
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory
University, I hereby grant to Emory University and its agents the non-exclusive license to
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or
hereafter now, including display on the World Wide Web. I understand that I may select some
access restrictions as part of the online submission of this thesis. I retain all ownership rights to
the copyright of the thesis. I also retain the right to use in future works (such as articles or
books) all or part of this thesis.

Scott Masterson April 7, 2024

Modified Functional Principal Component Regression

by

Scott Masterson

Bree Ettinger
Adviser

Applied Math and Statistics

Bree Ettinger
Adviser

Julianne Chung

Committee Member

Talea Mayo

Committee Member

Shomu Banerjee

Committee Member

2024

Modified Functional Principal Component Regression

By

Scott Masterson

Bree Ettinger

Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of

Bachelor of Science with Honors

Applied Math and Statistics

2024

Abstract

Modified Functional Principal Component Regression

By Scott Masterson

Using simulated temperature data as a proof of concept, we present a novel approach to
prediction via the development and application of Modified Functional Principal Component
Regression (MFPCR). By employing bivariate splines over triangulations in a functional linear
regression model, this study offers a proof of concept for the modified approach that include
additional data to improve the Function Principal Component Regression (FPCR). The mock
temperature prediction problem has few complexities and clear influencing factors. Our
comparative analysis of MFPCR and FPCR reveals insights into predictive accuracy, uncertainty
quantification, and the spatial distribution of functional data, setting the stage for more precise
neighborhood-level forecasting in future investigations.

Modified Functional Principal Component Regression

By

Scott Masterson

Bree Ettinger

Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Applied Math and Statistics

2024

Acknowledgments

I thank my family and friends for always believing in my talents and abilities. Even when I have
doubts, they remind me that my ambitions are attainable.

Contents

1 Abstract 2

2 Introduction and Background 2

3 Modified Functional Principal Component Regression 5
3.1 Autoregressive Process . 6
3.2 Computational Method Outline: 8

4 Simulated Temperature Data 9
4.1 Constructing a Temperature Data Set 10
4.2 Topological Features . 10
4.3 North-South Effect . 10
4.4 Hourly Variation . 10
4.5 Seasonality . 11
4.6 Adding Noise to the Signal . 12
4.7 Combining the Features to Generate the Data 12

5 Simulated Temperature Experiments 13
5.1 Fixed and Adjusted Attributes of the Simulations 13
5.2 Principal Component Analysis 14
5.3 Assessing the Prediction Function through MSE Comparison Amongst

Adjusted Attributes . 17
5.3.1 Base Case: Mountain Valley 18
5.3.2 Altered Input Function 19
5.3.3 Weight Adjustments . 19
5.3.4 Noise . 19
5.3.5 Number of Eigenvalues . 20
5.3.6 Overall MSE Comparison 20

6 Comparing the Predictions 21
6.1 MFPCR vs. FPCR . 22
6.2 Comparing Prediction Functions with Updated Station Data . . 22

7 Conclusion and Extension to the Ground-Level Ozone Applica-
tion 25

1

1 Abstract

Using simulated temperature data as a proof of concept, we present a novel ap-
proach to prediction via the development and application of Modified Functional
Principal Component Regression (MFPCR). By employing bivariate splines over
triangulations in a functional linear regression model, this study offers a proof
of concept for the modified approach that include additional data to improve
the Function Principal Component Regression (FPCR). The mock tempera-
ture prediction problem has few complexities and clear influencing factors. Our
comparative analysis of MFPCR and FPCR reveals insights into predictive ac-
curacy, uncertainty quantification, and the spatial distribution of functional
data, setting the stage for more precise neighborhood-level forecasting in future
investigations.

2 Introduction and Background

Ground-level ozone poses a significant threat as a harmful air pollutant, leading
to health issues such as coughing, chest pain, and the exacerbation of chronic
conditions. This issue disproportionately affects low-income communities sit-
uated close to pollution sources. Unlike direct emissions, ground-level ozone
forms through the chemical interactions between nitrogen oxides (NOx) and
volatile organic compounds (VOC) under sunlight, complicating the modeling
and prediction of ground-level ozone [1].

To predict ground-level ozone concentrations, this thesis explores the ef-
ficacy of a modified functional linear regression model (MFPCR), particularly
those employing bivariate splines over triangulations. Due to the aforementioned
complexities of ozone prediction, we develop a modeling application in a more
controlled environment in this paper. We construct a temperature example that
has fewer nuances: the cyclical nature makes temperature more predictable than
ground-level ozone, and there are more clear factors that influence the current
temperature.

Previous work has used functional principal component analysis (FPCR) [1]
and random forest machine learning methods to estimate ground-level ozone [5].
These approaches to forecasting ozone levels predominantly rely on analyzing
time series data from individual monitoring stations. A significant limitation
of traditional approaches is their inability to account for spatial interdependen-
cies—specifically, how ozone concentrations at nearby locations may influence
or be indicative of future concentrations at the target location.

