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Abstract

Statistical Methods for Causal Inference in Observational Studies
By

Pallavi S. Mishra-Kalyani

Observational studies, such as those of patient registries may offer valuable
patient and disease information that is impossible to study in a randomized
trial, but often pose unique challenges that require special care in estimating
a causal effect of treatment. This dissertation is motivated by a registry of pa-
tients with amyotrophic lateral sclerosis (ALS) maintained by the Emory ALS
Clinic, in which the non-random receipt of the treatment, that is, the insertion
of a Percutaneous Endoscopic Gastrostomy (PEG) tube, is time-dependent
and both the receipt of treatment and clinical outcomes are subject to “cen-
soring” by death. In order to identify a causal effect of PEG treatment on
an outcome, we incorporate and build upon various causal inference methods
such as principal stratification and propensity score matching.

After a review of current literature and a more detailed description of the
data in Chapter 1, we develop a fully Bayesian modeling approach to estimate
the survivor average causal effect (SACE) of PEG on BMI, which is a surro-
gate outcome measure of nutrition and quality of life, using propensity score
methods within a principal stratification framework in Chapter 2. Chapter 3
investigates propensity process matching for estimating treatment effect in ob-
servational studies. The Propensity Process is a method that is able to address
complex features that are common to observational registries with longitudi-
nally measured data. Matching by Propensity Process outperforms the naive
analysis and other non-binary propensity score methods and achieves covariate
balance across treatment groups. Chapter 4 extends the methods presented in
Chapter 2 to address outcomes that are missing due to a lapse in clinic visits.
A single framework incorporating principal stratification using post-treatment
survival outcomes, as well as models for the mechanism of missing outcomes
and generalized propensity score is used for an unbiased estimation of treat-
ment effect.

Finally, potential future work is explored in Chapter 5. The data of the
ALS registry is rich with complications that could inspire new directions of
research, and there is significant interest in the issues of observational studies
in the statistical community to fuel this methodological research.
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Introduction
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1.1 Amyotrophic Lateral Sclerosis and the Motivating

Dataset

Amyotrophic Lateral Sclerosis (ALS) is a rare progressive disorder result-

ing in the degeneration of both upper motor neurons of the cerebral cortex

and lower motor neurons of the spinal cord and peripheral nervous system.

There are approximately 5000 new diagnoses of ALS in the United States per

year, with a total prevalence of about 20,000-30,000 persons in the US and

about 6 in 100,000 persons worldwide (of Neurology ALS Work Group 2012,

Procaccini & Nemergut 2008, Rowland & Shneider 2001). Males are more

frequently affected than females, and 5-10% of all cases are familial, which

may be inherited from an autosomal dominant trait. Individual prognosis is

difficult to predict, but the range of median survival post onset is approxi-

mately 2-3 years, with 20% of patients surviving more than 5 years and 10%

of patients surviving more than 10 years post diagnosis (Kiernan et al. 2011,

Miller et al. 1999).

While previous research has been inconclusive or inconsistent in determin-

ing clinical predictors of survival, older age at diagnosis, female gender, and

bulbar onset tend to be negative prognostic factors in analysis of survival in

many studies (Gelinas & Miller 2000, Mitchell & Borasio 2007). Additionally,

some studies have indicated an association between body mass index (BMI)

and survival in ALS patients, with lower BMI associated with shorter sur-

vival times. These results indicate that though there is no curative therapy

for ALS, maintaining nutrition and weight may be one option for extending

survival time or slowing disease progression (Desport et al. 2000, Kasarskis

et al. 1996, Muscaritoli et al. 2012, Ngo et al. 2014, Paganoni et al. 2011).

Dysphagia, or difficulty in swallowing, affects almost all patients with ALS,

and subsequently along with muscle atrophy and hypermetabolism causes mal-
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nutrition amongst this patient population. Nutritional management is key in

disease management and palliative care, with enteral nutrition being a long-

term option for delivering nutrition (Desport et al. 2006, Muscaritoli et al.

2012). The most common enteral access for medium- and long-term enteral

nutrition is percutaneous endoscopic gastrostomy (PEG), which is generally

considered when a patient’s nutritional status deteriorates and weight loss is

greater than 10% of the baseline weight (Goyal & Mozaffar 2014, Park et al.

1992). The American Academy of Neurology has provided practice parameters

for the placement of PEG while the forced vital capacity (FVC) of a patient

is less than 50% of predicted. This threshold is determined from results of

studies showing patients who had diminished vital capacities, FVC <60% of

predicted, had shorted survival times than those with greater FVC at the time

of procedure (of Neurology ALS Work Group 2012, Goyal & Mozaffar 2014,

Gregory et al. 2002).

Many studies show that that PEG can increase food intake and stabilize

body weight and BMI effectively as immediate or short-term benefits. How-

ever, the results of prolonged survival due to PEG are mixed and many scien-

tist are uncertain of the long term benefits of the procedure (Chio et al. 1999,

Kasarskis et al. 1996, Mitsumoto et al. 2003, Shaw et al. 2006, Verschueren

et al. 2009). In a recent study, a research group in Italy included a cohort of

150 non-demented dysphagic ALS patients to retrospectively determine the ef-

fect of non-randomized PEG insertion on survival using the Kaplan Meier life

table method. Though there seemed to be some increase in survival amongst

PEG recipients with spinal onset ALS, the authors did not control for selection

bias or certain confounders present, causing concern in the interpretation of

increased survival (Spataro et al. 2011).

One alternative to PEG is RIG, radiologically inserted gastrostomy, that
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can be performed with local anesthesia and fluoroscopic guidance. RIG is as-

sociated with lower rates of complications and may be more successful in those

individuals with diminished respiratory function. However, RIG also carries a

risk of obstruction and dislocation of the tube (Chio et al. 2004).

Data from the Emory ALS Clinic Registry

Our data originates from a registry of patients maintained by the Emory

ALS Clinic. The dataset consists of 729 individuals diagnosed with the disease

who had one or more visit at the Emory ALS clinic after 1997 and died prior

to July 31, 2011. ALS diagnosis was defined as signs of upper and lower motor

neuron degeneration in one or more regions in individuals with adult onset

symptoms and which could not be attributed to any other disease. Date of

death was validated by the Social Security Database.

Table 1.1 describes the overall population characteristics of all 729 indi-

viduals in the dataset at initial clinic visit. 520 patients (71%), had a date of

diagnosis on the same day as their initial visit to our clinic. Patients visited

Table 1.1: Description of Patient Population at First Clinic Visit (N=729)

Mean or Proportion Standard Dev. or N

Has PEG Treatment 43.90% 320
Female 44.99% 328
Spinal Site of Onset 68.04% 496
Diagnosis at First Visit 71.33% 520
FVC at First Visit∗ 70.72 26.52
NIF at First Visit∗ -49.96 15.56
BMI at First Visit∗ 25.29 5.95
Age at Diagnosis 61.55 12.4
Age at Death 63.33 11.84
Total number of Visits 3.59 2.79

∗Not measured for all individuals, N<729
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the clinic an average of 3.6 times before death. Mean age is 61.6 years at

diagnosis and 63.3 years at death. The difference between age at diagnosis

and age at death is consistent with average patient time from diagnosis to

death in the general population. Less than half of the patients received PEG

at sometime before death (43%), with average time from diagnosis to treat-

ment of 288 days. Most patients have spinal onset of disease (68%), but the

minority of patients are female (45%). Though not all patients have recorded

body mass index (BMI), forced vital capacity (FVC), or negative inspiratory

force (NIF) at baseline, the means from non-missing measurements for these

clinical markers are 25.3 kg/m2 (normal range 18.5 - 24.9 kg/m2 depending on

age), 70.7 percent predicted (normal range >80 percent predicted), and -50.0

cm H2O (normal range >-60 cm H2O).

The treatment of surgical insertion of a percutaneous endogastrostomy

(PEG) tube was offered to individuals to supplement or be a primary source

of nutrition. Though conclusive corroborated evidence of a significant positive

benefit of PEG on quality of life or survival outcome has not been identified,

many neurologists have noted anecdotal evidence from their medical practice

that patients with PEG fare better than those without citepmiller1999. One

possibility is that scientific research has been overshadowed by the many com-

plications arising in this patient population when attempting to identify a true

treatment effect for PEG.

Kaplan-Meier curves comparing survival time of patients receiving and not

receiving PEG in our data are available in Figure 1.1. In each of these plots,

patients are considered treated if the PEG tube is inserted prior to the corre-

sponding time point. Though there does not seem to be any survival advantage

from PEG treatment in this analysis, this may be because it is unadjusted for

potential confounding covariates or selection bias.
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Figure 1.1: Kaplan Meier Curves for Treated and Untreated Populations at
Several Time-points of Follow-up (N=729)

1.2 Literature Review

1.2.1 Rubin’s Causal Model

The inherent biases that exist in non-randomized or poorly randomized

sample require methods from the field of Causal Inference for unbiased esti-

mation of treatment effect. Rubin’s Causal Model (RCM) is one important and

widely used framework for identifying a causal effect of treatment by means



7

of potential outcomes. The original methodology was developed by Rubin in

1974, then defended and given its current name by Holland in 1986 (Rubin

1974, Holland 1986).

Potential Outcomes and Assumptions

Potential outcomes are defined as the outcomes Yi for each unit i with

and without treatment, Yi(1) and Yi(0). One of these potential outcomes is

observed, Yi(Zi), and the other is considered a counterfactual outcome. As

a result, we are unable to determine the treatment effect on a single unit i,

Yi(1) - Yi(0). Instead, we find the average treatment effect or average causal

effect ACE = E(Yi(1) − Yi(0)) by making some assumptions about how the

treatment is assigned and how it may effect the outcome.

Rubin’s model assumes that there is an assignment mechanism that deter-

mines the treatment assignment of each individual, thereby determining which

of the potential outcomes are observed. In randomized studies, the assignment

mechanism can generally be ignored as the design of the study dictates that

treatment is unrelated to individual characteristics; however in observational

studies, it is assumed that the assignment mechanism is non-random. Thus, it

is essential to control for the assignment mechanism when attempting to iden-

tify a causal effect. In order to do this, we must rely on certain assumptions.

The first assumption that must be employed for RCM is the Stable Unit

Treatment Value Assumption (SUTVA), which states that there is no interfer-

ence between observed treatment Zobs
i of one unit i and the potential outcomes

of Si′ and Yi′. Additionally, SUTVA allows for the treatment of all units to

be comparable by assuming that there is no variation in the treatment. The

assumptions in addition to SUTVA that may be made to estimate the average
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treatment effect are listed below.

1. Ignorability of treatment assignment: Y (), Y ()⊥Z. This assumption

may be made conditionally on covariates, the control for treatment as-

signment by propensity score methods Y (), Y ()⊥Z|X.

2. Exclusion restriction. Treatment assignment is unrelated to the potential

outcomes, once observed treatment is taken into account.

3. Non-zero causal effect of treatment.

4. Monotonicity, or that for unit i Yi() > Yi(). This also indicates that

when principal stratification is present (described in forthcoming sec-

tions), defiers do not exist.

Estimation of Causal Effect

With these assumptions and the general rules of probabilities, the average

treatment effect simplifies to E(Yi(1)) − E(Yi(0)). When random treatment

assignment can be assumed, or more commonly in observational studies ig-

norability of treatment assignment can be assumed by means of conditioning

on covariates, the average outcome in the treated or control groups are the

average outcome for the whole population if treated or untreated respectively.

Thus, the average causal effect would be ACE = E1(Yi(1)) − E0(Yi(0)) or

ACE = E1(Yi(1)|X)− E0(Yi(0)|X) respectively.

There are a number of methods used to estimate the average causal effect,

including a modeling, inverse probability weighting, and use of propensity

scores. These methods may be used in tandem or individually to remove bias

and estimate causal effects. While the basic assumptions for each of the meth-

ods are similar (e.g. no unmeasured confounders, correctly specified models),

each method acts in unique ways to estimate the unbiased ACE.
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A parametric model can be used to identify a causal effect while control-

ling for confounding variables by means of covariate inclusion, stratification,

or weighting. Direct modeling of the average causal effect of treatment can be

considered for continuous outcome models by means of maximum likelihood

or Bayesian inference for a linear model. Control for confounding covariates is

essential, and can be accomplished by techniques such as matching or inclusion

as linear predictors. Models for potential outcomes may also be considered,

in which case the missing values of counterfactual outcomes may be imputed

directly or methods such as principal stratification may be employed.

Inverse probability weighting (IPW) uses the probability of observed treat-

ment given confounding covariates to weight observations. Treated individuals

have a weight of the conditional probability of treatment, P (Z = 1|Xi), and

untreated individuals are weighted by the probability of not being treated,

P (Z = 0|Xi). After weighting, the treated and untreated populations are

considered exchangeable, and thus the weighted averages of the means of each

group can be used to calculate the ACE. Because the probability of observed

treatment must be modeled to determine the weight, IPW works well with

dichotomous or categorical treatment assignments, and can be extended to

situations of time to event and repeated measures data. However, this method

poses difficulties when considering continuous treatment assignments (Robins

et al. 1994, Hernán & Robins 2006, Cole & Hernán 2008).

Propensity scores are a common method for controlling for issues such as

confounding and selection bias when estimating a causal effect. Propensity

scores offer a single dimension to be conditioned upon for exchangeability of

treatment groups, which can be a major advantage when many confounders

are present. These scores can be calculated and utilized in many ways, as

described in detail in the next section.
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1.2.2 Propensity Scores

Propensity scores are balancing scores that are most often used to control

for various types of bias in observational studies, including but not limited to

selection bias and confounding. They also can be used to test for ignorable

treatment assignment, an important assumption of Rubin’s Causal Model.

The first methods for propensity scores were developed by Rosenbaum and

Rubin (1983), but the generation of propensity scores and their application

to various types of data have been a key area of interest for Causal Inference

research (Rosenbaum & Rubin 1983).

The general idea of any balancing score is conditionally remove any inherent

differences between groups. The balancing score b(X) is a function of the

observed covariates X such that X is independent of treatment Z conditional

on b(X). Rosenbaum and Rubin present five theorems to support the use of

propensity scores and other balancing scores, summarized below.

1. The propensity score e(X) is a balancing score.

2. Any score finer than the propensity score, such as b(X) = X, is also a

balancing score.

3. If treatment assignment is strongly ignorable given X, then it is also

strongly ignorable given a balancing score b(X).

4. At any value of a balancing score, comparison of means of an outcome in

treated and untreated groups is an average treatment effect, if strongly

ignorable treatment is met. This also indicates that use of balancing

scores for matching, subclassification, and covariate adjustment produces

unbiased treatment effect estimates, so long as treatment assignment is

strongly ignorable.
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5. Sample estimates of balancing scores produces sample balance on X.

While there are many advantages to using propensity scores, the major disad-

vantage to these methods is that bias is that one must assume that there are

no unmeasured confounders of the treatment effect. In other words, propen-

sity score methods can only account for confounding by covariates that are

observed. This assumption is quite strong, especially in data that is poor in

covariate measurements.

Types of Propensity Scores

Most of the early research using propensity scores focused on binary treat-

ments. In these cases, the definition of the propensity score is the probability of

treatment conditional onX, b(X) = P (Z = |X). This probability is generally

found using a logistic regression model for treatment using patient covariates

as described in equation 1.1. In addition to being used in the manners that

Rosenbaum and Rubin described (matching, subclassification or stratification,

and covariate adjustment), the traditional propensity scores may also be used

for inverse probability of treatment weighting in the likelihood for the outcome

variable Y .

P (Z = 1|X) =
eXβ

1 + eXβ
(1.1)

However, when the treatment is non-binary, the probability of treatment

may either be difficult to quantify or is not the best balancing score. Zhao,

Imai, and Van Dyk (2012) have compared two options for flexible propensity

scores that have been proposed in earlier literature. The two proposed solu-

tions to non-binary treatment propensity scores are the generalized propensity

score (GPS) of Hirano and Imbens (2004) and the P-Function of Imai and Van

Dyk (2004). GPS is defined as eψ(X) = pψ(Z = z|X), and is equal to the treat-
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ment assignment model evaluated for observed treatment and covariates. The

P-Function uses the entire conditional probability density and requires the

existence of a uniquely parameterized propensity function such that eψ(|̇X)

depends on X only through θpsi(X). One example of θψ(X) is the linear pre-

dictor Xiβ (Hirano & Imbens 2004, Imai & Van Dyk 2004, Zhao et al. 2012).

While both the GPS and the P-Function are valid methods for propensity

score methods for non-binary treatments, each has its’ own set of strengths

and weaknesses. Both require many strong parametric assumptions. The GPS

allows for the direct estimation of a dose response function1, but is less robust

in it’s modeling than the P-Function. P-Functions are theoretically advan-

tageous, as it achieves independence of outcome Y and treatment Z in low

dimensional data, but the model can be prone to mis-specification. Also, it

is noteworthy that when covariates are time-independent, the GPS and P-

function are equivalent. That is, when these methods are used to calculate a

propensity score for covariates measured single time point, such as baseline,

the values of the propensity score are equivalent.

Use of Propensity Scores

Perhaps the most common use of propensity scores is for matching treated

individuals to untreated individuals for comparison. The advantages and dis-

advantages of matching mimic those of generally using propensity scores in

controlling for bias, with the additional advantage that matching assumes no

strictly linear relationships between the outcome and propensity score (Rosen-

baum & Rubin 1985b).

