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Abstract

Statistical Methods for Correlated Count Data

By

Caprichia Jeffers

Current biomedical research has generated large datasets with complexities re-
quiring new or improved methods of analysis. In this dissertation, I propose various
statistical methods for analyzing correlated count datasets motivated by different
scientific questions.

Meta-analysis of functional neuroimaging data has become increasingly important.
Much attention has been paid to detect consistent activation regions or locations
across independently performed studies, while very limited works have focused on co-
activation pattern identifications. We propose a Bayesian Poisson-Gamma graphical
model for which we introduce a sparsity indicator for the co-activation strength.
We develop efficient posterior inference for estimating the co-activation patterns and
the associated brain network. We illustrate our methods via simulation studies and
a meta-analysis of functional neuroimaging data for emotion state studies. As a
results, we are able to create a statistical framework that allows us to make inference
about functional co-activation in the brain for coordinate-based meta-analysis data
and reproduce general findings in literature.

Influenza, one of the most common transmissible infectious diseases of the respi-
ratory tract, affects populations worldwide. Influenza-associated excess mortality is
commonly estimated from time-series of death counts. Presence of temporal autocor-
relation in death counts is a well-recognized analytic challenge. We used United States
weekly vital records, viral surveillance of 4 influenza subtypes, and population data
from 1981 to 2014 to evaluate two methods for addressing temporal autocorrelation.
We examined (1) a parametric bootstrap method for generalized linear models that
incorporates autocorrelation in the residuals and (2) a Bayesian hierarchical model
that incorporates autocorrelation within the mean. Age-specific seasonal influenza-
associated excess deaths were estimated from respiratory-coded deaths.

The aforementioned methods, provided unexpected results. The Bayesian method
consistently estimated lower influenza-associated mortality compared to the bootstrap
method, and often smaller standard error. The smaller estimates may be attributed
to better control of temporal residual confounding of viral proxy association. To
explore the presence and effect of temporal residual confounding in the model, we
examine a methods for adjusting for long-term and seasonal trends using flexible
splines. Via simulation study, we evaluate the timescale of the confounding between
the outcome and predictors time-series as well as the relationship strength between
influenza proxies and trend. As a results, we note how seasonal trend is accounted
for and a tightly correlated timescale of confounding have the greatest impact on
influenza-related mortality estimation.
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Chapter 1

Introduction
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1.1 Overview

As new technology expands our ability to collect information, new challenges

in data analysis need to be solved. While most basic statistical analysis assumes

independence, this research addresses two interesting scientific count data problems

when that assumption does not hold. In this dissertation, we propose novel Bayesian

methods and analysis techniques for complex count data from various biomedical

applications.

1.2 Introduction to Influenza

Influenza is a highly contagious viral infection affecting populations worldwide.

Each year, influenza, one of the most common transmissible infectious diseases of the

respiratory tract, is estimated to be responsible for 36,000 deaths, 225,000 hospital-

ization and $87 billion in health care costs in the United States, according to the

Centers for Disease Control and Prevention (CDC) (Thompson et al., 2004, 2003).

Moreover, the World Health Organization (WHO) reports global impact of influenza

is even more disconcerting, with an estimated 3 to 5 million severe cases (World

Health Organization, 2004). While, 291,243 to 645,832 seasonal influenza-associated

respiratory deaths are estimated annually (Iuliano et al., 2017). A significant por-

tion of these deaths occur among the elderly and those chronically ill, specifically

with chronic cardiopulmonary disease. Among children less than five years of age,

influenza is responsible for 28,000 to 111,000 deaths (Nair et al., 2011). To alleviate

some of the disease burden globally, influenza vaccination has been promoted and

expanded in many countries. Countries are working toward a significant reduction

in morbidity and mortality caused by the influenza illness. Seasonal epidemics affect

20 to 30% of children and 5 to 10% of adults (Kuster et al., 2011). World Health

Organization (2012) recommends influenza vaccination for high risk groups such as
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pregnant women, children ages 6 to 59 months, elderly individuals, select chronically-

ill individuals and health care professionals. Chronically-ill individuals include those

with chronic heart or lung disease, asthma and HIV/AIDS. The elderly are the most

likely to be hospitalized or die from influenza illness. The elderly may account for

up to 90% of influenza-related deaths per season. Children under two years of age

have an estimated 1 to 2 millions cases of influenza-related severe acute respiratory

infections and 28,000 to 111,500 deaths annually (Nair et al., 2011).

The measure of disease burden is based on a proxy for influenza incidence because

it is impossible to test the entire population for infection. We define the incidence

proxy as the proportion of positive specimens for the influenza isolate of interest of

patients seeking treatment for influenza-like-illness. While the number of individuals

experiencing influenza-like-illness represents the sick population who get specimens

tested, the positive result of a specimen test indicates influenza-like-illness that are

indeed influenza-related.

Accurate estimation of influenza mortality requires complex mathematical mod-

els, since it is impossible to derive such estimates from hospital or death records.

Influenza-related mortality estimates themselves are based on an extroplation of es-

timates whose error is not well understood. The errors (bias and lack of precision) of

these estimates have not been investigated fully yet. The methods to be developed in

this project will help investigators understand the properties of estimates of mortal-

ity due to influenza. Such estimates are crucial for policy-makers to make informed

decisions about resource allocation when challenged with public health demands and

expand our understanding of the impact of influenza, and aid in better measuring the

effectiveness of various influenza interventions. Our proposal is motivated by the gaps

in our understanding of estimates of influenza mortality, and by our desire to have a

broader impact on vaccination strategy implementation and measures of effectiveness

through measurement of influenza mortality (Thompson et al., 2009). In addition,
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the methods developed in this project can be applied globally to obtain more precise

estimates of the number of cases and deaths prevented by vaccination or resulting

patterns of influenza immunity due to changes in vaccination strategies and other

interventions. Finally, the estimates of the standard errors surrounding the influenza

mortality can be used to determine the sample sizes for future studies.

1.2.1 Motivating Influenza Mortality Dataset

We obtained weekly data on percentages of specimens testing positive for influenza

types and subtypes from the Center of Disease Control (CDC), through an active

collaboration with committee member Dr. Danielle Iuliano. Respiratory deaths from

causes that may be attributed to influenza, positive influenza specimen testing (by

influenza type and subtype) data, and population data for each week during influenza

season for the United States between 1981 and 2014 are included in the dataset.

The proportion of each influenza proxy subtype given the specimen was found to

be positive from 1981 to 2014 ranges from 0-50% for Influenza A(H1N1), 0-33% for

Influenza A(H3N2), 0-45% for Influenza A(H1N1) pandemic strain, and 0-100% for

Influenza B.

1.3 An Introduction to the Human Brain

The human brain is a complex organ with the ability to coordinate all body ac-

tivities, form perceptions and produce emotions. Billions of nerve cells, known as

neurons, are contained in the 3 pound organ. The neuron is a specialized, impulse-

conducting cell that is the functional unit of the nervous system (Neuron, 2016).

Neurons interact by sending and receiving signals to up to tens of thousands of sur-

rounding neurons. By passing signals via the integration and analysis of information,

the neurons allow remote areas of the brain to communicate. At every moment, the
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strength and the frequency of the signal changes based on stimulus. Characteristics

of the changes indicate brain function.

The blood serves as the indicator of increased neuronal activity; with a correspond-

ing increase in the metabolic demand for glucose. As a result, there is an increase in

cerebral blood flow (CBF) to the active region. Therefore, blood flow in the brain is

an indirect, slow measure of neural activity. The electricity in the brain can also serve

as an indicator of neuronal activity, as the neurons in the brain communicate with

each other by sending electrical impulses. Thus, electricity in the brain is a direct

measure for neuronal activity.

1.3.1 Functional Neuroimaging

Studies with the focus on functional connectivity determine the association of

brain activity between regions by observing the changes in the blood flow and oxy-

genation levels in the brain or changes in signal over time (Sporns, 2013; Honey et al.,

2009). These changes are indicative of functional networks, defined as dynamic pat-

terns of interaction (Sporns, 2013; Honey et al., 2009). There are two main types of

data that measure the blood flow in the brain; functional magnetic resonance imaging

(fMRI) and positron emission tomography (PET). Observing the blood flow changes

in the brain offers the benefit of high spatial resolution, but a limited temporal res-

olution due to a slower rate of brain hemodynamics. Neuronal activity can change

within tens or hundreds of milliseconds (Sporns, 2013). The fMRI and PET scans

have a lower temporal resolution due to a slow sampling rate (Sporns, 2013). The

undirected statistical dependencies of brain regions are inferred by regional activ-

ity correlation (Park and Friston, 2013). Commonly used correlation measurements

are cross-correlation, mutual information, spectral coherence or Pearson correlation

(Sporns, 2013; Honey et al., 2009). The statistical dependencies, indicating functional

connectivity, do not necessarily imply that the regions are physically connected (Park
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and Friston, 2013). Determining functional connectivity by inferring the brain net-

work from blood flow and oxygenation data is the focus of the approach introduced

in Chapter 2.

Functionally activated points in the brain show on the voxel-level which parts

of the brain are engaged in completing a particular function or react to a particular

stimuli. Once a parcellation scheme is mapped onto the brain containing the activated

voxels; activated regions are indicated. It is of interest to estimate the statistical

dependencies between activated regions. The proposed method uses information from

the activated regions in the brain (functional activation) to infer the brain functional

network (functional connectivity).

1.3.2 Meta Analysis of Functional Neuroimaging

Investigators are increasingly interested in the functionality of the brain. A single

functional neuroimaging study is expensive to conduct forcing researchers to limit

their sample size. Due to a limited sample size, the findings likely contain false

positives. To find true functionally activated brain regions it is beneficial to evalu-

ate multiple studies at a time. In most cases, the meta-analysis data collected are

the reported activation points of a study. As a result, functional co-activation, the

consistent activation of at the regional or voxel level, is determined during such a

study.

1.3.3 Motivating Neuroimaging Dataset

To study the functional co-activation of the brain, we consider a total of 331

functional neuroimaging studies published from 1993 to 2011. Collectively, the data

contains information on positive and negative emotions. Resulting in 752 emotional

comparisons (positive = 239, negative = 513). The inclusion criteria for the studies in

our meta-analysis are as follows: 1. All the subjects included in the study are healthy
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adults; 2. All the studies measure regional cerebral blood flow (PET) or blood oxy-

genation (fMRI); 3. Standard Talairach or Montreal Neurological Institute (MNI)

coordinates are provided to ensure the results are spatially normalized standard coor-

dinate systems, thus allowing for comparison of findings across independent studies.

In order to make the studies comparable to one another, the data is converted into

MNI space. The significant activation locations for each substudy in each study are

included. There are a total of 2,345 significant activation coordinates.

1.4 Count Data Analysis

In many cases, the normal distribution can be used to approximate count data,

commonly when counts are above zero and the mean is greater than twenty. However

when those conditions are not met, modeling count data using a normal distribution

can cause inaccurate mean and variance estimation, as well as expected values and

confidence intervals less than zero. The distribution of count data assumes a relation-

ship between the mean and variance, and the distribution is truncated on the left at

zero. The normal distribution assumes no relationship between the mean and vari-

ance. To avoid illogical values below zero, one must choose to use a proper discrete

non-negative distribution.

Count response models are a subset of discrete response models used to address

non-negative integer responses. Count data models are predominantly based on two

distributions: Poisson and negative binomial. The simpler distribution, the Poisson

distribution, has a probability mass function of

f(y;λ) =
eλλy

y!
, y = 0, 1, 2, . . . ;λ > 0, (1.1)

where y, the count response, is the random variable and λ, the rate or intensity

parameter, is the distribution parameter representing the mean and the variance. An
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equivalent mean and variance is a distinct feature of the Poisson distribution. This

property is known as equidispersion. Equidispersion seldom occurs in real data, thus

spurring the creation of other count models that do not have this feature. Usually

when this property is violated, the variance is greater than the mean, resulting in

overdispersion.

To model overdispersed Poisson data, one may employ the negative binomial

model. The negative binomial distribution has an additional parameter, known as

the heterogeneity parameter. The negative binomial distribution, has a probability

mass function of

f(y; r, p) =
Γ(y + r)

Γ(r)Γ(y + 1)
pr(1− p)y, y = 0, 1, 2, . . . ; 0 < p < 1, (1.2)

where y, the count response, is the random variable and p is a positive number. The

mean, µ is r(1−p)
p

and the variance is µ2

r
+ µ. The distribution counts the number of

failures before the rth success. The advantage of this parameterization of the negative

binomial is the range of the outcome, number of failures, is restricted to non-negative

integers.

1.5 Correlated Response Data

Correlation is the measure of dependence between two random variables that takes

a value between -1 and 1. A correlation of the value zero indicates the two random

variables are linearly unrelated, while a correlation value of one indicates that one

random variable exactly predicts the other.

Correlated (dependent) data is indicated by a predictive relationship between co-

variates. Two covariates are considered correlated when one covariate can predict the

value of the other covariate. Observations are often correlated by subject, time, or

location. While correlated data is common in public health research, most statisti-
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cal analysis make the basic assumption that each observation is independent. The

improper analysis of correlated data is a common error. The dependence among

observations must be accounted for when conducting statistical analysis. Ignoring

correlation leads to erroneous statistical inference (i.e. statistical tests, confidence

intervals, p-values).

Statistical analysis of correlated data requires methods that properly account for

the correlation in the response variable. In the following chapters, correlated data is

accounted for in the use of multivariate distribution and autocorrelation modeling.

Multivariate distributions are a way to parametrically account for correlation in the

data. It is a multi-dimensional joint distribution that includes correlation. Auto-

correlation, often referred to as serial correlation, uses time-series methodology to

account for correlation over time. This method is a relationship in which closer time

points have a stronger correlation than time points further apart.

1.6 Bayesian Methods

Bayesian inference assumes parameters, p, that govern the data generating process

are considered unknown and have their own distribution. Researchers begin by spec-

ifying a probability model for stochastic parameter values, that may include useful

prior information about the parameter. Bayesian Statistics are based on Bayes The-

orem, i.e. P (A|B) = P (B|A)P (A)
P (B)

. More specifically, it is h(p|data) ∝ f(data|p)g(p),

where h(p|data) is the posterior distribution of p, f(data|p) is the likelihood of p, and

g(p) is the prior distribution of p.

Bayesians induce the posterior distribution of the parameter, p, from h(p|data),

starting with a prior, prior distribution of the parameter before seeing the data, g(p).

The result is a description of the posterior distribution (for example, means, quan-

tiles). The posterior is proportional to the numerator of Bayes Theorem. h(p|data) ∝
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f(data|p)g(p). The region of the highest posterior probability is indicated by the high-

est posterior density intervals. The interpretation of results differ from the frequentist

approach. Based on the analysis of the Bayesian approach, a Bayesian can interpret

their 95% confidence interval as a 95% probability that the true parameter (for ex-

ample, population mean) is in the said interval. Basically, the interval describes the

variability in the parameter for fixed data.

1.6.1 Impact of Bayesian Method on Biomedical Research

The Bayesian approach’s flexibility and interpretability has made it a prominent in

research. The approach can incorporate prior knowledge by informing prior distribu-

tions in the model. It is important to note that the selection of the prior distribution

of the parameter of interest may determine the type of results concluded. The fact

that two researchers both using the Bayesian approach can reach two different results

is a reason for criticism from frequentist statisticians. Bayesian statisticians may find

it difficult to quantify their prior beliefs into a probability distribution, or even come

to a consensus about the prior distribution among researchers in the field. It is im-

portant to select an accurate prior or when no information is known, a noninfomative

prior.

1.6.2 Bayesian Tools

While the theory and the interpretation of the Bayesian approach may be pre-

ferred, the computation required for a Bayesian analysis may be difficult. Finding

the posterior distribution using Bayes Theorem may be more complex than we can

do in closed form; however, computational tools can be used. Often computationally

intensive algorithms are utilized - most commonly, Markov Chain Monte Carlo Gibbs

or Metropolis-Hastings algorithms.
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1.7 Contributions

In Chapter 2, the objective is to develop a Bayesian method to determine func-

tional activation pattern over multiple studies, and provide a convenient framework

to conduct statistical inference about the brain network. Our proposed model extends

existing methods’ ability when determining the brain network from coordinate-based

meta-analysis of neuroimaging data. Our proposed model in Chapter 3, employs a

hierarchical Bayesian framework and a parametric bootstrap method to control for

autocorrelation in estimating influenza-associated mortality. The proposed method

extents existing methods by addressing temporal autocorrelation. Finally, Chapter 4

extends the research in Chapter 3 by employing natural cubic splines to account for

long-term and seasonal trends in the data.
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Chapter 2

Bayesian analysis of multivariate

sparse count data with application

to meta-analysis of functional

neuroimaging data
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This chapter is joint work with Dr. Jian Kang.

2.1 Introduction

2.1.1 Neuroimaging

The science of the brain provides insight into how one of the body’s most complex

organs operates. The brain enables action and cognition among a limitless number

of other functions, despite having a fixed anatomy (Park and Friston, 2013). These

networks of neurons interact, allowing non-invasive imaging techniques to map the

brain and providing the ability to infer some diagnosis status and treatment responses

related to the brain. Neuroimaging visually summarizes the activity arising from a

population of neurons in the brain. Analysis of the brain is made possible through

neuroimaging and tools from graph theory and dynamic systems (Honey et al., 2009;

Sporns, 2013). Neuroimaging studies mainly study two types of connectivity: struc-

tural and functional. Structural connectivity in the brain is the physical connection

between brain regions (Honey et al., 2009), also referred to as anatomical links (Park

and Friston, 2013) or the human connectome (Sporns, 2013).

Functional Connectivity

Studies of functional connectivity explores the association of brain activity be-

tween regions by observing the differences in the blood flow and oxygenation levels

between regions of the brain or the changes within regions over time (Sporns, 2013;

Honey et al., 2009). These changes are indicative of functional networks, defined by

dynamic patterns of interaction (Sporns, 2013; Honey et al., 2009). The collection of

functional data usually comes from one of two techniques: the study of the electrical

and magnetic activity in the brain, or the study of the blood flow and oxygenation

changes that take place when neurons are active (Park and Friston, 2013; Sporns,
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2013). Inferring functional connectivity is the focus of the approach introduced here.

Functional Co-activation

Neuroscience has established functional activation as a fundamental indicator of

brain organization in humans. It shows us on the voxel-level which parts of the

brain are engaged in completing a particular function. Once a parcellation scheme

is mapped onto the brain containing the activated voxels, activated regions are in-

dicated. It is of interest to estimate the statistical dependencies between activated

regions. The proposed method uses information from the activated regions in the

brain (functional activation) to infer brain functional co-activation. Torta and Cauda

(2011) defines co-activation as when a group of regions is reported together across

studies as evidence of their functional connection. Functional co-activation is sig-

nificant because the resulting networks can provide information on the functional

relationships within the human brain (Torta and Cauda, 2011).

2.1.2 Preprocessing Pipeline

Before functional neuroimaging data can be analyzed, it must be preprocessed.

The described preprocessing pipeline ensures that the functional neuroimaging data

does not contribute any unnecessary noise and is prepared for analysis. Because a

complete scan of the brain cannot be completed at once, different parts of the brain

are scanned at different times (Bowman et al., 2007). Slice timing correction allows

images of the brain from different time points that complete one scan, to correspond

to a single time point. This allows us to view the brain image as if a complete

scan could be completed in a single moment (Lindquist et al., 2008). Next, spatial

alignment (also known as motion correction) ensures that collected time-series images

can be mapped to a single image if the subject moves in the scanner. In order to make

comparisons across subjects, one spatially normalizes the data during preprocessing.
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By spatially normalizing (also known as co-registering) the data, each subject’s brain

scan is scaled to a standard template brain. Finally, spatial smoothing is completed

to provide better continuity between anatomical difference and to meet assumptions

essential to random field theory (Lindquist et al., 2008). The preprocessing pipeline

is required to correctly analyze functional neuroimaging data.

2.1.3 fMRI from single-subject studies

Understanding the interactions in neural activity between brain regions is an ex-

panding research area of interest. It is essential to elucidating brain function. Neu-

roimaging, a visual summary of neural activity, paired with tools from graph theory

and dynamic systems allows analysis of the brain and enables inference of it’s con-

nectivity (Sporns, 2013; Honey et al., 2009). The typical functional neuroimaging

modalities include functional magnetic resonance imaging (fMRI) and positron emis-

sion tomography (PET).

Functional brain images are acquired over a period of time while the subject

experiences a stimuli. During the experience, the changes in signal measurements

between images are used to make inference about stimuli-related activation. Infor-

mation about the stimuli’s effect can be used to localize regions in the brain based

on the type of stimuli, determine existing networks that explain brain function, and

also predict psychological or diseased states.

A typical fMRI experiment acquires between 100 to 2,000 images and each image

has about 100,000 voxels (Lindquist et al., 2008). The experiment may be repeated

many times on each subject. It is not possible to get a full spatiotemporal model.

As a result, some analysis shortcuts can be made. It is up to the researcher to select

which shortcuts are deemed appropriate and necessary based on how they affect the

power and validity of the results (Lindquist et al., 2008).

Understanding the interactions in neural activity between brain regions is an ex-
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panding research area of interest. It is intrinsic in elucidating brain function. Neu-

roimaging, a visual summary of neural activity, paired with tools from graph theory

and dynamic systems allows analysis of the brain and enables inference of it’s con-

nectivity (Sporns, 2013; Honey et al., 2009). The typical functional neuroimaging

modalities include functional magnetic resonance imaging (fMRI) and positron emis-

sion tomography (PET).

Typically a single fMRI or PET study collects data from 20 - 40 subjects due to a

relatively high cost of MRI scanner time (Kang et al., 2011). Thus, single studies may

produce unreliable results. fMRI scans can capture irrelevant features because a large

dataset is obtained from each subject and the brain is a complex organ. A single fMRI

study must have adequate power to detect real effects and reject misleading noise.

Cremers et al. (2017) reports weakly diffuse effects are generally inflated compared

to strong localized effects when sample size is small. Meta-analysis data mitigates

the limitations of single functional neuroimaging studies by estimating the consistent

activation patterns across studies making inference on the population-level. In this

work, we focus on identifying the co-activation patterns using meta-analysis data.

We propose a Bayesian Poisson-Gamma graphical model with a parameter and prior

specification to account for sparse data. We develop an efficient posterior inference

for estimating the co-activation patterns which was influenced by Xue et al. (2014a)

method.

There is limited research on determining functional co-activation patterns from

foci collected over different studies. To date, methods have aimed to identify the co-

activation patterns between region pairs in meta-analysis and full image data (Pos-

tuma and Dagher, 2006; Kober et al., 2008; Cauda et al., 2011; Torta and Cauda,

2011; Robinson et al., 2012; Patel et al., 2013) or to employ component-driven ap-

proaches (Kober et al., 2008). In particular, Nielsen et al. (2004) proposed a matrix

factorization algorithm, in which a matrix that represents the activation associated
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with particular tasks is decomposed. Kober et al. (2008) uses very different steps

to determine co-activation. Kober et al. (2008) proposed a functional grouping ap-

proach, which analyzes the spatial density of reported foci using multilevel kernel

density analysis (MKDA) and then combines non-metric multidimensional scaling

and cluster analysis to group regions based on their co-activation patterns. MKDA

identifies brain voxels with more reported peaks than would be expected near by

randomly. Neumann et al. (2010) have developed a structural learning approach in

a Bayesian framework for constructing a directed functional network, which yields

probabilistic dependency between brain regions. The above methods are intended

to identify co-activated regions, but they do not permit likelihood-based statistical

inference for co-activation patterns of multiple foci. More recently, Xue et al. (2014a)

proposed a Poisson graphical model for estimating the co-activation patterns based

on the meta-analysis data.

In Xue et al. (2014a), a graphical model was developed for the region-wise observed

foci counts based on the multivariate Poisson distribution. A penalized likelihood

approach was used to estimate the sparse covariance matrix. It imposes sparsity on

regions with little association to shrink the strength of co-activation toward zero. The

EM algorithm was used to find the penalized maximum likelihood estimates (PMLE).

Specifically, in the expectation step, Xue et al. (2014a) found the expectation of

the unobserved number of co-activation foci given the number of foci in each region

separately. In the maximization step, the maximum penalized complete data log-

likelihood was determined.

The limitations of this previous work include the penalty term cannot guarantee

sparsity, and the known limitations of the EM algorithm. The EM algorithm is known

to have the solutions converges to a local optimum, have the maximization step slow

down as the number of parameters increase, and the EM algorithm does not directly

produce the standard error of estimation with which to perform inference.
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2.1.4 Meta-Analysis

Functional co-activation is the measurement of the consistent co-activation of

brain regions across different functional neuroimaging studies. The following ap-

proach specifically identifies co-activation in a coordinate-based meta-analysis. Un-

like a single fMRI study exploring functional connectivity using time-series of brain

signal activity as data, multiple fMRI studies exploring functional co-activation uses

active voxels as data, also known as foci.

The typical collection of fMRI data from a single study can be seen on the left side

of Figure 2.1. A single study begins with the collection of fMRI time-series data, then

preprocessing of the data. Next the statistical analysis is used to fit the time-series;

followed by a resulting Statistical Parametric Map, often referred to as a T-map. The

T-map maps the voxels of brain activation onto a template. Generally studies report

the foci. These reported foci summarize the active voxels in significant regions of

the brain. The reported coordinate locations of the foci are collected and used for

analysis for meta-analysis studies.

An example of meta-analysis data collections for a study can be seen in Figure

2.2. A study may include multiple substudies that compare emotional states. The

meta-analysis data collected combines includes information about the regional level

foci counts from each substudy. The number of foci (peak activation points) indicates

brain activity.