A further complexity in predicting ozone levels arises from the spatial distri-
bution of Environmental Protection Agency (EPA) monitoring stations across
the United States. This distribution is characterized by its heterogeneity; cer-
tain areas are densely populated with stations, and other regions are sparsely
covered, leading to data scarcity. This uneven distribution poses challenges for
achieving a comprehensive and balanced analysis of ozone levels nationwide.

Moreover, the dataset pertaining to ozone levels is both sparse and irregular.

2

The variability in data points, combined with the volatile chemical-nature of
ground-level ozone fluctuations, distinguishes the challenge of predicting ozone
concentrations. The behavior of ground-level ozone is notably more erratic,
exhibiting sharp fluctuations that are less predictable and more sensitive to a
variety of influencing factors [1].

To visualize the disparity in monitoring coverage, consider the distribution
map of EPA stations above. This map underscores the spatial challenges in-
herent in the dataset, highlighting areas of both data richness and scarcity, and
underscoring the need for advanced predictive models that can effectively inter-
polate and extrapolate ozone levels across the varied landscape of the United
States. One method that addresses these concerns is the Functional Principle
Component Approach in [1].

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Left: EPA stations measuring Ozone, Right: Triangulation of the
USA and the locations of EPA Stations

Despite the EPA station density we observe at the national level, when we
zoom into Georgia’s Greater Atlanta Area we see that the locations of EPA
stations are sparse (see Figure 2a). The proposed MPFCR method addresses
a way to include additional spatially distributed data like the environmental
justice index data which could help predict ground-level ozone concentrations
across our domain of interest. See in Figure 2b.

3

(a) EPA Stations in the Atlanta Area
(b) The Environmental Justice In-
dex of the Greater Atlanta Area

Figure 2: EPA Stations and Environmental Justice Index in Atlanta

In this paper we implement a novel Modified Functional Principal Compo-
nent Regression (MFPCR) model. Functional Principal Component Regression
(FPCR) is a functional data analysis technique that uses bivariate splines over
triangulations [1]. This modeling method has found use when data has temporal
or spatial correlation. For example, the current temperature is related to what
the temperature was ten minutes ago. Applications of FPCR include environ-
mental science [1], financial modeling [3] and econometrics [4]. The prediction
technique combines the ideas of functional data analysis (FDA) and principal
component regression (PCR):

• Functional data analysis: Traditional statistical methods are designed to
handle scalars, whereas FDA treats an entire function as a basic unit of ob-
servation. In the following we will use bivariate splines over triangulations
to represent these functions [2].

• Principal component regression: PCR relies on principal component analy-
sis (PCA). PCA is a dimensionality reduction technique used to transform
the predictors into a set of linearly uncorrelated variables called principal
components. In this investigation, PCA is undergone by finding the covari-
ance matrix corresponding to our data. Then, we compute the eigenvalues
and eigenvectors of the covariance matrix to obtain the principal compo-
nents. The components found through PCA are then used as predictors
in a linear regression model.

In this investigation, we use a simulated temperature example to demon-
strate the efficacy of the MFPCR approach.

4

3 Modified Functional Principal Component Re-
gression

In the following we will describe the MFPCR approach. We refer to the moti-
vating problem of predicting ground-level ozone concentrations in our examples.
First we set up FPCR [1]. We will develop the following definitions and assump-
tions:

• Locations: Data points where we want to know the variable of interest.

• Stations: Data points where we have measurements of the variable of
interest.

• The ozone concentration over D is a random surface, X, with known values
at N locations.

• We model the ground-level ozone concentration at a specific location for
each hour of each day as a function, denoted by f(X), of the previous
day’s ozone concentration surface, which we represent by X, across the
domain D.

• To estimate X, we employ a bivariate spline space, Sr
d(△), characterized

by smoothness r (with r > 0) and degree d (where d > r), over a tri-
angulation △ of D. This method uses measurements from N stations to
approximate the ozone concentration surface.

To fit the surface to the data, we will use the Penalized Least Squares (PLS)
Method. For PLS, we let {(xi, yi, f(xi, yi)), i = 1, . . . , N} be a scattered data
set where N is a relatively large integer. Then the penalized least squares method
is to find sf ∈ S such that for a positive weight ρ > 0:

Pρ(sf) := min
s∈S

Pρ(s)

where

Pρ(s) :=

N∑
i=1

|s(xi, yi)− f(xi, yi)|2 + ρE(s)

and the penalty term E(s) is given to be the following:

E(s) :=
∑
T∈△

∫
T

(
s2xx + 2s2xy + s2yy

)
dxdy.