Several matching algorithms have been discussed in the literature, with

1Zhao, Imai, and Van Dyk suggest that the P-Function included in a smooth coefficient
model may also be capable of estimating a dose response function
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no consensus to a frontrunner among the methods. Examples of matching

structures that algorithms include nearest neighbor matching using some dis-

tance metric to find the treated and untreated units with a minimal distance

between them and stratification matching within some subgroups defined by

propensity score. While more complex structures are available, nearest neigh-

bor matching is most often employed for its ease of use and interpretation.

An extension of using propensity scores for matching is stratification or

subclassification by propensity scores. In this method, the population are bro-

ken down into k strata, which are identified by similar propensity score values.

Methods for estimating a causal effect of treatment on outcome are performed

within each stratum, and then an overall estimate of effect can be calculated

as a weighted average of the within strata effects.

Each of these proposed propensity scores can also be included in the model

of the response variable. The standard propensity score can be included as a

model covariate, and can also be transformed or manipulated with basis splines

to allow flexibility in the relationship between the outcome variable and the

propensity score. GPS is included as a linear term, a quadratic term, and

an interaction term with treatment (with treatment also having a quadratic

term, with a resulting treatment effect outcome estimated as a dose response

function (DRF). P-Functions have more flexibility in their utilization, in that

they can be included directly as a linear predictor but can also be stratification

of the model and or as a smooth coefficient model. The effect of the treatment

on outcome when using the P-Function is the average causal effect (ACE).

Finally, propensity scores can be used for weighted likelihood or regression

analysis. The most common weighting is known as Inverse Probability weight-

ing (IPW) or Inverse Probability of Treatment weighting (IPTW)(Keisuke Hi-

rano 2003, Robins 1999). The general idea behind this technique is that by
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weighting the likelihood by in inverse probability of treatment, the sample is

standardized for an unbiased estimate of effect for the overall sample represen-

tative population. Implementation of weighting has been discussed widely with

implications for model misspecification of the treatment assignment model and

the use of time dependent treatment assignment mechanisms (Robins 1999,

Rotnitzky & Robins 1995).

1.2.3 Principal Stratification

Often when comparing treatment effects on outcome, other surrogate out-

comes and post-treatment characteristics Sobsi are measured and available for

analysis. Frangakis and Rubin (2002) suggest that the estimating the effect

of treatment within a group of individuals who have the same measure of

Sobsi will result in a causal estimand. They formally define principal stratifi-

cation in two steps. First, the basic principal stratification P 0 is the partition

of units i = 1,2,...,n, such that within any P 0 all units will have the same

vector Si(), Si(). Si(0) and Si(1) are potential outcomes of Si that vary

by treatment assignment, where only one value is actually observed (Si(Zi)).

Second, principal stratification P with respect to post treatment variables S

is a partition of the units whose sets are unions of sets in the basic principal

stratification P 0 (Frangakis & Rubin 2002a).

Noteworthy properties of principal stratification include: (1) treatment as-

signment does not affect the stratum SPi , (2) an “exclusion” assumption can

be made so that if treatment assignment does not effect Si it must not effect

the final outcome, and (3) any principal effect (as defined above) is a causal

effect. The first property, which states that the individual strata assignment is

unaffected by treatment, is very similar to and can be considered an extension
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of SUTVA, which states that there is no interference between observed treat-

ment Zobs
i and the potential outcomes. The second property allows for the

principals of instrumental variables to be utilized when estimating the causal

effect within a particular stratum of interest (Angrist et al. 1996, Rubin 2005).

The principal effect would then be the comparison of outcome under var-

ious treatment alternatives within a principal stratum SPi = S, specifically

the effect estimates between the sets
[
Yi () : SPi

]
and

[
Yi () : SPi

]
. However,

this treatment effect may not be estimable in every strata. Principal effect of

treatment on outcome cannot be measured if individuals in the strata, drops

out of a study, or does not comply to treatment. Thus the principal or causal

effect of treatment is only estimated in the stratum SPi where Si(1) = 1 and

Si(0) = 1 (Frangakis & Rubin 2002a).

Types of Stratification

Principal stratification has been used to address issues in multiple areas

of research by utilizing applicable post-treatment characteristics. Perhaps the

most notable area that utilizes principal stratification is effect estimation when

non-compliance is present. In fact these methods were used to deal with issues

of compliance prior to Frangakis and Rubin’s paper formally described princi-

pal stratification for various post-treatment characteristics (Imbens & Rubin

1997, Little & Rubin 2000, Yau & Little 2001). Since non-compliance can

effectively invalidate randomization of treatment assignment, it is important

to appropriately control for various levels of compliance. Principal stratifica-

tion allows for the identification of four levels of compliance: always takers,

compliers, defiers, and never takers. These four groups are defined whether or

not an individual abides by the assigned treatment. This method of stratifica-
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tion allows for the identification of the treatment effect among compliers, also

known as the Complier Average Causal Effect (CACE), and is employed by

many when dealing with study data affected by non-compliance (Little et al.

2009, Long et al. 2010).

Principal stratification can also be used to categorize patients by other

post-treatment characteristics or surrogate outcomes. For example, Zhang et

al stratify by employment status to estimate the effect of a job training pro-

gram on wages. In this case, the causal effect of the program on wages can

only be identified in the group that is employed with or without treatment

(Zhang et al. 2009). Their methods are considered to be an extension of prin-

cipal stratification methods for censoring by death, which generally involve

stratification using survival status.

Survivor Average Causal Effect

When individual survival is the characteristic upon which principal strati-

fication is framed, the principal effect in the for the stratum where all outcomes

can be observed is termed the Survivor Average Causal Effect (SACE)(Egleston

et al. 2009, Hayden et al. 2005, Rubin 2005). In this scenario, the four principal

strata are described with regards to survival status and outcome measurement

in the list below. Outcome measurement can only be measured on the real

set of numbers R if a patient is alive, and thus those who are not alive would

have an outcome measurement that we assume exists in some extended sample

space {R, ∗}. It is important to note that time of study follow-up for outcome

and survival measurement time must be finite, and so principal strata may

only be defined at any given measured time t∗ before the end of the follow-up

period.
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• LL = {i|Si(1) = 1, Si(0) = 1}, or those individuals who would be alive at

time t∗ regardless of treatment. These individuals would have outcome

measurements Yi(1), Yi(0) ∈ R.

• LD = {i|Si(1) = 1, Si(0) = 0}, or those individuals who at time t∗

would be alive if they receive the PEG tube but would not be alive

if they did not. These individuals would have outcome measurements

Yi(1) ∈ R, Yi(0) = ∗.

• DL = {i|Si(1) = 0, Si(0) = 1}, or those individuals who at time t∗

would not be alive if they receive PEG treatment, but would be alive

if they did not. These individuals would have outcome measurements

Yi(1) = ∗, Yi(0) ∈ R.

• DD = {i|Si(1) = 0, Si(0) = 0}, or those individuals who would not be

alive at time t∗ regardless of treatment. These individuals would have

outcome measurements Yi(1), Yi(0) = ∗.

The survival status in each bullet above are potential outcomes of survival,

as opposed to the observed survival status of each individual, which would

definitely depend on their observed treatment. Because these potential out-

comes are unknown, we use observed treatment and survival at time to for

prediction of the principal strata in the population. We may accomplish this

by determining the mixture of strata that may be present in each group of

observed treatment and survival, and then using this information to use stan-

dard mixture model analysis for the outcome to estimate the survivor average

causal effect, SACE = E (YLL()− YLL()). The SACE is the principal effect

measured in the LL stratum, as this is the only stratum in which a well-defined

effect of treatment on outcome is available.
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Monotonicity

Because principal stratification is a technique used within Rubin’s Causal

Model for estimation of unbiased effects, the assumptions outlined in Sec-

tion 1.2.1 are valid and employed. Of these assumptions, monotonicity is of

particular interest in the principal stratification framework. Monotonicity as-

sumes that there are no “defiers.” For example, if principal stratification is

based on patient survival (Sobsi is death or censoring by death), then defiers

would be those individuals who die if treated but live if not treated: Si(1) = 0

and Si(0) = 1. This assumption need not be applied for every study that in-

cludes principal stratification, as the data may have characteristics that allow

for defiers. Continuing the above example of principal stratification based on

survival outcomes, consider study in which the treatment is very dangerous

or strenuous on the patient, such as an invasive surgery. It is possible that a

subpopulation of weak patients would be not be able to withstand treatment

or recovery and may die shortly after treatment, but could stay alive it left

untreated. For such a data analysis, it may be appropriate to allow all four

principal strata to exist and to relax the assumption of monotonicity.

Missing Data

Missing outcomes can be a major complication in the estimation of a causal

effect. A simple solution may be to drop all records with a missing outcome,

but there are draw backs to this approach. One issue is that removing these

individuals from a analysis assumes that the missing outcomes are missing

completely at random, which is a very strong assumption about the missing

mechanism. Also, when dropping all individuals with missing outcomes from

the analysis, a considerable amount of information contained in these records
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may be lost in the process.

One option in the realm of causal inference methodology is to make as-

sumptions about missingness within the principal stratification framework.

For example, Frumento et al. (2012) utilize an assumption originally made

by Frangakis & Rubin (1999) in a compliance based principal stratification

framework. This assumption, termed latent ignorability, states that the miss-

ing mechanism is ignorable conditional on principal strata membership. If no

other assumptions are made, no model is needed for the missing mechanism

once the latent principal strata are known. However, Frumento et al. also

make assumptions of exclusion restrictions, which limit the probabilities of

missingness conditional on values of treatment and post-treatment variables.

Given these exclusion restrictions, it is necessary to include the probability of

missingness in the observed data likelihood. This probability may be modeled

using known parametric regression forms and with covariate data if necessary.

The resulting parameter estimates and probabilities are not generally of causal

interest, but are rather are regarded as nuisance parameters.

1.2.4 Data Augmentation Algorithm

In Bayesian Modeling, one generally wants to sample from a posterior den-

sity. However, in real world applications, missing or unobserved data often

prevents direct sampling from this posterior. Tanner and Wong (1987) de-

veloped the Data Augmentation (DA) algorithm, a technique similar to the

EM algorithm in that we impute missing data or unobserved information from

observed data to estimate parameters from a posterior distribution.

Assume data Y is observed and augmented by the latent variable Z. Y

has a distribution depending on θ, and so our objective is to sample from the
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posterior density P (θ|Y ). However, we may only be able to sample from the

augmented posterior P (θ|Y, Z) and the predictive distribution P (Z|Y, θ). The

DA algorithm provides and iterative process for sampling from these two es-

timable distributions to approximate the posterior for θ.

The iterative process of the DA algorithm has two steps. The first step

is the Imputation or I-Step, in which using the current estimate of θ(k), Z is

generated from P (Z|Y, θ(k)). The imputed Z is then used to update the ap-

proximation of P (θ|Y ) in the Posterior or P-step. These two steps are repeated

until there is convergence of the posterior distribution approximation(Tanner

& Wong 1987).



Chapter 2

Estimating treatment effect in observational

studies in the presence of censoring due to

death
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2.1 Introduction

Data from clinics and disease registries can offer an opportunity to ex-

amine the effect of treatment over time in a natural setting. However, the

nature of such data can pose many challenges for unbiased estimation of a

treatment effect, particularly in the case of diseases with high mortality rates

such that “censoring by death” is a concern. In this paper, we are inter-

ested in estimating a causal effect of treatment in a clinical registry of patients

with amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder with

a very poor prognosis (Gelinas & Miller 2000, Procaccini & Nemergut 2008).

However, the data feature several unique and noteworthy characteristics that

require special consideration. The most obvious difficulty is that non-random

treatment assignment may lead to issues of selection bias and confounding.

Secondly, the data are collected longitudinally for each individual, but with

varying time elapsed between each individual’s measurements and amongst all

individuals. Finally, the fatal and fast-progressing nature of ALS results in the

potential censoring by death of the outcome; in other words, outcome is only

observed if a patient survives beyond the date on which outcome in measured.

The data in the ALS registry is measured longitudinally at patient clinic

visits occurring at uneven intervals of time for each individual, i = 1, 2, ..., N .

The baseline visit is defined as the first clinic visit for all patients, and is de-

noted by t0. The set of patient characteristics, denoted by D, includes both

a set of characteristics measured only at baseline and a set that are measured

at each clinic visit. Of particular interest in this data is the effect of a surgical

insertion of a percutaneous endoscopic gastrostomy (PEG), a palliative proce-

dure that provides enteral nutrition, on the outcome BMI, a proxy measure of

adiposity associated with nutritional status and mortality. Denoted as Y, the

observed outcome is the measurement of BMI collected at the clinic visit that
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is closest to but not past 1 year post-baseline (to). Time of survival, denoted

by TS, is measured as days from baseline until death and is used to create

an indicator of survival S within the first year post-initial clinic visit. For

those individuals who receive PEG prior to 1 year post-baseline, treatment is

recorded as both the time from PEG surgery until 1 year post baseline, TZ, as

well as a binary indicator of PEG surgery within the first year post baseline,

Z.

The use of principal stratification in the context of Rubin’s Causal Model

while considering unobserved outcome data as censored by death provides a

framework for analysis of the ALS registry data. The principal stratification

framework is described in detail by Frangakis & Rubin (2002a), and Zhang

& Rubin (2003) extend this methodology for stratification when the outcome

is “censored” by a post-treatment variable such as survival or graduation.

Zhang et al. (2009) further outlines specific parametric approaches for identi-

fication of survivor average causal effect (SACE) in the analysis of truncation

by death using principal stratification. The unbiased estimation of a prin-

cipal effect, defined as the causal effect within principal strata, relies on an

assumption of ignorablility or no unmeasured confounding (Frangakis & Rubin

2002a). However, when selection bias or confounding may be present, either

as residual confounding in a randomized clinical trial or due to observational

data, Schwartz et al. (2012) show that the resulting principal effect estimate is

likely to be biased. This result indicates that in the absence of randomization

or when the randomization scheme results in poor balance among treatment

groups, there is a need to incorporate methods for alleviating selection bias

and confounding within a principal stratification framework.

There are many methods that address selection bias or confounding in ob-

servational studies, including the propensity score introduced by Rosenbaum
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& Rubin (1983), which provides a means of balancing covariates across treat-

ment groups thereby mimicking a randomized study design. Though propen-

sity scores were introduced for balancing treatment assignment groups when

treatment is binary, other authors have extended these methods to non-binary

treatment assignment models, such as generalized propensity score methods

(Imai & Van Dyk 2004, Hirano & Imbens 2004). Specifically, these methods

allow for the estimation of causal effects when treatment assignment is or-

dinal, categorical, continuous, semi-continuous, or even multivariate. In the

proposed methodology, the generalized propensity score is estimated using a

proportional-hazards model for time to treatment.

In the following sections, we propose a framework for the estimation of

a causal effect of treatment that combines principal stratification with ad-

justment of covariates by means of generalized propensity score. Although

Jo & Stuart (2009) included propensity scores within a principal stratifica-

tion framework, the scores were utilized not for removal of selection bias or

confounding in the randomized data of interest, but rather for prediction of

principal strata membership for a matched analysis. Furthermore, propen-

sity score methods for non-binary treatment assignment have not yet been

employed for conditional ignorability in a principal stratification framework.

The methodology presented in this paper addresses the practical application

of the principal stratification framework to observational data. The proposed

methodology is described in detail in Section 2.2, followed by an application

to the data from the Emory ALS Clinic registry in Section 2.3. Simulation

studies are presented in Section 2.4.
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2.2 Methodology

For data such as the Emory ALS Clinic registry, where treatment assign-

ment can be measured as both a binary indicator of treatment and as time of

treatment, different models may be postulated for the effect of treatment on

outcome varying by the treatment variables used. In particular, in the pro-

posed methodology, a dichotomous treatment model and a time of treatment

model are considered. The dichotomous treatment model considers the binary

definition of PEG treatment only, while the time of treatment model incor-

porates both the dichotomous definition of treatment as well as a measure of

time elapsed from treatment until the time of outcome measurement (to−TZ).

In each of these models, the definition of treatment assignment not only effects

the interpretation of the estimated treatment effect but also the modeling and

calculation of the propensity score.

Patient characteristics in combination with time to treatment, indicator of

no treatment, and the propensity score vector PS, as described in the follow-

ing section, comprise the matrix of observed data X, which is used in parts for

modeling. In the stratified regression model for the outcome Y, the subset of

X that is included in the analysis is X, which may include TZ, Z, PS, and a

subset of variables from D, depending on the outcome model and the stratum.

X2 is the subset of X included in the regression model for the principal strata

probabilities P (G = g), which may include PS and a subset of variables from

D.

2.2.1 Framework for Causal Inference

Two commonly used assumptions are made in this causal inference frame-

work. First, we make the Stable Unit Treatment Value Assumption (SUTVA)
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as defined by Cox in 1958 and summarized by Rubin (1980). This assumption

states that there is no interference among the potential outcomes of one indi-

vidual and the treatment choices of another individual. Secondly, we assume

Strong Ignorability of Treatment Assignment (Rosenbaum & Rubin 1983),

which states the distribution of the potential outcomes is independent of treat-

ment assignment, given the observed covariates. The ignorability assumption

often proves to be non-trivial, particularly for data from observational studies.

As earlier defined, the indicator for treatment from baseline until to (time

of outcome measurement) is Z, the outcome of interest is Y, and the post-

treatment variable of survival is S. Using the Rubin Causal Model (Holland

1986) as a framework for causal inference, we can define potential outcomes

Y = {Yi(zP ), zP ∈ Z for i = 1...n} and S = {Si(zP ), zP ∈ Z for i = 1...n},

where Z is the set of potential treatment values and Yi(z
P ) and Si(z

P ) are the

potential outcomes for a given potential treatment zP .

