
 

Distribution Agreement  

 

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory 

University, I hereby grant to Emory University and its agents the non-exclusive license to archive, 

make accessible, and display my thesis in whole or in part in all forms of media, now or hereafter 

now, including display on the World Wide Web. I understand that I may select some access 

restrictions as part of the online submission of this thesis. I retain all ownership rights to the 

copyright of the thesis. I also retain the right to use in future works (such as articles or books) all 

or part of this thesis.  

 

Hithardhi Duggireddy                                       April 14, 2020  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Pre-Ictal Window Identification via Logistic Regression 

By 

 

Hithardhi Duggireddy 

 

Robert Gross M.D. Ph.D. 

Advisor 

 

 

 

Neuroscience and Behavioral Biology 

 

 

 

Robert Gross M.D. Ph.D. 

Advisor 

 

 

 

Michael Crutcher Ph.D. 

Committee Member 

 

 

 

Annaelle Devergnas Ph.D. 

Committee Member 

 

 

 

Mark Connolly B.S. 

Committee Member 

 

 

2020 

 

 

 

 

 

 

 



 

Pre-Ictal Window Identification via Logistic Regression 

By  

 

Hithardhi Duggireddy  

 

Robert Gross M.D. Ph.D.  

Advisor  

 

 

 

 

An abstract of 

a thesis submitted to the Faculty of Emory College of Arts and Sciences 

of Emory University in partial fulfillment 

of the requirements of the degree of 

Bachelor of Science with Honors 

 

 

Neuroscience and Behavioral Biology  

 

 

 

2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Abstract 

Pre-Ictal Window Identification via Logistic Regression 

By Hithardhi Duggireddy 

Epilepsy is a debilitating disease characterized by spontaneous recurring seizures. It is the 

4th most common neurological disorder. Mesial temporal lobe epilepsy (MTLE) is the most 

prevalent form of epilepsy and is the most resistant to medical therapy, with over 30% of patients 

failing to achieve adequate seizure control with antiepileptics. These patients may require surgery, 

but, resection of the epileptic focus is often not possible. An alternative therapy for these patients 

may be neural modulation via electrical stimulation; however, patients currently only experience 

approximately a 50% reduction in seizure frequency. A better fundamental understanding of 

mechanisms underlying seizure transition may be necessary for neural modulation to become more 

effective as a prophylactic therapeutic. Currently, research is being done to develop seizure 

prediction models to aid neural modulation; however, the pre-ictal windows used to develop these 

models are chosen arbitrarily. Therefore, the objective of this study was to develop a method to 

quantitatively delineate the pre-ictal window in order to prevent arbitrary pre-ictal window 

selection in seizure prediction models in order to improve neural modulation techniques and 

improve the understanding of neural dynamics that underlie seizure transition. By using a sliding 

window logistic regression classifier, we were able to test a spectrum of ground truths for a 

hypothesized pre-ictal window in a tetanus toxin (TeNT) rat model of epilepsy and in a non-human 

primate (NHP) penicillin (PCN) model of epilepsy.  Results revealed that our classifier was able 

to distinguish between pre-ictal and interictal windows, which were validated by AUC values 

greater than 0.5 and the presence of AUC plateaus, which were characterized by consecutive pre-

ictal window durations with similar receiver operating characteristics (ROC) curves and AUC 

values. Our tool has made it possible to quantitatively delineate the pre-ictal window on a subject-

specific basis and compare the pre-ictal neural dynamics between different seizure models.  
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Abstract 

 

Epilepsy is a debilitating disease characterized by spontaneous recurring seizures. It is the 

4th most common neurological disorder. Mesial temporal lobe epilepsy (MTLE) is the most 

prevalent form of epilepsy and is the most resistant to medical therapy, with over 30% of patients 

failing to achieve adequate seizure control with antiepileptics. These patients may require surgery, 

but, resection of the epileptic focus is often not possible. An alternative therapy for these patients 

may be neural modulation via electrical stimulation; however, patients currently only experience 

approximately a 50% reduction in seizure frequency. A better fundamental understanding of 

mechanisms underlying seizure transition may be necessary for neural modulation to become more 

effective as a prophylactic therapeutic. Currently, research is being done to develop seizure 

prediction models to aid neural modulation; however, the pre-ictal windows used to develop these 

models are chosen arbitrarily. Therefore, the objective of this study was to develop a method to 

quantitatively delineate the pre-ictal window in order to prevent arbitrary pre-ictal window 

selection in seizure prediction models in order to improve neural modulation techniques and 

improve the understanding of neural dynamics that underlie seizure transition. By using a sliding 