E(s) is known as the energy functional. We see that E(s) is composed of the
Surface Laplacian s2xx + 2s2xy + s2yy, and is the sum of the areas of all triangles
in our domain. We include the energy functional to avoid over-fitting our noisy
data as its inclusion penalizes curvature. We think of ρ as a value we can adjust
to increase or decrease the amount of noise, that is, how closely we want our
data to interpolate our observed values. A larger value for ρ would allow for

5

our model to fit the data more closely by increasing E(s), thus reducing noise.
Contrarily, a low value for ρ would decrease the value of E(s) and our model
would fit the noisy data more loosely.

We will use the ozone surface splines as the input to a Functional Linear
Model. This is similar to a how we think of a linear model except instead of
data points, we are inputting surfaces into the model. Let Y be a real-valued
random variable, which is a functional of random surface X, then:

Y = f(X) + ϵ = ⟨α,X⟩+ ϵ (1)

where E(ϵ) = 0. Let α be the solution of the following:

α = argmin
g∈H

E
[
(f(X) + ϵ− ⟨g,X⟩)2

]
(2)

where H = L2(D) is a standard Hilbert space of all square integrable functions
over D. See the definition of a square integrable function below:∫ ∞

−∞
|f(x)|2 dx < ∞.

We use the infinite-dimensional Hilbert space due to the assurance of func-
tions having desirable properties for numerical methods – the completeness of
the Hilbert space, and the space’s separability. Additionally, let ⟨f, g⟩ denote
the standard inner product of f, g on H. The inner product of two functions f
and g in the standard Hilbert space is given as follows:

⟨f, g⟩ =
∫ ∞

−∞
f(x)g(x) dx.

Where the previous property allows for the inner-product to be finite. Thus,
the functional Y has the following mapping:

Y : H = L2(D) → R
Furthermore, the Hilbert space is a normed space. Let ∥f∥ be the norm of

f , (X,Y) be a pair of random variables defined on the same probability space
Ω, with X valued in H and Y = f(X) valued in R, and X ⊂ H be a given set
of random surface distributions.

3.1 Autoregressive Process

To find a solution to the minimization problem (2) we write the equation in
terms of the Covariance and Cross Covariance functions.
Covariance:

Γg(s) =

∫
s∈D

E[X(s)X(t)]g(s)ds, ∀g ∈ H.

Cross Covariance:

∆f =

∫
s∈D

E[X(t)Y]f(t)dt, ∀f ∈ H.

6

Now, we seek to write our functional Y in terms of the continuous form of
the covariance and cross-covariance functions. We use properties of the Hilbert
space to do so. Hence we have,

Y = ⟨α,X⟩+ ϵ

⟨X,x⟩Y = ⟨X,x⟩⟨α,X⟩+ ⟨X,x⟩ϵ
E [⟨X,x⟩Y] = E [⟨X,x⟩⟨α,X⟩+ ⟨X,x⟩ϵ]
⟨E[XY], x⟩ = ⟨α,E[⟨X,x⟩X]⟩+ 0

∆(x) = ⟨α,Γ(x)⟩.

In practice, we do not observe the continuous random surface Xi but we
only observe the random surface at design points sk ∈ D, k = 1, . . . , N :

{zi,k, k = 1, . . . , N}.

Since we cannot observe the full continuous surface Xi we choose to discretize
our covariance and cross-covariance functions to use later in PCA. We approxi-
mate Xi by a smooth, fifth-degree bivariate spline denoted SXi ([2]). Thus, the
empirical estimators can be approximated by

Γ̃n(x) =
1

n

n∑
i=1

⟨SXi , x⟩SXi =

m∑
j=1

λ̃j⟨ṽj , x⟩ṽj

∆̃n(x) =
1

n

n∑
i=1

⟨SXi , x⟩Yi,

where λ̃j and ṽj are a pair of eigenvalue and eigenvector of Γ̃n and m is the
dimension of the spline space Sr

d(△). It then follows that

∆̃n(x) = ⟨αn, Γ̃nx⟩

for some αn ∈ H.
Assume that the first kn largest eigenvalues λ̃j , j = 1, · · · , kn are nonzero.

Then the principal component regression estimator of αn is

α̃PCR =

kn∑
j=1

∆n(ṽj)

λ̃j

ṽj . (3)

This method as described so far is the FPCR method from [1].

Now we suggest the modification the the FPCR method described above.
The idea is to use co-varying spatially distributed data that can augment the
prediction with more precise local information. For example, in ground-level
ozone prediction problem, we could use another surface such as the EJI (En-
vironmental Justice Index) over the same domain to augment the predictions.
We will call this additional surface W , with known values at M locations. We

7

use the same bivariate spline space Sr
d(△) to approximate W using the given

measurement values at the M locations. Next we can include this surface as an
additional principal component to shape the prediction function by first fitting
the surface W with a PLS spline SW . Then using SW to augment the prediction
function as a penalty term λ̂ with

α̃MPCR =

kn∑
j=1

∆n(ṽj)

λ̃j

ṽj + λ̂SW = α̃PCR + λ̂SW . (4)

Here we capitalize using bivariate splines over triangulations as both α̃PCR and
SW are splines over the same space and thus have the same dimension.