2.2.2 Generalized Propensity Scores

When considering only the effect of a dichotomous treatment, standard

propensity scores may be employed. The individual propensity scores are

estimated using a logistic regression model for the probability of treatment

using all available baseline patient characteristics, D. Specifically, we model

logit (P (Z = 1)) = DTβ, and use the parameter estimate β̂ to calculate the

individual probabilities P (Zi = ) as each individual’s propensity score, PSi.

However, when considering a model for the outcome that identifies asso-

ciations with time of treatment, we must consider a more flexible model for

propensity score. The generalized propensity score methods proposed by Imai

& Van Dyk (2004) and Hirano & Imbens (2004) allow the inclusion of the
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information provided by covariates and more importantly control for selec-

tion bias and confounding when a non-binary treatment assignment model

is considered in a non-randomized sample (Zhao et al. 2012). Additionally,

Imai and Van Dyk derive “large-sample” theoretical results of balancing prop-

erties and ignorable treatment assignment that resemble the results for the

standard propensity score proposed by Rosenbaum & Rubin (1983). There-

fore, for time to treatment, we may use a Cox proportional hazards model

h(t) = h0(t) exp
(
DTβ

)
, and the estimated linear predictor DT

i β̂ is the gener-

alized propensity score.

The estimated propensity scores, as defined for dichotomous treatment

model and for the time of treatment model, are included in both the model

for the outcome (Y) as well as the model determining principal strata (G),

to control for issues of selection bias and confounding. It is noteworthy that

inclusion of the propensity scores in the principal strata model is necessary

in the absence of randomization, as otherwise the principal effect is likely to

be biased. To allow flexibility in the control for selection bias when including

each of the propensity scores a linear predictor, the use of quadratic and cu-

bic polynomial higher order terms are also considered for each propensity score.

2.2.3 Principal Stratification

If a patient is not alive under the treatment that is actually received, Si =

0, the outcome Yi cannot be measured. We may consider those outcomes that

are not measured due to patient death as not defined on the set of real positive

numbers, R+. Following the notation of Zhang & Rubin (2003), we can instead

consider the non-observed outcomes to be *, extending our sample space to

{R+, ∗}. In the presence of this censoring of the outcome by death, principal
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stratification using post treatment survival status allows for estimation of the

treatment effect. Specifically, the Survivor Average Causal Effect (SACE) is

defined as the mean difference in the outcomes of treated individuals compared

to untreated individuals in the LL stratum, E(YLL,i(1)) − E(YLL,i(0)). The

four potential principal strata are constructed by pairing indicators of survival

by treatment scenarios at time of outcome measurement, as defined below.

• LL = {i|Si(1) = 1, Si(0) = 1}, or those patients who would be alive at

time to regardless of treatment.

• LD = {i|Si(1) = 1, Si(0) = 0}, or those patients who at time to would

be alive if they receive the PEG tube but would not be alive if they did

not.

• DL = {i|Si(1) = 0, Si(0) = 1}, or those patients who at time to would

not be alive if they receive PEG treatment, but would be alive if they

did not.

• DD = {i|Si(1) = 0, Si(0) = 0}, or those patients who would not be alive

at time to regardless of treatment.

The probabilities of the four strata (πLL, πLD, πDL, and πDD) can be modeled

with a multinomial logit model using a subset of the observed covariate matrix

X, X2, which must include PS and may include patient characteristics D. The

probability of an individual being in principal strata g is given in equation

(2.1). As in any multinomial logit model, one category must be selected as a

reference group.

πg,i = P (Gi = g) =
exp (XT

2iαg)∑
g′ exp (XT

2iαg′)
(2.1)

However, for any given individual i, we only observe the survival outcome

given the observed treatment status. These four groups based on observed
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data are defined as follows:

• O(1,1) = {i|Zi = 1, Sobsi = 1}: individuals who are treated and are alive

at time to

• O(1,0) = {i|Zi = 1, Sobsi = 0}: individuals who are treated and are not

alive at time to

• O(0,1) = {i|Zi = 0, Sobsi = 1}: individuals who are not treated and are

alive at time to

• O(0,0) = {i|Zi = 0, Sobsi = 0}: individuals who are not treated and are

not alive at time to

These observed groups are composed of mixtures of the principal strata. In

other words, O(1,1) is comprised of a mixture of individuals from the LL and

LD strata, O(1,0) is comprised of individuals from the LL and DL strata,

O(0,1) is comprised of individuals from the DD and DL strata, and O(0,0) is

comprised of individuals from the DL and DD strata.

Thus far, the framework for principal stratification does not employ an

assumption of monotonicity. This assumption implies that the DL stratum

(those who do not live with the receipt of treatment, but will live if untreated)

does not exist. Other than the reduction of principal strata to three rather

than four, the model framework is largely the same under the monotonicity

assumption. For completeness of methodology and to test the sensitivity of the

results to this assumption, results for all data analysis and simulation studies

are reported with and without the monotonicity assumption.

2.2.4 Bayesian Framework for Estimation and Inference

The observed outcome Yi, which is only observed when Si = 1, is assumed

to have a normal distribution, fg, within each of the principal strata and with
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Table 2.1: Individual observed likelihood by observed treatment and survival
group

Gi

Observed Group Zi Si LL LD DL DD
O(1,1) 1 1 πLL,ifLL,i πLD,ifLD,i - -
O(1,0) 1 0 - - πDL,ifDL,i πDD,ifDD,i
O(0,1) 0 1 πLL,ifLL,i - πDL,ifDL,i -
O(0,0) 0 0 - πLD,ifLD,i - πDD,ifDD,i

parameters and covariates that differ by strata. Specifically, the outcome dis-

tributions are defined as Yg,i ∼ N(X1,gηg, σ
2
g) for g ∈ LL,LD,DL. X1,LL

includes the column for intercept, one or both of the treatment variables de-

pending on the treatment assignment model considered, and the estimated

propensity score corresponding ot the treatment assignment model. The out-

come models for the LD andDL strata do not include any treatment covariates

as the individuals with an observed outcome in each of these strata are either

all treated or all untreated, respectively. Therefore, X1,LD and X1,DL include

columns for intercept and propensity score only.

Using the stratified distributions and the probability of each principal

stratum, the structure of the observed data likelihood for any individual and

for all possible combinations of Zi and Si is given in Table 2.1. Each cell value

is the likelihood of the observed data if the values of the individuals’ strata are

known. Thus the conditional probability of Gi = g given the observed data is

the ratio of each cell to the total of that row. Rows O(1, 0) and O(0, 0) are

included in this table for a comprehensive understanding of the possible com-

binations of treatment and survival, but individuals who fall into these groups

do not have outcome data that will contribute to the observed data likelihood

since Si = 0 and thus Yi is unobserved. Therefore, individuals in this group

will only contribute to the model for the probability of principal strata, which

is reflected in the observed data likelihood in the Appendix I.
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Prior distributions for the specified parameters in the observed data like-

lihood should be chosen carefully, with thought to distributions that may be

informative, proper, and conjugate where appropriate. For this analysis, con-

jugate multivariate normal and inverse-gamma distributions are assigned for

the prior distributions of the different forms of ηg and σ2
g respectively. The

prior distributions for αg are non-informative and are proportional to 1. De-

tails of each prior distribution are provided in Appendix II.

P (θ|Y, S, Z,G,D, PS) ∝ P (θ)P (Y |S,Z,G,D, PS)

∝ σ2(−νLL−1)LL exp

(
−ωLL
σ2LL

)
|σ2LLVLL|−

1
2 e
− 1

2σ2
LL

(ηLL−µLL)TV −1
LL (ηLL−µLL)

× σ2(−νLD−1)LD exp

(
−ωLD
σ2LD

)
|σ2LDVLD|−

1
2 e
− 1

2σ2
LD

(ηLD−µLD)TV −1
LD(ηLD−µLD)

× σ2(−νDL−1)DL exp
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×
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2σ2
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1 + eX2iαLL + eX2iαDL + eX2iαDD



× I(Gi=DL)

 eX2iαDLσ−1DLe

(Yi−X1,DL,iηDL)
2

2σ2
DL

1 + eX2iαLL + eX2iαDL + eX2iαDD


× I(Gi=DD)

(
eX2iαDD

1 + eX2iαLL + eX2iαDL + eX2iαDD

)}

(2.2)

The posterior distribution of the parameters given the observed data like-

lihood and specified prior distributions is provided in equation (2.2). Though

the principal stratum of each individual is unknown, the observed treatment

and survival groups may be used to inform imputation of the principal strata

assignments. One option in Bayesian analysis is the Data Augmentation (DA)
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algorithm (Tanner & Wong 1987), which treats G as missing data, imputes G,

and subsequently simulates the posterior distributions of θ, a given imputed

G.

The DA algorithm is employed by using two iterative and alternating steps

to simulate a complete data likelihood and allow for posterior inference. The

first step, the Imputation or I-step, imputes the value of the principal strata Gi

for each individual. This is accomplished by using the parameter values α
(k)
g ,

η
(k)
g , and σ

2(k)
g from the current approximation of posterior (from the kth iter-

ation) to generate G
(k+1)
i by using the conditional probabilities that are given

by taking the ratio of cell value to row total in Table 2.1. The conditional

probabilities, ρO,i are used in a Bernoulli distribution that imputes individual

membership to one of the two principal strata that correspond with the ob-

served group O (see Appendix III). More specifically, at the (k+1) iteration,

each individual has a probability of being in a stratum that depends on their

observed values (Zi, Si, Yi, PSi).

The P-step, or Posterior step, is then employed by using the imputed com-

plete data set, and the parameters θ(k) =
(
π
(k)
g ,η

(k)
g , σ

2(k)
g

)
can be updated to

θ(k+1) =
(
π
(k+1)
g ,η

(k+1)
g , σ

2(k+1)
g

)
by sampling from the full conditional distri-

butions of each parameter, or the distribution in which all other parameters in

θ are conditioned upon. Either the Gibbs Sampler or the Metropolis-Hastings

(MH) Algorithm may be employed for sampling, with choice of algorithm

influenced by the type of full conditional distribution. The full conditional

distributions of each parameter (given the imputed G at each iteration k) are

provided in Appendix A.4.
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2.3 Application to Emory ALS Clinic Data

The ALS registry dataset includes data from 729 patients who visited the

Emory ALS clinic at least once from January 1, 1997 and July 31, 2011. All

individuals were diagnosed with ALS prior to first clinic visit, and none had

received PEG treatment. Of these patients, 38 patients were excluded for

not having any follow up clinic visits within 1 year of their first clinic visit,

25 were excluded for having extremely long survival times (>5 years post-

baseline), and 86 were excluded for having no post-baseline measurements of

the outcome BMI within the first year of follow up. Characteristics measured

at baseline for each individual include sex, site of ALS onset, age at diagnosis,

BMI at baseline, and days from diagnosis to first clinic visit (∆TDX). Addition-

ally, some individual characteristics are measured at each clinic visit including

forced vital capacity (FVC), change in FVC from baseline (∆FV Cto), change

in BMI from baseline (∆BMIto), and total number of clinic visits. Those char-

acteristics that are measured as continuous variables (namely age at diagnosis,

BMI at baseline, FVC, and change in FVC from baseline) are normalized be-

fore inclusion as covariates for the propensity score model, principal strata

model, or outcome model.

A comparison of those who receive treatment within one year of follow-up

and those who do not among the remaining 580 individuals in the ALS registry

is available in Table 2.2. Of the 200 treated patients 41.5% or 83 individuals

are alive one year from baseline, while of the 384 untreated individuals 54.2%

or 206 individuals are alive at this time-point (p < 0.01). In general, treated

individuals tend to have characteristics that align with greater risk of advanced

disease, such as smaller values of mean FVC, increased age, lower proportions

of spinal onset, and higher proportions of females.

Baseline measurements of BMI are not significantly different among the
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treated and untreated populations were not significant at a level of α = 0.05,

however, FVC measurements taken at baseline are significantly different (p <

0.01), with treated individuals having a lower mean measurement than un-

treated individuals. Demographic characteristics such as age at diagnosis and

sex are also significantly different among treated and untreated, with treated

individuals being about 3 years older and more likely to be female than un-

treated individuals (p < 0.01 and p = 0.02 respectively). Additionally, the

proportion of patients with spinal onset of disease is significantly lower in the

treated population (p < 0.01), which along with the lower mean FVC at base-

line, higher age, and greater proportion of females indicates increased risk of

advanced disease in the treated patient population.

When considering time of outcome measurement, 1 year post-baseline, the

clinical measurements of FVC in patients who are treated and untreated have

an even greater gap than the measurements at baseline (p < 0.01). This re-

sult may imply that those individuals who do receive treatment within one

year post-baseline are not only in poorer condition at baseline, but they are

generally in poorer condition as time and their disease progresses. BMI is also

lower for patients who are treated when compared to untreated (p = 0.05).

Comparison of treatment groups are available at additional points of time

elapsed post-baseline in Table A.1 of the Appendix. Though some of the dif-

ferences in means or proportions are not significant at other time points, the

general trend in characteristics in each population is consistent. Treated in-

dividuals tend to have characteristics that align with greater risk of advanced

disease, such as smaller values of mean FVC, increased age, lower proportions

of spinal onset, and higher proportions of females.
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2.3.1 Balance of Covariates

To test the balance of covariates using propensity score methods, the associ-

ation of patient characteristics with the indicator of treatment was examined

for change after conditioning on the proposed propensity scores. Table 2.3

presents the p-values of these associations when examined marginally, condi-

tioned on the standard propensity score as calculated from a logistic regression

of the treatment indicator, and conditioned on the generalized propensity score

as calculated from a Cox proportional hazards regression of the time to treat-

ment.

Overall, the use of propensity scores does balance the covariates across

treatment groups. Most patient characteristics have a significant marginal

association with treatment. After conditioning on the standard propensity

score, all associations of patient characteristics with treatment become non-

significant, indicating that balance of covariates is successfully achieved. Con-

ditioning on the generalized propensity score is also fairly successful in balanc-

ing covariates, with most patient characteristic associations with treatment

Table 2.2: Comparison of PEG treated and untreated populations 1 year post-
baseline (N=580)

Treated Untreated
(N=200) (N=380)

Mean/P SD or n Mean/P SD or n p-value
BMI at to 23.87 5.52 24.89 5.63 0.05
Baseline (BL) BMI 24.92 5.89 25.62 5.68 0.19
∆BMIto , -1.13 2.12 -0.65 2.92 0.04
FVC at to 46.84 21.44 63.49 25.11 < 0.01
Baseline (BL) FVC 65.24 25.58 73.98 25.84 < 0.01
∆BMIto -18.86 22.09 -10.42 16.96 < 0.01
Age at Diagnosis 64.91 10.15 61.91 12.17 < 0.01
∆TDX > 30 days 0.21 41 0.19 71 0.68
Proportion Surviving 0.42 83 0.54 206 < 0.01
Prop. of Females 0.52 103 0.41 156 0.02
Prop. of Spinal Onset 0.43 86 0.80 304 < 0.01
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becoming non-significant. Though two patient characteristics (baseline FVC

and number of visits in the first year of follow-up post-baseline) remain as-

sociated with treatment after conditioning on the generalized propensity score.

2.3.2 Estimation of SACE of PEG Treatment

SACE of PEG Treatment is estimated in 16 model scenarios; in addition

to the two definitions of treatment (binary indicator of treatment and time of

treatment), models are considered for various levels of propensity score inclu-

sion (none, linear, quadratic, and cubic propensity score terms) and with or

without the assumption of monotonicity. For all analyses, the MCMC algo-

rithm was run for a total of 10,000 iterations, with a burn-in period of 5000

iterations.

Table 2.4 presents a comparison of models with the linear propensity

score and without propensity score terms. Overall, the inclusion of a propen-

sity score may change the magnitude, direction and, significance of the treat-

ment effect estimates. In the case of the binary treatment indicator only

model, though the treatment effect remains negative and non-significant, the

magnitude of the effect of treatment on BMI is closer to zero after includ-

ing propensity scores. For comparison, Table 2.5 includes the results of the

Table 2.3: Balance of Covariates Among Treatment Groups: P-values
of Treatment Indicator Effect on Patient Characteristics after Inclusion of
Propensity Scores (N=491)

Without PS Standard PS Generalized PS
Baseline BMI 0.186 0.499 0.185
Baseline FVC <0.001 0.807 0.002
Age at Diagnosis 0.003 0.457 0.278
Number of Visits <0.001 0.188 0.007
Spinal Site of Onset <0.001 0.587 0.113
Female Sex 0.016 0.131 0.717
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PEG treatment effect estimates in all eight variations of the binary treatment

model. When all four strata are considered, the treatment effect is similar

when any propensity score terms are included in the model. The application

of the monotonicity assumption does cause some minor discrepancies in the

magnitude and direction of the effect estimates in the models with propensity

score terms. However, all treatment effect estimates are non-significant as all

credible intervals include the null value of 0. Therefore, there seems to be no

significant treatment effect in the model with binary indicator of PEG treat-

ment only.

The time of treatment model, which includes both time from treatment

to 1 year post-baseline and a binary indicator of treatment, shows a change

not only in the magnitude but also in the significance of the effect estimates of

PEG treatment when comparing the results from inclusion of linear propensity

score term to that without a propensity score term (Table 2.4). Most notably,

when propensity scores are used, the effect of the PEG treatment indicator is

larger in magnitude and is significant, compared to a smaller non-significant

estimate when no propensity score terms are included in the model. These

results remain significant after including higher order propensity score terms

and employing the monotonicity assumption (Table 2.6).