window logistic regression classifier, we were able to test a spectrum of ground truths for a 

hypothesized pre-ictal window in a tetanus toxin (TeNT) rat model of epilepsy and in a non-human 

primate (NHP) penicillin (PCN) model of epilepsy.  Results revealed that our classifier was able 

to distinguish between pre-ictal and interictal windows, which were validated by AUC values 

greater than 0.5 and the presence of AUC plateaus, which were characterized by consecutive pre-

ictal window durations with similar receiver operating characteristics (ROC) curves and AUC 

values. Our tool has made it possible to quantitatively delineate the pre-ictal window on a subject-

specific basis and compare the pre-ictal neural dynamics between different seizure models. 
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I. INTRODUCTION 

Epilepsy is a debilitating disease characterized by spontaneous recurring seizures. It is the 

fourth most common neurological disorder with 65 million people afflicted globally (England et 

al., 2012). Those afflicted experience significant burden due to disability caused by the disease. 

The pathophysiology and etiology of epilepsy is still relatively unknown, which makes 

determining appropriate treatment plans for the condition difficult (Stafstrom & Carmant, 2015). 

At present, we know that a seizure occurs due to a hypersynchronous discharge of neurons in the 

brain, which is speculated to have a multitude of causes across many levels of neural functioning 

from genetic and cellular abnormalities to mass neuronal circuit dysfunctions (Stafstrom & 

Carmant, 2015).  

The ambiguity in the etiology of epilepsy and the heterogeneity of seizures, make this a 

challenging disease to treat, with over one-third of patients failing to achieve adequate seizure 

control with antiepileptics (Perucca, 2014). In addition, these patients are also very prone to 

adverse effects, with prevalence peaking at 40%, which causes up to 30% of patients to discontinue 

antiepileptic medication (Perucca, 2014). Uncontrolled or poorly managed epilepsy takes a major 

toll of quality of life, as it increases risk of sudden accidental death, reduces employment 

opportunities, hinders psychosocial functioning, and impairs cognition (Willems, et al., 2018).  

Mesial temporal lobe epilepsy (MTLE), the focus of our study, is the most prevalent form 

of epilepsy and unfortunately, also happens to be the most resistant to medical therapy (Min et al. 

2013). MTLE involves the internal structure of the temporal lobe, with the epileptic focus often 

located in the hippocampus or its surrounding area. Typically, 80% of temporal lobe epilepsy cases 

are classified as MTLE (Blair, 2012). MTLE etiology, like most forms of epilepsy, is relatively 

unknown. Often times, a traumatic brain injury (TBI) during youth, prolonged febrile seizures, or 
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general head trauma are triggers (Blair, 2012). In addition to seizures, those with MTLE suffer 

from additional memory and mood deficits, which also don’t resolve with administration of 

antiepileptics (Blair, 2012). 

Therefore, over 30% of patients with intractable MTLE require surgery, most often in the 

form of an anterior temporal lobectomy (ATL) (Barr, 2016). This procedure involves the resection 

of the inferior and middle temporal gyri, uncus, part of the amygdala, and approximately 2-3 cm 

of the hippocampus and parahippocampal gyrus (Al-Otaibi, 2012). ATL provides the benefit of 

potential seizure freedom and a significant reduction in daily medication post-operation (Barr, 

2016). Although ATL has its benefits, not all patients with intractable MTLE can opt for the 

procedure. There are patients where resection of the anterior temporal lobe may not be feasible 

due to the location of the seizure focus and there are other patients that would face greater risks in 

the form of language and memory deficits than benefits from the resection (Martin et al., 2002). 

Furthermore, despite the claimed benefits, patients may not want areas of their brain totally 

resected, as this procedure cannot be reversed. Patients with intractable MTLE that don’t respond 

to medication and aren’t candidates for/don’t want to opt for surgical resection need another 

treatment option. 

An alternative therapy for these patients may be neural modulation via electrical 

stimulation, such as deep brain stimulation (DBS) or responsive neurostimulation (RNS). The 

principle of electrical neural modulation is to regulate endogenous processes via exogenous 

electrical stimulation through the implantation of electrodes in the target brain region (Nune et 

al.,2015). Generally, in the case of epilepsy, recording and stimulating electrodes are implanted at 

the localized epileptic focus, a region of epileptic spread, or a region that projects to the epileptic 

focus (Schulze-Bonhage, 2016). The recording electrode(s) monitor neural activity via 
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electrocorticographic recordings and stimulating electrodes can be either programmed to deliver 

constant electrical pulses (open-loop) or only stimulate during the detection of abnormal activity 

(closed-loop) that may be classified as seizure (ictal) activity (Ghasemi et al. 2018). The closed-

loop neural modulatory device reacts by delivering electrical stimulation via the stimulating 

electrode(s) in order to disrupt the epileptic signal and return neural activity to baseline. This 

closed-loop model of neural modulation is employed by the RNS (Sun & Morrell, 2014). DBS 

utilizes an open-loop model of neural modulation, meaning that it delivers a fixed pattern of 

electrical stimulation that is not driven by seizure detection; rather, its goal is to maintain baseline 

neural activity through constant modulation (Ghasemi et al. 2018). 

