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Abstract

Coordination between motor units in an expiratory muscle in the Bengalese Finch
across timescales

By Rachel Elizabeth Conn

Motor behaviors result from the impressive coordination of many neural signals
and the effect of those signals on muscles in the body and its environment. Re-
cent work implicates sub-behavioral timescale spike patterns for the control of motor
behaviors. Whether sub-behavioral spike patterns are important for the coordina-
tion between motor units within a muscle remains an open question. We asked
whether motor units within a songbird expiratory muscle exhibit coordination at var-
ious timescales during an anesthetized breathing behavior. We recorded from four
motor units in the EXP of a Bengalese Finch while recording air sac pressure. We
segmented spike times of all motor units into breath cycles defined by the air sac
pressure waveform. We estimated the mutual information between the spike patterns
of all pairwise combinations of motor units for three combinations of timescales: spike
counts of each motor unit, the spike counts of one motor unit and the spike timings of
another, and the spike timings of each motor unit. All pairs of motor units exhibited
coordination in their spike counts, the spike timings of some motor units exhibited
coordination with the spike counts of some other motor units. We were too data
limited to draw conclusions about whether motor unit pairs were coordinated in their
spike timings. We noticed that the spike patterns of each motor unit varied greatly
throughout the data collection, so we split the data set into two consecutive halves
and repeated spike count mutual information analysis for three example motor unit
pairs for each consecutive half separately. We found that the coordination between
each example motor unit pairs changed from the first half to the second half of the
data collection. These results illustrate variability in the coordination between motor
units across timescales, emphasize the importance of developing novel experimental
techniques to increase data sample sizes and computational techniques to analyze
under-sampled data, and highlights the propensity for neural data to exhibit nonsta-
tionarities even during a consistent behavior.
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Chapter 1

Introduction

Movement requires the integration of many signals from the brain, the body, and

the environment. The nervous system consists of millions of neurons that must

work together to accomplish dexterous control. Understanding the principles of

neural control may contribute to improved rehabilitative treatments for motor in-

juries/disorders [60]. In recent decades, there have been significant improvements

in experimental methods [78] and analysis techniques [61]. A great deal of progress

has been made identifying correlations between motor signals and motor behavior

[27, 40, 72, 97, 18, 73] and identifying correlations between multiple motor signals

[45, 12, 61, 76, 64].

The vast majority of theories of motor control and motor coordination from the

central nervous system to the periphery impose a particular simplifying assumption

about what signals are most relevant: that studying spike patterns at large timescales

(i.e. around the timescale of the behavior) is sufficient to capture the most relevant

control signal for motor control. Furthermore, although this assumption has been

extremely useful for the field of motor control, it may fall short when the mechanisms

of muscle contractile dynamics in more naturalistic, dynamic conditions are consid-

ered [16, 67, 85, 73]. For example, the same stimulation pattern to a cockroach leg
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muscle produces different bodily responses during standing versus running and phase

shifting that activation pattern during running causes the roach to turn [75]. There

is abundant correlative evidence that supports the assumption that changes to spike

counts within a behaviorally relevant time window are the primary signals for motor

behavior [40, 27, 71, 43, 19, 12, 61] and some causal evidence in muscles in highly

controlled conditions [18, 50]. However, alternatives to this assumption have not been

investigated from the lens of motor control until a few recent studies. These recent

studies mostly in single neurons or across different muscles indicate that theories of

motor control have been overlooking what may be the most relevant neural signal -

spike timings [64, 82, 77, 91, 73, 75]. Whether multiple motor units within a single

muscle are coordinated via spike timing patterns remains an open question.

1.1 Quantitative theories of motor control

Neurons communicate via chemical and electrical signals. When excitatory postsy-

naptic potentials accumulate in a neuron to raise the membrane potential above a

certain threshold, an action potential (an all or nothing spike event) is fired, trigger-

ing the cell to send an electrical signal towards neurons at its axonal connections.

While there is a vast opportunity for subthreshold signals to play a role in neural

communication, to account for all subthreshold potentials and other chemical sig-

nals would be technically challenging, computationally expensive, and unnecessary

to answer many questions effectively. It is useful to make a reasonable, simplifying

assumption: that motor systems of most animals from central brain regions to the

periphery fire action potentials (spikes) as the primary communication signals for

motor control and motor coordination. Even with the assumption of spikes as the

primary communication signals, there are many different aspects of spikes that could

serve as the most relevant signals for neural communication. For example, a neuron
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may communicate information by altering the total number of spikes in a given be-

havioral time window (spike count) [27]. At the other extreme, the precise timings of

spikes (spike timing) may serve as important neural signals [73]. Of course, neurons

may communicate at some intermediate timescale (e.g. smoothed spike rate), and

neurons may communicate using multiple timescales simultaneously [77]. Therefore,

it is of particular interest to identify the timescale at which spike patterns transmit

the most information (Figure 1.1). This topic has been debated and investigated in

sensory systems in the field of neural coding [6, 15, 80, 11, 83, 46, 3, 5, 47, 55, 92].

From these studies, it is clear that sub-behavioral timescale changes in spike patterns

(even down to a few milliseconds) are correlated with sensory stimuli, and therefore

spike timing may serve as important neural signals for the sensory system. Despite

the evidence that exists in sensory systems about the importance of spike timings as

neural signals, the vast majority of theories of motor control and motor coordination

have imposed the simplifying assumption that the most relevant control signals for

motor control/coordination are contained in the behavioral scale spike counts or in

the smoothed spike rates (often collectively referred to as rate coding). This assump-

tion is pervasive across theories of motor control and coordination from motor cortex

to the periphery [27, 40, 72, 97, 10, 32, 33].

1.1.1 Motor cortex: The representational view

Two prevailing theories dominate the studies on motor cortex: ”the representational

view” and ”the dynamical systems view”. The ”representational view” is one example

of a theory of motor control that assumes that motor control is encoded via spike

rates. Overall, the big question to answer according to the representational view of

motor cortex is “what movement variables are represented by neural signals in motor

cortex?”. This view of motor cortex asserts that the spike patterns of neurons in

motor cortex represent specific movement variables, such as limb position or muscle
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Figure 1.1: What is the timescale of motor unit coordination? a and b. Air sac
pressure (a) and EMGs (b) were recorded during breathing while under anesthesia in
Bengalese Finches. b. Simultaneous single unit activity was obtained using flexible
3D contact electrode arrays. c. The co-activity of the simultaneously recorded units
were examined at small and large timescales.
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force [40, 19]. This theory of motor control and motor coordination has been explored

in individual neurons and at the population level [40, 39, 19, 2, 27, 71, 43]. Studies

based on the representational view typically assume that the most relevant neural

communication signals are spike patterns at the behavioral timescale. These spike

rates are computed by counting the total number of spikes in behaviorally relevant

time windows (on the order of hundreds of milliseconds) and dividing by the length of

the time windows to compute average spike rate [19, 39, 2, 71], therefore these studies

ignore all information that may be contained in the spike patterns at sub-behavioral

timescales. Even still, there is a continued debate over what are the most relevant

movement variables that are coded by these behavioral timescale spike patterns.

For example, work by Evarts sought to determine whether pyramidal tract neurons

in motor cortex code for limb displacement or code for muscle force during reaching

tasks. Monkeys were trained to perform wrist flexion/extension movements in which

opposing forces and timing constraints decoupled wrist displacement from the muscle

forces that must be exerted to perform the task. Pyramidal neuron spikes were

counted during the wrist displacement time window (500 − 600ms) for each wrist

movement direction and each load condition. Evarts found that at the timescale of

the wrist movement behavior, the spike rates of pyramidal neurons better correlated

with muscle force than with limb displacement [19]. However, many other examples

of similar work exist in support of both stories [39, 2].

Additionally, Georgopoulos and colleagues explored the representational view in

populations of neurons in motor cortex [27, 71, 43]. Monkeys performed targeted

3D arm movements while electrophysiological recordings were taken from arm-related

cells in motor cortex. Multiple linear regression was used to determine the relationship

between the average firing rate of each cell during a particular time window ( 200−

1000ms) and the direction of arm movement. Overall, they found that reach direction

in monkeys can be decoded by summing the firing rates of a population of neurons and
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taking their reach direction tuning curves into account. Moreover, neurons that are

spatially nearby to one another and share a directional tuning are highly correlated in

their spike rates [45]. Although the representational viewpoint has explored a variety

of movement variables, and it would be plausible to incorporate spike timing into this

theory, to our knowledge, every study that has investigated the representational view

of motor cortex has imposed an assumption of rate coding.

1.1.2 Motor cortex: The dynamical systems view

A framework for understanding motor cortex that has gained attention in recent years

is the dynamical systems viewpoint. Studies of this view have typically assumed that

smoothed spike rates (intermediate, sub-behavioral timescales) are the primary sig-

nals for neural communication. However, these studies are typically less interested

in which motor variables are predicted by neural signals compared with studies of

the representational view. Additionally, the dynamical systems viewpoint inherently

focuses on a population of neurons rather than on individual neurons. Overall, the

big picture question to answer according to the dynamical systems view of motor

cortex is “how do the spike activities of populations of neurons in motor cortex that

generate appropriate motor behavior arise from the network?” [72]. This viewpoint

proposes to offer a principled explanation of why studies in support of the repre-

sentational viewpoint seem to provide contradicting evidence that the spike rates of

neurons in motor cortex code for different movement variables. If it is a dynamical

system that governs the spike patterns of the network of neurons in motor cortex,

then we might expect to see extensive variability in the spiking activity of individual

neurons. Some neurons may code for motor variables at certain times, but ultimately

the network must collectively generate the activity necessary to produce the desired

motor output [72, 12, 13]. This view of motor cortex asserts that by identifying

the dynamics (i.e. rules describing how things change over time) that underlie the
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population activity, we can better decode the resulting movement variables. Studies

based on the dynamical systems view have sought to predict motor variables from

a relatively low-dimensional dynamical system where the activity of each individual

neuron can be largely predicted by the state of the whole system [12, 72]. These

studies typically consider intermediate, sub-behavioral timescale spike patterns, and

ignore any information contained in millisecond scale spike timings.

For example, an application of the dynamical systems viewpoint has offered re-

markable success at decoding reach trajectories from the spike patterns of populations

of neurons in motor cortex at the single-trial level [61]. Monkeys were trained to per-

form a maze reaching task while neural data was collected from M1 and PMd. The

spike patterns for 202 neurons were processed with latent factor analysis via dy-

namical systems (LFADS), a machine-learning method that infers the dynamics that

govern a neural population and uses those dynamics to estimate de-noised spike rates

for the recorded population for each trial. The LFADS bin size was set to 5ms for

this data set, so sub-behavioral timescale spike patterns were considered, but not

down to the millisecond scale spike timings. Overall, for the analysis on this data set,

the de-noised spike rates that were outputted from LFADs could predict the monkey

reach trajectories for individual trials much more effectively than representational

viewpoint decoding methods [61].

Although both the representational and dynamical systems viewpoints have histor-

ically examined some form of smoothed spike rates in their investigations of motor

control, it would possible for both viewpoints to incorporate spike timings as potential

signals governing motor control. The smaller the timescale at which spikes transmit

information, the higher the information capacity of each neuron. For this reason,

if the rate coding assumptions that have historically been implicit in the represen-

tational and the dynamical systems viewpoints of motor cortex are incorrect, and
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motor behaviors are controlled via spike timings, then there is an even larger space

for growth in our understanding of motor cortex [14].

1.2 Bridging motor control theories with what is

known about biomechanics

Studies of motor control seek to understand how the brain controls the body. A

particular advantage of focusing on the periphery to answer questions about motor

control and coordination is that establishing causation is typically more accessible in

the motor periphery because signals in the muscles directly cause a measurable be-

havioral output [16, 77, 74]. Motor control and coordination studies that are focused

on the motor periphery intersect heavily with the fields of biomechanics and neu-

romechanics, which emphasize the importance of considering the effects of physical

properties of muscles and the environment on the neuromuscular transform [85].

A great deal is known about muscle physiology and contractile dynamics of in-

dividual muscle fibers. When a muscle cell receives an action potential, an influx of

calcium initiates cross-bridge formation, leading to a muscle contraction (Figure 1.2

a and b). Calcium plays an important role in determining the force of a muscle, and

the relationship between calcium concentration and muscle force is nonlinear (Figure

1.2 c and d) [16]. Muscles exhibit activation, length, velocity, and history dependence

— the activation curve from a single spike depends on which spike number in a series

of spikes is being considered [67, 85]. When all of these dependencies are taken into

account, it is clear that muscle force may depend on sub-behavioral timescale spike

patterns, even down to the millisecond. However, because many different factors

contribute to the contractile dynamics of each muscle, it can be challenging to study

each one in isolation [67]. For this reason, muscles were initially studied under highly

controlled conditions (e.g. isometric - constant length, isotonic - constant tension)
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[50, 38]. Heavily based on these highly controlled studies, the hypotheses and tools

that have dominated studies of motor control at the level of the muscles impose the

assumption that behavioral or intermediate timescale spike patterns are the most

relevant signal.

Figure 1.2: Physiology of muscle contraction. a. According to the sliding filament
theory, in the absence of Ca2+, actin and tropomyosin are unable to bind to eachother.
b. An influx of calcium permits myosin heads to bind to actin - cross bridge formation.
This binding process repeats as the thick (myosin) and thin (actin) filaments slide
past eachother, shortening the sarcomere and therefore the muscle fiber. c. Calcium
concentration has a nonlinear relationship with muscle force. d. Membrane potential,
calcium concentration, and tension curves vary in response to a current pulse indicated
by the vertical dotted line. All subfigures were adapted from Eckert [16].

1.2.1 Muscles: The size principle

For example, studies of motor control have largely been dominated by the size prin-

ciple and Hill-type models, in which muscle force is determined by the differential

recruitment of motor unit types and the smoothed spike rates of those units, respec-

tively [32, 33, 97]. Classically taught in introductory neuroscience courses [41] and
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initially studied in cat stretch reflexes [32, 33], the size principle states that within

a behavior that requires force production, motor neurons are activated in order of

excitability — smallest and most excitable neurons are activated first, and largest,

least excitable neurons are activated last. The size of the motor neuron generally

correlates with force produced by the muscle fiber(s) it innervates [41]. Conceptually,

this ordering of motor unit excitability presents a reasonable recruitment strategy for

efficient and effective motor control. The slow fibers which exert the least amount of

force and fatigue the most slowly will be recruited first. Once slow fibers have been

activated, if more force is necessary, fast, strong, fatigable fibers will be recruited

[32, 33, 35]. Whole muscle force may be controlled by varying the number of active

motor units [18]. Additionally, it is thought that changes in motor unit recruitment

work in tandem with spike rate to affect the force output of muscles differently in

different mechanical contexts [18, 50].