Table 2.4: SACE of PEG treatment (with 95% credible intervals)on BMI
measured 1 year post-baseline (N=491)

No Propensity Score Linear PS Model
Mean 95% CI Mean 95% CI

Outcome model including binary treatment indicator only
Peg Treatment -1.21 (-2.51, 0.07) -0.17 (-1.56, 1.22)
Linear PS Term - - -4.20 (-6.72, -1.70)
Outcome model including both binary indicator and time of treatment
Time from Treatment to t* -0.49 (-0.77, -0.21) -0.34 (-0.60, -0.06)
Peg Treatment 1.84 (-0.18, 3.85) 2.69 (0.82, 4.53)
Linear PS Term - - -1.30 (-1.91, -0.67)
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Table 2.5: Comparison of SACE estimates of PEG treatment (with 95%
credible intervals) with and without the monotonicity assumption in the di-
chotomous treatment model (N=491)

PEG Treatment Effect Estimate
Monotonicity All Four Strata

No Propensity Score
-1.37 -1.21

(-2.69, -0.02) (-2.51, 0.07)

Linear Propensity Score Term
0.40 -0.17

(-0.93, 1.73) (-1.56, 1.22)

Quadratic Propensity Score Terms
0.37 -0.15

(-0.99, 1.70) (-1.57, 1.27)

Cubic Propensity Score Terms -0.24 -0.16
(-1.66, 1.20) (-1.59, 1.25)

Table 2.6: Comparison of SACE estimates of PEG treatment (with 95% cred-
ible intervals) with and without the monotonicity assumption in the time of
treatment model (N=491)

PEG Treatment Indicator Time from Treatment to t*

Monotonicity All Strata Monotonicity All Strata

No Propensity Score
1.48 1.84 -0.50 -0.49

(-0.71, 3.57) (-0.18, 3.85) (-0.19, -0.80) (-0.21, -0.77)

Linear PS Term
2.25 2.69 -0.35 -0.34

(0.19, 4.30) (0.82, 4.53) (-0.05, -0.65) (-0.06, -0.60)

Quadratic PS Terms
2.34 2.88 -0.37 -0.38

(0.24, 4.40) (1.04, 4.78) (-0.06, -0.68) (-0.10, -0.66)

Cubic PS Terms
2.39 2.40 -0.38 -0.38

(2.39, 0.28) (2.39, 0.37) (-0.38, -0.06) (-0.38, -0.07)

Though the results in this model with time from treatment and binary

indicator of treatment seem promising in providing a positive treatment effect

of PEG, a careful interpretation of the treatment effect estimates is necessary.

While there is a significant negative effect on BMI for each unit increase in

months of time from treatment to one year post-baseline (-0.34), this effect is

additive to the binary treatment indicator at any time. Thus when the time

from treatment to 1 year post-baseline is small, there is an overall positive

effect of treatment in the measurement of BMI one year post-baseline.

To better visualize the effect of treatment in the time of treatment model,
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the difference in mean BMI of treated individuals and untreated individuals

is plotted over time from treatment to one year post-baseline in Figure 2.1.

As the time between treatment and one year post-baseline increases, the effect

of PEG treatment diminishes. One possibility is that this may be due to a

waning effect of treatment over time; as outcome is measured further from the

time of treatment, the effect of PEG treatment may no longer be discernable.

A näıve analysis, without principal stratification, of the effect of PEG treat-

ment on BMI measured at 1 year post-baseline is provided in Table 2.7. For

comparability to SACE and to ensure the measurement of the outcome, only

those individuals with survival greater than one year post-baseline are consid-

ered in this analysis. Parameter estimates and 95% confidence intervals from

a linear regression model are presented. These results indicate that without

use of the principal stratification framework, we are unable to identify a sig-

nificant effect of treatment in this dataset. Both the dichotomous treatment

Figure 2.1: Difference in average BMI of treated compared to untreated
individuals over time from treatment to 1 year post-baseline (N=491)
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Table 2.7: Estimate of PEG treatment effect (with 95% credible intervals)
among survivors on BMI measured at 1 year post-baseline without principal
stratification (N=278)

No Propensity Score Linear PS
Mean 95% CI Mean 95% CI

Model including binary treatment indicator only
Peg Treatment -1.38 (-2.62, -0.13) -0.10 (-1.46, 1.25)
Linear PS Term - - -5.21 (-7.71, -2.71)
Model including both binary indicator and time of treatment
Time from Treatment to t* -0.01 (-0.01, 0.00) 0.00 (-0.01, 0.00)
Peg Treatment -0.07 (-2.28, 2.15) 0.75 (-1.42, 2.92)
Linear PS Term - - -1.48 (-2.11, -0.83)

model and the time of treatment model return non-significant estimates of

treatment effect, regardless of the use of propensity scores. These results pro-

vide further evidence in support of the use of principal stratification framework

in the presence of censoring by death.

2.4 Simulation Studies

We evaluate the proposed methods in Monte Carlo simulations of 500

datasets. Each Monte Carlo dataset contains 500 observations with patient

characteristics, principal stratum assignment, treatment information, and out-

come data generated as described in the following sections. In all simulation

scenarios, principal stratum, treatment assignment, and survival status must

be determined prior to outcome generation, as Yi can only exist for those indi-

viduals with Si = 1. Therefore, while Yi is generated for all observations with

Gi = LL, it can only be generated for observations with Gi = LD and Zi = 1

or Gi = DL and Zi = 0, and it cannot be generated for observations wtih Gi

= DD at all.

In each of the 500 Monte Carlo datasets, four variables are generated to
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represent patient characteristics D. D1, D2, D4 are generated from Uniform

distributions of varying ranges (Unif [1, 1], Unif [−2, 2], and Unif [0, 1] respec-

tively). D3 is generated for each individual using a Bernoulli distribution with

p = 0.5. Overlapping subsets of these covariates are used in the models that

generate principal strata assignment (D2, D3, D4) and the treatment assign-

ment (D1, D2, D3) for each observation.

Principal strata assignment, Gi is generated from a discrete distribution

with probabilities generated from a multinomial logit model, as presented in

equation (2.1) in Section 2.2.3. The parameters of this model, αg, are se-

lected such that LD is the reference group and the average values of the

probabilities of principal strata in simulation population have the preferred

relationship πLL > πLD > πDL > πDD. Specifically the parameter values

are αLL = [0.85, 1.0,−0.5, 0.5], αDL = [−0.55, 1.5,−0.5, 0.25], and αDD =

[−1.2,−0.8,−0.5,−0.5]. Treatment assignment, Zi, is generated from a Bernoulli

distribution with probability pZ,i. A logistic regression model is used to de-

termine pZ,i, with parameters β = [0.1, 1.5,−1.0,−0.5], selected to achieve an

average probability that is slightly greater than 0.5 for the simulation popula-

tion.

Knowledge of principal strata and treatment assignments allow for the ex-

trapolation of survival status Si for each observation. Finally, an outcome

measurement is simulated for those observations with a survival status Si =

1 using outcome distributions, fg = N(X1,gηg, σ
2
g), presented in Section 2.2.4.

The design matrix for the LL stratum, XLL = (1,Z,D1,D2,D3), differs from

those of the LD and DL by inclusion of the treatment assignment covari-

ate (XLD = XDL = (1,D1,D2,D3)). The outcome model parameters for

each stratum are set to ηLL = [6, 4, 1.5, 0.8, 0.4], ηLD = [1, 1, 0.4, 0.2], and

ηDL = [2, 1, 0.4, 0.2].
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Table 2.8: Results of simulations with binary treatment indicator
Treatment Effect Relative Mean Empirical Coverage
Estimate (LL Stratum) Bias (%) SE SD Probability
Without Monotonicity (All 4 Principal Strata)
No PS Term 33.63 0.266 0.265 0.00
Linear PS Term 3.78 0.224 0.221 0.93
Quadratic PS Terms 2.17 0.221 0.219 0.92
Cubic PS Terms 1.93 0.225 0.221 0.95
With Monotonicity Assumption (No DL Stratum)
No PS Term 32.82 0.190 0.190 0.00
Linear PS Term 2.49 0.170 0.170 0.95
Quadratic 1.88 0.171 0.171 0.97
Cubic 2.03 0.172 0.172 0.96

We also consider Monte Carlo simulations in which the monotonicity as-

sumption holds. Three strata are considered, with the he DL stratum removed

from the framework. Parameter values αg for the strata model and ηg for the

outcome model remain the same for LL, LD, and DD. It is noteworthy that

the assumptions made for the data generation in each scenario are imposed

on the statistical analysis of the data. That is, when data are simulated with

a monotonicity assumption, it is analyzed in the same manner; when data is

simulated without the monotonicity assumption, no monotonicity assumption

is imposed on the statistical analysis.

The estimated effects of treatment for various dichotomous treatment mod-

els are presented in Table 2.8. These results include simulations with and

without the monotonicity assumption and the incorporation of higher order

propensity scores. The monotonicity assumption reduces the number of prin-

cipal strata to three by eliminating the DL stratum, with all other models,

distributions, and true parameters remaining the same as when the mono-

tonicity assumption is not employed. Propensity score is calculated as the

probability of treatment using a logistic regression model for the generated Zi.

The estimates of effect when a propensity score term is not included in the
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model with and without monotonicity assumption exhibit substantial bias.

However, the inclusion of propensity scores as linear predictors, either sin-

gularly or with higher order terms, reduces the bias of the effect estimates

considerably. The relative bias of the effect estimate of treatment is approxi-

mately 33% in both scenarios with and without the monotonicity assumption

when propensity scores are absent, but this relative bias shrinks to 1.9%-3.8%

when propensity score terms are present. Additionally, the coverage probabil-

ities in the presence of propensity scores range from 92%-95% in simulations

without the monotonicity assumption and 95%-97% in simulations with the

monotonicity assumption. While relative bias is smallest and coverage proba-

bility is highest when cubic propensity score terms (and corresponding lower

order terms) are included in the simulation framework, those models with lin-

ear or quadratic propensity score terms also perform well.

2.5 Discussion

The use of propensity scores within the principal stratification framework

allows for the estimation of an unbiased principal effect of treatment, partic-

ularly for observational data or randomized data in which the assumption of

no unmeasured confounding is suspect. The removal of bias by inclusion of

propensity scores in the principal strata and outcome models is evidenced by

the results of the simulation studies. It is noteworthy that in order for the

principal effect estimate to be unbiased, the assumption of strongly ignorable

treatment assignment must hold. In other words, there must be no unmeasured

confounders. In the current data analysis from the Emory ALS Clinic, one im-

portant confounder that is not available is the Revised ALS Functional Rating

Scale (ALSFRS-R) score, a validated instrument for measuring the progres-
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sion of ALS. The absence of this confounder could be particularly problematic

in achieving ignorability when conditioning on propensity scores. However,

this deficiency of confounders in this data would likely render any methods

ineffective in establishing balance among treatment groups. In addition, even

without the ALSFRS-R score, balance of the observed covariates in Table 2.3

and the change of effect estimates that occurs when the propensity score is

included in the model lend support to the validity in our propensity score

methods. Future applications of the proposed methods to other data with

richer measurements of confounders should further demonstrate the reduction

of selection bias and confounding.

Though the effect of the treatment is not significant in the dichotomous

treatment model for PEG treatment, a positive and significant effect of treat-

ment is identified in the time of treatment model. As mentioned in earlier

sections, it is possible that we are unable to capture the effects of treatment

administered at time points further away from the time of outcome measure-

ment due to a waning effect of treatment. Identifying the treatment effect as

it changes over time may be of use to the clinical community, requires more

sophisticated techniques, and thus is left for future research.

Overall, the results presented from the application to the ALS data are

not sensitive to the assumption of monotonicity. In the data application, this

may be due to the small proportion of individuals in DL strata when all four

strata are considered. When monotonicity is not assumed, most patients are

in the LL and DD strata, with a LD and DL strata each comprising less

than 5% of individuals each. It is conceivable then that reallocating such a

small proportion of individuals when removing the DL stratum would likely

not substantially change the effect estimates of the other strata.

Propensity scores are included as linear predictors of the outcome and



45

principal strata models, which can be quite restrictive when controlling for

selection bias and confounding. Adding higher order terms does add some

flexibility in the relationships between propensity score and the dependent

variables of each of the models as it acts as a polynomial basis regression

splines, but other basis functions may be considered in the future for the most

effective control for bias.

Future consideration may also be given to jointly modeling the propen-

sity score with the outcome model and principal strata model in the Bayesian

framework. This would allow the quantities observed by sampling outcome

and principal strata models to affect the posterior of propensity score in each

MCMC iteration. While this could provide a more robust propensity score ad-

justment, Zigler et al. (2013) show that the feedback between model stages in

joint modeling can cause biased causal effect estimates if individual covariates

are not also adjusted for in the outcome model. This bias should be accounted

for if joint modeling of the three models of outcome, propensity scores, and

principal strata is proposed.
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Chapter 3

Propensity function matching for estimating

treatment effect
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3.1 Introduction

In observational studies, treatment assignment is often not randomized,

resulting in selection bias. The original propensity score methods as pro-

posed by Rosenbaum & Rubin (1983) have been widely used in many settings

of statistical analysis to correct for such bias. However, it is relatively un-

explored in settings where treatment is administered at various inconsistent

times throughout the follow-up period, though many have explored related

issues. Zhao & Tsiatis (1997) and Anstrom & Tsiatis (2001) employed inverse

propensity score weighting to correct for confounding in observational studies

where only the response is right censored. Li et al. (2001), Lu (2005), and

Seeger et al. (2005), have examined matching with propensity scores in the

presence of varying treatment times, but they only analyzed data with pre-

specified fixed time intervals for both the administration of treatment and the

measurement of time-varying covariates.

In this paper, we address issues that arise when evaluating a treatment

effect in an observational study with varying times of treatment and measured

time-varying confounders. To accomplish this, we extend the previously es-

tablished methods for propensity scores, particularly the P-Function of Imai

& Van Dyk (2004) and the Generalized Propensity Score (GPS) of Hirano &

Imbens (2004). The proposed Propensity Process incorporates and balances

the entire covariate profile from baseline until time of interest, allowing for the

analysis of observational or non-randomized data, particularly when the data

is unstructured such that measurements are not taken at specific time points.

After a brief introduction to the motivating dataset and notation, Section

3.1 is completed with a review of the established methods incorporating the

GPS and the P-Function. In Section 3.2, we define the Propensity Process

that incorporates covariate processes and establish large sample properties of
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this method. In Section 3.3, we present the methods for estimating the GPS

and Propensity Process based on observed time-varying covariates and sub-

sequent matching. In Section 3.4, the proposed approach is applied to our

motivating data. We conclude with a discussion of strengths and limitations

of the proposed methodology in Section 3.5.

3.1.1 Data of the Emory ALS Clinic Registry

Our work is motivated by the data obtained from a registry of patients

maintained by the Emory ALS Clinic. Amyotrophic Lateral Sclerosis (ALS)

is a rare progressive disorder resulting in the degeneration of both upper mo-

tor neurons of the cerebral cortex and lower motor neurons of the spinal cord

and peripheral nervous system (Procaccini & Nemergut 2008). In the Emory

registry, the median survival post symptom onset is approximately 29 months,

noting that there are no curative therapies for ALS (Traxinger et al. 2013).

Palliative care options include the surgical insertion of a percutaneous endo-

gastrostomy (PEG) tube to provide enteral nutrition for individuals who are

having difficulty swallowing or breathing (Miller et al. 1999).

The data in the ALS registry are measured longitudinally from first clinic

visit (baseline) until time of death for each of n individuals, i = 1, 2, ..., n. The

time of each of these clinic visits is denoted as tij, where j = 1...mi. Time

intervals between visits vary both by individual as well as within individual

clinic visits. Outcomes of interest, Yi, are changes in clinical measurements in-

cluding body mass index (BMI) and forced vital capacity (FVC) from baseline

to a fixed time to. The binary indicator of receipt of treatment in the form of

a PEG tube insertion prior to to is denoted by Zi. The time of treatment, TZ,i,

is only observed for subjects who are treated prior to to (Zi = 1), otherwise
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the subject is not treated with TZ,i = to, such that TZ,i ∈ [0, to]. Finally, let Xi

denote the set of p covariates observed before treatment, which may also be

written as the set of two distinct matrices Xi = (X1,i,X2,i(tij)). X1,i includes

p1 variables measured only at baseline, while X2,i(tij) includes p2 variables

measured at each clinic visit up to TZ,i (tij ≤ TZ,i).

This is a retrospective study, presenting several challenges in the analy-

sis. First, the treatment was not randomized, potentially resulting in selection

bias. Second, individual clinic visits were not at fixed times or intervals, and

so covariate measurement is generally not available at the time of treatment.

The current propensity score methods for non-binary treatment assignment,

described in detail in Section 3.1.2, are not directly applicable to account for

these complex features of the ALS dataset. Though we may be able to adapt

some of these non-binary propensity methods by means of covariate interpo-

lation, the proposed Propensity Process can better address the selection bias

and confounding present in the Emory ALS Clinic Registry.

3.1.2 Propensity Score Methods

The estimation of propensity scores and their use in removing bias when

treatment assignment is binary has been well established in the literature

(Rosenbaum & Rubin 1983, Rubin & Thomas 1996). In these cases, the defi-

nition of the propensity score is the probability of receiving a treatment con-

ditional on a set of observed variables X, b(X) = P (Z = 1|X). However,

when the treatment is non-binary, the probability of treatment may either

be difficult to quantify or is not the best balancing score. Two options for

flexible propensity scores that have been proposed in recent literature include

the generalized propensity score (GPS) of Hirano and Imbens (2004) and the
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P-Function of Imai and Van Dyk (2004). Both methods are applicable to a

wide variety of treatment assignment models, including non-parametric and

semi-parametric models.