The α̃ in equations (3) and (4) gives a prediction function for one station in
the domain. To create a prediction for each location in the domain, we run the
model for each station and then fit the PLS spline through the predictions to
get a predicted surface for a single day and time. We can evaluate the predicted
surface at any point in the domain to obtain a prediction for that location.

3.2 Computational Method Outline:

For each station in the domain, we want to solve the system which will yield a
coefficient vector for a spline Sα such that

f(X) ≈ ⟨Sα, SX⟩. (5)

The following steps outline the process:

1. Fit each Xi with a PLS spline SXi .

2. Use SXi
to calculate Γ̃n and ∆̃n.

3. Compute the SVD of Γ̃n.

4. Select appropriate number of non-zero eigenvalues kn.

5. Compute α̃PCR in (3).

6. Fit the surface W with a PLS spline SW .

7. Compute the augmented the prediction function α̃MPCR = α̃PCR + λSW

as in (4).

Note here that (3) returns the coefficients for the prediction spline using
FPCR and (4) yields the coefficients for the prediction spline from the
MFPCR approach. Once we have the prediction spline we can evaluate
it at the last known surface to get the prediction for the next values. For
example, to generate a 24 hour prediction for ground-level ozone you would
collect the low-level ozone surfaces in Γ̃n and the value at the location of
interest 24 hours later in ∆̃n. Then solve for the prediction function using

8

FPCA or MFPCA following the method above. We make the prediction
by evaluating (5), i.e.,

f(X)︸ ︷︷ ︸
The predicted ozone value

≈ ⟨ Sα︸︷︷︸
The prediction function

, SX︸︷︷︸
The last known ozone value

⟩.

8. To obtain the the prediction at a given station for a given day and time
we take the last know surface X and compute

f(X) ≈ ⟨SαMPCR
, SX⟩

9. Once you have a prediction for each station, fit the PLS spline through the
predictions to get a predicted surface that we can evaluate at any location.

4 Simulated Temperature Data

As a proof of concept, we construct a temperature data set to run simulations.
We start with a triangulated domain on the unit square, D (see Figure 3). We
simulate data at 1000 locations where we would like to predict the temperature
measurements then randomly choose 30 of those locations to be measurement
stations. Recall stations are data points where we collect the variable of interest
while locations are data points where we would like to know the variable of
interest. Here, the number of points within the square and the amount of
triangulation have been preset, and will not be altered during this investigation.

Figure 3: The triangulation of the domain. Each point represents one of the
1000 locations where we want to know the temperature and each of the 30 red
asterisks represents a station where temperature is measured.

9

4.1 Constructing a Temperature Data Set

We seek to generate realistic temperature data set with properties that we can
access later. The data used in this investigation is simulated through a combi-
nation of “input functions” that mimic attributes that may affect temperature.
For example, topological features, latitude (north-south effect), the time of day
(hourly variation), and seasonality all influence the present temperature. To
model these natural phenomena, we consider the following functions that may
influence temperature and include the graphical representation of these func-
tions at the end of this section.

4.2 Topological Features

Temperature is affected by elevation: it may be cooler in the mountains than at
sea level. To simulate this in our data creation, consider the following function:

f1(x, y) = sin (2π(x2 + y2)) (6)

where x, y denote a coordinate on the triangulated domain. See Figure 4a
Later in this investigation, we develop an experiment concerning principal com-
ponents by adjusting the topological feature input function to a function less
gradual than f1(x, y):

f2(x) =

{
1 for x ≥ 1

2 ,

0 for x < 1
2 .

(7)

We implement the function into our model using the following MATLAB code:

function y = stepFunction(x)

y = x >= 1/2;

end

4.3 North-South Effect

Assuming the x-axis is the equator, moving north of the x-axis would result on
cooler temperatures. We have modeled this phenomena through the following
simple function:

f(x, y) = y

where x, y denote a coordinate on the triangulated domain. See Figure 4b.

4.4 Hourly Variation

When the sun is present in the sky, temperatures tend to be higher. Typically
the highest temperature occurs between 3:00pm and 6:00pm, and the lowest

10

occurs late into the night. To reflect this, consider the following function that
leverages the cyclical nature of cosine:

f(h) = − cos

(
2πh

23

)
where h denotes the hour of the day, that is, h ∈ [0, 24]. See Figure 4c.

4.5 Seasonality

The month of the year may affect the present temperature. The following func-
tion simulates this effect for use in generating the data:

f(d) = − cos

(
2πd

364

)
where d denotes the specific day in a full year, that is, d ∈ [1, 365]. See Figure 4d.

(a) An undulating surface that repre-
sents mountains and valleys

(b) Temperature variance from North
to South

(c) Temperature Fluctuation by Hour
of the day

(d) Temperature Fluctuation
Throughout a Year

Figure 4: Composite figure illustrating the various factors affecting temperature:
topological features, north-south variance, hourly fluctuations, and seasonality.