Despite the growing success of neural modulation, patients only experience approximately 

a 50% reduction in seizure frequency with few becoming seizure free (Laxpati et al., 2014). There 

are also additional disadvantages in the techniques employed by RNS and DBS. For RNS, the most 

significant disadvantage is that it’s a reactive therapy, rather than a proactive therapy. By the time 

a seizure is detected, and the RNS reacts to it, it may be too late to abort the seizure (Sun & Morrell, 

2014). DBS on the other hand, may provide more stimulation than necessary, as it is constantly 

active, which has been linked to potential memory impairments, is cost-ineffective (battery issues), 

and its mechanism of action is poorly understood (Zangiabadi et al., 2019). The disadvantages of 

both of these techniques stem from knowledge gaps in the neural dynamics of seizures and 

underlying epileptiform neural states. Specifically, ambiguity in what characterizes the transition 

between different epileptiform neural states are a limiting factor to furthering the success rate of 

neural modulation (Carney, 2011).  

Without the fundamental understanding of the mechanisms underlying the transition from 

the asymptomatic brain to that experiencing a seizure, neural modulation techniques may struggle 
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to become more effective as seizure prevention measures. One potential method to improve neural 

modulation therapies for the treatment of epilepsy would be through the study of the transition 

from an interictal to pre-ictal period (Carney, 2011). Characterizing the neural activity prior to a 

seizure will lead to the development of better seizure prediction models, which is an important 

next step for the advancement of neural modulation (Iasemidis, 2011). Since a key component in 

seizure prediction is being able to accurately delineate the transition from the non-seizure 

(interictal) state to the ictal state, it is vital that this transition period preceding ictal activity, known 

as the pre-ictal window, be closely studied to better understand the dynamics of seizure onset 

(Cook et al. 2013). The delineation of a pre-ictal window will allow researchers to better predict 

seizures in order to improve techniques for the tuning of stimulation parameters in prophylactic 

neural modulation therapies for epilepsy (Nagaraj et al., 2015). Although, research has already 

been done on seizure-prediction models, current seizure prediction methods use arbitrarily selected 

pre-ictal windows (DiLorenzo et al., 2019) (Kiral-Kornek et al., 2018) (Alotaiby et al., 2017). The 

subjective nature of this approach leads to lack of consistency across seizure prediction models, 

the inclusion of superfluous data, biased results, and minimal progress in the understanding of 

neural dynamics characterizing the transition to seizure. 

The objective of this study was to develop a method to quantitatively delineate the pre-ictal 

window on a subject-specific basis and to compare pre-ictal neural dynamics between different 

seizure models using a supervised machine learning classification model. From this study, 

electrophysiological neural features that characterize the pre-ictal window can be identified and 

studied to better understand the transition from the interictal state to the ictal state and also used to 

identify the appropriate, subject-specific stimulation patterns for modulating neural state.  
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II. METHODS 

A. Data Collection: NHP-PCN  

Local field potential (LFP) data was recorded from a non-human primate (NHP, rhesus 

macaque) penicillin (PCN) model of seizures. LFP is the measure of the electric potential, the 

summation of excitatory and inhibitory dendritic potentials, recorded in the extracellular space 

in neural tissue. The NHP-PCN model is characterized by spontaneous, frequent, and 

reproducible seizures that can be induced in a controlled manner via intrahippocampal injection 

of penicillin (Sherdil et al., 2018). Furthermore, the NHP-PCN model of epilepsy presents with 

hippocampal sclerosis, a common feature of MTLE in the clinical setting, and has similar 

symptomatogenic and irritative zones to humans with MTLE. (Sherdil et al., 2018). Therefore, 

results from analysis of the NHP-PCN model has the potential to provide good clinical 

translational value. 

