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Abstract 

A benchmark of rare cell type detection methods for single-cell RNA 

sequencing data 

 
By Jiahui Liu 

 
Background: A key task in single-cell RNA-seq (scRNA-seq) data analysis is to detect the rare 

cell types in the sample, which can be critical for downstream analyses such as differential gene 

analysis. Various scRNA-seq data detecting rare cell type algorithms have been specifically 

designed to automatically estimate the rare cell types through define rareness score or optimizing 

the clustering method. The lack of benchmark studies, however, complicates the choice of the 

methods. 

 

Results: We conducted a comprehensive evaluation of several widely used algorithms for 

detecting rare cell types. To assess their accuracy and consistency, we sampled data from European 

Genome-Phenome Archive (EGA) and evaluated their performance on a range of scRNA-seq 

datasets with different samples. Additionally, we integrated multiple samples to test the algorithms' 

population-level performance. Using a set of criteria, including clustering improvement methods 

and customization of the rareness score, we evaluated the algorithms' performance from various 

aspects and drew our conclusions based on this benchmarking work. Our evaluation was based on 

a large number of datasets, providing us with valuable insights into the suitability of these 

algorithms for identifying rare cell types. 

 

Conclusion: We identified the strengths and weaknesses of each method based on a variety of 

criteria, including detection accuracy, precision, Cohen's kappa, sensitivity, and specificity at the 

individual and population levels based on predefined rare cell types, as well as a comparison of 

runtime and peak memory. We then aggregate these results into multifaceted recommendations 

for users. 
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1. Introduction 

Single-cell mRNA sequencing (scRNA-seq) has emerged as a transformative technology that allows for 

the simultaneous measurement of gene expression at the individual cell level, enabling researchers to 

capture the complexity and heterogeneity of biological systems[1].This sequencing technology has 

significantly advanced our understanding of cell-type composition within complex tissues. For example, in 

human blood tissue, we can now identify and distinguish between various cell types such as B-cells, T-

cells, and monocytes with greater precision and resolution than ever before[2]. Moreover, scRNA-seq has 

facilitated the exploration of relationships between different cell types and has provided new insights into 

the underlying biological mechanisms that govern cellular differentiation and function, which has further 

ignited research interest in this field [3]. In recent years, there has been growing interest in detecting rare 

cell types that exist at low frequencies, particularly those that play crucial roles in human disease and 

development, such as drug-resistant cells and cancer-initiating cells[4, 5]. However, detecting rare cell types 

in scRNA-seq data presents significant challenges due to the high dimensionality of the data, with thousands 

of genes and cells in a single dataset, and the sparsity of the expression matrix where most of the data are 

zeros. Therefore, developing effective methods for rare cell type detection is critical for advancing our 

understanding of complex biological systems. 

 

Numerous software methods have been developed to detect rare cell types in scRNA-seq data at the 

individual level. GiniClust[6], CellSIUS[7], RaceID[8], and scAIDE[9] are among the methods that employ 

unsupervised clustering algorithms followed by assignment steps to identify rare cell types. FiRE[10], on 

the other hand, employs an algorithmic approach that directly assigns a rarity score to each cell without 

clustering. 

 

While these methods have demonstrated effectiveness in detecting rare cell types at the individual level, 

detecting rare cell types at the population level is a different story and poses several challenges. For instance, 
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there are batch effects of each sample in different experimental conditions, as well as biological differences 

between different individuals. Additionally, it remains unclear whether rare cell types identified at the 

individual level are still considered rare cell types in the population, and distinguishing true rare cell types 

from outliers at the population level is also a significant challenge. 

 

Currently, Yu et al. compared the number of cell types were estimated by different cluster algorithms[11]. 

Fa et al. benchmarked on sensitivity of different approaches to cell type identity[12]. However, there is a 

lack of studies that comprehensively compare the consistency of multiple rare cell type detection algorithms 

at both the population and individual levels. While publications describing new methods do benchmark 

against existing approaches, these comparisons often only focus on whether the methods can detect rare 

cell types, rather than their consistency at the individual and population levels. Moreover, the definition of 

rare cell types differs between different methods, leading to different interpretations. Therefore, our study 

aims to comprehensively and objectively evaluate rare cell type detection methods developed for scRNA-

seq data, with a focus on their consistency. Specifically, we tested the following methods: GiniClust3, 

CellSIUS, RaceID, scAIDE and FiRE. To conduct our evaluation, we employed the COVID-19 dataset 

from European Genome-Phenome Archive (EGA) and selected 10 samples for simulation. We used 

Combat[13] to remove the batch effect. 

2. Methods 

2.1 Data collection and preprocessing 

We obtained processed read counts for COVID-19 scRNA-seq PBMC studies conducted by Schulte-

Schrepping et al. and Su et al. by downloading data from the European Genome-Phenome Archive (EGA) 

and ArrayExpress database, respectively[14, 15]. The accession numbers provided in the original 

publications, EGAS00001004571 and E-MTAB-9357, were used to access the data. Then we used 

Seurat[16] in R to store data from 10 individuals. For each sample, we collected information such as disease 

stage, sex, and cell type. We merged cell type labels in the Seurat data by combining similar cell types. For 
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instance, we merged “Classical Monocytes”, “HLA-DR+ CD83+ Monocytes”, “CD163+ Monocytes”, 

“HLA-DR- S100A+ monocytes” and “Non-classical Monocytes” labels into one cell type called 

“Monocytes”. We obtained gene expression matrixes for each subject, and we analyzed the clustering 

results for each individual and combined data. To correct batch effects in the combined data, we used 

Combat. 

 

2.2 Batch Effect Correction 

To correct for batch effects in our scRNA-seq data, we used the ComBat algorithm[17], which has been 

successfully applied to scRNA-seq data. First, we employed a negative binomial regression model to 

estimate batch effects using the above count scRNA-seq matrix.  Let the expression count value for gene 𝑔 

of sample 𝑗 from batch 𝑖 be denoted by 𝑦𝑔𝑖𝑗. Therefore, we could assume 𝑦𝑔𝑖𝑗~𝑁𝐵(𝜇𝑔𝑖𝑗 , 𝜙𝑔𝑖), where 𝜇𝑔𝑖𝑗 

is the mean and 𝜙𝑔𝑖  is the dispersion parameter. Then for a certain gene 𝑔, in sample 𝑗 and batch 𝑖, we 

could get a gene-wise model:   

𝑙𝑜𝑔𝜇𝑔𝑖𝑗 = 𝛼𝑔 + 𝑋𝑗𝛽𝑔 + 𝛾𝑔𝑖 + 𝑙𝑜𝑔𝑁𝑗 

𝑣𝑎𝑟(𝑦𝑔𝑖𝑗) = 𝜇𝑔𝑖𝑗 + 𝜙𝑔𝑖𝜇𝑔𝑖𝑗
2  

Where 𝛼𝑔 is the average level for gene 𝑔. 𝑋𝑗𝛽𝑔 donates the biological condition of sample 𝑗. 𝑁𝑗  reflects the 

total counts across all genes in sample 𝑗. Next, we used the established methods in edgeR to estimate the 

batch effect parameter [18, 19].  