Generalized Propensity Scores

GPS is defined as R = r(Z,X) where r(z,x) = fZ|X(z|x). In words, the

GPS is the density function for treatment assignment evaluated at the observed

treatment and covariates. In practice, it may be suitable to reduce R̂i to the

linear predictor of a regression model, for ease of computation and analysis.

Hirano and Imbens (2004) propose that the GPS satisfies both the proper-

ties of a balancing score as well as weak unconfoundedness, the conditional

independence of potential outcomes and a single value of treatment given the

GPS evaluated at that treatment and observed covariates. This allows the au-

thors to state further that the causal quantities of interests are unbiased when

conditional on the GPS. Specifically, the dose response function of treatment

is defined as E[Y (t)] = Er(z,X){E[Y (t)|z, r(z,X)]}. In addition R̂i could be

used for matching, stratification, or weighting, though these applications are

not described in detail by Hirano and Imbens and have been relatively less

explored.

In cases such as our motivating data, time to a specific treatment such

as PEG, TZ , is of interest and a Cox Proportional Hazards (PH) model for

TZ , with or without time-dependent covariates, may be utilized for estimating

the Generalized Propensity Score. While the formal definition implies that

the GPS would be the density function of time to treatment evaluated at a

time of interest t, r(t,x) = fTZ |X(t|x) = hTZ (t|x)STZ (t|x) where hTZ (t|x) is

the hazard function and STZ (t|x) is the survival function for TZ , evaluation of
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hTZ (t|x) is sufficient for the GPS. The time of interest can be baseline (t = 0),

time of treatment, time of death, or any other time that is suitable for the

analysis of interest. Along these lines, Li et al. (2001) and Lu (2005) used

the one-dimensional hazard component h(t|x) for propensity score matching

where time of treatment was of interest. These studies support the use of the

GPS, modeled with time-varying covariates and evaluated at observed time

of treatment and covariates, has a balancing property for matched pairs, such

that the treatment assignment is independent of covariates within a matched

pair or set.

However, both the studies by Li et al. (2001) and Lu (2005) only used the

covariates values at the time of interest for matching and did not use the entire

longitudinal profiles of the time-varying covariates. In addition, they devel-

oped methods to analyze treatment effect within a patient population from

a clinical trial in which each individual was followed for up to 4 years post-

enrollment with clinic visits every three months for covariate measurement and

potential treatment administration. This study design has two implications;

first, covariate measurements are available both at the time of treatment ad-

ministration for treated individuals and at a comparable time point for poten-

tial untreated controls. Secondly, those potential controls that are untreated

at the time of treatment for a subject in need of a match, would definitely

remain untreated until the time of outcome measurement at the next clinic

visit. This simplification of the treatment and outcome measurement times

allows the use of propensity score methods that are not directly applicable to

naturalistic observational studies in which treatment may be administered at

any time.
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Propensity Function

The propensity function, or the P-Function, is defined as the entire con-

ditional probability density function eψ(·|X) = pψ(·|X). Imai and van Dyk

suggest using a uniquely parameterized propensity function θψ(X), such that

eψ(·|X) depends on X only through θ, as a summary of the conditional density

function. Conditional on a calculated P-Function, the probability of treatment

assignment is independent of any covariates, P{Z = z|X = x1, θψ(x1)} =

P{Z = z|X = x2, θψ(x2)}.

The choice of propensity function is determined by the appropriate regres-

sion model for the full conditional distribution of Z|X. The function θψ(X)

is therefore generally determined to be the linear predictor of this regression

model. Examples of the characterizing function θ are provided by Imai and

van Dyk for several treatment assignment models, including θψ(X) = βX

for a continuous treatment that follows a normal conditional distribution and

θψ(X) = π(X) for a categorical treatment that follows a multinomial condi-

tional distribution.

Once estimated by regression, the model coefficients inform an estimate

of θ. Imai and van Dyk suggest matching or subclassification based on these

estimated values, θ̂, to determine the causal effect denoted by φ. Additionally,

the authors suggest that treatment effect estimate within each subclass may

vary smoothly as a function of θ. To accomplish this, a smooth coefficient

model, one that allows φ to vary with θ, may be fit.

While the GPS as described by Hirano & Imbens (2004) and the P-Function

defined by Imai & Van Dyk (2004) are able to include time-varying covariates

in the conditional model for treatment assignment, the evaluation of these

propensity score methods require evaluation at observed values of treatment

and covariates. However, data from observational registries, such as the ALS
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dataset, seldom have measurements at similar time points for all subjects post

baseline, and thus we propose the time-dependent Propensity Process that bal-

ances the entire covariate process from baseline until the time point of interest.

3.2 Time-varying Propensity Process

Following the notation in Section 1, we denote the set of the potential

outcomes for subject i by {Yi(tZ,i), tZ,i ∈ T }, where T denotes the set of po-

tential treatment times. In our framework for assessing treatment effect, we

make two assumptions. First, we assume that the distributions of the poten-

tial outcomes for different subjects are independent of each other given X, the

covariates observed prior to time of treatment. This is also known as SUTVA

or the stable unit treatment value assumption (Rubin 1980, 1990). Second, we

assume weak unconfoundedness, or that for all tZ ∈ TZ , the treatment time

tZ is independent of the set of the potential outcomes, Y (tZ), given X, the

observed covariates prior to time of treatment. In other words, we must as-

sume the mechanism for time to treatment assignment, must be independent

of the outcome observed with a specific time to treatment given the covariates.

These assumptions are the same as those made for GPS or P-Functions when

time to treatment is considered for the treatment assignment models (Hirano

& Imbens 2004, Imai & Van Dyk 2004).

To illustrate our ideas, we consider the case where the time to treatment

TZ is assumed to follow a Cox PH model,

hTZ (t|X(t)) = h0(t) exp{βT1 X1 + βT2 X2(t)}, (3.1)
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where h0(t) is the baseline hazard function independent of the covariates. It

follows that the density function for TZ , which defines the treatment assign-

ment model, can be written as

fTZ (t|X(t)) = hTZ (t|X(t))STZ (t|X(t)) = hTZ (t|X(t)) exp{−
∫ t

0

hTZ (u|X(u))du}

(3.2)

We define the time-varying Propensity Process as θ(t) = βT1 X1 + βT2 X2(t),

t ∈ [0, to), noting that θ(t) uniquely determines the density function fTZ (t)

and hence the treatment assignment mechanism. Though at first glance, this

concept may be similar to the P-Function, which provides balance on an entire

conditional probability density of treatment, the distinguishing factor of the

Propensity Process is that θ(t) depends on t and is of infinite dimension,

whereas the P-Function is defined as θ and is of finite dimension. Along the

lines of Imai & Van Dyk (2004) and Rosenbaum & Rubin (1983), we establish

the theoretical results of the time-varying Propensity Process assuming that

θ(·) is known.

Proposition 1 TZ ⊥
{
X1,X2

}
| θ, where X2 ≡ {X2(t); t ∈ [0, to)} is the

entire time-varying covariate process if treatment is not given in [0, to) and

θ ≡ {θ(t); t ∈ [0, to)} is the entire Propensity Process.

Proposition 1 essentially establishes θ as a balancing score. However, Proposi-

tion 1 requires that θ is known or can be estimated in the entire domain [0, to).

In practice, however, we only are able to observe the covariate process X2(·)

up to the time of treatment receipt for each subject. The next proposition

establishes the covariate balancing property for a given time point t∗ in [0, to).
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Proposition 2 TZ(t∗) ⊥
{
X1,X2(t

∗)
}
| θ(t∗), where the treatment assign-

ment variable TZ(t∗) is defined as TZ(t∗) = TZ if TZ ≤ t∗ and TZ(t∗) = N if

TZ > t∗, X2(t
∗) ≡ {X2(t); t ∈ [0, t∗]} is the covariate process up to time point

t∗, and θ(t∗) ≡ {θ(t); t ∈ [0, t∗]} is the Propensity Process up to time point t∗.

Several remarks are in order. First, while we define the Propensity Process

based on the Cox PH model with time-varying covariates, θ(·) can also be de-

fined along similar lines based on other models for the treatment assignment

mechanism that involve time-varying covariates or time-varying coefficients.

Second, Proposition 2 provides the theoretical justification for the approach

of matching a subject treated at t∗ with a subject in the corresponding risk

set based on the Propensity Process estimated up to the treatment time t∗ for

the treated subject, where the risk set is defined as the set of subjects that are

treated at a later time or never treated before to (i.e., TZ > t∗). It follows that

each matched pair will have the same distribution for the covariate process up

to t∗. Third, our result is similar in spirit to Proposition 1 in Lu (2005) but

is more general in the sense that it balances the entire covariate process up to

t∗ not just the covariates measured at t∗. A proof for Propositions 1 and 2 is

provided in the Appendix.

3.3 Propensity Process: Estimation and Matching

In practice, the Propensity Process must be estimated from the observed

data. The challenge for estimating the Propensity Process is that we do not

observe the complete covariate process X2(·). We only get to observe X2(·) at

a set of discrete time points for each subject. To fix ideas, we first describe

how to estimate the GPS using baseline variables X1 and then investigate how

to estimate the Propensity Process as well as the GPS using both baseline



57

variables and time-varying variables X2. For assessing the treatment effect,

we focus on the approach of matching a treated subject with a subject in the

corresponding risk set based on the estimated GPS or Propensity Process, fol-

lowed by conducting hypothesis testing using matched pairs. The definition

of the risk set is provided in Section 3.3.3.

3.3.1 Generalized Propensity Score Using Baseline Variables

First, a Cox PH model that includes covariates measured at baseline only

(X1i,X2,i(0)) is considered, as shown in equation (3.3).

hBL(t|X) = h0(t)exp
(
βTBL,1X1 + βTBL,2X2(0)

)
(3.3)

We denote the parameter estimates by β̂BL,1 and β̂BL,2. The linear predic-

tor of this model is the estimated propensity score, GPSBL,i = β̂
T

BL,1X1,i +

β̂
T

BL,2X2,i(0), and is used to determine the distance between individuals for

matching. Since the GPS is a scalar, we can use standard distance metrics

such as the squared linear distance, Qm,BL = (GPSBL,i −GPSBL,i′), where

individual i would be treated and individual i′ would be in the corresponding

risk set.

Though this method presents an opportunity for a straightforward calcu-

lation of the GPS and a simple metric for matching, the treatment assignment

model is only able to reduce or remove potential selection bias between treat-

ment groups due to unbalanced baseline variables. If treatment assignment

was decided at first clinic visit, this method would be sufficient. However, the

decision for treatment is generally made after baseline in this population and

likely corresponds to disease progression, implying it is necessary to control for

the treatment assignment mechanism that depends on time-varying covariates.
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3.3.2 Time-Varying GPS and Propensity Process

Inclusion of time-varying covariates in the Cox PH model allows for the

evaluation of the GPS at the time of treatment and the entire Propensity

Process from the baseline to the time of treatment, and hence the removal

of selection bias due to unbalanced time-varying covariates. The model, pre-

sented in equation (3.4), incorporates both the covariates that are measured at

baseline and remain static over time (X1), as well as those that have repeated

measurements over time (X2(t)).

hTV (t|X(t)) = h0(t)exp
(
βTTV,1X1 + βTTV,2X2(t)

)
. (3.4)

We denote the parameter estimates by β̂TV,1 and β̂TV,2. We use model (3.4)

with time-dependent covariates to define the estimated GPS and the estimated

Propensity Process for matching. For subject i, the estimated GPS is defined

as the the linear predictor of this model evaluated at the time of treatment,

i.e., GPSIP,i = β̂
T

TV,1X1 + β̂
T

TV,2X2(TZ,i) and the estimated Propensity Process

PPi = {θ̂i(t) = β̂
T

TV,1X1 + β̂
T

TV,2X2(t); t ∈ [0, TZ,i]}, is the full functional pro-

cess from baseline until time of treatment. Computation of these propensity

scores is not straightforward. First, the time-dependent covariates X2(·) are

often not measured at time of treatment for treated individuals. Secondly,

untreated individuals within the risk set are unlikely to have covariate mea-

surements at the exact time of treatment for their potential treated match.

Thus, within the matching process, all individuals are subject to interpolation

of the covariate value at a specific time by a model that estimates the covariate

process over time.

To estimate or interpolate the covariate process, we model each time-
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dependent covariate using a mixed model with both fixed and random effects

of the time variable. This allows a predictive curve to be fit for the covariate

process of each individual from baseline until the end of follow-up, thereby

providing values for each covariate over the continuous support of the follow

up time. For individual i (i = 1, . . . , n) at times tij (j = 1, . . . ,mi), the model

for covariate k (k = 1, . . . , p2) in X2,i is given in equation (3.5).

X
(k)
2,i (tij) = µ(k)(tij) + ν

(k)
i (tij) + ε

(k)
ii , (3.5)

where µ(k)(·) is the population average nonparametric curve (i.e., the fixed

effect), ν
(k)
i (·) is the subject-specific curve (i.e., the random effect), and ε

(k)
ij

are independent random errors. To estimate µ(k)(·) and ν
(k)
i (·), we can use the

approach of basis expansion, that is, write µ(k)(·) = b(·)Tγ(k) and ν
(k)
i (·) =

b(·)Tα(k)
i , where b(·) is a set of basis functions such as polynomial basis or

cubic spline basis and γ(k) and α
(k)
i are two sets of coefficients for the basis

functions. Using the estimated µ(k)(·) and ν
(k)
i (·), the values of each time-

varying covariate may be interpolated from the model at any time of interest

from baseline until death, and then can be used to determine the value of the

GPSIP and the time-dependent PP .

Figure 3.1 provides an example of the estimated curves of 4 examples of

observed time-varying covariate values over time from baseline until to. In each

scatter plot, blue dots indicate an observed covariate measurement (X2,i(tij))

at various times of measurement (tij) for each individual. Red dots are co-

variate measurements at time of treatment, which are interpolated from the

estimated curve for each individual. The blue lines in each plot represent the

individual curves fit by model (3.5).
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Figure 3.1: Examples of observed time-varying covariate processes

3.3.3 Definition of Risk Sets and Matching

Matching is performed by minimizing the squared distance between the

values of the GPSIP or PP of treated and individuals in the corresponding

risk set. The GPSIP is a scalar value for each individual, the squared distance

between a treated individual i and a member of the risk set i′ is computed in

the same manner as in the case of GPSBL, Qm,IP = (GPSIP,i −GPSIP,i′).

On the other hand, since the PP is a function of time for each individual, we

define the metric for matching in equation (3.6), which is the integration of

the squared difference of the two curves with respect to time.

Qm,PP =

∫ TZ,i

0

(PPi(t)− PPi′(t))2 dt (3.6)

The risk set of a treated individual i includes both individuals who never

receive treatment during follow up and those who receive treatment later than
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the treatment time of individual i, i.e., TZ,i′ > TZ,i. Referring once again to

Figure 3.1, “Treated” represents an individual who is treated at TZ , its risk

set for matching may include Eligible Controls 1 and 2 as TZ,EC1 > TZ and

TZ,EC2 = to if they have not been matched to another treated individual but

the individual labeled as “Control-Ineligible due to Death” is excluded from

the risk set as TS,IC < TZ .

Risk sets of individuals who are available for matching are built chronolog-

ically by time using sequential matching algorithms. Individuals in the risk set

with the smallest distance Qm are matched to the individual with the earliest

time of treatment, TZ(1). After matching, all members of matched pairs must

be removed from risk sets of later time points, and the process is continued

chronologically by TZ,i until all treated individuals are matched or until there

are no suitable controls available for matching.

3.3.4 Hypothesis Testing

The difference in the outcome of interest is calculated for each matched

pair m (m= 1,2,...,M) as ∆Ym = Ym,i − Ym,i′ . The Wilcoxon signed rank test

is used to test whether the difference across matched pairs is different from

0. The null hypothesis of this test is H0 : Y (TZ) = Y (T ′Z) ∀ TZ < T ′Z , i.e.,

the outcomes are the same for individuals who are treated at some time t and

those individuals who are untreated at that time t, regardless of whether the

individual is later treated or never treated.
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3.4 Analysis of Data from ALS Registry

The data from the Emory ALS Clinic Registry includes 697 individuals

who have died before July 31, 2011, with their dates of death cross-referenced

with the Social Security database. Those individuals in the dataset who re-

ceived PEG treatment, did so after their first visit to the Emory ALS Clinic.

The treatment of surgical insertion of the PEG tube is offered to individuals

to supplement or be a primary source of nutrition, but the timing of the rec-

ommendation by the physician involves many factors and the final decision to

have the surgical insertion of the tube is made by each patient. Though there

is little conclusive or corroborated evidence of a significant positive benefit

of PEG, many neurologists have noted anecdotal evidence from their medical

practice that patients with PEG fare better than those without (Gelinas &

Miller 2000). One possibility is that assessment of the effect of PEG has been

complicated by issues such as non-randomized treatment receipt that arose in

an observational setting such as the Emory ALS Registry.