Our work is the first to incorporate a Bayesian framework for functional co-

activation pattern identification to determine brain networks based on region-level

activation counts using a Poisson-Gamma graphical model. Our proposed method

has the following features: (a) it is based on a graphical model to represent sparse

brain networks, (b) it provides more interpretable results than many existing methods

by explicitly modeling the strength of functional co-activations and it’s probability,

and (c) it utilizes fast computational algorithms for parameter estimation.
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Figure 2.1: Pipeline of analyzing the time series data of k single functional neu-
roimaging studies funneled into one dataset. The activation points are combined
from different studies and then summarized into the regional activation point counts
which are the observed data, Xk, in the model.

Figure 2.2: Example of meta-analysis data collection
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2.2 Methods

We propose a Bayesian Poisson-Gamma graphical model. We also propose a prior

specification to introduce sparsity in the model. Our proposed method can identify the

consistent co-activation locations across studies and provides a convenient framework

for statistical inference on the dependence structure of the sparse count data. Our

Bayesian approach parameterization allows indication of where co-activation exist

and a prior distribution for the strength of co-activation between two regions. The

standard Markov chain Monte Carlo (MCMC) algorithm can be straightforwardly

applied for posterior computation.

Compared to classical statistics approaches, the proposed Bayesian method enjoys

the following advantages. First, it is natural to incorporate the prior knowledge of

brain functional connectivity and structural connectivity into the model. Second,

it provides an appropriate uncertainty measure (i.e.posterior inclusion probability

and posterior credible interval) for the sparse Poisson graph learning based on the

posterior inference. Third, the regional activation can be more flexibly decomposed

using expected values. Fourth, it can generate results to address a variety of scientific

questions of interests with formal probabilistic statements. In addition, the MCMC

method for posterior inference is straightforward to implement and the computational

cost is moderate in contrast to the optimization procedures.

In our sparse hierarchical Bayesian model, at the top-level, the marginal Poisson

distribution is used to model the foci count for each region. On second-level, we

decompose parameters of the top-level into components introducing dependence. We

model the distributions of number of foci over multiple regions, where the covariance

matrix characterizes the region-level (top-level) co-activation patterns. We impose

sparsity on the covariance matrix by assigning a parameter, δ, as an indicator for

co-activation with a prior reflecting sparsity. The proposed model defines a sparse

brain co-activation network. To facilitate the model inference, we introduce a set of



21

variables λ which are parameters in the function of the expectation represent the

expected number of co-activation foci between regions per observation. The posterior

computational algorithms are then developed.

2.2.1 Notation

Suppose we have p brain regions of interest, the brain network has
(
p
2

)
possible co-

activation relationships, given we are only interested in two-way interactions. Denote

by i, j two region indices (1 ≤ i, j ≤ p). For emotion study k (k = 1, . . . , n), we

observe the number of foci in each region Xk = (Xk
1 , . . . , X

k
p ), where Xk is a vector of

foci counts in different regions for study k, Xk
i represents the number of foci in region

i for a given study k. Xk
i ∈ {0, 1, 2, . . . }, where the value zero is frequently observed.

2.2.1.1 Poisson-Gamma Model

Different from the multivariate Poisson graphical model (Xue et al., 2014a), we

propose a new model to project the co-activation structure in the brain and infer

functional co-activation. For any two regions, i and j, in our model, k indexes the

observations of each of the studies included in the dataset. k can range from 1 to

n, the total number of included observations. The total number of activation points

found in region i and region j is Xk
i and Xk

j , respectively. The number of total

activation points in a region, marginally, can be modeled as a Poisson distribution

where Xk
i | µki ∼ Poisson(µki ). We directly decompose µki , the mean of regional co-

activation count, to substudy-specific co-activation intensity parameters. We used the

term “activation” to refer the activation for a single region. We use “co-activation”

to refer the activations between two regions.

E(Xk
i ) = µki =

p∑
j=1

θkij
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For the Bayesian Poisson-Gamma model, θki,j represents the unobserved number of

co-activations in the two regions, say i and j, for study k. θkp×p = (θki,j)1≤i,j≤p can

also be interpreted as representations of the separate foci into groups without any

joint activation (θki,i) and by activation with other regions (θki,j). θ
k
i,i and θkj,j (diagonal

elements of the co-activation matrix for the kth study) both represent the expected

number of localized foci in regions i and j without joint activation. Each random

variable, θki,j, has an independent Gamma distribution with parameters λi,j and β0 = 1

using Gamma shape and rate notation.

θkij ∼ Gamma (λij, β0)

The strength of the co-activation between regions is parameterized by each element

of the intensity matrix, λ.

λij ∼ Gamma (a0, b0)

Note that for potentially co-activated regions (i 6= j), the covariance of regional

activation representing the strength of co-activation can be defined as:

Cov(Xk
i , X

k
j ) = E{Cov(Xk

i , X
k
j | µki , µkj )}+ Cov{E(Xk

i | µki ),E(Xk
j | µkj )} =

λij
β2
0

where E{Cov(Xk
i , X

k
j | µki , µkj )} = 0, Cov{E(Xk

i | µki ),E(Xk
j | µkj )} = Var(θki,j) =

λij
β2
0

and Var(Xk
i ) = E{Var(Xk

i | θ)}+ Var{E(Xk
i | θ)} =

∑p
j=1

1+β0
β2
0
λij.

2.2.1.2 Sparse Poisson-Gamma Model

To account for sparse activation within the data (Xk
i ) is frequently observed as

zero, we extent the aforementioned model to better account for sparsity. We define the

parameter µki,j with an co-activation indicator function, δi,j. The co-activation indi-

cator function signifies a region pair has contribution. The expected value of regional
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activation count (Xk
i ) is now defined as µki =

∑p
j=1 θ

k
ijδij and δij ∼ Bernoulli(π0). The

prior of θkij remains the same. Then for potentially co-activated regions (i 6= j), we

define covariance conditional on the presence of co-activation. When two regions are

assumed to be co-activated, then Cov(Xk
i , X

k
j | δij = 1) =

λij
β2
0

. On the other hand,

when two regions are deemed not to be co-activated Cov(Xk
i , X

k
j | δij = 0) = 0. The

variance of a single region can be derived as Var(Xk
i | δ) =

∑p
j=1

1+β0
β2
0
λijδij.

This type of model allows sparsity to be modeled in the parameter δ, where the

Bernoulli probability of obtaining a positive (nonzero) value is π0. The model was

developed to address the high occurrence of zeros in the observed data and to analyze

and interpret zero counts.

Consider our data application to a meta-analysis study of emotional-state peak

activation voxels in which the latent variable is the number of co-activation voxels

across studies, θkij. In this case, it is assumed that only where no co-activation is

found, δij = 0, will there be zero co-activation voxels (λi,j = 0) and where there

exists co-activation between regions, δij = 1, some positive (nonzero) number of co-

activation voxels will be found (λi,j > 0). If the relationship between two brain

regions is considered co-activated, the value of co-activation voxels must be positive.

Our proposed sparsity model aims to achieve convergence of the full conditional

distributions in order to correctly infer the posterior distribution. Our results help us

estimate our predictive error (i.e. mean squared error), with a goal of minimizing it.

All analysis was conducted using R (R Core Team, n.d.).

2.3 Simulation Study

We conducted a simulation study to compare the performance of our non-sparse

methods (EM-PG and Poisson Gamma omitting the indicator function) to our pro-

posed sparse method using generated data. First, the data was generated by defining
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a sparsely co-activated intensity matrix, λp×p, where p is the total number of the

regions of interest. Second, from the set intensity parameters, a dataset of 300 or 600

observations, θkij, co-activation values, are generated by Poisson(λij). The regional ac-

tivation, Xk
i , was calculated from the generated θ and considered to be our observed

data. The simulated data were modeled using the previously mentioned graphical

models. The performance of each model on each dataset is summarized by the esti-

mated λ̂ MSE. In MCMC techniques, the choice of initial values is important as it

may influence the posterior distribution. Our initial values are randomly choosen for

each chain. By setting reasonable initial values, we are confident in our results.

The following are the default values on the simulations, unless otherwise stated.

There are 3 or 5 regions in the networks, with a proportion of co-activation between

any two regions being 1
3
. Each dataset contains 300 or 600 observations and was run

for 20,000 iterations with a burn-in of 15,000 with 5 chains.

To evaluate the ability of our proposed sparse method in determining the correct

co-activation and functional network, we assess the accuracy of determining a sparse

network’s intensity matrix λ = (λij) and co-activations δ = (δij). Specifically, a mean

square error (MSE), an average of the squares of the difference between the estimated

intensity conditioned on the presence of co-activation and the true value over all

possible co-activations was used to assess performance of the model. The correct

regional connections in the functional network are measured using sensitivity (true

connection rate given there is a true connection), specificity (true disconnection rate

given there is no true connection), and false discovery rate (FDR). These quantities

indicate the accuracy of the network solution.

2.3.0.1 Simulation Results

Number of Studies

In order to evaluate the asymptotic properties of the proposed method, we observe
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Methods
Regions Studies Nonsparse Sparse

3

300

MSE 0.010 0.004
Sensitivity 1 1
Specificity 0 1
FDR 0.667 0

600

MSE 0.021 0.008
Sensitivity 1 1
Specificity 0 1
FDR 0.667 0

5

300

MSE 0.021 0.002
Sensitivity 1 1
Specificity 0 1
FDR 0.7 0

600

MSE 0.023 0.006
Sensitivity 0.143 1
Specificity 1 1
FDR 0 0

Table 2.1: Estimation summary of each method as number of studies vary

the results as the number of studies increases. As the sample size increases, the

intensity estimations do not necessarily improve. The MSE is able to stabilize early.

Our method is able to estimate the network with a small sample size. The nominal

increase in the MSE is believed to be due to randomness. It can also be observed that

the number of regions does not effect the MSE results. The proposed sparse method

can determine co-activation well as seen the sensitivity, specificity and false discovery

rate measures. Thus, true region co-activations in the network are correctly identified

as existing by our proposed sparse method, and all region pairs with no co-activation

are correctly identified as not existing by our proposed sparse method. Results are

summarized in Table 2.1.
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Proportion of Co-activated Region Pairs

How the estimation methods perform when the proportion of co-activated regions

within network is sparse is important, as sparsity motivated the proposed method.

To observe the estimation ability of the proposed sparse method, the density of the

network is varied in the model. There are two generated datasets: sparse and non-

sparse. The sparse dataset allows approximately 1
3

of co-activations to exist, while

in the non-sparse dataset approximately 3
4

co-activations have a signal. From Table

2.2, we see as sparsity of the network decreases, the average MSE increases when em-

ploying the proposed sparse method. This result indicates that our method performs

better with sparse functional data that often occurs in real datasets. When data is

not sparse the ability to estimate the intensity matrix is weakened, but our method

maintains its ability to correctly determine co-activation as seen from the specificity,

sensitivity and false discovery rate.

The utility of the proposed sparse Poisson-Gamma method as opposed to the

nonsparse methods is exhibited through its ability to estimate the strength of co-

activation as well as infer the functional co-activation network.

2.4 Data Analysis

To study the functional co-activation of the brain, we consider a total of 331

functional neuroimaging studies published from 1993 to 2011. Collectively, the data

contains information on induced positive (n = 239) and negative (n = 513) emotions.

Resulting in 752 emotional comparisons (substudies). There are a total of 2,345

significant activation coordinates.The inclusion criteria for the studies in our meta-

analysis are as follows:

1. All the subjects included in the study are healthy adults;

2. All the studies measure regional cerebral blood flow (PET) or blood oxygenation
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Methods
Regions Proportion Co-activated Nonsparse Sparse

3

Sparse

MSE 0.010 0.004
Sensitivity 1 1
Specificity 0 1
FDR 0.667 0

Dense

MSE 0.068 0.036
Sensitivity 1 1
Specificity 0 1
FDR 0.333 0

5

Sparse

MSE 0.021 0.002
Sensitivity 1 1
Specificity 0 1
FDR 0.7 0

Dense

MSE 0.032 0.888
Sensitivity 1 1
Specificity 0 0.429
FDR 0.3 0.571

Table 2.2: Estimation summary of each method as proportion of co-activated region
pairs vary
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(fMRI);

3. Standard Talairach space (Talairach and Tournoux, 1988) or Montreal Neuro-

logical Institute and International Consortium for Brain Mapping (MNI) coor-

dinates (Mazziotta et al., 2001) are provided to ensure the results are spatially

normalized standard coordinate systems, thus allowing for comparison of find-

ings across independent studies.

Studies assessing learning and memory were excluded along with those exploring

the anticipation of the stimulus. In addition, studies with motivational states that

the affective states were not clear (e.g. thirst) were excluded. Once the data was

mapped to the template, Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer

et al., 2002) was applied to calculate the number of activation points in each of the

116 anatomical volumes of interest (AVOI). Of the 116 AVOI, 42 regions distributed

of the frontal, temporal, occipital and parietal lobes were chosen as the focus.

The selected 42 regions are analyzed on two levels. The first level is between lobes

in the brain and the second level is within each lobe of the brain.

Level 1 Lobes

The brain is composed of four lobes: frontal, temporal, parietal and occipital.

Memories with sensations of taste, sound, sight and touch are all processed in the

temporal lobe. The occipital lobe is processes what you see, while the frontal lobe

processes cognitive functions and physical activity. Finally, temperature, taste and

touch are processed by the parietal lobe (Mayo Clinic, 2018). The results of our

meta-analysis data are summarized in Tables 2.3, 2.4, and 2.5. Overall, positive and

negative emotions, have caused a signal between the frontal lobe and occipital lobe,

the frontal lobe and temporal lobe, and the temporal lobe and occipital lobe. When

comparing the co-activation found between positive and negative emotion, the co-

activation frontal-parietal, temporal-occipital, and frontal-temporal differ. The posi-

tive emotion data finds a signal between the previously mentioned regions compared
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Figure 2.3: Level 1 - Brain Lobes: There are four primary lobes on the brain the
frontal, temporal, parietal and occipital. (Mayo Clinic, 2018)

Parietal Occipital Temporal
Frontal 0.00 0.03 (0.02, 0.06) 0.24 (0.07, 0.46)

Parietal 0.00 0.00
Occipital 1.08 (0.08, 4.71)

Table 2.3: Overall emotion data of Lobe Matrix using proposed spare method

to what is found during the stimulus of negative emotion.

Level 2 Occipital

Within the occipital lobe, five weak signals were found in the overall data. When

the data is split to compare the effects of positive and negative emotion, more co-

activations are found in the positive emotions data (14 compared to 6 in the negative

dataset). The signal differences seen the positive emotion dataset are between the

Superior left and right sides, the Superior left with the Middle (left and right), and the

multiple co-activations with the Inferior region. The Inferior left with the Superior
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Parietal Occipital Temporal
Frontal 0.00 0.05 (0.03, 0.08) 0.16 (0.06, 0.74)

Parietal 0.00 0.52 (0.11, 2.14)
Occipital 0.00

Table 2.4: Negative emotion data of Lobe Matrix using proposed spare method

Parietal Occipital Temporal
Frontal 0.38 (0.08, 2.03) 0.02 (0.02, 0.03) 0.00
Parietal 0.00 2.92 (0.04, 8.98)

Occipital 1.00 (0.17, 6.25)

Table 2.5: Positive emotion data of Lobe Matrix using proposed spare method

right and Middle left, as well as the Inferior right with the left Superior, Middle and

Inferior. The results are shown in Figure 2.4 and Tables 2.6, and 2.7.

Level 2 Parietal

Within the parietal lobe, 13 weak signals were found in the overall data. When the

effects of positive and negative emotion are compared, both emotions generate similar

proportions of co-activation. Differences in co-activation by emotion type are found

in the following regions: Superior left and right, Superior left and Precuneus right,

Superior right and Inferior left, Cingulum Post Left and Inferior left, and Cingulum

Post left and Precuneus left. Parietal results are shown in Tables 2.8, and 2.9.

Level 2 Frontal

The analysis of negative and positive emotions within the frontal lobe found some

difference in co-activation. The differences in results, albeit most are rather weak, are

co-activation between the frontal middle left and right for the negative emotion and

Occipital Sup R Occipital Mid L Occipital Mid R Occipital Inf L Occipital Inf R
Occipital Sup L 0.00 0.00 0.00 0.27 (0.03, 2.04) 0.00
Occipital Sup R 0.05 (0.03, 0.10) 0.02 (0.02, 0.03) 0.00 0.10 (0.03, 0.45)
Occipital Mid L 0.00 0.00 0.00
Occipital Mid R 0.06 (0.04, 0.10) 0.17 (0.04, 0.74)

Occipital Inf L 0.00

Table 2.6: Negative emotion data of Occipital Region Matrix from the Proposed
Sparse Method
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Figure 2.4: Occipital Region: The displayed results from the overall data, negative
emotions studies and positive emotion studies (left to right).

Occipital Sup R Occipital Mid L Occipital Mid R Occipital Inf L Occipital Inf R
Occipital Sup L 0.02 (0.02, 0.03) 0.37 (0.02, 3.38) 0.06 (0.02, 0.15) 0.30 (0.02, 2.81) 0.05 (0.03, 0.10)
Occipital Sup R 0.04 (0.03, 0.05) 0.19 (0.02, 1.66) 0.48 (0.06, 1.91) 0.03 (0.02, 0.05)
Occipital Mid L 0.00 0.42 (0.04, 2.57) 0.12 (0.05, 0.30)
Occipital Mid R 0.11 (0.04, 0.36) 0.06 (0.03, 0.11)

Occipital Inf L 0.15 (0.05, 0.52)

Table 2.7: Positive emotion data of Occipital Region Matrix from the Proposed Sparse
Method
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Parietal Sup R Parietal Inf L Parietal Inf R Precuneus L Precuneus R Cingulum Post L Cingulum Post R
Parietal Sup L 0.00 0.06 (0.04, 0.08) 0.03 (0.02, 0.04) 0.03 (0.02, 0.05) 0.00 0.03 (0.02, 0.05) 0.04 (0.03, 0.09)
Parietal Sup R 0.00 0.13 (0.03, 0.61) 0.03 (0.02, 0.08) 0.05 (0.02, 0.11) 0.03 (0.02, 0.07) 0.02 (0.02, 0.03)

Parietal Inf L 0.06 (0.03, 0.16) 0.02 (0.02, 0.03) 0.03 (0.03, 0.04) 0.00 0.06 (0.02, 0.20)
Parietal Inf R 0.03 (0.02, 0.08) 0.04 (0.02, 0.11) 0.04 (0.03, 0.06) 0.03 (0.03, 0.04)

Precuneus L 0.06 (0.02, 0.16) 0.00 0.04 (0.03, 0.06)
Precuneus R 0.04 (0.03, 0.06) 0.08 (0.02, 0.28)

Cingulum Post L 0.10 (0.04, 0.24)

Table 2.8: Negative emotion data of Parietal Region Matrix from the Proposed Sparse
Method

Parietal Sup R Parietal Inf L Parietal Inf R Precuneus L Precuneus R Cingulum Post L Cingulum Post R
Parietal Sup L 0.24 (0.03, 1.53) 0.21 (0.04, 1.41) 0.07 (0.03, 0.28) 0.04 (0.02, 0.08) 0.03 (0.02, 0.08) 0.27 (0.02, 3.04) 0.05 (0.02, 0.22)
Parietal Sup R 0.02 (0.01, 0.04) 0.03 (0.02, 0.04) 0.57 (0.04, 3.11) 0.03 (0.02, 0.04) 0.02 (0.02, 0.04) 0.02 (0.01, 0.04)

Parietal Inf L 0.16 (0.02, 0.98) 0.03 (0.02, 0.04) 0.28 (0.02, 1.82) 0.03 (0.03, 0.06) 0.12 (0.02, 0.74)
Parietal Inf R 0.10 (0.03, 0.37) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.04 (.03, 0.06)

Precuneus L 0.07 (0.03, 0.15) 0.06 (0.04, 0.11) 0.15 (0.02, 0.75)
Precuneus R 0.17 (0.02, 0.88) 0.03 (0.02, 0.04)

Cingulum Post L 0.09 (0.03, 0.41)

Table 2.9: Positive emotion data of Parietal Region Matrix from the Proposed Sparse
Method

positive emotion resulted in the following co-activations: the frontal superior left and

right, the frontal superior left and superior medial right, the frontal superior right

and frontal med orb right, the rectus left and frontal superior medial right, the rectus

right and frontal superior medial right, the rectus right and frontal superior medial

left, and the frontal superior left and cingulum anterior right. Frontal results are

shown in Tables 2.10, and 2.11.

Frontal Sup R Frontal Mid L Frontal Mid R Frontal Sup Medial L Frontal Sup Medial R Frontal Med Orb L Frontal Med Orb R Rectus L Rectus R Cingulum Ant L Cingulum Ant R
Frontal Sup L 0.00 0.00 0.04 (0.02, 0.07) 0.04 (0.03, 0.06) 0.00 0.03 (0.03, 0.05) 0.03 (0.03, 0.04) 0.04 (0.02, 0.11) 0.00 0.05 (0.03, 0.08) 0.00
Frontal Sup R 0.05 (0.03, 0.08) 0.13 (0.02, 0.67) 0.00 0.07 (0.03, 0.18) 0.04 (0.03, 0.05) 0.00 0.00 0.04 (0.02, 0.07) 0.06 (0.03, 0.19) 0.04 (0.03, 0.05)
Frontal Mid L 0.10 (0.03, 0.42) 0.04 (0.03, 0.08) 0.02 (0.02, 0.03) 0.03 (0.02, 0.05) 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 0.00 0.00 0.00
Frontal Mid R 0.04 (0.03, 0.07) 0.08 (0.03, 0.28) 0.07 (0.02, 0.25) 0.03 (0.02, 0.04) 0.04 (0.02, 0.08) 0.00 0.05 (0.03, 0.08) 0.00

Frontal Sup Medial L 0.00 0.02 (0.02, 0.04) 0.02 (0.01, 0.03) 0.02 (0.02, 0.03) 0.04 (0.02, 0.14) 0.10 (0.03, 0.36) 0.00
Frontal Sup Medial R 0.03 (0.02, 0.04) 0.00 0.00 0.00 0.06 (0.02, 0.22) 0.05 (0.03, 0.07)

Frontal Med Orb L 0.03 (0.02, 0.03) 0.00 0.00 0.07 (0.03, 0.26) 0.05 (0.03, 0.15)
Frontal Med Orb R 0.00 0.04 (0.02, 0.11) 0.04 (0.02, 0.08) 0.04 (0.02, 0.10)

Rectus L 0.00 0.00 0.04 (0.03, 0.05)
Rectus R 0.03 (0.03, 0.04) 0.03 (0.02, 0.05)

Cingulum Ant L 0.24 (0.03, 0.94)

Table 2.10: Negative emotion data of Frontal Region Matrix from the Proposed Sparse
Method

Level 2 Temporal
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Frontal Sup R Frontal Mid L Frontal Mid R Frontal Sup Medial L Frontal Sup Medial R Frontal Med Orb L Frontal Med Orb R Rectus L Rectus R Cingulum Ant L Cingulum Ant R
Frontal Sup L 0.11 (0.05, 0.33) 0.00 0.02 (0.02, 0.02) 0.21 (0.04, 0.91) 0.63 (0.04, 4.12) 0.31 (0.04, 1.46) 0.17 (0.03, 1.00) 0.05 (0.03, 0.09) 0.05 (0.02, 0.17) 0.27 (0.03, 1.48) 0.12 (0.03, 0.52)
Frontal Sup R 0.04 (0.02, 0.09) 0.12 (0.03, 0.60) 0.04 (0.02, 0.11) 0.03 (0.02, 0.05) 0.03 (0.02, 0.06) 0.17 (0.03, 1.21) 0.04 (0.03, 0.08) 0.02 (0.02, 0.04) 0.11 (0.03, 0.88) 0.08 (0.03, 0.21)
Frontal Mid L 0.00 0.05 (0.02, 0.18) 0.02 (0.02, 0.03) 0.47 (0.04, 3.02) 0.46 (0.02, 4.57) 0.03 (0.02, 0.04) 0.02 (0.02, 0.04) 0.05 (0.03, 0.07) 0.08 (0.03, 0.14)
Frontal Mid R 0.03 (0.02, 0.04) 0.14 (0.03, 1.29) 0.04 (0.02, 0.11) 0.06 (0.03, 0.07) 0.03 (0.02, 0.06) 0.03 (0.02, 0.04) 0.02 (0.02, 0.03) 0.04 (0.03, 0.05)

Frontal Sup Medial L 0.00 0.57 (0.03, 3.39) 0.04 (0.02, 0.10) 0.13 (0.04, 0.37) 0.04 (0.02, 0.07) 1.15 (0.04, 9.98) 0.00
Frontal Sup Medial R 0.00 0.02 (0.02, 0.03) 0.20 (0.03, 1.24) 0.23 (0.02, 2.15) 0.09 (0.04, 0.28) 0.06 (0.03, 0.10)

Frontal Med Orb L 0.71 (0.03, 7.23) 0.02 (0.02, 0.03) 0.10 (0.03, 0.41) 0.02 (0.02, 0.03) 0.00
Frontal Med Orb R 0.03 (0.02, 0.05) 0.05 (0.02, 0.15) 0.06 (0.03, 0.22) 0.21 (0.03, 0.77)

Rectus L 0.05 (0.03, 0.10) 0.08 (0.04, 0.13) 0.02 (0.02, 0.03)
Rectus R 0.05 (0.03, 0.09) 0.25 (0.03, 2.00)

Cingulum Ant L 0.07 (0.03, 0.11)

Table 2.11: Positive emotion data of Frontal Region Matrix from the Proposed Sparse
Method

Although the overall dataset showed very few co-activtions within the temporal

region, the positive emotion data found 10 strong signals of co-activation, as shown

in Tables 2.13 and 2.12.