Although motor coding via recruitment and rate coding have been historically

useful ideas, when the dynamics of natural behaviors are taken into account, these

principles may be violated. It is thought that for the control of faster, more nat-

uralistic behaviors that require rapid force production, it may be advantageous for

organisms to recruit fast fibers before slow fibers, thereby violating the size prin-

ciple of recruitment order [48]. The spinal cord and other central structures have

mechanisms in place which may affect the coordination between motor units and

recruitment order. For example, Renshaw cells, which are well known to execute

recurrent inhibition in the spinal cord, have been shown to differentially inhibit mo-

tor neurons depending on fiber type [24], and stimulating motor cortex can affect

recruitment order [48]. Similarly, in behaviors that require rapid force production, it

might be advantageous for organisms to leverage spike timing sensitivities to impact

motor behavior. For example, the catch-like property of skeletal muscle describes a

possible mechanism by which organisms may leverage spike timing to affect muscle



11

force: beginning low-frequency muscle stimulation with a few high-frequency spikes

can augment the force output [8].

1.2.2 Muscles: Hill-type models

While the size principle is a hypothesis that is thought to govern the order of recruit-

ment of muscle fiber types, Hill-type models of contractile dynamics are commonly

used to estimate the force of muscles in studies of motor control and coordination

[97, 10]. These models rely on the simplifying assumption that a muscle fiber’s force

output depends only on its activation, length, and velocity [97]. A typical Hill-type

model consists of a contractile element and an elastic element in series. The elas-

tic element may be modeled as a spring to represent the passive force properties of

the muscle and/or tendon [97, 62]. The contractile element typically depends on

three variables: muscle activation, muscle length, and muscle velocity. An example

of equations governing the Hill-type model used by Perreault et al. are shown below

[62]:

FHill = FCE + FEEFCE = FmaxA(t)FLT (L)FFV (V ) (1.1)

Here, FHill refers to the total force of the muscle as calculated by the model. FCE refers

to the contractile element of the force, and FEE refers to the elastic element of the

force. Fmax refers to the maximum force elicited by a tetanus at the velocity and length

corresponding to the peak force. A(t) refers to the activation term. FLT (L) refers to

the length-tension relationship, and FFV (V ) refers to the force-velocity relationship

(see [62] for more details). The activation term in a Hill-type model is often related

to calcium dynamics, or some smoothed function of spike rate [97]. Therefore, the

force of a Hill-type muscle model typically depends on some variation of rate coding.

Biomechanics literature supports that muscles exhibit a spike rate dependence —

multiple spikes sent to a muscle increase the tension of the muscle [50]. The three
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inputs to a Hill-type model are assumed to impact muscle force independently from

one another. Therefore, Hill-type models are liable to miss nonlinear muscle force

properties that depend on interactions between these terms [38].

Although Hill-type models are useful tools to estimate force output, they have been

shown to exhibit the largest errors in the most naturalistic conditions when compared

to experimentally measured force output [62]. The errors identified by Perreault et

al. were thought to be attributed to the failure of Hill-type models to consider the

interactions between the primary determinants of muscle force [62, 38]. Naturalistic

behaviors, which rarely resemble the highly controlled conditions on which the Hill-

type model is based, may be particularly sensitive to muscle history dependence and

the other nonlinearities in muscle responses, contributing to the errors in Hill-type

models. Naturalistic behaviors may also exhibit biomechanical sensitivities that im-

pact the overall limb dynamics in a way that Hill-type models cannot predict [73, 85].

In addition to the nonlinearities and biomechanical sensitivities, Hill-type models

may not account for the catch-like property of skeletal muscle mentioned above [8].

Each of these properties offer potential mechanisms by which millisecond scale spike

timings may affect motor behavior [73].

When all the factors that contribute to muscle force are taken into account, there

are many reasons to suspect that sub-behavioral timescale spike patterns may play

an important role for motor control. Many natural behaviors such as running or

flying involve cyclic muscle length changes [75, 74]. Due to the length and velocity

dependencies of muscle force, the time of muscle activation within each length-change

cycle may have major implications on the power output of the muscle. Therefore the

nervous system may modulate the timing of one or more spikes within each cycle

of muscle-length change in order to affect behavior. This spike timing modulation

has been shown to serve as a mechanism of hawk moth flight control [74]. Further-
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more, there is evidence of millisecond scale spike timings affecting the motor output

in a songbird expiratory muscle [77]. If researchers reexamine the leading theories of

motor control by considering sub-behavioral scale spike patterns as relevant neural

signals for motor behavior, it would help to to merge what is known about muscle

contractile dynamics and the biomechanics of complex, naturalistic behaviors with

the existing theories of motor control and coordination, which would provide much

stronger and more integrated hypotheses about how the brain controls the body.

1.3 Motor control via sub-behavioral, millisecond

timescale changes in spike patterns

Although the current theories of motor control and coordination have made impor-

tant contributions to our understanding of the motor system and have resulted in

remarkably successful rehabilitative innovations [60], if the rate coding assumptions

for motor control are incorrect, then our understanding of the motor system and reha-

bilitation techniques could be greatly improved by identifying whether sub-behavioral

timescale spike patterns serve as important signals for motor control. As stated above,

recent evidence from motor coding experiments supports what may naturally flow

forth from well-known details about muscle contractile dynamics and biomechanics

(see 1.2 above) [73]. This evidence indicates that motor behavior is not only encoded

by behavioral or intermediate timescale spike patterns (rate coding), but that spike

timings are important encoders of motor behavior [82, 77, 64, 74, 91].

We know that the spike timings of single neurons and the spike timings of motor

units exhibit correlation with motor behaviors [82, 64, 77], and we know that small

shifts in the spike timings of individual muscles have causal implications for motor

behavior [74, 77]. This evidence in support of spike timing’s central role for motor

coding opens the door to new questions about the role that spike timing may play for
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coordination between motor signals. It is unknown how multiple motor signals within

a muscle correlate with each other at different timescales. Different motor signals

within a muscle may not be coordinated, or they may exhibit some combination

of the following types of coordination: coordination at the sub-behavioral timescale

(coordination between the spike timings of different motor units), coordination at

the timescale of the behavior (coordination between spike counts of different motor

units), and coordination at mixed timescales (where the spike counts of one motor

unit coordinates with the spike timings of another motor unit). As described below,

we turned to a songbird expiratory muscle group [77] to study how motor units

within a muscle are coordinated with one another across different timescales to control

respiration.

1.4 Experimental Approach

Assessing the coordination between simultaneously recorded motor units with a high

degree of temporal resolution is technically challenging. It requires stably recording

well-isolated single units during a stereotyped behavior for hundreds or thousands of

trials. We overcame this challenge by combining our novel flexible electrode technol-

ogy with the many advantages of the songbird respiratory musculature. We recorded

from multiple single units in the expiratory (EXP) muscle group of the Bengalese

Finch during breathing while under anesthesia [77]. This behavioral paradigm serves

as an excellent model to study coordination between motor units because we are

able to stably record simultaneous single units for thousands of breath cycles without

signal corruption from movement artifact.

Songbirds are capable of remarkably precise respiratory control. Songbirds have

both lungs and air sacs: lungs for gas exchange and air sacs for ventilation [69].

In order for a bird to sing its highly stereotyped song, it must actively regulate
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the pressure in its air sacs [68]. Air sac pressure is directly related to respiratory

muscle activity, and both inspiration and expiration in birds requires neural drive

[69]. Respiratory muscles have been shown to exhibit highly stereotyped, temporally

precise activation patterns during singing [96]. The abdominal expiratory muscles

can respond to changes in somatosensory feedback within tens of milliseconds [81].

Additionally, a small shift in the spike timing patterns produced by single motor

units in the EXP group can cause changes to the air sac pressure during anesthetized

breathing [77]. Therefore, not only do the respiratory muscles exhibit precise control

during singing, but also during breathing while under anesthesia. Yet, we do not

know whether and at what timescale multiple motor units in the EXP coordinate

with one another. In this work, we used an information theoretic approach to answer

the question: To what extent and at what timescale are motor units within the EXP

group coordinated with each other during anesthetized breathing?
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Chapter 2

Methods

In order to identify whether and at what timescale the activity of single motor units

coordinate with one another, we recorded single unit electromyographic data (EMG

data) from the expiratory muscle group (EXP) in addition to the air sac pressure

in the Bengalese Finch during breathing while under anesthesia (Figure 1.1 a and

b). We identified all spike times of the motor units we recorded. We cleaned and

processed the airsac pressure data, using positive threshold crossing to identify breath

cycle onset times. Next, we segmented the spike data into individual breath cycles

- notating the spike count (the total number of spikes) in each breath cycle and the

spike timings in each breath cycle (the time of each spike relative to the onset of

that breath cycle) for each motor unit. We used techniques from information theory

to quantify how the activity of motor units coordinate with each other at different

timescales (Figure 2.1 c). We estimated the mutual information (MI) between the

spike counts (behavioral timescale spike patterns) of motor units, the spike timings

(sub-behavioral timescale spike patterns) of motor units, and the spike counts of one

unit and the spike timings of another unit for all pairwise combinations of motor units

to determine whether and at what timescale motor units within the EXP coordinate

with one another.
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Figure 2.1: Spike count and spike timings were calculated for each breath cycle to
find the coordination at behavioral (spike count) and sub-behavioral (spike timing)
timescales. Once breath cycle times were identified, the total number of spikes that
occurred within each breath cycle were quantified for each motor unit. This spike
count was representative of the neural activity at behavioral timescales. Additionally,
the precise timing values of each spike within each breath cycle were measured. These
values were representative of the neural activity at sub-behavioral timescales, even
down to the millisecond.
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2.1 Surgical Procedures

Following similar procedures to Srivastava et al. we conducted simultaneous elec-

tromyographic (EMG) recordings from multiple single units of the expiratory muscle

group (EXP) in addition to air sac pressure in the Bengalese Finch during anesthe-

sized breathing [77]. All of the procedures were approved by the Emory University

Institutional Animal Care and Use Committee. We note that all of the experiments

and spike sorting were conducted by Bryce Chung, while Rachel Conn led the data

analysis and interpretation.

To simultaneously record multiple single units, we used a flexible electrode array

system with 16 3D contacts. We developed these electrode arrays with our collabo-

rators at Georgia Tech [99, 98]. The 3D contacts were made out of gold, and held

together with 20µm thick polyimide. The contacts were 125 − 200µm in diameter

and spaced 75− 100µm apart in a 4 x 4 grid (Figure 1.1 b).

To secure electrode arrays to EXP for acute recordings, we made an incision dorsal

to the leg attachment and rostral to the pubic bone on one or both sides of the animal

to target the EXP group on one or both sides of the animal. The electrode array

connected to a custom Omnetics adapter, which allowed us to connect to a digital

amplifier (RHD2132; Intan Technologies). We sampled the voltage signal from each

electrode contact at 30kHz.

We recorded air sac pressure in parallel with electromyographic signals from the

EXP. We followed procedures from Srivastava et al. and others [77, 96, 28, 4]. We

inserted a 6mm Silastic Tube (Dow Corning) through an incision inferior to the

rib cage. The tube was beveled on one end to make insertion easier. We attached a

pressure sensor 20INCH-D-4V (All Sensors) to the other end of the tube, and recorded

the voltage read out from the pressure sensor at 30kHz using the same Intan system

(Figure 1.1 a).
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2.2 Data Processing

We processed the EMG and the pressure data prior to analysis. We identified spike

times from the EMG voltage traces, and we identified the onset times of each breath

cycle from the pressure waveforms.

2.2.1 EMG Data

To accurately identify spike times from multiple single motor units, we used a spike

sorting algorithm (”Myosort”) developed by Najja Marshall and Mark Churchland

[48]. This algorithm first filtered and normalized the EMG traces. Next it detected

and aligned spike waveforms using a threshold and peak detection. Similar waveforms

within each channel were identified by clustering using the first three principle com-

ponents of the waveforms. From all of the identified clusters, the user next manually

selected the clusters that best represent the waveforms that correspond to units truly

present in the EMG data. Finally, myosort employed Bayesian optimal template

matching to identify each time in the EMG trace where a waveform from one of the

template clusters occurred [23].

Because our EMG recordings took place over long periods of time, we needed to

verify that the units we recorded exhibited consistent firing properties and waveform

shapes throughout the experiment. We therefore validated the spike times detected

via myosort using DataView [30, 31]. We looked at changes to specific parameters

throughout the data collection. The parameters that we used include: the peak to

peak amplitude of the action potential waveforms, the instantaneous firing frequency,

and the phase of spikes within a behavior cycle. If each of these parameters remained

consistent throughout the data collection, we considered the spike sorting output to

accurately reflect the spike times of single units. Additionally, we randomly selected

a subset of spike bursts to estimate a false positive and false negative error rate in
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our spike detection.

2.2.2 Pressure Data: Identifying Breath Cycle Onset Times

In addition to processing the EMG data, we calibrated and processed the air sac

pressure data so that we could consider the coordination between spike patterns

within each breath cycle. We first calibrated the pressure recording from a voltage

signal into units of kPa by applying a known pressure value to the sensor. We

calibrated the pressure according to the following equation:

P = am(v/v̄)v̄1 − P0 (2.1)

Where a is a constant to ensure that we converted into units of kPa (the device we

used for the calibration was in units of inH2O), m is the slope of the calibration

curve, v is the raw voltage, v̄ is the mean voltage across the experiment, v̄1 is the

mean of the first 90 seconds of the experiment, and P0 is the offset of the voltage

recording from zero when the pressure is at atmospheric pressure.

Since we recorded from the EXP group, we were interested in the spike patterns

corresponding to the portion of the breath cycle when the pressure was larger than

zero (corresponding to expiration). We considered the onset of a pressure cycle to be

the time when the air pressure changed from negative to positive (the onset of expira-

tion, Figure 2.2 a). In order to robustly identify these cycle onsets, we used a bandpass

filter with a finite impulse response, Hanning window. The average frequency of the

breath cycles was about 1.8Hz. We filtered out the frequency components of the

signal that were above 50Hz and below 1Hz. We then identified all time points

where the pressure signal crossed the zero threshold in the positive direction (Figure

2.2 a). After some additional data cleaning (see 2.2.3 below), each positive threshold

crossings served as the onset time of a breath cycle and each next consecutive positive
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threshold crossing served as the offset time of that breath cycle. Each spike time from

each neuron was sorted into its respective breath cycle. The breath cycle onset times

were subtracted from the spike times corresponding to that breath cycle to output

the spike timing values for each breath cycle for each motor unit. The total number

of spikes within each breath cycle were summed to output a spike count variable for

each breath cycle for each motor unit (Figure 2.1).

2.2.3 Pressure Data: Omitting False Cycles and Outliers

Prior to segmenting the EMG data into spike timings and spike counts for each

breath cycle, we cleaned our breath cycle times by omitting falsely detected cycle

times and outlier breath cycles. Due to low amplitude noise in the pressure signal, we

detected some threshold crossings that were not true breath cycles. To ensure that we

did not include artificially short pressure cycles that were detected because of small

fluctuations near the threshold, we characterized the duration of a cycle by finding

the length from positive threshold crossing to negative threshold crossing (Figure 2.2

b). We then omitted all cycles that had a duration less than a minimum value (Figure

2.2 c). We verified that we had successfully omitted only and all cycle times that were

falsely detected by small fluctuations around the threshold by visually auditing all

cycle waveforms.