11

4.6 Adding Noise to the Signal

The model in (1) we have a noise term ϵ. The noise ϵ is a real random variable
that satisfies E(ϵ) = 0 and E(X(s)ϵ) = 0 for all s ∈ D The goal of adding noise
is to add a sense of “realism” to the data; perfect smoothness in a function
is hardly observed in a natural environment, so the addition of noise logically
replicates what we perceive in nature.

There are several types of noise. Generally, they can be classified as sys-
tematic or random noise. In this investigation, we implement Gaussian noise
through the use of MATLAB’s built-in normrnd function. The Gaussian Distri-
bution has X normally distributed with mean µ and standard deviation σ:

X ∼ N (µ, σ2) =
1

σ
√
2π

e−
1
2 (

x−µ
σ)

2

The we add Gaussian noise into the signal with µ = 0 and σ = 1.

4.7 Combining the Features to Generate the Data

We have combined the previous features to simulate temperature data over a
defined amount of days. The following for loop from MATLAB demonstrates
this combination to generate data for 121 days of the year:

data_hour = zeros(num_locations, 8);

data =[];

for d = 1:121

for h = 0:23

data_hour(:,1) = xx(:); % x locations

data_hour(:,2) = yy(:); % y locations

data_hour(:,8) = mv(:) + ns(:)

+ -d_const*cos(d*(2*pi/364))-h_const*cos(h*(2*pi/23))+location_ave;

data_hour(:,4) = d*ones(num_locations,1);

data_hour(:,5) = h*ones(num_locations,1);

data_hour(:,6) = [1:num_locations];

data_hour(:,7) = normrnd(0,1,size(data_hour(:,1)));

data_hour(:,3) = data_hour(:,8)+data_hour(:,7);

data =[data; data_hour];

data_hour = zeros(num_locations, 6);

end

end

The purpose of displaying the code is to show how the various input functions
have been incorporated into data generation. In the code, “mv” relays the
mountain-value effect, “ns” the north-south effect, and the cosine functions
defined earlier are implemented as well. The data generated from the for loop
and input functions has the following structure:

12

X Pos Y Pos Temp. Day Hour Label Noise Temp.
(Noise)

0 0 40.5406 1 0 1 0.5377 40.0030
0 0.1 41.9997 1 0 2 1.8339 40.1658
0 0.2 38.1928 1 0 3 -2.2588 40.4517
0 0.3 41.7010 1 0 4 0.8622 40.8388
0 0.4 41.5661 1 0 5 0.3188 41.2473
0 0.5 40.1953 1 0 6 -1.3077 41.5030
0 0.6 40.9399 1 0 7 -0.4336 41.3735
0 0.7 41.1084 1 0 8 0.3426 40.7658
0 0.8 43.6109 1 0 9 3.5784 40.0325
0 0.9 42.7426 1 0 10 2.7694 39.9732
0 1 39.6531 1 0 11 -1.3499 41.0030
0.1 0 43.1007 1 0 12 3.049 40.0658

Table 1: Sample of Generated Temperature Data with Noise

An example of the generated date is in Table 1. The data generated gives the
(x, y) location in the domain, the simulated temperature generated by combining
features described in this section, the day, the time, a station label, the noise,
and then finally the temperature with the noise. The temperature with noise is
what will be used for our simulations in the next section.

5 Simulated Temperature Experiments

This section outlines several experiments using the simulated data in Section 4.
The objective of these experiments is to assess the robustness of the MFPCR
approach by changing features of the problem. We will analyze the MFPCR
approach give some insight into the value of incorporating the additional term
in when calculating the prediction function.

5.1 Fixed and Adjusted Attributes of the Simulations

Some features of the analysis will remain unaffected, while others are altered.
For example, we will fix the triangulation and use the spline basis with d = 5
for optional approximation order [2]. View more information regarding these
attributes in the table below:

Fix Adjust
Number of prediction days Mountain-Valley Input Function

Spline Basis Gaussian Noise Level
Grid Number of Eigenvalues

Domain Weight

Table 2: Fixed and Adjusted Attributes

13

5.2 Principal Component Analysis

Since PCA must be performed to develop our MFPCR model, we first take
a moment to examine how altering input functions in our data will affect the
principal components used in our predictive model.

First, we assess how many principal components we wish to introduce in the
model. A common method for determining the number of principal components
to be retained can be performed visually using a “Scree” plot and a ”Cumulative
Variance Explained” plot.

A scree plot is a simple line segment plot that shows the eigenvalues for each
individual principal component. A scree plot shows the eigenvalues on the y-axis
and the index of the eigenvalue on the x-axis. The magnitude of the eigenvalues
are arranged in descending order within the plot, a by-product of orthogonal
diagonalization, and thus scree plots always display a downward curve. Most
scree plots look similar in shape, starting high on the left, falling quickly, and
then flattening out as the number of factors grow.

