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Abstract

Inferring phenomenological models of biological systems

By Catalina Rivera

Biological systems and processes are complex. They are governed by a large num-
ber of units interacting with each other in many different ways and on many different
time scales. Thus, constructing mechanistically accurate models capable of explaining
the emergent macroscopic behavior of these system and making non-trivial predictions
based on such models is often infeasible. To alleviate this problem, new approaches
are needed to infer functional, phenomenological models of biological systems directly
from data. Here, we develop and apply tools capable of doing this, using statistical
inference to automatically construct phenomenological models for different types of
biological processes across multiple spatio-temporal scales. Our approach is enabled
by the increases in computational power and the development of statistical inference
and machine learning methods on the one hand, and the high-throughput biologi-
cal experimental techniques on the other, which we have experienced over the last
decades. First, we focus on inferring phenomenological models for studying systems
that can be seen as First Passage Processes—where a relevant or observable biological
phenomenon happens after a certain state is achieved in a series of stochastic transi-
tions among internal states of the system. We develop a phenomenological approach
where simple models get refined (rather than complex models getting coarse-grained),
adding progressively more details until the experimental first passage time distribu-
tion is well approximated. In this way, our approach avoids the pitfalls of having to
build a detailed, mechanistically accurate model first, in route to phenomenological,
functional understanding. In particular, we infer models explaining Purkinje Cells (a
type of a neuron) spike generation and single-enzyme turnover times distribution. We
show that our inferred models allow us to uncover minimal constraints on more mech-
anistically accurate models of the involved phenomena. Our second set of phenomeno-
logical model inference tools revolves around developing a mathematical framework to
study animal behavioral evolution. In particular, we study the behavioral evolution
of six closely related species of fruit flies. We show that, by reconstructing ancestral
behavioral repertoires, a very simple model describing the stochasticity in behavioral
evolution lets us infer the nature of the intra- vs inter-species variability. Our ap-
proach provides a new framework to study behavioral evolution and to develop an
understanding of its genetic basis. All of the phenomenological inference approaches
proposed in this Dissertation show the potential of using statistical inference tools
to help us achieve physics-level model-based understanding of various functions of
complex biological systems.
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1

Chapter 1

Introduction

Many questions in analysis of biological systems fall within two categories. On the

one hand, there are those aiming to figure out what the system does. On the other

are those investigating how the system does what it does. Take for example neural

activity. We may ask: What does the neuron do? In other words, what is the

time distribution characterizing the generation of a neural action potential (aka, a

spike)? What kind of measurements are appropriate to describe the process (e.g., is

measuring the membrane potential of a neuron useful)? What is the effect of external

perturbations on the statistical properties of the process? etc. Alternatively, we could

ask: how does the neuron do all of this? To answer this latter question, we would

need to build a mechanistic model of the neuron at a molecular or cellular scale,

which would reproduce the emergence of a spike through a fast depolarization of the

membrane potential.

At first, it may seem that building a mechanistic model (i.e., by partitioning

the system into smaller biologically meaningful subsystems, properly interacting to

produce the macroscopically measured behavior) should answer all the what questions

as well. Since once a detailed mechanistic model is built we should be able find the

relevant features that matter at a macroscopical scale. In traditional physical systems,



2

symmetries and constraints on the interactions among the subsystems are known.

This allows the successful application of the Renormalization Group (RG) theory [152,

153, 70]. RG theory constructs a microscopic model of the system and coarse grains

it into an effective macroscopic model, identifying the features or model parameters

that remain relevant at large length scales. However, these types of symmetries

and constraints are far from obvious [100] in biological systems. There are so many

components interacting with each other in many different ways and time scales that

any microscopic model would involve an exponentially large number of parameters.

Taking this approach to first build models that effectively describe the macroscopic

behavior of the system (i.e., model what the system is doing) may not be very useful

(or even possible) in practical terms. In particular, we may not be interested in

everything that the system does, but only in some aspects of it. For example, in

the aforementioned case of neural action potential generation, we may be interested

in the distribution of times between action potentials, but not in the actual voltage

profile of the spike. Therefore, alternative approaches to answer the what questions

without answering the how as an intermediate step should also be tried. These type

of approaches are likely to be particularly useful for systems that are very complex,

such as at cellular or organismal scales.

Interestingly, the what questions are fundamentally inference questions: one needs

to infer a succinct mathematical description of statistical properties of the underlying

system from experimental data, which are usually noisy, undersampled, and often

limited in their extent by what the experimentalists can or choose to measure. Thus

working on what questions is particularly timely in the modern age of machine learn-

ing, when tools for statistical inference can suddenly compete with humans in their

ability to make sense of data. And yet, generic machine learning tools are not ex-

pected to achieve the physics-level understanding of natural processes, and likely will

always suffer from limited data [101, 133]. New methods for statistical inference,
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rooted in and well-matched to the types of models we would like to use to describe

specific biological systems must be developed. In this Dissertation, we develop such

inference tools to build various types of phenomenological models to answer specific

what questions for a variety of biological systems.

In Chapters 2 and 3 we develop methods for inference of phenomenological models

for two different kinds of biochemical systems that can be seen as First Passage

Processes (FPP). In such processes, a phenomenon of interest gets triggered when the

system reaches a particular state in its stochastic trajectory over its internal states.

Mathematical techniques to model FPP (but not the inference tools) have been well

developed in the past decades [111, 120, 148, 74]. Many biological processes can

be studied as such FPP [66, 159, 27, 18], including various systems at molecular,

cellular, and even population scales. For instance, transcriptional regulation is aided

by a transcription factor protein binding at a promoter site on the DNA. This can

be viewed as a FPP, where a protein performs a search along the DNA, or in a 3d

nuclear or cellular volume until it finds the correct site and initiates transcription

[123, 76, 18, 10, 58, 94, 78, 145]. As another example, in a description of a molecular

motor protein walking on a microtubule, every individual step that the protein takes

can be seen as a FPP, where after a series of chemical reactions chemical energy is

finally converted into mechanical work [77, 28]. Similarly, cellular division happens

after a long and complex sequence of biochemical events, also making it a FPP.

Indeed, division includes DNA replication, the dissolution of the nuclear membrane,

the separation and transport of the chromosome to each pole of the cell, and then

the division of the cell membrane to create two new cells [65]. Finally, the action

potential generation process in a neuron is also a FPP: a complex set of biochemical

processes results in a depolarization of the membrane potential after the interchange

of ions between the exterior and interior of the cell. When the depolarization gets to a

certain threshold a spike gets triggered [141, 138, 140]. While we will not study all of
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these and many others systems and processes in this Dissertation, we will show that

our approach to inference of phenomenological models of FPP is broadly applicable.

One of the most important questions when studying a FPP, related to the what

questions, is: How long does the system takes to get to the configuration of interest

(also known as absorbing state)? In principle, since the process is stochastic, the

entire completion probability density is required to answer this question. Several

theoretical and experimental results for many biological systems have characterized

what is known as the Mean First Passage Time (MFPT), that is, the mean of the

completion time probability density [94, 107, 9]. However, a single time scale is

oftentimes not enough to describe the First Passage Times of these complex processes,

as we will see in the next chapters. Fortunately, in the last two decades, the rapid

development of experimental techniques to monitor chemical and biological systems

with single molecule [53, 155, 64, 149, 22] and single cell precision [65, 96, 75, 93] has

opened the door for us to understand better the statistical fluctuations in the timing

of the First Passage (FP) events that can have important biological functional effects.

To answer these interesting questions, Chapters 2 and 3 introduce and apply

methods of statistical inference to building models for FP time distributions in var-

ious biological systems. As explained above our approach focuses on refining phe-

nomenological models [35] for these systems, because their complexity precludes us

from building mechanistically accurate models first.

In Chapter 2 we formally introduce a phenomenological representation for in-

ferring predictive models of the entire probability distribution of FP times. Our

representation offers a way to effectively interpret the complexity of the underlying

FPP. Furthermore, the inference methods that we use (Bayesian model selection) are

especially useful for modeling experimental data sets taken under varying external

conditions. Interestingly, in the well-sampled regime, this representation allows us to

infer minimal constraints on the structure of the underlying kinetics towards building
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mechanistic models for FPP. We first show the utility of our approach on neurophys-

iological data. Modeling a neuron with molecular accuracy in order to describe the

stochastic dynamics of the membrane potential would require to take into account

a large number of complex processes related to ion channel gating, membrane ca-

pacitance, and leakage [40, 16, 95]. By looking at the spike generation as a FPP

we developed a phenomenological representation for one of the most morphologically

complex types of neurons, the Purkinje cells (PCs). We provide a complete and accu-

rate statistical description of the ISI distribution under different external conditions,

without introducing any of these microscopic details.

In Chapter 3, we extend the methods to a biochemical example, studying it as a

FPP to show the utility and the flexibility of our inference approach. We develop very

simple phenomenological models to represent an enzymatic reaction controlled by a

single molecule of an enzyme β-galactosidase under different substrate concentrations.

For these experimental data, our models outperform previous models of the system

proposed in the literature. Moreover, guided by the mechanistic hints provided by our

phenomenological model, we use the same type of statistical inference tools to develop

a different style of models, focusing on maintaining some biochemical realism. Here we

automatically infer the smallest biochemically realistic network that can explain the

enzymatic turnover times under different substrate concentrations. We show that no

other model can provide a better fit to the data, even in principle, and that accurate

predictions for the entire FP time distributions can be made using our method.

In Chapter 4, we develop another model-inference approach to study a very dif-

ferent biological process, namely animal behavioral evolution. For these type of pro-

cesses, experimental observations are only available for the extant species. In contrast

to morphological evolution [151, 119, 127] the basic genetic changes behind behav-

ioral evolution are poorly understood [50, 23, 156, 41, 117]. The difficulty arises not

only due to the lack of observations along the process (there are no fossil records
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for behavior), but from building a good representation to measure behavior. The

latter is really not an obvious task given the changes in genetic, neurological, and

physiological factors that result in the emergence of certain behaviors as a response

to environmental changes. Thus the high complexity of the process, in practice, re-

quires the construction of data-driven models that can provide us with appropriate

behavioral representations uncovering the relevant features (answering the what) of

the behavioral dynamics along the evolutionary process. We use an unsupervised

approach developed in [13] to obtain a full behavioral representation of six phylo-

genetically closely related species of fruit flies (Drosophila). We show that this be-

havioral representation contains enough information to distinguish between species,

and, therefore, can be used as a quantitative measure to understand the evolution

of behavior along the phylogenetic process. Thus under the assumption that these

behavioral traits evolve through time as a result of the addition of small effects of

multiple genetic loci or selective fluctuations, we can model the evolution of the flies

as a diffusion process happening in the behavioral space, starting at the common

ancestral behavioral repertoire. The simplest stochastic model that we could think

of to account for this assumption and for the phylogenetic information available is a

Generalized Linear Mixed Model (GLMM). The model not only allows us to recon-

struct the ancestral behavioral repertoires (initial state of the process), but it also

infers the intra- and inter-species variability that optimally explain the emergence

of the extant species’ behavior. Our results show that the inferred within species

variability is closely related to some hidden long-lasting internal states of the flies,

i.e latent states of the flies. And the inter-species variability predicts the existence

of groups of behaviors that may have evolved together and that potentially could be

used as behavioral meta-traits to improve genetic mapping.

All of these Chapters, while studying very different biological systems, argue that

it is possible to build tools to infer phenomenological models, and then use them to
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answer the what questions without building mechanistic models to answer the how

questions along the way. We hope that these Chapters, collectively, will convince the

reader that we are at a special point in the development of the field, where creation

of methods to answer the what questions is now possible, and that this Dissertation

makes tangible contributions in this direction.
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Chapter 2

Inferring Phenomenological models

of First Passage processes

(This chapter is based on: Inferring Phenomenological models of First Passage pro-

cesses. Catalina Rivera, David Hofmann, Ilya Nemenman. Submitted to PLOS

Computational Biology. https://arxiv.org/abs/2008.05007)

2.1 Introduction

Processes in living cells are governed by complex networks of stochastically inter-

acting biochemical species. Understanding such processes holistically does not nec-

essarily imply having a detailed description of the system at a microscopic, mech-

anistic level. Indeed, many microscopic networks can result in equivalent experi-

mentally observable behaviors [8], so that distinguishing alternative networks may

be impossible. Even if competing models are not exactly equivalent, they may ap-

proximate each other in many key measurable behaviors [54]. Thus a lot of ink has

been expended on developing methods for constructing reduced, coarse-grained mod-

els of biological processes as alternatives to unidentifiable mechanistically accurate

ones [121, 86, 135, 15, 60, 30, 31, 97, 59, 73, 71, 2, 63, 110, 90]. This is usually a
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challenging task, requiring construction of a (possibly inaccurate) detailed mechani-

cal model as an intermediate step. In this Chapter, we focus on an alternative ap-

proach of refining phenomenological models of stochastic biological processes rather

than coarse-graining mechanistic ones. Our approach optimally adapts the level of

complexity to match the amount and quality of the experimental observations while

accurately predicting specific macroscopic properties of the processes.

A large number of biological processes – and the sole focus of this work – can be

viewed as First Passage (FP), or completion processes [111, 67, 27, 18, 159]: certain

molecules must interact, certain compounds must be created, or certain states must

be visited, before an event of interest occurs. For such systems, one is often interested

in when the final event occurs (i.e., what the FP time is), rather than in details of

which molecules got created or which states were visited in the process. Thus such

systems represent a fruitful field for coarse-grained modeling. Crucially, often the

available experimental data are sufficiently precise to allow investigation of the whole

probability distribution of the FP time, and the fact that the time is stochastic and

often broadly distributed can have important functional effects [108, 67, 17, 98].

A natural approach to characterizing the FP distribution based strictly on the

statistical information contained in the samples of the FP time involves progressively

estimating its higher order cumulants. However, this approach suffers from a well-

known problem that such cumulant expansions cannot be truncated at any order but

the second, and still give rise to a proper probability distribution [146]. Here we

propose a different method for systematically inferring phenomenological models of

first passage distributions from empirical data. The approach does not strive for the

mechanistic accuracy. Instead, following ideas from [35], we develop a family of models

of FP processes, whose complexity can be grown adaptively as data requires, to fit

arbitrary FP time distributions. We then choose the optimal model of the appropriate

complexity within the family using Bayesian model selection [115, 72, 26, 112, 7, 87].
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Our model family consists of mixtures of Gamma distributions, which we argue

to have a natural interpretation in the context of FP kinetics. In the well-sampled

regime, this natural interpretation allows us to infer mechanistic constraints on the

underlying kinetics using fits within our model family [82]. Specifically, the element

of the mixture that dominates the passage for short times, sets the minimal number

of internal states that a mechanistically accurate stochastic process would need to

generate the data. Furthermore, our approach provides a framework to study effects

of external perturbations or experimental conditions on the first passage statistics in

a systematic way. Specifically, by doing model selection simultaneously on all data

sets across multiple experimental conditions, we can obtain a single phenomenological

model that explains all of the available data, relating parameters of such global model

to the values characterizing the perturbations.