Throughout the data collection, there were periodic cases where the pressure wave-

forms suddenly dropped in amplitude and rapidly increased over the course of a few

cycles (Figure 2.3 a). We chose to omit these cycles from our analysis in order to focus

on a consistent behavior. Additionally, a major assumption of our primary analysis

method is that all of the data comes from a stationary probability distribution (e.g.

the distribution of the data does not change over time). Omitting these cycles helped

us to better satisfy the stationarity assumption. We identified these regions by finding

cycles in which the peak-to-peak amplitude (Figure 2.3 b) dropped below a threshold
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Figure 2.2: Calibrated and filtered pressure waveforms were used to identify cycle
onset times. a. A zero threshold was applied to the pressure data to identify breath
cycle onset times (grey dotted line). The duration of a pressure cycle was calculated
as the time from positive (blue diamond) zero threshold crossing to negative ( maroon
diamond) zero threshold crossing. b. Some cycle onsets and offsets were artificially
detected because of small amplitude/high frequency fluctuation in the pressure around
the threshold (yellow circle). c. These falsely detected cycle times were omitted from
the analysis by discounting all cycle times corresponding to cycles with durations less
than 0.11s (yellow shaded region).
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of µ1/2−3∗IQR, where µ1/2 is the median for a sliding window of 405 pressure cycles,

and IQR is the inter-quartile range of the same sliding window (Figure 2.3 c). If a

cycle had a peak-to-peak amplitude that dropped below this threshold, we omitted

the preceding cycle and omitted the next consecutive cycles until the peak-to-peak

amplitude fell within the IQR around the median (Figure 2.3 c).

2.3 Data Analysis

Overall, our goal was to understand how the activity of multiple motor units within

EXP coordinated with each other during anesthetized breathing. We assessed the

correlation between spike patterns at different timescales within the time course of

one breath cycle. Similarly to previous work from our lab [77], in this manuscript,

we focused on spike patterns at two extreme timescales- the behavioral scale, by

finding the total number of spikes within each complete breath cycle (about 550

ms, spike count) and sub-behavioral timescale, by finding the millisecond scale spike

timings within each complete breath cycle (Figure 2.1, spike timing). We turned to

mutual information, a technique from information theory, to examine the coordination

between units at these extreme timescales separately.

2.3.1 Overview of Mutual Information and the KSG Method

After identifying the spike times of simultaneously recorded single units and the

breath cycle onset and offset times, we estimated mutual information (MI) to assess

the correlation between the activity of motor units at different timescales. Although

there are many mathematical techniques to measure the correlation between two

variables, most techniques make assumptions about the underlying distributions of the

variables (e.g. parametric techniques) or require prior knowledge about the shape of

the relationship between two variables (e.g. linear or other regressions). The benefits
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Figure 2.3: We examined the peak-to-peak amplitude of the pressure waveforms to
ensure that we studied a consistent behavior in our analyses. a. For a subset of breath
cycles, the bird suddenly began to breath very shallowly, and the air sac pressure
cycles gradually increased in amplitude over the course of several breaths. Cycle
onsets are marked by blue diamonds. The subset of cycles with small amplitudes
and those surrounding were omitted from the mutual information analyses to make
sure that coordination was studied under a consistent behavior for the entire analysis
epoch. b. The peak-to-peak amplitude of all pressure cycles was calculated. c.
The cycles associated with the sudden drops in amplitude were identified with a
sliding threshold of 3 × IQR (top panel, cycles falling outside this threshold and
preceding cycle marked in red). Once the first of each low amplitude cycle series was
identified, the previous and next consecutive cycles were omitted until the peak-to-
peak amplitudes fell within the sliding IQR (bottom panel, all omitted cycles marked
in red).
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of MI are (1) that it is model-independent - it describes the linear and nonlinear

correlation between two random variables (e.g. X and Y below) and (2) that it is

agnostic to the distributions of the variables. We used the Kraskov, Stoegbauer,

Grassberger (KSG) k-nearest-neighbors estimator of MI for continuous variables [44].

To quantify the bias of our estimates and to ensure that the estimates were reliable

for each dataset, we followed the procedures established by Holmes and Nemenman

[36].

When the true marginal and joint distributions of both random variables are

known, MI can be calculated exactly as follows:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
(2.2)

However, in experimental neuroscience, we do not have the luxury of knowing the

underlying probability distributions of spiking neurons due to limited datasets, etc.

For this reason, MI must be estimated based on finite data samples. In particular it is

not uncommon for electrophysiological data to be severely under-sampled (meaning

that the ratio of the number of samples to the number of possible outcomes is much

less than one) due to the technical limitations of recordings. In these cases, without

carefully selecting an estimator that is designed for under-sampled regimes, it is easy

for MI estimates to become inflated because the joint probability (p(x, y)) distribution

is more severely under-sampled than the marginals (p(x) and p(y)). We chose to use

the KSG estimator of mutual information for two primary reasons: (1) It is designed

for continuous variables, so we can use this estimator on precise spike times. (2) It is

robust to under-sampled data with a variety of marginal distributions.

The KSG estimator estimates the mutual information between two continuous

variables by examining distances between data points. Because the KSG estimator

is a continuous estimator, it eliminates the need to bin the spike timing data to

make discrete data points. Discrete estimators, such as the NSB estimator require
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binning [82, 53, 54], which limits the resolution with which we can study spike timing

patterns to the size of the time bins. With estimators that require binning, the bin

size must be one millisecond in order to capture millisecond-scale variability in spike

patterns. Therefore, if the behavior of interest happens on the order of hundreds of

milliseconds, the dimensionality of the binned spike data can become unwieldy for

discrete estimators. The KSG estimator works for continuous data by using a nearest-

neighbors approach. This estimator iterates through each data point and finds the

distance to its kth nearest neighbor. This distance is then used to find the probability

of finding data points within the kth neighbor distance in each marginal (e.g. in the

X and Y direction(s), Figure 2.4 a). These probabilities are used to estimate the

marginal entropies ( H(X) and H(Y )) and the joint entropy (H(X, Y )), which can

then be used to estimate the mutual information:

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (2.3)

Where H(X), H(Y ), and H(X, Y ) are defined as:

H(X) = −
∑
x∈X

p(x) log2 p(x) (2.4)

H(Y ) = −
∑
y∈Y

p(y) log2 p(y) (2.5)

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y) (2.6)

Note that the KSG estimator does not analytically calculate these quantities, but

estimates them based on the distances between nearest neighbor data points in the

marginal and joint distributions [44].
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Figure 2.4: The KSG MI estimator uses a k nearest neighbors approach. The al-
gorithm estimates the marginal entropies and joint entropies from the probabilities
of finding data points within the distance to the kth nearest neighbor for each data
point. a. A schematic of artificial data illustrates the 6th nearest neighbor (red)
from a point of interest (dark blue) along with the total number of data points found
within the 6th nearest neighbor distances (black dotted lines) in the x and y direc-
tions from the point of interest. b. A joint histogram of one example neuron pairs
shows correlated structure in the x and y variables. c. For each MI estimate, the de-
pendence of the MI on the data size and the selection of parameter k were examined.
For the example distribution in b, an example of the data size dependence is plotted
for k = 6. d. The k dependence for this same distribution is plotted for k = 1 − 9.
Based on the data size dependence and the k stability, k = 6 was selected for this
example MI estimate.
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2.3.2 Validating Stability, Estimating Error, and Parameter

Selection for the MI Estimates

To validate the stability, select the parameter, k, and to estimate overall error for

a single MI estimate, we followed the procedure outlined in Holmes and Nemenman

[36]. Because the variance of the MI estimate should depend on the sample size and

the particular distributions being sampled, we used the equation:

σ2
KSG(N) = B/N (2.7)

Where N refers to the total number of samples, and B is a constant that is

dependent on the distributions. We randomly subsampled the data into many non-

overlapping, equally sized fractions. For example, we split the data into two halves,

three thirds, etc. We repeated the MI estimate for each subsample. We then aver-

aged across all the equally sized subsamples to produce one estimate for each data

fraction size (Figure 2.4 c). We considered the MI estimate to be stable if the data

fractions with subsamples that contained 1/4 of the dataset or more were all within

one standard deviation of each other. We also calculated the variance for all data

fraction sizes with more than one subsample. We used these quantities along with

the amount of data in each subsample to estimate the value of B. From this value,

we were able to estimate the variance of the MI for the full data set.

The KSG estimator relies on the parameter k, the number of nearest neighbors

that are used to estimate the entropies and MI. We developed a semi-automated pro-

cess for selecting a k-value for each MI estimate. This procedure selected a value for

k by repeating the subsampling procedure with estimates corresponding to different

values of k, ranging from one to nine. The algorithm first identified all values of

k which elicited a stable MI estimate (criteria for stability based on data fractions

described above). Once these k values were identified, there was a check that the
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MI estimates elicited by the identified k values were within one standard deviation

of each other (Figure 2.4 d). If the MI values corresponding to the identified values

of k, the algorithm selected the value of k that satisfied the data fraction stability

criteria, maximized the stability across smaller data sizes, and that minimized the

overall error estimate. The semi-automated procedure effectively selected a value for

about 20% of the MI estimates without requiring user input. We manually followed

the same criteria to select k-values for all MI estimates for which the algorithm was

not effective. In order to do this, we constructed data fraction plots for k = 1 − 9

(Figure 2.4 c). We then visually examined the plots for data fraction stability for up

to four data fractions. We notated which values of k elicited MI estimates with data

fraction stability. Then we constructed k-value plots (Figure 2.4 d). We determined

whether the estimates corresponding to k values with data fraction stability were

with one standard deviation of each other (by visually comparing error bars). To

make sure our MI estimate was conservative, we selected a k-value that minimized

the MI value (across the data stable ks that were identified) and minimized the er-

ror. For a small portion of MI estimates, we were unable to select a k value due to

instability across data fractions or insufficient data. These estimates were small sub-

groups of data from our timing-timing or timing-count MI estimates (See Methods

2.3.3 below, Equation 2.9 and 2.10). In these cases, we artificially set MI to zero,

assuming that these subgroups did not contribute to the coordination between the

activity of motor units. Additionally, we manually selected k-values for a subset of

MI estimates and compared them with those selected by the algorithm to validate our

semi-automated algorithm. To validate our manual selection protocol, all lab mem-

bers who contributed to the k-selection process manually selected k-values for a full

analysis independently (count-count, count-timing, timing-count, and timing-timing)

for the same pair of neurons, and we compared our selected k-values.
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2.3.3 Mutual Information to Identify Coordination Between

the Activity of Pairs of Motor Units

To identify how simultaneously recorded motor unit activity is coordinated, we found

the MI between the spike trains from each unit. We separated our MI estimate into

four components of different timescales:

I(U1;U2) = I(U1,c;U2,c) + 〈I(U1,t;U2,c|U1,c)〉

+ 〈I(U1,c;U2,t|U2,c)〉+ 〈I(U1,t;U2,t|U1,c, U2,c)〉
(2.8)

Here, U1 and U2 denote two different motor units, and c and t denote spike count

(behavioral scale) or timing (sub-behavioral scale, Figure 2.1). To find the spike count

variable for a given motor unit, we counted the total number of spikes within each

breath cycle (each breath cycle was assumed to be an independent sample). Each

Uc term was a (1 × N) vector, where N is the number of breath cycles in the data

set. Note that since the KSG algorithm is a continuous estimator, we added low

amplitude jitter (� 1) to all values to break degeneracies in spike counts. We do not

expect this jitter to affect our estimates. I(U1,c;U2,c) was therefore straightforward

to estimate.

To find the spike timing variable for a given motor unit, we found the time of

each spike that takes place within a breath cycle relative to the onset of of that

cycle. Because the spike count per cycle varied, the size of the timing variable varied

in dimensionality from cycle to cycle. To accurately estimate MI, we needed the

dimensionality of the timing variable to be consistent. For this reason and in order

to properly separate information in spike timing from information in spike count,

we separated all MI estimates that include a timing variable into subgroups with

consistent count values for the timing variable(s). We found the average conditional



31

mutual information in spike timing given spike count. For the MI between the timing

of one unit and the count of another, we used the following equation:

I(U1,t;U2,c) =

C1,max∑
i=1

I(U1,t;U2,c|U1,c = i)p
′
(U1,c = i) (2.9)

Where p
′
(U1,c = i) represents the re-weighted probability that Unit 1 has a spike

count of i. Since there are no spike timings for any breath cycle where a motor unit

did not spike (i = 0), we excluded all i = 0 from the probability term - re-weighting

the probabilities so that
C1,max∑
i=1

p
′
(U1,c = i) = 1. We therefore estimated the average

MI between the spike timing of Unit 1 and the spike count of Unit 2 for all breath

cycles where Unit 1 spiked at least one time. I(U1,t;U2,c|U1,c = i) is the conditional

MI between the spike timing of Unit 1 and the spike count of Unit 2 given the spike

count of Unit 1. Each Ut term was an (i× ni) matrix, where i is the spike count and

ni is the total number of breath cycles in the data set with a spike count of i. C1,max

represents the maximum number of spikes within a cycle for Unit 1.

For the MI between the timing of two units, we used the following equation:

I(U1,t;U2,t) =

C1,max∑
i=1

C2,max∑
j=1

I(U1,t;U2,t|U1,c = i, U2,c = j)p
′
(U1,c = i, U2,c = j) (2.10)

Where p
′
(U1,c = i, U2,c = j) represents the re-weighted joint probability that Unit 1

has a spike count of i and that Unit 2 has a spike count of j. Similarly to above,

since there are no spike timings for any breath cycle where a motor unit did not

spike (i = 0 or j = 0), we excluded all i = 0 and all j = 0 from the probability

term - re-weighting the probabilities so that
C1,max∑
i=1

C2,max∑
j=1

p
′
(U1,c = i, U2,c = j) = 1.

We therefore estimated the average MI between the spike timing of Unit 1 and the

spike timing of Unit 2 for all breath cycles where both units spiked at least one time.

I(U1,t;U2,t|U1,c = i, U2,c = j) is the conditional MI between the spike timing of Unit
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1 and the spike timing of Unit 2 given the spike count of Unit 1 and the spike count

Unit 2. Each U1,t term is an (i × ni,j) matrix, where i is the spike count for Unit 1,

and ni,j is the total number of breath cycles in the data set where Unit 1 has a spike

count of i and Unit 2 has a spike count of j. Each U2,t term is a (j × ni,j) matrix,

where j is the spike count for Unit 2 and ni,j is the total number of breath cycles

where Unit 1 has a spike count of i and Unit 2 has a spike count of j. C1,max and

C2,max represent the maximum number of spikes within a cycle for Unit 1 and Unit

2, respectively.