Temporal Sup R Temporal Pole Sup L Temporal Pole Sup R Temporal Mid L Temporal Mid R Temporal Pole Mid L Temporal Pole Mid R Temporal Inf L Temporal Inf R Fusiform L Fusiform R Hippocampus L Hippocampus R ParaHippocampal L ParaHippocampal R
Temporal Sup L 0.00 0.47 (0.03, 2.18) 0.02 (0.02, 0.03) 0.14 (0.04, 0.44) 0.03 (0.02, 0.05) 0.04 (0.02, 0.07) 1.21 (0.02, 9.82) 0.09 (0.02, 0.50) 0.05 (0.03, 0.11) 0.52 (0.05, 1.86) 0.04 (0.03, 0.06) 0.03 (0.02, 0.07) 0.03 (0.02, 0.04) 0.05 (0.03, 0.09) 0.04 (0.02, 0.08)
Temporal Sup R 0.16 (0.03, 0.93) 0.07 (0.03, 0.20) 0.05 (0.03, 0.08) 0.06 (0.03, 0.12) 0.02 (0.02, 0.03) 0.02 (0.02, 0.04) 0.07 (0.03, 0.16) 0.06 (0.03, 0.15) 0.15 (0.02, 1.01) 0.05 (0.02, 0.07) 0.02 (0.01, 0.03) 0.02 (0.02, 0.03) 0.05 (0.02, 0.19) 0.67 (0.03, 4.69)

Temporal Pole Sup L 0.40 (0.06, 1.56) 0.00 0.19 (0.06, 0.89) 0.04 (0.02, 0.06) 0.07 (0.03, 0.20) 0.00 0.02 (0.02, 0.03) 3.69 (0.04, 30.43) 0.00 0.06 (0.04, 0.08) 0.10 (0.03, 0.29) 1.55 (0.02, 9.10) 0.09 (0.02, 0.56)
Temporal Pole Sup R 0.03 (0.02, 0.05) 0.87 (0.06, 4.77) 0.05 (0.03, 0.08) 0.05 (0.02, 0.10) 0.03 (0.02, 0.05) 0.03 (0.02, 0.06) 0.04 (0.03, 0.08) 0.11 (0.03, 0.62) 0.04 (0.02, 0.15) 0.04 (0.02, 0.07) 0.02 (0.01, 0.03) 0.04 (0.03, 0.07)

Temporal Mid L 0.09 (0.03, 0.29) 0.02 (0.02, 0.03) 0.03 (0.01, 0.04) 0.06 (0.03, 0.14) 0.00 0.04 (0.03, 0.06) 0.05 (0.03, 0.09) 0.02 (0.01, 0.03) 0.04 (0.03, 0.08) 0.65 (0.03, 4.41) 0.04 (0.02, 0.07)
Temporal Mid R 0.03 (0.02, 0.05) 0.07 (0.03, 0.16) 0.06 (0.03, 0.12) 0.34 (0.03, 1.52) 0.95 (0.03, 6.02) 1.67 (0.05, 8.15) 0.06 (0.02, 0.16) 0.05 (0.03, 0.09) 0.06 (0.04, 0.08) 0.06 (0.02, 0.25)

Temporal Pole Mid L 0.00 0.08 (0.02, 0.42) 0.02 (0.02, 0.03) 0.07 (0.03, 0.20) 0.04 (0.03, 0.07) 0.02 (0.02, 0.03) 0.03 (0.02, 0.04) 0.02 (0.02, 0.04) 0.03 (0.02, 0.06)
Temporal Pole Mid R 0.06 (0.02, 0.21) 0.02 (0.02, 0.03) 0.05 (0.03, 0.11) 0.03 (0.02, 0.05) 0.02 (0.02, 0.03) 0.03 (0.02, 0.04) 0.02 (0.02, 0.03) 0.04 (0.02, 0.07)

Temporal Inf L 0.04 (0.03, 0.07) 0.04 (0.02, 0.06) 0.06 (0.03, 0.12) 0.02 (0.01, 0.04) 0.04 (0.02, 0.07) 0.03 (0.02, 0.06) 0.05 (0.02, 0.15)
Temporal Inf R 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.06 (0.02, 0.23) 0.00 0.03 (0.02, 0.07) 0.69 (0.03, 6.78)

Fusiform L 0.00 0.02 (0.01, 0.03) 0.17 (0.02, 1.16) 0.00 0.03 (0.02, 0.05)
Fusiform R 0.03 (0.02, 0.04) 0.29 (0.02, 1.68) 0.43 (0.03, 3.75) 0.02 (0.02, 0.03)

Hippocampus L 0.00 0.18 (0.03, 1.47) 0.05 (0.02, 0.09)
Hippocampus R 0.10 (0.03, 0.42) 0.44 (0.03, 2.26)

ParaHippocampal L 0.03 (0.02, 0.06)

Table 2.12: Positive emotion data of Temporal Region Matrix from the Proposed
Sparse Method

2.5 Discussion

In this paper, we present a Bayesian Poisson-Gamma graphical model, to specify

the probability of observing zero foci in a region. These novel coordinate-based neu-

roimaging meta-analysis approaches allow us to determine functional co-activation

between regions in the brain and infer functional dependencies. We see the successful
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Temporal Sup R Temporal Pole Sup L Temporal Pole Sup R Temporal Mid L Temporal Mid R Temporal Pole Mid L Temporal Pole Mid R Temporal Inf L Temporal Inf R Fusiform L Fusiform R Hippocampus L Hippocampus R ParaHippocampal L ParaHippocampal R
Temporal Sup L 0.00 0.06 (0.03, 0.12) 0.00 0.05 (0.03, 0.07) 0.00 0.04 (0.02, 0.08) 0.03 (0.02, 0.05) 0.05 (0.02, 0.19) 0.03 (0.02, 0.04) 0.04 (0.02, 0.09) 0.03 (0.02, 0.04) 0.04 (0.02, 0.11) 0.02 (0.02, 0.03) 0.04 (0.02, 0.12) 0.03 (0.02, 0.04)
Temporal Sup R 0.05 (0.03, 0.07) 0.05 (0.03, 0.08) 0.00 0.04 (0.03, 0.06) 0.00 0.00 0.02 (0.02, 0.03) 0.03 (0.02, 0.05) 0.08 (0.03, 0.21) 0.03 (0.02, 0.04) 0.04 (0.02, 0.08) 0.06 (0.03, 0.18) 0.02 (0.02, 0.03) 0.03 (0.02, 0.06)

Temporal Pole Sup L 0.06 (0.04, 0.11) 0.04 (0.03, 0.07) 0.18 (0.03, 1.08) 0.19 (0.03, 0.98) 0.00 0.05 (0.03, 0.15) 0.08 (0.03, 0.23) 0.00 0.03 (0.02, 0.03) 0.04 (0.03, 0.07) 0.11 (0.02, 0.55) 0.04 (0.03, 0.06) 0.05 (0.03, 0.13)
Temporal Pole Sup R 0.00 0.00 0.03 (0.02, 0.03) 0.03 (0.03, 0.05) 0.02 (0.02, 0.02) 0.96 (0.03, 6.77) 0.05 (0.03, 0.10) 0.05 (0.03, 0.07) 0.03 (0.03, 0.04) 0.04 (0.02, 0.07) 0.02 (0.02, 0.03) 0.04 (0.03, 0.05)

Temporal Mid L 0.00 0.03 (0.02, 0.05) 0.00 0.04 (0.03, 0.06) 0.04 (0.03, 0.07) 0.05 (0.02, 0.09) 0.09 (0.03, 0.43) 0.25 (0.03, 1.69) 0.03 (0.02, 0.07) 0.02 (0.02, 0.03) 0.04 (0.02, 0.09)
Temporal Mid R 0.09 (0.03, 0.33) 0.04 (0.03, 0.05) 0.02 (0.02, 0.03) 0.04 (0.03, 0.06) 0.06 (0.03, 0.12) 0.07 (0.03, 0.16) 0.05 (0.02, 0.20) 0.00 0.02 (0.02, 0.03) 0.00

Temporal Pole Mid L 0.00 0.03 (0.02, 0.04) 0.00 0.08 (0.02, 0.21) 0.33 (0.02, 2.23) 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 0.03 (0.02, 0.05)
Temporal Pole Mid R 0.06 (0.03, 0.18) 0.00 0.05 (0.02, 0.10) 0.06 (0.03, 0.12) 0.04 (0.03, 0.06) 0.13 (0.02, 0.86) 0.03 (0.03, 0.05) 0.02 (0.02, 0.03)

Temporal Inf L 0.03 (0.02, 0.04) 0.03 (0.02, 0.05) 0.02 (0.02, 0.03) 0.02 (0.02, 0.02) 0.02 (0.02, 0.03) 0.05 (0.03, 0.10) 0.08 (0.03, 0.31)
Temporal Inf R 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 0.02 (0.01, 0.02) 0.03 (0.02, 0.04)

Fusiform L 0.00 0.06 (0.03, 0.10) 0.04 (0.02, 0.07) 0.09 (0.03, 0.45) 0.06 (0.03, 0.14)
Fusiform R 0.06 (0.04, 0.08) 0.24 (0.03, 1.80) 0.03 (0.02, 0.05) 0.03 (0.03, 0.04)

Hippocampus L 0.00 0.21 (0.02, 1.34) 0.00
Hippocampus R 0.00 0.04 (0.03, 0.14)

ParaHippocampal L 0.00

Table 2.13: Negative emotion data of Temporal Region Matrix from the Proposed
Sparse Method

application of these approaches to neuroimaging meta-analysis datasets in the Section

2.4. We demonstrate the ability of our proposed sparse method estimates by com-

paring measures such as the average MSE, sensitivity, specificity, and false discovery

rate.

From the simulation study, we observed that our proposed method increases in

accuracy as the sample size increases and that the resulting network is impacted by

the sparsity of the data as well as the co-activation threshold used for the posterior

probability. The simulation studies used to produce those results showcase the utility

of the method to identify co-activation patterns. Our approaches addresses spar-

sity and contributes inference about co-activation in the brain compared to previous

models.

Within the data analysis we found the positive emotion generally created stronger

signals and differences in the estimated co-activation. Previous work has explored var-

ious hypotheses and stimuli as it relates to emotion. Lindquist et al. (2015) concluded

that positive and negative emotions are supported by a flexible and interchanging set

of brain regions. Overwhelmingly the results found the temporal and frontal lobes

most active (Liu et al., 2011; Lindquist et al., 2015). Although, they (Lindquist et al.,

2015) did not find unique activation to represent positive and negative emotion, they
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agreed it is possible to find differences in the co-activation of positive and negative

emotions Bartra et al. (2013); Liu et al. (2011). The interpretation of such results

only lend itself to relative preference for one emotion over the other, not independent

brain function.

It is important to note, that meta-analysis data includes multiple studies which

may have differing procedures. Some effects of these differing procedure may influence

the estimated results. The results are also limited by the data resolution of the original

study.

An extension to our model could include exploring p-way interactions between re-

gions. In addition, random effects could be used to better model study-level clustering

and study modality. Also, to improve the model a set of weights could be applied to

each study based on it’s sample size, significance threshold used, and whether adjust-

ments were made for multiple comparisons. Kang et al. (2011) mentions including the

probability of a negative study not being published to the model. Future work could

account for publication bias of the data used on our model. The proposed Sparse

PG approach to meta-analysis data helps to extend the reach of current methods by

including measures of inference within the framework.
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Chapter 3

Estimation of United States (US)

Influenza-Associated Mortality

Model
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This chapter is joint work with Dr. Howard Chang, Dr. Michael Haber and Dr.

Danielle Iuliano.

3.1 Introduction

Influenza is a highly contagious viral infection affecting populations worldwide.

It is one of the most common transmissible infectious diseases of the respiratory

tract. Influenza illness is primarily caused by either influenza A or influenza B viruses

(Blahd, 2015). Influenza A viruses can be more specifically labeled by the two proteins

on the surface of the virus: hemagglutinin (H) and neuraminidase (N) (Centers for

Disease Control and Prevention, National Center for Immunization and Respiratory

Diseases (NCIRD), 2016). The A virus infects humans and animals, while the B

virus solely infects humans. The reaction to an Influenza B infection is generally less

severe, and as a result most of the annual disease burden of influenza is attributed to

Influenza A virus infections.

Influenza is spread person to person by respiratory droplets and formites (Cox

et al., 2004). Genetic changes during the influenza virus replication causes what is

known as an antigenic shift (Cox et al., 2004). This shift is the reason why new

vaccines must be created each season to prevent the virus from causing a global

pandemic (Morens and Fauci, 2007). Influenza A viruses are known to have a more

drastic antigenic shift than the Influenza B virus.

Prior studies have demonstrated a significant benefit to vaccination, and the CDC

recommends that everyone older than 6 months should receive the vaccine before each

influenza season. The particular strains of influenza in circulation vary each year, ne-

cessitate the need to customize immunization to address the primary strains in circu-

lation. The changing strains also open the door for pandemic spread of unanticipated

strains, often with very high infection rates. Although the majority of infections
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are mild, many subpopulations (e.g., older adults) can be at risk due to preexisting

conditions or complications (Wu et al., 2012). Chronic illnesses can exacerbate an

infection or result in increased susceptibility to fatal bacterial infections (Weinberger

et al., 2012). Some influenza strains can lead to fatal complications, and are the cause

of substantial morbidity and mortality worldwide (Wu et al., 2012).

3.1.1 Global Impact

Influenza is a major concern globally. The global impact of influenza is disconcert-

ing. There are 3 to 5 million estimated severe cases (World Health Organization, 2004)

and 291,243 to 645,832 estimated seasonal influenza-associated respiratory deaths an-

nually (Iuliano et al., 2017). A study conducted by Lozano et al. (2013) similarly re-

ports influenza is estimated to be responsible for 444,000 to 553,000 worldwide deaths

annually. (There are many existing mortality estimation methods in the literature,

thus producing many estimates of influenza-associated mortality.) The World Health

Organization declared the first pandemic of the twenty-first century during the 2009

H1N1 influenza season (Gran et al., 2013).

The elderly are the most likely to be hospitalized or die from influenza illness.

They account for up to 90% of influenza-related deaths per season (Nair et al., 2011).

Deaths among the elderly and those chronically ill are a significant portion of the

annual deaths associated with influenza, specifically those with chronic cardiopul-

monary disease. Chronically-ill individuals include those with chronic heart or lung

disease, asthma and HIV/AIDS (Nair et al., 2011). Among children less than five

years of age, influenza is responsible for 28,000 to 111,500 deaths (Nair et al., 2011).

Based on existing literature, seasonal epidemics affect 20 to 30% of children and 5 to

10% of adults (Kuster et al., 2011). World Health Organization (2012) recommends

influenza vaccination for high risk groups such as pregnant women, children ages 6

to 59 months, elderly individuals, select chronically-ill individuals and health care
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professionals. To alleviate some of the disease burden globally, influenza vaccination

has been promoted and expanded in many countries. Countries are working toward

a significant reduction in morbidity and mortality caused by the influenza illness.

While warmer regions of the world are affected by influenza throughout the year

suggesting climatic influences in disease dynamics, temperate countries, like the United

States, typically anticipate flu season once a year during the winter months (Moura,

2010).

3.1.2 USA Impact

Each year, influenza is estimated to be responsible for 36,000 deaths, 225,000

hospitalization and $87 billion in health care costs in the United States, according

to the Centers for Disease Control and Prevention (CDC) (Thompson et al., 2003,

2004). In 2009, President Barack Obama declared a national emergency in the USA

as a result of the 2009 H1N1 pandemic. The outbreak was declared a pandemic due

to its rapid increase in incidence and the limited availability of healthcare resources

(Larson and Heymann, 2010). The availability of appropriate vaccinations could have

limited the number of people infected. Kostova et al. (2013) in their study of influenza

and hospitalizations averted in the United States found that vaccination averted 5

million influenza infections and 40,400 hospitalizations during the 2010-2011 influenza

season.

The measure of disease burden is based on a proxy for influenza incidence because

it is impossible to test an entire population for infection. The incidence proxy is often

defined as the proportion of positive specimens for the influenza isolate of interest

of patients seeking treatment for influenza-like-illness (ILI). While the number of

individuals experiencing ILI represents the sick population who get specimens tested,

the positive result of a specimen test indicates ILI that are indeed influenza-related.
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3.1.3 Motivation

Estimates of influenza-associated death are important for policy makers to make

informed decisions about resource allocation when challenged with public health

demands and to expand our understanding of the impact of influenza on popula-

tions. Two simple approaches to estimate influenza-associated excess mortality in-

clude counting influenza-confirmed deaths and modeling the national mortality rate

using the primary cause of death in conjunction with nationally representative in-

fluenza surveillance (Gran et al., 2013; Nicoll et al., 2012). Counting laboratory-

confirmed influenza deaths or ICD-coded influenza deaths may underestimate the

true burden because testing for influenza is not always performed and most deaths

are not coded as influenza due to lack of testing or diagnosis of another cause of

death (Gran et al., 2013; Nicoll et al., 2012; Gran et al., 2010). Death may occur

several weeks after infection, and by the time the patient develops severe complica-

tions, influenza virus may not be detectable, and not listed as a cause of death on

records. For example, if a patient is tested for influenza and experiences a heart

attack, their cause of death will most likely be attributed to cardiovascular causes.

Using influenza surveillance data to calculate influenza deaths directly may also result

in a biased sample because children, older adults, individuals with chronic conditions,

or patients with severe symptoms are more likely to consult a health professional and

to be tested for influenza than other population groups.

More recently, complex statistical models are increasingly being used to estimate

influenza-associated excess mortality, where excess deaths are calculated as a pro-

portion of the total number of deaths. Specifically, these models first estimate the

temporal association between mortality and proxies for influenza activity (if avail-

able), adjusting for temporal trends or environmental variables (e.g. temperature,

dew point, air pollution, or humidity), or through the use of splines (Goldstein et al.,

2012; Cohen et al., 2017). Proxies of influenza activity include information from inpa-
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Figure 3.1: Influenza-related Mortality Calculation based on the mean trend of total
deaths and mean trend of baseline deaths.

tient or outpatient influenza surveillance systems, which typically provide the number

of specimens tested for influenza and the number that test positive for influenza virus

types or subtypes (Goldstein et al., 2012). Influenza-associated excess mortality is

calculated by taking the difference between the estimated total death count and a

counterfactual baseline death count where influenza activity is assumed to be absent.

A graphic representation can be found in Figure 3.1.

However, analyzing time-series count data presents two analytic challenges. First,

mortality time-series exhibit temporal autocorrelation and models that do not ac-

count for autocorrelation may result in incorrect standard error estimation (biased

downward) (Kim and Yeasmin, 2005; Schwartz, 1994). For example, the mortality

at the current time point is influenced by mortality at previous time points. Second,

overdispersion is common when death count data are modeled using Poisson log-

linear models, assuming equal mean and variance. While different statistical models

have been used to estimate the disease burden of influenza from time-series data,

only a few modeling techniques account for both autocorrelation and overdispersion.

Methods used to account for overdispersion include quasi-Poisson (Gran et al., 2013)

and negative binomial models (Feng et al., 2012). To account for autocorrelation in

the data, autoregressive integrated moving average models (Thompson et al., 2009;
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Stroup et al., 1988) and bootstrapping methods have been used (Goldstein et al.,

2012).

Using United States (U.S.) weekly respiratory vital records mortality data from

1981 to 2014 as a case study, our objective was to evaluate two approaches for jointly

addressing autocorrelation and overdispersion. First, we extended a parametric boot-

strap approach developed for a linear regression model (Goldstein et al., 2012) to a

negative binomial model to account for overdispersion and autocorrelation in the

residuals. Second, we considered a Poisson random intercept model with autoregres-

sive random effects in the mean structure to account for overdispersion. Finally, we

compared the first two approaches with simple methods for calculating influenza-

associated excess deaths and conducted a simulation study.

3.2 Methodology

3.2.1 History of Influenza Mortality Models and Current

Methods

There are many models that have been used to estimate influenza-associated mor-

tality. Statistical modeling has been used to assess the disease burden of influenza

for the last few decades (Gran et al., 2013). Some use viral surveillance data , while

others use no surveillance data at all. Generally, each model uses some variation of

information to determine a baseline number of deaths that would occur in the absence

of influenza.

The Serfling model is a linear regression model technique used when viral surveil-

lance data is not available (Serfling, 1963; Simonsen, Clarke, Williamson, Stroup,

Arden and Schonberger, 1997; Simonsen et al., 2005). The model uses the mortality

rate as the outcome and cyclic and harmonic terms as the covariates (Muscatello

et al., 2008). Simonsen, Clarke, Williamson, Stroup, Arden and Schonberger (1997)
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suggestd that five years of baseline data are required for accuracy of the model. This

method is said to be appropriate for temperate countries and in modeling influenza

epidemics and pandemics (Serfling, 1963; Simonsen, Clarke, Williamson, Stroup, Ar-

den and Schonberger, 1997; Simonsen et al., 2005; Thompson et al., 2006). A limita-

tion of this model is its assumption of the seasonal pattern of non-influenza mortality

being the same each year (Muscatello et al., 2008).

Goldstein et al. (2012) introduced a variation of the Serfling model. The method

involved bootstrapping a linear regression model of death counts data with viral

surveillance included as predictors. The bootstrap method, introduced by Goldstein

et al. (2012), can be divided into two parts. The first bootstrap is used to estimate

the bias-corrected auto regressive parameter (Kim and Yeasmin, 2005). Without

adjusting for the autoregressive (AR) structure of the model residuals, the estimate

is found to be biased downward (Kim and Yeasmin, 2005; Schwartz, 1994). Once the

model is setup and fit, the best autoregressive structure can be determined and we let

ρ represent the correlation between the residuals at the selected AR structure. For

example, if an AR(1) structure is assumed ρ̂ is the correlation between th residual at

the time point t and time point t − 1. The bias of the autoregressive parameter is

estimated via bootstrap by defining the difference between the residual at time t and

the product of ρ and the residual at time point t−1. The second bootstrap is used to

correctly estimate the regression parameters(Kim and Yeasmin, 2005). In this step,

similar procedures are followed as the aforementioned bootstrap, but replacing the

estimate of ρ with the bias-corrected ρ value. (To date the bootstrapping approach

has been restricted to linear regression models.)

In order to determine the autoregressive structure of the bootstrap models’s resid-

uals, the partial autocorrelation coefficient function (PACF) is used. The PACF is

a measure of conditional correlation between the residuals at each time point. An

AR(1) structure of the model residuals means the current residual is function of the
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previous time point. Similarly, an AR(2) structure for the model residuals translates

to the correlation between the current residual and the residuals at two time points

back given the knowledge of the time point one time point back.

Similar to the Serfling model, generalized additive models (GAM) is also a lin-

ear model with mortality rate as the outcome. The linear model can be represented

as a sum of smoothed functions of covariates. An advantage of smoothing func-

tions is the ability to examine non-linear effects of a covariate and to control for

confounders flexibly. Muscatello et al. (2013) employed a semi-parameteric GAM to

replace seasonal harmonic terms with a smoothing spline of time. This model was

able to improve model fit up to 20% compared to the Serfling model (Muscatello

et al., 2013). Estimates of influenza-related mortality have also been obtained using

a Bayesian approach (Foppa et al., 2015).

Most recent literature includes Poisson and negative binomial regression models

for influenza-associated death counts. These count regression model utilizes viral

surveillance data by influenza type and subtype, adjusting for temporal trends and

environmental variables (Goldstein et al., 2012) to estimate influenza mortality contri-

bution. This model is said to not be particularly useful for pandemics, but does have

the benefit of adjusting the model for RSV (respiratory syncytical virus) circulation

for temperate countries during epidemics (Thompson et al., 2003, 2006).

Current modeling techniques can estimate the mortality due to influenza, but are

limited by questionable methodological assumptions and data uncertainty (Goldstein

et al., 2012). Thus, in response to these knowledge gaps, we propose research to

evaluate the uncertainty around estimates of influenza-associated excess mortality

specific to a country. We propose to employ both a hierarchical Bayesian framework

and bootstrap methods to estimate influenza-related excess mortality and its precision

for each influenza season.
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3.2.2 US National Mortality, Population, and Influenza Surveil-

lance Data

We obtained the weekly count of respiratory coded deaths for the U.S. population

during the period 19812014 for three age groups (<65, 65-74, ≥75 years) from the

National Center for Health Statistics. Each death in the U.S. is registered in the

National Vital Statistics System and is systematically coded using the International

Classification of Diseases, Ninth Revision (ICD-9) or International Classification of

Diseases, Tenth Revision (ICD-10) codes. For this analysis, we used respiratory deaths

that were coded from 460 to 519.9 in ICD-9 and from J00 to J99 in ICD-10. Weekly

U.S. population count for each age group was defined as the mid-year estimate from

the Census Bureau International Database. National influenza virus surveillance data

were obtained from the U.S. Centers for Disease Control and Prevention (CDC). The

weekly influenza percent positive was calculated as the number of specimens testing

positive in a given week divided by the total number tested in the same week and was

used as proxies for influenza activity. Each influenza proxy is lagged by one week to

account for the time lapsed between infection and detection. These proxies included

the weekly percent positive for influenza virus A(H1N1), influenza A(H1N1)pdm09,

influenza A(H3N2), and influenza B. The dominant circulating strain each season is

defined as the subtype with the largest proportion of positive specimens (Figure B.3).

3.2.3 Time-Series Model for Estimating Influenza-Associated

Deaths

We first describe the time-series model for estimating influenza-associated mortal-

ity (Gran et al., 2013; Goldstein et al., 2012; Thompson et al., 2009; Muscatello et al.,

2013) which was compared to models that account for overdispersion and autocorre-

lation. In this model, let Yt denote the total respiratory mortality for a specific age
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group for week t = 1, . . . , T . The negative binomial log-linear model for the expected

number of total respiratory deaths E(Yt) is given by:

logE(Yt) =logαt + β0 + g(t) + β1sin(
2πt

52.179
) + β2cos(

2πt

52.179
)+

β3H1N1t + β4H3N2t + β5H1N1pdm09t + β6Bt

(3.1)

where the model includes

� the at-risk population size αt as an offset,

� a weekly long-term temporal trend g(t) (e.g. polynomial functions),

� a seasonal trend (here specified as cyclical harmonics with a period of 52.179

weeks), and

� influenza subtype percent positive (H1N1t, H3N2t, H1N1pdm09t, Bt).