We test the utility of our approach on neurophysiological data sets. Most neu-

rons are too complex to be modeled mechanistically with molecular accuracy, so that

any model will involve some element of phenomenology, making this a good testing

ground for our approach. Indeed, spontaneous activity of neurons of different types

is often modeled under the assumption that the spike trains can be described by re-

newal processes [137, 33, 113, 52, 80, 125, 134]. Since, in such models, all inter-spike

intervals (ISIs) are independent and identically distributed, the spike generation can

be specified fully by the ISI distribution, and hence can be seen as a FP process in

our framework. While one usually models the ISI distribution as a Gamma distribu-

tion [14, 33], more complex constructions are often warranted [21, 139]. Ability of

our method to adapt the complexity of the model as required by the quality and the

quantity of the data thus promises to be useful in this context. To investigate this, we

build models describing the ISI distribution in a certain type of neurons, called Purk-

inje cells (PCs), under a variety of experimental conditions, and with data coming

from real experiments and from biophysically realistic models of the neuron. Purkinje



11

cells are some of the most morphologically complex neurons, and, indeed, we discover

that even phenomenological models of their ISI distributions need to be a lot more

complex than a single Gamma distribution. For example, we show that 5 or 6 terms

in the mixture are needed to describe PCs of a Rhesus monkey. At the same time,

even the most detailed computational model of the process is fitted well with just 4

terms, hinting at a room for improvement of biophysical models.

We conclude this article with a discussion of other applications where our method

may be useful.

2.2 Results

2.2.1 The model family

The simplest possible stochastic model to represent a FP process is a two state system

as shown in Fig. 2.1A. With a constant transition time τ between the initial and

the absorbing state, we get an exponentially decaying completion time probability

distribution P (t) = exp(−t/τ)/τ . A natural extension is a multi-step activation

process, where the system irreversibly passes through a number of intermediate states

before reaching the absorbing state, see Fig. 2.1B. A simple induction shows that the

completion probability distribution in this case is given by the Gamma distribution,

Eq. (2.1):

P (t|τ, L) =
tL−1

τL(L− 1)!
exp(−t/τ), (2.1)

where L corresponds to the number of intermediate states before FP and τ is the

average transition time between the intermediate states, which we take to be the same

for all states for simplicity and, as we show later, without the loss of generality. This

simple model is commonly used to describe neural ISI distributions. However, often

times neural spikes exhibit more complex ISI distributions [5, 37, 103, 118, 136, 61].
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Motivated by these empirical findings, we built a set of models that are hierarchically

organized, so that their complexity can be adapted to the quality and the quantity of

empirical data by adding additional Gamma-distributed completion paths as shown

in Fig. 2.2A.

The mathematical expression of our model with M different completion paths is:

P (t | ~θ,M) = p1P (t|τ1, L1) + p2P (t|τ2, L2) + ...+ pMP (t|τM , LM),

p1 =
1

1 + x2 + ...+ xM
, p2 =

x2

1 + x2 + ...+ xM
, ... ,

pM =
xM

1 + x2 + ...+ xM
,

(2.2)

where ~θ = (τ1, L1;x2, τ2, L2; . . . ;xM , τM , LM) are parameters to be fitted and P (t|τi, Li)

are defined as in Eq. (2.1). Notice that when there is only one completion path,

M = 1, with only one non-absorbing state L1 = 1, we recover the exponential distri-

bution function with the decay time τ1. Figure 2.2B shows examples of FP time dis-

tributions that can emerge from models with different small values of M by changing

parameter values. These distributions can approximate processes, such as neuronal

bursts, which have multiple characteristic time scales.

k

A

B

L-1 L
kkk

0 1
k …

Figure 2.1: Simple FP processes. A: Exponential completion, with k = 1/τ . B:
Multi-step completion, with the Gamma-distributed completion time.

We will call the union of all models P (t|~θ,M), with M = 1, . . . ,∞, the multi-path
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Figure 2.2: Multi-path model family. A: Kinetic schemes of the first three models
in the hierarchical set. Each next model in the hierarchy is built by adding another
completion path, where ki = 1/τi is the transition rate between intermediate states,
and pi is the probability of completion through the path i. B: Examples of FP prob-
ability densities that can be generated with the corresponding models with different
parameter values.

model family of FP distributions. We will focus on Bayesian inference of phenomeno-

logical models of FP processes within this family for the rest of this work. One would

like such statistical inference to be consistent, so that, in the limit of infinite data,

one would recover the true model if it belongs to the model family being used in the

inference. For an infinite model family to allow such consistent statistical inference

using Bayesian approaches, it is sufficient for the family to be nested and complete [99].

Nestedness (or hierarchy) means that models within the family can be ordered in such

a way that the set of solutions of a given model is contained in the set of solutions

of the next model in the hierarchy. Completeness means that every data set can be

fitted arbitrarily well by some (possibly very complex) model in the hierarchy.

The multi-path model family is trivially nested: if we set pM = 0, then the model
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with M paths reduces to the one with M−1. The proof of completeness is a bit more

subtle, see Methods. With that, we know that estimating the posterior probability

of the model within the family given the observed data D, and then choosing M

that maximizes the posterior probability P (M | D), will typically result in consistent

inference and in “selection” of the most probable model. Specifically, we need to

evaluate

P (M | D) ∝
∫
P (D | ~θ,M)P (~θ |M)d~θ, (2.3)

where

P (D | ~θ,M) =
∏
i

PM(ti|~θ), (2.4)

and ti is the i’th completion time in the experimental data set being fitted. Evaluating

this integral and hence building the most probable phenomenological model of the

data is the goal of this Chapter.

Unfortunately, as M grows in Eq. (2.3), the involved integral becomes high-

dimensional, and it is very difficult to estimate reliably. One usually assumes that the

integrand is strongly peaked near the maximum likelihood value ~θ0, which maximizes

P (D | ~θ,M). A variety of approximate methods exist for the evaluation [115, 130,

49, 124, 72, 38], which make different assumptions about the structure of the inte-

grand near its maximum likelihood argument ~θ0. We observed that, for most data

sets we tried, P (D | ~θ,M) were far from Gaussian, thus prohibiting the use of the

simple Laplace approximation to evaluate the integral [115, 130]. Therefore, we used

importance sampling [105, 49] to evaluate Eq. (2.3), see Methods.

Experimental data is usually quantized in units of the experimental time reso-

lution. To fit such data we, therefore, transform Eq. (2.2) into its discrete time

version by integrating FP probabilities over a time discretization window ∆t. That
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is, Eq. (2.2) becomes

P∆t(t | ~θ,M) =p1

∫ t

t−∆t

P (t|τ1, L1)dt (2.5)

+ p2

∫ t

t−∆t

P (t|τ2, L2)dt+ · · ·+ pM

∫ t

t−∆t

P (t|τM , LM)dt

≈p1P (t|τ1, L1)∆t+ p2P (t|τ2, L2)∆t+ · · ·+ pMP (t|τM , LM)∆t.

The code to implement the multi-path model family for FPP is available at

https://github.com/criver9/Inferring-FPP.git.

2.2.2 Model for interspike intervals for Purkinje cells

Purkinje Cells (PCs) are neurons present in the cerebellum of vertebrate animals, that

participate in learning. They have large and intricate dendritic arbors and produce

complex action potentials with a multiscale distribution of the interspike intervals

(ISIs). Due to the complexity of the cells, their typical models involve many dozens

of compartments, each described by a handful of biophysical parameters [36, 95, 114,

79, 46]. Crucially, the process of generating a spike can be seen as a FP process, where

the neuron goes through a set of different effective states, not necessarily in a simple

sequence, before crossing a certain voltage threshold (the absorbing state that results

in a spike generation). Thus here we ask whether the ISI distribution for PCs, indeed,

requires so many features to model well, or if, in contrast, the structural complexity of

PCs does not result in a similarly high complexity of the spike generation. To answer

this, we use ISIs of PCs corresponding to simple spikes (spontaneously generated by

the cell) of a Rhesus monkey (Macaca mulatta), obtained from [61], and we search

for the best phenomenological model of this distribution using our approach.

Figure 2.3 shows the best fits for each of the model in our hierarchy, M ≤ 7,

to the PC ISI distribution data. The figure and Tbl. 2.1 suggest that the simplest
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phenomenological model of the process contains about M = 5 effective independent

paths (for this data set, we cannot discriminate between models with M = 5, 6

based on the values of P (M | D)). Notice that, by gradually adding additional

completion paths, we can approximate not only the right tail of the distribution,

but also the left tail – the behavior at early times. We measure this quality of fit

by showing, in Fig. 2.3, the entropy, H0 = −
∑N

i=1 pi ln pi (evaluated using the NSB

estimator [102]), of data being fitted, as well as the cross-entropy entropy, HM =

−
∑N

i=1 pi lnP∆t(ti | ~θ,M), between the data and each of the best fit models with

different M (this corresponds to minus the normalized value of the log-likelihood,

Eq. (2.4)). To the extent that HM approaches H0 for larger M , the fits are quite

good. And since HM ≈ HM+1 for large M , the fits stop becoming much better, so

that the Bayesian Model Selection [87] then penalizes models with large M , forcing

us to settle at M ≈ 5.

We next check how the selected model depends on the amount of data being

fitted. As seen in Tbl. 2.2, increasing the number of spikes in the data set from 1000

to ∼ 30000 allows us to identify finer details in the data which require more accurate

models to be fitted. Thus the most likely model has M = 2 for a small data set,

gradually increasing to M = 5 for full data. Since the last three-fold increase in the

amount of data does not result in a further growth of the best M , we conclude that

the phenomenological model likely has reached the complexity needed to explain the

system, and the model with M = 5 is, in some sense, equivalent to the full complexity

of simple spike generation of a real Purkinje cell.

This analysis illustrates two crucial points. First, a relatively simple model with

M ≈ 5 is able to explain the experimental ISI distribution from a complex neuron,

so that much of the physiological complexity of the cell does not translate into a

functional complexity, at least at the scale of a simple spike generation. Second,

quantitatively fitting the data favors models with M ≥ 5 by a factor of ∼ 1020 (see
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Tbl. 2.1). In other words, PC spiking is not trivially simple, and guessing this ISI

model without the automated inference procedure developed here would likely be

impossible.

Figure 2.3: Best fit models, M = 1 . . . 7, for Purkinje cells ISI distribution. Dots
indicate the histogram of the real data, and the grey band denotes the standard
error of every dot. Color lines show the average fit line sampled from the posterior
distribution of each of the first seven models in the hierarchy, error bands (too narrow
to see) on these fits where estimated using the standard deviation from the sampled
curves, see Methods. The legend illustrates how the cross-entropy between the data
and the models decreases with the model complexity towards the data entropy. Note
that the horizontal axis is logarithmic. Inset: same data, but on log-log axes.
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M lnP (D |M)
1 -180379
2 -176368
3 -175826
4 -175694
5 -175649
6 -175651
7 -175653

Table 2.1: Model selection results for ISI of experimental PC. Posterior likelihoods of
the first seven models in the model family are shown for N = 28966 spikes (the full
data set). The model with the highest marginal likelihood, M = 5, is highlighted.
Note that models with M = 6, 7 cannot be ruled out, as they have very similar
posterior likelhoods.

lnP (D |M)
M 1000 5000 10000 15000 20000 28966
1 -6192.08 -30901 -61792 -92841 -124040 -180379
2 -6133.59 -30427 -60673 -91189 -121736 -176368
3 -6133.88 -30369 -60536 -90915 -121356 -175826
4 -6142.02 -30349 -60486 -90858 -121262 -175694
5 -6151.81 -30350 -60481 -90840 -121230 -175649
6 ———– -30357 -60485 -90844 -121232 -175651

Table 2.2: Model selection as a function of the number of samples. First row shows
the size of the data set, 1000 . . . 28966, and the rest of the table shows the posterior
probability of each model in the family for these data. As the number of samples
increases, more complex models are required to explain the details of PC spiking, but
the complexity eventually saturates, presumably having matched the complexity of
the real cells observed at the given experimental accuracy.

2.2.3 Model for ISI of synthetic PC

One of our interests is to develop phenomenological models that are able to predict

the change in the FP distributions for a system under the influence of various exter-

nal perturbations. We would like to illustrate this using PCs. However, we are not

aware of readily available large, precise data sets measuring the ISI distribution in

PCs under external perturbations. Thus instead we focus on synthetic data, gener-

ated using a biophysically realistic, multi-compartmental model that resembles the

morphologically complex structure of PCs, the Miyasho et al. model [95], which is a
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modified version of the earlier De Schutter and Bower model [36]. To illustrate the

complexity of the Miyasho model, we point out that it uses 1087 compartments to de-

scribe the dendritic arbor of a PC and one compartment for the soma. Additionally,

the dynamics are defined by around 150 parameters that specify 12 different types of

voltage-gated ion channels [95].

We used this model to simulate the behavior of the membrane potential dynamics

of a PC, affected by different electric currents injected into the soma. White noise

currents with standard deviation σ = 3 nA and mean values I = 0.1, 0.5, 0.7, 1, 2, 3 nA

where injected, thus generating six different data sets, with which to explore the ISI

probability distributions of the PC model. Following the procedure described earlier,

we selected the simplest phenomenological model that can explain the ISI statistics

of the PC model, but in this case we focus on optimizing the posterior likelihood

over all stimulus values simultaneously. Figure 2.4 shows the best model fits for two

different injected currents which produce qualitatively different ISI distributions. Fits

for other current values can be found in Fig. A.2. To build the optimal model for all

injected currents simultaneously, we estimate the posterior likelihood of each model

in the family for M ≤ 5 for each of the synthetic data sets, see Tbl. 2.3. Since for

different currents, the ISI generated are independent of each other, the log-likelihood

for the entire data set is simply the sum of log-likelihoods for each I. As always, we

choose the optimal model as the one with the largest overall log-likelihood.

Table 2.3 shows that, for our data sets, M = 4 effective independent paths are

enough to explain simultaneously the PCs behavior under six different injection cur-

rents. As can be seen in Fig. A.1, when the injected current increases the cell goes

from the non-bursting to the bursting state, and the entropy of the completion time

distribution decreases (see Figs. 2.4, A.2). Table 2.3 indicates that higher entropy

distributions, corresponding to I = 0.1, 0.5 nA need M ≥ 5 completion paths to be

properly explained. Lower entropy distributions, on the other hand, not only require
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Figure 2.4: Best fits for different models in the model family for the distribution
of ISIs of synthetic PCs. Color lines and color bands show the mean and standard
deviation respectively of different models sampled from the posterior distribution of
each of the first five models in the family (see details in the Appendix 2.4.3). The
legend shows how the cross entropy decreases with the model complexity towards its
minimum value of the entropy of the histogram of the observed data. According to
Tbl. 2.3, 4 paths are needed to explain the ISI characteristics of synthetic PCs under
different external conditions. A: injected current I = 0.1 nA, and B: I = 3 nA.

fewer paths, but also more deterministic paths, as can be observed from the coefficient

of variation estimates in Fig. 2.5. This suggests, that under low external stimulus

(I < 0.5 nA), spike generation in the cell can happen through multiple pathways.

Instead, when a certain current threshold is reached (I > 0.5 nA), only a few of these

pathways get activated. Nonetheless, more than one pathway is needed even for high

currents, since, at least, two time scales are required to explain the bursting activity.