2.3.4 Error Propagation for Conditional MI Estimates

In order to propagate the error on the mutual information estimate for each weighted

sum for I(U1,t;U2,c) and I(U1,t;U2,t) (Equation 2.9 and 2.10), we used Gaussian er-

ror propagation identities combined with maximum likelihood estimation. To find

the MI, we summed the product of each conditional MI (I(U1,t;U2,c|U1,c = i) or

I(U1,t;U2,t|U1,c = i, U2,c = j)) and each probability (p
′
(U1,c = i) or p

′
(U1,c = i, U2,c =

j)), see Equations 2.9 and 2.10). We assumed that the MI estimate and estimate of

the probability of each spike count condition were Gaussian distributed and indepen-

dent. This assumption allowed us to use the Gaussian identities for error propagation

(e.g. σA+B = σA + σB) for the sum and product of two distributions to find the error

of the overall MI estimate for mixed timescale coordination:

σ2
t,c =

C1,max∑
i=1

(
σ2
Ii

I2i
+
σ2
p
′
i

p
′2
i

)I2i p
′2
i (2.11)

Here, σ2
t,c is the variance of the mixed timescales MI estimate. i denotes each

spike count condition for the unit that serves as the spike timing variable, and C1,max

denotes the maximum spike count for that motor unit. Ii is the conditional MI

estimate for spike count i. σ2
Ii

is the variance of the conditional MI estimate for



33

spike count i. p
′
i is the re-weighted probability of spike count i (Equation 2.13). σ2

p
′
i

is the variance of the re-weighted probability, which we estimated using maximum

likelihood estimation (Equation 2.14).

We followed the same procedure to find the error of the overall MI estimate for

small timescale coordination:

σ2
t,t =

C1,max∑
i=1

C2,max∑
j=1

(
σ2
Ii,j

I2i,j
+
σ2
p
′
i,j

p
′2
i,j

)I2i,jp
′2
i,j (2.12)

Similarly to above, σ2
t,t is the variance of the small timescales MI estimate. i and

j denote the spike count condition for each of the two motor units in the estimate.

C1,max and C2,max denote the maximum spike count condition for each motor unit,

respectively. Ii,j is the conditional MI estimate for spike counts i and j. σ2
Ii,j

is the

variance of the MI estimate for spike counts i and j. p
′
i,j is the re-weighted joint

probability of spike counts i and j (Equation 2.15). σ2
p
′
i,j

is the variance of the re-

weighted joint probability which we estimated using maximum likelihood estimation

(Equation 2.16).

To find the probability terms and the variance of the probabilities, we used maxi-

mum likelihood estimation. The maximum likelihood estimate of the probability was

very straightforward. For the mixed timescales estimate:

p
′

i =
ni

N ′ (2.13)

Here, p
′
i is the probability that the motor unit that serves as the spike timing

variable in the mixed timescales MI estimate exhibits a spike count of i. We note that

we excluded all breath cycles with zero spikes from the mixed and small timescales

analysis, so we re-weighted the probability term such that
C1,max∑
i=1

p
′
i = 1. ni is the total

number of breath cycles in the data set where this motor unit exhibits a spike count

of i. N
′

is the total number of breath cycles where the unit of interest spiked at least
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one time in the experiment.

From this estimate, we were able to estimate the variance of the re-weighted

probability as:

σ2
p
′
i

p
′2
i

=
(1− p′

i)

nip
′
i

(2.14)

Here σ2
p
′
i

is the variance of the probability that the motor unit serving as the spike

timing variable exhibits a spike count of i. The other variables are the same as above.

Similarly, the small timescales re-weighted joint probability term was estimated

as:

p
′

i,j =
ni,j

N ′ (2.15)

Here, p
′
i,j is the re-weighted joint probability that the each motor unit has a spike

count of i and j, respectively. Again, we note that we excluded all breath cycles where

the spike timing units exhibited zero spikes from the mixed and small timescales

analysis. Therefore, we re-weighted the probability terms such that
C1,max∑
i=1

C2,max∑
j=1

p
′
i,j =

1. ni,j is the total number of breath cycles in the data set where each motor unit

exhibits a spike count of i and j respectively. N
′

is the total number of breath cycles

in the experiment in which each motor unit spikes at least one time.

From this estimate, we were able to estimate the variance of the probability as:

σ2
p
′
i,j

p
′2
i,j

=
(1− p′

i,j)

ni,jp
′
i,j

(2.16)

Here σ2
p
′
i,j

is the variance of the probability that the motor units exhibit spike

counts of i and j, respectively. The other variables are the same as above. Although

re-weighting the probability term did affect the estimate of the error, since the in-

dividual probabilities increased from re-weighting them, the error estimate increased

as well. Therefore, we estimated an upperbound on the error. Because of this, we
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are confident that we did not artificially inflate the significance of our results. For

additional details see the Appendix.
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Chapter 3

Results

We simultaneously recorded single unit EMG from multiple motor units from the

EXP muscle group in addition to air sac pressure during breathing in an anesthetized

Bengalese Finch. We isolated spike waveforms from single units, and segmented the

EMG data into breath cycles. We considered how the spike patterns of different motor

units coordinated with each other- at the timescale of the behavior (spike counts), at

sub-behavioral timescales (spike timings), and at a mixed timescales (spike timing and

spike count) both cumulatively across the entire data collection and within smaller

time epochs. The spiking activity of each of our motor units varied greatly throughout

the data collection. We found that all pairs of motor unit exhibited coordination

between spike counts. Some pairs of motor units exhibited coordination between spike

timings and spike counts. None of the motor units exhibited coordination between

their spike timings. Finally, we examined how the coordination between spike counts

of motor units changed from the first half of the data collection to the second half,

and we found that the coordination between the example pairs of units exhibited

differences between the first and second halves of the data collection.

We used a quantity called mutual information, a measure of correlation that con-

siders both linear and non-linear correlation to study the coordination between motor
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units across timescales. We segmented the pressure data into cycles, which were de-

fined as the time from one positive zero crossing in the pressure waveform to the next

positive zero crossing. We created a spike count variable for each motor unit: the total

number of spikes within each breath cycle. We also identified the precise spike timings

of each motor unit relative to the onset of each breath cycle. We found the mutual

information between the spike counts of all pairwise combinations of motor units,

between the spike counts of one motor unit and the spike timings of another motor

unit for all pairwise combinations of motor units, and between the spike timings of all

pairwise combinations of motor units. Additionally, we repeated the count-count MI

analysis for a three example pairs of motor units for each consecutive half of the data

collection separately to examine the stationarity of the data in addition to examine

how the coordination between units changed between halves.

3.1 Motor units exhibit unique spiking properties

that vary throughout the data collection.

Throughout our data collection, we identified four motor units with distinct firing

characteristics (Figure 3.1). Three units exhibited sparse firing at different epochs

throughout the data collection: Unit D, Unit G, and Unit E. Unit D fired zero to

nine spikes per cycle during the first third of the data collection. Unit G fired zero

to seven spikes per cycle on and off throughout the entire data collection. Unit E

fired zero to 18 spikes per cycle at the end of the data collection. In addition to the

sparse units, we also recorded from one tonic unit, which fired many spikes per cycle

throughout the data collection: Unit B. This unit fired zero to 44 spikes per cycle

throughout the entire data collection (Figure 3.1).
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Figure 3.1: Four different motor units exhibit distinct spiking characteristics through-
out the data collection time. Unit D (blue) exhibited robust spiking throughout the
beginning of the data collection, and then stopped. Unit G (green) exhibited sparse
spiking throughout the entire data collection. Unit E (orange) exhibited sparse spik-
ing specifically towards the end of the data collection. Finally, Unit B (yellow) ex-
hibited robust tonic spiking throughout the entire data collection.

3.2 Spike patterns of different motor units are co-

ordinated in their spike counts.

We first asked whether the motor units we recorded exhibited coordination in their

spike counts when we collectively considered the entire data collection. We define

spike counts to be the total number of spikes produced by each motor unit within a

breath cycle (Figure 2.1, Equation 2.8). The marginal distributions of spike counts

for the sparse units (D, G, and E) are relatively similar to each other (Figure 3.2 a,

blue, red, and green traces). All of the sparse units have zero spikes for most breath

cycles. Unit E has the widest spread of different spike counts of the sparse units, yet

this unit spikes for the fewest number of cycles. The tonic unit, Unit B, has the widest

overall spread of different spike counts, ranging from zero to 44 spikes per cycle. Unit

B also has fewest cycles with zero spikes. The example joint distributions illustrate

three distinct cases of coordination at the timescale of the behavior that occurred

cumulatively throughout the duration of the data collection (Figure 3.2 c). The joint

distribution of Units D and G illustrates the coordination between the two sparse
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units that were active throughout the most breath cycles. The joint distribution

of Units D and E illustrates that units, which never fired simultaneously, exhibited

coordination when their spike patterns throughout the whole data collection were

considered. Finally, the joint distribution of Units B and G illustrate the coordination

between the tonic unit (Unit B) and a sparse unit, which were both active throughout

most of the data collection.

We estimated the mutual information between the spike counts for each pair of

units as a measure of their coordination at the timescale of the behavior. The count-

count MI estimates depend on estimates of the marginal and joint entropies, which

depend on the marginal and joint distributions of spike counts (Methods: Overview

of Mutual Information and the KSG Method, Figure 2.4). Consistent with what we

would expect based on the marginal and joint distributions, we found that all pairs

of motor units were coordinated in their spike counts - all the count-count MI values

were positive and of larger magnitude than the standard deviations (Figure 3.2 b).

Across each unit pair, the total MI ranged from about 0.03± 0.01− 0.35± 0.01. Of

the three example unit pairs, the most active units (Units B and G) had the highest

MI, and the two units which were never active simultaneously (Units D and E) had

the lowest MI and the MI that was the closest to being within error of zero (Figure

3.1, 3.2 b and c).
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Figure 3.2: Motor units are coordinated at the timescale of the behavior. a. His-
tograms of spike count for each unit illustrate the spike count distributions for the
entire data collection. Mutual information was found to be greater than zero for all
pairs of units. b. Count-count MI values for all unit pairs are shown. Error bars
show the estimated standard deviation the MI c. Joint histograms of spike counts
for each example pair illustrate the joint distributions of spike count across the whole
data collection.

3.3 The spike timings of some motor units may be

coordination with the spike counts of others,

but no coordination between the spike timings

of pairs of motor units was detected.

We next asked whether motor units exhibit coordination at mixed or sub-behavioral

timescales. Since we already captured the count-count MI, we specifically examined

the timing-count and timing-timing MI of all pairwise combinations of motor units

(Figure 2.1). For the timing-count MI, we separated out the contribution of spike
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count from the spike timing variable by finding a weighted sum of the conditional

mutual information between spike timing and spike count for all given spike counts of

the timing unit (Equation 2.9) [77]. Similarly, for the timing-timing MI, we separated

out the contribution of spike count from both spike timing variables by finding a

weighted sum of the conditional mutual information between the spike timings of

each motor unit given each spike count value for each pair of units (Equation 2.10).

We limited both the timing-count and the timing-timing analyses to consider only

breath cycles where the spike timing unit(s) spiked at least one time. Therefore,

we re-weighted the probability term to discard these breath cycles where the timing

unit had a spike count of zero (see Methods: 2.3.3). In doing so, we found the

coordination between motor units at mixed and sub-behavioral timescales given that

the spike timing unit(s) spike(s) at least one time in a breath cycle and thereby

estimated an upper bound on the error (see Appendix).

We examined a few example distributions to see if there was any qualitative coor-

dination that could be observed at mixed and sub-behavioral timescales, which might

be indicative of non-zero MI at these timescales. We selected example marginal and

joint histograms to visualize the structure in the two example pairs of units from Fig-

ure 3.2 that spike simultaneously. The spike times of each unit vary for the example

spike count values (Figure 3.3 a). The example joint distributions for the relationship

between spike timing and spike count seem to exhibit coordinated structure (Figure

3.3 b). This structure is particularly of note in the joint distribution of Unit B spike

timing and Unit G spike count. The final spike of Unit B becomes more and more

spread out and later in time as the spike count of Unit G decreases. A similar trend

seems to exist for the Unit D spike timing and Unit G spike count joint histogram

(Figure 3.3 b). The trends for the timing-count joint distributions between units D

and G are less obvious. Unit G seems to have an early spike time when Unit D

has a lower spike count and when Unit B has a higher spike count. The example
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timing-timing joint distributions vary in whether they exhibit qualitative correlation

(Figure 3.3 c). There seems to be a positive correlation at the sub-behavioral scale

between the spike timings of Unit D and the spike timings of Unit G when Unit D

spikes twice and Unit G spikes once (Figure 3.3 c). When Unit B spikes 23 times and

Unit G spikes once, Unit G spike times closer to average seem to be correlated with

a later last spike in Unit B (Figure 3.3 c).

The total MI estimates for mixed and sub-behavioral timescales depend on the

conditional marginal entropies (and therefore conditional marginal distributions) of

spike patterns and the conditional joint entropies (and therefore conditional joint dis-

tributions). Qualitative correlation may be reflected in the respective MIs, although

because many count-conditioned joint distributions made up each timing-count and

timing-timing MI value, it may be harder to predict the MI results from visualizing

the joing distributions. We found that some of the motor unit pairs exhibited co-

ordination between spike timing and spike count. Eight out of the 12 timing-count

MIs were larger in magnitude than the upper bound on the standard deviation of

the MIs (Figure 3.3 d). However, all but two pairs (the timing of Unit B and the

counts of Units D and G) were within two standard deviations of zero. The timing-

count MIs for the spike timing of Unit B and the spike count of each sparse unit

were not within error of zero - which supports mixed timescale coordination for the

tonic unit. These timing-count MIs where Unit B served as the timing unit ranged

from 0.02 ± 0.01 − 0.10 ± 0.03. We note that significantly more breath cycles were

able to be included in the analysis for the timing-count MIs where Unit B served

as the timing unit. It is possible that these MI values were the least impacted by

limited data, thereby providing a more accurate representation of mixed timescale

coordination (see Discussion). All of the timing-timing MIs were within one standard

deviation of zero with the exception of Units D and E and Units B and E for which

there was not enough data in any count-conditioned subgroup to estimate the MI
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(Figure 3.3 e). Although we see some qualitative correlation in the example joint

histograms, based on our MIs, we did not detect a robust correlation across all unit

pairs for timing-count or timing-timing.

3.4 The structure of motor unit coordination may

change throughout the data collection.