We consider two outcomes of interest in the ALS registry data. Both

the change in body mass index (BMI) and the change in forced vital capacity

(FVC) from baseline to 24 months post baseline are tested for association with

PEG treatment. In shorthand, these outcomes are denoted as ∆BMI24 and

∆FV C24 respectively. All observed covariates are included in the estimation

of the Cox proportional hazards treatment assignment models for each of the

propensity scores. The baseline risk factors X1,i include age at diagnosis (DX),

sex, site of onset of disease, negative inspiratory force (NIF), and time from

diagnosis to the first clinic visit (CV). The two time-varying measurements

that may be included in X2,i(tij) are also the outcomes of interest, BMI and

FVC. Therefore, when BMI is considered to be the outcome of interest, FVC is

included in as a covariate in the propensity score models, and likewise BMI is
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covariate in the propensity score models when FVC is the outcome of interest.

It is noteworthy that these covariates may not be measured at every clinic

visit for every individual, with reasons for missingness varying by individual

and clinic visit. Each time-varying covariate is modeled over time with a linear

mixed model, which includes population average cubic (and lower order) terms

for time and a subject-specific linear term for time. The estimated curves are

used to interpolate the covariate values needed for matching.

We test for an association of PEG treatment on the outcomes of BMI and

FVC in four scenarios. First, a näıve analysis compares all treated individuals

to those who are untreated prior to to. The additional three scenarios include

matched analyses using the three propensity score methods described in Sec-

tion 3.3: Baseline GPS, Interpolated GPS, and Propensity Process. In each

matched analysis, a match threshold ω is employed and may be specific to the

propensity score method.

Prior to matching, 396 individuals who have survived 24 months post base-

line have measurements of BMI both at baseline and a time within 6 months

of the to. Matching results in 95 pairs when using the Baseline GPS, 94 pairs

when using the Interpolated GPS, and 98 pairs when using the Propensity

Process. In addition, 441 individuals have survived 24 months post baseline

Table 3.1: Balance of covariates as measured by p-values of covariate effect in
the time-dependent Cox PH model for time to treatment stratified by matched
pairs for FVC outcome model

Non-stratified BL GPS IP GPS Match PP Match
Covariate Cox PH Stratified Stratified Stratified
BMI 0.716 0.074 0.972 0.723
NIF 0.892 0.400 0.323 0.478
Age at DX 0.016 0.000 0.559 0.752
Sex 0.244 0.912 0.324 0.454
Site of Onset 0.030 0.005 1.000 0.891
Time from DX 0.463 0.235 0.042 0.431
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and have measurements of FVC both at baseline and a time within 6 months

of the to. After matching, there are 98 pairs when using the Baseline GPS, 97

pairs when using the Interpolated GPS, and 93 pairs when using the Propen-

sity Process.

Following the example of Li et al. (2001) and Lu (2005), balance of co-

variates is examined by examining p-values from a Cox proportional hazards

model for time to treatment with each of the covariates in X included one at

a time. In the matched populations, the model is stratified by the m matched

pairs. The results of checking balance with the propensity score methods in-

cluding time-dependent covariates are available in Tables 3.1 and 3.2. Prior

to matching, many covariates are unbalanced amongst the treated individuals

and the populations that are considered to be their controls. While match-

ing using the Baseline GPS and Interpolated GPS does seem to help balance

some covariates across the treatment groups, there are still a few covariates

for which balance is not achieved. Baseline GPS matching does not balance

age at diagnosis or site for when used for either the outcome model of BMI or

FVC. Interpolated GPS does not balance the time from diagnosis to first clinic

visit when used for the outcome model of FVC only. However, matching using

the Propensity Process results in balance across all covariates regardless of

Table 3.2: Balance of covariates as measured by p-values of covariate effect in
the time-dependent Cox PH model for time to treatment stratified by matched
pairs for BMI outcome model

Non-stratified BL GPS IP GPS Match PP Match
Covariate Cox PH Stratified Stratified Stratified
FVC 0.019 0.264 0.152 0.139
NIF 0.892 0.548 0.520 0.524
Age at DX 0.016 0.014 0.170 0.885
Sex 0.244 0.150 0.338 0.904
Site of Onset 0.030 0.003 0.793 0.432
Time from DX 0.463 0.237 0.618 0.301
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the outcome model considered. This indicates matching with the Propensity

Process outperforms the matching by Baseline or Interpolated GPS in terms

of balancing covariates.

Table 3.3 presents hypothesis testing for the effect of PEG on change

in BMI at 24 months from baseline and change in FVC at 24 months from

baseline. Of note, in the näıve analysis, the Wilcoxon rank sum test is used for

hypothesis testing, rather than the Wilcoxon signed rank test which is used

for all matched analyses. It is also important to note that because the näıve

analysis computes the difference in outcome for treated individuals compared

to strictly untreated individuals, one should exercise some caution when di-

rectly comparing the results of this method to the matched analyses.

Overall, the results of the Propensity Process matched analysis are quite

different from the results of the näıve analysis and suggest that there is a pos-

itive or protective effect of treatment on BMI and FVC. In fact, when com-

paring those individuals who have been treated to those who have never been

treated or later treated that have been matched using the Propensity Process,

treatment is significantly associated with positive change in BMI from baseline

to 24 months. This is markedly different than the näıve analysis results of a

significant negative change in BMI from baseline to 24 months. There is no

significant effect of PEG on the change in FVC from baseline to 24 months

after any propensity score matching. However, the direction of the median

Table 3.3: Wilcoxon test for the median difference in change in FVC and BMI
from baseline to 24 months

Median Diff. Test Median Diff. Test
in ∆FV C24 p-value in ∆BMI24 p-value

Näıve -0.42 0.006 -14.72 <0.001
Baseline GPS -0.72 0.123 -7.13 0.060
Interpolated GPS 0.18 0.228 1.58 0.551
Propensity Process 0.48 0.042 2.07 0.456
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difference is positive after matching by Propensity Process, in contrast to a

significantly negative median difference in the näıve analysis. It is possible

that with a larger sample size or additional measured confounders, Propensity

Process matching may return a significant positive effect of treatment on the

change in FVC from baseline to 24 months.

Finally, neither the results of Baseline GPS matching or Interpolated GPS

matching return a significant effect of treatment on the change in either out-

come from baseline to 24 months. However, the directions of the median

matched differences of Baseline GPS matching and Interpolated GPS match-

ing are the same as those of the naive analysis and the Propensity Process

matching respectively. This, in combination with the results from testing for

balance may indicate that the Interpolated GPS performs better than the

Baseline GPS, though not as well as the Propensity Process.

3.5 Discussion

The Propensity Process offers the advantages of balancing time-varying

covariates over the observed covariate process from baseline to time of treat-

ment. Without modification such as the interpolation of covariate processes,

other propensity score methods may restrict balance of treatment groups to a

single time of observed treatment and covariates. Therefore, matching using

the Propensity Process removes selection bias and confounding when the data

is not structured in a manner that allows for use of the established propen-

sity score methods. A key component to this process is the interpolation of

covariate curves. While in this example we use long-linear mixed models with

splines to ensure flexibility in the model and parametric assumptions, there

must also be enough individual longitudinal data collected to estimate these
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curves. This may be a limitation in data with sparsely collected longitudinal

covariates.

A matched analysis is used for the Emory ALS clinic data as a straightfor-

ward method of hypothesis testing when time of treatment varies by individual.

Analysis of treatment effect among propensity score matched pairs has long

been considered a method for removing bias. There may exist a data structure

in which modeling or a weighted analysis may be possible for the estimation

of a causal effect using the Interpolated GPS or Propensity Process. However,

for data such as the Emory ALS clinic registry, implementation of weighted

analyses or modeling would be difficult. The primary reason for this is that

while the choice of a time of evaluation of the propensity score methods may

be natural for treated subjects, a complimentary or comparable time frame

for untreated population would be unclear. Matched analyses allow us to side-

step this issue by matching control individuals to treated individuals at a given

time of treatment.

Matching by any type of propensity score is subject to the limitations of

the propensity score models themselves. In particular, if there are unmea-

sured confounders that are important for the treatment assignment model or

for treatment effect on outcome, we cannot be confident that our matching

will remove selection bias or confounding as our propensity score methods will

not be sufficient. Additionally, the propensity score matching relies on the cor-

rectly specified model for treatment assignment. A misspecified model would

result in a poorly matched analysis and unbalanced treatment groups. Finally,

the probability of treatment must be bounded away from 0 or 1 to avoid issues

caused by a priori counterfactual groups. Though it may be reasonable to as-

sume that the model for time to PEG treatment is correctly specified and that

the probability of treatment is bounded away from 0 and 1 in the Emory ALS
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data, the existence of unmeasured confounders is likely. In particular, there

are measures of ALS disease progress, such as the revised ALS Functional

Rating Scale (ALSFRS-R) score, that are not available in the observed covari-

ates in this data, but may ensure the removal of bias if included in propensity

score methods. However, given the balance achieved by the Propensity Process

matched analyses, it is possible that by controlling for covariate processes over

time we are able to sufficiently remove the time-varying bias and confounding.

Another potential limitation of the analysis is the exclusion of individu-

als who die prior to to. By excluding these individuals, we are able to avoid

complications of censoring by death, described in detail by Rubin et al. (2006)

and Frangakis et al. (2007). Future extensions of these methods could address

censoring by death, such that no exclusions are necessary.



Chapter 4

Estimating the palliative effect of

percutaneous endoscopic gastrostomy in an

observational registry in the presence of

missing outcome data
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4.1 Introduction

Though observational data from disease registries and clinics may offer an

opportunity to examine the effect of treatment when clinical trials may not

be plausible, these data are often fraught with analytical challenges. This is

particularly true of a disease with high disability and mortality rates as issues

of unmeasured data may occur due to a patient’s absence or death. Thus

the selection of a single time point or even a range of times post-baseline for

outcome measurement results in missing outcome measurement.

In this paper, we are interested in estimating a causal effect of treatment

in a clinical registry of patients with amyotrophic lateral sclerosis (ALS), a

neurodegenerative disorder with a very poor prognosis, but there are several

characteristics of the data that require consideration in the analysis. (Gelinas

& Miller 2000, Procaccini & Nemergut 2008). The most obvious obstacle to

causal inference in this data is the non-random treatment assignment, which

may lead to issues of selection bias and confounding. Secondly, the data are

collected longitudinally for each individual at their chosen times of clinic vis-

its. This means that there are varying times elapsed between each individual’s

clinic visits and amongst all individuals. This can be especially problematic

in determining a time for outcome measurement, as those individuals who do

not have a clinic visit during the measurement time, and therefore do not

have an observed outcome, may be categorically different from those who do.

Finally, censoring by death of the outcome may be caused by the fatal and

fast-progressing nature of ALS. All three of these issues must be addressed in

the framework for analysis for an unbiased estimation of treatment effect.

The data in the ALS registry is measured longitudinally at patient clinic

visits occurring at uneven intervals of time for each individual, i = 1, 2, ..., N .

The baseline visit is defined as the first clinic visit for all patients and is de-
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noted by t0. The set of patient characteristics, denoted by D, includes both

a set of characteristics measured only at baseline and a set measured at each

clinic visit. Survival time post-baseline, TS, is observed for all individuals in

the clinic registry, and has been confirmed by Social Security database records.

The surgical insertion of a percutaneous endoscopic gastrostomy (PEG),

a palliative procedure that provides enteral nutrition, may be administered

at any time post baseline. Those individuals who receive PEG prior to the

time of outcome measurement, to, are considered treated, regardless of their

survival until this time point. Treatment variables include both as time to

treatment, TZ , as the binary indicator of treatment, Z. Untreated individuals

have values Z = 0 and TZ = TS for those individuals who do not survive until

to, or Z = 0 and TZ = to for those who survive past to. Treatment status is

known for all individuals in the clinic registry at all times during follow-up.

Of scientific interest is the effect of this palliative PEG procedure on an

outcome of body mass index (BMI) measured at a specific point post baseline.

The outcome is denoted as Y, and is observed if an individual survives until

measurement time and if clinic visit occurs within the range of to±δt, where δt

is some short time period for outcome measurement. The outcomes of those

individuals who survive until the time of outcome measurement but do not

have a clinic visit within to ± δt are considered missing, and therefore have a

missing indicator value M = 1. Those individuals who do not survive until the

time of outcome measurement have values of Y and M that are undefined and

can be considered “censored” by death. Figure 4.1 illustrates the potential

outcomes for all individuals.

In the context of Rubin’s Causal Model, principal stratification offers a

framework for causal inference in the presence of a complicating post-treatment

variable. This principal stratification framework is described in detail by Fran-



72

Baseline 

TZ < to 

Z = 1 

TS > to 
S(1) = 1 

CV in to ± δt 
Y(1) observed 

M = 0 

No CV in to ± δt 
Y(1) missing 

M = 1 

TS < to 
S(1) = 0 

Y(1) & M 
undefined 

TZ > to 

Z = 0 

TS > to 
S(0) = 1 

CV in to ± δt 
Y(0) observed 

M = 0 

No CV in to ± δt 
Y(0) missing 

M = 1 
TS < to 

S(0) = 0 
Y(0) & M 
undefined  

Figure 4.1: Potential outcomes for all patients given survival, treatment, and
clinic visit time.

gakis & Rubin (2002a), and Zhang & Rubin (2003), who describe the appropri-

ate methodology when a post-treatment variable such as survival or graduation

censors the outcome of interest. Zhang et al. (2009) further outlines specific

parametric approaches for the identification of survivor average causal effect

(SACE) within principal strata. In these examples, however, a randomized

and prospective study design assures the complete collection of outcome data,

an advantage not guaranteed in our retrospective clinic registry data.

To address missing outcome data, Frumento et al. (2012) simultaneously

address post-treatment variables and unobserved outcomes within a principal

stratification framework. The authors suggest that if the missing mechanism

of the outcome data is non-ignorable, a suitable assumption for the missing-

ness within a principal stratification framework is latent ignorability. Latent

ignorability indicates that if principal strata membership is known for each in-

dividual, the missing mechanism is ignorable. The authors posit two sets of ex-

clusion restriction assumptions that constrain the probabilities of missingness

for individuals for given values of treatment assignment and post-treatment

variables. When principal strata membership is unknown under latent ignor-
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ability, the missing mechanism is not ignorable and must be included in the

modeling framework, regarless of the exclusion restrictions employed.

It is noteworthy, though, that the motivating dataset for Frumento et al

(2012) was a randomized design, and so the authors did not have to account for

the complications of an observational study. This is particularly important,

because the unbiased estimation of a principal effect, defined as the causal

effect within principal strata, relies on an assumption of ignorability or no

unmeasured confounding (Frangakis & Rubin 2002a). When selection bias or

confounding may be present, either as residual confounding in a randomized

clinical trial or due to observational data, Schwartz et al. (2012) show that

the resulting principal effect estimate is likely to be biased. This result indi-

cates that in the absence of randomization or when the randomization scheme

results in poor balance among treatment groups, there is a need to incorpo-

rate methods for alleviating selection bias and confounding within a principal

stratification framework.

Of the many methods that address selection bias or confounding in ob-

servational studies, a popular choice is the propensity score introduced by

Rosenbaum & Rubin (1983). The propensity score provides a means of bal-

ancing covariates across treatment groups, a result that would otherwise be

guaranteed if a randomized study design is used. Though propensity scores

were introduced for balancing treatment assignment groups when treatment

is binary, other authors have extended these methods to non-binary treat-

ment assignment models, such as generalized propensity score methods (Imai

& Van Dyk 2004, Hirano & Imbens 2004). These methods allow for the es-

timation of causal effects when treatment assignment is ordinal, categorical,

continuous, semi-continuous, or even multivariate. In the proposed methodol-

ogy, the generalized propensity score is estimated using a proportional-hazards
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model for time to treatment.

The methodology proposed in this paper incorporates generalized propen-

sity scores and consideration for missing outcomes in a principal stratification

framework. Jo & Stuart (2009) include propensity scores within a principal

stratification framework, not for the removal of selection bias or confounding as

the data was randomized, but instead to predict principal strata membership

in a matched analysis. Thus the complications of using a principal stratifica-

tion framework in data from an observational registry. Furthermore, propen-

sity score methods for non-binary treatment assignment have not yet been

employed for conditional ignorability in a principal stratification framework

when missing outcomes are also a concern in any type of study. We present

methods for the practical application of a principal stratification framework

in data further complicated by issues of selection bias and missing outcomes.

4.2 Methodology

Patient characteristics in combination with time to treatment, indicator of

no treatment, and the propensity score vector PS, as described in the follow-

ing section, comprise the matrix of observed data X, which is used in parts

for modeling. All patient characteristics D are multiply imputed at baseline.

In the regression model for the outcome Y, the subset of X that is included

in the analysis is X, which may include TZ, Z, PS, and a subset of variables

from D. The inclusion of treatment variable depends on the outcome model

and the stratum, as described in later sections. X2 and X3 are the subsets

of X included in the regression model for the principal strata probabilities,

P (G = g), and in the regression model for missing outcomes, P (M = 1), re-

spectively.
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4.2.1 Framework for Causal Inference

Two general assumptions are employed for the causal inference framework.

First, we make the Stable Unit Treatment Value Assumption (SUTVA) as de-

fined by Cox in 1958 and summarized by Rubin (1980). This assumption states

that there is no interference among the potential outcomes of one individual

and the treatment choices of another individual. Second, we assume Strong Ig-

norability of Treatment Assignment (Rosenbaum & Rubin 1983), which states

the distribution of the potential outcomes is independent of treatment assign-

ment, given the observed covariates. The ignorability assumption often proves

to be non-trivial, particularly for data from observational studies.

As earlier defined, the indicator for treatment from baseline until to (time

of outcome measurement) is Z and the outcome of interest is Y. A post-

treatment indicator of survival past the to is S. Using the Rubin Causal Model

(Holland 1986) as a framework for causal inference, we can define potential

outcomes Y = {Yi(zP ), zP ∈ Z for i = 1...n} and S = {Si(zP ), zP ∈ Z for

i = 1...n}, where Z is the set of potential treatment values and Yi(z
P ) and

Si(z
P ) are the potential outcomes for a given potential treatment zP .

