy of highly necrotic tumors as well as the fact that the microvascular hyperplasia edges 

of necrosis, termed pseudopalisading necrosis, are the highest growing parts of the tumor (Brat & 

Van Meir, 2004) (Appendix Figure 3). Likewise, a high correlation between our contrast 

enhancement and necrotic volumes (Pearson r(70) = 0.921, p<0.0001, Appendix Figure 4) as 

well as studies that suggest that anti-VEGF therapies decrease necrosis preferentially (Pope et 

al., 2006) support this relation between necrosis and contrast enhancement. While the traditional 

method of measuring chemotherapeutic response rate is to monitor changes in contrast 
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enhancement (Shirai et al., 2012), this assessment fails to take into account important aspects of 

tumorgenesis. Our work corroborates the idea that in order to more fully understand the biology 

behind GBM, an understanding of contrast enhancement, as well as its complementary necrotic 

pathways, is required.  

A word about the ethical implications of treatment of brain tumors 

 The decision of how to best treat GBM tumors is by no means a simple task. Doctors and 

family members are often faced with the difficult dilemma of weighing the costs of hundreds of 

thousands of dollars and tremendous setbacks in the quality of life from strong chemotherapeutic 

drugs and open craniotomy surgeries (sometimes multiple) and the benefits of prolonged 

survival.  

Due to the aggressive nature and heterogeneity intrinsic amoung GBM tumors, the 

standard of care may lead to very different outcomes in relatively similar patients. This makes 

the decision more difficult and the obscruity of the situation allows doctors to perform 

procedures that would have been too risky to do otherwise, putting patients in compromised 

positions (Whittle & Gregor, 1991).  

There are several factors that doctors currently use to stratify patients into survival groups 

to assist in decision making such as age, Karnofsky Performance Scale, and post-surgical 

residual tumor volume (Park et al., 2010). Our results have confirmed other studies suggesting 

that MRI may also be a useful tool to be used in the equation to guide decision-makers to the 

most practical ways of treating highly malignant neoplasms and lead to the longest period of 

high quality of life for GBM patients. 
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Limitations and future directions 

Despite our increased precision by using two groups of patients and incorporating false 

discovery rates into our microarray analysis, it is important to note that our results may be 

confounded by issues inherent in DNA microarray analysis, such as the “multiple hypothesis 

caveat”, which refers to the statistical probability that with so many genes, we would expect to 

see some genes to show significance by chance alone (Pope et al., 2008). Moreover, simply 

measuring mRNA levels only gives us a snapshot of the biological events between gene and 

protein. Future experiments involving western blots or immunohistochemical staining to measure 

protein amounts will be required to confirm our findings.  

As another limitation, the tumor samples included in the TCGA studies were obtained 

from several different institutions, including Emory University, which did not record the time 

between initial sample collection at surgery and RNA processing or the location of the tumor 

from where the sample was taken. RNA is extremely sensitive and quickly degrades at room 

temperature (Strand et al., 2007), thus variable lengths of time between resection and snap 

freezing could obfuscate the interpretation of our results. Moreover, while limited studies have 

resulted in different conclusions about whether the microenvironment of the tumor affects 

genetic expression patterns (Hobbs et al., 2003) (Liang et al., 2005), it is likely that differences 

between necrotic regions and contrast enhancing regions do in fact influence gene expression 

and thus the location from where the tumor was taken could also influence the interpretation of 

our results. Current work in our lab is identifying the influence of tumor microenvironment on 

gene expression. 
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Conclusion 

In Part One, we validated a novel semi-automated in silico segmentation and 

measurement method. This technique has the potential to be easily implemented in healthcare 

institutions and used by people with appropriate training. The approach involves measuring 

volumetric MR imaging features in continuous variables and offers more precision and 

reproducibility than typical measurement standards involving categorical variables. 