Because the spike patterns of each motor unit varied drastically throughout the the

data collection (Figure 3.1), we were concerned that the data may violate a key

assumption to MI and many other common analyses: stationarity in the marginal and

joint distributions. In other words, we wanted to measure whether the distributions of

the spike patterns of each motor unit or the joint distributions of their spike patterns

changed across the duration of the data collection. If there were changes to these

variables, it would impact the interpretation of our results. In order to assess the

stationarity of the data, we decided to assess how the coordination between the units

changed from the first half of the data collection to the second half. We split the

data into two equally sized, consecutive halves and repeated the behavioral timescale

coordination analyses for each half with the example unit pairs from Figure 3.2. We

chose these three unit pairs for Figures 3.2 and 3.4 because each illustrates a different

type of possible temporal structure to coordination from the first half to the second

half of the data collection.

Each of the four units and the three individual pairings that we examined exhibited

qualitative changes in their distributions from the first half of the data collection to

the second half - indicative of nonstationarity in the data. Each of the sparse units

spiked during distinct epochs throughout the data collection (Figure 3.1). Largely due

to this variability, the marginal distributions of Unit D and Unit E changed from the

first half of the data collection to the second. In contrast, the marginal distribution
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Figure 3.3: Motor units may be coordinated at the sub-behavioral scale. a. Example
histograms illustrating the distribution of spike timing from three example units are
shown, each for one spike count condition. The distributions of spike timings for
each unit for all breath cycles where Unit D spikes two times, where Unit G spikes
once, and where Unit B spikes 22 times are shown. b. Joint distributions for mixed
timescale coordination: spike timing and spike count are illustrated for one spike
count condition for two example unit pairs: Units D and G and Units B and G. c.
Additionally, the joint distributions for sub-behavioral scale coordination are illus-
trated for Units D and G for all breath cycles in which Unit D spiked twice and Unit
G spiked once. The sub-behavioral timescales joint distribution is shown for Units
B and G for all breath cycles in which Unit B spiked 23 times and Unit G spiked
once. d,e. The weighted sum of mutual information for mixed timescales and for
sub-behavioral timescales for all spike count conditions between Units D and G and
Units B and G are shown.
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of the other sparse unit, Unit G was qualitatively similar between the first half and

the second half (Figure 3.4. The tonic unit, Unit B, spiked consistently throughout

the data collection (Figure 3.1), yet, this unit exhibited lower spike counts in the first

half of the data collection compared with the second half (Figure 3.4 a and b).

We wanted to capture a range of possible variabilities in the joint distributions

of a few pairs of units to see how various distribution changes impact the MIs across

consecutive halves. We chose to study the coordination between the spike counts of

the following unit pairs: Units D and G - the two sparse units which spiked for the

highest number of breath cycles, units D and E - two sparse units which never spiked

simultaneously, and units B and G - a tonic unit and a sparse unit, both of which

spiked throughout the duration of data collection.

The coordination between units D and G differs from the full data collection to

each half and from the first half to the second half. Unit D does not spike at all during

the second half of the data collection (Figure 3.1). Based on the joint distributions

of spike counts of units D and G for each half of the data collection, we would expect

to find zero MI between the spike counts of Unit D and Unit G for the second half of

the data collection because there was no variability in the spike counts of Unit D for

the this epoch (Figure 3.4 e and f). As expected, there is zero MI between the spike

counts of units D and G when the second half of the data collection is considered

alone (Figure 3.4c). Similarly, due to the structure in the joint distribution of spike

counts of units D and G for the first half of the data collection, we would expect to

find non-zero MI between the spike counts of these units for this half, and we do.

Interestingly, the count-count MI for units D and G for the first half of the data

collection is roughly three times the magnitude of the count-count MI for these units

when the full data set was considered (Figure 3.4). Although the sparse units exhibit

variability in the breath cycles when they are active, the shift in MI from the first

half of the data collection to the second half illustrates that the full data set MI was
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likely impacted by nonstationarities in the distributions, but that during an epoch

when both units were simultaneously active, they were highly coordinated.

The coordination between units D and E exhibits differences from the full data

set to each consecutive half, but is consistent from the first half to the second half.

As stated above, Unit D does not spike during the second half of the data collection.

In contrast, Unit E does not spike during the first half of the data collection (Figure

3.1). Unit D and Unit E have non-zero MI for the full data set. However, due to

the lack of variability for at least one of the units illustrated in the each of joint

distributions of spike counts of units D and E for each half of the data collection, we

would expect to find zero count-count MI for these units for each consecutive half

(Figure 3.4 e and f). As expected, we find zero count-count MI for these units for

each consecutive half of the data collection. The contrasting count-count MIs for this

pair of units in the full data set versus each consecutive half further illustrates that

our results were impacted by nonstationarities in the distributions and that the non-

zero MI in the full data set likely reflected which units were active when rather than

coordination between varying spike counts. Finally, the coordination between units

B and G changes from the full data set to each consecutive half and from the first

half to the second half. As stated above, both units B and G spike throughout the

duration of the data collection. Qualitatively, the joint distribution of spike counts

for Unit B and Unit G for the first half of the data collection is more similar to the

joint distribution for the full data set (Figures 3.2 c and 3.4 e). For this reason, we

might expect to find comparable MI values for these two units in the full data set

and the first half of the data collection. Surprisingly, the count-count MI for units B

and G roughly doubled when the first half of the data collection is considered alone.

In contrast, the joint distribution of spike counts for units B and G is qualitatively

different from that of the full data set. Despite this difference, the count-count MI

for units B and G for the second half of the data collection is within error of the
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count-count MI between these units for the full data set. The differences in the joint

distributions and MI values for units B and G highlights how units with qualitatively

similar joint distributions can exhibit differences in MIs and units with qualitatively

different joint distributions can be coordinated by consistent amounts. Additionally,

these results illustrate that the coordination we found between the spike counts of

units B and G for the full data set were impacted by non-stationarities - examining

the data collection in consecutive halves reveals interesting detail about how this

coordination changes across the data collection.
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Figure 3.4: The coordination between motor units changes between consecutive halves
of the data collection. The data were split into two consecutive halves and the behav-
ioral scale coordination analyses were repeated for each half. a and b. The marginal
histograms for each unit are shown for the first half (a) and the second half (b) of
the data set. In particular, the marginal distributions of Unit D, Unit E, and Unit
B change from the first half to the second half. c and d. The mutual information
estimates for the same example pairs of units as in Figure 2 are shown for each data
half (c and d, respectively). Each example unit pair illustrates a different changes in
coordination when the data set is split. e and f. Joint distributions of spike count
for each example pair are shown for each half (e and f, respectively).
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Chapter 4

Discussion

Behavioral timescale changes to spike patterns (rate coding) have been well studied

and accepted as mechanisms of motor control [40, 27, 71, 43, 19, 12, 61, 18, 50]. A

growing body of evidence supports that sub-behavioral timescale spike patterns, in

motor areas ranging from neurons in motor cortex to single motor units in muscle can

affect motor control [82, 77, 64, 74, 73]. Overall, we found that the motor units we

recorded exhibited coordination at the timescale of the behavior (Figure 3.2), and that

the structure of this coordination changed throughout the experiment (Figure 3.4).

We found that some pairs of units exhibit evidence of coordination at sub-behavioral

timescales (timing-count), but the unit pairs were too data limited to draw robust

conclusions for timing-timing MI (Figure 3.3).

4.1 Motor unit coordination at sub-behavioral and

mixed timescales

We found robust evidence of coordination at the timescale of the behavior (count-

count MI) for all pairs of motor units (Figure 3.2). Although a growing body of

evidence supports that motor units control behavior using precisely timed spikes
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[74, 82, 77, 64], we found that only some pairs of motor units exhibited non-zero MI in

timing-count, our mixed timescales coordination metric. For these MI estimates, 2/3

of the unit pairs exhibited MI values that were higher in amplitude than the standard

deviation. However, most of these values were so low that they were within two

standard deviations of zero. For the sub-behavioral timescales coordination metric, or

the timing-timing MI, we found that all of the MIs were within one standard deviation

of zero, except for two unit pairs for which there was insufficient data to complete the

analysis. There are two potential reasons that we found such variability in our results

for coordination between motor units at mixed and sub-behavioral timescales. (1)

These motor units are coordinated at mixed and/or sub-behavioral timescales, but

we were unable to detect this coordination. (2) These motor units are not coordinated

at mixed and/or sub-behavioral timescales, and our methods successfully identified

a substantial proportion of motor unit pairs with MIs within error of zero. We are

confident that our analyses were too data limited to draw conclusions, and more work

will be needed to distinguish between these two cases for coordination at mixed and

sub-behavioral timescales. We present arguments for and against each case below.

4.1.1 Case 1: These motor units are coordinated at mixed

and/or sub-behavioral timescales, but we were unable

to detect enough coordination.

We believe that our variable results for mixed and sub-behavioral coordination at

least partially reflects a data size insufficiency. Largely due the sparse firing of most

of the motor units we recorded, our mixed and sub-behavioral timescale analyses be-

came severely data-limited. The mixed and sub-behavioral timescales MIs consisted

of weighted sums of MI values across spike count conditions (Equation 2.9, 2.10). For

these MI estimates, we included only data where each timing unit spiked at least one
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time. Therefore, we re-weighted the probability term to discard these breath cycles

where the timing unit(s) had a spike count of zero (see Methods: 2.3.3). Large per-

centages (up to 94% of data) for almost every mixed and sub-behavioral timescales

MI estimate were omitted from the analyses because of zero spike counts alone. Ad-

ditionally, we artificially set MI to zero for certain spike count conditioned subgroups

of data (terms corresponding to specific i and/or j values in equations 2.9 and 2.10)

for which we could not estimate MI because of insufficient samples or unstable de-

pendence on the parameter k, which further reduced the number of samples that

contributed to our MI values. The two mixed timescale MIs found to be of a reason-

able, nonzero magnitude (over two standard deviations away from zero) quantified

the coordination between the counts of the the two sparse units that spiked the most

frequently throughout the experiment and the timing of the tonic unit (Unit B, the

unit for which the least amount of data were omitted). For each of these MIs, less than

2% of the data was omitted because of zero spike counts, and MI was artificially set

to zero for only up to 4% of the remaining data (Figure 4.1). In contrast, the sparse

units had spike counts of zero for 71% − 94% of breath cycles. So we omitted these

percentages of data from the mixed timescales MIs where each of the sparse units

served as the spike timing variable. Additionally, we artificially set MI to zero for

0.4%−22% of the subset of data with at least one spike in the timing variable (setting

MI to zero) for the mixed timescales MIs for which a sparse unit served as the timing

variable (reasons described above). Figure 4.1 illustrates the dependence of the MI

and the error on the percentage of breath cycles that were included in the analysis.

Although there does not seem to be a relationship for the MI values, the standard

deviation of the MI estimate does seem to be heavily dependent on the amount of

data included. The mixed timescales MIs with the lowest error were the same MIs

where the least (by a large margin) amount of data had to be omitted or artificially

set to zero. The data size for the sub-behavioral timescales MIs was much worse -
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we omitted 72%− 95% of the data because at least one of the units had zero spikes,

and we artificially set MI to zero for 26% − 93% of the subset of data with at least

one spike in both variables. In fact, for two pairs of units sub-behavioral timescales

MI could not be estimated at all because of insufficient data. It is therefore possible

that the extent to which our methods were able to detect mixed and small timescales

coordination between motor units was artificially decreased by the small amount of

the data that was analyzable for most of the mixed and sub-behavioral MIs. In fact,

whether or not the units are coordinated at mixed and/or sub-behavioral timescales,

we are confident that the sub-behavioral timescales MIs were data-limited. The mixed

timescales analysis yielded MI values that were comparable in magnitude to the MI

between a single unit and the breathing behavior in our previously published work

[77]. However, our error bars were much larger. It is therefore possible, that having

more analyzable data for the mixed and sub-behavioral timescales analyses would

give us more certainty in the magnitude of the MI between the spike patterns of each

unit pair. Our work here focused on just four motor units recorded from a single

muscle in a single songbird. Many more data sets may help to resolve this limitation.

However, in order for the future data sets to resolve the data limitation, we will need

recordings from neurons that exhibit spiking activity during many more breath cycles

(e.g. more tonic units) or much longer recordings, both of which will be technically

challenging to acquire.

As stated above, our previously published work by Srivastava et al. found that

single motor units share approximately 0.05 ± 0.01 bits of information with the be-

havior (estimated from Figure 2A) [77]. This study was done in the same species,

muscle, and behavior as our study. Our MI values for mixed timescales coordina-

tion ranged from 0.02 ± 0.01 − 0.1 ± 0.03 for the analyses where Unit B served as

the timing unit (the MIs that were the least data limited). The mixed timescales

MIs for all other unit pairs were of similar orders of magnitude. At face value, the
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Figure 4.1: Our timing-count and timing-timing MI results appear to depend on the
amount of data that was able to be included in the analysis. The top panel illustrates
the dependence of the each timing-count and timing-timing MI on the percentage of
data included in the probability term (all breath cycles with spike counts of one or
higher for all timing units) and the percentage of breath cycles that yielded stable
MI estimates (i.e. the percentage of breath cycles that was not omitted for any
reason including zero spikes, dimensionality, data insufficiency, or instability across
parameter values). The bottom panel illustrates the dependence of the error of each
timing-count and timing-timing MI on the percentage of breath cycles included in the
probability term and the percentage of breath cycles that yielded stable MI estimates.
Timing-count unit pairs are shown in black, and timing-timing unit pairs are shown
in red.
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magnitude of our mixed timescales MIs seems low. However, Srivastava et al. found

that individual single motor units share about the same amount of information with

the air sac pressure, and we know that these motor units can play a causal role in

modulating the air sac pressure during breathing [77].

In this context, new questions arise about the role of mixed timescale coordination

between the motor units: Are the motor units independent predictors of behavior,

coordinated only via shared noise? Do the spikes share the same information with

each other as they share with the behavior? More analysis would be necessary to

answer these questions. Estimating a quantity called interaction information for the

spike patterns of two motor units (the spike timing of one and the spike count of

another) and the behavior would determine whether the units are net redundant in

how they predict the motor behavior [84, 64]. The interaction information can be

calculated as follows [84]:

II = I(U1, U2;B)− [I(U1;B) + I(U2;B)] (4.1)

Where II represents the interaction information, B represents the behavior.

I(U1, U2;B) is the joint mutual information between the spike patterns of Unit 1

and Unit 2 and the behavior. I(U1;B) is the mutual information between the spike

patterns of Unit 1 and the behavior, and I(U2;B) is the mutual information between

the spike patterns of Unit 2 and the behavior. Similarly to our methods, one could

consider only the spike patterns of each unit at the timescale of the behavior by only

considering spike counts in these equations. Additionally, one could find interaction

information for mixed timescales or sub-behavioral timescales by inputting equations

2.9 and 2.10 for the two mutual information terms as appropriate and by similarly

expanding the joint mutual information terms into a weighted sum. If the interaction

information is negative, then the units are net redundant, meaning that the two units
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together share less information with the behavior than the sum of the individual MIs.

This would indicate that net redundant units would share at least some of the same

information with each other as they share with the behavior — that at least some of

the mutual information between the units is behaviorally relevant.