4.2.2 Generalized Propensity Scores

When considering only the effect of a dichotomous treatment, standard

propensity scores may be employed. However, when treatment is defined as

a measure of time, we must consider a more flexible definition and model for

propensity score. Imai & Van Dyk (2004) and Hirano & Imbens (2004) pro-

pose generalized propensity score methods that allow for the inclusion of the
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information provided by covariates to control for selection bias and confound-

ing when treatment assignment is non-binary (Zhao et al. 2012). In support

of these generalized propensity scores, Imai & Van Dyk (2004) derive “large-

sample” theoretical results of balancing properties and ignorable treatment

assignment resembling those of the standard propensity score proposed by

Rosenbaum & Rubin (1983). Thus, when treatment assignment is defined as

time to treatment, we may use the linear predictor of the Cox proportional

hazards model h(t) = h0(t) exp
(
DTβ

)
as the generalized propensity score.

The estimated propensity scores are included in the model for the outcome

(Y), the model for missing outcome (M), and the model determining prin-

cipal strata (G), to control for issues of selection bias and confounding. It

is noteworthy that inclusion of the propensity scores in the principal strata

model is necessary in the absence of randomization, as otherwise the principal

effect is likely to be biased. To allow flexibility in the control for selection

bias when including each of the propensity scores a linear predictor, the use of

quadratic and cubic polynomial higher order terms are also considered when

incorporateing propensity score in the models.

4.2.3 Principal Stratification

Even if all outcomes are observed for living patients, the outcome Yi can-

not be measured for those patients who are not alive at the time of outcome

measurement, Si = 0. Those outcomes that are not measured due to patient

death are considered not defined on the set of real positive numbers, R+. Fol-

lowing the notation of Zhang & Rubin (2003), we can instead consider the

non-observed outcomes to be *, extending our sample space to {R+, ∗}. In

the presence of the censoring of the outcome by death, principal stratification
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using post treatment survival status allows for estimation of the treatment ef-

fect. Specifically, the Survivor Average Causal Effect (SACE) is defined as the

mean difference in the outcomes of treated individuals compared to untreated

individuals in the LL stratum, E(YLL,i(1)) − E(YLL,i(0)). The four potential

principal strata are constructed by pairing indicators of survival by treatment

scenarios: LL, LD, DL, and DD. Individuals who are in the LL stratum are

those who would be alive at time to regardless of treatment. Those individuals

who are in the LD stratum would be alive if they received the PEG tube but

would not be alive if they did not and those who are in the DL stratum would

not be alive if they receive PEG treatment, but would be alive if they did not.

Finally, individuals in the DD are those who would not be alive at time to

regardless of treatment.

The probabilities of the four strata (πLL, πLD, πDL, and πDD) can be mod-

eled with a multinomial logit model using a subset of the observed covariate

matrix X, X2, which must include PS and may include patient characteris-

tics D. The probability of an individual being in principal strata g is given

in equation (4.1). As in any multinomial logit model, one category must be

selected as a reference group.

πg,i = P (Gi = g) =
exp (XT

2iαg)∑
g′ exp (XT

2iαg′)
(4.1)

However, for any given individual i, we only observe the survival outcome

given the observed treatment status. We may define four observed groups

based on indicators of treatment and survival at time to O(Z, S): O(1,1),

O(1,0), O(0,1), O(0,0). These observed groups are composed of mixtures of

the principal strata. In other words, O(1,1) is comprised of a mixture of indi-

viduals from the LL and LD strata, O(1,0) is comprised of individuals from
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the LL and DL strata, O(0,1) is comprised of individuals from the DD and

DL strata, and O(0,0) is comprised of individuals from the DL and DD strata.

4.2.4 Missing Outcomes

Thus far, our framework assumes that all those individuals surviving until

to will have an observed outcome. In studies such as clinical trials or other

prospective study designs, it may be appropriate to expect outcome or covari-

ate measurement at planned time-points. However, the reality of retrospective

studies, such as those based on disease registries with no interference in pa-

tient clinic visits, is that often measurements of patient status are available at

sporadic times, and do not always align with the research question of inter-

est. Straightforward options for defining the outcome of interest may either be

too broad, by including any outcome observed from baseline until the time of

interest, or may be too exclusive, by only including those outcomes observed

in a narrow window around the time of interest. This latter definition of the

outcome is specific and does allow for a precise analysis of the effect of treat-

ment on outcome, however by excluding those individuals who do not have

an outcome in the time period of interest, we squander the information that

these individuals may provide.

Instead, we may define the outcome for those individuals who do not have

a measurement during the timeframe of interest as missing. This allows for

two potential approaches for including the information for the individuals with

unobserved outcomes. First, those individuals who do not have an observed

outcome but for whom we have information about survival and treatment may

contribute to the other parts of the model framework. Namely, these individ-

uals would contribute only to the propensity score and principal stratification
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models.

Second, we may introduce a model for the indicator of missing outcome

within the principal stratification framework. Explicitly, we model p(M =

1|G = g, Z = z) or φg,z, the probability of missing outcome using a logis-

tic regression model, in a similar approach to that of Frumento et al. (2012).

However, our data introduce some unique challenges that were not of concern

for Frumento et al. (2012), such as non-randomized treatment assignment and

non-fixed times of outcome measurement. Though the Job Corps data stud-

ied by Frumento et al. did present some additional challenges due to issues

of non-compliance, the authors were able to treat compliance as a second

post-treatment variable and were able to combine this information with em-

ployment status to create a single set of six principal strata. Also, because

employment status cannot be determined without individual study participa-

tion, this post-treatment stratifying variable may be missing in tandem with

missing outcome, whereas the retrospective nature of the Emory ALS data

ensured that the post-treatment stratifying variable of survival is always ob-

served.

The two modeling approaches presented in this analysis differ by the as-

sumptions placed on the missingness mechanism. In Approach 1, we assume

that the missing mechanism is ignorable. For Approach 2, we assume latent

ignorability, but since the latent strata are not completely known, the missing

mechanism is not ignorable. Thus it is necessary to model the probability

of missing outcome data and include it in the framework. We assume this

probability differs not only by principal strata but also by treatment status.

However, because those individuals who are not alive at the time of outcome

measurement cannot have an observed outcome, it is only valid to model the

probability of missingness for those individuals in the LL stratum with treat-
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ment, the LL stratum without treatment, the LD stratum with treatment,

and the DL stratum without treatment. These probabilities are represented

in the model below.

φg,z = Pr(M = 1|G = g, Z = z, S = 1) =
eX3θg,z

1 + eX3θg,z
(4.2)

Regardless of whether a model is introduced for φg,z, we must adjust the

observed groups to reflect the missingness of outcomes. Instead of the four

observed groups that are described in Section 4.2.3, we now have six observed

groups that are defined as the combinations of O(Z, S,M). Namely the groups

include O(1,1,1), O(1,1,0), O(1,0,-), O(0,1,1), O(0,1,0), O(0,0,-). The two orig-

inal observed groups with individuals surviving until to, O(1,1) and O(0,1), are

each divided into two further groups based upon whether the outcome is ob-

served or missing. For those individuals who do not survive until the time of

outcome measurement, S = 0, we need not stratify these groups further by

missing indicator.

4.2.5 Bayesian Framework for Estimation and Inference

The outcome Yi, which is only observed when Si = 1 and Mi = 0, is as-

sumed to have a normal distribution, fg,i, within each of the principal strata

and with parameters and covariates that differ by strata. Specifically, the out-

come distributions are defined as Yg,i ∼ N(X1,gηg, σ
2
g) for g ∈ LL,LD,DL.

X1,LL includes the column for intercept, one or both of the treatment variables

depending on the treatment assignment model considered, and the estimated

propensity score corresponding to the treatment assignment model. The out-

come models for the LD andDL strata do not include any treatment covariates

as the individuals with an observed outcome in each of these strata are either
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Table 4.1: Individual observed likelihood by observed groups if Gi is known
Gi

Observed
Group LL LD DL DD

O(1, 1, 0)
(1− φLL,1,i)× (1− φLD,1,i)× - -
πLL,ifLL,i πLD,ifLD,i

O(1, 1, 1) φLL,1,iπLL,i φLD,1,iπLD,i - -

O(1, 0,−) - - πDL,i πDD,i

O(0, 1, 0)
(1− φLL,0,i)× -

(1− φDL,0,i)× -
πLL,ifLL,i πDL,ifDL,i

O(0, 1, 1) φLL,0,iπLL,i - φDL,0,iπDL,i -

O(0, 0,−) - πLD,i - πDD,i

all treated or all untreated respectively. Therefore, X1,LD and X1,DL include

columns for intercept and propensity score only.

Using the stratified outcome distributions, the probability of each princi-

pal stratum, and the probability missing outcome the structure of the observed

data likelihood for any individual and for all possible combinations of Zi, Si,

and Mi is given in Table 4.1. Each cell value is the likelihood of the observed

data if the values of the individual strata are known for the above described

modeling approach 2 in which a model for the missing mechanism is intro-

duced into the framework. If instead we employ the first approach, in which

latent ignorability is assumed outright, we can drop all φg,z from the table.

The conditional probability of Gi = g given the observed data is the ratio of

each cell to the total of that row. Rows O(1, 0,−) and O(0, 0,−) are included

in this table for a comprehensive understanding of the possible combinations

of treatment and survival, but individuals who fall into these groups do not

have outcome data that will contribute to the observed data likelihood since

Si = 0. Therefore, individuals in this group will only contribute to the model
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for the probability of principal strata, which is reflected in the observed data

likelihood in Appendix C.1.

Prior distributions for the specified parameters in the observed data like-

lihood should be chosen carefully, with thought to distributions that may be

informative, proper, and conjugate where appropriate. For this analysis, con-

jugate multivariate normal and inverse-gamma distributions are assigned for

the prior distributions of the different forms of ηg and σ2
g respectively. The

prior distributions for αg and θg,z are non-informative and are proportional

to 1. Details of each prior distribution are provided in Appendix C.2.

The posterior distribution of the parameters, the product of the observed

data likelihood and the prior distributions, is used for inference on the param-

eters of interest. Though the principal stratum of each individual is unknown,

the observed treatment and survival groups may be used to inform imputation

of the principal strata assignments. This may be accomplished via the Data

Augmentation (DA) algorithm (Tanner & Wong 1987), in which information

about the latent groups (in this case Gi) is imputed and subsequently the pos-

terior parameters distributions are simulated to inference.

The DA algorithm is employed by using two iterative and alternating steps

to simulate a complete data likelihood and allow for posterior inference. The

first step, the Imputation or I-step, imputes the value of the principal strata

Gi for each individual. This is accomplished by using the parameter values

α
(k)
g , η

(k)
g , and σ

2(k)
g , and θ(k)

g,z (for approach 2 only) from the current approx-

imation of posterior (from the kth iteration) to generate G
(k+1)
i by using the

conditional probabilities that are given by taking the ratio of cell value to row

total in Table 4.1. This conditional probabilities, ρO,i are used in a Bernoulli

distribution that imputes individual membership to one of the two principal

strata that correspond with the observed group O (see Appendix C.3). More
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specifically, at the (k+1) iteration, each individual has a probability of being

in a stratum that depends on their observed values (Zi, Si, Mi, Yi, PSi).

The P-step, or Posterior step, is then employed by using the imputed com-

plete data set, and the parameters {θ(k),
(
π
(k)
g ,η

(k)
g , σ

2(k)
g

)
} can be updated

to {θ(k+1),
(
π
(k+1)
g ,η

(k+1)
g , σ

2(k+1)
g

)
} by sampling from the full conditional dis-

tributions of each parameter. Either the Gibbs Sampler or the Metropolis-

Hastings (MH) Algorithm may be employed for sampling, with choice of algo-

rithm influenced by the type of full conditional distribution. The full condi-

tional distributions of each parameter (given the imputed G at each iteration

k) are provided in Appendix C.4.

4.3 Application to Emory ALS Clinic Data

The ALS registry dataset includes data from 729 patients who visited the

Emory ALS clinic at least once from January 1, 1997 and July 31, 2011. Pa-

tients were excluded from the analysis for not having any follow up clinic

visits from baseline to outcome measurement or for having extreme survival

times (>5 years post-baseline). Characteristics measured at baseline for each

individual include sex, site of ALS onset, age at diagnosis, BMI at baseline,

and days from diagnosis to first clinic visit. Additionally, some individual

characteristics are measured at each clinic visit including forced vital capac-

ity (FVC), change in FVC from baseline, and total number of clinic visits.

Those characteristics that are measured as continuous variables (namely age

at diagnosis, BMI at baseline, FVC, and change in FVC from baseline) are

normalized before inclusion as covariates for the propensity score model, prin-

cipal strata model, or outcome model. The outcome of interest, is BMI at 18

months post baseline, with a measurement period of 2 months to either side



84

of this time point.

A comparison of those who receive treatment within one year of follow-up

and those who do not among the remaining 623 individuals in the ALS registry

is available in Table 4.2. Of the 267 treated patients, 23.6% or 63 individu-

als are alive 18 months from baseline, while of the 356 untreated individuals,

19.4% or 69 individuals are alive at this time-point (p = 0.240). Baseline mea-

surements of BMI and FVC are not significantly different among the treated

and untreated populations were not significant at a level of α = 0.05, however,

the change in BMI and the change in FVC measurements from baseline to to

(∆BMIto and ∆FV Cto respectively) are significantly different among treat-

ment groups with p-values of 0.04 less than 0.001 respectively. In both cases,

treated individuals have a greater mean loss in BMI and FVC measurement

than untreated individuals over the 18 month time span. NIF score is signif-

icantly higher for treated individuals than untreated individuals (p < 0.001).

Though age at diagnosis seems relatively similar for treated and untreated

individuals, there is a significantly higher proportion of females in the treated

population (p = 0.01) and a significantly lower proportion of spinal onset ALS

Table 4.2: Comparison of demographic and clinical characteristics amongst
PEG treated and untreated populations (N=623)

Treated (N=267) Untreated (N=356)
Mean or SD Mean or SD
Percent or n Percent or n p-value

Baseline BMI 25.07 5.62 25.62 6.12 0.286
∆BMIto -1.89 2.57 -1.30 3.54 0.039
Baseline FVC 69.67 26.38 70.61 26.20 0.672
∆FV Cto -28.66 26.17 -15.77 22.18 <0.001
NIF -28.26 18.67 -44.67 17.07 <0.001
Age at diagnosis 62.91 10.91 62.76 12.17 0.870
Female 50.9% 136 40.4% 144 0.012
Spinal site of onset 47.6% 127 80.9% 288 <0.001
∆TDX > 6 months 23.2% 62 20.5% 73 0.474
Survival past to 23.6% 63 19.4% 69 0.240
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Table 4.3: SACE of PEG treatment (with 95% credible intervals) on BMI
measured 18 months post-baseline (N=623)

PEG Treatment Effect Estimate
MCAR Method

(From Chapter 2) Approach 1 Approach 2

Time of Treatment
0.13 0.18 0.18

(-0.07, 0.34) (-0.10, 0.42) (-0.08, 0.46)

Binary Indicator
1.75 4.22 4.36

(-0.32, 3.87) (0.79, 7.37) (1.30, 7.86)

cases (p < 0.001). This decrease in the proportion of spinal onset patients

along with the lower mean FVC over time and greater proportion of females

indicates increased risk of advanced disease in the treated patient population.

4.3.1 Estimation of SACE of PEG Treatment

The Survivor Average Causal Effect (SACE) of PEG treatment is estimated

for several modeling scenarios. In addition to the two approaches described

in Section 4.2.4, a method that includes all individuals with an outcome mea-

surement prior to to is also considered. This method, described in detail as the

proposed contributions of Chapter 2, is the equivalent of assuming that the

missing observations are missing completely at random (MCAR) and with-

out any regard to the latent strata, which is a fairly strong assumption to

make. Also, methods without propensity score adjustment as well as with a

monotonicity assumption (removal of the DL stratum) are reviewed. For all

analyses, the MCMC algorithm was run for a total of 10,000 iterations, with

a burn-in period of 5000 iterations.

Table 4.3 presents a comparison of the different modeling approaches for

this analysis. Both modeling Approach 1, which assumes ignorability of the

missing mechanism, and Approach 2, in which a model for the missing mech-

anism is introduced, indicate there is a positive and significant effect of the
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Table 4.4: SACE of PEG treatment (with 95% credible intervals) on BMI 18
months post-baseline with and without propensity scores (N=623)

PEG Treatment Effect Estimate
No propensity scores Approach 2

Time of Treatment
0.30 0.18

(0.02, 0.56) (-0.08, 0.46)

Binary Indicator
2.53 4.36

(-0.85, 6.03) (1.30, 7.86)

binary indicator of PEG surgery on the outcome of BMI at 18 months post

baseline. Holding all else constant and assuming PEG insertion at or shortly

after baseline, the BMI at 18 months increases by about 4 units for those in-

dividuals who have treatment when compared to those who are not treated.

The effect of time to treatment is also positive, indicating there may be some

advantage to having PEG insertion at later time points, but this effect esti-

mate is not significant for either approach. The näıve analysis does not find a

significant effect of time to treatment or binary indicator of treatment on BMI

at 18 months.