 

Following the modeling process, we obtained the estimated batch effect parameters 𝛾̂𝑔𝑖 and 𝜙̂𝑔𝑖 , along with 

the fitted expectation of the count 𝜇̂𝑔𝑖𝑗 . Next, we calculated parameters for batch-free distributions as 

follows: Assuming that the adjusted data 𝑦𝑔𝑗
∗ ~𝑁𝐵(𝜇𝑔𝑗

∗ , 𝜙𝑔
∗ ). Then we could calculate the following formula: 

 

 

𝑙𝑜𝑔𝜇𝑔𝑗
∗ = 𝑙𝑜𝑔𝜇̂𝑔𝑖𝑗 − 𝛾̂𝑔𝑖 
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𝜙𝑔
∗ =

1

𝑁𝑏𝑎𝑡𝑐ℎ
∑ 𝜙̂𝑔𝑖

𝑖

 

Finally, we calculated the adjusted data 𝑦𝑔𝑗
∗  by identifying the closest quantile on the batch-free distribution 

to the quantile of the original data 𝑦𝑔𝑖𝑗 on the empirical distribution. In our benchmarking, we used each 

subject’s data as a specific batch label and processed our data based on this label to correct the batch effect. 

The resulting adjusted gene expression matrix was used for downstream analysis to detect rare cell types at 

the population level. 

 

2.3 Rare Cell Types Detecting 

Table 1 presents a summary of the key features of the six methods tested for detecting rare cell types. Most 

of these methods employ unsupervised clustering to identify subtype cells and define rare cell types, with 

the exception of FiRE. The unsupervised methods do not require any prior information about cell types. 

FiRE identifies rare cell type cells by computing a rareness score and applying IQR-based thresholding 

criteria, but it does not use hierarchical or density-based cluster methods to flag outliers. In this project, we 

utilized FiRE in the without clustering mode, and all other methods in the unsupervised mode without any 

cell type information. We provide a brief description of each method below. 

 

Table1. Key characteristics of each method. 

Tools Programming Language Detecting Rare cell type output Method 

GiniClust3 Python Cluster label Gini and Fano index clustering 

CellSIUS R Cluster label k-means and Markov Cluster 

RaceID R Cluster label k-means and regression 

scAIDE Python, R Cluster label Embedding and RPH-kmeans 

FiRE R Rare or normal label Calculating rareness score 
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2.3.1 Detecting rare cell type based on Gini and Fano index (GiniClust3) 

GiniClust3 is an improved version of GiniClust, designed to be faster and more memory-efficient than 

previous versions[20]. GiniClust3 employs both Gini index-based features and Fano factor-based features 

to cluster cells. Initially, GiniClust3 clusters all cells based on Gini index-based features. For each gene, 

the raw Gini index is computed as twice the area between the Lorenz curve and the diagonal, taking a value 

between 0 and 1. Subsequently, the raw Gini index values are normalized by eliminating the maximum 

expression levels of the trends, using a two-step LOESS regression procedure. Genes whose Gini index 

value is greater than 0.6 and p-value less than 0.0001 are labeled as high Gini genes and used for subsequent 

analysis. Instead of using DBSCAN as in the previous version, GiniClust3 employs the Leiden algorithm, 

which is suitable for large datasets, for the clustering step[21]. 

 

The Fano factor, which is the variance of the mean expression value for each gene, is used in the analysis. 

The highly variable genes for the subsequent analysis were identified using Scanpy by default [22]. The 

gene expression data was then dimensionally reduced using principal component analysis (PCA), followed 

by Leiden or Louvain clustering. Instead of using cell-level analysis, a consensus matrix was generated 

based on the cluster level of the Gini and Fano clustering methods. If two cells were clustered in the same 

group, the connectivity was assigned a value of 1; otherwise, it was assigned a value of 0. The consensus 

matrix was subjected to k-means clustering, and the resulting clusters were converted back to single-cell 

level clustering. Finally, clusters with a cell population less than 1% were defined as rare cell clusters. 

 

2.3.2 Detecting rare cell types based on correlated gene with MCL (CellSIUS) 

CellSIUS initially divides N cells into m clusters C1, …, Cm, and then identifies cell subpopulations and 

their characteristics as follows. The first step is to identify genes with bimodal expression: for each gene, 

one-dimensional k-means clustering is used to divide the expression level of cells in each cluster Cj into 

high and low groups. Candidate marker genes are selected based on three criteria, including an average 
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expression fold greater than 2 between the two groups, all cells in the high-level group being larger than 

the user-defined percentage, and a significant difference between the two groups of gene expression values 

(t test and Benjamini-Hochberg correction). For the list of candidate marker genes, the method assesses 

whether the subpopulation of cells expressing them is specific to cluster Cj based on the significant 

difference in the expression value of gene ith in high expression cells compared to cells not in cluster Cj (t 

test and FDR correction). 

 

For each cluster Cj, the correlation matrix of all candidate gene expression for all cells in the cluster Cj is 

converted into a graph where the genes correspond to nodes and the edges are weighted by the correlation 

between them. MCL[23] is then used to identify correlated gene sets. A one-dimensional k-means method 

is used to the mean expression of each gene set for each cluster. Cells are assigned to a new cluster when 

they fall into the high mode. Finally, cells assigned to the final cluster combine all subgroups to which they 

belong. The minimum number of genes for a cluster to be considered is 3. 

 

2.3.3 Detecting rare cell type based on calculating rareness score (FiRE) 

FiRE is a rapid method for estimating the density around each related multidimensional data point. It utilizes 

the sketching technique[24] as the primary algorithm. Unlike most existing techniques, FiRE calculates a 

rareness score for each individual expression profile, allowing users to focus more attention on the small 

set of potentially rare cells. It includes two phases: 

 

In the first phase, the Sketching process is repeated L times. Hash codes are generated for the entire set of 

expression profiles at each pass iteration. Each hash code can be thought of as a bucket. The sketching 

process needs to ensure that the cells sharing the same bucket are close to each other in the original high-

dimensional space. The density estimate for the i-th cell in the l-th pass is calculated as follows: 

𝑝𝑖𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑐𝑘𝑒𝑡 𝑐𝑜𝑛𝑠𝑖𝑠𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑖

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠
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In the second phase, FiRE reduces the variance of density estimates for individual cells by combining 

them. The FiRE score is defined as follows: 

𝐹𝑖𝑅𝐸𝑠𝑐𝑜𝑟𝑒𝑖 = −2 ∑ 𝑙𝑜𝑔(𝑝𝑖𝑙)

L

l=1

 

Then, an IQR-based threshold criteria was used to determine the rare cell type. 

 

2.3.4 Detecting rare cell type based on embedding and RPH-kmeans (scAIDE) 

scAIDE is a fully unsupervised deep learning clustering analysis framework consisting of two main 

components: AIDE for dimensionality reduction and RPH-kmeans for clustering. AIDE includes an 

imputation module and a dimensionality reduction module. The imputation module uses an autoencoder 

(AE) to correct biological noise in the gene expression vector and can recover estimated expression vectors 

since AE captures important latent structure of the data in hidden layers and learns to regenerate the data. 