In Fig. 2.5, we explore how the properties of the model selected in Tbl. 2.3 (M = 4)

change as a function of the injected current, I. Each independent path is described by

specifying its average completion time T i = τiLi, the coefficient of variation CV2
i =

1/Li, and the probability pi of completion along this path, and these three quantities
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lnP (D |M)
M/I(nA) 0.1 0.5 0.7 1.0 2.0 3.0 Total
1 -75437 -71282 -66821 -66309 -64654 -64488 -408992
2 -74070 -70034 -65283 -63578 -58932 -56462 -388359
3 -74019 -70001 -65238 -63520 -58773 -56211 -387762
4 -74003 -69993 -65239 -63516 -58794 -56212 -387753
5 -73994 -69976 -65249 -63527* -58805* -56223* -387775

Table 2.3: Model selection results for ISI of synthetic PCs. Posterior likelihood of
the first five models in the family for each data set, corresponding to the six different
injected currents. Last column shows that a model with 4 completion paths is optimal
over the combined data. Asterisk marks those cases where the optimal parameter
values fell at the boundary of the search space, usually because there were paths
with near-zero flux through them (see Methods). Note that the numbers in the first
two columns increase monotonically with M , so that the best model in the family is
not found for M ≤ 5. We chose to truncate the exploration at M = 5 since we are
interested in the overall maximum of the log-likelihood for all I, which is reached at
M = 4 (last column).

are plotted for each path for different values of I. There is a sharp change in these

features when the PC transitions from a non-bursting to a bursting state, between

I = 0.5 and 0.7 nA. For example, completion times and coefficient of variation for

all paths drop drastically at this point. In particular, Fig. A.3 shows that the paths

with the longest completion time explain very different aspects of the non-bursting

and the bursting ISI distributions. For the non-bursting cases, these paths help to fit

mostly the tails. Instead, for the bursting cases, these paths explain the intra-burst

time interval, which happens to be a much more deterministic process, as can be seen

from the behavior of the coefficients of variation, Fig. 2.5.

To test whether the phenomenological model correctly captures the time scales of

the underlying biophysical processes, we predict the ISI distribution for input currents

that the model was not exposed to during fitting. To achieve this we first need to

determine a relationship between model parameters and the input current means,

which we can then use to infer model parameters for currents different from the ones

used for fitting the model. As our test case, we employed the model with M = 4 and

tracked the dependence of its parameters on the current as shown in Fig. 2.5. A priori
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Figure 2.5: Properties of completion paths change as a function of the external
parameter for the best model selected across all experiments. A: Average completion
times for each of the M = 4 independent paths are plotted as a function of the
injected current in the soma, I. Color (same in B and C) identifies paths according
to how long they take to complete the process on average. B: Coefficient of variation
and C: probability of taking each of the independent paths of the model as a function
of I.

A B C

Figure 2.6: Predicted PDFs for non-measured values of the injected current. Pre-
dicted model (in red) was obtained by interpolating parameter values from Fig. 2.5.
It is compared with the model (in blue) fitted directly to data. A: Prediction for
I = 2.5 nA (interpolation). B and C: Prediction for I = 3.3 and I = 3.5 nA respec-
tively (extrapolation).
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it is unclear how to build correspondence between the four model paths for separate

input currents. In our example in Fig. 2.5, we chose to establish the correspondence

by ordering the paths according to their completion time, thus relating the model

paths with the smallest completion time, then the second to smallest and so on. This

ordering provides relationships between input currents and all model parameters,

based on which we can infer parameter values for new current values using linear

interpolation (for currents that fall between two fitted values) or linear extrapolation

(for currents outside of the fitted range). We note that the choice to relate parameter

values by completion time rather than another parameter is arbitrary. Indeed there

are many possibilities to create the pathway correspondence for different current

values. Besides ordering based on average completion time (confront Fig. 2.5) we also

tested ordering based on the coefficient of variation or the probability path which led

to no improvement over the presented case (not shown). While it is possible that

other orderings can lead to better predictions we leave a more systematic exploration

of this aspect for future work.

To validate our predictions, we generated new data for mean currents I = 2.5, 3.3,

and 3.5 nA and compared predicted ISI distributions to the simulation results (see

Fig. 2.6). The predicted model for I = 2.5 nA (where parameters interpolate between

the known values at I = 2.0 and 3.0 nA) is almost indistinguishable from the fitted

one (Fig. 2.6A). Even the extrapolation to I = 3.3 and I = 3.5 nA (Fig. 2.6B-C)

show very good agreement between predicted model and simulation data.

To quantify the accuracy of these predictions, we need to calculate their quality

with respect to some baseline. We chose the Jensen-Shannon Divergence (JSD)[83]

as a measure of the quality of fit, and we measure it relative to two baselines. First,

we quantify how an extrapolated or an interpolated prediction compares to the fit

done directly on a data set; certainly the fit is expected to outperform the prediction.

Second, we check how two statistically equivalent realizations of data fit each other;
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this should be the ceiling, which neither the fit nor the prediction can outperform

(if both are not overfitted). Both of these baselines depend on the specific data set

used, and thus one needs to estimate probability distributions of the relevant JSDs,

rather than their single values. However, generating data from the PC model takes

hours even on a modern computer, and hence we generate only a single additional,

validation, data set beyond the training and the testing sets, which we then addi-

tionally bootstrap (resample with replacement) to produce statistics of the JSDs.

Specifically, Fig. 2.7 plot histograms of (i) the JSD between the test data and the

bootstrapped versions of the validation data (this is the statistics that requires us to

have two independent samples, test and validation, to remain unbiased), (ii) the JSD

between the bootstrapped validation data and fits to these data, and (iii) the JSD

between the prediction and the bootstrapped validation data. Our first observation

is that all three JSD distributions are very close to each other, indicating very good

fits and predictions. For I = 2.5 nA, the fits/predictions have smaller JSD than dif-

ferent realizations of data have with themselves, which is consistent with a very good

fit, and suggests, as expected, that the variability across bootstrapped data sets is

somewhat larger than would have been across independent samples. As I increases,

and interpolation gives way to extrapolation, the prediction quality deteriorates (still

remaining only a few percent worse than the fits).

Inferring mechanistic constraints

Our approach to modeling FP time probability distribution is purely phenomenolog-

ical. However, the multi-path model family allows us additionally to constrain mech-

anistic, biophysical models of the underlying processes. Specifically, we can make

predictions for the minimal number of intermediate states that a mechanistic model

requires to explain the data. Indeed, for any FP problem, the short-time behavior

of the completion probability density provides information about the length of the



25

A B C

Figure 2.7: Quantifying quality of the predictions. We plot the histograms of the JSD
between the test data set and the bootstrapped samples from the validation data set
(in green), the JSD between the bootstrapped validation data sets and models fitted
to each of these data sets (in blue), and the JSD between the bootstrapped data and
the prediction based on interpolating or extrapolating the model parameters fitted to
the original data (in red). To the extent that the distributions are close, predictions
are good. A-C: Data for I = 2.7, 3.3, 3.5 nA, respectively. The first is interpolation,
the other two are extrapolations.

shortest completion path [82, 142]. That is, assume that the process starts in a state

i and ends at the absorbing state j of an arbitrary Markovian chemical reaction net-

work. Then, at short times, the completion probability density can be approximated

as ρij ∝ tm, where m is the number of intermediate states of the shortest path con-

necting states i and j [142]. In principle, this means that by estimating the exponent

of the power law that fits the left tail of the completion time distribution, one can

put a lower limit on the number of intermediate states in a mechanistic model. Then

any candidate model with a fewer number of steps can be rejected.

In practice, making use of this result is hard because it requires data with very

high temporal resolution, and a very well sampled left tail. However, our multi-path

representation allows for an extension of the approach to the case where the sampling

is good, but the time resolution may not be sufficient for simpler methods. Once

the most probable model in the model family is selected and fitted, we propose to
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determine if the first few fastest events can be explained by a single independent path

i of length Li. We use 50 events in our analysis, which provides for a sufficient number

of the events to seek a power law fit, and yet is small enough so that only the very

end of the left tail is explored. Since at short time scales the Cumulative Distribution

Function (CDF) of the FP time probability density is ∝ tLi (from Eq. (2.1 )), one

can insist that any mechanistic model built to describe the data will need at least Li

states, establishing a lower bound on the size of the network.

For concreteness, the short time behaviors of the CDFs obtained from the best

model, M = 4, describing the ISIs of PCs under six different injected currents are

shown in Fig. 2.8. Only for I = 0.7 nA the first 50 events (0.5% of sample size) can

be explained by a single path with ∼ 20 intermediate states, while for larger values

of I, the distribution can be fitted by one or more of such paths. In all of these cases,

it is thus clear that any realistic biophysical model of a PC must include, at least,

∼ 20 internal states.

2.3 Discussion

In this study, we developed a mathematical structure of the (multi-path model fam-

ily) to infer phenomenological models describing FP time distribution for biological

processes. As an example of application of our approach, we show that this repre-

sentation allows us to build models capable of describing the complexity of the ISI

distributions of PCs by successfully explaining not only the bulk, but also the tails

of the distribution. Our results show that the process of a spike generation in PCs is

more complex than a simple renewal process with a Gamma-distributed completion

time, which is typically used in the field. For spontaneously generated spikes, M ≥ 5

independent Gamma-distributed paths are required. We also showed that only M ≈ 4

paths (11 independent parameters) are needed to explain the behavior of synthetic
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PCs over all injected current values I > 0.5 nA. This illustrates that (i) morpho-

logical complexity of PCs notwithstanding, their dynamics is not very complex at

the level of the FP time distribution, and (ii) our fully phenomenological approach

can, nonetheless, point out when biophysically-realistic models are inconsistent with

features of experimental data. By identifying how parameters of the inferred model

change with the external stimulus and extrapolating or interpolating them, we can

predict the FP time distribution of the system in response to novel stimulus values.

These predictions focus not just on the mean and the variance, but on the entire

completion time distribution, and we have shown that the predictions are remarkably

accurate, as compared to statistical fluctuations in the data themselves. Finally, we

showed how our purely phenomenological approach can establish the minimum size

of a mechanistically accurate biochemical network underlying the system, at least for

well-sampled data sets.

The specific model family hierarchy we developed here is only one of many possible

hierarchies that are both complete and nested. Like in [35], different hierarchies may

be better suited for phenomenological modeling of different biological processes, and

thus their relative success would reveal salient properties of the modeled processes.

We hope to develop such additional hierarchies, and explore their pros and cons in

future work. Additionally, here we assumed that every completion time is independent

and identically distributed. This is a strong assumption, which is not always realized.

Even for PCs, the burstiness of spiking suggests dependence among the successive

ISIs (i.e., within a burst, a short ISI is usually followed by another short ISI). In

the future, it should be possible to extend our approach to model such processes by

either modeling the statistics of FP time for a sequence of events, or by extending

the model family to incorporate a latent variable that controls the dependence among

subsequent completion events.

Our models offer only limited understanding of the mechanistic details of the
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Figure 2.8: Decomposition of the Cumulative Distribution Functions (CDFs) of com-
pletion time at early times into the four completion pathways. Black line represents
the CDFs from data; horizontal red and blue lines in each plot correspond to the
probability of the 1st and the 50th events, respectively. Solid purple lines are CDFs
from the best-fitted model with M = 4, and each of the dashed lines represents con-
tributions from the constituent completion paths. A-F: I = 0.1, 0.5, 0.7, 1.0, 2.0, 3.0
nA, respectively. Panels C-F show that the first fifty events can be explained by
one or more paths with ∼ 20 . . . 30 intermediate states. Therefore, any biophysically
accurate reaction network explaining these data needs to have at least > 20 internal
states. Notice that, even though a model with M = 4 is optimal over all values of I
according to Tbl. 2.3, it does not explain the early time behavior in panels (A,B).

modeled biological process. Nonetheless, there are many advantages to our approach,

and phenomenological modeling in general. Indeed, the complexity that biological

processes have acquired over eons of evolution oftentimes makes building detailed

microscopic models an extremely challenging task. And yet the functional properties

of the behavior might be rather simple, with the structural complexity existing, for

example, to ensure robustness of the function to various perturbations. Then focus-
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ing on the phenomenological model allows us to elucidate, predict, and eventually

use properties of the functional behavior even if microscopic details of the mecha-

nisms used to produce it remain unclear. Our specific approach to phenomenological

modeling is different from many others in that it does not coarse-grain a microscopic

model (requiring a laborious task of building one as an intermediate step), but rather

it refines phenomenological models, adding progressively more details until the func-

tional behavior is well approximated. Bayesian model selection is used to find the

optimal point in the refinement hierarchy. The computational advantages of taking

such an adaptive, refining approach can be huge, especially when the studied complex

system exhibits a simple behavior. The computational complexity of our approach is

dominated by searching for optimal fits, which scales linearly with the data set size,

and exponentially with the model complexity. However, the latter is rarely more than

a few dozen parameters even for very complex systems, such as the PCs, at least for

realistic experimental resolution and data set sizes. Thus we expect our approach to

be useful for modeling any biological system for which (i) the quantity that we need

to predict is the completion time, (ii) the underlying biophysics is very complex, with

microscopic details not always affecting the macroscopic completion properties, and

where (iii) large, high quality experimental data sets are available for different exper-

imental conditions, requiring (iv) to predict the behavior of the system as a function

of these conditions, for their yet-untested values.

2.4 Materials and Methods

2.4.1 Completeness

Here we show that the model family studied in this work, Eq. (2.5), is complete.

That is, any data set describing the distribution of the completion times of the first

passage process can be approximated arbitrarily well by a gamma mixture model with
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sufficient complexity.

We note that experimentally measured and numerically simulated completion

times are constrained by finite resolutions which essentially discretizes the time axis.

Thus we can write the completion time likelihood as a multinomial

L(~q | ~n) = qn1
1 qn2

2 ...(1− q1 − q2 − ...qK−1)(N−n1−n2−...nK−1), (2.6)

where ni counts how often the completion time falls into the ith out of K time

interval bins (ti − ∆t, ti], N is the total number of completion time events, and

qi is the probability of completion in the time interval defined by bin i, given by

qi = P∆t(ti | ~θ,M) (see Eq. (2.5)). Trivially, the maximum of L(~q | ~n) is achieved

when q1 = n1/N , q2 = n2/N , ...qK = nK/N . Therefore, our aim must be to construct

a model that can bring ~q arbitrarily close to this maximum. The rational of the proof is

to have a path per time bin whose average waiting time is the center of the respective

time bin and whose variance can get arbitrarily small, effectively approximating a

delta function. That is, we want to construct a model such that for any ε > 0, we

have ni/N − ε ≤ P∆t(ti | ~θ,K) ≤ ni/N + ε.