Specific model specifications for US data are given in the Application to the Subsec-

tion 3.2.6 of US Mortality Data.

Week-specific influenza-associated excess deaths were estimated by taking the dif-

ference between (1) expected respiratory deaths (Ŷt) based on the observed covariate

values and estimated regression coefficients and (2) expected baseline deaths (Ŷbase,t).

Baseline mortality was determined by removing the impact of the influenza subtype

variables in the model by setting the values of influenza proxies to zero. Week-specific

deaths were summed to calculate estimates for each influenza season. Standard errors

were derived from the variance-covariance matrix of the regression coefficients using

the Delta method.

3.2.4 Accounting for Temporal Correlation Using Residuals

The first method we examined to account for temporal autocorrelation incorpo-

rates the autocorrelation of the residuals using a parametric bootstrap (Efron and
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Tibshirani, 1994). Temporal autocorrelation in the residuals refers to the correlation

between the residuals at adjacent points in time (e.g., correlation dependence be-

tween estimates from the previous week(s) to the current). We extended the method

described previously by Goldstein et al. (2012) for a Normal distributed outcome to

generalized linear models for better handling count outcomes (e.g. using Poisson or

negative binomial distributions).

Specifically, we let et denote the Pearsons standardized residual at time t defined

as (Yt−Ŷt)√
V ar(Ŷ )

. We assumed that et follows an autoregressive (AR) structure where the

residual at each week is dependent on previous weeks residuals. Standardized residuals

were used to better reflect the normality assumptions imposed on etin the AR model.

The AR model of the Kth-order, denoted as AR-K, is given by et =
∑K

k=1 ρket−k +ut,

where ρk is the autoregressive parameter associated with the residual at week lag k,

and ut is a time-series of independent Normal variable ut ∼ N(0, σ2). To determine

the order of the AR model, k, the partial autocorrelation function (PACF) can be

used to determine the conditional correlation between the current and a specified

time point conditional on the time points between.

After the initial model estimation using Equation 3.1, the parametric bootstrap

procedure was conducted in two stages. The first stage of the bootstrap procedure was

used to estimate the autoregressive parameter because bias in regression coefficient

estimates may be present when fitting the initial model while incorrectly assuming

temporal independence, ignoring the present dependence (Kim and Yeasmin, 2005;

Schwartz, 1994).

We describe the parametric bootstrap procedure for the AR-1 residual structure,

and the procedure extends similarly to different AR orders. In the first stage, an

AR parameter estimate ρ̂ is obtained based on standardized residuals, et, from the

initial model fit. Then for each week t, define ut = et − ρ̂et−1 (the error terms of

the autoregressive model). For each bootstrap iteration i, we obtained a sample of
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u
(i)
t equal to the total number of weeks in the time-series dataset by resampling with

replacement of the collection of ut, and calculated the correlated residuals e
(i)
t =

ρ̂e
(i)
t−1 + u

(i)
t . Bootstrap total death count outcomes were calculated as Y

(i)
t = Ŷt +

ẽ
(i)
t where ẽ

(i)
t is the back-transformed raw residual (Yt − Ŷt) from the resampled

standardized residual. A new set of standardized residuals and AR parameter ρ̂(i)

was obtained by regressing Y
(i)
t on the full set of covariates using Equation 3.1. The

above step was repeated 10,000 times to obtain a bootstrap estimate ρboot defined as

ρ̂boot = 2ρ̂− ρ̄ , where ρ̄ is the mean of ρ̂(i) across bootstrap iterations.

The second stage of the bootstrap procedure was used to estimate the regression

coefficient parameters and their variance-covariance accounting for residual temporal

correlation using the estimated AR coefficient from Stage 1. In the second stage of

the bootstrap process, we used the same approach as in Stage 1 to calculate ut, u
(i)
t ,

e
(i)
t , and Y

(i)
t , however, one difference was that the bootstrap AR parameter ρboot was

used instead of ρ̂. For each bootstrap iteration, we regressed Y
(i)
t on the full set of

covariates and used the resulting regression coefficients to calculate season-specific

influenza-associated excess deaths, with the 95% confidence interval defined as the

2.5 and 97.5 percentiles of the bootstrap samples. Detailed step-by-step algorithms

for the AR-1 residual structure is provided in Appendix B.

3.2.5 Accounting for the Temporal Correlation Using the

Mean

We also considered a second model-based approach that allows for temporal cor-

relations directly in the mean structure using a random intercept model. In this

approach, we extended the mean structure defined in Equation 3.1 through the addi-

tion of a random intercept at each time point, θt, and assumed a Poisson distribution

of the outcome. Preliminary analyses using a negative binomial model with random

intercepts indicated that the additional overdispersion is negligible. Therefore, to ac-
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count for temporal correlation in the mean using a random intercept model, a Poisson

model was chosen over a negative binomial model. We assumed that θt follows an

AR structure similarly to the method described when accounting for the temporal

autocorrelation using the residual. The random intercept can be interpreted as the

baseline log relative risk associated with weekly mortality counts not explained by in-

fluenza activity and other covariates. Estimation was accomplished under a Bayesian

framework to account for the estimation uncertainty of random effects. The regres-

sion model parameters (βs), and the initial random effect (t = 1) were assumed to

have flat Normal priors with mean zero and variance 1x104. The AR parameter(s)

were assumed to have a uniform distribution between -1 and 1, while the variance

parameter σ2 was assumed to have a non-informative inverse Gamma distribution

(shape=0.1, scale=10).

3.2.6 Application to US Mortality Data

We applied the two approaches to account for temporal autocorrelation in the

analysis of weekly U.S. mortality data. Influenza season was defined as beginning

at the 27th week of each year for the US (approximately July 1 to June 30), using

the Sunday-Saturday designation of a week. A negative binomial distribution was

assumed for Yt to address overdispersion (Foppa et al., 2015). Influenza viral terms

were lagged by one week to account for delay between influenza infection and death.

Models were fit separately for each age group and up to a 4th power polynomial

was used to account for weekly long-term temporal trends, g(t), over the 33-year

study period. For all methods accounting for autocorrelation, both AR-1 and AR-2

correlation structures were examined. The estimated seasonal values of influenza-

associated mortality and the 95% confidence/credible intervals were truncated at

zero if the estimated value was less than zero (Thompson et al., 2009; Hardelid et al.,

2013).
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In addition to the proposed methods, we also investigated two simple methods

to obtain influenza-associated mortality estimates and standard error for compari-

son: the Delta method (Severini, 2005) and the Newey-West Delta method (Newey

and West, 2017). The Delta method is a technique for approximating moments of

functions of random variables assuming the function of interest is continuously differ-

entiable and asymptotically Normal. The Delta method does not account for temporal

autocorrelation, but does account for overdispersion when negative binomial regres-

sion is used. By asymptotic theory and the conditions of the Delta method, we know

that the negative binomial regression used to approximate influenza-associated mor-

tality can be approximated by the Delta method. The Newey-West Delta approach is

an alternative procedure to compute sandwich robust standard errors for time-series

data in the presence of heteroscedasticity and residual autocorrelation of a known lag.

Once autocorrelation is determined to be in the residual structure of the regression

model, ignoring this would be incorrect and often biased downward.

We also conducted simulation studies in which the true influenza-associated mor-

tality was assumed known to compare the accuracy and precision of various methods.

Weekly mortality data for ages ≥75 years were simulated using regression coefficients

(i.e. time trends and viral activities) from the Poisson model with temporal autocor-

related random intercepts. We examined two simulation scenarios that differed by

how the random intercepts were generated. The first scenario generated random in-

tercepts using estimated parameters from the AR structure. Specifically, a time-series

of θt was generated based on the posterior mean of the autoregressive parameter ρk

and the variance σ2. The second simulation scenario generated data using the poste-

rior means of the estimated random intercepts. Hence, the first scenario assumed the

auto-correlated random intercepts are independent of the other temporal covariates

in the model. In the second scenario, random intercepts may reflect residual temporal

trends not accounted by other covariates.
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Ten simulated datasets were generated for each scenario. The simulated data were

modeled using the four analytical strategies under consideration (Delta, Newey-West

Delta, autocorrelation within the residuals, autocorrelation within the mean). Esti-

mates across simulated datasets were summarized by the mean of influenza-associated

mortality and 95% confidence/credible interval.

All analysis was performed with R software, version 3.2.1 (R Core Team, 2017).

Bayesian estimation was accomplished using the Markov Chain Monte Carlo (MCMC)

technique performed with JAGS (Plummer, 2012). Five thousand posterior samples

were used for inference from a total sample of 20,000 MCMC iterations, after a burn-in

of 5,000 iterations. JAGS code is available in Appendix B.

3.3 Results

Overall, the annual percent positive for all influenza subtypes when specimens are

tested ranged from 426%. Of the 33 observed influenza seasons, Influenza A(H3N2)

was the dominant circulating strain for 17 seasons, Influenza B for 9 seasons, In-

fluenza A(H1N1) for 4 seasons and A(H1N1)pdm09 for 3 seasons. A summary of

the specimens testing positive for influenza viruses and the predominant circulating

subtype is included in Appendix B Figures B.3, B.2, and B.3. From 1981 to 2014,

the annual rate of respiratory deaths for all ages for the total population ranged from

60.6 to 98.7 per 100,000.

Estimates of parameters governing the temporal autocorrelation in weekly deaths

are summarized in Figure B.1. For example, ρ1 or ρ2 value can be interpreted as the

correlation of the respiratory deaths lagged by 1 or 2 weeks, respectively. All three

age groups demonstrated temporal autocorrelation in the mean or in the residual,

with stronger correlation observed when autocorrelation was modeled via the mean.

In AR-2 models, the lag-2 autocorrelation is considerably weaker than the lag-1. The
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two youngest age groups were determined to have an AR-1 structure given that the

95% credible intervals of ρ2 included zeros when autocorrelation was modeled in the

means. A graphical display of the autocorrelation relationship can be found in Figure

B.4.

Overall, we found that accounting for temporal correlation in the residuals gave

regression coefficient estimates similar to those obtained from the Newey-West and the

Delta methods (see Figure B.2). We expect the Delta and Newey-West Delta methods

to have the same point influenza-associated mortality estimates because these two

methods do not influence the estimation of regression coefficients. However, the

Newey-West method resulted in large increases in standard errors, as shown in Figure

B.2 (sometimes more than 50% as in the 0-65 age group). Accounting for temporal

correlation in the means gave smaller regression coefficient estimates compared to

the other methods, except for the A(H1N1)pdm09 estimate among those aged 75

or greater. Standard errors were also larger when the autocorrelation was modeled

in the means versus the residuals. The choice of AR-1 versus AR-2 autocorrelation

structure did not have a large impact on coefficient estimates or their standard errors.

Regression coefficients for the influenza subtypes estimated from different methods

are summarized in Figure B.2.

For brevity, Figure B.1 shows estimated influenza-associated respiratory mortality

for seasons 2003 to 2014 for each age group estimated using different methods. As

determined by the estimated autocorrelation parameters in Figure B.1, we present

estimates from an AR-1 model whenever the confidence or posterior interval of theρ2

parameter includes zero. The AR-1 structure is presented for the Newey-West Delta

method because lag-1 is significant for all age groups. Accounting for temporal au-

tocorrelation in the mean gave influenza-associated mortality estimates that are con-

sistently smaller, compared to methods that account for temporal autocorrelation

in the residual methods, including the Delta and Newey-West Delta methods. The
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Figure 3.2: Influenza-associated Excess Mortality for each age group by season, 2003-
2014
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most significant difference between methods occurred within the oldest age group (≥

75 years). Differences in interval length closely follow the standard error associated

with the estimated regression coefficients in Figure B.2. For example, for <65 year

age group, the smallest confidence interval was associated with the Delta method,

while the largest interval was produced by the Newey-West Delta method (with the

exception of season 2006/2007). For 6574 year age group, the smallest confidence in-

terval was typically produced by the Delta method, while none of the other methods

consistently produced the largest interval. Our analyses also highlighted the increase

in deaths during the 2009/2010 season among the youngest age group because of the

emergence of the A(H1N1)pdm09 virus. The 2012/2013 season increase for the two

oldest age groups is likely due to a mismatch in the vaccine, causing low vaccine

effectiveness for those ≥ 65 years of age McLean et al. (2014). Estimates and 95%

confidence or credible intervals are provided in Appendix B FigureB.4.

Results from the simulation study for both scenarios are provided in Tables B.5

and B.6. When autocorrelated random intercepts were generated independently of

other covariates, all four methods estimated season-specific influenza-associated mor-

tality with minimal bias from the truth. However, the Newey-West method gave a

large standard error, followed by accounting for autocorrelation in the means, ac-

counting for autocorrelation in the residuals, and the Delta method. However, when

random intercepts were simulated based on the US data, methods that only account

for autocorrelation in the residuals overestimated season-specific influenza-associated

mortality. This implies that the use of random intercepts may capture additional

temporal variability in mean mortality counts not accounted for by the long-term

and seasonal trends. Hence, the exclusion of random intercepts may result in residual

confounding for the influenza proxy coefficients.
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3.4 Discussion

We proposed two approaches to estimate influenza-associated excess mortality us-

ing time-series analysis when temporal autocorrelation is present. The first approach

specifies temporal correlation directly in the residuals; while the second approach in-

duces temporal correlation by using time-dependent random intercepts in the mean

structure. Both approaches account for overdispersion in the time-series count data.

In our US respiratory mortality case study, we found that accounting for autocorrela-

tion using either method resulted in larger uncertainty intervals compared to estimates

that ignored autocorrelation.

The two simpler methods, Delta and Newey-West Delta, were less than optimal

compared to our two proposed methods. The Delta method is not appropriate for

weekly time-series of deaths because it assumes autocorrelation does not exist in the

residuals, which will results in smaller standard errors and incorrect quantification

of uncertainty for the estimate of interest (Kim and Yeasmin, 2005; Schwartz, 1994).

The Newey-West Delta method also accounts for autocorrelation in residuals and

is computationally faster. However, it requires the specification of a maximum lag

for the autocorrelation structure that determines the weighting scheme (Newey and

West, 2017). Other weighting schemes exist (Andrews, 1991; Lumley and Heagerty,

1999) and their finite sample behaviors may warrant further investigations.

Overall, smaller mortality estimates were associated with models that account

for autocorrelation in the mean using random effects. We note that the means from

these two approaches should be interpreted differently: a marginal interpretation

(over all weeks) for the residual approach versus a conditional interpretation for the

random effect model. However, in the simulation study, we found that when auto-

correlated random intercepts were generated independently of other covariates, the

influenza-associated excess mortality estimates were comparable (Appendix B Table

B.5). Hence, the smaller excess death estimates associated with the random effect
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model may be due to better control for temporal residual confounding of the viral

proxy associations. The resulting influenza-associated mortality estimates increase

and decrease similarly to seasonal estimates reported in Morbidity and Mortality

Weekly Report (MMWR) (n.d.), while the mean method often provides a lower esti-

mate.

Another difference between the two approaches is that the residual method en-

ables researchers to specify the mean model and the variance model separately. This

has the advantage of defining more complex variance structures as quasi-likelihood

methods can be employed. However, this approach also assumes that the mean model

is correctly defined. Alternatively, the use of random effects allows for a more flexible

mean structure because the baseline mortality rate is allowed to vary across time

points. However, this likelihood-based approach requires the specification of the ran-

dom effect distribution. Another limitation is that the use of the flexible random

effects may induce a bias towards the null for the influenza proxies, especially when

these covariates are subject to measurement error (Reich et al., 2006).

While differences in the two approaches exist, both do not rely on large sample

asymptotic and the computation time for each is similar. However, the random

effect method may be more accessible due existing software for hierarchical models

with dependence random effects (e.g. JAGS). The residual approach may be helpful

when long-term temporal trends and unmeasured confounders are believed to be

adequately accounted for in the model. While the random effect approach is more

conservative and is recommended when the model lacks predictors dependent on long-

term temporal trends. In practice, determining which method is most appropriate can

be based on the confidence in the mean structure being correctly specified. Analyses

may benefit from exploring both methods.

Our methods to account for autocorrelation do not account for other potential

limitations associated with estimating influenza-associated excess mortality. To start,
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our influenza-associated excess death results may be influenced by potential measure-

ment errors in influenza activity data. Additionally, the likelihood that an influenza-

infected person seeks medical care or is tested for influenza is small (Cauchemez et al.,

2012). As a result, the sample of influenza proxy measures does not represent what

is occurring in the population. Furthermore, prior to the 2008/2009 influenza season,

the commonly used influenza detection tests were not as sensitive to the influenza

virus as current laboratory testing methods. As a result, the percent positive over

time may have increased to due to this change.

As more countries continue to leverage improvements in influenza virus surveil-

lance with increasing availability of vital records data, time-series modeling may be

used to estimate influenza-associated excess deaths or deaths due to any cause. A

time-series modeling approach is likely to become more prevalent with increasing

availability and quality of administrative databases and influenza surveillance sys-

tems. We describe several solutions to some of the challenges associated with these

type of analyses. While US respiratory mortality served as the motivating case study,

the modeling approaches could be widely applied in other settings. The overall rec-

ommendation is that methods that account for overdispersion and autocorrelation

should be employed in estimating the influenza-associated health burden with time-

series data.
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Chapter 4

Addressing Long-term and

Seasonal Trends in

Influenza-Associated Mortality

Model



59

This chapter is joint work with Dr. Howard Chang and Dr. Danielle Iuliano.

4.1 Introduction

Data sequentially recorded at regular time intervals is defined as time-series data.

Time-series data are often collected in econometrics and biomedical research in order

to answer critical questions. While the focus of the econometrics discipline is to fore-

cast future changes in the time-series data (i.e. stock market prices), the focus of the

biomedical analysis is largely to determine associations among time-series variables

(Bhaskaran et al., 2013). Specifically, this chapter explores associations among week-

to-week variation in influenza activity levels by subtype and respiratory mortality.

Influenza data is unique in that the incidence flucuates over time. Over the course

of a year incidence will peak during influenza season and drop once the infectious

period has ended (Lopman et al., 2004; Domı́nguez et al., 2007). The influenza

proxies represent the exposure of the population. Because influenza activity varies

by season, it can also be confounded by season. In other words, the relationship

between respiratory mortality and influenza proxies may be confounded by factors on

a similar timescale. See Figure 4.1 for graphical representation. In additon, influenza

time-series data is not independent at each time point. Autocorrelation exists in

the data. Long-term patterns and seasonality heavily influences our data. In our

proposed analysis, we aim to control for the long-term and seasonal trend to explain

the short-term associations.

There are many approaches to analyze influenza time-series data with a focus

on removing the confounding. Common approaches can be categorized as regres-

sion models, time-series methods, non-influenza years approach, and non-influenza

seasons of the same year approach (Jackson, 2009). Less common approaches, like

ARIMAX (a combination of ARIMA and time-series for noninfluenza mortality pre-
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Figure 4.1: Graphical representation of confounding

dictors), LOESS seasonal decomposition (separates time-series into trend, seasonal

and remainder effect; the seasonal effect can be regression) (Partonen et al., 2004)

and artificial neural networks (Guan et al., 2004), exist but will not be highlighted

here.

Time-series regression analysis is not entirely different from general regression

analysis although some key features of the data (autocorrelation and confounding)

must be addressed in the analysis. To quantify short-term effects of environmen-

tal exposures (i.e. air pollution, pollen dust, or other weather variables) on health

outcomes (i.e. mortality, myocardial infarction, or disease-specific hospitalization),

many studies have employed time-series regression (Bhaskaran et al., 2013; Jiménez

et al., 2010; Bhaskaran et al., 2010; Basu, 2009). It is an alternative to explain the

short-term variation of an outcome, in our case respiratory deaths, as the exposure

changes (i.e. influenza activity). The regression approach allows control over multiple

potential confounding factors.

An often used regression method is the Serfling method, introduced by Robert

Serfling as a way to model cyclic regression (Serfling, 1963; Izurieta et al., 2000;

Simonsen, Clarke, Stroup, Williamson, Arden and Cox, 1997). The Serfling model

uses only functions of time as explanatory variables for the time-series outcome. In
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order to use the Serfling model, one must assume the amplitude of the mortality cycle

is consistent across peaks and troughs. This means we assume winter maximums in

mortality relative to the average mortality is equivalent to the summer minimums.

In addition, we assume the seasonal confounder of the relationship between time and

mortality has a consistent timescale and magnitude across seasons (Jackson, 2009).

An advantage of this method is its use of changes in mortality during the fall and

spring to inform estimates of non-influenza mortality. While this method requires

little data compared to other methods, it does require several years worth of data

for stable inference. A significant limitation of this approach is that all regression

assumptions may not hold.

To address the confounding that may be present in the Serfling model, researchers

choose to include explanatory variables to adjust for the potential confounding to

more accurately measure mortality rate (Jackson, 2009; Sprenger et al., 1989). Vari-

ables such as rates of respiratory disease, circulation of non-influenza viruses, tem-

perature, and other weather measure are seasonal confounders which vary seasonally

in incidence and timing. In this regression model investigators assume they have

included relevant and properly measured confounder in the model. While this model

controls seasonal factors that are potential confounders, it is not often that data on

potential confounders is collected or even collected on a timescale useful to be in-

cluded in the model. Similar to the Serfling model, a model including explanatory

variables cannot always assume the regression assumptions will hold and several years

of data are required in order to fit this model.

As an extension of the previous models and a way to better measure influenza-

associated mortality, a regression model including influenza circulation as a predictor

is employed (Jackson, 2009; Thompson et al., 2003). This model is beneficial be-

cause it allows the explicit modeling of the contribution of influenza on the observed

mortality. By including influenza circulation in the regression model, we assume the
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influenza surveillance is sufficient to represent the disease burden of influenza on the

population. In addition, we assume the influenza surveillance is consistent across

seasons and the subpopulation being modeled. This model requires comprehensive

surveillance data and makes assumptions about the temporal lag between influenza

infection and influenza-related death. Influenza-associated mortality is determined

by taking the difference between the expected total deaths and expected baseline

mortality (expected deaths when impact of influenza proxy terms are removed from

the model).

In Jackson (2009)’s comparison of the regression methods, he concluded that the

choice of regression model strongly impacts the estimated influena-associated excess

mortaltiy. The regression models that include predictors in addition to time almost

always estimated lower influenza-associated deaths compared to the Serfling regres-

sion model. This suggests that the Serfling regression method may falsely attribute

noninfluenza related deaths to influenza. Regression models adjusting for potential

confounders are also more flexible in that they don’t assume consistent strength and

timing of confounder across time.

According to Bhaskaran et al. (2013), once selecting a regression model to employ

the challenges within the model are controlling for seasonality and long-term trends,

considering immediate and delayed effects between the exposure and the outcome,

confounding, and adjusting for delayed exposure effects. This research addresses

confounding by accounting for long-term and seasonal trends. Generally, there are

three ways of accounting for long-term and seasonal trends. The simplest approach

is to stratify the model by time indicator variables. Another option is to use periodic

functions of time, such as sine and cosine terms, to smoothly model regular cycles.

While this option can smoothly long-term trend with relatively few parameters, it

forces the seasonal pattern to be the same each year. In response to this limitation,

many researcher add polynomial functions of time to the model. The final option is
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spline functions of time. Spline can smoothly capture the trends and allow changes

in the seasonal trend each year. A graphical display of each approach is shown in

Figure 4.2.

Influenza-associated mortality models have included splines in various ways. Some

models include splines as a function of time from begin to end of data period (Mus-

catello et al., 2013; Rizzo et al., 2007; Yang et al., 2012; Nielsen et al., 2011), others

as a function of an environmental factor (i.e. temperture, humidity) (Aungkulanon

et al., 2015), a function of certified influenza deaths (Wong et al., 2015) and function

of seasonal week (week 1 to 52) (Goldstein et al., 2012). Because no gold standard

exist in assessing when long-term trend and seasonality are fully accounted for, mul-

tiple measures have been used in studies. But once the trends are accounted for the

residual variation can be used investigate the relationship between the outcome and

exposure.

In this paper, we provide a specific model characterization of model choice and

model uncertainty in time series studies of influenza activity and respiratory mor-

tality with a focus on adjusting seasonal and long-term trends confounding. First,

we define our model using parametric (natural cubic) splines to model the smooth

function of time. Then, within a simulation study we explore goodness-of-fit mea-

sures to select the degrees of freedom of the splines and evaluate each measure under

different statistical frameworks. Finally, we apply our confounding adjustment to

the US influenza mortality dataset. To summarize the impact of our approach, we

quantify model uncertainty in short-term effect estimates of influenza activity effects

and influenza-associated mortality estimates.

In our model we account for both the seasonal and long-term trends in the data

as we did in Chapter 3. The long-term trend accounts for increases or decreases

in the data over time, while seasonal trend accounts for changes over time within

a fixed period. Without including both trends, we may miss patterns in the data.
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Figure 4.2: Visualization of the three approaches to account for long-term and sea-
sonal trends in the data from Bhaskaran et al. (2013)

Our existing mortality model from Chapter 3 is updated with natural cubic spline

functions to account for the long-term temporal trends and seasonal trends. For ages

<65, our weekly time-series negative binomial regression models is used to assess the

relationship between respiratory death counts and flu activity.

The negative binomial distribution is assumed for respiratory deaths to address

overdispersion. The natural cubic spline basis function is used for the time trends.

Recent models include harmonic functions for the cyclic seasonal component, and

polynomial terms to describe the long-term trend are each replaced with a single

function of time. Thus, our model will use two functions of time, one to address the

long-term trend and the other to address seasonality. The spline terms model trend,

which is believed to control for confounding effects.