In the dimensionality reduction module, a fully connected network called multidimensional scaling (MDS) 

encoder is used to transform the data into a space that is suitable for Euclidean-based clustering methods 

(e.g., k-means). RPH-kmeans is a random projection hashing-based clustering algorithm that matches with 

the MDS encoder for clustering. 

 

One major challenge for k-means is its sensitivity to initial cluster centroids. When the size of the underlying 

cluster group is highly imbalanced, as is often the case for scRNA-seq data, the resulting clusters can be 

biased towards larger cell populations. To address this issue, RPH-kmeans was proposed, which utilizes a 

Locality Sensitive Hashing (LSH)[25] technique to initialize the cluster centers. The pipeline of RPH-

kmeans can be summarized into two steps. In the first stage, the number of data points is iteratively reduced 

using LSH. In each iteration, data points that hash into the same bucket will be merged into one weighted 

point. In the end, a data skeleton with a much smaller number of points is generated. In the second stage, 

weighted k-means is applied to the skeleton to produce initial centers for RPH-kmeans. To evaluate the 
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performance of the algorithms, pre-determined group labels or rare cell type labels can be used at the 

individual level. 

 

2.3.5 Detecting rare cell types based on screened for outliers (RaceID) 

RaceID is an unsupervised method that can identify rare cell types in a population, even those represented 

by a single cell. The method comprises three steps. In the first step, larger clusters are identified using k-

means clustering. The number of clusters used for k-means clustering is determined using the gap 

statistic[26], which measures the difference between the uniform distribution and within-cluster dispersion 

in the actual data. By default, the cluster number is determined as the first local maximum of the gap statistic, 

where the maximum exceeds its neighbors by more than 25% of its standard deviation. If the gap statistic 

does not show a clear maximum, then the number of clusters dividing the point where the gap statistic starts 

to saturate should be used as input to the k-means clustering. The algorithm uses Jaccard's similarity to 

quantify cluster reproducibility. If the Jaccard similarity of multiple clusters is below 0.5, the clusters should 

be repeated with fewer clusters. The outlier identification step of the algorithm corrects underestimation of 

the actual number of clusters. Therefore, it is recommended to start with a conservative estimate of the 

number of clusters. 

 

In the second step, RaceID identifies outlier cells within each cluster by evaluating the transcript count 

variability of every gene across all cells in the cluster. The expected baseline level of expression variability, 

which is quantified by the transcript count variance, is inferred from the ensemble of all cells. A second-

order polynomial is fitted to the transcript count variance as a function of the average transcript count in 

logarithmic space. For a given cell, if the multiple testing corrected transcript count probability of a 

specified number of genes (two for the data) is below a defined probability threshold (<10e−4 for the data), 

the cell is considered an outlier. 

 



 

 

9 

After identifying outlier cells in the second step, the last step of the RaceID algorithm involves inferring 

the final cluster of different cell types or states. Outlier cells are first merged into the outlier cluster if their 

transcriptome correlation exceeds the 75th percentile of the distribution of correlations between cells within 

the original cluster after outlier removal. New cluster centers are then calculated for the remaining original 

and new outlier clusters by averaging transcript counts within these clusters. Each cell is then reassigned to 

the most highly correlated cluster center, resulting in the final cluster assignments. 

 

2.4 Evaluation metrics 

To help guide the assessment of detecting rare cell type algorithm efficiency, we employed four different 

metrics, accuracy, precision, consistency, sensitivity and specificity values in binary classification. After 

obtaining the batch-corrected outputs and detecting rare cell types at both individual and population level, 

we computed the accuracy, precision, consistency, sensitivity and specificity scores based on the original 

rare cell types we defined. For accuracy score, it is the proportion of correct predictions (both true positives 

and true negatives) among the total number of cases examined[27]. The formula for accuracy score can be 

written as:  

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Where TP is the true positives, FP is the false positives, TN is the true negatives, and FN is are the false 

negatives. For precision, also as Positive Predictive Value, it measures how many observations predicted 

as positive are in fact positive. The formula for precision is following: 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

For consistency part, we would like to use Cohen's kappa coefficient, it is generally thought to be a more 

robust measure than simple percent agreement calculation[28]. We used both individual and population 

level result to calculate this coefficient. The formula for Cohen’s kappa coefficient is following: 

𝜅 =
2 × (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑃) × (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁)
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Where TP is the true positives, FP is the false positives, TN is the true negatives, and FN is are the false 

negatives. Sensitivity (true positive rate) is the probability of a positive test result, conditioned on the 

individual truly being positive. Specificity (true negative rate) is the probability of a negative test result, 

conditioned on the individual truly being negative. The formula for calculating sensitivity and specificity 

is following: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Where TP is the true positives, FP is the false positives, TN is the true negatives, and FN is are the false 

negatives. 

 

2.5 Uniform manifold approximation and projection (UMAP) visualization 

We used the Seurat and ggplot2 package in the R environment to visualize the raw data, batch-corrected 

output and rare cell type detecting result. To achieve this, we employed the UMAP algorithm[29] with the 

default number of neighbors, which allowed us to obtain a clear visualization of our detecting results. 

 

2.6 Computation evaluation of runtime 

We captured the runtime of each method using the time function available in R and Python environments. 

We did not take into account the pre-filtering steps, and only measured the runtime of the main function 

in each method. All jobs were run on a Linux server in RSPH HPC cluster.  

3. Results 

3.1 Data cleaning and batch effect correction result 

After cleaning the 10 people COVID-19 scRNA-seq dataset, we removed the cells that were labeled as 

"mixed" and "undefined" based on the original labels. This resulted in a dataset with 9 cell types. We 
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constructed a table (Table 2) to summarize the number of cells in each label (main cluster). Figure 1 shows 

the visualization for the 10 people scRNA-seq dataset using UMAP plot with before and after the data 

cleaning process. 

Table 2. Summarize the number of cells in each label for each sample. 

Sample ID B Cell CD4 CD8 DCs Megakaryocyte Monocytes Neutrophils NK cell Plasmablasts Overall 

C19-CB-0001 491 733 501 59 7 1660 6 148 7 3612 

C19-CB-0002 453 100 1343 78 5 930 4 216 0 3129 

C19-CB-0003 256 16 449 56 10 1677 6 110 0 2580 

C19-CB-0005 46 23 48 6 11 1141 10 36 0 1321 

C19-CB-0008 171 1252 208 22 23 804 1236 176 138 4030 

C19-CB-0009 140 1227 432 52 31 1257 681 365 101 4286 

C19-CB-0011 23 287 189 2 13 118 223 71 5 931 

C19-CB-0012 111 1379 714 14 24 639 255 474 54 3664 

C19-CB-0013 52 829 370 9 19 619 418 357 31 2704 

C19-CB-0016 42 351 632 11 70 830 394 130 56 2516 

 

Figure 1. UMAP plot for the population level. A is the UMAP plot before data cleaning, B is the UMAP plot after data cleaning. 

 

Based on the data selection, we defined Megakaryocyte and Plasmablasts as the true rare cell types. Inspired 

by GiniClust3's definition of rare cell types, we also considered a cell type as rare if it had less than 1% of 

the total population at the individual level. To test the authenticity and accuracy of rare cell types obtained 
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by different methods, we used the existing rare cell types, which were mostly derived from DCs, 

Megakaryocyte, and Plasmablasts cells, as a benchmark. Thus, we defined DCs, Megakaryocyte, and 

Plasmablasts cells as the true rare cell types at the population level. Table 3 summarizes the rare cell types 

defined under each sample and population level. Prioritizing Megakaryocyte and Plasmablasts as the true 

rare cell types was based on the original cell labels and our data selection criteria. 