To prove this we set the parameters in Eq. (2.5) to what follows. For the prob-

ability of every gamma path take pi = ni/N , with expected completion time given

by Ti = Liτi = ti − ∆t/2 and variance (arbitrarily small) σ2
i = Tiτi = ∆t2

4
εi, where

εi = min( ε
p1+p2+...+pi−1+pi+1+...pK

, ε
pi

). Then we can show that:

P∆t(ti | ~θ,K) =
n1

N

∫ ti

ti−∆t

P (τ1, L1)dt+
n2

N

∫ ti

ti−∆t

P (τ2, L2)dt+ ...+

nK
N

∫ ti

ti−∆t

P (τk, LK)dt ≤ εi[
n1

N
+ ...

ni−1

N
+
ni+1

N
+ ...

nK
N

] +
ni
N

≤ ε+
ni
N

(2.7)

where we used Chebyshev’s inequality (Pr(|t − Ti| ≥ ασi) ≤ 1
α2 , with α = 1/

√
εi) to
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set a bound to all the integrals but the ith. For the ith integral we note that, since

most of the probability mass falls in this bin, it reaches close to one and is naturally

bounded by one. This concludes the upper bound on the qi. For the lower bound

we simply subtract one from both sides of the Chebyshev inequality and multiply by

negative one to get Pr(|t−Ti| ≤ ασi) ≥ 1− 1
α2 . This gives a bound for the ith integral

of Eq. (2.7):

P∆t(ti | ~θ,K) ≥ ni
N

∫ ti

ti−∆t

P (t|τi, Li)dt ≥
ni
N

(1− εi) ≥
ni
N
− ε, (2.8)

showing that this model family can approximate any sufficiently smooth distribution

arbitrarily well. In real applications, we may not need to have as many paths as there

are bins to achieve a high approximation accuracy, so the construction above is the

worst case scenario.

2.4.2 Model Selection

To choose the most likely model from the family, we evaluate and maximize the

posterior probability of each model M :

P (M | D) =
P (D |M)P (M)

P (D)
∝ P (D |M), (2.9)

where we assumed that all models in the hierarchy are a priori equally likely. The

likelihood P (D |M) is given by:

P (D |M) =

∫
P (D | ~θ,M)P (~θ |M)d~θ, (2.10)
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where the likelihood of the data set and the prior are chosen to be:

P (D | ~θ,M) =
K∏
i=1

P∆t(ti | ~θ,M)ni , (2.11)

P (~θ |M) =
1

(Zx)M−1

M∏
j=1

exp(− τj
Zτ

)

Zτ

exp(− Lj
ZL

)

ZL
. (2.12)

Here P∆t(t | ~θ,M) is given by Eq. (2.5), and ni is the number of events with

completion time between (ti −∆t, ti). The parameters of our prior are ZL, Zτ , and

Zx. The values of ZL and Zτ are set such that the priors are reasonably wide compare

to the measured time scales and throughout our study we set them to ZL = 20 and

Zτ = 20 ms. Zx sets the upper boundary for the support of the xi and was set to

Zx = 103. Finally, we note that our choice of prior assumes no correlation among

model parameters.

In most cases, the integration in Eq. (2.10) is analytically intractable. A typical

approach in such a case is to use the Laplace approximation to compute the integral.

However, in our considered problems the posterior distributions fall much slower

than Gaussians, ruining the quality of the Laplace approximation. Thus we used

importance sampling [105] instead. Specifically, we sampled from the multi-variate

normal distribution G(~θ) = det(2πΣ)−
1
2 exp (−1

2
(~θ − ~θ∗)′Σ−1(~θ − ~θ∗)) centered at the

optimal value ~θ∗ of the integrand F (~θ) := P (D | ~θ,M)P (~θ | M) with the covariance

matrix Σ defined by the Hessian of F (~θ):

(Σ−1)ij = (−Hess logF |~θ∗)ij ≡ −
∂2 logF

∂θi∂θj

∣∣∣
~θ∗
. (2.13)

This way we ensured that G(~θ) > 0 for F (~θ) > 0, at least around the domain of

the local optimum at ~θ∗. See below for details of how we estimated the covariance
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matrices. Then the importance sampling estimate of the integral in Eq. (2.10) is

P (D |M) ∼ 1

N

N∑
i=1

P (D | ~θi,M)P (~θi |M)

G(~θi)
, (2.14)

where ~θi ∼ N (~θ∗,Σ) and we used N = 106 samples to achieve the desired accuracy.

Since the likelihood values exceeded numerical resolution, we instead computed the

lnP (D |M):

lnP (D |M) ∼ lnF (~θ∗) + ln(
N∑
i=1

exp(logF (~θi)− logF (~θ∗))

G(~θi)
)− lnN. (2.15)

Covariance matrix estimation

Application of our importance sampling scheme requires knowing the maximum of

the integrand and the Hessian around the optimum. The optimal values ~θ∗ were

obtained using the MATLAB function fminsearchbnd. We used MATLAB version

R2017a for our analysis. Most of the optimal values obtained for different models

and data sets fell in the interior of the parameter’s domain; we mark those where the

optimal values fell at the boundary with an asterisk everywhere in the text.

We first explain how we computed the covariance matrix for the cases where the

optimal values fell in the interior of the parameters’ domain set. Using Eq. (2.11) to

estimate the Hessian, we get

−∂
2 logF

∂θk∂θj

∣∣∣
~θ∗

= −
M∑
i

ni
∂2 log(P∆t(ti | ~θ,M))

∂θk∂θj

∣∣∣
~θ∗
− ∂2 logP (~θ |M)

∂θk∂θj

∣∣∣
~θ∗

=
M∑
i

ni

[
1

P∆t(ti | ~θ,M)2

∂P∆t(ti | ~θ,M)

∂θk

∂P∆t(ti | ~θ,K)

∂θj

∣∣∣
~θ∗

− 1

P∆t(ti | ~θ,M)

∂2P∆t(ti | ~θ,M)

∂θk∂θj

∣∣∣
~θ∗

]
.

(2.16)
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Notice that the contribution to the Hessian coming from the prior in the previous

expression cancels out. We then evaluated Eq. 2.16 numerically using Eq. (2.5).

For those cases, for which the optimal values are located at the boundary of the

parameters’ domain due to the presence of a trivial completion path we use the fol-

lowing trick. Given that the flux through a certain path j is zero, the likelihood

P (D | θ,M) stays constant for all values of τj and Lj corresponding to this trivial

path. However, the prior decays exponentially and therefore F (~θ) also decays expo-

nentially in the directions of τj and Lj. The optimal value of F (θ) can be written

as (~xp, xd = 0, τd = 0, Ld = 0) with ~xp is the best fit for the previous model in the

family, with only d− 1 completion paths. Then the covariance matrix is:

Σ =



Σp 0

0

α2
x 0 0

0 α2
τ 0

0 0 α2
L


, (2.17)

where Σp is the covariance matrix at the best fit of the previous model in the family; α2
x

is an upper bound on the variance along the parameter controlling the probability flux

through d-th completion path estimated from the symmetric function Fs(θ) = F (|θ|).

We used αx = 0.01 for all the cases marked with an asterisk in Tbl. 2.3. On the other

hand ατ and αL where estimated using the variances of the independent exponential

distributions of the prior, Eq. (2.12), Zτ = ZL = 20. We chose α2
τ = α2

L = (3στ )
2 =

3600. Notice that, along these last two directions where F (θ) decays exponentially

we chose the variance of the importance distribution nine times larger in these two

directions to make sure that it contains most of the important domain of F (θ).
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Parameter Degeneracy

The posterior distributions that we obtain often have multiple modes that correspond

to parameter degeneracy, which arises by relabeling the completion paths. To account

for this degeneracy in caclulating posterior likelihoods, we multiplied the likelihoods

of each model with M gamma pathways by (M − 1)!. Here we use M − 1 instead of

M because the first is different from the others: transition rate to this path is set to

one and is used as a references.

Generalized Bayesian model selection

In order to find the model in the family that best fits the simultaneous description

of the system under s different external conditions, we need to estimate the integral

Eq. (2.10) for s independent data sets,

P (D1, D2, ..., Ds |M) =

∫
P (D1, D2, ..., Ds | ~θ1, ~θ2, ..., ~θs,M)P (~θ1, ~θ2, ..., ~θs |M)d~θ

=
s∏
j=1

∫
P (Dj | ~θj,M)P (~θj |M)d~θj.

(2.18)

The last equality results from each data set having its own, independent set of pa-

rameters. Taking the natural logarithm on both sides of Eq. (2.18), we obtain the

following result, which we used to compute the values in Tbl. 2.3:

lnP (D1, D2, ..., Ds |M) =
s∑
j=1

lnP (Dj |M) (2.19)

2.4.3 Expected values and uncertainty of fits

The fits and the error bars for curves for all of the fitted models in all Figures are the

expected values and the standard deviations of the model curves over the posterior
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probability distributions. That is,

〈f(t |M)〉 =

∫
f(t | ~θ,M)P (~θ | D,M)d~θ, (2.20)

Var(f(t |M)) =

∫
(f(t | ~θ,M)− 〈f(t |M)〉)2P (~θ | D,M)d~θ, (2.21)

where f(t | ~θ,M) = P∆t(t | ~θ,M), and the posterior probability is

P (~θ | D,M) =
P (D | ~θ,M)P (~θ |M)

P (D |M)
=

F (~θ)

P (D |M)
. (2.22)

As explained above, we used importance sampling to estimate the expectation values.

For example, notice that Eq. (2.20) can be rewritten as

〈f(t |M)〉 =

∫
f(t | ~θ,M)F (~θ)d~θ∫

F (~θ)d~θ
. (2.23)

Using Eq. (2.15), this becomes

〈
f̂(t |M)

〉
≈

∑N
i=1

f(t|~θi,M) exp(logF (~θi)−logF (~θ∗))

G(~θi)∑N
i=1

exp(logF (~θi)−logF (~θ∗))

G(~θi)

(2.24)

Similarly, for the variance, we have

Var(f(t |M)) =

∫
(f(t | ~θ,M)− 〈f(t |M)〉)2F (~θ)d~θ∫

F (~θ)d~θ
, (2.25)

which results in

Var(f̂(t |M)) ≈

∑N
i=1

f(t|~θi,M)2 exp(logF (~θi)−logF (~θ∗))

G(~θi)∑N
i=1

exp(logF (~θi)−logF (~θ∗))

G(~θi)

− 〈f̂(t |M)〉2. (2.26)
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Chapter 3

Inferring phenomenological models

for biochemical reactions

3.1 Introduction

In this Chapter, we build a phenomenological model of another biochemical process

that can be studied as a FPP: a single enzymatic chemical reaction.

The development of experimental techniques affording single-molecule precision

characterization of biochemical transformations [53, 155, 64, 149, 22] has allowed the

community to study the effects of stochasticity in these systems, generating sufficient

data so that not only the mean times of the transformation, but the entire probability

distributions of these times (the FPP distributions in our language) are well sampled.

We focus on a reaction driven by the enzyme β-galactosidase, which transforms lac-

tose into glucose and galactose. This is a storied model system, coming from the

metabolism of the bacterium E. coli, and analyzed as far back as Jacob and Monod

[68], with a lot of new developments recently. While the classic Michaelis-Menten

model [92] provides a successful mathematical description of enzymatic kinetics for a

large number of different enzymes [32, 45], relatively recent work [43] has shown this



38

description to be insufficient when single molecule measurements are performed, in

particular, in the context of β-galactosidase. The immediate reaction by the commu-

nity was to model the enzyme with a large, nearly continuum, structure of internal

states, the so called multi-state interconverting model [43]. Here instead we explore

if our methods for inference of the structure of completion time of FPP can build a

simpler, more accurate, and more parsimonious model of the process.

We start this Chapter by using the multi-path model family from Chapter 2 to

infer the phenomenological model of this enzymatic transformation. Such models are

not necessarily a great match for the enzymatic catalysis happening without energy

dissipation (as is the case for β-galactosidase) since each of the constitutive reactions

in the multi-path model family is irreversible and, generically, does not obey detailed

balance. Nonetheless, we show that a phenomenological model from this family, with

only M = 2 paths (two-time scales), is flexible enough to explain the reaction times

of a single enzyme β-galactosidase immersed at different (low and high) substrate

concentrations. Crucially, in contrast to the the multi-state interconverting model

[43], our model correctly fits the short-time behavior of the enzyme turnover time

probability distribution as well, even though it is substantially simpler structurally.

Further, guided by the analysis of the inferred models at short time scales, we intro-

duce a different model hierarchy, which preserves the reversible nature of chemical

transformations and hence is a better match for the enzymatic data. Using this model

family, we build a minimal mechanistic Markovian model of the process, which suc-

cessfully explains the experimental data. Finally, we show that this new modeling

approach can predict the entire probability distribution characterizing the reaction

times at non-tested concentrations, and not just for the concentrations, at which

the model was trained. It is this ability to extrapolate that encourages us to think

that our approach will be generally useful in understanding and predicting chemical

kinetics processes for complex chemical systems.
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3.2 Single enzyme reaction times

Going beyond deterministic chemical kinetics to understand the stochastic nature of

enzymes (organic catalysts that speed up many biochemical processes inside cells) is

crucial for understanding how cells perform their functions, and how these functions

are dysregulated to cause diseases. At the cellular and molecular scale, we often expect

stochastic fluctuations since these processes often involve chemical reactions with a

small number of reactants of each species. These stochastic fluctuations are important

because they can change the fundamental behavior of the system. Fortunately, the

development of single-molecule imaging [155, 64, 22, 149] has allowed us to measure

the distribution and fluctuations of enzymatic turnovers, which were unattainable

from ensemble data, opening the door for understanding the role of stochasticity in

these systems.

In particular, the enzyme β-galactosidase is important since it breaks down lac-

tose into simpler sugars like glucose and galactose [69], and is thus a central part of

metabolism in many organisms. This is a classic model system in cellular biochem-

istry [47, 68], which until recently was only studied on the deterministic chemical

kinetics scale. In contrast, in a relatively recent pioneering work [43], a fluorogenic

molecule was used as a substrate of a single β-galactosidase molecule submerged in

a homogeneous substrate concentration. Upon hydrolysis this molecule generated a

fluorescent burst that was detected in the confocal volume of the microscope. This

allowed the researchers to generate large, high quality datasets describing the times

between successive enzymatic conversion events. In their turn, knowing these times

(the FP times in our language), allows us to understand the underlying stochasticity

of the enzymatic reaction. In this work, we will focus on using these completion time

distributions (reproduced from Ref. [43] for four different substrate concentrations in

Fig. 3.1) to infer phenomenological and biophysically-realistic models of the enzyme

kinetics, able to predict properties of the catalysis at arbitrary substrate concentra-
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tions.

A B

C D

[S]=10uM [S]=20uM

[S]=50uM [S]=100uM

Figure 3.1: β-galoctosidase enzymatic catalysis from Ref. [43]. Dots indicate the
experimental histograms for the enzymatic reaction times; grey bands are the stan-
dard error of every dot. Colored lines are two types of models of the data from
Ref. [43]. Red lines represent the best fit of the classic Michaelis-Menten model, us-
ing the following parameters: k1 = 5× 107M−1s−1, k−1 = 18300 s−1 and k2 = 730 s−1

(see Main Text for the explanation of the parameters). Blue lines are the multi-
state interconverting model, with the same best fit parameters k1, k−1, and with
w(k2) = 1/(baΓ(a))ka−1

2 exp(−k2/b), where a = 4.2 and b = 220 s−1 (see Main Text
for the parameter definitions). A-D: Catalysis for [S] = 10, 20, 50, 100 uM, respec-
tively.