In order to obtain LFP recordings from the NHP, surgery was performed to implant a 

chamber for acute recording and stimulation, electrocorticography (ECOG), and a head-fixation 

system (Crist Instrument Company, Hagerstown, MD) (Sherdil et al., 2018). The NHP was head-

fixed to an NHP behavioral chair while a motorized microdrive (NAN Instruments, Israel) was 

attached to the implanted chamber. After a brief recovery period, mapping was performed next 

to determine the proper hippocampal coordinates for the electrodes. The implanted chamber 

covers a large area and has a fine grid of holes on top demarcated with coordinates. We estimated 

the location of the hippocampus based on pre- and post-operative MRIs and based on an 

anatomical atlas (Martin and Bowden). From the chamber’s grid, we chose E5 as the coordinate 

that we would next drive two 12-contact electrodes (Heraeus, St. Paul, MN) through into the 

hippocampal region. To ensure that the electrodes were in the proper location, we monitored 
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single-unit (SU) recordings. After 5-10 minutes of rest to account for acute deformities in the 

brain, approximately 12,000 IU of PCN was injected at a rate of 1 µL//min via a cannula in the 

midpoint of the implanted electrodes. The tubing from the injection system was then clamped 

with a hemostat in order to prevent leakage of PCN to neural structures dorsal to the hippocampus 

as the cannula was withdrawn (Sherdil et al., 2018). 

 After injection of PCN, interictal spikes in the hippocampus appeared within 5 minutes, 

with the first seizure occurring within 10 minutes post-injection. Shortly after, we would observe 

the manifestation of electrographic seizures and begin recordings. LFP were recorded through a 

BlackRock Cerebus data acquisition system. The sampling rate of our recordings was 2000 Hz. 

Spontaneous, transient seizures would occur for approximately 3-5 hours post-PCN injection. 

Recordings were obtained until the last seizure occurrence exceeded 30 minutes (Sherdil et al., 

2018). 

B. Data Collection: Rat-TeNT 

Local field potential (LFP) data was recorded from a rat (Sprague Dawley rat) tetanus toxin 

(TeNT) model of seizure. The rat-TeNT model is characterized by a window (3-5 days) of 

frequent, spontaneous, heterogenous seizures, which provides a large amount of data in a short 

amount of time (Desai et al., 2016). Since this is a non-lesional model of MTLE, we have more 

confidence in the location of the epileptic focus, as brain lesions can cause the spread of seizures. 

This is, therefore, an excellent model to study non-sclerosing MTLE. 

 In order to obtain LFP recordings from the rats, surgery was performed to implant a 16-

channel TDT array (Tucker-Davis Technologies) (N = 11 rats) in a rat’s hippocampus (Desai et 

al., 2016) (Park et al., 2019). A craniectomy was performed over the right dorsal hippocampus 

and the cerebellum. Using a Nanoject microinjection device, 45 ng of tetanus toxin in 0.5 



 8 

microliters of sterile phosphate-buffered saline (PBS) was injected into the right dorsal 

hippocampus. 5 of the rats were also injected with AAV5-hSynapsinhChR2(H134R)-EYFP for 

another unrelated optogenetic experiment (Park et al., 2019). One skull screw was attached over 

the cerebellum to serve as the reference for recorded data and four other skull screws served as 

ground for stimulation purposes. The craniectomies were closed with the application of dental 

acrylic. The rats had a 1-week post-surgery recovery period.  

Spontaneous Racine scale 5 Seizures were induced in TeNT rats 5 to 7 days post-surgery. 

During this period, LFP activity in the rats was recorded using either NeuroRighter, which is an 

open-source system for multi-channel electrode closed-loop recording and/or stimulation (Desai 

et al., 2016), or using TDT, which is another open source system used for multi-channel electrode 

recording and/or stimulation (Park et al., 2019). A recording headstage was attached to the rats, 

which were placed in Plexiglass chambers, and a commutator was used to allow for rats to move 

freely during recording sessions. The sampling rate of all recordings was 2000 Hz. Seizure 

frequency peaked and was most consistent for 3-5 consecutive days 1-week post-surgery.  

C. Data Processing 

The data from the both models of epilepsy were annotated with seizure onset and offset 

times. Rat-TeNT data was annotated during the recording session itself. A seizure was only 

counted if it was either a Racine scale 4 (rearing) or Racine scale 5 (rearing and falling). Following 

recording sessions, rat-TeNT data was also annotated for electrographic seizures by at least 2 

observers, whose times were reconciled at the end (Desai et al., 2016). NHP-PCN data was 

annotated following the recording sessions by at least 2 observers. Video recordings were 

simultaneously presented in “real-time” with EEG recordings of the LFP. Seizure onset and offset 

times were recorded by the observers and reconciled at a later date. 
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 The LFP data, both rat-TeNT and NHP-PCN, was also filtered to remove potential artifacts. 