The level of smoothness the function provides is integral to how the time trend
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will capture the relationship between influenza activity and mortality. The effects

of the levels of smoothness for long-term and seasonal trends on the beta regression

coefficient of influenza activity, a measure of impact on the respiratory deaths, will

be explored. Secondly, effects of the level of smoothness on the influenza-associated

mortality will be investigated and compared to those obtained in Chapter 3.

4.2 Application to US Mortality Data

To illustrate how our approach can be applied to a realistic influenza dataset, we

use United States data provided by the U.S. Centers for Disease Control and Pre-

vention (CDC) comprising of weekly time-series of respiratory mortality, population

count and influenza surveillance. The weekly count of respiratory coded deaths for

the U.S. population during the period 1981–2014 for three age groups (<65, 65-74,

≥75 years) from the National Center for Health Statistics. Each death in the U.S. is

registered in the National Vital Statistics System and is systematically coded using

the International Classification of Diseases, Ninth Revision (ICD-9) or International

Classification of Diseases, Tenth Revision (ICD-10) codes. For this analysis, we used

respiratory deaths that were coded from 460 to 519.9 in ICD-9 and from J00 to J99 in

ICD-10. Weekly U.S. population count for each age group was defined as the mid-year

estimate from the Census Bureau International Database. National influenza virus

surveillance data were obtained from the CDC. The weekly influenza percent positive

was calculated as the number of specimens testing positive in each week divided by

the total number tested in the same week and was used as proxies for influenza activ-

ity. These proxies included the weekly percent positive for influenza virus A(H1N1),

influenza A(H1N1)pdm09, influenza A(H3N2), and influenza B. Each influenza proxy

is lagged by one week to account for the time lapsed between infection and detec-

tion. Figures 4.3 and 4.4 shows scatterplots of each influenza A(H3N2) proxy and



66

respiratory mortality.

Figure 4.3: Plot showing exposure, Influenza A(H3N2), over time for ages less than
65.

The model used to analyze the data is similar to the model described in the

Simulation Study (see Section 4.3), but differing by the distribution assumed for

the mortality outcome. Here the mortality outcome is assumed to have a negative

binomial distribution for each age group.

log(E(Yt)) =log(αt) + intercept+ β1H1N1t + β2H3N2t + β3PDM t + β4Bt+

f(time, df) + h(weekofyear, df)

The f function is a natural cubic spline of time in order to model long-term

trend while the h function is a natural cubic spline of week of the year to model the

seasonal variation in the data. In addition to the temporal terms, the model includes

the at-risk population size αt as an offset and influenza subtype percent positive

(H1N1t, H3N2t, H1N1pdm09t, Bt).
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Figure 4.4: Plot showing outcome, Influenza respiratory deaths, over time for ages
less than 65.

We calculate each of the beta regression coefficient and influenza-associated mor-

tality of the aforementioned model to determine the best degrees of freedom (df)

with which we can obtain each estimate. The tables in Appendix C summarizes the

results.

When comparing the impact of long-term trend and seasonal trend smoothness,

we find that generally the smoothness of the seasonal trend has the greatest impact

on estimates. By not sufficiently controlling for both long-term and seasonal trend

overestimation can occur (see Figures 4.7, 4.8, 4.5, and 4.6). Our results show that

as we initially begin to account for the temporal trend, the greatest changes occur.

Generally, ignoring temporal trend results in one of the largest estimates. As sea-

sonal trend is accounted for most estimates decrease, while account for long-term

trend causes minor fluctuations in the estimate. Influenza-associated mortality and

most beta coefficients from influenza proxies of experienced the greatest decrease in

estimation and variance between one to three DF for seasonal trend. Increasing the

complexity of our model with additional degrees of freedom for each time trend con-
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Figure 4.5: Estimate beta coefficients of Influenza A(H3N2) as the degrees of freedom
for long-term and seasonal trends vary
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Figure 4.6: Beta coefficients standard error of Influenza A(H3N2) as the degrees of
freedom for long-term and seasonal trends vary
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Figure 4.7: Estimate of total influenza-associated mortality as the degrees of freedom
for long-term and seasonal trends vary
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Figure 4.8: Standard error of total influenza-associated mortality as the degrees of
freedom for long-term and seasonal trends vary



72

Ages Variable Mean Standard Deviation

<65

Influenza A(H1N1) 0.8373 2.6332
Influenza A(H3N2) 2.1575 4.0386
Influenza A(H1N1)pdm09 0.7272 4.0453
Influenza B 1.9533 4.3962
Respiratory Mortality 589 132.1517

65− 74

Influenza A(H1N1) 0.8373 2.6332
Influenza A(H3N2) 2.1575 4.0386
Influenza A(H1N1)pdm09 0.7272 4.0453
Influenza B 1.9533 4.3962
Respiratory Mortality 848.5 164.7635

≥ 75

Influenza A(H1N1) 0.8373 2.6332
Influenza A(H3N2) 2.1575 4.0386
Influenza A(H1N1)pdm09 0.7272 4.0453
Influenza B 1.9533 4.3962
Respiratory Mortality 2610 774.0633

Table 4.1: Descriptive Statistics of Influenza Proxies and Respiratory Mortality

tinued to decrease the total influenza-associated mortality. We constraint our model

to what is reasonable based on the frequency of data collected and the total number

of observations. As a reference point, Samet et al. (2000) used 7 degrees of freedom

per year of data when information was collected daily and Peng et al. (2006) reports

as little as 4 degrees of freedom per year in the notes from Joel Schwartz and Braga

et al. (2000) study. Less dominant influenza proxies (e.g. Influenza A(H1N1)pdm09

and B) show behavior differing from influenza-associated mortality and the other in-

fluenza proxies. For example, the regression coefficient for A(H1N1)pdm09 seems to

be impacted more by long-term DF. The estimate greatly decreases after two DF are

added.

Similar to the point estimates, a large decrease in standard error occurred after

reaching at least two seasonal DF. After reaching at least three seasonal DF, the

standard error drop and then increases as long-term DF increases. Dominant influenza
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proxies, A(H1N1) and A(H3N2), decrease as DF from temporal trends increase. While

the less dominant influenza proxies’ standard error vary at less control of the temporal

trend, but stabilizes as DF increases. The error surrounding the model is heavily

influenced by the length of the series (e.g. number of weeks), the number of events

(e.g. respiratory deaths) per week, and the amount of overdispersion within the data

(Bhaskaran et al., 2013). Air pollution time series analysis requires thousands of days

of data with an average of tens of events to estimate a reliable precision measure

(Bhaskaran et al., 2013). With close to 2,000 weeks worth of data and hundreds of

respiratory deaths per week, our results are credible.

In Chapter 3, the Residual method (AR-2) estimated a total of 40,376 (SE =

5,265) deaths for age group 1, while the mean method (AR-1) estimated 29,404 (SE

= 3,875) deaths. In comparison, the spline temporal trend model estimated 37, 962

(SE = 5,490) influenza-associated deaths (long-term DF = 6, seasonal DF = 4). The

estimate was selected based on the stability of estimation and those in its surrounding

degrees of freedom and minimum standard error. See Table 4.2 for summarized

results. Our previous methods contained residual confounding. By controlling for the

trends in the data, we are able to estimate the short-term impact of the influenza

proxy exposures on death. The mean method may allow for the maximum amount

of flexibility in accounting for trend.

4.3 Simulations

We designed a simulation study to assess the bias and variance of β̂ when time

is represented by a natural spline and the degrees of freedom of the natural spline

is selected by beta regression coefficient estimates and estimate influenza-associated

mortality. In effort to represent realistic data analysis, we generate data under four

predetermined confounding scenarios and evaluate our proposed evaluation proce-
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GLM with natural spline Mean Residual

Total Influenza-associated Mortality 37,962 29,404 40,376
SE 5,490 3,875 5,266

Influenza A(H1N1) 1.68 1.9 2.6
SE 0.76 1 0.8

Influenza A(H3N2) 9.28 6.5 9.7
SE 0.98 0.9 0.5

Influenza B 3.46 1.8 0.3
SE 1.07 0.5 0.05

Influenza A(H1N1)pdm09 6.7 7.9 8.3
SE 1.39 1.1 0.5

SE - standard error
Beta estimates and SE are x1,000

Table 4.2: Parameter estimates for ages less then 65

dures under each. The scenarios vary by the timescale of confounding and the rela-

tionship between the influenza proxies and seasonal trend.

Our simulation model takes the following framework:

Yt ∼ Poisson(µt)

log(µt) = log(αt) + β0 + f(t, w)

f(t, w) =

m1∑
j=1

ajBj(t) +

m2∑
j=1

cjDj(w)

FLU t,scaled ∼ Beta

probit(E(FLU t,scaled)) = gFLU(t, w)

g(t, w) =

mflu∑
j=1

bjHj(t) +

mflu2∑
j=1

djKj(w)

where αt is the at-risk population size as the log offset, FLUt represents each

weekly time series percentage of specimens testing positive (H1N1t, H3N2t, PDM t,
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and Bt for Influenza A(H1N1), A(H3N2), A(H1N1pdm09), and B, respectively). Both

functions f and g model temporal trend over time (t) and seasonal trend variations

(w) using natural cubic splines. Within f and g, m1, m2, mflu and mflu2 are the

degrees of freedom of the functions while Bj, Dj, Hj and Kj are basis functions.

After selecting the degrees of freedom for each temporal trend spline (m1, m2, mflu

and mflu2), a log-linear Poisson regression model is fit to the US influenza mortality

dataset. Then, a probit-link Beta regression model is fit with g, the influenza temporal

spline, for each influenza activity proxy (rescaled to be from 0 to 1) as the outcome.

From each of the beta regressions, we scale each Pearson’s residual variances to inform

our concurvity of the simulated data. The raw residuals are solved from the Person’s

residuals. To simulate each influenza proxy, the autocorrelated raw residuals are

added to the influenza proxy’s mean trend.

In a similar manner, we generate the mean trend of mortality data without the

effect of influenza. For the simulation study, we assume no influence of influenza on

mortality in order to better observe any false effect of the influenza proxies within

each scenario.

The following four scenarios are simulated for examination:

1. both spline trends of g(t, w) are smoother than both spline trends of f(t, w) and

there is moderate concurvity between g and f ,

2. both spline trends of g(t, w) are smoother than both spline trends of f(t, w) and

there is high concurvity between g and f ,

3. both spline trends of g(t, w) are rougher than both spline trends of f(t, w) and

there is moderate concurvity between g and f , and

4. both spline trends of g(t, w) are rougher than both spline trends of f(t, w) and

there is high concurvity between g and f .
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Concurvity is defined as the correlation between f and g in a nonparameteric set-

ting. High concurvity indicates that the influenza proxies are tightly correlated with

the timescale for mortality, f(t, w). While under moderate concurvity, factors with

shorter cycles than the influenza proxies could effect mortality. In other words, con-

curvity is analogous to collinearity between predictors. A summary of the four sce-

narios is shown in Table 4.3.

Scenario Concurvity σ2 m1 m2 mflu mflu2

g(t, w) smoother than f(t, w) Moderate σ2
FLU 15 4 8 2

g(t, w) smoother than f(t, w) High
σ2
FLU

5
15 4 8 2

g(t, w) rougher than f(t, w) Moderate σ2
FLU 8 2 15 4

g(t, w) rougher than f(t, w) High
σ2
FLU

5
8 2 15 4

Table 4.3: Simulation Study Scenarios

In 50 simulated datasets, each influenza proxy is assumed to have no effect on

the mortality in the Poisson regression model. The natural spline function degrees of

freedom range from 0 to 33 for the overall trend spline and 0 to 6 for the seasonal

variation spline. Zero indicates no temporal trend in the model. Beta regression

coefficients and influenza-associated mortality are estimated for each of the 50 gen-

erated datasets. The performance of the simulation study points to the conditions

under which our model may incorrectly find an effect for the influenza proxies or

overestimate of influenza-associated mortality.

All simulations and analysis were conducted in R (R Core Team, n.d.) using the

glm function for regression modeling and the ns function from the splines package for

natural cubic spline smoothing of the time trend.

The purpose of the simulation study is to highlight the effects of smoothing and

confounding via concurvity. When the mortality temporal trends and influenza proxy

temporal trends are correlated on similar timescales there is said to be concurvity

(multicollinearity). Similar to the analysis of the influenza dataset, the initial degrees

of freedom added to the seasonal trend were not sufficient to reduce bias. This can
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be seen in the large drop after 2 degrees of freedom. A smoother g (influenza proxy)

function (fewer degrees of freedom) causes less bias beta regression and influenza-

associated mortality estimates and decreased variance. This can particularly be seen

when the seasonal degrees of freedom reaches 2. From the simulation study we find

the higher concurvity between f and g, often causes an increase in the estimate bias

as well as the variance. In addition, there is a slower decline in bias over the seasonal

trend and a less consistent approach to the truth. Generally we can conclude more DF

decreases the bias while only creating slight changes in the standard error. Dominici

et al. (2004) suggests using at least as many DF needed to predict the exposure

variable.

4.4 Discussion

Influenza time-series data modeling can greatly benefit from these findings. While

employing splines is not the only smooth function for time, it is widely used and

understood. Most importantly, it highlights an additional approach to controlling for

trends compared to the popular polynomial and sine/cosine terms. Polynomial and

sine/cosine terms modeling the temporal trend can account for trends smoothly using

fewer parameters than spline terms. However, the temporal trend is forced to be the

same each cycle. This may not match the data very well. While the spline terms

provide a more flexible model, allowing differences in one cycle to the next, the terms

are considered to be mathematically complex and research has not concluded on a

gold standard approach to determining the optimum number of knots. The optimum

number of knots will depend on the temporal trends within the data. The amount of

smoothness greatly impacts the estimate. Deciding how to smooth has yet to reach

a consensus among researchers.

Many critical choices are made throughout the modeling process of influenza time-
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series data. Ultimately, the best model for one’s data will depend on the characteris-

tics of the data itself. Researchers must try to determine under which scenario their

data is likely occurring. Concurvity can be determined by calculating the correlation

between the exposure measurements and the fitted values from the exposure regressed

on potential confounders (Ramsay et al., 2003). Similar to the research in the previ-

ous two chapters, investigators should carefully consider each implementation of the

model. Sensitivity analysis should be conducted at each decision to determine how

a different decision may change results. Sensitivity analysis will include the choice

of the amount of control of temporal trends and others based on timescale of the

data, autocorrelation, availability of data on possible confounder variables and other

properties when selecting the appropriate analytical method.

Many researcher may consider employing a generalized additive model (GAM) as

opposed to the generalized linear model used here. Current literature, has made no

decision on the preference between the models, but recent computational software

have shown some error. The direct computation for the standard error is difficult

and it was found to be incorrectly calculated in many often used software programs.

Investigators should use caution when implementing GAM.

Determining the optimal degrees of freedom for temporal splines requires more

research. Thus, future work suggested by this chapter includes possible goodness-

of-fit measures. In particular the often used Akaike information criterion (AIC), a

relative measure of the quality of a statistical model based on likelihood and number

of estimated parameters, cannot be applied to autocorrelated data. When AIC is

used to for time series analysis or autocorrelated data, it is likely to select a more

complex model as the number of observations increases (Ripley, 2007; Shibata, 1976).

Although controlling for temporal trends usually reduces the autocorrelation, a special

goodness-of-fit measure for autocorrelated time series data with selection based on

confounding not prediction would be a significant contribution to the field. Another
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area of future interest is to address complex overdispersion. Our current methods

address the simplest form of overdispersion in which we assume overdispersion is

constant over time. More complex structures of overdispersion can be addressed in

future research.
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Appendix A

Appendix for Chapter 2

Listing A.1: Sparse Poisson-Gamma Model

# JAGS sparse model description

JAGS_SparsePGG = function() {

# Likelihood

for (contrast in 1:num_contrasts) {

for (region in 1:num_regions) {

X[contrast, region] ~ dpois(mean[contrast, region])

X_pred[contrast, region] ~ dpois(mean[contrast, region])

mean[contrast, region] <- inprod(theta[contrast, region, ],delta[

↪→ region,])

theta[contrast, region, region] ~ dgamma(lambda[region, region], 1)

for (region_1 in (region + 1):num_regions) {

theta[contrast, region, region_1] ~ dgamma(lambda[region, region_1],

↪→ 1)

#symmetric

theta[contrast, region_1, region] <- theta[contrast, region, region_1]

}
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}

}

# Prior for lambda and delta

for (region in 1:num_regions) {

delta[region,region] = 1

lambda[region, region] ~ dgamma(0.001, 0.001)

for (region_1 in (region + 1):num_regions) {

lambda[region, region_1] ~ dgamma(0.001, 0.001)

delta[region,region_1] ~ dbern(0.2)

#symmetric

lambda[region_1, region] <- lambda[region, region_1]

delta[region_1,region] <- delta[region,region_1]

}

}

}
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Appendix B

Appendix for Chapter 3

AR-1 Residual (Bootstrap) Method

The residual approach is conducted in two stages. The first stage of the method is

used to estimate the autoregressive (AR) parameter by resampling the AR structure

error and adding it back into the model. The second stage is used to estimate the

regression parameters and their variance-covariance accounting for residual temporal

correlation using the estimated AR coefficient from stage 1. Let Yt be the mortality

data, Ŷt be the estimates, et = Yt − Ŷt be the residuals.

� Stage 1: Bootstrap estimation of the autoregressive parameter

1. Calculate the Pearsons standardized residuals from the original mortality

data, et = Yt−Ŷt√
V ar(Ŷt)

.

2. Fit AR-1 model, et = ρet−1 + ut, to obtainˆwhere the error of our autore-

gressive structure ut ∼ N(0, σ2).

3. Obtain residual autoregressive structure error at each time point t, ut =

et − ρ̂et−1.

4. Sample with replacement from the set of ut to get 10,000 sets of u∗t .

5. Calculate e∗t = ρ̂e∗t−1 + ut as uncorrelated over time residuals for each set,
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Methods
Residual Mean

Age Group ARStructure ARParameter(s) Mean SE Mean SE CI
Ages 0-64 AR-1 ρ 0.65 0.04 0.79 0.02 (0.76, 0.83)

AR-2 ρ1 0.57 0.05 0.88 0.05 (0.77, 0.98)
ρ2 0.13 0.05 -0.08 0.05 (-0.18, 0.01)

Ages 65-74 AR-1 ρ 0.67 0.04 0.81 0.02 (0.78, 0.85)

AR-2 ρ1 0.56 0.05 0.87 0.05 (0.77, 0.96)
ρ2 0.16 0.05 -0.06 0.05 (-0.15, 0.04)

Ages ≥ 75 AR-1 ρ 0.80 0.03 0.87 0.01 (0.84, 0.9)

AR-2 ρ1 0.83 0.05 0.99 0.01 (0.97, 1)
ρ2 -0.04 0.05 -0.15 0.01 (-0.18, -0.12)

SE - standard error
CI - credible interval
AR - autogressive

Table B.1: Autoregressive (AR) Parameter estimates for AR-1 and AR-2 models
when temporal correlation is accounted for via the residual vs. via the mean

where e∗1 = e1.

6. Obtain Y ∗t = Ŷt + ẽ∗t for each set, where ẽ∗t is not a standardized residual

(rescaled to appropriately be added to the data).

7. Regress Y ∗t to the influenza activity, temporal trends and seasonal covari-

ates for each set.

8. Calculate e∗2,t =
Y ∗
t −Ŷ ∗

t√
V ar(Ŷ ∗

t )
for each set.

9. Determine ρ∗, given an AR-1 model, e∗2,t = ρ∗e∗2,t−1 +u2,t, is applied on the

standardized residuals e∗S,2,t for each set.

10. Calculate Bias = ρ̄∗ − ρ̂ where ρ̄∗is the mean of bootstrap samples ρ∗.

11. Calculate bootstrap autoregressive parameter ρboot = ρ̂−Bias.

� Stage 2: Bootstrap estimation of the regression parameters

1. Calculate uboot,t = et − bootet−1.
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Viral Proxies
A(H3N2) A(H1N1) B A(H1N1)pdm09

Methods β SE(β) β SE(β) β SE(β) β SE(β)
Ages 0-64 Delta 9.6 0.6 2.6 0.8 3.0 0.5 8.4 0.5

Newey-West AR(1) 9.6 1.1 2.6 0.9 3.0 0.9 8.4 1.5
AR(2) 9.6 1.2 2.6 1.0 3.0 0.9 8.4 1.8

Residual AR(1) 9.6 0.6 2.6 0.8 3.0 0.5 8.3 0.5
AR(2) 9.7 0.5 2.6 0.8 3.0 0.5 8.3 0.5

Mean AR(1) 6.5 0.9 1.9 1.0 1.8 0.5 7.9 1.1
AR(2) 6.3 0.9 1.8 1.0 1.8 0.5 7.8 1.1

Ages 65-74 Delta 11.2 0.5 1.5 0.7 1.8 0.4 1.7 0.4
Newey-West AR(1) 11.2 1.0 1.5 0.9 1.8 0.8 1.7 0.4

AR(2) 11.2 1.1 1.5 1.0 1.8 0.8 1.7 0.5
Residual AR(1) 11.2 0.5 1.5 0.7 1.8 0.4 1.7 0.4

AR(2) 11.3 0.5 1.5 0.7 1.8 0.4 1.7 0.4
Mean AR(1) 7.4 0.8 0.1 0.8 0.6 0.4 1.5 1.1

AR(2) 7.2 0.8 0.0 0.8 0.6 0.4 1.5 1.1

Ages ≥ 75 Delta 15.5 0.5 1.6 0.7 3.0 0.5 0.7 0.5
Newey-West AR(1) 15.5 1.2 1.6 1.0 3.0 1.0 0.7 0.3

AR(2) 15.5 1.4 1.6 1.2 3.0 1.0 0.7 0.3
Residual AR(1) 15.5 0.5 1.6 0.7 3.0 0.5 0.7 0.5

AR(2) 15.5 0.5 1.6 0.7 3.0 0.5 0.7 0.5
Mean AR(1) 6.2 0.7 0.2 0.7 0.8 0.3 1.2 1.2

AR(2) 5.7 0.7 0.1 0.7 0.7 0.3 0.9 1.2
AR - autoregressive structure
SE - standard error

Table B.2: Regression Coefficient Estimates and Standard Error (x1,000) for viral
proxies using various methods of analysis
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2. Sample with replacement for the set of uboot,t, to get 10,000 sets of u∗boot,t.

3. Determine e∗3,t = ρboote3,t−1 + u∗2,t for each set.

4. Obtain Y ∗boot = Ŷt+e
∗
3,t for each set, where ˜e∗3,tis not a standardized residual

(rescaled to appropriately be added to the data).

5. Fit Y ∗boot to the influenza activity, temporal trends and seasonal covariates

for each set.

Negative Binomial Delta Method

From asymptotic normality, we know β̂ ∼ N(β,Σβ̂).

Using the Delta method, we know g(β̂) ∼ N(g(β),∇g(β)TΣβ̂∇g(β)), where ∇g(β) is

a vector of partial derivatives with respect to each β.

In the case of the influenza mortality model, g(β) =
∑T

t=1 populationt ∗ exp(X1tβ1 +

X2tβ2) −
∑T

t=1 populationt ∗ exp(X1tβ1), where the time trend variables are repre-

sented by X1t and the influenza proxies of interest are represented by X2t.

Listing B.1: Mean (Bayesian) Method JAGS Code

LogPool <- function() {

for (i in 1:N){

resp[i] ~ dpois(mu[i])

log(mu[i]) <- logpop[i] + beta[1] + beta[2]*((deathwk[i]-m1)/sd1) +

beta[3]*((pow(deathwk[i],2)-m2)/sd2) + beta[4]*((pow(deathwk[i],3)-m3)

↪→ /sd3) +

beta[5]*((pow(deathwk[i],4)-m4)/sd4) + beta[6]*cos(2*3.141593*deathwk[

↪→ i]/52.179) +

beta[7]*sin(2*3.141593*deathwk[i]/52.179) + beta[8]*lpH3N2[i] + beta

↪→ [9]*lpH1N1[i] +
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beta[10]*lpB[i] + beta[11]*lpH1N1pdm09[i] + eps[i]

}

for ( j in 1:11 ) {

beta[j] ~ dnorm( 0, 0.0001 )

}

eps[1] ~ dnorm(0,0.0001)

p ~ dunif(-1,1)

k ~ dgamma(0.1,0.1)

for (i in 1:(N-1)){

eps[i+1] <- (p * eps[i]) + gam[i+1]

gam[i+1] ~ dnorm(0,k)

}

}

lpH1N1 <- data$lperc_sH1N1

lpH1N1pdm09 <- data$lperc_H1N1pdm09

lpH3N2 <- data$lperc_sH3N2

lpB <- data$lperc_sB

deathwk <- data$deathwk

resp <- data$resp

pop <- data1$population

logpop <- data$logpop

death.nb <- function(a){

model <- glm(resp ~ offset(logpop) + I((deathwk-mean(data$deathwk))/sd

↪→ (data$deathwk)) +

((deathwk^2-mean(data$deathwk^2))/sd(data$deathwk^2)) + I((deathwk^3-
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↪→ mean(data$deathwk^3))/sd(data$deathwk^3)) +

I((deathwk^4-mean(data$deathwk^4))/sd(data$deathwk^4)) + cos(2*

↪→ 3.141593*deathwk/52.179) +

sin(2*3.141593*deathwk/52.179) + lperc_sH3N2 + lperc_sH1N1 + lperc_

↪→ sB + lperc_H1N1pdm09,

family = "poisson", data = a)

}

jags.dat = list ("resp"=resp, "deathwk"=deathwk,

"lpH1N1pdm09"=lpH1N1pdm09, "lpH3N2"=lpH3N2, "lpB"=lpB, "logpop" =

↪→ logpop, "lpH1N1" = lpH1N1,

"N" = nrow(data), "m1" = mean(data$deathwk), "m2" = mean(data$

↪→ deathwk^2),

"m3" = mean(data$deathwk^3), "m4" = mean(data$deathwk^4), "sd1" =

↪→ sd(data$deathwk),

"sd2" = sd(data$deathwk^2), "sd3" = sd(data$deathwk^3), "sd4" = sd

↪→ (data$deathwk^4))

jags.param = c("beta","mu","eps","p","gam","k")

jags.inits <- function() {

list(

"beta" = summary(death.nb(data))$coefficient[1:11],

"p" = 0,

"k" = 1

)}

jagsfit <- jags(data=jags.dat, inits=jags.inits, jags.param, n.iter

↪→ =25000, model.file=LogPool, n.chains=1, n.burn=5000, n.thin=4 )
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Simulation Study - Bayesian Model Data Generation In order to generate

what is used as our observed data for the simulation study, we use values from our

Bayesian model posterior distribution.