The simplest classic model for enzymatic catalysis is the Michaelis-Menten model,

which has successfully explained data from enumerable experiments in over a hundred

years of its existence [92]. For a single molecule enzymatic reaction, the chemical
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kinetic diagram of the Michaelis-Menten reaction has the following structure

E + S
k1

GGGGGBFGGGGG

k−1

ES
k2

GGGAP + Eo, Eo
k3

GGGAE. (3.1)

Here S is the substrate, which binds to the enzyme E with the rate k1, forming an

enzyme-substrate complex ES. The complex can either dissociate with the rate k−1,

or produce the product P with the rate k2, leaving the enzyme in a modified state

Eo. The enzyme then regenerates back to E with the rate k3, and is again available

to catalyze a new reaction. It is easy to show [85, 154] that, if k3 � k2, then the

probability density of the waiting time τ for the entire enzymatic reaction to occur,

f(τ), is given by:

fMM(τ) =
k1k2[S]

2A
[exp (A+B)τ − exp (B − A)τ ], (3.2)

where A =
√

(k1[S] + k−1 + k2)2/4− k1k2[S] and B = −(k1[S] + k−1 + k2)/2.

Figure 3.1 reproduces the fits of the Michaelis-Menten model to the experimental

data for the enzymatic turnover times from Ref. [43]. Clearly, the standard Michaelis-

Menten model cannot explain both the short and the long time tails of the data

histograms. To overcome this problem, a multi-state model involving a large number

n of interconverting conformations of the enzyme was proposed [43], see Fig. 3.2 for the

kinetic diagram of the proposed model. E, ES and ES0 can exist in multiple stable

molecular conformations. The main idea is to incorporate multiple time scales that

can account for the non-monoexponential decay at high substrate concentrations. At

low substrate concentrations (monoexponential decay), the enzyme substrate binding

is rate limiting and it can be assume that the rates k1i are narrowly distributed.

Instead at high substrate concentrations k2i becomes rate limiting and a broader

distribution on these rates should account for the multiexponential decay, as long as

the interconversion between ESi is slow. Therefore, assuming that k1i = k1 , k−1i =
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k−1 ∀i, while k2i are not all equal and are sampled from the Gamma distribution,

w(k2) and when the interconversion between conformations ESi is slow compared to

the enzymatic reactions (k2i (βij/k2i → 0 and αij/k2i small but nonzero, see details

in [43]), the probability density of the enzymatic turnover time is given by:

fMC(τ) =

∫ ∞
0

w(k2)
k1k2[S]

2A
[exp (A+B)τ − exp (B − A)τ ], (3.3)

with A and B as defined in Eq. (3.2), and w(k2) = 1/(baΓ(a))ka−1
2 exp(−k2/b). The

best fits of this model with 4 parameters (k1, k−1, a and b) for different substrate

concentrations are shown in Fig. 3.1. The multistate model is clearly better than the

simpler Michaelis-Menten model, explaining, in particular, the long time asymptotics

of the completion time distribution. However, the behavior at early times for high

concentrations (Fig. 3.1 C-D) is still not well approximated. As in Chapter 2, we

measure the quality of the fits by estimating the entropy of the data being fitted, H0 =

−
∑N

i=1 pi ln pi (using the NSB entropy estimator [102]), as well as the cross-entropy,

H = −
∑N

i=1 pi ln f(ti | ~θ)∆t, between the data and each of the proposed models (the

cross-entropy corresponds to minus the normalized value of the log-likelihood). To

the extent that the cross-entropy values are still far from H0, cf. Fig. 3.4, not even

the multi-state model is able to explain the data set well.

3.3 Results

3.3.1 Modeling the enzymatic turnover times using the multi

path model family

We use the multi-path model family proposed in Chapter 2 to infer the best phe-

nomenological model that can simultaneously explain the enzymatic turnover time

histograms, Fig. 3.4, for all the measured substrate concentrations. Despite the
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Figure 3.2: Inter-converting conformers model. E, ES and E0 can exist in multiple
molecular conformations. See details in the main text.

fact that the multi-path model family does not account for reversible reactions, like

the Michaelis-Menten mechanism does, its completeness property ensures that after

adding enough number of completion paths we should be able to get a perfect fit.

Figure 3.3 shows the best fits for M ≤ 3 in our model family (see Chapter 2 for the

algorithmic details and the model family description). Specifically, Tbl. 3.1 indicates

that, by our Bayesian model selection criterion, a model with only two completion

paths M = 2 (Fig. 2.2) is the most likely overall models to explain all four data sets

simultaneously, by at least a factor of ∼ 1018. Notice that this model is capable of

explaining both the long time, as well as the short time behavior of the distributions

for all substrate concentrations, as can be seen from Fig. 3.3. Quantitatively this is

supported by the fact that the cross-entropy values between the data and the model

for M = 2 are all indistinguishable from H0 within the statistical error. That is, not

only is our M = 2 model better than the Michaelis-Menten or the interconverting
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model, but also no other model can be a better fit for the experimental data analyzed

here.

A B

C D

[S]=10uM [S]=20uM

[S]=50uM [S]=100uM

Figure 3.3: Best fit models with M = 1, 2, 3 for enzyme turnover time distribution.
Color lines and color bands show the average fit line and the posterior standard
deviation for the first three models in the family; red, blue, green correspond to
M = 1, 2, 3, respectively. See Chapter 2 for algorithmic details for fitting the models
and sampling from the posterior. The cross entropy between the data and the models
(see legends) decreases towards the entropy value as the model complexity increases.
A-D: [S] = 10, 20, 50, 100 uM, respectively.

Interestingly, by looking at how the parameters of the fitted model with M =

2 change as a function of the substrate concentration, we can recognize a drastic

change in the properties of the process when the underlying substrate concentration
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lnP (D |M)
M [S]=10 uM [S]=20 uM [S]=50 uM [S]=100 uM Total
1 -12784 -19029 -29834 -58226 -119872
2 -12794 -19038 -29787 -58086 -119705
3 -12799 -19052 -29795 -58099 -119745
4 -12801 -19046 -29806 -58103 -119755

Table 3.1: Model selection results using multi-path model family for enzymatic
turnover times. Posterior likelihoods for the first three models of the family for
each substrate concentration are shown. Last column assesses the total fit. It shows
that the data favors model with M = 2 by a factor of at least ∼ 1018.

transitions between the low ([S] = 10, 20 uM) and the high ([S] = 50, 100 uM)

values, see Fig. 3.4. At low concentrations, there is effectively a single dominant

path (Fig. 3.4C in blue) explaining the process. This path is very simple, with

only a single transition step (Fig. 3.4B). Its mean completion time is concentration-

dependent (Fig. 3.4A). We think this path is likely representing the enzyme-substrate

binding process, which is difussion-limited and, at low concentrations, becomes also

rate limiting. As the substrate concentration increases, the second path is required

to explain the long time turnover statistics (cf. Figs. 3.4C, B.1). This suggests that

the second time scale, probably related to internal conformational changes of the

enzyme-substrate complex, becomes comparable to the enzyme-substrate search and

binding time scale.

Ideally, similar to Chapter 2, we would like to use the parameter dependence on S

from Fig. 3.4 to see whether our model with M = 2 is able to predict the reaction time

distributions for substrate concentrations not included during the fitting procedure.

However, since we are dealing with experimental data set, we have no access to data

sets for non-measured concentrations to test our model. Instead, we chose to leave

one data set (for [S] = 20 uM) out, and predict its reaction time distribution by

linearly interpolating the corresponding parameter values from the fitted values at

[S] = 10 and [S] = 50 uM, see Fig. 3.5A. Unfortunately, such interpolation does not

result in an accurate prediction, cf. Fig. 3.5C. Similarly, the interpolation does not
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A B C

Figure 3.4: Properties of completion paths as a function of the substrate concentra-
tion for the best model, M = 2, across all experiments. A: Average completion times
for each of the M = 2 independent paths are plotted as a function of the concentra-
tion [S]. Color (same in B and C) identifies paths according to how long they take to
complete the process on average (yellow: slow path, blue: fast path). B: Coefficient
of variation and C: probability of taking each of path as a function of [S].

work well if we leave [S] = 50 uM data aside and try to predict it, cf. Fig. 3.5B, D.

Notice that this does not contradict the fact that, for each of the high concentration

values, ([S] = 50 and [S] = 100 uM) a model with M = 2 is the best possible model.

In fact, as pointed out above, this model fits the data over all concentration values as

well as is statistically possible. What this suggests, however, is that the multi-path

model family is not a good match for data that comes from enzymatic catalysis, likely

because the underlying mechanisms include reversible reactions.

We can repeat the analysis of Section 2.2.3 to establish the minimum network size

required by any mechanistic model to explain the enzymatic turnover times.

Figure 3.6 shows the short time behavior of the cumulative distribution function

(CDF) obtained from the best model, M = 2. For [S] = 10, 20 uM, at least the

first 20% of the events are explained by a single path with only a single transition

step. In contrast, for [S] = 50, 100 uM, the left tail of the distribution can only be

explain using both completion paths with ≤ 1 transition steps. This suggests that

even if a simple Michaelis-Menten mechanism does not explain the observations, it is
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Figure 3.5: Predicted PDFs for reaction times using multi-path model family. A
and B: Linear interpolation of parameter values for [S] = 20 uM and [S] = 50
uM, respectively, using nearby concentration values. C and D: Predicted models (in
blue) obtained using interpolated parameter values from A and B respectively. Both
predictions are off from the corresponding fitted model (in red), which fits the data
nearly perfectly.

still possible that another biochemically realistic small network does. To explore this

we created a different hierarchy of models, the Biochemically realistic model family,

which we study in the next section.

3.3.2 Modeling the enzymatic turnover times using the

Biophysically-realistic model family

In order to build a biochemically realistic model family, we must account for the re-

versibility of internal transitions, which happen before reaching the absorbing state.

For example, for the Michaelis-Menten enzyme, the substrate can bind the enzyme
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A

C

B

D

Figure 3.6: Decomposition of the CDFs at short time scales into two paths: Solid
pink lines are the CDFs corresponding to the best-fit model with M = 2, and the
dashed lines are the contributions from individual completion paths. Blue lines repre-
sent the completion probability of the first ∼ 20% of the events for A: [S]= 10 uM and
B: [S]= 20 uM. These events can be explained by a single path (blue dashed line) with
a single completion step. For C: [S]=50 uM and D: [S]=100 uM, the left tail of the
distribution (∼ 50%) of events can be explained combining to paths with effectively
<= 1 transition step. Time resolution is not enough to discriminate between paths
in cases.

and get unbound before the actual catalysis begins. Since our goal is to build

a minimal biochemically realistic network capable of explaining—and predicting—

experimental observations, we start the model family with a single transition step

model, see Fig. 3.7. This is the simplest network describing a FPP as explained in

the previous chapter (Section 2.2.1). Next, we add an intrinsic (filled) node and two
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edges forming a second non-reversible (two-step) completion path. Intrinsic nodes

represent states where the enzyme-substrate molecules are bound and they will have

a special property that we will describe later. Then, progressively, we add directional

edges until the graph excluding the absorbing state becomes fully connected (note

that a reversible reaction is accounted for by two directional edges). We then add an

extrinsic (empty) node forming a new single-step completion path. Again, gradually

we add directional edges until the graph excluding the absorbing state becomes fully

connected. Then, we add another intrinsic state and the entire procedure is iterated.

We refer to the union of all such models as the Biochemically realistic model family,

cf. Fig. 3.7.

C
om
pl
ex
ity

Figure 3.7: Biochemically-realistic model family. Kinetic schemes of the first 10
models in this hierarchy. Stars represent the absorbing state. Color-filled circles
represent internal enzyme-substrate bounded conformations.

The networks in Fig. 3.7 represent the interacting structure of a Markovian process

[144]. Let ~p = [p1, p2, ..., pL] be a column vector representing the probabilities of each

state in the kinetic diagram, where state 1 represents the absorbing state. This
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probability distribution evolves according to the master equation:

d~p

dt
= A~p, (3.4)

where A represents the matrix describing the transition rates. For example Aij rep-

resents the transition rate from state j to state i (note that this transition rate is

time independent). For the relatively small dimensions that we are dealing with here,

this system of first order differential equations can be easily solved after specifying

the initial value ~p0 of the probability distribution. Notice that p1(t) represents the

probability that the system is at the absorbing state at time t, which is the CDF of

the FP time distribution, which we are trying to model. To fit this distribution to

the data, we use a discretized version of the FP time distribution, as in Chapter 2:

P∆t(t | ~θ,MB) = p1(t | ~θ,MB)− p1(t−∆t | ~θ,MB), (3.5)

where ~θ represent the model parameters and MB stands for the specific kinetic dia-

gram in Fig. 3.7. Adding an extrinsic node to the kinetic diagram adds a parameter

to be fitted: namely, the value of the probability of being in that state at time t = 0.

All intrinsic nodes are assumed to have zero probability initially (the enzyme is not

bound to the substrate), so no new parameters are associated with them. Finally,

every directional arrow has a single kinetic rate associated with it, which needs to

be fitted. In other words, at any stage of model building, going to the next model

in the hierarchy adds at most two parameters to the previous model: we either add

a single edge and zero nodes (1 parameter), an intrinsic node and two edges (two

parameters) or an extrinsic node and one edge (2 parameters one of them accounting

for the initial condition of the new node). Thus the statistical complexity does not

increase abruptly in each of these steps, so that a good balance between the under-

and the over-fitting is likely to be found for each particular data set.
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It is easy to show that the biochemically-realistic model family satisfies the prop-

erties to make the statistical inference consistent. By simple inspection of Fig. 3.7,

we observe that the model family is nested, since each network is a subnetwork of

the subsequent one. Furthermore, the model family is also complete, assuming that

the process being fitted can be described as a discrete state space Markov chain.

In fact, any possible network with one absorbing state will be a subnetwork of at

least one model in the hierarchy. This follows from the fact that for any number of

nodes, excluding the absorbing state, the fully connected network will be eventually

incorporated in the hierarchy.

Consequently, we can implement Bayesian model selection (see Section 2.4.2) to

estimate the most probable model MB within the Biochemically-realistic model family.

The results for the β-galoctosidase data sets are shown in Tbl. 3.2. Quantitatively,

the best model capable of representing all data sets simultaneously is the MB = 4

(bottom left corner in Fig. 3.7). The best fits for each of the first five models in

the hierarchy are shown in Fig. 3.8. Notice that the cross-entropy values between

the data and the model (MB = 4) are all indistinguishable from the entropy, H0,

within statistical error, (see Section 2.2.2 for details). Thus a simple network with

only 4 nodes (Fig. 3.9A) can explain all experimental data sets better or equal than

any other model. In this sense, this model is as good as the multi-path model family

inferred in the previous section. Notice that the multi-path model had (5 parameters)

and only one more parameter is required to build a biochemically realistic model.

Interestingly, this model strongly suggests the need to incorporate a path with

an intermediate state representing the enzyme-substrate internal conformation. Fur-

thermore, it suggests that the data can be fit by the model where there is not one,

but two different configurations at the start of the process, so that enzyme may exist

in two different functional states.

By looking at the changes of the fitted parameters for the MB = 4 model as a
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C D

[S] = 10 uM [S] = 20 uM

[S] = 50 uM [S] = 100 uM

Figure 3.8: Best fit models of the Biochemically-realistic model family for the enzyme
turnover time distribution. Color lines and color bands show the average fit line and
the posterior standard deviation for the first five models in the family. The cross
entropy between the data and the models (see legends) decreases towards the data
entropy value H0 as the model complexity increases. A-D: Substrate concentrations
[S] = 10, 20, 50, 100 uM, respectively.