An example of an interaction information analysis can be found in work from

Putney et al [64]. In this study, tethered, flying hawk moths tracked an oscillating

artificial flower while the ten major flight muscles were recorded via EMGs and the

yaw torque produced by the moth was recorded. The researchers conducted an in-

teraction information analysis for all pairwise combinations of 10 hawk moth flight

muscles [64]. They examined interaction information for behavioral timescale spike

patterns (spike count) and for sub-behavioral timescale spike patterns (spike timings)

separately. They did not examine interaction information for mixed timescale spike

patterns. Pairwise combinations of hawk moth muscle spike patterns were found to be

net redundant primarily at the sub-behavioral timescale. This indicates that pairwise

combinations of spike timing patterns of moth muscles are correlated with each other

to some degree - the spike timings of these muscles would exhibit non-zero mutual

information, and the information that they share with each other is shared with the

behavior as well [64]. This analysis in combination with the analysis that we have

done would help to determine whether our motor units share behaviorally relevant

information.

Consistent with Case 1, it is also possible that the mixed and sub-behavioral

timescale coordination exhibited by motor units is more complex than our methods

could detect. For example, the joint distributions in Figure 3.3 b and c exhibit

qualitative correlation. Of particular note is the joint distribution that illustrates the

timing of Unit B versus the spike count of Unit G for all breath cycles where Unit B

has a spike count of 22 (Figure 3.3 b). The spike timings of Unit B seem to spread out

in time as the spike count of Unit G decreases. It is possible that mixed and/or sub-
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behavioral coordination between motor units occurs for certain spike count conditions

(terms corresponding to specific i and/or j values in equations 2.9 and 2.10) and not

others. If this were the case, large MI values corresponding to individual count-

conditioned subgroups might have become muted in the weighted sum (equations

2.9 and 2.10). For this reason, we examined what proportion of count-conditioned

subgroups had MI estimates over twice the magnitude of the error on the estimate.

Across all of the mixed timescale pairwise estimates, these proportions ranged from

0% to 80%, and there did not seem to be a relationship between the proportion of

MI subgroups with MI over two standard deviations above zero and whether the

overall MI was found to be larger than error. Unfortunately these proportions seem

to leave us with more questions than answers with regard to whether individual

count-conditioned subgroups exhibit mixed timescales coordination. It would be very

surprising and interesting if mixed and/or sub-behavioral timescales coordination

between two motor units only occurs for specific spike count conditions depending

on the motor units. Future work may examine subgroups with non-zero MI more in

detail in order to investigate case-specific mixed and sub-cycle coordination.

4.1.2 Case 2: Lack of coordination at mixed and subcycle

timescales

We believe that our variable results for mixed and sub-behavioral coordination reflects

a data insufficiency, yet it is possible that our results at least partially reflect genuine

absence of coordination at these timescales for these motor units. Although we had

to discard and set MI to zero for large percentages of data from the mixed and

sub-behavioral timescales analyses, in particular for the mixed timescales estimates,

most of the data that was analyzable yielded stable MI estimates. As mentioned

above, for the mixed timescales estimates, only 0.4% − 22% of data was artificially

set to zero because of insufficient samples or instability whereas for the sub-behavioral
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timescales estimates 26%−93% of data was artificially set to zero. The fact that over

77% of the analyzable data produced stable mixed timescales MI estimates tells us

that for most of the data where the timing unit spikes at least one time, a data

limitation did not prevent us from accurately estimating the mutual information.

Even still, the magnitude of the MI for all but two pairs of units was within two

standard deviations of zero, and all of the mixed timescales MI estimates were within

three standard deviations of zero. Therefore, it would be reasonably likely for us to

estimate those MI values by chance even if there truly is zero MI. We are confident

that our MI estimates for sub-behavioral timescales coordination were impacted by

insufficient data. For this reason, our sub-behavioral timescale results are inconclusive

- regardless of whether the units we recorded are truly coordinated at sub-behavioral

timescales, we were unable to detect coordination. That being said, because the mixed

timescales MI estimates were less data-limited, it is possible that our low magnitude

MIs for mixed timescales analyses reflects a genuine lack of coordination at mixed

timescales.

Motor units from EXP have previously been shown to control behavior via sub-

behavioral changes to spike patterns. Therefore, a lack of coordination at the sub-

behavioral and mixed timescales could indicate that the nervous system may employ

separate information channels for motor control: one by which actuators control

behavior (spike count and spike timing) and another by which multiple actuators

coordinate together (spike count alone). This would contrast with the interaction

information results from Putney et al. described above. The magnitude of the be-

havioral timescale interaction information for the moth was close to zero, which would

be expected if the behavioral timescale spike patterns act as independent channels

[64]. However, in contrast with our methods, the interaction information does not

capture all possible coordination between units - it focuses solely on the behaviorally

relevant coordination. For a fair comparison of results, we would need to find the
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mutual information between pairwise combinations of moth muscles at behavioral,

mixed, and sub-behavioral timescales. Our method of measuring coordination cap-

tures both the behaviorally relevant component of coordination in addition to any

coordinated noise or other variability that impacts both motor units [26]. It is pos-

sible that Putney et al. would have found more coordination at the timescale of the

behavior if they had considered both the behaviorally relevant and noise components

of coordination between muscles [64]. It also is possible that different organisms

employ different strategies for coordination - songbirds may employ primarily spike

patterns at the timescale of the behavior (spike counts) for coordination whereas hawk

moths may employ primarily spike patterns at sub-behavioral timescales, even down

to the millisecond. Alternatively, this discrepancy may reflect different mechanisms of

coordination between motor units in different muscles versus within the same muscle.

4.2 Motor unit coordination across timescales

Our findings that motor unit pairs are coordinated in their spike counts may be con-

sistent with existing hypotheses about motor control and coordination. Muscle force

is thought to be modulated via changes in motor unit recruitment and via changes

to spike rates of individual motor units [18, 50]. The size principle is a well known

hypothesis governing motor unit recruitment. According to this principle, motor neu-

rons are recruited in order of cell body size, which tends to correlate with the force

production capabilities of the motor units. When the maximum force producible by

smaller units is achieved, the larger units are recruited to produce additional force

[41, 32, 33, 35]. The size principle states that smaller units begin spiking before and

cease spiking after larger motor units for a given synaptic drive [32]. Therefore, if we

assume that the spike rate of the smaller unit is greater than or equal to the spike rate

of the larger motor unit during a movement when two units are simultaneously active,
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according to the size principle, we would expect to find non-zero MI between the spike

counts of motor units. Therefore, our behavioral timescale MI results that considered

the full data collection (Figure 3.2) may support these hypotheses of motor control.

Moreover, it is possible that the sparse units that we recorded (Figure 3.1) corre-

sponded to larger motor neurons and the tonic unit corresponded to a smaller motor

neuron. If that is the case, the sparse spiking activity that we observed through-

out the data collection may further support the size principle - larger motor neurons

activating as needed for increased muscle force. However, it would be possible for

other patterns of motor unit recruitment that contradict the size principle to result

in non-zero MI between spike counts. More motor unit recordings combined with pre-

cise histology would be necessary to differentiate between motor unit types in these

experiments. Additionally, more detailed examination of the onset and offset times of

motor unit bursts within each breath cycle could examine whether there is variability

in the recruitment patterns of the motor units [48].

Because of the relationship between inter-spike-intervals and spike rate, coordina-

tion at mixed timescales may support the hypothesis that muscle force is controlled

via changes to spike rates [18, 50]. The joint histogram of spike counts from Unit

G and spike timings from Unit B in Figure 3.3 b provides an example of qualitative

results that may support this hypothesis. It appears that the average inter-spike-

interval for Unit B decreases (spike rate increases) as the total spike count of Unit G

increases. This inter-spike-interval trend implies that the spike rate of Unit B may

be correlated with the spike count of Unit G. It is possible that the spike rate (with

constant spike count) of Unit B increased during the same breath cycles when spike

counts of Unit G were increased in order to increase the overall force production of

the EXP group.

To our knowledge, previous work has not examined multiple single motor units

within a muscle at the resolution necessary to examine coordination via spike tim-
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ings. Although muscles have previously been shown to coordinate at at behavioral

or intermediate timescales (sub-behavioral, but on the order of tens to hundreds of

milliseconds) [32, 33, 35, 86, 87, 88], there is neither sufficient evidence to support nor

reject the hypothesis that motor units within a muscle coordinate together at mixed

and sub-behavioral timescales. Important future work will distinguish between the

Case (1) and Case (2) explanations of our mixed and sub-behavioral timescales re-

sults.

Alternative analysis methods may help to resolve between the Case (1) and Case

(2) explanations of our results. Discrete estimators of mutual information, such as

the NSB method, developed by Nemenman et al [53, 54], may help to resolve our data

limitation. As mentioned previously, two reasons that our analyses were impacted

by a data limitation were that we only included breath cycles where the spike timing

unit spiked at least one time (see Methods) and that we separated our data into spike

count-conditioned subgroups prior to estimating the MI (Equations 2.9 and 2.12). The

count-conditioning step served to separate the behavioral timescale contribution(s) to

coordination from the sub-behavioral timescale contribution(s), and it was necessary

for the KSG continuous estimator of MI [44, 36, 77, 64]. The NSB method method

of MI estimation was used in previous work from our lab in a songbird motor cortex

analog to illustrate that spike patterns at sub-behavioral timescales, down to the

millisecond, are better predictors of motor behavior than behavioral timescale spike

patterns. To apply this method to our data, one would consider all of the breath

cycles for each pairwise combination of neurons. The spike patterns for each breath

cycle would be represented by a a matrix of spike counts within each time bin ranging

in size from full length of a breath cycle down to 1ms, and these matrices would serve

as inputs to the discrete MI estimator. This type of method would help to address our

data limitation because the full data set (including all cycles with zero spike counts),

rather than count-conditioned subgroups of the full data set would serve as the input
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to the MI estimator for the sub-behavioral and mixed timescales estimates, [82, 65].

A major difference between this method and our method is that the binning method

would capture MI from both small and large timescales. We would have to subtract

the MI between motor units with large time bins from the MI between motor units

with small time bins to isolate the small timescale component of coordination.

4.3 A Challenge to the idea of a static code for

motor control

Information theory has been applied to neuroscience as a means of reading neural

codes by considering neurons and their spike patterns from the lens of communica-

tion systems. Pioneered in sensory systems, under this school of thought, scientists

apply tools from information theory, such as mutual information, to understand the

coding properties of sensory neurons. Information theoretic approaches have found

great success in seeking to understand how peripheral sensory neurons encode features

of a stimulus and how the central nervous system decodes the stimulus from the spike

patterns of the peripheral neurons [6, 15, 80, 66]. These types of approaches have

been applied to studies of the nervous system more broadly, investigating correlations

between neurons [70, 63] and the coding properties of individual neurons or popu-

lations in motor systems [77, 82, 64, 65]. Because information theoretic approaches

examine the marginal and joint probability distributions of the stimulus and response,

there is an inherent assumption, particularly for analyses that involve mutual infor-

mation, that these distributions are stationary- that they do not change over the time

of the data collection [14]. Therefore, these approaches assume that the neural code

governing the system under interrogation is static. A strength of applying mutual

information analyses to sensory systems is that identical stimuli can be repeated for

thousands of trials while recording from the same neuron [6]. In these sorts of stud-
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ies, even if the distribution of the sensory neurons change over time, an experimenter

manipulates the stimulus, and can therefore guarantee stationarity for at least one of

the probability distributions of interest. In contrast, a challenge to applying mutual

information analyses to motor control is that no animal makes the same movement

twice. The experimenter can not control the marginal distribution of the behavior.

The marginal distributions of the behavior and the neural activity, in addition to the

joint distribution may change over time. Although researchers can place constraints

on experimental conditions to improve the validity of stationarity assumptions, no

living system ever perfectly occupies a stationary probability distribution. Changes

in neuromodulator concentration [79], metabolic conditions [90], circadian rhythms

[1], attention [37], environmental conditions [90], and many other factors are likely

to impact the probability distributions of sensory stimuli and neural activity and/or

the distributions of neural activity and behavior. Even still, few studies have investi-

gated violations to the stationarity assumption or applied analysis techniques that do

not assume stationarity. Here, we have identified nonstationarity in the probability

distributions of motor signals governing anesthetized breathing, a cyclic, consistent

motor behavior (see Nonstationarity in the coordination between motor units, below).

Our results emphasize the importance of investigating the stationarity of data prior

to interpreting results of analyses techniques that assume stationarity.

4.3.1 Nonstationarities in the coordination between motor

units

We identified qualitative and quantitative changes in the coordination between motor

units from the beginning to the end of the data collection. When we split our data

into two consecutive halves, we found qualitative differences in the marginal and

joint distributions of spike counts per breath cycle as well as changes to the MI values

between spike counts from the first half to the second half of the data collection (Figure
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3.4) and from each half to the full data set (Figures 3.4 and 3.2) - all indicative of

violation to the stationarity assumption of mutual information. We do not believe

that this violation detracts from the credibility of our results in Figures 3.2 and 3.3.

However, we must carefully consider how this violation affects the interpretation of

our results. The results in Figure 3.2 simply represent a time-averaged picture of the

coordination that exists between motor units. For example, Unit D and Unit E never

exhibit simultaneous spiking activity. Unit D spikes only during the first half of the

data collection whereas Unit E spikes only during the second half of the data collection

(Figures 3.1 and 3.4 a, b, e, and f). Units D and E share non-zero MI across the full

data set (when the distributions are considered collectively across the full time of the

data collection) but zero MI in each consecutive half of the data collection (Figure

3.4 c and d). The non-zero MI found between these units in the full data set may not

reflect coordination between the units on a single-trial timescale, but it may reflect the

holistic structure of which units are active at which times throughout data collection.

This particular example highlights the importance of applying careful reasoning to

the interpretation of MI analyses in studies of systems in which the stationarity

assumption may be violated. Applying MI analyses or other analyses that assume

stationarity to a data set that exhibits a lot of temporal dependence may output

misleading results - units may appear to be coordinated, when in reality they are just

active at different times. In contrast to units D and E, our other example pairs of units

for which we examined the coordination separately for the two consecutive halves of

the data collection provide results with more variability in the coordination between

the halves and full data set. Unit D and Unit G exhibited non-zero MI for the full data

set (Figure 3.2 b), and Unit D only spiked during the first half of the data collection

(Figure 3.1 and 3.4 a and b). However, the MI between units D and G roughly tripled

when the first half of the data was considered alone (Figure 3.4 c). Therefore, during

the epoch when the units spiked simultaneously, they were found to be coordinated in
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their spike counts. Additionally, Unit B and Unit G exhibited simultaneous spiking

throughout the data collection (Figures 3.1 and 3.4 a, b, e, and f). Similarly to units

D and G, units B and G exhibited non-zero MI for the full data set. The value

of the MI estimate roughly doubled when the first half of the data collection was

considered alone, whereas the MI estimate for the second half of the data collection

was comparable to the MI estimate for the full data set (Figure 3.4 c and d). That

the MI estimate changed between the first and second half of the data collection, even

for units which exhibited simultaneous spiking throughout the data collection further

supports that the stationarity assumption of MI is not met by this data - the extent

to which these units are coordinated changes from the first half of the data collection

to the second half. Although the subject performed a cyclic, consistent, breathing

behavior throughout the duration of the experiment, the coordination underlying that

breathing changed for all three example pairs of units that we examined across each

data half. These results emphasize the importance of considering stationarity in the

interpretation of mutual information approaches to studying the motor system and

challenges the idea of a static motor code, suggesting that the nervous system may

employ dynamic coding strategies for motor behaviors. Future work with these data

may segment the data collection into smaller time epochs for which the stationarity

assumption is more reasonable (the less time that has passed, the less probability

distributions have been able to change). The same analyses could be repeated for

these smaller epochs to examine how the behavioral timescale coordination changes

throughout the data collection.