In Part Two, we used both bottom-up and top-down approaches to implicate several 

molecular events with various imaging features. Our bottom-up results suggest that MGMT 

promoter methylation status is strongly associated with several imaging features. We chose to 

investigate the imaging feature percent necrosis in depth because of its strong relation to survival 

and the relative lack of literature examining its pathways. Results from bioinformatics analyses 

suggest several important pathological mechanisms and networks related to necrosis, such as 

hypoxia and anti-apoptosis, and identified several potential chemotherapeutic target genes. 

Lastly, our bioinformatic results and correlations between our image features corroborate the 

inseparability of contrast enhancement (angiogenesis, proliferation) and necrosis and the theme 

that one feature cannot be targeted without considering the other.  

In summary, the goal of our project was to determine whether MRI features have the 

potential to be used in a clinical setting to assist with prognostic or diagnostic decision making 

and ultimately lead to more personalized therapies to improve the current standard of care for 

GBM. In the optimal setting, a doctor would volumetrically analyze an MRI feature, gain insight 

into the predominant oncologic molecular pathways involved in that tumor, and be better able to 

prescribe specific drugs for which that patient would likely be a good candidate. We hope that 

our findings will contribute to this ideal becoming a reality.  
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Imaging Feature Proposed 
prognostic value 
on overall 
survival 

Source 

Contrast Enhancement -- 
++  
++ 
++ 

(Pierallini et al., 1996) 
(Ma et al., 2009) 
(Hammoud et al., 1996) 
(Chaichana et al., 2010) 

Necrotic Volume  -- 
++ 
++ 
++ 
++ 

(Pope et al., 2005) 
(Pierallini et al., 1996) 
(Barker et al., 1996) 
(Lacroix et al., 2001) 
(Ekici et al., 2011) 

Edema Volume -- 
-- 
++ 
++ 

 (Pierallini et al., 1996) 
(Ekici et al., 2011) 
(Pope et al., 2005) 
(Hammoud et al., 1996) 

Total Tumor Volume -- 
-- 
-- 
++  

(Pope et al., 2005) 
(Pierallini et al., 1996) 
(Hammoud et al., 1996) 
(Iliadis et al., 2012) 

Total Abnormality 
Volume 

--  (Iliadis et al., 2012) 

Total Abnormal 
Volume / Total Tumor 

++ (Ellingson et al., 2011)* 
 

Tumor Location -- 
++ 

(Hammoud et al., 1996) 
(Onoyama, Abe, Yabumoto, Sakamoto, & 
Nishidai, 1976) 

 
Table 1: Summary of studies implicating MRI features of GBMs with overall survival. Note all 

studies above used categorical estimates of image features. ++ Indicates that the feature was 

found to be significantly associated with survival. -- Indicates that no significant association with 

survival was found. * Indicates bevacizumab chemotherapy 
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Image Feature Number of 
Patients 

Mean (cm!) Skewness Standard Deviation 
(cm!) 

Necrotic Volume 89 22.203 0.8514 15.078 
Edema Volume 89 63.059 0.7371 44.064 
Contrast Enhancing 
Volume 

89 17.931 1.156 13.045 

Total Tumor Volume 89 40.134 0.9385 27.625 
Total Abnormal Volume 89 103.194 0.5266 55.378 
 

Table 2: Descriptive statistics for several imaging features. Total Tumor volume refers to the 

combination of necrotic and contrast enhancing volumes. Total Abnormal Volume consists of 

the combination of total tumor and edema volumes.  
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A 
Variable Hazard 