Ŷt = population ∗ exp(Xβ̂ + ε̂t)

εt+1 = p ∗ εt + γt+1

γt+1 ∼ Normal(0, k)

1. Find posterior mean of inverse variance of the autoregressive standard error

term (k) denoted as k̄p.

2. Simulate γt ∼ N(0, k̄p). (NOTE: 10 sets of number of observations - 1 values,

and add the first row of zero values)

3. Solve εt+1 = p̄p ∗ εt + γt. (NOTE: For AR(1) autoregressive structure, the first

ε1 is simply the posterior mean at that time point)

4. Solve µt = log(population)∗exp(Xβ̄p+εt). (NOTE: µt ∼Negative Binomial(p, r̄p)).

5. Solve for p.

6. Randomly generate data using negative binomial distribution. During the sim-

ulation study the generated sets are used as the observed data.

Regression Coefficients Interpretations

The means from the residual and mean approaches are interpreted differently.

The residual approach has a marginal interpretation. The target inference is on the

population-level (over all weeks). The mean method has a conditional interpretation.

The target inference is on a subject-level (for a specific week). The mean given the

random intercept (mean residual) of that specific week.
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Proportion of Positive Specimens Testing Positive for a Given Subtype (%)
Season % Positive specimens of total tested A(H1N1) A(H3N2) A(H1N1)pdm B Predominant Subtype

1981/1982 3.96 23.70 0.32 0.00 75.97 B
1982/1983 9.41 10.65 77.60 0.00 11.75 A(H3N2)
1983/1984 12.85 50.81 3.84 0.00 45.36 A(H1N1)
1984/1985 13.35 0.10 97.27 0.00 2.63 A(H3N2)
1985/1986 11.65 0.08 23.54 0.00 76.38 B
1986/1987 10.07 99.28 0.23 0.00 0.50 A(H1N1)
1987/1988 8.76 7.33 76.37 0.00 16.30 A(H3N2)
1988/1989 17.32 32.25 5.37 0.00 49.38 B
1989/1990 11.32 1.10 78.69 0.00 19.82 A(H3N2)
1990/1991 9.81 3.80 6.04 0.00 85.48 B
1991/1992 12.54 15.64 59.17 0.00 0.93 A(H3N2)
1992/1993 11.99 1.62 14.48 0.00 70.98 B
1993/1994 11.59 0.35 67.99 0.00 0.82 A(H3N2)
1994/1995 9.83 1.35 48.12 0.00 26.23 A(H3N2)
1995/1996 12.39 31.72 22.42 0.00 15.33 A(H1N1)
1996/1997 16.11 0.03 34.90 0.00 22.36 A(H3N2)
1997/1998 17.13 0.08 39.93 0.00 0.67 A(H3N2)
1998/1999 14.40 0.21 17.92 0.00 22.96 B
1999/2000 17.07 1.73 41.44 0.00 0.75 A(H3N2)
2000/2001 14.49 28.47 0.81 0.00 46.17 B
2001/2002 18.70 0.58 43.07 0.00 15.18 A(H3N2)
2002/2003 14.83 28.83 11.65 0.00 42.47 B
2003/2004 21.50 0.01 40.67 0.00 0.97 A(H3N2)
2004/2005 19.45 0.10 34.68 0.00 24.45 A(H3N2)
2005/2006 15.62 3.87 41.69 0.00 17.34 A(H3N2)
2006/2007 16.92 28.57 17.32 0.00 22.66 A(H1N1)
2007/2008 23.04 9.96 28.46 0.00 30.34 B
2008/2009 26.16 14.94 8.50 49.99 12.93 A(H1N1)pdm09
2009/2010 17.26 0.18 0.42 92.23 0.20 A(H1N1)pdm09
2010/2011 10.35 0.00 47.51 29.09 21.97 A(H3N2)
2011/2012 4.98 0.00 63.40 17.72 16.92 A(H3N2)
2012/2013 12.93 0.00 70.20 3.81 24.95 A(H3N2)
2013/2014 9.39 0.00 10.80 75.43 12.71 A(H1N1)pdm09

Table B.3: Proportion of positive specimens tested by season and influenza subtype

Figure B.1: Percentage of influenza subtype for all age groups during each season,
given the specimen tested positive
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Figure B.2: Percentage of specimens testing positive for all age groups by influenza
subtype during each season

Figure B.3: PACF Plots by Age Group
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Delta Newey-West Delta Residual Mean
Season Deaths SE Deaths SE Deaths SE Deaths SE
1981/1982 507 68.84 507 135.95 510 137.48 122 54.39
1982/1983 5,482 196.23 5,482 446.51 5,502 430.55 2,176 236.51
1983/1984 2,930 257.68 2,930 459.70 2,942 520.82 834 217.42
1984/1985 9,333 335.60 9,333 817.00 9,346 773.10 4,003 429.23
1985/1986 3,205 187.09 3,205 415.96 3,201 365.16 1,261 176.11
1986/1987 733 317.55 733 449.43 790 601.84 112 300.12
1987/1988 6,265 221.26 6,265 513.63 6,259 480.88 2,642 287.19
1988/1989 2,692 279.29 2,692 494.94 2,690 571.17 816 252.40
1989/1990 8,663 297.63 8,663 724.69 8,655 674.52 3,657 393.50
1990/1991 2,748 258.87 2,748 527.24 2,763 501.38 797 197.35
1991/1992 7,216 272.72 7,216 617.46 7,214 594.27 3,013 334.81
1992/1993 5,536 307.49 5,536 682.47 5,530 602.47 1,972 268.34
1993/1994 8,419 291.58 8,419 721.99 8,419 670.14 3,837 416.93
1994/1995 7,270 319.15 7,270 724.85 7,275 651.41 2,661 305.18
1995/1996 4,797 263.57 4,797 464.53 4,801 541.65 1,756 262.03
1996/1997 7,591 294.12 7,591 685.80 7,590 621.21 3,316 367.50
1997/1998 7,163 241.01 7,163 597.07 7,168 554.85 3,589 392.56
1998/1999 3,557 144.28 3,557 330.16 3,556 296.94 1,532 177.78
1999/2000 8,514 292.99 8,514 706.86 8,523 660.94 3,725 407.27
2000/2001 2,339 327.59 2,339 583.21 2,343 672.37 576 283.09
2001/2002 11,574 426.06 11,574 1000.41 11,579 919.28 4,510 492.59
2002/2003 4,835 375.86 4,835 669.34 4,838 763.67 1,491 307.48
2003/2004 9,782 338.34 9,782 826.72 9,791 778.50 3,935 461.05
2004/2005 11,276 412.86 11,276 966.41 11,274 891.33 4,224 499.95
2005/2006 11,354 395.43 11,354 919.94 11,352 865.00 3,891 456.71
2006/2007 7,435 473.93 7,435 777.57 7,443 969.02 2,237 422.10
2007/2008 10,441 473.72 10,441 971.28 10,437 966.24 3,730 487.92
2008/2009 5,708 619.83 5,708 874.15 5,736 1,361.68 1,914 804.64
2009/2010 1,437 827.45 1,437 530.47 1,797 1,814.09 1,674 2042.68
2010/2011 9,459 345.34 9,459 752.82 9,444 793.32 3,578 508.41
2011/2012 6,611 220.79 6,611 511.31 6,606 502.10 2,412 295.06
2012/2013 16,716 599.32 16,716 1,413.75 16,717 1,339.59 6,235 714.20
2013/2014 3,750 388.61 3,750 396.12 3,798 942.04 1,800 888.79
SE - standard error

Table B.4: Regression Mortality Estimates by Season for ages older than 75
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Delta Newey-West Delta Residual Mean PosteriorTruth
Season Deaths SE Deaths SE Deaths SE Deaths SE Deaths
1981/1982 119 18.68 125 143.15 123 19.52 125 28.45 121
1982/1983 2,076 48.81 2,065 428.59 2,065 51.48 2,060 76.22 2,156
1983/1984 830 67.55 849 461.03 836 70.66 846 102.69 828
1984/1985 3,559 76.71 3,528 730.71 3,531 81.11 3,521 118.18 3,967
1985/1986 1,127 50.54 1,127 423.69 1,132 52.78 1,131 76.11 1,250
1986/1987 113 69.85 140 443.60 115 74.97 124 132.09 114
1987/1988 2,381 56.30 2,369 499.20 2,367 59.29 2,368 88.30 2,618
1988/1989 761 74.93 784 513.26 769 78.48 784 113.95 811
1989/1990 3,332 72.06 3,306 677.30 3,307 76.07 3,308 112.44 3,623
1990/1991 804 69.71 821 551.06 819 72.30 822 106.41 792
1991/1992 2,777 67.40 2,761 588.69 2,751 71.06 2,761 104.58 2,985
1992/1993 1,918 83.12 1,919 695.08 1,925 86.78 1,926 125.81 1,955
1993/1994 3,287 69.84 3,258 673.01 3,258 73.79 3,263 109.05 3,801
1994/1995 2,657 78.84 2,647 680.34 2,652 82.66 2,651 120.49 2,637
1995/1996 1,707 69.87 1,715 475.27 1,698 73.31 1,712 107.26 1,740
1996/1997 2,823 76.54 2,809 673.57 2,814 80.25 2,816 118.31 3,285
1997/1998 2,839 59.63 2,814 574.68 2,814 63.02 2,811 93.88 3,555
1998/1999 1,340 39.30 1,335 339.68 1,338 41.16 1,337 60.92 1,518
1999/2000 3,337 72.76 3,311 681.10 3,307 76.80 3,305 114.34 3,690
2000/2001 551 88.54 583 614.52 564 92.67 582 135.38 574
2001/2002 4,328 108.22 4,304 965.45 4,310 113.70 4,308 167.29 4,469
2002/2003 1,532 100.81 1,557 693.73 1,538 105.59 1,555 153.35 1,479
2003/2004 3,789 80.57 3,756 771.12 3,758 85.13 3,754 125.64 4,192
2004/2005 4,255 105.68 4,231 943.46 4,238 111.03 4,235 163.55 4,502
2005/2006 4,330 101.22 4,306 903.14 4,306 106.58 4,314 158.75 4,156
2006/2007 2,568 125.14 2,590 802.25 2,557 131.21 2,578 193.31 2,449
2007/2008 3,720 122.64 3,723 956.14 3,710 128.61 3,722 187.74 4,011
2008/2009 2,321 166.40 2,354 922.24 2,333 174.57 2,376 252.61 2,262
2009/2010 2,264 218.62 2,236 585.65 2,298 231.31 2,333 334.54 2,220
2010/2011 3,968 89.82 3,939 750.71 3,954 94.71 3,964 140.33 3,882
2011/2012 2,717 57.29 2,696 516.63 2,703 60.50 2,704 91.05 2,595
2012/2013 6,336 143.34 6,291 1,314.06 6,302 151.04 6,304 220.02 6,655
2013/2014 2,182 105.20 2,164 418.78 2,196 111.03 2,209 162.08 2,100
SE - standard error

Table B.5: Poisson model using data generated from random intercept produced
using parameters from the auroregressive structure simulation results of influenza-
associated deaths from ages older than 75 for various methods of analysis
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Delta Newey-West Delta Residual Mean PostriorTruth
Season Deaths SE Deaths SE Deaths SE Deaths SE Deaths
1981/1982 461 17.83 464 139.44 461 151.11 158 56.1 121
1982/1983 5,543 48.37 5,553 439.9 5,552 447.32 2,646 235.46 2,156
1983/1984 2,778 66.39 2,791 464.24 2,781 568.59 1,078 221.96 828
1984/1985 9,522 80.66 9,534 807.35 9,525 776.57 4,829 421.17 3,967
1985/1986 3,168 47.8 3,179 418.66 3,156 391.68 1,521 179.69 1,250
1986/1987 559 83.72 562 473.76 670 616.3 248 306.61 114
1987/1988 6,313 54.02 6,325 503.15 6,298 490.99 3,220 287.45 2,618
1988/1989 2,507 72.06 2,520 502.33 2,489 636.43 1,057 257.1 811
1989/1990 8,815 71.71 8,827 715.54 8,798 678.75 4,430 389.9 3,623
1990/1991 2,602 66.55 2,616 536.15 2,623 542.03 998 203.42 792
1991/1992 7,321 67.18 7,330 620.66 7,310 612.49 3,683 333.29 2,985
1992/1993 5,503 78.66 5,522 687.39 5,482 647.65 2,399 275.17 1,955
1993/1994 8,629 70.15 8,639 724.24 8,621 672.95 4,648 412.59 3,801
1994/1995 7,310 79.93 7,328 719.58 7,301 681.39 3,238 308.45 2,637
1995/1996 4,735 68.05 4,746 470.03 4,724 602.06 2,202 265.84 1,740
1996/1997 7,681 73.2 7,698 683.72 7,666 645.17 4,013 367.79 3,285
1997/1998 7,344 57.98 7,352 599.62 7,341 557.39 4,357 391.2 3,555
1998/1999 3,583 36.26 3,591 329.26 3,574 311.92 1,861 180.16 1,518
1999/2000 8,691 70.94 8,701 710.86 8,690 667.19 4,534 406.8 3,690
2000/2001 2,106 84.9 2,121 596.04 2,096 743.13 772 289.1 574
2001/2002 11,701 104.71 11,723 989.63 11,685 942.43 5,466 492.06 4,469
2002/2003 4,623 96.93 4,641 675.14 4,603 850.26 1,886 312.76 1,479
2003/2004 9,966 81.04 9,978 824.58 9,963 778.78 5,136 458.28 4,192
2004/2005 11,351 101.08 11,373 951.25 11,330 909.66 5,502 499.71 4,502
2005/2006 11,414 95.86 11,433 902.05 11,394 875.44 5,119 457.49 4,156
2006/2007 7,205 121.87 7,223 780.6 7,198 1,061.07 3,121 428.19 2,449
2007/2008 10,283 118.42 10,308 954.21 10,254 1,021.65 4,961 489.44 4,011
2008/2009 5,468 161.17 5,491 889.63 5,468 1,520.94 2,713 828.52 2,262
2009/2010 1,810 215.17 1,822 573.17 2,136 2,039.96 2,110 2,142.64 2,220
2010/2011 9,563 84.53 9,580 735.9 9,534 811.25 4,664 516.03 3,882
2011/2012 6,678 53.16 6,687 499.51 6,663 503.81 3,154 297.32 2,595
2012/2013 16,838 144.32 16,866 1,393.42 16,814 1,344.76 8,088 705.62 6,655
2013/2014 3,908 100.87 3,920 403.87 3,940 1,035.60 2,325 935.83 2,100
SE - standard error

Table B.6: Poisson model using data generated from random intercept produced from
the posterior means simulation results of influenza-associated deaths from ages older
than 75 for various methods of analysis
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Appendix C

Appendix for Chapter 4
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0 1 2 3 4 5 6
0 9.37 5.60 -1.69 -1.49 -1.49 -1.49 -1.49
1 9.55 5.83 -1.60 -1.37 -1.37 -1.36 -1.37
2 9.58 5.76 -1.95 -1.71 -1.70 -1.69 -1.70
3 11.40 7.53 -0.08 0.08 0.10 0.10 0.10
4 10.76 6.86 -0.59 -0.46 -0.44 -0.44 -0.45
5 10.99 7.09 -0.31 -0.22 -0.21 -0.21 -0.21
6 11.07 7.19 -0.19 -0.12 -0.11 -0.10 -0.11
7 11.10 7.22 -0.19 -0.13 -0.11 -0.11 -0.11
8 11.02 7.08 -0.48 -0.40 -0.39 -0.38 -0.39
9 11.07 7.15 -0.44 -0.35 -0.33 -0.33 -0.33

10 11.13 7.20 -0.39 -0.30 -0.28 -0.28 -0.28
11 11.28 7.35 -0.31 -0.21 -0.20 -0.19 -0.20
12 11.37 7.42 -0.27 -0.17 -0.16 -0.15 -0.16
13 11.48 7.54 -0.15 -0.06 -0.05 -0.05 -0.05
14 11.57 7.62 -0.11 -0.03 -0.01 -0.01 -0.01
15 11.57 7.63 -0.16 -0.07 -0.05 -0.05 -0.05
16 11.62 7.66 -0.22 -0.12 -0.10 -0.10 -0.10
17 11.78 7.81 -0.16 -0.05 -0.03 -0.03 -0.03
18 11.82 7.83 -0.12 -0.01 0.01 0.01 0.01
19 11.85 7.87 -0.07 0.03 0.04 0.05 0.05
20 11.84 7.86 -0.08 0.02 0.04 0.04 0.04
21 11.83 7.84 -0.15 -0.04 -0.02 -0.02 -0.02
22 11.86 7.85 -0.27 -0.16 -0.14 -0.13 -0.13
23 12.09 8.07 -0.14 -0.03 -0.01 -0.00 -0.01
24 12.07 8.06 -0.12 -0.01 0.01 0.02 0.01
25 12.02 8.00 -0.24 -0.11 -0.10 -0.09 -0.09
26 12.03 8.01 -0.26 -0.13 -0.12 -0.11 -0.11
27 12.12 8.07 -0.31 -0.17 -0.15 -0.15 -0.15
28 12.17 8.11 -0.33 -0.19 -0.17 -0.16 -0.17
29 12.27 8.20 -0.30 -0.16 -0.14 -0.13 -0.13
30 12.40 8.28 -0.40 -0.25 -0.23 -0.22 -0.23
31 12.50 8.37 -0.29 -0.14 -0.12 -0.12 -0.12
32 12.34 8.26 -0.28 -0.13 -0.11 -0.10 -0.11
33 12.34 8.24 -0.34 -0.19 -0.17 -0.17 -0.17

Table C.1: Simulation Study Results of g(t, w) smoother than f(t, w) and moderate
concurvity:
Beta regression coefficient estimates (x1,000) for Influenza H1N1 at varying DFs for
long-term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 18.56 13.81 1.22 2.21 2.31 2.31 2.31
1 19.61 14.73 1.25 2.38 2.50 2.50 2.50
2 19.07 13.99 -0.14 0.99 1.10 1.10 1.10
3 18.59 13.54 -0.87 0.26 0.37 0.37 0.37
4 18.80 13.73 -0.77 0.37 0.48 0.49 0.48
5 18.84 13.76 -0.88 0.28 0.39 0.39 0.39
6 18.96 13.85 -0.97 0.22 0.33 0.34 0.33
7 19.18 13.97 -1.26 -0.01 0.11 0.11 0.10
8 19.29 14.03 -1.41 -0.12 -0.01 -0.01 -0.01
9 19.45 14.16 -1.47 -0.16 -0.04 -0.04 -0.05

10 19.47 14.15 -1.60 -0.27 -0.16 -0.16 -0.16
11 19.59 14.26 -1.59 -0.26 -0.15 -0.14 -0.15
12 19.72 14.37 -1.60 -0.26 -0.14 -0.14 -0.14
13 19.81 14.44 -1.65 -0.31 -0.19 -0.18 -0.19
14 19.94 14.57 -1.61 -0.26 -0.14 -0.14 -0.14
15 20.05 14.68 -1.61 -0.25 -0.13 -0.12 -0.13
16 20.21 14.81 -1.59 -0.22 -0.10 -0.09 -0.10
17 20.34 14.93 -1.58 -0.20 -0.07 -0.07 -0.07
18 20.43 14.99 -1.63 -0.24 -0.12 -0.11 -0.12
19 20.51 15.05 -1.65 -0.26 -0.14 -0.13 -0.14
20 20.66 15.19 -1.67 -0.27 -0.14 -0.14 -0.15
21 20.77 15.28 -1.66 -0.25 -0.12 -0.12 -0.13
22 20.91 15.39 -1.68 -0.26 -0.13 -0.12 -0.13
23 20.90 15.40 -1.68 -0.25 -0.12 -0.12 -0.12
24 21.07 15.54 -1.70 -0.26 -0.13 -0.12 -0.13
25 21.19 15.64 -1.70 -0.25 -0.11 -0.11 -0.12
26 21.31 15.75 -1.72 -0.25 -0.12 -0.11 -0.12
27 21.41 15.83 -1.76 -0.29 -0.15 -0.15 -0.15
28 21.45 15.87 -1.77 -0.29 -0.15 -0.15 -0.16
29 21.48 15.90 -1.76 -0.28 -0.14 -0.13 -0.14
30 21.65 16.06 -1.73 -0.24 -0.10 -0.10 -0.11
31 21.76 16.15 -1.80 -0.30 -0.16 -0.16 -0.16
32 21.80 16.20 -1.78 -0.28 -0.14 -0.13 -0.14
33 21.66 16.08 -1.78 -0.29 -0.15 -0.15 -0.16

Table C.2: Simulation Study Results of g(t, w) smoother than f(t, w) and moderate
concurvity:
Beta regression coefficient estimates (x1,000) for Influenza H3N2 at varying DFs for
long-term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 6.20 6.69 7.20 7.14 7.15 7.16 7.16
1 8.15 8.16 7.27 7.40 7.41 7.43 7.43
2 4.05 3.87 2.19 2.37 2.37 2.38 2.38
3 2.21 2.07 0.13 0.38 0.38 0.39 0.39
4 2.45 2.31 0.28 0.56 0.56 0.56 0.56
5 2.54 2.38 0.34 0.61 0.61 0.62 0.62
6 2.41 2.29 0.37 0.62 0.62 0.63 0.63
7 2.29 2.26 0.60 0.81 0.80 0.81 0.81
8 2.26 2.29 0.79 0.98 0.97 0.98 0.98
9 2.24 2.27 0.79 0.96 0.96 0.97 0.97

10 2.36 2.36 0.83 1.01 1.01 1.02 1.02
11 2.33 2.34 0.79 0.98 0.98 0.99 0.99
12 2.00 2.03 0.48 0.70 0.70 0.71 0.71
13 1.57 1.63 0.02 0.29 0.28 0.28 0.29
14 1.38 1.45 -0.28 0.01 -0.00 0.00 0.01
15 1.38 1.47 -0.39 -0.08 -0.09 -0.09 -0.09
16 1.41 1.53 -0.41 -0.08 -0.10 -0.09 -0.09
17 1.39 1.53 -0.43 -0.09 -0.10 -0.10 -0.10
18 1.32 1.48 -0.47 -0.11 -0.12 -0.12 -0.12
19 1.25 1.41 -0.51 -0.14 -0.16 -0.15 -0.15
20 1.26 1.43 -0.53 -0.16 -0.18 -0.17 -0.17
21 1.35 1.49 -0.52 -0.15 -0.17 -0.16 -0.16
22 1.38 1.52 -0.49 -0.13 -0.15 -0.14 -0.14
23 1.39 1.54 -0.49 -0.14 -0.15 -0.15 -0.15
24 1.38 1.53 -0.50 -0.15 -0.17 -0.16 -0.16
25 1.36 1.51 -0.52 -0.17 -0.19 -0.18 -0.18
26 1.33 1.47 -0.54 -0.19 -0.21 -0.20 -0.20
27 1.33 1.47 -0.56 -0.20 -0.21 -0.21 -0.21
28 1.36 1.50 -0.56 -0.19 -0.21 -0.20 -0.20
29 1.42 1.56 -0.54 -0.17 -0.20 -0.19 -0.19
30 1.46 1.59 -0.53 -0.16 -0.18 -0.17 -0.17
31 1.45 1.58 -0.53 -0.16 -0.19 -0.18 -0.18
32 1.40 1.55 -0.55 -0.18 -0.20 -0.19 -0.19
33 1.38 1.52 -0.58 -0.20 -0.22 -0.22 -0.22

Table C.3: Simulation Study Results of g(t, w) smoother than f(t, w) and moderate
concurvity:
Beta regression coefficient estimates (x1,000) for Influenza H1N1pdm09 at varying
DFs for long-term (vertical) and seasonal (horizontal) trends for ages less than 65
years
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0 1 2 3 4 5 6
0 4.25 2.28 0.35 0.43 0.44 0.44 0.44
1 4.64 2.63 0.37 0.50 0.50 0.51 0.51
2 4.35 2.26 -0.12 0.01 0.01 0.02 0.02
3 4.58 2.50 0.13 0.24 0.25 0.25 0.25
4 4.52 2.44 0.08 0.19 0.20 0.20 0.20
5 4.49 2.43 0.07 0.19 0.19 0.20 0.20
6 4.56 2.48 0.07 0.19 0.19 0.20 0.20
7 4.60 2.50 0.00 0.14 0.14 0.15 0.15
8 4.62 2.50 -0.06 0.08 0.09 0.09 0.09
9 4.61 2.49 -0.07 0.07 0.07 0.08 0.08