First, the data was run through a notch filter set in the range of 58 Hz to 62 Hz. This was done to 

remove 60 Hz noise caused by electrical output. Next a highpass filter was implemented at 2 Hz 

in order to remove oscillatory motion from cables hooked to the animals’ heads. Lastly, the data 

was also run through a lowpass filter set to 150 Hz in order to disregard all frequencies above 150 

Hz. All filtering incorporated zero-phase digital filtering and a Butterworth filter design. 

 Using the seizure annotations, the filtered LFP data was labeled with seizure start and stop 

times. The LFP data was then segmented to obtain the interictal period between two seizures. The 

new LFP segments only contain one seizure and its preceding interictal period until the end of the 

previous seizure (i.e. an interictal period plus an ictal period) (Fig. 1).  

 

 

Fig. 1: Annotated and segmented LFP from NHP-PCN used for subsequent feature extraction showing 

distinction between interictal and ictal periods. 



 10 

D. Feature Extraction 

In order for our classifier to identify our hypothesized pre-ictal state from the interictal 

(“baseline”) state, we decided to train it using frequency domain features. In order to extract 

frequency domain features from our LFP data, the mean power of the 5 canonical frequency bands 

(i.e. alpha, beta, gamma, delta, theta) were estimated using the Multi-Taper Method (MTM) for 

each LFP segment (Bababi & Brown, 2014).  

The MTM is an adaptation of the Fourier transform. This method was chosen to extract 

spectral features, as it is generally considered to provide one of the most accurate frequency 

domain estimates. The MTM calculated our desired spectral features by initially windowing 

interictal period data into 0.5-second overlapping windows (0.01 second overlap) and computing 

a Fourier transform for each of the windows. This results in independent estimates of the power 

spectral density (PSD) of each window or “taper”. The orthogonal tapers are then averaged to give 

a better estimate of the frequency domain since the resulting frequency domain estimate will have 

a lower variance than if only one Fourier transform was taken for the entire interictal period at 

once (Bababi & Brown, 2014). 
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Fig. 2a: Example of NHP-PCN interictal window presented in time domain, as a power spectral density, 

and as a spectrogram calculated using MTM. Depicts conversion from time to frequency domain in order to 

extract spectral features. 

Fig. 2b: Example of Rat-TeNT interictal window presented in time domain, as a power spectral density, and 

as a spectrogram calculated using MTM. Depicts conversion from time to frequency domain in order to 

extract spectral features. 
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Since our study’s focus is on the dynamics that precede a seizure (i.e. pre-ictal window), 

only the interictal period’s frequency features were estimated using MTM (Fig. 2a and 2b). The 

following criteria was established in the extraction of these frequency bands: delta [0-4 Hz], theta 

[4-8 Hz], alpha [8-13 Hz], beta [13-32 Hz], Gamma [32-60 Hz] (Myers et al. 2017). We referred 

to the mean power of these 5 spectral frequency bands as electrophysiological neural features 

(ENFs). 

E. Supervised Learning: Logistic Regression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to identify the pre-ictal window, we utilized a supervised learning algorithm – 

logistic regression. Logistic regression is a classification algorithm used when there is a categorical 

response variable. In this case, our response variable was “pre-ictal”, represented by a “1”, or 

“interictal”, represented by a “0”. Logistic regression aims to find a relationship between features 

that may represent one of the categorical outcomes and the probability of a specific outcome. In 

the context of this study, logistic regression is trained to estimate the probability that data 

Fig. 3: Diagram of logistic regression classifier with sliding 

window. 
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consisting of ENFs from a specific time window is either pre-ictal or interictal (baseline) (Bewick 

et al., 2005).  

We asserted a spectrum of hypothesized ground truth corresponding to the duration of the 

pre-ictal window by utilizing a sliding window (Fig. 3). We established the interictal window a 

priori, but tested various durations of the pre-ictal window, as this window length is not known. 

The duration of the interictal window was balanced with the duration of the hypothesized pre-ictal 

window (i.e. If the pre-ictal window being tested was 10 seconds long, that data was compared 

with a 10-second-long interictal window). We used the time directly in the middle of two 

consecutive seizures to serve as the starting point for the interictal windows and the time of seizure 

onset to serve as the starting point for all hypothesized pre-seizure windows. A constant amount 

of data was subsampled for each window length, which was then fed into the logistic regression 

classifier. This was done as classifier performance is likely to increase as more data is given and 

could be a potential confounding variable when determining pre-ictal window duration. A K-fold 

cross-validation was performed (K = 5) on the data in order to assess the generalizability of our 

classifier by ensuring that our classifier wasn’t simply “memorizing” data and overfitting in order 

to increase performance (Little et al., 2017).  