Ratio (HR) 
95% Confidence Interval P Value 

Gender 1.115 0.854 - 1.376 0.684 
KPS 1.473 0.941 - 2.005 0.046 
Age 1.015 0.699 - 1.331 0.124 
Necrosis (mm3) 1.365 0.986 - 1.89 0.061 
Contrast Enhancement (mm3) 1.276 0.929 - 1.752 0.132 
Edema (mm3) 0.766 0.569 - 1.031 0.078 
Total Abnormal (mm3) 1.028 0.698 - 1.516 0.887 
Total Tumor (mm3) 1.339 0.963 - 1.863 0.083 
Necrosis / Edema 1.578 1.207 - 2.063 0.001 
Necrosis / Total Tumor 2.932 0.515 - 16.685 0.225 
Percent Necrosis 1.862 1.163 - 2.982 0.01 
Contrast Enhancement / Edema 0.658 0.497 - 0.871 0.003 
Contrast Enhancement / Total Tumor 0.481 0.119 - 1.947 0.305 
Percent Contrast Enhancement 1.585 0.997 - 2.519 0.052 
Percent Edema 0.353 0.213 - 0.585 <0.001 
Total Tumor / Edema 1.837 1.116 - 3.026 0.017 
Contrast Enhancement / Necrosis 0.64 0.294 - 1.394 0.262 
Total Tumor / Total Abnormality 1.817 1.108 - 2.978 0.018 
Abs(Necrosis – Contrast 
Enhancement 

1.306 0.954 - 1.658 0.051 

Abs(Total Abnormal – Total Tumor) 0.766 0.503 - 1.029 0.078 
 
 
B 
Variable Hazard 

Ratio (HR) 
95% Confidence Interval P Value 

KPS 1.287 0.869 - 1.906 0.208 
Percent Necrosis 1.713 1.053 - 2.787 0.03 
 

Table 3: Cox proportional hazards model univariate (A) and multivariate (B) analyses of 

individual parameters for correlations with overall survival rate. KPS: Karnofsky Performance 

Scale score (see Introduction). Significant values (P<0.05) are indicated in bold.  
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Imaging Feature  T statistic Degrees of 
Freedom 

Significance (2-tailed) 

Edema (mm3) 1.266 83 .209 
Necrosis (mm3) 1.058 83 .293 
Contrast 
Enhancement (mm3) 

.860 83 .392 

Total Tumor (mm3) .985 83 .328 
Total Abnormality 
(mm3) 

1.475 83 .144 

Percent Contrast 
Enhancement 

-.839 83 .404 

Percent Necrosis -.828 83 .410 
Percent Edema .865 83 .390 
Necrosis / Edema -1.103 17.431 .285* 
Contrast 
Enhancement / Total 
Abnormality 

.445 83 .657 

Contrast 
Enhancement / 
Edema 

-1.050 18.563 .307* 

Total Tumor / Edema -1.085 17.882 .292* 
Contrast 
Enhancement / 
Necrosis 

.129 83 .898 

Necrosis / Total 
Tumor 

-.445 83 .657 

Total Tumor / Total 
Abnormality 

-.865 83 .390 

Abs (Contrast 
Enhancement – 
Necrosis) 

.361 83 .719 

Edema / Total Tumor .921 83 .360 
 

Table 4: Comparisons of 17 individual imaging feature measurements between patients with or 

without TP53 mutations. No features showed significant difference between mutation statuses. 

All t tests assume equal variance unless indicated by *   
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Imaging Feature T statistic Degrees of 
Freedom 

Significance (2-tailed) 

Edema (mm3) -.390 83 .698 
Necrosis (mm3) .172 83 .864 
Contrast Enhancement 
(mm3) 

.521 83 .604 

Total Tumor (mm3) .340 83 .735 
Total Abnormality 
(mm3) 

-.140 83 .889 

Percent Contrast 
Enhancement 

1.193 83 .236 

Percent Necrosis .466 83 .643 
Percent Edema -.834 83 .407 
Necrosis / Edema .858 83 .393 
Contrast Enhancement 
/ Total Tumor 

1.138 83 .258 

Contrast Enhancement 
/ Edema 

.925 83 .358 

Total Tumor / Edema .898 83 .372 
Contrast Enhancement 
/ Necrosis 

1.242 83 .218 

Necrosis / Total Tumor -1.138 83 .258 
Total Tumor /  
Total Abnormality 

.834 83 .407 

Abs (Contrast 
Enhancement / 
Necrosis)  

.060 83 .952 

Edema / Total Tumor .191 29.685 .849* 
 

Table 5: Comparisons of 17 individual imaging feature measurements between patients with or 

without EGFR mutations. No features showed significant difference between mutation statuses. 