10 4.59 2.46 -0.11 0.04 0.04 0.05 0.05
11 4.61 2.48 -0.11 0.04 0.04 0.05 0.05
12 4.63 2.50 -0.09 0.06 0.06 0.06 0.07
13 4.57 2.46 -0.14 0.01 0.02 0.02 0.02
14 4.59 2.47 -0.15 0.00 0.01 0.01 0.01
15 4.62 2.50 -0.15 0.00 0.01 0.01 0.01
16 4.60 2.48 -0.16 -0.01 -0.00 0.00 0.00
17 4.59 2.48 -0.16 -0.01 -0.00 0.00 0.00
18 4.59 2.49 -0.14 0.01 0.02 0.02 0.02
19 4.60 2.50 -0.15 0.01 0.01 0.02 0.02
20 4.60 2.50 -0.14 0.02 0.02 0.03 0.03
21 4.62 2.51 -0.16 0.00 0.01 0.01 0.01
22 4.61 2.52 -0.15 0.01 0.01 0.02 0.02
23 4.64 2.54 -0.15 0.02 0.02 0.03 0.03
24 4.62 2.53 -0.15 0.01 0.02 0.02 0.02
25 4.63 2.54 -0.15 0.01 0.02 0.02 0.02
26 4.65 2.55 -0.14 0.02 0.03 0.04 0.04
27 4.63 2.54 -0.16 0.01 0.01 0.02 0.02
28 4.63 2.53 -0.16 0.01 0.01 0.02 0.02
29 4.65 2.55 -0.15 0.02 0.02 0.03 0.03
30 4.64 2.55 -0.16 0.01 0.01 0.02 0.02
31 4.62 2.54 -0.17 0.00 0.00 0.01 0.01
32 4.65 2.55 -0.17 0.00 0.00 0.01 0.01
33 4.66 2.56 -0.17 -0.00 0.00 0.01 0.01

Table C.4: Simulation Study Results of g(t, w) smoother than f(t, w) and moderate
concurvity:
Beta regression coefficient estimates (x1,000) for Influenza B at varying DFs for long-
term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 33.23 27.98 -15.03 -11.20 -10.98 -10.97 -11.00
1 31.86 30.19 -12.06 -6.21 -5.73 -5.69 -5.71
2 32.44 30.09 -16.61 -10.77 -10.34 -10.31 -10.34
3 47.44 45.42 -0.02 4.63 5.01 5.04 5.03
4 43.27 40.43 -6.52 -2.49 -2.20 -2.17 -2.18
5 45.51 42.76 -1.94 0.98 1.20 1.23 1.22
6 43.00 40.80 0.00 2.25 2.42 2.44 2.43
7 40.74 39.82 -0.43 2.08 2.29 2.31 2.30
8 42.57 42.44 -6.35 -2.09 -1.74 -1.71 -1.73
9 42.63 42.45 -6.37 -2.04 -1.70 -1.67 -1.69

10 43.08 42.75 -6.44 -2.11 -1.78 -1.75 -1.77
11 43.93 43.79 -6.03 -1.60 -1.25 -1.21 -1.23
12 44.42 44.53 -5.65 -1.14 -0.77 -0.74 -0.76
13 45.03 45.30 -5.01 -0.55 -0.17 -0.13 -0.16
14 45.18 45.65 -4.87 -0.41 -0.02 0.02 0.00
15 45.17 45.71 -5.03 -0.50 -0.11 -0.07 -0.09
16 45.09 45.64 -5.17 -0.61 -0.21 -0.17 -0.19
17 45.65 46.26 -5.02 -0.35 0.06 0.11 0.09
18 46.02 46.67 -4.91 -0.21 0.20 0.25 0.23
19 46.32 47.01 -4.71 -0.03 0.39 0.43 0.42
20 46.31 47.07 -4.67 -0.00 0.41 0.46 0.44
21 46.04 46.84 -5.06 -0.34 0.08 0.12 0.11
22 45.91 46.75 -5.57 -0.77 -0.35 -0.31 -0.33
23 46.52 47.41 -5.16 -0.34 0.08 0.13 0.11
24 46.57 47.49 -5.00 -0.22 0.20 0.25 0.23
25 46.45 47.40 -5.50 -0.63 -0.20 -0.16 -0.17
26 46.58 47.56 -5.59 -0.68 -0.25 -0.20 -0.22
27 46.56 47.60 -5.81 -0.87 -0.45 -0.40 -0.42
28 46.52 47.59 -5.96 -1.00 -0.56 -0.51 -0.53
29 46.71 47.82 -5.96 -0.93 -0.50 -0.45 -0.48
30 46.90 48.07 -6.38 -1.24 -0.80 -0.75 -0.77
31 47.41 48.62 -6.02 -0.89 -0.44 -0.38 -0.40
32 47.16 48.38 -5.93 -0.84 -0.39 -0.33 -0.36
33 47.21 48.43 -6.10 -1.04 -0.59 -0.54 -0.56

Table C.5: Simulation Study Results of g(t, w) smoother than f(t, w) and high con-
curvity:
Beta regression coefficient estimates (x1,000) for Influenza H1N1 at varying DFs for
long-term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 45.81 42.84 -3.32 3.12 3.94 3.95 3.92
1 48.35 47.29 0.52 9.87 11.12 11.17 11.15
2 49.19 47.75 -3.68 5.35 6.44 6.47 6.44
3 46.53 45.48 -7.06 1.91 2.94 2.98 2.95
4 47.30 46.26 -6.29 2.80 3.87 3.91 3.87
5 47.03 46.02 -7.08 2.18 3.26 3.30 3.27
6 47.44 46.53 -8.06 1.66 2.77 2.82 2.78
7 49.66 49.18 -12.17 -0.48 0.78 0.83 0.77
8 50.39 50.28 -14.92 -2.18 -0.87 -0.83 -0.89
9 50.53 50.39 -15.28 -2.38 -1.08 -1.03 -1.10

10 50.32 50.12 -15.96 -3.11 -1.83 -1.79 -1.86
11 50.34 50.22 -15.96 -3.01 -1.71 -1.67 -1.74
12 50.67 50.66 -15.61 -2.60 -1.26 -1.21 -1.28
13 51.13 51.20 -15.38 -2.41 -1.05 -0.99 -1.06
14 51.44 51.57 -15.13 -2.14 -0.76 -0.70 -0.76
15 51.57 51.73 -15.06 -2.08 -0.68 -0.62 -0.68
16 51.73 51.90 -15.06 -2.04 -0.62 -0.56 -0.62
17 51.77 51.96 -15.12 -2.03 -0.61 -0.54 -0.60
18 51.75 51.95 -15.31 -2.18 -0.76 -0.69 -0.76
19 51.77 52.00 -15.34 -2.20 -0.77 -0.71 -0.77
20 51.90 52.14 -15.42 -2.20 -0.76 -0.69 -0.76
21 52.00 52.28 -15.46 -2.17 -0.72 -0.65 -0.72
22 52.13 52.41 -15.55 -2.17 -0.71 -0.65 -0.71
23 52.03 52.34 -15.57 -2.18 -0.72 -0.66 -0.72
24 52.12 52.43 -15.71 -2.23 -0.76 -0.69 -0.76
25 52.19 52.51 -15.75 -2.22 -0.74 -0.67 -0.74
26 52.28 52.62 -15.80 -2.23 -0.74 -0.68 -0.74
27 52.40 52.76 -15.92 -2.29 -0.79 -0.73 -0.79
28 52.47 52.84 -15.91 -2.29 -0.78 -0.72 -0.78
29 52.45 52.84 -15.91 -2.28 -0.76 -0.70 -0.76
30 52.52 52.94 -15.90 -2.21 -0.69 -0.62 -0.69
31 52.53 52.96 -16.10 -2.36 -0.82 -0.76 -0.83
32 52.59 53.01 -16.09 -2.33 -0.80 -0.73 -0.80
33 52.51 52.93 -16.09 -2.37 -0.85 -0.79 -0.85

Table C.6: Simulation Study Results of g(t, w) smoother than f(t, w) and high con-
curvity:
Beta regression coefficient estimates (x1,000) for Influenza H3N2 at varying DFs for
long-term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 8.51 9.75 16.80 15.62 15.50 15.49 15.50
1 19.14 19.27 18.96 18.95 18.93 18.93 18.94
2 12.25 12.21 7.32 8.07 8.11 8.12 8.13
3 7.48 7.55 2.02 3.09 3.14 3.15 3.15
4 7.83 7.95 2.46 3.58 3.64 3.65 3.65
5 8.20 8.29 2.62 3.73 3.79 3.79 3.80
6 7.39 7.51 2.87 3.77 3.81 3.82 3.82
7 5.03 5.16 4.24 4.42 4.40 4.40 4.41
8 3.55 3.63 5.48 5.14 5.07 5.08 5.09
9 3.71 3.80 5.36 5.06 5.00 5.00 5.01

10 4.39 4.48 5.24 5.09 5.05 5.05 5.06
11 4.06 4.13 4.86 4.79 4.74 4.75 4.76
12 2.35 2.39 3.58 3.59 3.52 3.53 3.54
13 0.01 0.03 1.64 1.79 1.69 1.69 1.71
14 -1.60 -1.61 0.10 0.40 0.28 0.28 0.29
15 -2.01 -2.05 -0.51 -0.03 -0.18 -0.18 -0.17
16 -1.79 -1.84 -0.42 0.14 -0.02 -0.02 -0.01
17 -1.57 -1.62 -0.18 0.37 0.21 0.21 0.23
18 -1.52 -1.58 -0.09 0.44 0.29 0.30 0.31
19 -1.65 -1.71 -0.19 0.34 0.19 0.19 0.21
20 -1.86 -1.94 -0.36 0.17 0.02 0.02 0.03
21 -2.08 -2.18 -0.44 0.02 -0.14 -0.14 -0.12
22 -2.30 -2.42 -0.46 -0.05 -0.22 -0.22 -0.21
23 -2.20 -2.34 -0.39 -0.04 -0.21 -0.21 -0.20
24 -2.01 -2.15 -0.24 0.03 -0.14 -0.14 -0.12
25 -1.96 -2.09 -0.22 0.04 -0.12 -0.12 -0.11
26 -2.11 -2.25 -0.32 -0.02 -0.18 -0.18 -0.17
27 -2.38 -2.54 -0.42 -0.08 -0.25 -0.25 -0.24
28 -2.57 -2.75 -0.49 -0.10 -0.29 -0.29 -0.27
29 -2.52 -2.72 -0.47 -0.04 -0.24 -0.24 -0.23
30 -2.41 -2.63 -0.42 0.01 -0.20 -0.20 -0.19
31 -2.38 -2.60 -0.39 0.01 -0.19 -0.19 -0.18
32 -2.42 -2.63 -0.39 -0.01 -0.21 -0.21 -0.20
33 -2.41 -2.62 -0.41 -0.05 -0.23 -0.23 -0.22

Table C.7: Simulation Study Results of g(t, w) smoother than f(t, w) and high con-
curvity:
Beta regression coefficient estimates (x1,000) for Influenza H1N1pdm09 at varying
DFs for long-term (vertical) and seasonal (horizontal) trends for ages less than 65
years
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0 1 2 3 4 5 6
0 0.93 -2.44 1.55 0.99 0.80 0.81 0.82
1 6.17 4.87 3.25 3.67 3.54 3.55 3.56
2 4.36 2.51 -0.72 -0.09 -0.18 -0.16 -0.16
3 5.55 4.11 1.12 1.60 1.52 1.53 1.55
4 5.21 3.61 0.53 0.97 0.88 0.89 0.90
5 5.02 3.47 0.62 1.03 0.94 0.95 0.96
6 5.72 4.34 0.58 1.17 1.09 1.11 1.12
7 6.08 5.40 -0.23 0.75 0.71 0.73 0.74
8 6.45 6.26 -1.38 -0.01 -0.01 0.01 0.02
9 6.27 6.05 -1.42 -0.06 -0.06 -0.04 -0.03

10 6.18 5.87 -1.58 -0.22 -0.23 -0.21 -0.20
11 6.27 6.07 -1.56 -0.17 -0.17 -0.15 -0.15
12 6.28 6.22 -1.35 0.02 0.02 0.04 0.04
13 6.03 6.07 -1.43 -0.08 -0.09 -0.07 -0.07
14 5.98 6.12 -1.45 -0.09 -0.10 -0.08 -0.07
15 5.92 6.10 -1.46 -0.10 -0.10 -0.08 -0.08
16 5.77 5.96 -1.52 -0.16 -0.17 -0.15 -0.14
17 5.67 5.89 -1.55 -0.18 -0.19 -0.17 -0.16
18 5.66 5.91 -1.44 -0.09 -0.10 -0.08 -0.07
19 5.63 5.90 -1.46 -0.10 -0.11 -0.09 -0.08
20 5.59 5.89 -1.42 -0.06 -0.07 -0.05 -0.05
21 5.60 5.94 -1.46 -0.09 -0.10 -0.08 -0.07
22 5.55 5.91 -1.42 -0.05 -0.06 -0.04 -0.03
23 5.57 5.96 -1.41 -0.02 -0.03 -0.01 -0.00
24 5.48 5.87 -1.41 -0.02 -0.04 -0.02 -0.01
25 5.44 5.85 -1.40 -0.02 -0.04 -0.02 -0.01
26 5.40 5.84 -1.39 -0.00 -0.02 0.00 0.01
27 5.35 5.80 -1.41 -0.03 -0.05 -0.03 -0.02
28 5.31 5.79 -1.41 -0.03 -0.05 -0.03 -0.02
29 5.32 5.83 -1.37 0.01 -0.01 0.01 0.01
30 5.25 5.78 -1.37 0.01 -0.02 0.01 0.01
31 5.15 5.70 -1.38 -0.02 -0.04 -0.02 -0.01
32 5.16 5.72 -1.40 -0.02 -0.05 -0.03 -0.02
33 5.20 5.75 -1.40 -0.02 -0.04 -0.02 -0.01

Table C.8: Simulation Study Results of g(t, w) smoother than f(t, w) and high con-
curvity:
Beta regression coefficient estimates (x1,000) for Influenza B at varying DFs for long-
term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 9.72 5.84 -1.56 -1.53 -1.60 -1.60 -1.60
1 10.08 6.18 -1.48 -1.45 -1.52 -1.51 -1.51
2 9.64 5.67 -2.24 -2.20 -2.29 -2.30 -2.30
3 11.97 7.97 0.07 0.17 0.08 0.08 0.08
4 11.82 7.60 -0.53 -0.42 -0.52 -0.52 -0.52
5 12.42 8.14 -0.13 -0.00 -0.09 -0.10 -0.10
6 12.44 8.17 -0.11 0.01 -0.08 -0.09 -0.08
7 12.39 8.16 -0.08 0.05 -0.05 -0.05 -0.05
8 12.21 7.89 -0.46 -0.34 -0.44 -0.45 -0.44
9 12.00 7.67 -0.74 -0.61 -0.72 -0.72 -0.72

10 12.01 7.73 -0.54 -0.41 -0.51 -0.52 -0.52
11 11.92 7.72 -0.48 -0.36 -0.46 -0.47 -0.47
12 11.76 7.62 -0.58 -0.46 -0.56 -0.57 -0.57
13 12.02 7.75 -0.63 -0.50 -0.61 -0.62 -0.62
14 12.42 7.99 -0.64 -0.50 -0.61 -0.62 -0.62
15 12.57 8.10 -0.61 -0.47 -0.59 -0.60 -0.60
16 12.46 8.02 -0.62 -0.48 -0.59 -0.60 -0.60
17 12.52 8.09 -0.57 -0.43 -0.54 -0.55 -0.55
18 12.57 8.15 -0.59 -0.45 -0.56 -0.57 -0.57
19 12.64 8.18 -0.64 -0.51 -0.62 -0.63 -0.63
20 12.75 8.26 -0.60 -0.46 -0.58 -0.59 -0.59
21 12.74 8.27 -0.60 -0.47 -0.59 -0.59 -0.60
22 12.79 8.31 -0.61 -0.47 -0.58 -0.59 -0.59
23 12.75 8.30 -0.59 -0.45 -0.56 -0.57 -0.57
24 12.83 8.34 -0.63 -0.49 -0.61 -0.62 -0.62
25 13.05 8.55 -0.50 -0.35 -0.47 -0.48 -0.48
26 13.05 8.56 -0.48 -0.33 -0.45 -0.46 -0.46
27 12.93 8.46 -0.57 -0.43 -0.55 -0.56 -0.56
28 13.17 8.71 -0.40 -0.26 -0.38 -0.39 -0.39
29 13.19 8.70 -0.46 -0.32 -0.44 -0.45 -0.45
30 13.18 8.69 -0.49 -0.34 -0.46 -0.47 -0.47
31 13.34 8.84 -0.41 -0.27 -0.39 -0.40 -0.40
32 13.36 8.86 -0.40 -0.26 -0.38 -0.39 -0.39
33 13.21 8.70 -0.52 -0.37 -0.49 -0.51 -0.51

Table C.9: Simulation Study Results of g(t, w) rougher than f(t, w) and moderate
concurvity
Beta regression coefficient estimates (x1,000) for Influenza H1N1 at varying DFs for
long-term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 19.37 14.30 2.17 2.17 2.14 2.15 2.16
1 20.14 14.92 2.17 2.19 2.15 2.16 2.17
2 19.54 14.19 1.01 1.03 0.99 0.99 0.99
3 19.18 13.94 0.61 0.67 0.63 0.63 0.63
4 19.33 14.06 0.58 0.64 0.60 0.59 0.60
5 19.42 14.17 0.62 0.69 0.64 0.64 0.64
6 19.47 14.20 0.55 0.62 0.57 0.57 0.57
7 19.61 14.28 0.46 0.53 0.48 0.48 0.48
8 19.71 14.36 0.41 0.48 0.44 0.43 0.43
9 19.94 14.57 0.51 0.59 0.54 0.53 0.53

10 20.07 14.67 0.50 0.57 0.52 0.52 0.52
11 20.24 14.79 0.47 0.54 0.49 0.49 0.49
12 20.49 14.97 0.43 0.51 0.46 0.45 0.45
13 20.74 15.17 0.45 0.53 0.47 0.47 0.47
14 21.08 15.42 0.43 0.51 0.45 0.45 0.45
15 21.23 15.52 0.41 0.49 0.43 0.43 0.43
16 21.40 15.65 0.41 0.49 0.43 0.43 0.43
17 21.49 15.73 0.38 0.45 0.40 0.39 0.40
18 21.61 15.84 0.39 0.46 0.41 0.41 0.41
19 21.68 15.87 0.34 0.41 0.36 0.35 0.35
20 21.85 16.02 0.36 0.43 0.38 0.37 0.37
21 21.96 16.11 0.36 0.43 0.38 0.37 0.37
22 22.07 16.20 0.33 0.40 0.35 0.34 0.34
23 22.24 16.35 0.34 0.42 0.36 0.35 0.35
24 22.36 16.44 0.28 0.36 0.30 0.30 0.30
25 22.50 16.56 0.32 0.40 0.34 0.34 0.34
26 22.69 16.73 0.32 0.40 0.34 0.34 0.34
27 22.71 16.73 0.21 0.29 0.23 0.23 0.23
28 22.96 16.94 0.28 0.37 0.31 0.30 0.30
29 23.07 17.05 0.31 0.39 0.33 0.33 0.33
30 23.22 17.19 0.34 0.43 0.37 0.36 0.36
31 23.34 17.27 0.27 0.36 0.30 0.29 0.29
32 23.45 17.38 0.29 0.38 0.32 0.31 0.31
33 23.24 17.21 0.30 0.38 0.32 0.31 0.32

Table C.10: Simulation Study Results of g(t, w) rougher than f(t, w) and moderate
concurvity
Beta regression coefficient estimates (x1,000) for Influenza H3N2 at varying DFs for
long-term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 7.33 7.51 6.89 6.91 6.92 6.92 6.92
1 8.95 8.73 6.98 7.02 7.02 7.03 7.03
2 4.17 3.81 1.44 1.48 1.46 1.47 1.46
3 2.36 2.11 -0.44 -0.42 -0.43 -0.43 -0.44
4 2.47 2.23 -0.35 -0.33 -0.34 -0.35 -0.35
5 2.83 2.53 -0.16 -0.15 -0.16 -0.17 -0.17
6 2.87 2.56 -0.14 -0.13 -0.14 -0.15 -0.15
7 2.87 2.62 0.02 0.03 0.02 0.02 0.02
8 2.98 2.77 0.20 0.22 0.21 0.21 0.20
9 2.95 2.74 0.12 0.14 0.13 0.13 0.12

10 2.89 2.67 0.05 0.07 0.06 0.05 0.05
11 2.87 2.67 0.06 0.08 0.07 0.06 0.06
12 2.72 2.61 0.10 0.11 0.11 0.10 0.10
13 2.37 2.44 0.11 0.12 0.12 0.11 0.11
14 2.00 2.22 0.08 0.09 0.09 0.08 0.08
15 1.91 2.20 0.09 0.10 0.10 0.09 0.09
16 2.05 2.30 0.11 0.12 0.12 0.11 0.11
17 2.15 2.36 0.11 0.12 0.11 0.11 0.11
18 2.11 2.33 0.10 0.11 0.11 0.10 0.10
19 2.02 2.27 0.09 0.10 0.10 0.09 0.09
20 1.97 2.24 0.07 0.08 0.08 0.07 0.07
21 1.99 2.25 0.07 0.09 0.08 0.08 0.08
22 2.06 2.32 0.12 0.14 0.14 0.13 0.13
23 2.14 2.39 0.15 0.17 0.17 0.16 0.16
24 2.15 2.39 0.14 0.16 0.15 0.15 0.15
25 2.11 2.35 0.12 0.13 0.13 0.12 0.12
26 2.05 2.30 0.09 0.10 0.10 0.09 0.09
27 2.07 2.34 0.09 0.10 0.10 0.09 0.09
28 2.21 2.49 0.11 0.12 0.12 0.11 0.11
29 2.40 2.67 0.14 0.16 0.15 0.15 0.15
30 2.53 2.78 0.17 0.18 0.18 0.17 0.17
31 2.48 2.73 0.17 0.19 0.18 0.17 0.17
32 2.34 2.61 0.14 0.16 0.16 0.15 0.15
33 2.29 2.56 0.14 0.16 0.16 0.15 0.15

Table C.11: Simulation Study Results of g(t, w) rougher than f(t, w) and moderate
concurvity
Beta regression coefficient estimates (x1,000) for Influenza H1N1pdm09 at varying
DFs for long-term (vertical) and seasonal (horizontal) trends for ages less than 65
years
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0 1 2 3 4 5 6
0 2.64 0.36 0.16 0.19 0.15 0.15 0.15
1 2.90 0.58 0.18 0.21 0.16 0.17 0.16
2 2.59 0.22 -0.26 -0.24 -0.30 -0.30 -0.30
3 2.82 0.47 -0.01 0.08 0.02 0.03 0.02
4 2.81 0.46 -0.03 0.06 0.00 0.00 0.00
5 2.84 0.50 0.01 0.11 0.05 0.05 0.05
6 2.83 0.50 0.02 0.12 0.06 0.06 0.06
7 2.82 0.48 -0.01 0.09 0.03 0.03 0.03
8 2.77 0.43 -0.08 0.02 -0.04 -0.04 -0.04
9 2.76 0.41 -0.09 0.01 -0.06 -0.06 -0.06

10 2.76 0.42 -0.07 0.03 -0.03 -0.03 -0.03
11 2.77 0.43 -0.09 0.01 -0.05 -0.05 -0.05
12 2.76 0.43 -0.09 0.01 -0.06 -0.06 -0.06
13 2.85 0.49 -0.06 0.04 -0.03 -0.03 -0.03
14 2.88 0.52 -0.06 0.04 -0.02 -0.02 -0.03
15 2.86 0.50 -0.08 0.02 -0.04 -0.04 -0.05
16 2.85 0.50 -0.06 0.04 -0.02 -0.02 -0.03
17 2.82 0.47 -0.07 0.03 -0.04 -0.04 -0.04
18 2.82 0.48 -0.06 0.04 -0.02 -0.02 -0.02
19 2.85 0.49 -0.06 0.04 -0.02 -0.02 -0.03
20 2.82 0.47 -0.07 0.03 -0.03 -0.03 -0.04
21 2.82 0.47 -0.06 0.04 -0.03 -0.03 -0.03
22 2.80 0.47 -0.05 0.05 -0.02 -0.02 -0.02
23 2.80 0.45 -0.08 0.02 -0.05 -0.05 -0.05
24 2.79 0.45 -0.07 0.03 -0.03 -0.03 -0.04
25 2.76 0.43 -0.08 0.02 -0.05 -0.05 -0.05
26 2.78 0.45 -0.08 0.03 -0.04 -0.04 -0.05
27 2.80 0.47 -0.07 0.03 -0.04 -0.04 -0.04
28 2.74 0.43 -0.10 0.01 -0.06 -0.06 -0.06
29 2.77 0.45 -0.09 0.01 -0.06 -0.06 -0.06
30 2.76 0.45 -0.10 0.00 -0.07 -0.07 -0.07
31 2.74 0.44 -0.11 -0.00 -0.07 -0.07 -0.08
32 2.74 0.43 -0.10 0.00 -0.07 -0.07 -0.07
33 2.76 0.44 -0.10 0.01 -0.06 -0.06 -0.06

Table C.12: Simulation Study Results of g(t, w) rougher than f(t, w) and moderate
concurvity
Beta regression coefficient estimates (x1,000) for Influenza B at varying DFs for long-
term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 27.17 26.29 -4.16 -4.19 -4.19 -4.18 -4.17
1 32.67 32.18 0.68 0.63 0.77 0.92 0.92
2 30.43 29.52 -9.17 -8.97 -9.28 -9.25 -9.25
3 38.23 37.36 0.22 0.41 0.14 0.11 0.12
4 37.95 36.86 -2.58 -2.30 -2.70 -2.73 -2.72
5 46.82 45.65 1.08 1.48 1.07 1.05 1.06
6 47.61 46.49 0.99 1.35 0.98 0.95 0.96
7 45.49 44.64 1.61 1.92 1.57 1.54 1.55
8 45.58 44.43 -1.19 -0.83 -1.36 -1.41 -1.40
9 41.69 40.50 -4.25 -3.79 -4.55 -4.59 -4.58