If we do not control for selection bias or confounding by means of general-

ized propensity scores, we find that the results are slightly different. Table 4.4

includes the results of Approach 2 without propensity score adjustment and

compares them to those with quadratic propensity score terms included in the

model. While the direction of the effect estimates both models remain the

same, there are some interesting differences. The effect estimate of the binary

indicator of treatment is smaller in magnitude and no longer significant when

no propensity scores are included in the model. However, the effect estimate of

time to treatment actually increases and is significant when propensity scores

are not used.

Finally, though there are some slight changes in effect magnitude when

employing the monotonicity assumption (Table 4.3), the directions and sig-
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Table 4.5: SACE of PEG treatment (with 95% credible intervals) on BMI
measured 18 months post-baseline when a monotonicity assumption is em-
ployed (N=623)

PEG Treatment Effect Estimate
MCAR Method

(From Chapter 2) Approach 1 Approach 2

Time of Treatment
0.14 0.20 0.20

(-0.08, 0.35) (-0.05, 0.43) (-0.01, 0.42)

Binary Indicator
1.76 3.29 3.28

(-0.44, 3.87) (1.02, 5.62) (1.21, 5.74)

nificance of the effect estimates remain mostly the same. The most notable

difference is that in the method assuming MCAR, both the effect of PEG as a

binary indicator and time to treatment are now not significant. The results of

modeling approaches 1 and 2 are largely the same as without the monotonicity

assumption.

Though the results in this model with time from treatment and binary

indicator of treatment seem promising in providing a positive treatment effect

of PEG, a careful interpretation of the treatment effect estimates is necessary.

While there is a positive effect of the binary indicator, this increase in BMI

is for those individuals who have PEG insertion at baseline (TZ = 0). The

effect of time to treatment is additive to the binary treatment indicator at any

time, so the results indicate that the later individuals have surgery, the more

beneficial it may be. However, in practice there seems to be an ideal time,

prior to extensive disease progression, before which PEG insertion is benefi-

cial. After the disease reaches a certain point of morbidity, physicians note

that the treatment offers little to no (and even negative) benefit.
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4.4 Discussion

Making adjustments for missing outcome data within the context of causal

inference frameworks require strong assumptions about the ignorability of the

missing mechanism and creativity in the modeling framework. In this analy-

sis, the similar results of approaches 1 and 2 indicate that latent ignorability

is likely a suitable assumption for this data, though we cannot fully test this

assumption. When in doubt, the further stratification by missingness of out-

come data and within the principal stratification framework assures flexibility

in the assumptions imposed on the missing mechanism.

Additionally, the use of propensity scores within the principal stratification

framework, whether simple or complex, allows for the estimation of an unbi-

ased principal effect of treatment for observational data. This may also be true

for randomized data in which the assumption of no unmeasured confounding is

suspect. However, the reliability removing bias via propensity scores relies on

the assumption of strongly ignorable treatment assignment must hold, which

means there must be no unmeasured confounders. One important confounder

that was not available for this analysis is the Revised ALS Functional Rating

Scale (ALSFRS-R) score, which is a validated instrument for measuring the

progression of ALS. This confounder could be especially helpful in achieveing

ignorability when conditioning on propensity scores. Future applications of

the proposed methods to other data with richer measurements of confounders

should further demonstrate the reduction of selection bias and confounding.

Overall, the results presented from the application to the ALS data are

not sensitive to the assumption of monotonicity. In the data application, this

may be due to the small proportion of individuals in DL strata when all four

strata are considered. When monotonicity is not assumed, most patients are

in the LL and DD strata, with a LD and DL strata comprising less than
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20% of the individuals in total. It is conceivable then that reallocating such a

small proportion of individuals when removing the DL stratum would likely

not substantially change the effect estimates of the other strata.

Propensity scores are included as linear predictors of the outcome and prin-

cipal strata models, which can be quite restrictive when controlling for selection

bias and confounding. Adding higher order terms does add some flexibility the

parametric model, but other non-polynomial basis functions may be consid-

ered in the future for more effective control for bias. Other options that would

remove the parametric restrictions of model adjustment include matching by

propensity scores or inverse probability weighting.

Future consideration may also be given to jointly modeling the propen-

sity score with the outcome model, missing data model, and principal strata

model in the Bayesian framework. This would allow the quantities observed

by in each of these three models to affect the posterior of propensity score

in each MCMC iteration. While this could provide a more robust propensity

score adjustment, Zigler et al. (2013) show that the feedback between model

stages in joint modeling can cause biased causal effect estimates if individual

covariates are not also adjusted for in the outcome model. This bias should be

accounted for if joint modeling of the four models of outcome, missing mech-

anism, propensity scores, and principal strata is proposed.
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The rich complications of data of the ALS registry could inspire a multi-

tude of analytical projects. One logical extension of the methods described

in Chapters 2 and 4 would include considering time-dependent covariates and

outcome in the analysis. This would require careful consideration of a time-

varying propensity score, perhaps using similar time-varying coefficient Cox

Proportional Hazards modeling as in Chapter 3, to control for selection bias

over the course of the follow-up period. Also, rather than including propensity

score as a model covarariate, methods using propensity score matching would

be explored. Matching, however, would require careful thought to the model

and the implications of selected controls.

Consideration could be also be given to novel matching algorithms or ad-

ditional methods utilizing propensity score matched pairs may be considered

as extensions of Chapter 3. Matching algorithms that increase effiency and

decrease time could be beneficial to the scientific community. Also, other

methods of profile matching of individuals over time could be allow a com-

parison of individuals that takes into account progression of disease. Random

effect models, with strata defined by matched pairs, could be introduced for

post matching analysis of treatment effect.
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A.1 Observed Data Likelihood

P (Y |S,Z,G,D, PS) ∝
∏
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2. For O(0, 1):
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A.4 Full Conditional Distributions of Parameters of In-
terest in the P-step of the Data Augmentation Al-
gorithm

A.4.1 Full Conditional Distributions of αg
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A.5 Summary of Patient Characteristics at Several Time-
points
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Table A.1: Comparison of PEG among treated and untreated populations
times post-baseline

3 Months 6 Months
Treated Untreated Treated Untreated
(N=80) (N=404) p-value (N=130) (N=408) p-value

BMI 23.2 (6.7) 26 (5.7) < 0.01 23.6 (5.8) 25.8 (5.6) < 0.01
Baseline (BL) BMI 23.4 (6.9) 26 (5.8) < 0.01 24.2 (6.2) 25.9 (5.7) 0.01
∆BMIto -0.3 (0.8) -0.1 (0.6) 0.02 -0.7 (1.1) -0.1 (2.3) < 0.01
FVC 50.8 (23.4) 73.4 (24) < 0.01 51 (22.4) 71.1 (24.7) < 0.01
Baseline (BL) FVC 53.3 (22.7) 76.7 (24.8) < 0.01 59.2 (25.6) 76.4 (25.1) < 0.01
∆FV Cto -3.5 (7.8) -3.5 (10.9) 0.94 -9.6 (15.1) -5.6 (14.1) 0.01
Age at Diagnosis 67 (12) 61.9 (11.1) < 0.01 66.4 (10.4) 61.8 (11.3) < 0.01
∆TDX > 30 days 0.09 (7) 0.11 (44) 0.71 0.13 (17) 0.15 (62) 0.65
Prop. surviving at t* 0.75 (60) 0.90 (364) < 0.01 0.61 (80) 0.77 (318) < 0.01
Prop. of Females 0.63 (50) 0.41 (164) < 0.01 0.55 (72) 0.41 (168) 0.01
Prop. of Spinal Onset 0.35 (28) 0.72 (292) < 0.01 0.36 (48) 0.75 (307) < 0.01

1 Year 18 Months
Treated Untreated Treated Untreated
(N=200) (N=380) p-value (N=242) (N=361) p-value

BMI 23.9 (5.5) 24.9 (5.6) 0.05 23.7 (5.2) 24.5 (5.9) 0.11
Baseline (BL) BMI 24.9 (5.9) 25.6 (5.7) 0.19 25 (5.7) 25.6 (5.9) 0.24
∆BMIto -1.1 (2.1) -0.7 (2.9) 0.04 -1.6 (2.3) -1 (3.4) 0.02
FVC 46.8 (21.4) 63.5 (25.1) < 0.01 44.3 (20.3) 58.5 (25.3) < 0.01
Baseline (BL) FVC 65.2 (25.6) 74 (25.8) < 0.01 68.5 (26.4) 72.1 (26.3) 0.11
∆FV Cto -18.9 (22.1) -10.4 (17) < 0.01 -24.9 (24) -13.2 (21.4) < 0.01
Age at Diagnosis 64.9 (10.2) 61.9 (12.2) < 0.01 63.6 (10.7) 62.5 (12.1) 0.24
∆TDX > 30 days 0.20 (41) 0.18 (71) 0.68 0.22 (54) 0.19 (69) 0.39
Prop. surviving at t* 0.41 (83) 0.54 (206) < 0.01 0.33 (80) 0.33 (122) 0.92
Prop. of Females 0.51 (103) 0.41 (156) 0.02 0.50 (122) 0.40 (148) 0.03
Prop. of Spinal Onset 0.43 (86) 0.80 (304) < 0.01 0.45 (111) 0.80 (292) < 0.01

2 Years 3 Years
Treated Untreated Treated Untreated
(N=266) (N=359) p-value (N=290) (N=364) p-value

BMI 23.5 (5.2) 24 (6) 0.36 23.4 (5.1) 23.9 (5.9) 0.34
Baseline (BL) BMI 25.1 (5.6) 25.7 (6.1) 0.24 25.3 (5.6) 25.6 (6.1) 0.45
∆BMIto -1.8 (2.5) -1.3 (3.8) 0.11 -2.1 (2.7) -1.3 (3.7) 0.01
FVC 41.8 (19.5) 56 (23.9) < 0.01 39.7 (20.5) 53.6 (23.7) < 0.01
Baseline (BL) FVC 69.7 (26.3) 71.2 (26.2) 0.47 70.9 (26.2) 70 (26.5) 0.65
∆FV Cto -28.1 (25.9) -14.9 (20.8) ¡0.01 -31.3 (27.6) -16 (21.9) < 0.01
Age at Diagnosis 63 (10.9) 62.6 (12.3) 0.61 62 (11.2) 62.9 (12.2) 0.32
∆TDX > 30 days 0.22 (60) 0.20 (73) 0.57 0.24 (72) 0.18 (69) 0.09
Prop. surviving at t* 0.22 (61) 0.19 (71) 0.39 0.10 (30) 0.06 (22) 0.06
Prop. of females 0.51 (137) 0.40 (145) 0.01 0.49 (144) 0.40 (147) 0.02
Prop. of spinal onset 0.47 (126) 0.81 (292) < 0.01 0.50 (146) 0.80 (293) < 0.01
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B.1 Proof of Propositions 1 and 2

We prove Propositions 1 and 2 based on the treatment assignment model
(3.1) and it is straightforward to extend this proof to other types of models.
From equation (3.1) and the definition of the Propensity Process θ(·), we have

hTZ (t|X1,X2(t)) = h0(t)exp
{
βT1 X1 + βT2 X2(t)

}
= h0(t)exp {θ(t)} .

From equation (3.2), we have

fTZ (t|X1,X2(t), θ(t)) = fTZ (t|X1,X2(t))

= hTZ (t|X1,X2(t))exp{−
∫ t

0

hTZ (t|X1,X2(t))dt}

= h0(t)exp {θ(t)} exp
{
−
∫ t

0

h0(t)exp{θ(t)}dt
}

= fTZ (t|θ(t)), for t ∈ [0, to), (B.1)

where the first equality is due to the fact that θ(t) is redundant given X1 and
X2(t). The result in Proposition 1 follows immediately, i.e., conditional on θ,
the distribution of TZ is independent of X1 and X2.

In addition, it follows from (B.1) that fTZ (t|X1,X2(t), θ(t)) = fTZ (t|θ(t))
for t < t∗ and

P (TZ > t∗|X1,X2(t
∗), θ(t∗)) = 1− P (TZ ≤ t∗|X1,X2(t

∗), θ(t∗))

= 1− P (TZ ≤ t∗|θ(t∗))
= P (TZ > t∗|θ(t∗)),

where the second equality is due to (B.1). The result in Proposition 2 follows
immediately, i.e., conditional on θ(t∗), the distribution of TZ(t∗) is indepen-
dent of X1 and X2(t

∗).
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C.1 Observed Data Likelihood for Modelling Approach
2

P (Y |S,M,G,Z,D, PS) ∝
∏

i∈O(1,1,0)


1

1+e
X3,iθLL,1

eX2,iαLLσ−1LLe
(Yi−X1,LL,iηLL)

2

2σ2
LL

1 + eX2,,iαLL + eX2,iαDL + eX2,iαDD
+

1

1+e
X3,iθLD,1

σ−1LDe
(Yi−X1,LD,iηLD)

2

2σ2
LD

1 + eX2,iαLL + eX2,iαDL + eX2,iαDD


×

∏
i∈O(0,1,0)


1

1+e
X3,iθLL,0

eX2,iαLLσ−1LLe
(Yi−X1,LL,iηLL)

2

2σ2
LL

1 + eX2,iαLL + eX2,iαDL + eX2,iαDD
+

1

1+e
X3,iθDL,0

eX2,iαDLσ−1DLe
(Yi−X1,DL,iηDL)

2

2σ2
DL

1 + eX2,iαLL + eX2,iαDL + eX2,iαDD


×

∏
i∈O(1,1,1)


e
X3,iθLD,1

1+e
X3,iθLD,1

+ e
X3,iθLL,1

1+e
X3,iθLL,1

eX2,iαLL

1 + eX2,iαLL + eX2,iαDL + eX2,iαDD


×

∏
i∈O(0,1,1)


e
X3θLL,0

1+e
X3,iθLL,0

eX2,iαLL + e
X3,iθDL,0

1+e
X3,iθDL,0

eX2,iαDL

1 + eX2,iαLL + eX2,iαDL + eX2,iαDD


×

∏
i∈O(1,0,−)

{
eX2i,iαDL + eX2,iαDD

1 + eX2,iαLL + eX2,iαDL + eX2,iαDD

}

×
∏

i∈O(0,0,−)

{
1 + eX2,iαDD

1 + eX2,iαLL + eX2,iαDL + eX2,iαDD

}
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C.2 Prior Distributions of Parameters

1. p (αg) ∝ 1

2. p (θg,z) ∝ 1

3. ηg ∼ Normalp
(
µg, σ

2
gVg
)

p (ηg) ∝ |σ2
gVg|−

1
2 e
− 1

2σ2g
(ηg−µg)TV −1

g (ηg−µg)

4. σ2
g ∼ InverseGamma (νg, ωg)

p
(
σ2
g

)
∝ σ

2(−νLL−1)
g exp

(
−ωLL
σ2
LL

)



106

C.3 Imputation Probabilities for I-Step

1. For O(1, 1, 0):

P
(
G

(k+1)
i = LL

)
= ρ

(k+1)
110,i =

(1− φ(k)LL,1,i)π
(k)
LL,if

(k)
LL,i

(1− φ(k)LL,1,i)π
(k)
LL,if

(k)
LL,i + (1− φ(k)LD,1,i)π

(k)
LD,if

(k)
LD,i

P
(
G

(k+1)
i = LD

)
= 1− ρ(k+1)

110,i

2. For O(0, 1, 0):

P
(
G

(k+1)
i = LL

)
= ρ

(k+1)
010,i =

(1− φ(k)LL,0,i)π
(k)
LL,if

(k)
LL,i

(1− φ(k)LL,0,i)π
(k)
LL,if

(k)
LL,i + (1− φ(k)DL,0,i)π

(k)
DL,if

(k)
DL,i

P
(
G

(k+1)
i = DL

)
= 1− ρ(k+1)

010,i

3. For O(1, 1, 1):

P
(
G

(k+1)
i = LL

)
= ρ

(k+1)
111,i =
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(k)
LL,1,iπ

(k)
LL,i

φ
(k)
LL,1,iπ

(k)
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(k)
LD,1,iπ

(k)
LD,i

P
(
G

(k+1)
i = DL

)
= 1− ρ(k+1)

111,i

4. For O(0, 1, 1):

P
(
G

(k+1)
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)
= ρ
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011,i =
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(
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i = DL
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= 1− ρ(k+1)

011,i

5. For O(1, 0,−):

P
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π
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C.4 Full Conditional Distributions of Parameters of In-
terest in the P-step of the Data Augmentation Al-
gorithm

C.4.1 Full Conditional Distributions of αg

P
(
αLL|X2, G

(k+1), α
(k)
DL, α

(k)
DD

)
∝

∏
G

(k+1)
i =LL
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DD
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DD
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αDL|X2, G

(k+1), α
(k+1)
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DD
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×
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G
(k+1)
i =LD

1

1 + eX2,iα
(k+1)
LL + eX2,iαDL + eX2,iα

(k)
DD

×
∏

G
(k+1)
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P
(
αDD|X2, G

(k+1), α
(k+1)
LL , α

(k+1)
DL
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(k+1)
i =LL
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1
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C.4.2 Full Conditional Distributions of θg,z

P
(
θg,z|X3, S, Z,M,G(k+1)

)
∝
∏

i∈G(k+1)
i =g,Zi=z

1(Mi=0)+1(Mi=1)e
X3,iθg,z

1+eX3,iθg,z
,

where (G,Z) ∈ {(LL, 1), (LL, 0), (LD, 1), (DL, 0)}

C.4.3 Full Conditional Distributions of ηg

ηLL|Y,X1,LL, S, Z,M,G(k+1), σ
2(k)
LL ∼ Np
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µ∗LL, σ

2(k)
LL
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XT
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C.4.4 Full Conditional Distributions of σ2
g
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