All t tests assume equal variance unless indicated by *   

 

 

 

 

 



46 

!

Imaging Feature  t statistic Degrees of 
Freedom 

Significance (2-tailed) 

Edema in mm3 .297 49 .768 
Necrosis in mm3 .431 49 .668 
Contrast Enhancement 
in mm3 

-.055 49 .956 

Total tumor ball Volume 
in mm3 

.196 49 .846 

Total everything - 
FLAIR volume in mm3 

.319 49 .751 

Percent Contrast 
Enhancement 

-1.605 49 .115 

Percent Necrosis -.630 49 .532 
Percent Edema 1.153 49 .255 
necrosis/edema -.821 49 .416 
Contrast Enhancement / 
Total Tumor 

-2.932 49 .005 

Contrast Enhancement / 
Edema 

-.759 49 .452 

Total Tumor / Edema -.790 49 .434 
 Contrast Enhancement / 
Necrosis 

-2.969 49 .005 

Necrosis / Total Tumor 2.932 49 .005 
Total Tumor / Total 
Abnormality  

-1.153 49 .255 

Abs (Contrast 
Enhancement / Necrosis) 

1.423 49 .161 

Edema / Total Tumor .571 49 .571 
 

Table 6: Comparisons of 17 individual imaging feature measurements between patients with or 

without MGMT promoter hypermethylation. Significant features are indicated in bold. All t tests 

assume equal variance unless indicated by *   
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Imaging Feature    df F Sig. 
Total Tumor / Edema Between Groups 3 .979 .407 

Within Groups 81   
Abs (Necrosis – Contrast 
enhancement) 

Between Groups 3 1.213 .310 
Within Groups 81   

Total Tumor / Total 
Abnormality 

Between Groups 3 .371 .774 
Within Groups 81   

Necrosis / Total Tumor Between Groups 3 .914 .438 
Within Groups 81   

Contrast Enhancement / 
Necrosis 

Between Groups 3 1.281 .287 
Within Groups 81   

Total Tumor / Edema Between Groups 3 .797 .499 
Within Groups 81   

Contrast Enhancement / 
Edema 

Between Groups 3 .951 .420 
Within Groups 81   

Contrast Enhancement / 
Total Tumor 

Between Groups 3 .914 .438 
Within Groups 81   

Necrosis / Edema Between Groups 3 .667 .575 
Within Groups 81   

Percent Edema Between Groups 3 .371 .774 
Within Groups 81   

Percent Necrosis Between Groups 3 .097 .961 
Within Groups 81   

Percent Contrast 
Enhancement 

Between Groups 3 .824 .485 
Within Groups 81   

Total Abnormality (mm3) Between Groups 3 .458 .713 
Within Groups 81   

Total Tumor (mm3) Between Groups 3 .572 .635 
Within Groups 81   

Contrast Enhancement 
(mm3) 

Between Groups 3 .767 .516 
Within Groups 81   

Necrosis in (mm3) Between Groups 3 .433 .730 
Within Groups 81   

Edema in (mm3) Between Groups 3 .275 .843 
Within Groups 81   

 

Table 7: Analysis of Variance (ANOVA) of individual features among the four molecular 

subtypes of GBM. None of the imaging features showed significant difference between 

molecular subtypes.  
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Pathway P-value Gene 
Symbol 

Gene Name 

Hypoxia-
Inducible 
Factor 
Signaling 

0.0000643 EIF2B3 
 
EIF2B4 
 
EIF2B5 
 
SUMO1 
UBE2I 

Eukaryotic translation initiation factor 2B, 
subunit 3 
Eukaryotic translation initiation factor 2B, 
subunit 4 
Eukaryotic translation initiation factor 2B, 
subunit 5 
SMT3 suppressor of mif two 3 homolog 1 
Ubiquitin-conjugating enzyme E2I 

Anti-
Apoptosis 

0.0159 BIRC7 
BNIP1 

Baculoviral IAP repeat containing 7 
BCL2/adenovirus E1B 19kDa interacting 
protein 1 