 

Table 3. The true rare cell for both individual and population level. 

Sample ID True Rare Cell Types Number of Cells 

C19-CB-0001 Megakaryocyte, Neutrophils, Plasmablasts 20 

C19-CB-0002 Megakaryocyte, Neutrophils 9 

C19-CB-0003 CD4, Megakaryocyte, Neutrophils 32 

C19-CB-0005 DCs, Megakaryocyte, Neutrophils 27 

C19-CB-0008 DCs, Megakaryocyte, Plasmablasts 183 

C19-CB-0009 Megakaryocyte, Plasmablasts 132 

C19-CB-0011 DCs, Megakaryocyte, Plasmablasts 20 

C19-CB-0012 DCs, Megakaryocyte, Plasmablasts 92 

C19-CB-0013 DCs, Megakaryocyte, Plasmablasts 59 

C19-CB-0016 DCs, Megakaryocyte, Plasmablasts 137 

Population DCs, Megakaryocyte, Plasmablasts 914 

 

3.2 Detecting rare cell types using GiniClust3 

To evaluate the performance of GiniClust3 in detecting rare cell types in the COVID-19 scRNA-seq dataset, 

we applied the method at both the individual and population level after filtering out lowly expressed genes 

and poor-quality cells. At the individual level, we identified 2368 cells (8.23% of the total) and at the 

population level, we identified 3254 cells (11.31% of the total) as rare cells (Table 4). Figure 2 shows the 

UMAP plot for the detecting result with both individual and population level. Furthermore, we found 519 

cells (1.80% of the total) that were identified as rare cells in both the individual and population levels. We 

identified a total of 7 common and 256 rare cell clusters (with a cell population < 1%) at the population 
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level, with the smallest cluster containing only 1 cell (in 55 clusters). Figure 3 shows the overlaps within 

individual level and population level using UMAP plot. The process of rare cell type identification for each 

individual level took approximately 2 minutes and for population level took approximately 6 minutes, 

indicating that GiniClust3 is a really fast method and suitable for analyzing large datasets. 

Table 4. Detecting rare cell type using GiniClust3. 

 
# Rare cells at individual level (%) # Rare cells at population level (%) # Common rare cells (%) 

C19-CB-0001 290 (8.02%) 374 (10.35%) 66 (1.83%) 

C19-CB-0002 276 (8.82%) 292 (9.33%) 66 (2.11%) 

C19-CB-0003 196 (7.60%) 205 (7.95%) 22 (0.85%) 

C19-CB-0005 69 (5.22%) 83 (6.28%) 2 (0.15%) 

C19-CB-0008 277 (6.87%) 591 (14.67%) 66 (1.64) 

C19-CB-0009 718 (16.75) 536 (12.51%) 168 (3.92) 

C19-CB-0011 15 (1.61%) 94 (10.10%) 5 (0.53%) 

C19-CB-0012 256 (6.99%) 494 (13.48%) 56 (1.53%) 

C19-CB-0013 158 5.84%) 324 (11.98%) 41 (1.52%) 

C19-CB-0016 113 (4.49%) 261 (10.37%) 27 (1.07%) 

Overall 2368 (8.23%) 3254 (11.31%) 519 (1.80%) 

 

Figure 2. UMAP plot for detecting rare cell types at individual and population using GiniClust3. A is the detecting result at 

individual level, B is the detecting result at population level. 
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Figure 3. UMAP plot for detecting rare cell types in comparing overall labels using GiniClust3. 

 

Once rare cell types have been detected at both the individual and population levels, it is important to test 

their consistency and accuracy. Figure 4 displays the distribution of rare cell types at both levels, indicating 

that GiniClust3 may still detect some common cells as rare cell types according to our original label and 

definition. Figure 5 shows the detection results based on the original rare cell labels. From this figure, we 

observed that the number of true rare cell types at the population level is greater than at the individual level. 

Furthermore, some rare cell types can be found at both the individual and population levels, particularly in 

Sample 5, Sample 6, Sample 7, Sample 8, Sample 9, and Sample 10 at the individual level. In the population 

data, we found 195 rare cells at both individual and population levels. However, based on the original cell 

labels, some cells remain unrecognized at both levels and some cells cannot be filtered through the quality 

control, especially in first 4 samples.  
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Figure 4. Detecting rare cell types result with original label using GiniClust3. A is the detecting result at individual level, B is the 

detecting result at population level. 

 

Figure 5. Visualization the consistency and accuracy result using GiniClust3. 

 

Table 5 presents the evaluation metrics results at both individual and population levels for GiniClust3. 

While the reported accuracies are high, they are predominantly driven by high specificities rather than 

sensitivities. What’s more, the precisions in both population level and individual level are less than 0.2, 

indicating there are a lot of false-positive result from GiniClust3. Notably, the reported sensitivities at 

population level are better than they are at individual level. All of the specificity are high indicating low 

false negative. Additionally, Cohen’s Kappa values are also low, with values less than 0.15 indicating only 

slight consistency between individual and population levels. In summary, GiniClust3’s sensitivity in 

detecting rare cell types at the population level is better than individual level, but the precision for both 

individual and population level still need to be improved GiniClust3’s detecting common rare cell type 

ability is good. Improvements in consistency between these levels are necessary for further development of 

GiniClust3. 
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Table 5. Evaluation metrics result using GiniClust3. 

 Accuracy Precision Cohen’s Kappa Sensitivity Specificity 

C19-CB-0001 0.901 0.003 0.101 0.100 0.904 

C19-CB-0002 0.886 0.000 0.133 0.000 0.888 

C19-CB-0003 0.904 0.000 0.022 0.000 0.911 

C19-CB-0005 0.943 0.072 -0.037 0.455 0.948 

C19-CB-0008 0.856 0.047 0.026 0.077 0.904 

C19-CB-0009 0.797 0.065 0.120 0.402 0.810 

C19-CB-0011 0.969 0.200 0.056 0.250 0.982 

C19-CB-0012 0.913 0.086 0.055 0.268 0.929 

C19-CB-0013 0.936 0.165 0.088 0.578 0.943 

C19-CB-0016 0.919 0.195 0.076 0.216 0.955 

Population  0.880 0.176 0.080 0.730 0.885 

 

3.3 Detecting rare cell types in CellSIUS 

To evaluate and compare various feature selection and clustering techniques for scRNA-seq data, we 

utilized a scRNA-seq dataset consisting of a mixture of 10 people cell lines with known cellular composition. 

After removing cells that did not pass quality control or could not be accurately assigned to a cell line, we 

applied the graph-based clustering algorithm MCL to identify gene sets with correlated expression patterns 

from the remaining cluster-specific candidate marker genes. MCL does not require a predetermined number 

of clusters and operates on the gene correlation network obtained from single-cell RNAseq data, detecting 

communities within this network that contain co-expressed genes. 