Below, we outline the generic process to obtain the cumulative variance
explained plot in this investigation:

1. Obtain Eigenvalues: There are many ways to retrieve the eigenvalues
of data. For our purposes, let Σ be the covariance matrix derived from
our temperature data. The eigenvalue decomposition of Σ is given by:

Σ = QΛQ−1

where Λ is a diagonal matrix with eigenvalues λ1, λ2, . . . , λn on the diago-
nal, and Q is an orthogonal matrix of the eigenvectors which corresponds
to the eigenvalues. These eigenvalues are sorted in descending order of
magnitude, as mentioned previously.

2. Variance Explained by Each Component: Each eigenvalue λi repre-
sents the variance explained by the i-th principal component. The total
variance explained by all components is:

Vtotal =

n∑
i=1

λi

3. Cumulative Sum of Variance: The cumulative variance explained by
the first k components is the sum of the first k eigenvalues:

Vcumulative(k) =

k∑
i=1

λi

4. Normalization: The fraction of the total variance explained by the first
k components is obtained by dividing the cumulative variance by the total
variance:

P (k) =
Vcumulative(k)

Vtotal

14

5. Cumulative Variance Table: A table can be constructed to display the
number of components k, the cumulative variance Vcumulative(k), and the
proportion P (k) for each k, generally ranging from 1 to n, where n is the
total number of components.

The table format is as follows:

Number of Components (k) Cumulative Variance Percentage of Variance Explained

1 Vcumulative(1) P (1)× 100%
2 Vcumulative(2) P (2)× 100%
...

...
...

n Vcumulative(n) P (n)× 100%

Table 3: Cumulative variance explained by the principal components.

This table elucidates the incremental variance each principal component
contributes and the total variance captured up to that point. It assists in
determining the optimal number of principal components to retain, based
on the cumulative variance explained. Using the previous table to guide
the creation of our plot, the number of components are plotted on the
x-axis and percentage of variance explained is plotted on the y-axis.

The code with the mountain-valley input function gives the following scree
plot and cumulative variance explained plot:

(a) Scree Plot (b) Cumulative Variance Explained

Figure 5: Scree plot and cumulative variance explained by principal components
with the inclusion of the mountain-valley function f1(x, y).

The plot shows two sharp “elbows.” One occurs around 5 eigenvalues, and
the other around 120 eigenvalues. We can see that in Figure 5b, almost 99% of
the data is explained within the first few eigenvalues, so we will use the first 5
principal components to use in our PCA.

15

Recall that the default mountain-value function in (6) (see Figure 4a).
The five principal components have the following appearance in the model

with data generated using f1(x, y). We can see some of the effects of using f1
to create the data in the fourth principle component. See Figure 6d.

(a) PC1 (b) PC2 (c) PC3 (d) PC4 (e) PC5

Figure 6: Principal Components in the Mountain Valley Model

Next, keeping all else constant, we alter the topological input function
f1(x, y) into something that we expect to be more pronounced in the plots
of the principal components. Next, we use the step function f2 (7) as the topo-
logical input function, i.e. we consider a sheer cliff with a steep drop-off seen in
Figure 7.

Figure 7: Step Function

When implemented into the code, we choose to multiply the step function
by 50 to ensure clear results visually. Figure 8 shows the plotted principal
components generated by using step function in (7) instead of the mountain-
valley function in (6).

16

(a) Step PC1 (b) Step PC2 (c) Step PC3 (d) Step PC4 (e) Step PC5

Figure 8: Stepwise Principal Components

Here, we notice that the steepness of the new input function f2(x, y) has
impacted the principal components visually. Specifically in PC1 and PC2, we
see a sharp increase in the middle of the plots.

Lastly, we include a scree plot and cumulative variance plot for the data
generated with the inclusion of the step function:

(a) Scree Plot (b) Cumulative Variance Explained

Figure 9: Scree plot and cumulative variance explained by principal components
with the inclusion of the step function f2(x, y).

Here we see that the scree plot above (9a) shows a steeper drop in eigenvalues,
as opposed to (5a). Additionally, there is now a sharp kink in the cumulative
variance explained plot (9b), which contrasts the smoothness of the original
cumulative variance plot (5b).

5.3 Assessing the Prediction Function through MSE Com-
parison Amongst Adjusted Attributes

The purpose of this section is to determine how ’robust’ our prediction function
is when we change features of the problem. We want our model’s predictive
capability to remain constant through several alterations. We use mean squared
error (MSE) as our metric for comparison. MSE is generally defined as the

17

following:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

Calculating MSE requires information about the true value of our data Yi and
our predicted values, Ŷi. Squaring the difference between the two terms penal-
izes greater differences, and is a common method of analyzing the efficacy of
predictive models. Here, our predicted Ŷi is found using our MFPCR model.
To evaluate the predictive efficacy of the MFPCR model, we will compare the
MSE across one week when adjusting some attributes of the model. The same
seven days are used for comparison, that is, April 10th to April 17th.