Cell Cycle: 
G2/M DNA 
Damage 
Checkpoint 
Regulation 

0.0341 CKS2 
MYT1 

CDC28 protein kinase regulatory subunit 2 
Myelin transcription factor 

Mitochondrial 
Dysfunction 

0.0501 NDUFA2 
 
NDUFS5 
 
RHOT2 

NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex 
NADH dehydrogenase (ubiquinone) Fe-S 
protein 5 
Ras homolog gene family, member T2 

 

Table 8: Results of IPA functional analysis for the 118 genes correlated with percent necrosis 

and the respective levels of significance.  
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Figure 1: Three molecular signaling pathways in GBM. Copy number alteration and DNA 

mutation changes are indicated in the receptor tyrosine kinase (RTK), RAS, and 

phosphoinositol–3–kinase (PI3K) pathway (a); the p53 tumor suppressor pathway (b); and the 

retinoblastoma (Rb) tumor suppressor pathway (c). Shades of red indicate activating alterations 

while shades of blue indicate inactivating alterations. The frequency of various alterations across 

TCGA patients are indicated as percentages. Blue boxes indicate percentages of GBMs with 

alterations in at least one aspect of the indicated pathway. Reprinted with permission from The 

Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines 

human glioblastoma genes and core pathways. Nature. 2008;455:1061–1068 
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Figure 2: GBM visualized using different MRI sequences. FLAIR (A) and T2 weighted (B) 

images are ideally suited for visualizing edema whereas T1 weighted post Gd (C) images are 

best suited for visualizing necrosis (decreased signal intensity) and contrast enhancement 

(surrounding rim of increased signal intensity). 

 

 

 

!"#$% !"#$%&'& 

!!! !!!! ! 

!"#$%&'$()#*&#+,-,#$ 



51 

!

 

 

Figure 3: Binary mask segmentation for a 60 year old male patient with a right temporal GBM. 

Masks were manually drawn in Velocity A1 using the 2D flood fill tool (Purple, blue areas) to 

cover tumor volumes on (A) Post Gd images and (B) FLAIR images. Note that the FLAIR 

“envelope” includes both edema (hyper intense signal) as well as the tumor itself, minus the area 

occupied by the ventricles.  
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Figure 4: TumorView Dynamic Reader. Image sets of TCGA patients with accompanying 

binary masks were uploaded onto an ad hoc website and analyzed. Patients with acceptable 

images and mask overlay (A) were cleared for further analysis whereas patients with poor 

images or post-surgical images (B) were excluded.  

 

 

 

Figure 5: Semi-automated in silico segmentation and measurement method for T1 weighted post 

Gd images. Tumor volume is identified by a manually drawn binary mask (Red) in Velocity AI. 

K means clustering divides pixels covered by the mask into bright (red, contrast enhancement) 

and dark (green, necrosis) clusters based on relative pixel intensity. Volume of individual 

features can be estimated by converting voxels into mm3. 

! ! 

! !! !
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Figure 6: Patient Characteristics. 89 total patients with MRI sets amenable to necrosis, contrast 

enhancement, and edema image feature measurement were included in the study. 57 patients 

were male and the average age was 56.9 years old (Range: 14 to 84 yrs old). 

 

 

 

Figure 7: Percent agreement between measurements made by Gutman et al. (current study) and 

ratings by neuroradiologists according to VASARI standard. For comparison, measurements 

from Zinn et al. are plotted as well. Percent agreement to the Vasari standard within each 

imaging feature does not differ between our measures (Gutman et al.) and those made by Zinn et 

al. Error Bars represent 95% confidence intervals. 
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Figure 8: Correlations of total tumor measurements between Zinn et al. and Gutman et al. (left). 