 

Our analysis included 3203 (11.13%) individual cells and 2683 (9.32%) cells at the population level (cell 

population < 1%) (table 5). Figure 6 shows the UMAP plot for the detecting result with both individual and 

population level. Additionally, we identified 2209 (7.68%) rare cells that were common to both individual 

and population levels. Specifically, we observed only a small number of rare cells in the first 4 subjects at 

the population level, and no common rare cells were detected. However, in the last six subjects, we 
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identified a high proportion of rare cells and a significant number of common rare cells at both individual 

and population levels, with high consistency among the subjects. Figure 7 shows the overlaps within 

individual level and population level using UMAP plot. Overall, the rare cell type identification process for 

each individual took 20 minutes and population levels took approximately 1 hour, indicating that CellSIUS 

is capable of analyzing large datasets efficiently. 

Table 6. Detecting rare cell type using CellSIUS. 

 

# Rare cells at individual level (%) # Rare cells at population level (%) # Common rare cells (%) 

C19-CB-0001 272 (7.53%) 6 (0.17%) 0 (0%) 

C19-CB-0002 27 (0.86%) 7 (0.22%) 0 (0%) 

C19-CB-0003 190 (7.36) 5 (0.19%) 0 (0%) 

C19-CB-0005 60 (4.54%) 12 (0.91%) 0 (0%) 

C19-CB-0008 1213 (30.10%) 1094 (27.15%) 1070 (26.56%) 

C19-CB-0009 615 (14.35%) 567 (13.23%) 511 (11.92%) 

C19-CB-0011 223 (23.95%) 190 (20.41%) 184 (19.76%) 

C19-CB-0012 243 (6.63%) 205 (5.59%) 173 (4.72%) 

C19-CB-0013 235 (8.69%) 293 (10.84%) 191 (7.06%) 

C19-CB-0016 125 (4.97%) 304 (12.08%) 80 (3.17%) 

Overall 3203 (11.13%) 2683 (9.32%) 2209 (7.68%) 

 

 

Figure 6. UMAP plot for detecting rare cell types at individual and population using CellSIUS. A is the detecting result at 

individual level, B is the detecting result at population level. 
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Figure 7. UMAP plot for detecting rare cell types in comparing overall labels using CellSIUS. 

After identifying rare cell types at both the individual and population levels, as well as using GiniClust3, it 

is necessary to evaluate the consistency and accuracy of CellSIUS in both aspects. Figure 8 depicts the 

distribution of rare cell types at both the individual and population levels, indicating that CellSIUS can still 

detect some common cell types, such as Neutrophils, as rare cell types based on our original labeling and 

definition. Figure 9 illustrates the detection results based on the original rare cell labels, indicating that most 

of the true rare cell types cannot be identified using CellSIUS. Additionally, only in Samples 6, 8, and 10 

for individual data, some rare cell types can be detected at both the individual and population levels. 

However, at the population level, although CellSIUS detected 2209 rare cells, only 27 overlapped with the 

original label.  

 

Figure 8. Detecting rare cell types result with original label using CellSIUS. A is the detecting result at individual level, B is the 

detecting result at population level. 
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Figure 9. Visualization the consistency and accuracy result using CellSIUS. 

 

Table 7 shows the evaluation metrics results at both individual and population levels for CellSIUS. As same 

as GiniClust3, even though the accuracy is high, the precision is really low, indicating a lot of false positive 

occurred. What’s more, the sensitivity in both population level and individual level is also low. Additionally, 

Cohen’s Kappa values is the first four subjects are less than 0 indicating there is no consistency between 

individual level and population level in the first four subjects. In other subjects, 5 subjects’ metrics are 

greater than 0.69, and the population level is also greater than 0.7, which indicated there is a strong 

consistency between the last 6 subjects and population level. We also could see the detecting common cells’ 

ability for CellSIUS is good since all of the specificity are high indicating low false negative. In summary, 

CellSIUS’s precision to detect rare cell types is not good since a lot of false positive result, but the 

consistency for the last 6 sample and the population level is good. Therefore, based on the significant 

overlap within the last six samples and population level, we can conclude that CellSIUS may primarily 

focus on detecting the sub-type of Neutrophils as its rare cell types. 
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Table 7. Evaluation metrics result using CellSIUS. 

 Accuracy Precision Cohen’s Kappa Sensitivity Specificity 

C19-CB-0001 0.919 0.000 -0.003 0.000 0.924 

C19-CB-0002 0.988 0.000 -0.004 0.000 0.991 

C19-CB-0003 0.914 0.000 -0.004 0.000 0.925 

C19-CB-0005 0.934 0.000 -0.015 0.000 0.954 

C19-CB-0008 0.687 0.056 0.899 0.372 0.702 

C19-CB-0009 0.843 0.062 0.843 0.288 0.861 

C19-CB-0011 0.739 0.000 0.860 0.000 0.755 

C19-CB-0012 0.928 0.148 0.758 0.391 0.942 

C19-CB-0013 0.891 0.000 0.694 0.000 0.911 

C19-CB-0016 0.922 0.264 0.325 0.241 0.961 

Population 0.882 0.036 0.722 0.105 0.907 

 

3.4 Detecting rare cell types in scAIDE 

To evaluate scAIDE’s general performance and consistency, we compared it to individual and population-

level analyses using the aforementioned dataset. De novo clustering analysis has the potential to provide 

valuable biological insights into the identification of rare cell types. Two critical factors for accurately 

separating different cell types and identifying rare subpopulations are ensuring that cells are well-

represented in low dimensions and that clustering algorithms can identify small groups of cells. Through 

simulation experiments, we demonstrated that the AIDE embedding can successfully separate different cell 

types, and that RPH-kmeans is well-suited for detecting rare cell types. Not only did we identify different 

subpopulations within each dataset, but we also detected primed differentiation development of cell types. 

In total, we identified 422 (1.47%) individual rare cells and 328 (1.14%) population rare cells (cell 

population < 1%) (see Table 8). Additionally, we detected 315 (1.09%) common rare cells at both the 

individual and population levels. Specifically, we identified a very small number of rare cells in the first 

four subjects and the “C19-CB-0011” subject at the population level (less than 10 cells), and we could not 
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detect common rare cells in “C19-CB-0003” and “C19-CB-0005.” Figure 10 shows the UMAP plot for the 

detecting result with both individual and population level. 

 

One interesting finding from scAIDE is the high level of consistency in non-rare cell subjects. Rare cell 

types from seven subjects at the population level were found 100% at the individual level. In addition, for 

subject “C19-CB-0008,” we found 115 rare type cells at the population level and 103 rare type cells at the 

individual level, with 102 cells being common rare cells. While the number of rare cell types identified may 

not be as large as in previous methods, scAIDE demonstrates excellent consistency. Figure 11 shows the 

overlaps within individual level and population level using UMAP plot. In terms of running time, scAIDE 

consists of three parts, with rare cell type identification taking 2 hours for each individual level and 12 

hours for the population level. This indicates that scAIDE is still suitable for analyzing very large datasets 

and is consistent in its performance. 

 

Table 8. Detecting rare cell type using scAIDE. 