5.3.1 Base Case: Mountain Valley

We start with the Mountain Valley input function (4a) as our base case. We
will list some of the features of this base case below before making changes later
in the experiment:

Feature Base Case Setting

Input Function f1(x, y) = sin (2π(x2 + y2))

Weight S(Eig+1,Eig+1)
Noise Gaussian Noise

Number of Eigenvalues 5

Table 4: Base Case Features of the Model

The base case 7-day simulation data is given below:

Day of Week MSE
1 0.0093
2 0.0090
3 0.0097
4 0.0105
5 0.0090
6 0.0088
7 0.0088

Table 5: MSE Table for the Base Case Simulation

The following subsections will contain similar tables which can be referenced
for comparison. While tables will be shown throughout this section for each al-
tered attribute, in Table 11 all of the tables have been combined for ease of
comparison.

18

5.3.2 Altered Input Function

A previous section (4) demonstrated how the inclusion of a step function will
affect the principal components. We now seek to understand how changing the
mountain-valley input function to the step function will affect the MSE of our
prediction function. The following table demonstrates this change in the MSEs:

Day of Week MSE
1 0.0054
2 0.0046
3 0.0051
4 0.0062
5 0.0052
6 0.0056
7 0.0060

Table 6: MSEs for the Step Function Simulation

Here we see that the altered input function lead to lower MSEs for each day
when compared to the base case simulation.

5.3.3 Weight Adjustments

The weight, ρ, will be set to 10−3 for this experiment. The following table shows
the 7 day prediction with the new weight:

Day of Week MSE
1 0.0093
2 0.0086
3 0.0100
4 0.0097
5 0.0083
6 0.0087
7 0.0085

Table 7: MSEs for the Simulation with Altered Weight

The previous table shows MSEs that range from 0.0083 to 0.0100, similar to
the range of the base case simulation.

5.3.4 Noise

The noise we implemented earlier in this investigation will now be scaled by a
factor of 5. We expect that the data with greater amount of noise will result in
a higher MSE than our default. Within the data generation for loop, the new
code has the following form:

19

data_hour(:,7) = 5 * normrnd(0,1,size(data_hour(:,1)));

The corresponding MSEs for the 7-day period are as follows:

Day of Week MSE
1 0.0076
2 0.0128
3 0.0071
4 0.0177
5 0.0117
6 0.0078
7 0.0121

Table 8: MSEs for the Increased Noise Simulation

The MSE for each day varies the most when increasing the amount of noise.
In day four of this simulation, we obtained our largest MSE (0.0177) out of the
data simulations so far.

5.3.5 Number of Eigenvalues

In this experiment, we have set the number of eigenvalues to 2 instead of 5. In
theory, this should increase our MSE since fewer principal components will be
implemented into the model:

Day of Week MSE
1 0.0098
2 0.0096
3 0.0081
4 0.0094
5 0.0106
6 0.0077
7 0.0106

Table 9: MSEs for the Simulation with Fewer Eigenvalues

Reducing the number of eigenvalues did not lead large deviations from our
base case scenario. Recall the cumulative variance explained plot (5b), where
only selecting a couple of eigenvalues explained about 99.99% of variance of our
simulated temperature data.

5.3.6 Overall MSE Comparison

We include a table which shows the altered settings of our model for reference:

20

Feature Base Case Setting Alteration

Input Function f1(x, y) = sin (2π(x2 + y2)) Step Function

Weight S(Eig+1,Eig+1) 10−3

Noise Gaussian Noise 5 ∗ Gaussian Noise
Number of Eigenvalues 5 2

Table 10: Base Case Features of the Model and Alterations

The table below shows each of the previous alterations to the problem that
have been made and the corresponding MSEs across the 7 day span:

Day of week Base Case Step Function Weight Eigenvalues Noise
1 0.0093 0.0054 0.0093 0.0098 0.0076
2 0.0090 0.0046 0.0086 0.0096 0.0128
3 0.0097 0.0051 0.0100 0.0081 0.0071
4 0.0105 0.0062 0.0097 0.0094 0.0177
5 0.0090 0.0052 0.0083 0.0106 0.0117
6 0.0088 0.0056 0.0087 0.0077 0.0078
7 0.0088 0.0060 0.0085 0.0106 0.0121

Table 11: Comparison of MSE across different Simulations

Next, this table shows the average MSEs for each day of the week:

Base Case Step Function Weight Eigenvalues Noise
Average 0.009300 0.005443 0.009014 0.009400 0.011000

Table 12: Average MSE Values for Different Simulation Parameters

Using the information in the previous two tables, we see that the step func-
tion MSE per day is almost half that of the base case MSE. This highlights the
simplicity of the step function and the graphical complexity of the trigonometric
mountain-valley function. Additionally, decreasing the amount of eigenvalues
used in the model did not lead to extreme deviation from the base-case scenario.
Lastly, increasing the amount of Gaussian noise led to a greater MSE on average
as expected.