The receiver operating characteristics (ROC) curve was calculated for each pre-ictal 

window length and its corresponding area under the curve (AUC) was calculated (Bewick et al., 

2005). We used the AUC as our metric to discern whether or not a pre-ictal window could be 

discriminated from the interictal window it was being compared to of equal duration. The goal of 

our classification model was to use a sliding window to test the hypothesis that data from a pre-

ictal window of a given length may be discriminated from an equal length interictal window.  
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F. Classification: NHP-PCN 

We used data from 10 total NHP-PCN recordings of the same NHP to train our classifier. 

After removal of data containing high levels of artifact, the total remaining number of seizures 

were n = 24. Pre-ictal window identification was performed by training the classifier with a subset 

of these seizures and testing on a new subset of seizures from the same animal. The resulting pre-

ictal window classification represented data across different days of recording for the same NHP. 

Training and testing were done in this manner to see if the classifier could generalize between 

different days’ recording sessions, as seizures induced via PCN may be heterogenous when 

compared between multiple recordings/days.  

G. Classification: Rodent TeNT 

We used data from 11 different rats (n = 200 seizures) to train and test our classifier in a 

joint analysis of all rats. This was done to see if the classifier could generalize between seizures of 

different days and varying presentations between animals. Since TeNT-induced seizures are very 

heterogenous, proper pre-ictal window classification would necessitate that the classifier be able 

to generalize between various presentations of seizure. Pre-ictal window identification was also 

performed on individual animal’s that had at least 20 artifact-free seizure recordings available. 

This resulted in an individual analysis of 3 rats. This was done to have a comparison to the 

individual NHP analysis and to see how classifier performance differs between a joint analysis of 

several different animals across multiple recording days and an analysis of the same animal across 

multiple recording days.  
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III. RESULTS 

A. NHP-PCN  

 

 

 

For the single NHP, ROC curves for each window length corresponding to a hypothesized 

pre-ictal window duration were initially calculated to determine classifier performance. Using 

these ROC curves, the AUC was calculated for each of the hypothesized pre-ictal window 

durations for the NHP-PCN model of epilepsy in order to determine the degree of separability 

between interictal and pre-ictal data for the respective window duration. The classification 

threshold is 0.5. If an AUC is at or below 0.5, we can assume that classification is primarily due 

Fig. 4: NHP analysis results. (Top) The corresponding AUC values for each pre-ictal window duration are plotted with 

confidence intervals for the AUC values depicted as vertical bars. (Bottom) ROC curves of key pre-ictal window 

durations plotted. The first and last ROC curves correspond to the longest and shortest window length and the third and 

fourth ROC curves correspond to the start and stop of an AUC plateau. 
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to chance (AUC = 0.5) or false positive rate is universally greater than true positive rate (AUC < 

0.5).  

Until a window duration of 26 seconds the AUC remains above 0.5; however, when we 

take into account confidence intervals, 21 seconds is the final window duration that has an AUC 

above 0.5. More notably, however, we can identify an AUC plateau around an AUC of 0.65 for 

window durations of 2 seconds to 14 seconds, with lower bound confidence intervals never 

crossing an AUC of 0.6 (Fig. 4). In addition, the ROC curves of the bounds of this plateau (2s, 

14s) are very similar, which indicates that both window durations contain distinguishable pre-

ictal window data (Fig. 4). Preceding this AUC plateau is the peak AUC of 0.70 at a pre-ictal 

window duration of 1 second. Proceeding the AUC plateau is a steady decline in AUC beginning 

with a pre-ictal window duration of 15 seconds. Beyond this continuous decline in AUC 

following the AUC plateau period (2s – 14s), no sharp dip in AUC was visualized after any other 

window duration. 
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B. Rat-TeNT – Individual Rat Analysis 

For the analysis of Rat-TeNT data, results are broken up into N = 3 individual rats’ 

results and then a joint analysis of all rats’ (N = 11) seizure recordings (n = 200). 

 

 

 

For Rat 1, ROC curves for each window length corresponding to a hypothesized pre-ictal 

window duration were initially calculated to determine classifier performance. Using these ROC 

curves, the AUC was calculated for each of the hypothesized pre-ictal window durations for Rat 

1 of the Rat-TeNT model of epilepsy in order to determine the degree of separability between 

interictal and pre-ictal data for the respective window duration. The classification threshold is 

Fig. 5: Rat 1 analysis results. (Top) The corresponding AUC values for each pre-ictal window duration are plotted 

with confidence intervals for the AUC values depicted as vertical bars. (Bottom) ROC curves of key pre-ictal window 

durations plotted. The first and last ROC curves correspond to the longest and shortest window length and the third 

and fourth ROC curves correspond to the start and stop of an AUC plateau. 
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0.5. If an AUC is at or below 0.5, we can assume that classification is primarily due to chance 

(AUC = 0.5) or false positive rate is universally greater than true positive rate (AUC < 0.5).  