 

# Rare cells at individual level (%) # Rare cells at population level (%) # Common rare cells (%) 

C19-CB-0001 30 (0.83%) 4 (0.11%) 4 (0.11%) 

C19-CB-0002 46 (1.47%) 1 (0.03%) 1 (0.03%) 

C19-CB-0003 0 (0%) 0 (0%) 0 (0%) 

C19-CB-0005 8 (0.61%) 0 (0%) 0 (0%) 

C19-CB-0008 103 (2.56%) 115 (2.85%) 102 (2.53%) 

C19-CB-0009 96 (2.24%) 88 (2.05%) 88 (2.05%) 

C19-CB-0011 6 (0.64%) 3 (0.32%) 3 (0.32%) 

C19-CB-0012 52 (1.42%) 43 (1.17%) 43 (1.17%) 

C19-CB-0013 26 (0.96%) 26 (0.96%) 26 (0.96%) 

C19-CB-0016 55 (2.19%) 48 (1.91%) 48 (1.91%) 

Overall 422 (1.47%) 328 (1.14%) 315 (1.09%) 
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Figure 10. UMAP plot for detecting rare cell types at individual and population using scAIDE. A is the detecting result at 

individual level, B is the detecting result at population level. 

 

Figure 11. UMAP plot for detecting rare cell types in comparing overall labels using scAIDE. 

After detecting rare cell types at both individual and population levels using scAIDE, it is important to test 

the consistency and accuracy of the method. Figure 12 illustrates the distribution of rare cell types at both 

levels, and it shows that scAIDE detected a significant number of Plasmablasts cells as its rare cell type at 

both levels. While Plasmablasts are one of the truly rare cell types according to our definition, scAIDE 

needs to improve its ability to detect other rare cell types such as DCs and Megakaryocytes. Figure 13 

presents the detection results based on the original rare cell labels, revealing that more than 50% of the true 

rare cell types cannot be detected using scAIDE. Since both individual and population-level methods can 

identify Plasmablasts, the overlap between the two groups is significant. However, it cannot be denied that 

scAIDE’s ability to identify other rare cell types needs improvement.  
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Figure 12. Detecting rare cell types result with original label using scAIDE. A is the detecting result at individual level, B is the 

detecting result at population level. 

 

Figure 13. Visualization the consistency and accuracy result using scAIDE. 

Table 9 shows the evaluation metrics results at both individual and population levels for scAIDE. The 

accuracy and specificity for scAIDE is good which indicate a high correction in detecting common cells. 

What’s more, for the first four subjects, the precision and sensitivity is not good since one of individual and 

population level cannot detect much rare cell types. For the last 6 subjects and population level, the 

precision is really good indicating the most detecting results for scAIDE are true rare cell types even though 

it still has some false negative result. Additionally, Cohen’s Kappa values is the first four subjects are less 

than 0.2 indicating there is a small consistency between individual level and population level in the first 

four subjects. In other 6 subjects, both individual metrics and population metrics are greater than 0.3, which 

indicated there is a moderate consistency between the last 6 subjects and population level. Therefore, based 
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on the numerous overlaps within the seven samples, we can conclude that scAIDE may mainly focus on 

detecting Plasmablasts as its rare cell type in this simulation setting. The detecting rare cell type’s ability 

for the first four subjects still need to be improved. Although scAIDE has a high precision for the last 6 

subjects and population level, it still needs to improve to reduce false negative result. 

 

Table 9. Evaluation metrics result using scAIDE. 

 Accuracy Precision Cohen's Kappa Sensitivity Specificity 

C19-CB-0001 0.988 0.133 0.234 0.200 0.993 

C19-CB-0002 0.983 0.022 0.042 0.111 0.986 

C19-CB-0003 0.988 0.000 0.000 0.000 1.000 

C19-CB-0005 0.977 0.250 0.994 0.074 0.995 

C19-CB-0008 0.979 0.981 0.934 0.552 0.999 

C19-CB-0009 0.992 1.000 0.956 0.727 1.000 

C19-CB-0011 0.981 0.667 0.665 0.200 0.998 

C19-CB-0012 0.987 0.923 0.904 0.522 0.999 

C19-CB-0013 0.987 0.962 1.000 0.424 1.000 

C19-CB-0016 0.967 0.982 0.931 0.394 1.000 

Population 0.882 0.988 0.838 0.354 1.000 

 

3.5 Detecting rare cell types in FiRE 

All of the methods employed unsupervised clustering as an intermediate step for detecting rare cells, but 

clustering has its limitations. It can be sensitive to parameters and inefficient when density varies across 

data points. Additionally, the resolution of group identities can be challenging, especially with minor 

clusters that get overlooked during the first pass due to the influence of major cell types on expression 

variance. To address these limitations, we used FiRE, a monolithic algorithm that bypasses clustering to 

estimate cell rareness directly. The algorithm leverages Sketching, a powerful technique for low-

dimensional encoding of a large volume of data points. FiRE assigns a continuous score to each cell, such 

that outlier cells and cells from minor populations receive higher scores than those representing major 
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subpopulations. While a continuous score is useful, binary annotation of cell rarity can be more 

straightforward for analysis. To this end, we introduced a thresholding scheme using score distribution 

properties (Methods). Using this method, we detected 818 (2.84%) rare cells at the individual level and 

2551 (8.87%) rare cells at the population level, as shown in Table 10. However, we found that "C19-CB-

0003" and "C19-CB-0011" had no rare cell types detected at the individual level. For "C19-CB-0001" and 

"C19-CB-0002," over half of the rare cells detected were common across the samples, either at the 

individual level or population level. Figure 14 shows the UMAP plot for the detecting result with both 

individual and population level. Except for these four samples, in the remaining six samples, the vast 

majority of rare cells detected at the level with fewer rare cells were common across samples. Figure 15 

shows the overlaps within individual level and population level using UMAP plot. The process of rare cell 

type identification for each individual level took approximately 3 minutes and for population level took 

approximately 10 minutes, indicating that FiRE is a really fast method and suitable for analyzing large 

datasets. 

 

Table 10 Detecting rare cell type using FiRE 

 

# Rare cells at individual level (%) # Rare cells at population level (%) # Common rare cells (%) 

C19-CB-0001 13 (0.36%) 31 (0.86%) 8 (0.22%) 

C19-CB-0002 55 (1.76%) 53 (1.69%) 23 (0.74%) 

C19-CB-0003 0 (0%) 35 (1.36%) 0 (0%) 

C19-CB-0005 181 (13.70%) 32 (2.42%) 31 (2.35%) 

C19-CB-0008 19 (0.47%) 906 (22.48%) 19 (0.47%) 

C19-CB-0009 236 (5.51%) 403 (9.40%) 232 (5.41%) 

C19-CB-0011 0 (0%) 215 (23.09%) 0 (0%) 

C19-CB-0012 10 (0.27%) 177 (4.83%) 10 (0.27%) 

C19-CB-0013 33 (1.22%) 349 (12.91%) 33 (1.22%) 

C19-CB-0016 271 (10.77%) 350 (13.91%) 270 (10.73%) 

Overall 818 (2.84%) 2551 (8.87%) 626 (2.18%) 
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Figure 14 UMAP plot for detecting rare cell types at individual and population using FiRE. A is the detecting result at individual 

level, B is the detecting result at population level. 