6 Comparing the Predictions

In this section, we compare MFPCR and FPCR. Also, we update the model to
predict at more locations and use the information to generate a more accurate
prediction to the true temperature.

21

6.1 MFPCR vs. FPCR

We choose to predict one week’s temperature using MFPCR and FPCR. We will
compare the prediction functions’ respective MSEs. Using April 17th, the same
prediction location, and input data will allow for the greater comparability. We
consider the MSEs for 7 days of simulation outlined in the table below:

Day of Week MSE for MFPCR MSE for FPCR
1 0.0093 0.0146
2 0.0090 0.0131
3 0.0097 0.0132
4 0.0105 0.0062
5 0.0090 0.0041
6 0.0088 0.0059
7 0.0088 0.0101

Average 0.0093 0.0096

Table 13: MSE Model Comparison

We see that the two models are comparable in MSEs overall; however, the
MSE for the FPCR model tends to vary more across each day than the MSE
for MFPCR.

6.2 Comparing Prediction Functions with Updated Sta-
tion Data

In the final section we plot the prediction functions with the true temperature
values and adjust the code to predict at multiple locations. In our temperature
example, we leverage the fact that we have ”ground truth.” Since we have gen-
erated the true temperature data at all locations, we can visually juxtapose our
prediction with the true values to assess the accuracy of our fit. Additionally,
we have made updates to the code to perform prediction at more stations which
allows fine-tuned predictions at more locations.

Our new code outputs the prediction location and a graph which compares a
few features of the model in a one-dimensional format. The following images are
an example of an output when our model uses information from 30 locations:

22

(a) Triangulation and sample points (b) True vs. Predicted Values

Figure 10: Visual comparison of the triangulated domain and the true versus
predicted temperature values at prediction location number 12

The code uses other locations for the prediction. Consider location 23:

(a) Triangulation and sample points (b) True vs. Predicted Values

Figure 11: Visual comparison of the triangulated domain and the true versus
predicted temperature values at prediction location number 23

Using 30 locations, our predictive surface more closely interpolates the true
data. We made adjustments to the model when we noticed that the prediction
was continually under-estimating the true temperature. See the following array
of plots which demonstrates the improvement made in prediction:

23

(a) True temperature

(b) Surface of predicted values using
FPCR

(c) Surface of predicted values using MF-
PCR

(d) FPCR: Surface of predicted values
compared with true temperature values

(e) MFPCR: Surface of predicted values
compared with true temperature values

Figure 12: Visual comparison of predictive models with true temperature values

24

7 Conclusion and Extension to the Ground-Level
Ozone Application

The temperature example provides a controlled environment for experimenting
with MFPCR and FPCR. We simulated the data to bypass any abnormalities
that we may have encountered in real ground-level ozone data, and we con-
structed an ideal domain. We use this toy problem as a way to test a novel
MFPCR method with the inclusion of a penalty term. The implementation of
the step function highlights the explanatory capabilities of PCA, and the effec-
tiveness of including additional surfaces in our model in the overall prediction.
We assessed the robustness of the model by altering several key features of the
problem. When the weight, the amount of eigenvalues, and the amount of noise
were altered, the model still showed similar error in the base case scenario.

The findings show that the MFPCR method could be used to model ground-
level ozone. We propose using EJI data as the additional input into the new
method to improve accuracy in ground-level ozone estimation at a more local
level. These findings are promising, and highlight the efficacy of modifying
FPCR to MFPCR to improve prediction.

25

References

[1] B. Ettinger, S. Guillas, M. J. Lai, Bivariate Splines for Functional Re-
gression Models with Application to Ozone Forecasting,Environmetrics,
23 (2012) pp. 317-328. http://alpha.math.uga.edu/~mjlai/papers/

EGL12.pdf

[2] Lai, Ming-Jun and L. L. Schumaker, Spline Functions over Triangulation,
Cambridge University Press, Cambridge, U.K., 2007.

[3] Wang, Zhiliang; Sun, Yalin; and Li, Peng, Functional Principal Compo-
nents Analysis of Shanghai Stock Exchange 50 Index, Discrete Dynamics
in Nature and Society, Hindawi Publishing Corporation, 2014.

[4] Frončková, Kateřina and Pražák, Pavel, Functional Data Analysis in
Econometrics, Ph.D. dissertation, University of Hradec Králové, Hradec
Králové, Czech Republic, 2021.

[5] Wang, Wenhao; Liu, Xiong; Bi, Jianzhao; and Liu, Yang, AMachine Learn-
ing Model to Estimate Ground-Level Ozone Concentrations in California
Using TROPOMI Data and High-Resolution Meteorology, Environment
International, Elsevier, 2022.

26