4.3.2 Addressing non-stationarity concerns for motor control

Common analysis methods including mutual information [77, 82, 44, 36] and Bayesian

statistics [34, 25, 22] require stationarity in the probability distribution across trials.

Particularly our results from units D and E illustrate how erroneous interpretation
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may result from blindly applying these types of analyses to non-stationary data.

The fact that many prevalent analysis techniques have an assumption that biologi-

cal data cannot perfectly satisfy emphasizes the importance of developing new, more

biologically relevant computational techniques. An example of analyses applied to

non-stationary experimental data can be found in work by Fairhall et al. The dy-

namics of the fly visual neural code was studied in the context of sensory adaptation

[20]. Flies were presented with with a white noise velocity visual stimulus, while

recordings of action potentials from a visual neuron were taken. The variance of the

visual stimulus was periodically shifted between two values. Therefore, this task was

designed such that the distribution of the sensory stimulus was non-stationary in that

it shifted between two constant distributions, but the distributions and the shift time

were completely known by the experimenter. The change in spike rate and the change

in the relationship between the stimulus and response that resulted from the shift in

the stimulus distribution were investigated. Overall, Fairhall et al. found that the

fly visual neurons respond to a change in the distribution of the sensory stimulus

within tens of milliseconds [20]. This type of approach offers promise in the sensory

system, where non-stationary stimuli can be carefully designed to meet constraints of

computational methods. However, it would be challenging to adapt this approach to

studies of motor systems for the same reason stated above- an experimenter can not

control the distribution of motor behavior or neural activity.

A simple way to combat stationarity concerns for studies of motor control, simi-

larly to our methods, is to assume quasi-stationarity for subsets of the data and to

repeat analyses with a sliding window that defines each quasi-stationary subset of data

[29]. The question remains- how to define and identify quasi-stationarity regimes. Al-

though many of the variables that may affect the probability distributions of neural

activity and their impact on behavior remain elusive, a wealth of knowledge from

the fields of neuromechanics [56] and muscle physiology [57] can help to set crite-
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ria for quasi-stationary regimes by contributing to a more thorough understanding of

whether, how, and why the probability distributions of motor commands and/or their

impact on motor behaviors change over time. Many complex interactions between

the brain, the body, and the environment affect the dynamics of motor behaviors

[73]. The force of a muscle depends on the activating signal from the motor neuron(s)

and the length and velocity of the muscle at the time the signal arrives in addition

to the history of the muscle before the signal arrives and which fibers are active si-

multaneously [85, 67]. The behavioral implications of the same muscle force may

vary depending on the states of other muscles that contribute to the behavior and

the mechanical properties of the body and environment. Therefore the same neural

signal may result in drastically different motor outputs - the joint probability distri-

bution of neural signal and behavior is liable to change depending on each of these

factors [85, 67]. A thorough approach to defining a quasi-stationary regime would

be to examine as many of these variables as possible and identify time epochs where

these variables are held constant. Practically, it would be extraordinarily challenging

to measure all of these variables, much less expect all of them the be simultaneously

held constant for multiple time epochs. A more reasonable approach would be to

choose one or a few neuromechanical variables to set the criteria for quasi-stationary

epochs. After conducting analyses for these quasi-stationary epochs, it would then be

important to incorporate variables that were not included in the stationarity criteria

into the discussion of limitations and interpretation.

To apply this quasi-stationary epoch approach to our data, more computational

and experimental work may be required. We have shown that the probability distri-

butions and the joint probability distributions of the spike counts of most of the motor

units we recorded changed from the first half to the second half of the experiment

(Figure 3.4). We measured action potentials from the EXP group in addition to air

sac pressure. Future computational work on this data set may examine the how dis-
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tribution of the air sac pressure waveforms changed. Segmenting the data into epochs

where the air sac pressure is relatively consistent could serve as a reasonable quasi-

stationary criteria. It would be interesting to study how the coordination motor units

changes across epochs of quasi-stationary air sac pressure. However, other neurome-

chanical variables that may impact the neuromuscular transform include muscle fiber

length and velocity, location of the active fibers, fiber type, activation history, activa-

tion patterns of synergistic or antagonistic muscles, etc. These variables would need

to be considered in the interpretation of this new quasi-stationary epoch analysis for

our data set. The primary muscle we targeted from the EXP group was the obliquus

externus abdominis, which is a large muscle that stretches from the pubic bone to

the sternum. It attaches and inserts on aponeuroses, which are flat, sheet-like tissues

that function as tendons with larger attachment sites [21]. The location of the fibers

within the muscle may be particularly important for this muscle because of the sheet-

like attachment and insertion sites. Muscles which attach to tendons converge to

exert force on a single point, whereas the force of different fibers at different locations

on a sheet-like attachment cite may have result in very different behavioral outputs.

Additionally, since many different muscles comprise the EXP group, synergistic in-

teractions between the different EXP muscles or even just different fibers within the

obliquus externus abdominis may impact the transformation from the spike patterns

of motor units to respiratory behavior. For example, different activation patterns of

other muscles in the EXP group may affect the length of the obliquus externus abdo-

minis at its time of activation, and thereby change the relationship between the motor

unit spikes and their behavioral output. Additionally, changes in activation patterns

of different muscle fibers within the obliquus externus abdominis may affect the trans-

formation from spikes to behavior. Future work experimental work could track some

of these variables by measuring the cycles of length change [7] of the obliquus externus

abdominis during breathing while simultaneously recording spike patterns from single
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motor units [52]. Ideally, in these same experiments, histology could be used to iden-

tify what motor unit types were recorded during the experiment. Once the muscle

length change cycles have been measured, workloop experiments [17, 7, 52] could be

conducted to measure the force that the muscle produces in response to stimulation

patterns that mimic the measured biological conditions. Any subset of these variables

could be examined in conjunction with the distribution of spike patterns and/or the

distribution of air sac pressure to identify epochs of quasi-stationarity to analyze with

our methods.

4.4 Conclusions and future directions

Overall, we have determined that the pairwise combinations of the motor units we

recorded in the EXP muscle group are coordinated at the timescale of the behavior

when the whole data collection is considered together. When we considered the two

consecutive halves of the data collection separately, the coordination between motor

units at this timescale changed from the first half to the second, indicating that the

coordination between motor units is non-stationary - the neural code for motor control

is not static, but dynamic! Finally, our investigation of mixed and sub-behavioral

timescale coordination yielded inconclusive results, likely due to insufficient data,

but possibly reflecting a genuine lack of coordination at those timescales. Given the

data set size limitations, we did not consider whether the mixed or sub-behavioral

timescale coordination changed from the first half of the data collection to the second

half. Because we examined the mixed and sub-behavioral timescale spike patterns

by conditioning them on spike counts, the stationarity assumption may be more

reasonable for these analyses. In future work, we could examine how the distribution

of sub-behavioral timescale spike patterns for each spike count subgroup changes from

one quasi-stationary epoch to the next, but much more data would be required to
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overcome the same data limitations that we faced in this work.

The results from this work point to future work in two major directions: (1) further

investigation of the how spike patterns across different timescales code for and cause

motor control and coordination and (2) investigation of the nonstationarities in the

neural code for motor control.

Increasing evidence illustrates that spike patterns from the timescale of the be-

havior down to the millisecond correlate with and cause motor behaviors in songbirds

[82, 77]. Anesthetized breathing is thought to occur largely without input from the

songbird motor cortex analog, the robust nucleus of the archipallium. However, it

is thought that during singing, there is a great deal of communication between song

and respiratory brain structures [49, 69, 95, 94]. Although our lab has previously

shown that during anesthetized breathing, millisecond-scale time shifts in spike pat-

terns cause changes to the airsac pressure [77] and that during singing, the activity

of neurons in the song motor cortex analog are most correlated with song acous-

tics at millisecond timescales [82], future work in the brain and periphery may help

identify differences in the timescales at which motor units are coordinated for breath-

ing at rest, a relatively slow behavior versus singing, a dynamic behavior. Perhaps

the inputs from the cortical song circuitry that innervate respiratory areas increase

the sub-behavioral timescale coordination between motor units in respiratory mus-

cles [95, 94]. Even still, as stated above, further investigation of motor control and

coordination particularly at mixed and sub-behavioral timescales will require the ex-

ploration and/or development of analysis techniques to overcome the data limitation

we faced or the development of better experimental methods to collect larger data

sets, which will be particularly challenging to do during singing.

Analyses with assumptions of stationarity in the data are pervasive in neuro-

science. We show here that the neural code for motor control is dynamic, even

for a cyclic, constant behavior- anesthetized breathing. Throughout their life times
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animals are subject to physical changes that can result in major changes to biome-

chanical variables. Natural processes such as juvenile growth and development [59],

injury, etc. in addition to changes in the surrounding environment may result in an

altered transformation from spikes to motor behavior and require an animal to alter

its motor control strategy. After initially learning their song, songbirds maintain a

remarkably stable song over time [51], but in many species, deafening causes the song

to deteriorate over time [51, 58]. Songbirds can alter the variability in the acoustics

of their song depending on context [42], and can learn to adjust the pitch of certain

syllables [89]. Since the song behavior is so consistent across renditions, it becomes

an interesting question whether the neural code governing song is more or less dy-

namic than the neural code governing anesthetized breathing. Because song is highly

dynamic and stereotyped, the neural code governing song may exhibit remarkable

stationarity within days or weeks, but may shift dramatically over long periods of

time or after a event that causes dramatic shifts in the biomechanics of the vocal and

respiratory muscles. It may be particularly advantageous for the motor code under-

lying breathing and other processes that are associated with song to be dynamic in

other non-singing contexts in order to promote the flexibility necessary to maintain

a stable song despite natural changes to the variables that affect the impact of neu-

ral signals on behavioral output. In of the brain, it is well-known that the anterior

forebrain pathway (AFP) is necessary for adult songbirds to alter the acoustics of

their song [9, 93, 51]. Although it is well known that the AFP plays a role in altering

the distribution of motor behavior by outputting signals to the song specific analog

of motor cortex [42, 93, 51], our results illustrate that even in the periphery, at the

level of the muscles, there are dynamics in the neural code for motor behavior. Fu-

ture work will investigate whether and how these mechanisms of variability interact

to result in learning, maintenance, and successful motor control throughout animals’

life times. Overall, our work highlights these two major initiatives as important next
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steps in motor control research. Future investigations in the proposed directions have

the potential to result in significant contributions to our understanding of how the

brain controls the body.
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Appendix A

Proof of Upperbound on Error for

Spike Timing MI Estimates

A.1 Mixed Timescales: Timing and Count

We begin with Equations 2.9, 2.11, and 2.14. As mentioned in Methods because of

the limitations of the KSG MI estimator [44, 36], we omitted some of the data from

the mixed timescales MI analysis due to three different concerns: (1) We omitted data

for which U1,c = 0 because there are no spike timing values for breath cycles when the

motor unit did not spike. (2) We omitted data for which ni < U1,c because the number

of samples must exceed the dimensionality of the data for the KSG estimator. (3) We

omitted data for which ni

4
< 5 because the estimator required at least five samples

to run and we needed at least four data fractions in order to properly estimate the

variance of the mutual information estimate (see Holmes and Nemenman [36]).

We rescaled the probability term in equation 2.9 so that the total MI estimate

reflects the MI of the all the breath cycles for which the spike timing variable spiked at

least one time. In other words, we considered only the conditional mutual information

given that the spike timing neuron spiked at least once during the breath cycle. In
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order to find this MI, we rescaled the probability term to sum to one when all of

the breath cycles with zero spikes in the spike timing variable were excluded from

the dataset. We propagated this rescaling to equation 2.14 so that we estimated an

upperbound on the error of the MI estimate. As written in the methods, the equations

accounting for the re-weighted probabilities are as follows:

I(U1,t;U2,c) =
Cmax∑
i=1

I(U1,t;U2,c|U1,c = i)p
′
(U1,c = i) (A.1)

σ2
t,c =

Cmax∑
i=1

(
σ2
Ii

〈Ii〉2
+

σ2
p
′
i

〈p′
i〉2

)〈Ii〉2〈p
′

i〉2 (A.2)

σ
′2
p
′
i

=
(1− p′

i)

nip
′
i

p
′2
i (A.3)

Where p
′
i = ni

N ′ and N ′ =
Cmax∑
i=1

1.

The equations for MI and error without re-weighting the probability term would

be as follows:

Ifull(U1,t;U2,c) =
Cmax∑
i=1

I(U1,t;U2,c|U1,c = i)p(U1,c = i) (A.4)

σ2
full,t,c =

Cmax∑
i=1

(
σ2
Ifull,i

〈Ifull,i〉2
+

σ2
pi

〈pi〉2
)〈Ifull,i〉2〈pi〉2 (A.5)

σ2
pi

=
(1− pi)
nipi

p2i (A.6)

Where pi = ni

N
and N =

Cmax∑
i=0

1.

To show that the error estimated is an upper bound, we need to show that:

σ2
full,t,c ≤ σ2

t,c (A.7)
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or by substitution:

C1,max∑
i=1

(
σ2
Ifull,i

〈Ifull,i〉2
+

σ2
pi

〈pi〉2
)〈Ifull,i〉2〈pi〉2

≤
Cmax∑
i=1

(
σ2
Ii

〈Ii〉2
+

σ2
p
′
i

〈p′
i〉2

)〈Ii〉2〈p
′

i〉2
(A.8)

Because we are summing across all i > 0 on both sides, we can cancel the summation.