 

 

Figure 15 UMAP plot for detecting rare cell types in comparing overall labels using FiRE. 

 

After detecting rare cell types using FiRE, we evaluated the consistency and accuracy of our results at both 

the individual and population levels. Figure 16 illustrates the distribution of rare cell types detected by FiRE 

at both levels. We observed that while FiRE identified Neutrophil cells as rare cell types, these cells were 

not rare in our simulation dataset. Conversely, FiRE correctly detected Megakaryocyte cells as rare cell 

types at the population level, but we still need to improve the accuracy of this method. To evaluate the 

accuracy of FiRE, we examined the detection results based on the original rare cell labels. As shown in 

Figure 17, we detected rare cell types in seven out of ten samples at both individual and population levels. 
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For these seven samples, more than half of the rare cell types detected by FiRE were consistent across both 

levels, except for sample No. 8. We also found that FiRE performed well in detecting Megakaryocyte cells 

at the population level, and there were 142 rare cell types detected consistently at both levels. However, the 

accuracy of FiRE needs improvement, as many Neutrophil cells were detected despite not being rare in our 

simulation dataset. Nevertheless, when it comes to consistency, FiRE performed better than GiniClust3 and 

CellSIUS in this simulation. Overall, based on the significant overlap in our results, we conclude that FiRE 

has good consistency performance but lower accuracy.  

 

Figure 16. Detecting rare cell types result with original label using FiRE. A is the detecting result at individual level, B is the 

detecting result at population level. 

 

 

Figure 17. Visualization the consistency and accuracy result using FiRE. 
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Table 11 represents the evaluation metrics results at both individual and population levels for FiRE. As 

same as the above methods, the accuracy and specificity for scAIDE is good which indicate a high 

correction in detecting common cells. What’s more, for five of ten subjects, the precision and sensitivity is 

pretty fine indicating a moderate detecting ability in rare cell types for these five subjects. For other five 

subjects and population level, FiRE’s detecting ability still need to be improved. Additionally, at individual 

level, Cohen's Kappa values is fine except “C19-CB-0008” subject, indicating it is a substantial or perfect 

consistency in FiRE. At the same time, at the population level, it shows a fair consistency in FiRE. Overall, 

based on the significant overlap in our results, we conclude that FiRE has good consistency performance 

but lower precision.  

Table 11. Evaluation metrics result using FiRE. 

 Accuracy Precision Cohen's Kappa Sensitivity Specificity 

C19-CB-0001 0.995 0.538 0.360 0.350 0.993 

C19-CB-0002 0.981 0.055 0.416 0.333 0.983 

C19-CB-0003 0.988 0.000 0.988 0.000 1.000 

C19-CB-0005 0.867 0.088 0.261 0.593 0.872 

C19-CB-0008 0.956 0.632 0.032 0.066 0.998 

C19-CB-0009 0.923 0.085 0.706 0.152 0.948 

C19-CB-0011 0.979 0.000 0.978 0.000 1.000 

C19-CB-0012 0.977 0.800 0.102 0.087 0.999 

C19-CB-0013 0.978 0.485 0.154 0.271 0.994 

C19-CB-0016 0.890 0.240 0.852 0.474 0.913 

Population 0.893 0.076 0.343 0.213 0.915 

 

3.6 Detecting rare cell types in RaceID 

To evaluate the accuracy and consistency of RaceID, we performed individual and population-level 

analyses on the above dataset using k-means clustering and gap statistics for rare cell type detection. After 

clustering and outlier detection, we obtained the final cluster inference. Table 12 shows that we detected 

6758 (23.49%) rare cells at the individual level and 1548 (5.38%) rare cells at the population level. Notably, 
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the number of rare cells detected at the individual level was much higher than that at the population level. 

For nine out of ten subjects, although most of the rare cell types detected at the population level were also 

detected at the individual level, they were still different from those identified at the individual level. This 

difference may be due to the parameter settings that allow for deeper subtyping at the individual level in 

RaceID. To visualize the results, we created UMAP plots for both individual and population-level analyses, 

as shown in Figure 18. Additionally, Figure 19 shows the overlaps between individual-level and population-

level analyses based on the UMAP plot. The process of rare cell type identification for each individual level 

took approximately 3 hours and for population level took approximately 20 hours, indicating that RaceID 

is slower than other methods. 

 

Table 12 Detecting rare cell type using RaceID 

 # Rare cells at individual level (%) # Rare cells at population level (%) # Common rare cells (%) 

C19-CB-0001 947 (26.22%) 216 (5.98%) 94 (2.60%) 

C19-CB-0002 211 (6.74%) 161 (5.15%) 29 (0.93%) 

C19-CB-0003 637 (24.68%) 200 (7.75%) 121 (4.69%) 

C19-CB-0005 275 (20.82%) 56 (4.23%) 41 (3.10%) 

C19-CB-0008 1282 (31.81%) 280 (6.95%) 271 (6.72%) 

C19-CB-0009 1166 (27.20%) 260 (6.07%) 234 (5.46%) 

C19-CB-0011 100 (10.74%) 29 (3.11%) 22 (2.36%) 

C19-CB-0012 948 (25.87%) 124 (3.38%) 120 (3.28%) 

C19-CB-0013 666 (24.63%) 97 (3.59%) 77 (2.85%) 

C19-CB-0016 526 (20.91%) 125 (4.97%) 73 (2.90%) 

Overall 6758 (23.49%) 1548 (5.38%) 1082 (3.76%) 
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Figure 18. UMAP plot for detecting rare cell types at individual and population using RaceID. A is the detecting result at 

individual level, B is the detecting result at population level. 

 

Figure 19 UMAP plot for detecting rare cell types in comparing overall labels using RaceID. 

 

After detecting rare cell types using RaceID, we evaluated the consistency and accuracy of our results at 

both the individual and population levels. To evaluate the accuracy of RaceID, we examined the detection 

results based on the original rare cell labels. Figure 20 illustrates the distribution of rare cell types detected 

by RaceID at both levels. We observed that at individual level, while RaceID can identify DCs, 

Megakaryocyte and Plasmablasts as its rare cell type, the rare cell at individual level also included CD8 

(14.8%), Monocytes (27%) and Neutrophils (22.9%) as its rare cell types. It can be seen that in addition to 

being able to identify the three rare cell types we defined, RaceID will also mine potential common cell 

subtypes at the individual level. At the population level, as same condition as individual level, it could 
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detect the truly rare cell types but still include some outliers. As shown in Figure 21, we detected common 

rare cell types in all of the samples at both individual and population levels. Except for the NO.2 and NO.7 

samples, we found that the proportion of non-detected rare cells of other samples is very small. Especially 

at the population level, only 137 (15.01%) rare cell types were not identified, and 66 (7.23%) rare cell types 

failed to pass the filter. It can be seen that RaceID is very accurate at the population level. Compared with 

the above four methods, the consistency of RaceID is much better than the above software. In terms of 

accuracy, although it can identify the main rare cell type at the population level, it still identifies a lot of 

outliers. We need further inspection. 

 

Figure 20. Detecting rare cell types result with original label using RaceID. A is the detecting result at individual level, B is the 

detecting result at population level. 