53

ln(P (M | ~x))
c [S]=10 uM [S]=20 uM [S]=50 uM [S]=100 uM Total
1 -12754 -19016 -29990 -59159 -120919
2 -12759 -19020 -29775 -58098 -119651
3 -12759 -19022 -29777 -58098 -119656
4 -12756 -19015 -29774 -58069 -119614
5 -12762 -19016 -29776 -58072 -119622

Table 3.2: Model selection results for the Biochemically-realistic model family to the
enzymatic turnover data. Posterior likelihoods for the first five models of the hierarchy
are shown. Last column assesses the total fit over all substrate concentrations. Data
favors the model with MB = 4 by a factor of ∼ 104.

function of the substrate concentration, (Fig. 3.9B), we observe that one of the two

paths with the single-step transition is concentration-dependent (see k21 in Fig. 3.9B).

This is consistent with what we found using the inferred model from the multi-path

model family. In addition, we see that the transition rate k31 does not depend on

the substrate concentration, within the admittedly large error bars of the inference

process. This is expected since it suggests that, once the substrate binds the enzyme,

the concentration of substrate molecules in the solvent does not affect the velocity of

the catalysis.

Lastly, using the procedure similar to Section 3.3.1, we make predictions for the

completion time PDFs at concentrations [S] = 20, 50 uM. Here we linearly interpo-

late each of the kij parameter using the nearby concentration values in Fig. 3.9B. The

predictions are shown in Fig. 3.10. These predictions are better than those obtained

using the multi-path model family. The cross-entropy values for the predicted dis-

tributions are H = 4.957 and H = 4.100 for [S] = 20uM and [S] = 50 respectively.

To the extent that these values are close to the corresponding entropy values of the

data (cf. Fig. 3.8) the predictions are reasonably good. This suggests that unlike the

multi-path model family, the biochemically-realistic model family offers not only a

minimal biochemically plausible description, but also, as has been argued before in

[35], models that capture better the biophysical constraints are able to make better
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A B

Figure 3.9: Properties of the best fit model from the biochemically-realistic model
family for the β-galactosidase turnover times. A: The kinetic scheme of the best fit
model, MB = 4. Model parameters associated with each transition are labeled. B:
The model parameters as a function of the substrate concentration [S].

predictions.

3.4 Discussion

In this Chapter, we showed how a phenomenological inference approach can success-

fully explain the behavior of single enzyme reactions. We first used the multi-path

model family developed in Chapter 2, to infer the best model that can explain the

β-galactosidase enzyme turnover times under four different substrate concentrations.

We show that a simple model with M = 2 completion paths can accurately explain

the experimental data. In fact, our model achieves better fits than those proposed

in the literature [43], where the right tail of the distribution could not be explained.

Even more, we show that no other model can better fit the data than ours.
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A B[S] = 20 uM [S] = 50 uM

Figure 3.10: Predicted completion time PDFs for enzyme turnover times using
the biochemically-realistic model family. Predicted models (in blue) were obtained
by interpolating the corresponding parameter values from Fig. 3.9B. Best fits done
directly to the data are shown in red for comparison. A: and B: predictions for
[S] = 20, 50 uM respectively.

Nevertheless, predictions from the multi-path model family for the entire FP time

distribution for substrate concentrations not included in the fitting procedure were

poor. We attribute this to the fact that despite offering a simple model with a

nearly perfect fit, this model family does not account for the reversible transitions

present in biochemical reactions, does not account for the fact that only a handful of

parameters need to be concentration dependent, and hence, generally, is not the best

match for the data. Based on the study of the early time behavior of the FP time

distributions we could rule out the possibility that a large network would be required

to explain the experimental data set. Therefore, in the second part of this Chapter

we formally introduced a different mathematical structure, the biophysically-realistic

model family, specially designed to find the minimal biochemically realistic network

that could explain the experimental observations. We showed that a simple Markov
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network of four nodes can explain all experimental data sets better than the inter-

converting conformational model and in fact better or equal than any other model.

Moreover, predictions for the FP time distributions were considerably improved. Our

model suggests that the enzyme should exist at least in two different functional states

or conformations, determining different starting conditions of the process. On the

other hand, only one conformation for the enzyme-substrate configuration is required

to accurately explain the observations.

These results shows that, in principle many hierarchies can produce parsimonious

models capable of explaining the experimental data. However, those that can better

represent the biophysical constraints of the system are able to make better predictions.
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Chapter 4

A framework for studying

behavioral evolution by

reconstructing ancestral

repertoires

(This chapter is based on: A framework for studying behavioral evolution by recon-

structing ancestral repertoires. Damián G. Hernández *, Catalina Rivera*, Jessica

Cande, Baohua Zhou, David L. Stern,Gordon J. Berman. Submitted to eLife.)

*These authors contributing equally to this work.

4.1 Introduction

Behavior is one of the most rapidly evolving phenotypes, with notable differences even

between closely-related species [84, 88]. Variable behaviors and rapid behavioral evo-

lution likely allows species to adapt rapidly to new or varying environments [4, 150].

Despite the importance of animal behavior, progress in revealing the genetic basis
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of behavioral evolution has been slow [50, 156, 41, 117]. In contrast, recent decades

have seen significant progress in understanding the genetic causes of morphological

evolution [151, 119, 81, 127].

While there are many potential reasons for the discrepancy between studies of

behavioral and morphological evolution, including the lack of a fossil record for be-

havior, a key difficulty is identifying which aspects of an animal’s development and

physiology are responsible for the observed changes in animals’ actions. Changes

in behavior along a phylogeny could emerge from alterations in the developmental

patterning of neural circuitry (e.g., brain networks, descending commands, central

pattern generators), hormonal regulation that affects the expression of behaviors, or

the gross morphology of an animal’s body or limbs [6]. Each of these possibilities

could result in behavioral effects at different, yet overlapping, scales – from muscle

twitches to stereotyped behaviors to longer-lived states like foraging or courtship or

aging that may control the relative frequency of a given behavior – making it difficult

to identify the precise aspects of behavior that are changing.

To address these difficulties, the standard approach in the study of behavioral

evolution has been to identify focal behaviors that exhibit robust differences between

species, such as courtship behavior in fruit flies [23, 25, 39] or burrow formation

in deermice [147, 62]. With these robust differences in phenotype, it is possible to

perform analyses that isolate regions of the genome that correlate with quantitative

changes in the performance of the focal behavior. However, there tend to be multiple

such regions identified, each containing many genes. Given the large number of pu-

tative genes involved, combined with the possibility of epistatic interactions between

loci, identification of the contributions of individual genes to behavioral evolution has

moved slowly.

An alternative approach to focusing on single behaviors is to examine the full

repertoire of movements that an animal performs. By identifying sets of behaviors
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that evolve together, it may be possible to identify regulators of these suites of be-

haviors. This approach has been made possible by recent progress in unsupervised

identification of animal behaviors across length and time scales [11, 20]. In this study,

we introduce a quantitative framework for studying the evolutionary dynamics of large

suites of behavior. We have focused initially on fruit flies, which provide a convenient

model for this problem because they exhibit a wide range of complex behaviors and

unsupervised approaches can be used to map all of the animal movements captured

in video recordings [13, 24, 12].
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Figure 4.1: Behavioral repertoires of Drosophila. A: The behavioral space probability
density function, obtained using the unsupervised approach described in [13] on the
entire data set of 561 individuals across all species. Coarse grained behaviors corre-
sponding to the different types of movements exhibited in the map are shown as well.
B: The relative performance of each of the 134 stereotyped behaviors for each of the
six species. Each region here represents a behavior, and the color scale indicates the
logarithm of the fraction of time that species performs the specified behavior divided
by the average across all species.

We recorded movies of isolated male flies from six species in a nearly stimulus-free

environment. Because we did not record flies experiencing social and other environ-

mental cues, we did not observe many charismatic natural behaviors, such as courtship

and aggression. Nevertheless, we found that the behaviors they performed, includ-
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ing walking and grooming, contain species-specific information. We thus hypothesized

that our quantitative representations of behaviors could be studied in an evolutionary

context. To infer the evolutionary trajectories of behavioral evolution, we estimated

ancestral behavioral repertoires with a Generalized Linear Mixed Model (GLMM)

approach [55], which builds upon Felsenstein’s approach to reconstructing ancestral

states [44, 56]. Using these results, we develop a framework that allows us to model

the behavioral traits that co-vary both within a species and along the phylogeny. We

find that within-species variance is related primarily to long-lasting internal states of

the animal, what might be called a fly’s “mood,” and that inter-species variance can

capture how disparate behaviors may evolve together. This latter finding points to-

wards the presence of higher-order behavioral traits that may be amenable to further

evolutionary and genetic analysis.

4.2 Experiments and behavioral quantification

We captured video recordings of all behaviors performed by single flies isolated in

a largely featureless environment for multiple individuals from six species of the

Drosophila melanogaster species subgroup: D. mauritiana, D. melanogaster, D. san-

tomea, D. sechellia, D. simulans, and D. yakuba [24]. Although the animals could

not jump or fly in these chambers and were not expected to exhibit social or feeding

behaviors, the flies displayed a variety of complex behaviors, including locomotion

and grooming. Each of these behaviors involves multiple body parts that move at

varying time scales. The species studied here were chosen because their phylogenetic

relationships are well understood [42, 104, 29, 116] (summarized in the tree seen in

Fig. 4.3), and genetic tools are available for most of these species [126]. Since a single

strain represents a genomic “snapshot” of each species, we assayed individuals from

multiple strains from each species to attempt to capture species-specific differences,
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and not variation specific to particular strains (see Materials and Methods). In total,

we collected data from 561 flies, each measured for an hour at a sampling rate of 100

Hz.

Figure 4.2: Classification of fly species based on behavioral repertoires. A: A t-SNE
embedding of the behavioral repertoires shows that behavioral repertoires contain
some species-specific information. Each dot represents one individual fly, with dif-
ferent colors representing different species and different symbols with the same color
representing different strains within the same species. The distance matrix (561 by
561) used to create the embedding is the Jensen-Shannon divergence between the
behavioral densities of individual flies. B: Confusion matrix for the logistic regression
with each row normalized. All the values are averaged from 100 different trials. The
standard error is less than 0.01 for the diagonal elements and less than 0.005 for each
of the off-diagonal elements.

While previous studies have identified differences in specific behaviors, such as

courtship behavior, between these species [23, 39, 157, 3], here we assayed the full

repertoire of behaviors the flies performed in the arena, with the aim of identifying

combinations of behaviors that may be evolving together. To measure this repertoire,
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we used a previously-described behavior mapping method [13, 24] that starts from

raw video images and attempts to find each animal’s stereotyped movements in an

unsupervised manner. The output of this method is a two-dimensional probability

density function (PDF) that contains many peaks and valleys (Fig. 4.1A), where

each peak corresponds to a different stereotyped behavior (e.g., right wing grooming,

proboscis extension, running, etc).

Briefly, to create the density plots, raw video images were rotationally and trans-

lationally aligned to create an egocentric frame for the fly. The transformed images

were decomposed using Principal Components Analysis into a low-dimensional set of

time series. For each of these postural mode time series, a Morlet wavelet transform

was applied, obtaining a local spectrogram between 1 Hz and 50 Hz (the Nyquist fre-

quency). After normalization, each point in time was mapped using t-SNE [143] into a

two dimensional plane. Finally, convolving these points with a two-dimensional gaus-

sian and applying the watershed transform [91], produced 134 different regions, each

of these containing a single local maximum of probability density that corresponds to

a particular stereotypical behavior. Thus, by integrating the density of the region for

a particular fly, we can associate to each of them a 134-dimensional real-valued vector

that represents the probability of the fly performing a certain stereotyped behavior

at a given time. We will refer to this quantity as the animal’s behavioral vector ~P .

The behavioral map averaged across all six species is shown in Fig. 4.1A and

displays a pattern of movements similar to those we found in previous work, where

locomotion, idle/slow, anterior/posterior movements, etc. are segregated into differ-

ent regions [13, 24]. Averaging across all individuals of each species, we found the

mean behavioral vector for each species (Fig. 4.1B) and observed that each species

performs certain behaviors with different probabilities. For example, D. mauritiana

individuals spend more time performing fast locomotion than all other species on

average, and D. yakuba individuals spend much of their time performing an almost
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species-unique type of slow locomotion, but little time running quickly.

These average probability maps provide some insight into potential species differ-

ences, but to identify species-specific behaviors, we also need to account for variation

in the probability that individuals of each species perform each behavior. One way to

address this problem is to ask whether an individual’s species identity can be predicted

solely from its multi-dimensional behavioral vector. To explore this question, we first

used t-SNE to project all 561 individuals into a 2 dimensional plane (Fig. 4.2A), using

the Jensen-Shannon divergence as the distance metric between individual behavioral

vectors. In this plot, different colors represent different species, and different symbols

with the same color represent different strains within the same species. Although

there is not a clear segregation of all species in this plane, the distribution of species

is far from random, with individuals from the same species tending to group near to

each other.

To quantify this observation, we applied a multinomial logistic regression classifier

that performed a six-way classification based solely on the high-dimensional behav-

ioral vectors. After training, the classifier correctly classified 89 ± .2% of vectors

(using a randomly-selected test set of 30% of the entire data set). Moreover, the

confusion matrix (Fig. 4.2B) revealed no systematic misclassifications bias amongst

the species. Note that we have used a relatively simple classifier compared to mod-

ern deep learning methods [51], so these results likely represent a lower bound on

the distinguishability of the behavioral vectors. Thus, behavioral vectors appear to

contain considerable species-specific information. We therefore proceeded to explore

how these behavioral vectors may have evolved along the phylogeny.
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Figure 4.3: Reconstructed behavioral repertoires using the GLMM. Inferred prob-
abilities of the behavioral traits for the ancestral states are plotted in logarithmic
scale. Except for the ancestral root, other ancestral states are plotted with respect
to the closest ancestor. Here, all but the root ancestor are plotted with respect
to their closest ancestral state. Therefore, for each behavioral trait, i, we show:
log(P̄i)− log(P̄Anc

i ), where P̄ i and P̄Anc
i correspond to the inferred mean behavioral

trait for the given ancestor and its closest ancestor, respectively.

4.3 Reconstructing Ancestral Behavioral Reper-

toires

Multiple methods have been proposed for reconstructing ancestral states solely from

data collected from extant species [44, 158]. These methods generally fall into two

camps: parsimony reconstruction, which attempts to reconstruct evolutionary history

with the fewest number of evolutionary changes [34], and diffusion-processes, which

model evolution as a random walk on a multi-dimensional landscape [57]. Given

the high-dimensional behavioral vectors that we are attempting to model, a diffusion

process is more likely to capture the inter-trait correlations that we would like to

understand. Thus, we focus on a diffusion-based model here.
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Given a phylogeny for a collection of species, we modeled how species-specific com-

plexes of behaviors might have emerged. Specifically, we assumed that each behavior

is a quantitative trait, that is, each behavioral difference results from the additive

effects of many genetic loci, each of small effect. We do not, however, assume that all

behaviors evolve independently of each other. Thus, we are interested in predicting

(1) how behaviors co-vary and (2) whether intra- and inter-species variation can be

separated to identify independently evolving sets or linear combinations of behaviors.