Therefore we are left to show that:

(
σ2
Ifull,i

〈Ifull,i〉2
+

σ2
pi

〈pi〉2
)〈Ifull,i〉2〈pi〉2

≤ (
σ2
Ii

〈Ii〉2
+

σ2
p
′
i

〈p′
i〉2

)〈Ii〉2〈p
′

i〉2
(A.9)

Each σIfull,i and σIi refer to the variance of individual MI estimates. Since these

terms have no dependence o the probability distribution of spike counts for the spike

timing unit, but are estimated by the KSG estimator for identical, count-conditioned

data, these terms are equivalent:

σ2
Ifull,i

= σ2
Ii

(A.10)

Additionally, re-weighting the probabilities has no impact on the individual MI

estimates for each spike count condition, therefore:

〈Ifull,i〉2 = 〈Ii〉2 (A.11)

So we are left with
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(
σ2
Ii

〈Ii〉2
+

σ2
pi

〈pi〉2
)〈Ii〉2〈pi〉2

≤ (
σ2
Ii

〈Ii〉2
+

σ2
p
′
i

〈p′
i〉2

)〈Ii〉2〈p
′

i〉2
(A.12)

We know that:

σ2
pi

=
(1− pi)
nipi

p2i (A.13)

and that

σ2
p
′
i

=
(1− p′

i)

nip
′
i

p
′2
i (A.14)

We can fill in these values, and we are left with

(
σ2
Ii

〈Ii〉2
+

(1−pi)
nipi

p2i

p2i
)〈Ii〉2〈pi〉2

≤ (
σ2
Ii

〈Ii〉2
+

(1−p′i)
nip

′
i

p
′2
i

p
′2
i

)〈Ii〉2〈p
′

i〉2
(A.15)

We can then simplify.

(
σ2
Ii

〈Ii〉2
+

(1− pi)
nipi

)〈Ii〉2〈pi〉2

≤ (
σ2
Ii

〈Ii〉2
+

(1− p′
i)

nip
′
i

)〈Ii〉2〈p
′

i〉2
(A.16)

We can do algebra to get
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(
σ2
Ii
nipi + (1− pi)〈Ii〉2

ni

)〈pi〉

≤ (
σ2
Ii
nip

′
i + (1− p′

i)〈Ii〉2

ni

)〈p′

i〉
(A.17)

Recall that pi = ni

N
and p

′
i = ni

N ′ . N refers to the number of breath cycles in the

entire data set, whereas N
′

refers to the number of breath cycles where the spike

count of the timing motor unit is greater than zero (i > 0). Therefore,

pi ≤ p
′

i (A.18)

The pi and p
′
i factors taken by themselves satisfy the inequality. Therefore, we

can omit them from the remainder of the proof. We are now left to show that

σ2
Ii
nipi + 〈Ii〉2 − pi〈Ii〉2

≤ σ2
Ii
nip

′

i + 〈Ii〉2 − p
′

i〈Ii〉2
(A.19)

We can simplify this inequality to get

pi(σIini + 〈Ii〉2) ≤ p
′

i(σIini + 〈Ii〉2) (A.20)

By canceling the identical terms, we are left with

pi ≤ p
′

i (A.21)

which is true by definition as illustrated above. This proof confirms that by re-

weighting the probability term in the mixed timescales MI estimates, we estimate an

upperbound on the error of our MI estimates. Therefore, our results are conservative.
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A.2 Subcycle Timescales: Timing and Timing

We begin with Equations 2.10, 2.12, and 2.16. Because of the limitations of the KSG

MI estimator [44, 36], we omitted some of the data from the mixed timescales MI

analysis due to three different concerns: (1) We omitted data for which U1,c = 0

or U2,c = 0 because there are no spike timing values for breath cycles when the

motor unit did not spike. (2) We omitted data for which ni < U1,c or nj < U2,c

because the number of samples must exceed the dimensionality of the data for the

KSG estimator. (3) We omitted data for which ni

4
< 5 or for which

nj

4
< 5 because

the estimator required at least five samples to run and we needed at least four data

fractions in order to properly estimate the variance of the mutual information estimate

(see Holmes and Nemenman [36]).

We rescaled the joint probability term in equation 2.10 so that the total MI es-

timate reflects the MI of all breath cycles for which the each spike timing variable

spiked at least one time. In otherwords, we considered only the conditional mutual

information given that both neurons spiked during the breath cycle. In order to find

this MI, we rescaled the probability term to sum to one when all of the breath cycles

with zero spikes in either variable were excluded from the dataset. We propagated

this rescaling to equation 2.16 so that we estimated an upperbound on the error of

the MI estimate. By estimating an upperbound on the error, we can be confident that

any MI values that fall outside of error of zero are indeed significant. As written in

the methods, the equations accounting for the re-weighted probabilities are as follows:

I(U1,t;U2,t) =

C1,max∑
i=1

C2,max∑
j=1

I(U1,t;U2,t|U1,c = i, U2,c = j)p
′
(U1,c = i, U2,c = j) (A.22)

σ2
t,t =

C1,max∑
i=1

C2,max∑
j=1

(
σ2
Ii,j

〈Ii,j〉2
+

σ2
p
′
i,j

〈p′
i,j〉2

)〈Ii,j〉2〈p
′

i,j〉2 (A.23)
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σ2
p
′
i,j

=
(1− p′

i,j)

ni,jp
′
i,j

p
′2
i,j (A.24)

Where p
′
i,j =

ni,j

N ′ and N ′ =
C1,max∑
i=1

C2,max∑
j=1

1. The equations for MI and error without

re-weighting the probability terms would be as follows:

Ifull(U1,t;U2,t) =

C1,max∑
i=1

C2,max∑
j=1

I(U1,t;U2,t|U1,c = i, U2,c = j)p(U1,c = i, U2,c = j)

(A.25)

σ2
full,t,t =

C1,max∑
i=1

C2,max∑
j=1

(
σ2
Ifull,i,j

〈Ifull,i,j〉2
+

σ2
pi,j

〈pi,j〉2
)〈Ifull,i,j〉2〈pi,j〉2 (A.26)

σ2
pi,j

=
(1− pi,j)
ni,jpi,j

p2i,j (A.27)

Where pi,j =
ni,j

N
and N =

C1,max∑
i=0

C2,max∑
j=0

1.

To show that the error estimated is an upper bound, we need to show that:

σ2
full,t,t ≤ σ2

t,t (A.28)

or by substitution:

C1,max∑
i=1

C2,max∑
j=1

(
σ2
Ifull,i,j

〈Ifull,i,j〉2
+

σ2
pi,j

〈pi,j〉2
)〈Ifull,i,j〉2〈pi,j〉2

≤
C1,max∑
i=1

C2,max∑
j=1

(
σ2
Ii,j

〈Ii,j〉2
+

σ2
p
′
i,j

〈p′
i,j〉2

)〈Ii,j〉2〈p
′

i,j〉2
(A.29)

Because we are summing across all i > 0 and all j > 0 on both sides, we can cancel

the summation. Therefore, we are left to show that
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(
σ2
Ifull,i,j

〈Ifull,i,j〉2
+

σ2
pi,j

〈pi,j〉2
)〈Ifull,i,j〉2〈pi,j〉2

≤ (
σ2
Ii,j

〈Ii,j〉2
+

σ2
p
′
i,j

〈p′
i,j〉2

)〈Ii,j〉2〈p
′

i,j〉2
(A.30)

Each σ2
Ifull,i,j

and σIi,j refer to the variance of individual MI estimates. Since these

terms have no dependence on the probability distribution of spike counts of either

unit, but they are estimated by the KSG estimator for identical count-conditioned

data, these terms are equivalent.

σ2
Ii,j

= σ
′2
Ii,j

(A.31)

Additionally, re-weighting the probabilities has no impact on the individual MI

estimates for each spike count condition, therefore:

〈Ifull,i,j〉2 = 〈Ii,j〉2 (A.32)

So we are left with

(
σ2
Ii,j

〈Ii,j〉2
+

σ2
pi,j

〈pi,j〉2
)〈Ii,j〉2〈pi,j〉2

≤ (
σ2
Ii,j

〈Ii,j〉2
+

σ2
p
′
i,j

〈p′
i,j〉2

)〈Ii,j〉2〈p
′

i,j〉2
(A.33)

We know that

σ2
pi,j

=
(1− pi,j)
ni,jpi,j

p2i,j (A.34)

and that
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σ2
p
′
i,j

=
(1− p′

i,j)

ni,jp
′
i,j

p
′2
i,j (A.35)

We can fill in these values, and we are left with

(
σ2
Ii,j

〈Ii,j〉2
+

(1−pi,j)
ni,jpi,j

p2i,j

p2i,j
)〈Ii,j〉2〈pi,j〉2

≤ (
σ2
Ii,j

〈Ii,j〉2
+

(1−p′i,j)
ni,jp

′
i,j

p
′2
i,j

p
′2
i,j

)〈Ii,j〉2〈p
′

i,j〉2

(A.36)

We can then simplify.

(
σ2
Ii,j

〈Ii,j〉2
+

(1− pi,j)
ni,jpi,j

)〈Ii,j〉2〈pi,j〉2

≤ (
σ2
Ii,j

〈Ii,j〉2
+

(1− p′
i,j)

ni,jp
′
i,j

)〈Ii,j〉2〈p
′

i,j〉2
(A.37)

We can do algebra to get

(
σ2
Ii,j
ni,jpi,j + (1− pi,j)〈Ii,j〉2

ni,j

)〈pi,j〉

≤ (
σ2
Ii,j
ni,jp

′
i,j + (1− p′

i,j)〈Ii,j〉2

ni,j

)〈p′

i,j〉
(A.38)

Recall that pi,j =
ni,j

N
and p

′
i,j =

ni,j

N ′ . N refers to the number of breath cycles in

the entire data set, whereas N
′

refers to the number of breath cycles where the spike

counts of each neuron are greater than zero (i > 0 and j > 0). Therefore,

pi,j ≤ p
′

i,j (A.39)

The pi and p
′
i factors taken by themselves satisfy the inequality. Therefore, we
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can omit them from the remainder of the proof. We are now left to show that

σ2
Ii,j
ni,jpi,j + 〈Ii,j〉2 − pi,j〈Ii,j〉2

≤ σ2
Ii,j
ni,jp

′

i,j + 〈Ii,j〉2 − p
′

i,j〈Ii,j〉2
(A.40)

We can then simplify to get

pi,j(σIi,jni,j + 〈Ii,j〉2) ≤ p
′

i,j(σIi,jni,j + 〈Ii,j〉2) (A.41)

By canceling the identical terms, we are left with

pi,j ≤ p
′

i,j (A.42)

which is true by definition as illustrated above. This proof confirms that by re-

weighting the joint probability term in the sub-cycle timescales MI estimates, we

estimate an upperbound on the error of our MI estimates. Therefore our results are

conservative.
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[59] Bence P Ölveczky, Timothy M Otchy, Jesse H Goldberg, Dmitriy Aronov, and

Michale S Fee. Changes in the neural control of a complex motor sequence during

learning. Journal of neurophysiology, 106(1):386–397, 2011.

[60] Chethan Pandarinath, Paul Nuyujukian, Christine H Blabe, Brittany L Sorice,

Jad Saab, Francis R Willett, Leigh R Hochberg, Krishna V Shenoy, and Jaimie M

Henderson. High performance communication by people with paralysis using an

intracortical brain-computer interface. Elife, 6:e18554, 2017.

[61] Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz,

Sergey D Stavisky, Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman,

Stephen I Ryu, Leigh R Hochberg, et al. Inferring single-trial neural population

dynamics using sequential auto-encoders. Nature methods, 15(10):805–815, 2018.

[62] Eric J Perreault, Charles J Heckman, and Thomas G Sandercock. Hill muscle

model errors during movement are greatest within the physiologically relevant

range of motor unit firing rates. Journal of biomechanics, 36(2):211–218, 2003.

[63] Jason L Puchalla, Elad Schneidman, Robert A Harris, and Michael J Berry.

Redundancy in the population code of the retina. Neuron, 46(3):493–504, 2005.

[64] Joy Putney, Rachel Conn, and Simon Sponberg. Precise timing is ubiquitous,

consistent, and coordinated across a comprehensive, spike-resolved flight motor

program. Proceedings of the National Academy of Sciences, 116(52):26951–26960,

2019.



90

[65] Joy Putney, Tobias Niebur, Rachel Barker, and Simon Sponberg. An informa-

tion theoretic method to resolve millisecond-scale spike timing precision in a

comprehensive motor program. bioRxiv, 2021.

[66] Fred Rieke, David Warland, Rob De Ruyter Van Steveninck, William S Bialek,

et al. Spikes: exploring the neural code, volume 7. MIT press Cambridge, 1999.

[67] JM Ritchie and DR Wilkie. The effect of previous stimulation on the active state

of muscle. The Journal of physiology, 130(2):488, 1955.

[68] Marc F Schmidt and Franz Goller. Breathtaking songs: coordinating the neural

circuits for breathing and singing. Physiology, 31(6):442–451, 2016.

[69] Marc F Schmidt and J Martin Wild. The respiratory-vocal system of songbirds:

anatomy, physiology, and neural control. In Gert Holstege, Caroline M. Beers,

and Hari H. Subramanian, editors, Breathing, Emotion, and Evolution, volume

212, chapter 15, pages 297–335. Elsevier, 2014.

[70] Elad Schneidman, William Bialek, and Michael J Berry. Synergy, redundancy,

and independence in population codes. Journal of Neuroscience, 23(37):11539–

11553, 2003.

[71] Andrew B Schwartz, Ronald E Kettner, and Apostolos P Georgopoulos. Primate

motor cortex and free arm movements to visual targets in three-dimensional

space. i. relations between single cell discharge and direction of movement. Jour-

nal of Neuroscience, 8(8):2913–2927, 1988.

[72] Krishna V Shenoy, Maneesh Sahani, and Mark M Churchland. Cortical control

of arm movements: a dynamical systems perspective. Annual review of neuro-

science, 36:337–359, 2013.



91

[73] Samuel J Sober, Simon Sponberg, Ilya Nemenman, and Lena H Ting. Millisecond

spike timing codes for motor control. Trends in neurosciences, 41(10):644–648,

2018.

[74] S Sponberg and TL Daniel. Abdicating power for control: a precision timing

strategy to modulate function of flight power muscles. Proceedings of the Royal

Society B: Biological Sciences, 279(1744):3958–3966, 2012.

[75] Simon Sponberg, Andrew J Spence, Chris H Mullens, and Robert J Full. A single

muscle’s multifunctional control potential of body dynamics for postural control

and running. Philosophical Transactions of the Royal Society B: Biological Sci-

ences, 366(1570):1592–1605, 2011.

[76] Simon Sponberg, Thomas L Daniel, and Adrienne L Fairhall. Dual dimensional-

ity reduction reveals independent encoding of motor features in a muscle synergy

for insect flight control. PLoS Comput Biol, 11(4):e1004168, 2015.

[77] Kyle H Srivastava, Caroline M Holmes, Michiel Vellema, Andrea R Pack,

Coen PH Elemans, Ilya Nemenman, and Samuel J Sober. Motor control by

precisely timed spike patterns. Proceedings of the National Academy of Sciences,

114(5):1171–1176, 2017.

[78] Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius

Pachitariu, Marius Bauza, Maxime Beau, Jai Bhagat, Claudia Böhm, Martijn
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