Until a window duration of 18 seconds the AUC remains above 0.5 with confidence 

intervals taken into account. We can identify an AUC plateau around an AUC of 0.51-0.52 for 

window durations of 7 seconds to 17 seconds, with lower bound confidence intervals never 

crossing an AUC of 0.5 (Fig. 5). In addition to this plateau, window durations from 5 seconds to 

18 seconds show a steady pattern in AUC holding above 0.5 and staying under 0.6. Also, of note, 

the ROC curves of the bounds of this plateau (5s, 18s) are practically identical, which indicates 

that both windows contain distinguishable pre-ictal data (Fig. 5). Pre-ictal window durations less 

than 5 seconds have AUC’s greater than 0.7. Beyond a window duration of 18 seconds, the AUC 

of all subsequent windows is either at or below 0.5 or has a lower bound confidence interval at 

or below 0.5. 
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For Rat 2, ROC curves for each window length corresponding to a hypothesized pre-ictal 

window duration were initially calculated to determine classifier performance. Using these ROC 

curves, the AUC was calculated for each of the hypothesized pre-ictal window durations for Rat 

2 of the Rat-TeNT model of epilepsy in order to determine the degree of separability between 

interictal and pre-ictal data for the respective window duration. The classification threshold is 

0.5. If an AUC is at or below 0.5, we can assume that classification is primarily due to chance 

(AUC = 0.5) or false positive rate is universally greater than true positive rate (AUC < 0.5).  

Fig. 6: Rat 2 analysis results. (Top) The corresponding AUC values for each pre-ictal window duration are plotted 

with confidence intervals for the AUC values depicted as vertical bars. (Bottom) ROC curves of key pre-ictal window 

durations plotted. The first and last ROC curves correspond to the longest and shortest window length and the third 

and fourth ROC curves correspond to the start and stop of an AUC plateau. 
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The AUC remains above 0.5 with confidence intervals taken into account at all window 

durations (1s-30s) (Fig. 6). We can identify an AUC plateau around an AUC of 0.70 for window 

durations of 5 seconds to 26 seconds, with lower bound confidence intervals never crossing an 

AUC of 0.5 (Fig. 6). Window durations from 1 seconds to 4 seconds show relatively high AUC’s 

as they are above 0.75, with small confidence intervals. Even after the plateau of 26 seconds, 

although AUC begins to decline, it stays above 0.50 at all subsequent pre-ictal window durations 

from 27 seconds to 30 seconds. The ROC curve for 5 seconds looks very similar to the ROC 

curve for 25 seconds, which indicates that both windows contain distinguishable pre-ictal data 

(Fig. 6). However, the ROC curve for 30 seconds also looks similar to those of smaller pre-ictal 

window durations. This may suggest that the pre-ictal window may extend beyond 30 seconds 

pre-seizure. This may also suggest that the logistic regression model may have overfit this data 

by memorizing it, which may be due to the fact that Rat 2 had the fewest seizures (n = 20) to 

train and test on compared to Rat 1 (n = 49) and Rat 3 (n = 54). 
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For Rat 3, ROC curves for each window length corresponding to a hypothesized pre-ictal 

window duration were initially calculated to determine classifier performance. Using these ROC 

curves, the AUC was calculated for each of the hypothesized pre-ictal window durations for Rat 

3 of the Rat-TeNT model of epilepsy in order to determine the degree of separability between 

interictal and pre-ictal data for the respective window duration. The classification threshold is 

0.5. If an AUC is at or below 0.5, we can assume that classification is primarily due to chance 

(AUC = 0.5) or false positive rate is universally greater than true positive rate (AUC < 0.5).  