10 34.15 33.05 -1.63 -0.96 -1.98 -2.01 -2.00
11 28.54 27.80 -0.94 -0.28 -1.26 -1.28 -1.27
12 27.73 27.30 -1.01 -0.44 -1.31 -1.33 -1.32
13 30.30 29.68 -0.68 0.04 -1.10 -1.13 -1.12
14 38.42 37.90 -1.08 -0.14 -1.64 -1.66 -1.66
15 37.97 37.69 -0.93 0.08 -1.55 -1.59 -1.58
16 36.53 36.24 -0.92 0.02 -1.46 -1.50 -1.49
17 33.65 33.40 -0.79 0.12 -1.29 -1.34 -1.33
18 35.15 34.95 -1.11 -0.14 -1.68 -1.72 -1.72
19 36.59 36.45 -1.25 -0.20 -1.86 -1.90 -1.89
20 36.64 36.48 -0.98 0.08 -1.60 -1.64 -1.64
21 36.40 36.23 -0.78 0.25 -1.39 -1.43 -1.43
22 36.69 36.56 -0.81 0.22 -1.45 -1.49 -1.48
23 37.22 37.15 -0.88 0.20 -1.50 -1.54 -1.54
24 37.08 37.04 -0.84 0.27 -1.46 -1.49 -1.49
25 37.33 37.30 -0.41 0.69 -1.02 -1.05 -1.05
26 36.42 36.38 -0.54 0.55 -1.16 -1.20 -1.19
27 35.98 35.99 -0.70 0.42 -1.29 -1.33 -1.33
28 36.59 36.65 -0.49 0.66 -1.04 -1.07 -1.07
29 36.75 36.81 -0.43 0.70 -1.04 -1.07 -1.06
30 36.65 36.74 -0.40 0.76 -0.97 -1.01 -1.00
31 35.90 35.99 -0.65 0.51 -1.21 -1.25 -1.25
32 36.08 36.19 -0.60 0.56 -1.19 -1.22 -1.22
33 36.52 36.63 -0.63 0.55 -1.17 -1.20 -1.20

Table C.13: Simulation Study Results of g(t, w) rougher than f(t, w) and high con-
curvity
Beta regression coefficient estimates (x1,000) for Influenza H1N1 at varying DFs for
long-term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 58.85 53.98 7.18 7.20 7.20 7.31 7.31
1 65.63 63.71 14.77 15.25 15.54 15.91 15.91
2 64.72 61.77 3.97 4.14 3.65 3.73 3.74
3 62.60 59.58 -1.78 -1.39 -1.80 -1.84 -1.83
4 62.71 59.74 -1.44 -1.06 -1.48 -1.52 -1.51
5 62.62 60.13 -0.47 -0.00 -0.37 -0.39 -0.38
6 62.37 59.79 -0.81 -0.35 -0.70 -0.73 -0.72
7 63.33 60.90 -1.00 -0.52 -0.93 -0.98 -0.96
8 63.42 60.93 -1.12 -0.71 -1.22 -1.29 -1.27
9 64.21 61.77 -0.16 0.23 -0.29 -0.36 -0.34

10 66.08 63.64 -0.75 -0.41 -0.78 -0.85 -0.83
11 67.94 65.59 -1.00 -0.68 -1.04 -1.11 -1.09
12 69.21 67.13 -1.00 -0.64 -1.07 -1.14 -1.12
13 70.14 68.41 -1.22 -0.84 -1.28 -1.35 -1.33
14 70.14 69.11 -1.14 -0.68 -1.29 -1.36 -1.35
15 72.33 71.78 -1.54 -1.04 -1.71 -1.78 -1.77
16 72.39 71.79 -1.18 -0.69 -1.32 -1.40 -1.38
17 73.04 72.47 -1.23 -0.74 -1.36 -1.44 -1.42
18 73.02 72.56 -1.29 -0.80 -1.48 -1.56 -1.54
19 73.02 72.66 -1.36 -0.86 -1.55 -1.63 -1.61
20 73.15 72.79 -1.31 -0.80 -1.48 -1.55 -1.53
21 73.30 72.95 -1.34 -0.83 -1.50 -1.58 -1.56
22 73.57 73.28 -1.29 -0.78 -1.49 -1.57 -1.55
23 73.54 73.31 -1.31 -0.79 -1.50 -1.57 -1.56
24 73.77 73.57 -1.21 -0.70 -1.40 -1.47 -1.46
25 73.94 73.79 -1.27 -0.74 -1.44 -1.51 -1.50
26 74.21 74.07 -1.34 -0.81 -1.52 -1.61 -1.59
27 74.41 74.31 -1.22 -0.67 -1.39 -1.47 -1.45
28 74.31 74.26 -1.28 -0.71 -1.44 -1.51 -1.49
29 74.52 74.48 -1.18 -0.64 -1.37 -1.45 -1.43
30 74.71 74.71 -1.35 -0.80 -1.54 -1.62 -1.59
31 74.95 74.99 -1.34 -0.77 -1.52 -1.60 -1.58
32 75.05 75.10 -1.29 -0.73 -1.48 -1.56 -1.53
33 74.89 74.93 -1.19 -0.62 -1.34 -1.41 -1.39

Table C.14: Simulation Study Results of g(t, w) rougher than f(t, w) and high con-
curvity
Beta regression coefficient estimates (x1,000) for Influenza H3N2 at varying DFs for
long-term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 14.52 14.63 13.92 13.94 13.93 13.92 13.93
1 28.30 27.84 19.05 19.29 19.46 19.55 19.55
2 21.64 20.47 3.88 4.04 3.66 3.69 3.69
3 18.03 16.81 -2.32 -2.02 -2.36 -2.38 -2.38
4 17.98 16.78 -2.11 -1.81 -2.16 -2.19 -2.18
5 19.88 18.81 -1.11 -0.75 -1.06 -1.08 -1.07
6 20.60 19.50 -1.21 -0.85 -1.15 -1.18 -1.17
7 20.08 19.17 -0.67 -0.35 -0.64 -0.68 -0.66
8 20.52 19.60 -0.14 0.14 -0.21 -0.25 -0.24
9 20.81 19.88 -0.24 0.03 -0.34 -0.38 -0.37

10 20.43 19.49 -0.35 -0.06 -0.42 -0.46 -0.45
11 19.00 18.12 -0.22 0.11 -0.31 -0.34 -0.33
12 16.70 16.08 -0.20 0.12 -0.29 -0.33 -0.31
13 13.40 13.07 -0.20 0.07 -0.26 -0.30 -0.28
14 8.73 8.69 -0.17 0.03 -0.18 -0.22 -0.20
15 5.10 5.13 -0.09 0.08 -0.05 -0.09 -0.08
16 5.91 5.92 -0.14 0.05 -0.11 -0.15 -0.14
17 7.23 7.22 -0.12 0.10 -0.12 -0.15 -0.14
18 7.49 7.49 -0.03 0.20 -0.03 -0.07 -0.05
19 6.96 6.97 0.03 0.22 0.04 -0.00 0.01
20 6.47 6.49 0.03 0.19 0.05 0.01 0.03
21 6.25 6.28 -0.02 0.13 0.00 -0.04 -0.02
22 6.15 6.18 -0.07 0.10 -0.06 -0.10 -0.08
23 6.02 6.06 -0.04 0.15 -0.03 -0.07 -0.05
24 5.75 5.78 -0.01 0.16 -0.01 -0.04 -0.02
25 5.69 5.71 -0.03 0.14 -0.02 -0.05 -0.04
26 6.04 6.06 -0.09 0.06 -0.10 -0.13 -0.12
27 6.76 6.79 -0.27 -0.10 -0.28 -0.32 -0.30
28 7.67 7.70 -0.36 -0.18 -0.38 -0.41 -0.39
29 8.20 8.23 -0.33 -0.13 -0.36 -0.39 -0.37
30 8.11 8.14 -0.25 -0.05 -0.27 -0.30 -0.28
31 7.66 7.68 -0.18 0.01 -0.19 -0.22 -0.21
32 7.15 7.18 -0.19 -0.01 -0.20 -0.23 -0.22
33 6.91 6.94 -0.31 -0.14 -0.32 -0.36 -0.34

Table C.15: Simulation Study Results of g(t, w) rougher than f(t, w) and high con-
curvity
Beta regression coefficient estimates (x1,000) for Influenza H1N1pdm09 at varying
DFs for long-term (vertical) and seasonal (horizontal) trends for ages less than 65
years
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0 1 2 3 4 5 6
0 -9.66 -13.22 1.03 1.50 1.20 1.28 1.25
1 -6.88 -8.23 1.73 3.21 3.86 4.04 4.00
2 -7.69 -9.76 0.38 0.50 -0.49 -0.42 -0.45
3 -7.66 -9.77 0.85 1.55 0.66 0.66 0.65
4 -7.69 -9.78 1.00 1.66 0.73 0.73 0.73
5 -8.58 -10.32 0.66 1.49 0.73 0.73 0.73
6 -8.79 -10.61 0.77 1.63 0.86 0.86 0.86
7 -8.65 -10.35 0.61 1.43 0.61 0.61 0.61
8 -8.92 -10.69 0.50 1.11 0.12 0.11 0.10
9 -8.81 -10.56 0.51 1.10 0.04 0.03 0.03

10 -9.01 -10.73 0.52 1.19 0.20 0.19 0.19
11 -9.24 -10.88 0.54 1.23 0.21 0.20 0.20
12 -9.39 -10.76 0.49 1.15 0.13 0.12 0.12
13 -10.05 -11.20 0.53 1.22 0.15 0.15 0.14
14 -10.26 -10.93 0.49 1.15 0.04 0.04 0.03
15 -11.42 -11.77 0.60 1.27 0.16 0.15 0.15
16 -11.39 -11.77 0.51 1.20 0.11 0.11 0.10
17 -11.39 -11.75 0.51 1.21 0.11 0.11 0.10
18 -11.49 -11.79 0.53 1.20 0.07 0.07 0.06
19 -11.60 -11.84 0.60 1.28 0.15 0.15 0.14
20 -11.73 -11.97 0.55 1.24 0.12 0.12 0.11
21 -11.81 -12.05 0.55 1.24 0.13 0.13 0.12
22 -12.01 -12.20 0.49 1.16 0.03 0.03 0.02
23 -11.95 -12.12 0.55 1.24 0.11 0.11 0.10
24 -12.09 -12.23 0.53 1.23 0.10 0.09 0.09
25 -12.21 -12.33 0.49 1.19 0.07 0.07 0.06
26 -12.22 -12.33 0.49 1.19 0.06 0.05 0.05
27 -12.21 -12.30 0.49 1.21 0.08 0.08 0.07
28 -12.16 -12.22 0.51 1.25 0.13 0.13 0.13
29 -12.33 -12.38 0.42 1.13 -0.01 -0.01 -0.02
30 -12.41 -12.44 0.50 1.22 0.09 0.09 0.08
31 -12.40 -12.40 0.55 1.27 0.15 0.14 0.14
32 -12.53 -12.53 0.51 1.23 0.09 0.09 0.08
33 -12.50 -12.51 0.53 1.27 0.15 0.15 0.14

Table C.16: Simulation Study Results of g(t, w) rougher than f(t, w) and high con-
curvity
Beta regression coefficient estimates (x1,000) for Influenza B at varying DFs for long-
term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 13.31 11.44 2.19 1.67 1.56 1.40 1.28
1 13.37 11.50 2.27 1.74 1.63 1.46 1.35
2 12.90 11.06 1.81 1.27 1.16 0.99 0.86
3 13.84 12.01 2.67 2.12 2.01 1.83 1.71
4 13.85 11.88 2.19 1.58 1.47 1.27 1.14
5 13.84 11.87 2.17 1.57 1.45 1.26 1.13
6 13.74 11.78 2.13 1.54 1.43 1.23 1.10
7 13.78 11.83 2.17 1.58 1.47 1.27 1.13
8 13.73 11.78 2.12 1.53 1.41 1.21 1.08
9 13.69 11.74 2.09 1.49 1.38 1.18 1.05

10 13.75 11.78 2.13 1.53 1.41 1.21 1.08
11 13.52 11.54 1.97 1.38 1.26 1.06 0.93
12 13.38 11.43 1.93 1.37 1.25 1.05 0.92
13 13.74 11.79 2.19 1.59 1.47 1.27 1.14
14 13.97 12.02 2.31 1.68 1.55 1.36 1.23
15 14.00 12.06 2.32 1.69 1.56 1.37 1.24
16 14.11 12.23 2.50 1.89 1.76 1.57 1.44
17 14.04 12.17 2.48 1.89 1.76 1.57 1.44
18 14.11 12.25 2.53 1.92 1.80 1.61 1.48
19 14.02 12.17 2.51 1.91 1.79 1.60 1.47
20 14.21 12.32 2.62 2.00 1.88 1.68 1.56
21 14.26 12.38 2.64 2.03 1.91 1.71 1.58
22 14.02 12.20 2.53 1.93 1.81 1.62 1.49
23 14.35 12.50 2.72 2.09 1.96 1.77 1.64
24 14.47 12.58 2.86 2.27 2.14 1.95 1.82
25 14.59 12.69 3.11 2.54 2.42 2.23 2.10
26 14.64 12.71 3.16 2.58 2.46 2.26 2.13
27 14.02 12.17 2.80 2.25 2.14 1.94 1.81
28 14.40 12.59 2.89 2.36 2.25 2.05 1.92
29 14.32 12.49 2.64 2.11 1.98 1.78 1.65
30 14.74 12.79 2.94 2.37 2.24 2.04 1.90
31 15.10 13.11 3.37 2.82 2.69 2.50 2.36
32 15.07 13.03 3.18 2.63 2.50 2.30 2.15
33 14.56 12.62 2.98 2.46 2.34 2.14 2.00

Table C.17: Data Analysis Results:
Beta regression coefficient estimates (x1,000) for Influenza H1N1 at varying DFs for
long-term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 24.31 21.59 10.09 8.79 8.62 8.44 8.34
1 24.23 21.52 9.99 8.71 8.55 8.37 8.26
2 24.44 21.72 10.02 8.74 8.58 8.39 8.28
3 24.36 21.76 10.17 8.90 8.75 8.56 8.45
4 24.36 21.74 10.06 8.78 8.62 8.42 8.30
5 24.36 21.75 10.07 8.80 8.64 8.43 8.32
6 24.34 21.74 10.05 8.78 8.62 8.41 8.30
7 24.37 21.75 9.96 8.69 8.53 8.31 8.20
8 24.43 21.82 10.04 8.77 8.61 8.39 8.28
9 24.50 21.89 10.11 8.83 8.67 8.46 8.35

10 24.51 21.92 10.15 8.88 8.72 8.51 8.40
11 24.62 22.05 10.25 8.97 8.80 8.60 8.48
12 24.80 22.21 10.36 9.06 8.89 8.68 8.57
13 24.85 22.31 10.47 9.16 8.99 8.79 8.68
14 25.02 22.49 10.62 9.28 9.11 8.91 8.80
15 25.11 22.60 10.69 9.33 9.16 8.96 8.85
16 25.12 22.62 10.70 9.32 9.15 8.95 8.84
17 25.18 22.68 10.75 9.36 9.19 8.99 8.88
18 25.18 22.70 10.76 9.37 9.20 9.00 8.89
19 25.19 22.71 10.77 9.37 9.20 9.00 8.89
20 25.19 22.72 10.77 9.37 9.20 9.00 8.90
21 25.15 22.68 10.72 9.32 9.15 8.95 8.84
22 25.22 22.74 10.80 9.39 9.22 9.02 8.91
23 25.15 22.69 10.76 9.35 9.19 8.99 8.88
24 25.07 22.62 10.68 9.26 9.09 8.89 8.79
25 25.09 22.65 10.63 9.20 9.03 8.84 8.73
26 24.97 22.54 10.47 9.04 8.87 8.67 8.57
27 25.27 22.80 10.63 9.18 9.00 8.80 8.70
28 25.18 22.73 10.62 9.20 9.02 8.83 8.72
29 25.24 22.78 10.67 9.22 9.05 8.85 8.74
30 25.20 22.77 10.75 9.30 9.13 8.93 8.83
31 25.05 22.68 10.60 9.20 9.04 8.85 8.75
32 25.36 22.97 10.70 9.28 9.11 8.91 8.81
33 25.10 22.68 10.61 9.16 8.98 8.79 8.69

Table C.18: Data Analysis Results:
Beta regression coefficient estimates (x1,000) for Influenza H3N2 at varying DFs for
long-term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 11.84 11.50 10.64 10.86 10.88 10.86 10.83
1 11.53 11.21 10.25 10.52 10.55 10.53 10.49
2 9.18 8.90 8.12 8.40 8.43 8.41 8.37
3 8.65 8.42 7.81 8.11 8.13 8.12 8.08
4 8.69 8.44 7.75 8.04 8.06 8.05 8.00
5 8.88 8.61 7.88 8.15 8.18 8.16 8.12
6 8.82 8.56 7.87 8.15 8.18 8.16 8.12
7 8.81 8.56 7.96 8.25 8.28 8.26 8.22
8 8.83 8.58 7.99 8.27 8.30 8.29 8.25
9 8.83 8.59 7.97 8.26 8.29 8.27 8.23

10 8.92 8.65 8.00 8.28 8.31 8.29 8.25
11 8.86 8.55 7.90 8.18 8.21 8.19 8.14
12 8.19 7.91 7.48 7.84 7.87 7.85 7.80
13 7.20 7.04 6.97 7.44 7.48 7.46 7.42
14 6.46 6.41 6.66 7.22 7.26 7.25 7.21
15 6.28 6.28 6.63 7.20 7.24 7.24 7.19
16 6.43 6.43 6.70 7.24 7.29 7.28 7.23
17 6.64 6.60 6.77 7.28 7.33 7.32 7.27
18 6.91 6.81 6.94 7.43 7.47 7.46 7.42
19 7.21 7.07 7.22 7.72 7.76 7.75 7.70
20 7.29 7.14 7.37 7.89 7.94 7.93 7.88
21 6.98 6.87 7.21 7.75 7.80 7.79 7.74
22 6.69 6.60 6.96 7.49 7.54 7.53 7.48
23 6.79 6.69 6.93 7.42 7.47 7.46 7.41
24 7.11 6.97 7.15 7.65 7.69 7.68 7.63
25 7.47 7.32 7.55 8.12 8.16 8.15 8.10
26 7.62 7.50 7.92 8.59 8.65 8.63 8.58
27 7.25 7.19 7.84 8.60 8.67 8.65 8.60
28 6.78 6.77 7.47 8.22 8.28 8.27 8.22
29 6.61 6.60 7.21 7.90 7.96 7.95 7.90
30 6.96 6.90 7.35 7.98 8.03 8.02 7.97
31 7.59 7.43 7.78 8.38 8.43 8.42 8.36
32 8.08 7.85 8.16 8.80 8.86 8.83 8.77
33 7.92 7.70 8.20 8.96 9.03 9.01 8.93

Table C.19: Data Analysis Results:
Beta regression coefficient estimates (x1,000) for Influenza H1N1pdm09 at varying
DFs for long-term (vertical) and seasonal (horizontal) trends for ages less than 65
years
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0 1 2 3 4 5 6
0 10.07 7.15 5.74 3.60 3.36 3.25 3.22
1 10.06 7.15 5.73 3.60 3.36 3.25 3.23
2 10.11 7.21 5.72 3.64 3.43 3.32 3.29
3 10.15 7.35 5.90 3.86 3.64 3.53 3.50
4 10.14 7.33 5.81 3.76 3.54 3.43 3.40
5 10.14 7.34 5.84 3.80 3.58 3.46 3.43
6 10.19 7.39 5.86 3.81 3.60 3.48 3.45
7 10.16 7.36 5.82 3.78 3.56 3.44 3.41
8 10.20 7.41 5.86 3.82 3.60 3.48 3.45
9 10.24 7.44 5.86 3.81 3.59 3.47 3.44

10 10.36 7.56 5.94 3.89 3.67 3.55 3.52
11 10.44 7.61 5.95 3.89 3.67 3.54 3.51
12 10.34 7.54 5.91 3.87 3.65 3.52 3.49
13 10.52 7.75 6.04 3.99 3.78 3.65 3.62
14 10.48 7.76 6.05 4.01 3.79 3.67 3.64
15 10.54 7.85 6.10 4.05 3.84 3.72 3.69
16 10.61 7.91 6.14 4.07 3.86 3.74 3.71
17 10.64 7.94 6.13 4.05 3.83 3.71 3.68
18 10.69 7.99 6.20 4.11 3.90 3.77 3.74
19 10.73 8.04 6.25 4.16 3.95 3.83 3.79
20 10.68 8.00 6.22 4.14 3.92 3.80 3.77
21 10.62 7.95 6.18 4.10 3.88 3.76 3.73
22 10.78 8.08 6.23 4.12 3.90 3.77 3.74
23 10.80 8.10 6.29 4.18 3.97 3.84 3.81
24 10.76 8.09 6.27 4.17 3.95 3.83 3.80
25 10.76 8.07 6.25 4.12 3.90 3.79 3.76
26 10.76 8.05 6.26 4.11 3.88 3.76 3.74
27 10.68 7.94 6.17 3.98 3.75 3.63 3.61
28 10.63 7.87 6.22 3.99 3.76 3.64 3.62
29 10.69 7.97 6.28 4.08 3.86 3.74 3.71
30 10.65 7.97 6.15 3.97 3.75 3.63 3.60
31 10.66 7.88 6.30 4.08 3.85 3.73 3.71
32 10.40 7.69 6.25 4.06 3.84 3.72 3.70
33 10.80 8.03 6.26 4.04 3.80 3.68 3.65

Table C.20: Data Analysis Results:
Beta regression coefficient estimates (x1,000) for Influenza B at varying DFs for long-
term (vertical) and seasonal (horizontal) trends for ages less than 65 years
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0 1 2 3 4 5 6
0 97918.90 85136.35 48437.63 40701.42 39724.33 38920.32 38479.02
1 97579.13 84820.96 47972.89 40339.68 39370.68 38550.09 38101.52
2 95954.02 83244.24 45900.15 38365.90 37464.56 36622.66 36146.92
3 96134.95 83926.73 47116.35 39725.68 38839.18 37984.71 37530.17
4 96146.69 83759.52 46207.08 38691.47 37784.52 36870.30 36387.81
5 96263.94 83928.25 46389.40 38894.16 37990.96 37070.19 36591.25
6 96202.83 83876.96 46344.89 38864.35 37962.35 37035.96 36556.88
7 96220.85 83881.57 46163.34 38679.65 37766.43 36818.35 36333.91
8 96403.83 84114.66 46404.09 38929.95 38016.06 37073.85 36592.30
9 96582.10 84283.36 46514.70 39025.82 38107.13 37171.75 36690.12

10 96925.41 84645.64 46853.94 39366.25 38445.47 37519.80 37039.54
11 97076.70 84735.89 46871.12 39348.63 38415.41 37475.64 36986.08
12 96603.19 84317.02 46648.65 39211.55 38285.25 37351.25 36859.78
13 96488.21 84472.55 46988.53 39575.03 38659.36 37743.88 37259.26
14 96283.10 84504.75 47187.47 39784.19 38874.04 37967.80 37488.06
15 96450.98 84813.87 47439.78 39987.84 39075.54 38168.50 37690.57
16 96777.02 85198.50 47742.64 40221.57 39305.56 38407.04 37934.11
17 97074.46 85482.97 47894.01 40294.26 39372.49 38467.24 37992.78
18 97408.08 85840.63 48224.43 40601.38 39682.45 38778.42 38305.36
19 97674.07 86098.98 48554.53 40936.44 40016.93 39113.41 38640.66
20 97788.02 86226.54 48741.59 41119.48 40200.35 39299.99 38829.78
21 97390.80 85852.43 48420.91 40814.70 39898.11 38990.17 38515.72
22 97400.32 85868.59 48400.22 40720.83 39802.65 38898.29 38423.28
23 97617.06 86123.34 48553.80 40851.08 39936.47 39034.84 38561.35
24 97756.18 86243.15 48639.64 40956.79 40042.53 39141.09 38669.71
25 98169.41 86636.48 49063.56 41358.07 40435.47 39545.81 39083.25
26 98097.08 86527.82 49054.82 41363.23 40433.60 39532.04 39067.11
27 97770.64 86195.62 48863.05 41165.25 40227.42 39325.82 38856.43
28 97418.13 85890.90 48711.76 41001.41 40071.48 39182.60 38716.68
29 97440.94 85982.92 48499.89 40757.34 39832.42 38925.49 38448.85
30 97893.64 86413.31 48823.36 41017.87 40084.00 39188.50 38716.57
31 98367.96 86765.15 49499.11 41726.36 40795.79 39925.10 39468.49
32 98896.54 87302.33 49750.93 42039.45 41108.41 40219.10 39749.51
33 98601.62 86877.40 49444.89 41693.29 40752.26 39847.74 39367.46

Table C.21: Data Analysis Results:
Influenza-associated Mortality estimates at varying DFs for long-term (vertical) and
seasonal (horizontal) trends for ages less than 65 years
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Figure C.1: Estimate beta coefficients of Influenza A(H1N1) as the degrees of freedom
for long-term and seasonal trends vary
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Figure C.2: Beta coefficients standard error of Influenza A(H1N1) as the degrees of
freedom for long-term and seasonal trends vary
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Figure C.3: Estimate beta coefficients of Influenza B as the degrees of freedom for
long-term and seasonal trends vary
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Figure C.4: Beta coefficients standard error of Influenza B as the degrees of freedom
for long-term and seasonal trends vary
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Figure C.5: Estimate beta coefficients of Influenza A(H1N1)pdm09 as the degrees of
freedom for long-term and seasonal trends vary
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Figure C.6: Beta coefficients standard error of Influenza A(H1N1)pdm09 as the de-
grees of freedom for long-term and seasonal trends vary
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Figure C.7: Average annual total influenza-associated mortality as the degrees of
freedom for long-term and seasonal trends vary
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