Patient TCGA-06-0162 was removed from future analyses due to ambiguous contrast 

enhancement/necrosis regions and possible post-surgical scan (see skull) (right). 
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Figure 9: Correlations between total tumor volume (A), necrotic volume (B), and contrast 

enhancing volumes (C) measurements between measurements made by Zinn et al. and our 

measurements (Gutman et al.), without including patient TCGA-06-0162. A tighter correlation is 

observed for small volumes with more variability at large volumes. Correlations are also stronger 

in general for total tumor volume (r(70)=0.944, p <0.0001) than for necrotic volume 

(r(70)=0.612, p<0.0001) or contrast enhancement volume (r(70)=0.770, p<0 .0001).  
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Figure 10: Comparison of the difference in the amount of necrosis between patients surviving 

less than a year and patients surviving more than a year based on the measurements from Zinn et 

al. (A) and the measurements from our methodology (B). Using this metric, our measurements 

show a higher significant difference between the two groups (P=0.0006 vs. P=0.0212). 
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Figure 11: Kaplan-Meier survival analysis of patients with percent necrosis above the median 

(19.5%) and those with percent necrosis below the median (n1,2 = 35). Survival for patients with 

high percent necrosis was significantly lower than that for patients with low percent necrosis (log 

rank, p = 0.0209). Median survival was 557 days (low percent necrosis) vs. 370 days (high 

percent necrosis). 

 

 

 

 

 

Fig 12: Distribution of percent necrosis across patient characteristics implicated in survival. 

Mean necrosis does not significantly differ between (A) age (F(2,86) = 1.133, 0.327) or (B) sex 

(t(87)=0.236, p = 0.814). Patients with KPS scores of 60 show significantly more necrosis than 

those with scores of 100 (Tukey’s Post Hoc (p=0.043)).  

! ! ! 
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Figure 13: Effect of MGMT methylation on various imaging features. MGMT promoter 

methylation is associated with higher Contrast Enhancement / Total Tumor ratios (A) and 

Contrast Enhancement / Necrosis ratios (B).    

 

 

 

Figure 14: Mean volumes of Edema, Necrosis, Contrast Enhancement, Total Tumor, and Total 

Abnormality for each molecular subtype as defined by Verhaak et al. Between subjects one way 

ANOVAs for each imaging feature grouped by molecular subtype showed no statistical 

significance for any imaging feature variable. See Table 7 for significance.   

! ! 
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Figure 15: Representation of genes consistently expressed in tumors with high percent necrosis 

using IPA Pathway Builder. Genes up-regulated in high necrosis patients (Red) are involved in 

several pathways including cell-to-cell signaling and interaction, cellular growth and 

proliferation, and connective tissue development and function pathways (white). Dashed lines 

indicate experimentally determined indirect interactions. Complete lines indicate direct 

interactions.  
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Figure 16: Results of IPA Functional analysis for 118 genes consistently correlated with percent 

necrosis. Significantly associated functions are represented by blue bars containing the orange 

threshold line.    
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Figure 17: Schematic representation of a proposed relationship between contrast enhancement 

and necrosis. Growth signals and angiogenic signals increase tumor vasculature. The resulting 

increase in coagulation and cellular density starve the cells of oxygen and nutrients. The starved 

hypoxic state cause the production of more growth signals. See text for details. 
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Appendix Figure 1: Subset of VASARI imaging guidelines used by neuroradiologists to 

classify brain tumors on MR scans. Note the categorical nature of the guidelines. 

 

 

 

Appendix Figure 2: Graphical representation of the results of a two class non parametric 

Statistical Analysis of Microarray (SAM) analysis. Genes above upper FDR threshold are 

considered significantly up regulated in necrosis patients and are indicated in green. Red genes 

are inversely correlated to increasing levels of tumor necrosis.   

!
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Appendix Figure 3: Area of necrosis surrounding an occluded blood vessel in a diagnostic 

histology slide for patient TCGA-02-0037, who had 56% necrosis visualized by his MRI scan. 

Arrowhead points to pseudopalisading necrosis migrating away from the central necrotic core, 

which is indicated by the star. 

!
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Appendix Figure 4: Correlation between amount of necrosis and contrast enhancement. Pearson 

r(68) = 0.921, p <.0001. !