We assumed that the flies’ behaviors evolved via a diffusion process, where initially

the process starts at the common ancestor behavioral representation and eventually

each individual’s trajectory performs a random walk with Gaussian noise along the

known phylogenetic tree. Note that this is a less stringent assumption than neutrality,

as multiple traits under selection may evolve in a correlated manner. More precisely,

we fit a Multi-response Generalized Linear Mixed Model (GLMM) to the data, using

the approach described in [55]:

~l = ~µ+ ~ρ+ ~e (4.1)

where ~l = (l1, ..., lK=134) denotes the logarithm of the behavioral vector ~P for each in-

dividual, ~µ is the mean behavior of the common ancestor (treated as the fixed effects

of this model), and ~ρ and ~e are the random effects corresponding to the phylogenetic

and individual variability, respectively. We assume that these random effects are gen-

erated from the multi-dimensional normal distributions N (~0, A⊗V (a)) (phylogenetic)

and N (~0, I ⊗ V (e)) (individual). Here, the matrix A represents the information con-

tained in the phylogenetic tree, with Aij being proportional to the length of the path

from the most recent common ancestor of species i and j to the main ancestor. This

matrix is normalized so that the diagonal elements are all equal to 1. I is the identity

matrix, and V (a) and V (e) are the covariance matrices that govern the process. We fit

µ, V (a), and V (e) using Markov Chain Monte Carlo (MCMC) simulation (see Materi-

als and Methods). We checked that the MCMC converged using the Gelman-Rubin
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Figure 4.4: The structure of variability between flies of the same species relates to long
timescale transitions in behavior. A: The intra-species behavioral covariance matrix
(V (e)), with columns and rows ordered via an information-based clustering algorithm
[122]. The black squares represent behaviors that are grouped together in the three
cluster solution. B: Behavioral map representation of the clustering solutions. The
two, three, and six cluster solutions are shown on top (colors on the three cluster
solution match those above the plot in A). The clusters are all spatially contiguous and
break down hierarchically (see Fig. C.3 for more examples). C: Clustering structure
of the behavioral space obtained finding the optimally predictive groups of behaviors
(see text for details). Note how these clusterings are nearly the same as the clusterings
in B, despite having been derived from an entirely independent measure.

diagnostic (see Materials and Methods, Fig. C.1). In addition to the inferred behav-

ioral states corresponding to the common ancestor, P̄Anc, we also reconstructed the

mean behavioral representations for the intermediate ancestors (Fig. 4.3). Further

validation of our results corresponding to the current species behavior is shown in

Fig. C.2.

4.4 Individual variability and long timescale cor-

relations

While it is not possible to directly test the accuracy of our ancestral state reconstruc-

tions, the inferred covariance matrices generate predictions about genetic correlations
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Figure 4.5: Variability within a species, long timescale transitions, and hidden states
modulating behavior. A: A cartoon of the hypothesized relation between individual
variability within a species and long timescale transitions through hidden states. B:
Accounting for the long timescale dynamics - by adjusting for the amount of time
spent in each coarse-grained region (here, the six cluster solution at the top right of
Fig. 4.4C) - affects the measured behavioral distributions between D. santomea and
D. yakuba. Shown is the comparison of the Mahalanobis distance ((zb)ij) between
behavioral distributions before (x-axis) and after (y-axis) adjusting. C: Kernel density
estimates of the distributions for the circled behaviors in B) on the left before (left)
and after (right) adjustments. Solid lines represent D. santomea and dashed lines
represent D. yakuba.

that are, in principle, testable. We therefore focus on our fitted covariance matrix,

V (e) ∈ <134×134, which accounts for within-species random effects.

We first note that V (e) exhibits a modular structure (Fig. 4.4A). After rearranging
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the behavior order via an information-based clustering procedure [122], we see that

a block diagonal pattern emerges, with positive correlations lying within the blocks

and negative correlations lying off the diagonal. This clustering approach minimizes

the functional F = 〈d〉 + βI(C; b), where 〈d〉 is the average within-cluster distance

between behaviors (defined here as dij = 1
2
[1 − V (e)

ij /
√
V

(e)
ii V

(e)
jj ]), I(C; b) is the mu-

tual information between cluster assignment and behavior number, and β modulates

the relative importance of the two terms (see Materials and Methods). This mod-

ular structure emerges when applying other clustering methods as well (Fig. C.3).

Quantifying the matrix’s modularity, we find that 〈d〉 ≈ 0.30 and 0.22 for the 3 and

6-cluster solutions respectively. These values are significantly smaller than the av-

erage distances obtained using random cluster assignments (〈d〉 = 0.46 ± 0.03 and

0.45±0.04 for 3 and 6 clusters respectively, see Fig. C.5). Strikingly, these clusters are

spatially contiguous in the behavioral map – implying that similar behaviors explain

much of the intra-species variance [12]. Moreover, new clusters emerge in a hierarchi-

cal fashion, where coarse-grained behaviors sub-divide into new clusters (Fig. 4.4B),

a feature that is not guaranteed by the information-based clustering algorithm.

This hierarchical structure of the behavioral space is reminiscent of the hierarchical

temporal structure of behavior that was hypothesized originally by ethologists [131]

and was observed to optimally explain the long timescale structure of Drosophila

melanogaster behavioral transitions [12]. To explore this connection further, we found

coarse-grainings of the behavioral space that are optimally predictive of the future

behaviors that the flies perform via the Deterministic Information Bottleneck (DIB)

[128]. Similar to the previously described information-based clustering method, this

approach minimizes a functional, Jτ = −I(b(t);Z(t + τ)) + γH(Z), where b(t) is a

fly’s behavior at time t, Z(t+ τ) is the coarse-grained behavior visited at time t+ τ ,

τ = 50, I(b(t);Z(t + τ)) is the mutual information between these quantities, γ is a

positive constant, and H(Z) is the entropy of the coarse-grained representation (see
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Material and Methods). As γ is increased, progressively coarser representations are

found.

Applying this method to the data pooled across all six species (Figs. 4.4C, C.4),

we again found the same type of hierarchical division in the behavioral space that

was observed for freely moving D. melanogaster [12]. Moreover, we found that the

structure of the space using this approach closely mirrors the structure found via clus-

tering V (e) (Fig. 4.4C). We quantify the similarity between both clustering partitions

by calculating the Weighted Similarity Index (WSI), a modification of the Rand Index

[109] (Materials and Methods). The WSI between the information-based clustering

method and the predictive information bottleneck for three clusters is WSI = 0.73

and WSI = 0.87 for six clusters. For random clusterings, we would expect to observe

0.51±0.02 and 0.70±0.01 for 3 and 6 clusters, respectively, indicating a non-random

overlap between these two partitions. Fig. C.3, shows that this result is independent

of the clustering method and the number of clusters.

The overlap between these two coarse-grainings indicates that most individual

variability in the behaviors we observe results from non-stationarity in behavioral

measurements, rather than from individual-specific variation. That is, much of the

intraspecific variation appears to reflect flies recorded when they were experiencing

different hidden behavioral states (i.e. “moods”), rather than reflecting fixed (en-

vironmental or genetic) differences between flies. This variation may have arisen

because, although we controlled many variables (e.g., fly age, circadian cycle, tem-

perature, and humidity), it is not possible to control for all internal factors (e.g.,

hunger, arousal, etc.) that affect an animal’s behavioral patterns [1]. The temporal

coarse-graining of the behavioral space that we found via the DIB, gives insight into

these non-stationarities, as they are optimally-predictive of the fly’s future behav-

iors. Given the contiguous nature of these regions, this result means that flies tended

to stay within specific regions of the behavioral space much longer than one would
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Figure 4.6: Phylogenetic variability and behavioral meta-traits. A: (top) Cluster-
ing the phylogenetic covariance matrix (using the same information-based clustering
method from Fig. 4.4), we observe that the clusters are no longer spatially con-
tiguous. (bottom) The phylogenetic covariance matrix reordered according to four
clusters (colors corresponding to the four-cluster map above). B: Fraction of vari-
ance explained by the largest eigenvalues of the phylogenetic covariance matrix. C:
The eigenvectors corresponding to the largest six eigenvalues. D: Distributions of the
projections of individual density vectors from D. santomea and D. yakuba onto eigen-
vector 3. E: Same as in D but using projections of individuals from D. sechellia and
D. simulans onto eigenvector 4. F: Same as in D but using projections of individuals
from D. simulans and D. mauritiana onto eigenvector 5.

assume from a Markov model.

This observation implies that variation in behavior observed among individuals,

especially in non-manipulated settings, is likely to often reflect a large component

of hidden behavior states (Fig. 4.5A). Thus, it may be possible to improve upon

behavioral measurements in many settings by controlling for the variability associated

with these hidden states. For example, just because one fly performs less anterior

grooming than another may reflect that the animal is in a different long timescale

behavioral state, rather than that the animal has a genetically encoded preference for
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reduced grooming.

A potential method for accounting for these artifacts is to normalize each indi-

vidual’s behavioral density such that the amount of time that the animal spends in

each of the coarse-grained regions is equalized. In other words, the amount of time

spent anterior grooming, locomoting, etc. are set to be the same for all animals, thus

accounting for the variability associated our inferred hidden states. Mathematically,

if Pi is the probability of observing behavior i, and Ci is the clustering assignment of

this behavior, we can define a normalized probability, P̂i, via

P̂i =
P̄ (Ci)

P
(Ci)
i

Pi, (4.2)

where P
(C)
i =

∑
k∈C Pk is the total density in cluster C for an individual fly and P̄ (C)

is the average across all animals.

We found that applying this normalization to our data often results in substantial

changes in the inferred distributions of behavioral densities. For example, Fig. 4.5B

displays how the difference in behavioral density between D. santomea and D. yakuba

(as measured by the Mahalanobis distance between the distributions) alters as a result

of normalization. For some behaviors, the signal increases (red points), and in some

cases, it reverses (blue points). Thus, it is important to take these non-stationary

effects into account when estimating how often single behaviors are performed in stud-

ies of behavioral evolution. To measure these non-stationary effects, many behaviors

must be measured, not just a focal behavior.

4.5 Identifying phylogenetically linked behaviors

One of the advantages of our approach is that we separate variations in behavior

corresponding to evolutionary patterns, the phylogenetic variability, from variations

among individuals of the same species. By studying the properties of the phylogenetic



72

covariance matrix (V (a)), we can identify behaviors that may be evolving together.

We first characterized the coarse-grained structure within V (a) through the information-

based clustering described in the previous section [122]. As seen in Fig. 4.6A, these

clusters are not spatially contiguous in the behavioral space. This pattern contrasts

to the spatial contiguity we observed for the individual covariance matrix (Fig. 4.4B).

For example, the two-cluster solution (Fig. 4.6A, left) separates the behavioral space

into side legs movements (middle) and certain locomotion gaits (far left) from the

rest of behaviors. Similarly, non-localized structure is also observed when the matrix

is clustered into a larger numbers of clusters as well.

One possible interpretation of these discontinuous clusters is that at the neural

level, each of these groups of movements may reflect a motor response to shared up-

stream commands [24]. For example, different types of locomotion might be controlled

through the same descending neural circuitry, but due to evolutionary changes, the

same commands could lead to different behavioral outputs, as has been observed in

fly courtship patterns [39]. Thus, examination of phylogenetically course-grained re-

gions such as these may provide a more biologically realistic view of suites of evolving

behaviors than does focus on single behaviors.

To quantify these patterns as traits, we decomposed V (a) via an eigendecompo-

sition. As seen in Fig. 4.6B, almost all of the variance within the matrix can be

explained with only the first six eigenmodes. These eigenvectors (Fig. 4.6C) share

similar non-local structure to the clusterings described above. By projecting individ-

ual behavioral vectors onto these eigenvectors, the resulting dot products represent a

meta-trait that is a linear combination of phylogenetically linked behaviors.

These evolving meta-traits may be suitable targets for further neurobiological or

genetic studies. Three examples of these distributions are shown in in Fig. 4.6D for

several pairs of closely related species. These three examples were not chosen at

random, but instead because they showed significant differentiation between species.
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The aim of this analysis is not to show that all meta-traits would differ between all

pairs of species, which strikes us as unlikely, but rather that it is possible to identify

synthetic meta-traits that could be further interrogated with experimental methods.

4.6 Discussion

We have developed a quantitative framework to study the evolution of behavioral

repertoires, using fruit flies (Drosophila) as a model system. We started with ob-

servations of 561 individuals from six extant species behaving in an unremarkable

environment. This assay did not include social behaviors, such as courtship and

aggression, nor many foraging behaviors. Thus, at first glance, it might seem like

we had excluded most species-specific behaviors from the analysis. Nonetheless, we

found that other complex behaviors, like walking, running, and grooming, exhibit

species-specific features that can be used to reliably assign individuals to the correct

species. Thus, the motor patterns of behaviors that are not normally investigated for

their species-specific features are clearly evolving between even closely related species.

It is not clear if these differences reflect natural selection or genetic drift on the de-

tails of these motor patterns. But, all of these behaviors would seem to be critical

to individual survival, so it is possible that these behaviors have evolved, at least in

part, in response to natural selection. It is clear, however, that the underlying neural

circuitry controlling these behaviors must have evolved.

Inspired by these observations, we estimated patterns of behavioral evolution in

the context of a well-understood phylogeny. We fit a Generalized Mixed Linear Model

to our behavioral measurements and the given phylogeny to reconstruct ancestral be-

havioral repertoires and the intra- and inter-species covariance matrices. We found

that the patterns of intra-species variability are similar to long timescale behavioral

dynamics. This suggests that much of the intraspecific variability that emerged by
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sampling flies under well-controlled conditions reflects variability in the hidden be-

havioral states of individual flies. This variability is a clear confound for evolutionary

and experimental studies of behavior and we therefore propose a method to control

for these internal states and improve the accuracy of behavioral phenotyping. We

showed that controlling for these internal states can dramatically alter estimates of

the “heritable” elements of behavior.

Given our estimates for how suites of behaviors evolved, we examined whether the

inter-species covariance matrix could be used to identify behavioral meta-traits that

might be subjected to further evolutionary and experimental analysis. We identified

multiple suites of behaviors that differed between closely related species, providing a

starting point for further analysis of how the mechanismns underlying these suites of

behaviors have evolved.

The analysis framework introduced here represents the first attempt to analyze

full behavioral repertoires to gain insight into evolution. In principle, this approach

could be applied to any data set where a large number of behaviors have been sam-

pled in many species. We envision several areas where future improvements may yield

more detailed, comprehensive, and biologically meaningful results. First, we recorded

behavior from only six species of flies. Adding additional species would place more

constraints on the evolutionary dynamics, likely resulting in less variance in the ances-

tral state estimations and potentially adding more structure to the relatively low rank

covariance matrices. Additionally, further work is required to determine the balance

between sampling within and between strains and species that optimizes estimates of

evolutionary dynamics.

Second, our framework assumes that all evolutionary changes in behavior resemble

a diffusion process. Although this assumption is a reasonable initial hypothesis [44], it

may be possible to test this assumption. For example, deeper sampling of additional

species may allow identification of specific behaviors on particular lineages where
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neutrality can be rejected [129].

In addition, all of our analyses involved measuring the fraction of behaviors per-

formed during the recording time, ignoring the temporal structure and sequences of

movements. While we show here that much of this information can be related to

the structure of the intra-species covariance matrix, the order in which behaviors

occured may also provide important biological information. It should be possible to

incorporate temporal structure directly into the regression. Deciding exactly which

quantities to measure and how they should be incorporated, however, are complex

questions that are outside the scope of this initial study.