 

 

Figure 21. Visualization the consistency and accuracy result using RaceID. 
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Based on the evaluation metrics at both individual and population level in table 13, we found RaceID has 

a lower accuracy and precision at individual level comparing other above methods indicating a lot of false 

positive results happened. In addition, the specificity in RaceID performs also worse at both individual and 

population level which indicated RaceID will generate more false-positive result than other methods at 

individual level even though the number of overlaps is great. What’s more, for most of the subjects, the 

sensitivity is really high indicating low false negative result. Comparing individual and population level, 

population level generates less false-positive result in RaceID. Additionally, Cohen's Kappa values is fine, 

indicating it is a slight or fair consistency in RaceID. Compared with the above four methods, the sensitivity 

of RaceID is much better than the above software. However, RaceID also meet more false-positive results 

comparing with the above four methods.  We need further inspection to reduce the false positive to improve 

RaceID’s ability. 

 

Table 13. Evaluation metrics result using RaceID. 

 Accuracy Precision Cohen's Kappa Sensitivity Specificity 

C19-CB-0001 0.693 0.010 0.059 0.818 0.693 

C19-CB-0002 0.916 0.005 0.116 0.200 0.917 

C19-CB-0003 0.717 0.020 0.178 0.619 0.718 

C19-CB-0005 0.789 0.047 0.193 0.929 0.788 

C19-CB-0008 0.661 0.129 0.289 0.929 0.645 

C19-CB-0009 0.732 0.105 0.273 0.938 0.724 

C19-CB-0011 0.876 0.140 0.331 0.976 0.874 

C19-CB-0012 0.752 0.092 0.173 1.000 0.746 

C19-CB-0013 0.753 0.077 0.151 0.956 0.749 

C19-CB-0016 0.791 0.148 0.180 0.962 0.801 

Population  0.949 0.364 0.196 0.614 0.959 
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3.7 Computing time benchmarks 

We conducted a benchmark of the computation performance for the five analysis methods mentioned above 

in both individual and population-level simulation scenarios. All simulations were run on a Linux PC with 

a 2.80 GHz CPU and 8GB RAM. GiniClust3 demonstrated the fastest performance, taking only 2 minutes 

at the individual level and 6 minutes at the population level due to its optimized clustering method and use 

of Python. FiRE was the second fastest method, taking approximately 3 minutes at the individual level and 

approximately 10 minutes at the population level since it does not include the clustering process. CellSIUS 

was slower than both GiniClust3 and FiRE, requiring 20 minutes at the individual level and approximately 

1 hour at the population level. In comparison, scAIDE and RaceID were the slowest methods, taking 

approximately 3 hours for each individual level and half a day to a full day for the population level. 

 

4. Discussion 

4.1 Rare Cell type detecting methods 

In this work, we tested the rare cell type detecting methods’ abilities at both individual and population 

scenarios. For each dataset and scenario tested, different methods emerged top. Table 16 shows the 

comparing evaluation metrics between these five methods. At individual level, RaceID and scAIDE ranked 

top but RaceID generated more false-positive result, scAIDE generated more false-negative result. For 

RaceID, 8 of 10 subjects got most overlaps within the five detecting methods. However, the accuracy and 

precision for RaceID are the lowest within the five detecting methods because of plenty of false positive 

result. For FiRE, the number of overlaps in 4 of 10 samples is also high, and the precision ranked the second 

stage. However, the sensitivity ranked fourth stage because of more false negative result. For scAIDE, as 

same as FiRE, the precision of 6 of 10 samples is relatively high, but the detecting ability for the first 4 

samples still need to be improved. The last part is GiniClust3 and CellSIUS, and their precision and 

sensitivity are the worst among the 5 methods at individual level. However, only at individual level, we 

cannot judge their expressiveness solely by judging their precision. There are many other factors that will 
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affect the above five methods. The most important thing is that the parameters used by each method are 

different. For example, GiniClust3 and RaceID, we filter out low-expression cells by expressing at least 

1000 genes per cell. In the results section, we can see that some real rare cell types are filtered out because 

of this parameter. Another example is FiRE, we calculated its rareness score based on IQR, which may also 

filter out some rare cell types. In addition, 4 of the above 5 methods obtain more sub-types by improving 

the clustering algorithm, but due to the different emphases of each clustering method, the results will also 

be biased.  

 

At population level, scAIDE ranked top among the 5 methods. RaceID ranked second, CellSIUS, FiRE and 

GiniClust3 have lower precision and sencitivity at population level, even lower than 30%. In addition to 

the influencing factors mentioned by individual, the method selection of batch effect correction may also 

affect the results of the accuracy of the above methods. In addition to ComBat, there are still more than 10 

batch effect correction methods available.  

 

In addition to evaluating the 5 methods by precision, we also needed to evaluate the 5 methods by 

consistency, since all methods treated other cells as considered rare cell types by themselves. Through the 

result section based on the original label, we can see that scAIDE is also the best performer in terms of 

consistency at both individual and population level. Followed by FiRE and CellSIUS. RaceID came in 

fourth. The consistency of GiniClust3 is poor. If we don't look at the original label but simply look at the 

consistency results of these five methods. RaceID, scAIDE, and CellSIUS have a lot of overlaps, but 

RaceID varies greatly in the number of rare cell types identified at the individual and population levels. 

Therefore, the consistency of CellSIUS and scAIDE is relatively good (both a similar number of rare cell 

types and a large number of overlap).  
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Table 14. Comparing evaluation metrics within 5 methods.  

 Accuracy Precision Cohen's Kappa Sensitivity Specificity 

 IND POP IND POP IND POP IND POP IND POP 

GiniClust3 0.902 0.880 0.083 0.176 0.064 0.080 0.235 0.730 0.917 0.885 

CellSIUS 0.877 0.882 0.053 0.036 0.435 0.722 0.129 0.105 0.893 0.907 

scAIDE 0.983 0.882 0.592 0.998 0.666 0.838 0.320 0.354 0.997 1.000 

FiRE 0.953 0.893 0.292 0.076 0.485 0.343 0.233 0.213 0.970 0.915 

RaceID 0.768 0.949 0.077 0.364 0.194 0.196 0.833 0.614 0.766 0.959 

*IND means at individual level, POP means at population level. 

 

4.2 Runtime and memory evaluation 

Although RaceID has the highest overlaps within these 5 methods, it does have the longest running time. 

The running time of CellSIUS and scAIDE is second, and the memory they need is also greater than the 

other two methods. GiniClust3 and FiRE are indeed the fastest in terms of speed. Therefore, to select one 

software to use, we still need to choose according to our needs. 

5. Conclusion: 

In this study, we conducted two testing scenarios using ten datasets to address the challenge of rare cell 

type detection. Our findings suggest that when detecting rare cell types at an individual level, it is advisable 

to use either scAIDE or RaceID, depending on the specific needs. While scAIDE may produce more false 

negatives, RaceID may generate more false positives. Thus, it is crucial to clarify the objectives in advance 

at the population level, scAIDE, GiniClust3, and RaceID demonstrated excellent performance. However, 

considering their running times, we recommend using scAIDE and GiniClust3 for population-level analysis, 

as they offered both precise detection results and fast execution speed. In terms of consistency, scAIDE is 

the best, so we recommend using scAIDE to compare individual-level and population-level results. 
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