Lastly, capturing the full range of animal behaviors for a large number of animals

presents a number of technological challenges, which is why we focused on measuring

behavior in a highly simplified environment. However, a more complete understanding

of the structure of behavior will require more sophisticated ways to capture behav-

ioral dynamics in more naturalistic settings and during complex social arrangements.

While modern deep learning methods have made tracking animals in more realistic

settings increasingly plausible [106, 89], there are still considerable hurdles to trans-

lating this information into a form that can be subjected to the kind of analysis we

propose here.

Despite these limitations, this work represents a new way to quantitatively charac-

terize the evolution of complex behaviors, which may provide new phenotypes that can

be subjected to experimental analysis. In the absence of a behavioral fossil record,

reconstructing ancestral behaviors requires an inferential approach like the one we

present here. In addition, more complex models could be built to test assumptions

underlying this initial, diffusion-based, model. Finally, a strength of our approach is

that it makes falsifiable predictions about how behaviors are linked mechanistically,

providing predictions that can be tested experimentally to provide further insight in

the genetic and neurobiological structure of behavior.
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4.7 Materials and Methods

4.7.1 Data collection

All imaging of fly behavior followed the procedures described in [24], but without

any red light stimulation. In total, we collected data from 561 individual from 18

strains and six species. These included three strains of D. mauritiana (mau29 : 29

flies, mau317 : 35 flies, mau318 : 32 flies), four strains of D. melanogaster (Canton-

S : 31 flies, Oregon-R: 33 flies, mel54 : 34 flies, mel56 : 31 flies), three strains of D.

santomea (san00 : 29 flies, san1482 : 33 flies, STO OBAT : 22 flies), three strains of

D. sechellia (sech28 : 32 flies, sech340 : 25 flies, sech349 : 33 flies), three strains of D.

simulans (sim5 : 33 flies, sim199 : 30 flies, Oxnard : 34 flies), and two strains of D.

yakuba (yak01 : 34 flies, CYO2 : 31 flies).

4.7.2 Generalized Linear Mixed Model

We fit our GLMM (Eq. 4.1) using the software introduced in [55]. The covariance

matrices V (e) and V (a) ∈ <K×K , K = 134 and the mean vector ~µ ∈ <K×1, were

inferred from the posterior distribution via MCMC sampling. Prior distributions for

the covariance matrices were given by Inverse Wishart Distributions (conjugate priors

for the multi-Gaussian model) with K degrees of freedom and 1
K+1

I+J
2

as scale matrix,

with J and I the unit and identity matrices respectively. Tree branch length were

estimated from [116].

4.7.3 Gelman-Rubin convergence diagnostic

This test evaluates MCMC convergence by analyzing the difference between several

Markov chains. Convergence is evaluated by comparing the estimated between-chains

and within-chain variances for each parameter of the model. Large differences between

these variances indicate non-convergence [48]. Let θ be the model parameter of in-
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terest and {θm}Nt=1 be the mth simulated chain, m = 1, 2, ...,M . Denote, θ̂m and σ̂2
m

be the sample posterior mean and variance of the mth chain. If θ̂ = 1
M

∑M
m=1 θ̂m is

the overall posterior mean estimator, the between-chains and within-chain variances

are given by:

B =
N

M − 1

M∑
m=1

(θ̂m − θ̂)2, W =
1

M

M∑
m=1

σ̂2
m. (4.3)

In reference [48], it is shown that the following weighted average of W and B is an

unbiased estimator of the marginal posterior variance of θ: V̂ = N−1
N
W + M+1

NM
B.

The ratio V̂ /W should get close to one as the M chains converge to the target

distribution with N → ∞. In reference [19] this ratio known as the potential scale

reduction factor (PSRF) was corrected to account for the the sampling variability

using Rc =
√

d+3
d+1

V̂
W

, where d is the degrees of freedom estimate of a t-distribution.

Values of PSRF for all model parameters such that Rc < 1.1 are used in [19] as a

criteria for convergence of the MCMC chains. Here, we used 20 independent chains,

each with a different initialization.

4.7.4 Information-based clustering

Minimizes the distance between elements within clusters while compressing the orig-

inal representation. The method minimizes the functional F = 〈d〉+ TI(C; i), where

I(C; i) =
∑N

i=1

∑Nc
C=1 P (C; i) log[P (C|i)

P (C)
] is the mutual information between the origi-

nal behavioral variable i and the representation C. 〈d〉 =
∑Nc

C=1 P (C)d(C), and d(C)

is the average distance of elements chosen out of a single cluster:

d(C) =
N∑
i1

N∑
i2

P (i1 | C)P (i2 | C)d(i1, i2), (4.4)

with d(i1, i2) being the distance measure between a pair of elements and P (i | C)

being the probability to find element i in cluster C.

Given | C |= Nc, T and a random initial condition for P (C | i), a solution is ob-
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tained by iterating the following self-consistent equations until the criteria Ft−Ft+1

Ft <

10−5 is satisfied. We chose 40, 000 different random values of T ∈ [0.1, 1000], Nc

between 2 and 20, and performed the optimization in each case until the convergence

criterion was met. We defined the Pareto front as the set of solutions P (C | i) such

that no other solution presents a smaller 〈d〉 and a smaller I(C; i). Finally, for each

number of clusters we selected the solution with the lowest 〈d〉.

For each number of clusters, the significance of the optimal value found for 〈d〉

is shown by comparing it to the average distance corresponding to random cluster

assignments. These assignments are made in such a way that the amount of elements

per cluster is conserved by randomly shuffling the vector that assigns each behavior

to a particular cluster. The values presented in the main text correspond to the mean

and standard deviation of 〈d〉 over 50 different random trials.

4.7.5 Deterministic Information Bottleneck

Here we use the Deterministic Information Bottleneck (DIB) method to find coarse-

grainings of the behavioral space that optimally predict future states [128]. Inspired

by the Information Bottleneck [132], DIB replaces the compression measure I(X,Z)

with the entropy H(Z), thus emphasizing constraints on the representation. DIB

minimizes the functional:

Lα = H(Z)− αH(Z | X)− βI(Z;Y ), (4.5)

with respect to p(z ∈ Z|x ∈ X) and takes the limit as α→ 0.

To apply DIB to the behavioral dynamics, we count time in units of the transitions

between states, providing a discrete time series of behaviors, b(n) that can take on

N = 134 different integer values at each discrete time n. Here, we relate the joint

distributions of b(n) (X in Eqn. 4.5) and b(n + τ) (Y ) through a coarse-grained
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clustering of the behavioral states (Z). We chose 10, 000 different pairs of random

values for β between 0.1 and 104 and Nc between 2 and 30 clusters. Given Nc, β and a

random initial condition for p(t | x), we find a solution by iterating the self-consistent

equations [128] until the convergence criteria | Lt − Lt+1 |< 10−6 is satisfied. If any

cluster has its probability become zero at any iteration, then that cluster is dropped

for all future iterations, thus Nc is the maximum number of clusters that can be

returned. Of these 10, 000 solutions, we keep all solutions that are on the Pareto

front (i.e., no other solution has both a higher I(Y ;T ) and a smaller H(T )). The

displayed clusters are the solutions on the Pareto front with the largest I(Y ;Z) for a

given number of clusters.

4.7.6 Weighted Similarity Index

We quantify the similarity between clustering partitions by calculating the Weighted

Similarity Index (WSI), a modification of the Rand Index [109] such that behaviors

contribute the index according to their overall probability. Specifically,

WSI =
∑
i,j∈Sa

Wij +
∑
k,l∈Sb

Wkl, Wij =
PiPk∑
kl PkPl

, (4.6)

where Sa(Sb) is the set of pairs of behaviors that belong to the same (different) cluster

in the two partitions and Pk is the probability of observing behavior k.
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Chapter 5

Conclusions

In this Dissertation, we have made progress towards solving a major challenge in

modern theoretical biophysics: namely, developing tools for inferring phenomeno-

logical models from data. We then used these statistical inference tools to answer

some of the what type of questions for different types of biological processes, from

enzymatic catalysis, to behavioral evolution. The inferred models, besides being able

to accurately explain experimental observations, often allow us to make predictions

about the systems, and sometimes even get insight into the underlying biological and

physical mechanisms.

In Chapters 2 and 3 of this Dissertation, we build on the idea initially proposed

in Ref. [35], where phenomenological models of living systems were built without

having to construct mechanistically accurate model first, to be coarse-grained later.

The complexity of biological systems would make the route requiring a mechanistic

model as an intermediate step a very challenging and in many cases a hopeless task.

In contrast, our approach of refining phenomenological models until their complexity

reaches what is needed to explain the data does not require to build a mechanistic

model as a stepping stone. Instead, we start from the simplest possible model and

progressively add details to it, until the complexity is sufficient to explain the studied
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data set. Which details are to be added, and in which order, is controlled by the

hierarchical structure, also known as a model family, which our approach adopts.

The multi-path model family, which we propose to study systems that can be seen

as FPP, successfully explain the completion probability distributions of two very

different types of biochemical processes (the spike generation in Purkinje Cells and

the single enzyme chemical reaction). Despite our models offering little understanding

of the mechanistic details of the processes, we show that no other models can have a

better fit than ours. Furthermore, they can provide meaningful insights and minimal

constraints on the mechanistic properties of the systems. The inferred model that

best describes the interspike interval (ISI) distributions of PC under different injected

currents makes good predictions of the entire ISI distribution at the values of the

current not used in training. Furthermore, the inferred model points out that any

biophysically realistic description of the spike generation process would require at

least 20 different states to explain the experimental data.

In contrast, for the single enzyme reaction, predictions for the FP time distribu-

tions not included in the training set are very poor, even if fits were great, as seen

in Chapter 3. However, the inferred model suggested that a small biochemical net-

work should be able to explain the enzymatic turnover times under different substrate

concentrations. Following on this observation, in Chapter 3, we proposed a different

model family, the biochemically-realistic model family, specially designed to infer the

smallest biochemically-realistic network to explain single enzyme reactions. The in-

ferred model within this hierarchy shows that a network with only four different states

can fit the data as good as the model inferred using the multi-path model family. Even

more, good predictions for the entire FP time distributions can be made using this

hierarchy. Therefore, in this Chapter, we show that in principle there could be many

hierarchies that can explain the data in a parsimonious way. However, the model

that encapsulates mechanistic biophysical constraints to recover the coarse-grained
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behavior makes better predictions. This signals that using generic machine learning

methods to infer physical models may not be very useful, and such methods need to

be tailored to the systems one wants to describe. On the other hand, the generic

multi-path model family gave us a lot of valuable information about the systems, and

we are very confident that this model family will have its use as a starting point for

description of many FPPs in biology.

In Chapter 4 we develop what we think is the first attempt to infer phenomenolog-

ical models of animal behavioral evolution. We show that under a simple and realistic

assumption that individuals of phylogenetically closely related species, evolve using a

difussion-like process in the behavioral space, we could infer the ancestral behavioral

repertories and the intra and inter-species behavioral variability. These results sug-

gest that a lot of the intra-species variability is related mostly to long-lasting internal

states of the animal, while the variability between individuals of different species can

capture different groups of behavior that could have evolved together. Despite we do

not have experimental evidence to test the reconstructed behavioral repertories, we

think that our approach provides a new framework for identifying co-evolving behav-

iors and may provide new opportunities to facilitate the study of the genetic bases of

behavioral evolution.

We conclude this Dissertation with the following notes. While our attempts above

represent some of the first, and sometimes disparate, attempts to study the what in

biological systems using automatic inference tools, we believe that they illustrate

a few important points. First, we think that our efforts show that the developed

computational tools will be useful in understand many diverse biological systems,

further advancing the field of phenomenological modeling. Second, our approach

illustrates the power of merging the physics-level model-based understanding with

modern statistical inference approaches, aligning with the booming trend of using

machine learning methods to learn new physics from experimental data, but doing
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this in a model-driven, interpretable way. Third, all of our developed methods require

a certain level of mathematical and computational sophistication. This signals a lot of

opportunities for future work to make these computational tools more user-friendly,

so that, at some point, they can be easily used by experimentalists themselves to

analyze other biological systems for which the appropriate experimental observations

have been done.
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Appendix A

A B

Figure A.1: Simulated PC membrane potential using the multi-compartmental model

proposed in [95] for A: low (I = 0.5 nA) and B: high (I = 3 nA) values of the injected

current.



85

A B

C D

Figure A.2: Best fit models from the multi-path model family for the ISIs distributions

of PCs. Color lines and bands (the latter often too narrow to be seen) show the mean

and the standard deviation of different models sampled from the posterior distribution

of each of the first five models in the family. The legends illustrate the decrease of the

cross entropy with the model complexity towards its minimum value of the entropy

of the histogram of the observed data. According to Tbl. 2.3, 4 paths are needed to

explain the ISI characteristics of synthetic under different external conditions. (A, B,

C, D) injected currents I = 0.5, 0.7, 1.0, 2.0 nA, respectively.
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A B

Figure A.3: Decomposition of the completion time PDF into contributions from dif-

ferent paths for (A) I = 0.1 nA and (B) I = 3.0 nA. Insets show the same data in

log-log units. In (A), the two pathways with the shortest completion time explain the

bulk of the distribution while the pathway with the longest average completion time

approximate the left tail of the distribution. In (B), pathways with shortest/longest

completion time contribute mostly to the intra/inter burst time scales.
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Appendix B
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Figure B.1: Best fitted model with M = 2 decomposed into completion paths. The

yellow path for low substrate concentrations is not needed (Tbl. 3.1), but for high

concentrations it explains the tail of the distributions
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Appendix C

Figure C.1: Gelman Rubin diagnostic for model parameters inferred using MCMC. A:
PSRF for the 134 ancestral behaviors inferred in the GLMM. 20 MCMC chains with
different initial conditions were used. B: PSRF for the phylogenetic covariance matrix
elements corresponding to the 10% most common behaviors performed by the mea-
sured flies. C: PSRF for the individual covariance matrix elements corresponding to
the 10% most common behaviors performed by the measured flies. The PSRF values
for all of these inferred parameters indicate that the MCMC chains are converging.
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Figure C.2: Comparison between measured and inferred behaviors (in log scale) for
each of the extant species. The mean of the measured behavioral repertoires for
all the individuals of a particular species is taken in the log scale. Each measured
behavioral mean gets compared to the mean obtained from the components of the
MCMC samples corresponding to that particular species and behavioral mode (i.e.,
the inferred behavioral repertories from the GLMM). The biggest differences occur
mostly in the low probability behaviors.
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Figure C.3: Behaviors clustered according to information of the individual covariance
matrix using three different clustering methods. A: Results using k-medoids clustering
method with distance matrix dij = (1−ρij)/2 for 2,3,..7 clusters. To the right, the WSI
between the clusters obtained using k-medoids and those obtained using predictive
information bottleneck method. Clearly, the similarity between these two orthogonal
measurements is significant, as can be shown when compared to the WSI calculated
by randomly shuffling the labels of the k-medoids clustering corresponding to each
number of clusters. B: Same as in A but we used Spectral clustering instead of k-
medoids. The similarity index between Spectral clustering and predictive information
bottleneck is also statistically significant. C: Same as in A but we used Information
based clustering instead of k-medoids. The similarity index between Information
based clustering and predictive information bottleneck is statistically significant as
well.
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