Fig. 7: Rat 3 analysis results. (Top) The corresponding AUC values for each pre-ictal window duration are plotted 

with confidence intervals for the AUC values depicted as vertical bars. (Bottom) ROC curves of key pre-ictal window 

durations plotted. The first and last ROC curves correspond to the longest and shortest window length and the third 

and fourth ROC curves correspond to the start and stop of an AUC plateau. 
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Until a window duration of 20 seconds the AUC remains above 0.5 with confidence 

intervals taken into account. We can identify an AUC plateau around an AUC of 0.63-0.64 for 

window durations of 4 seconds to 17 seconds, with lower bound confidence intervals never 

crossing an AUC of 0.5 (Fig. 7). In addition to this plateau, window durations from 4 seconds to 

17 seconds show a steady pattern in AUC holding above 0.6 and staying under 0.7. Of note, the 

ROC curves of the bounds of this plateau (4s, 17s) are practically identical, which indicates that 

both windows contain distinguishable pre-ictal data (Fig. 7). Pre-ictal window durations less than 

4 seconds having decreasing AUC from 1 second window to the 3 second window, before 

stabilization at 4 seconds. Beyond a window duration of 17 seconds, the AUC of all subsequent 

windows, except for a pre-ictal window 18s and 19s, is either at or below 0.5 or has a lower 

bound confidence interval at or below 0.5. 

It is worth noting that the confidence intervals are much larger in window durations equal 

or greater than 20 second when compared to shorter window durations less than 20 seconds. This 

increased variability associated with a lower AUC overall may be due to interictal spikes being 

included in the interictal window data. This may resemble the pre-ictal window and, thus, reduce 

overall AUC due to a poorer ability to discriminate even though the window may still contain a 

good amount of pre-ictal data. The increased variability may also simply be due to artifact. 
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C. Rat-TeNT – Joint Rat Analysis 

 

 

 

 

 

For all rats (N = 11), ROC curves for each window length corresponding to a hypothesized 

pre-ictal window duration were initially calculated to determine classifier performance. Using 

these ROC curves, the AUC was calculated for each of the hypothesized pre-ictal window 

durations for the joint analysis Rat-TeNT model of epilepsy in order to determine the degree of 

separability between interictal and pre-ictal data for the respective window duration. The 

classification threshold is 0.5. If an AUC is at or below 0.5, we can assume that classification is 

Fig. 8: Joint rat analysis results. (Top) The corresponding AUC values for each pre-ictal window duration are plotted 

with confidence intervals for the AUC values depicted as vertical bars. (Bottom) ROC curves of key pre-ictal window 

durations plotted. The first and last ROC curves correspond to the longest and shortest window length and the third and 

fourth ROC curves correspond to the start and stop of an AUC plateau. Note: No distinct plateau showing successful 

classification observed. 
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primarily due to chance (AUC = 0.5) or false positive rate is universally greater than true positive 

rate (AUC < 0.5).  

Pre-ictal window durations of greater than 2 seconds caused the AUC to remain at or below 

0.5 with confidence intervals taken into account (Fig. 8). This means that our pre-ictal window 

classifier identified a brief 2 second common pre-ictal duration across all rats. AUC only remains 

above 0.5 for window duration of 1 and 2 seconds. There is a sharp decline in AUC from 0.68 at 

window duration of 2 seconds to below 0.5 at window duration of 3 seconds. After a window 

duration of 3 seconds, the AUC scores do not surpass 0.5, with confidence intervals taken into 

account. The ROC curves show that classification occurs by chance, as there is an equal rate of 

false positives as there are true positives for pre-ictal window durations greater than 2 seconds. 
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IV. DISCUSSION 

By using a sliding window, we were able to test a spectrum of ground truths for a 

hypothesized pre-ictal window duration. The results of our study reveal that a pre-ictal window 

characterizing the transition from the intertidal state to the ictal state can be distinguished within 

the baseline interictal window. Although our results do not allow us to confidently identify a 

singular, clear-cut pre-ictal duration, we showed that our classifier was able to distinguish between 

the pre-ictal and interictal window for a variety of window durations. Discrimination was apparent 

when the AUC was greater than 0.5 or there was an AUC plateau, which consisted of several 

window durations presenting with similar AUC results and similar ROC curves. These findings 

indicate that our classifier was able to discriminate between the two windows (interictal and pre-

ictal) as it detected underlying differences in the features that it was trained and tested on for each 

respective window. Our results showed variability when it came to the model of epilepsy we were 

training and testing on and whether we were attempting to classify pre-ictal windows on an 

individual animal’s seizures or seizures jointly across all animals of a respective model. In this 

case, only the Rat-TeNT model had multiple animals. 

Since there was only data available from one NHP, we were unable to see if our algorithm 

could generalize across multiple NHPs with PCN-induced seizures. However, from analysis of the 

single NHP, we were able to identify an AUC Plateau from a pre-ictal window duration of 2 

seconds to a pre-ictal window duration of 14 seconds. After this 14 second window, AUC steadily 

declined until it eventually reached 0.5. This plateau period was also characterized by similar ROC 

curves. Altogether this means that within each of the windows, there existed some pre-ictal 

characteristics that differentiated them from interictal windows. Although we know what ENFs 

were used for classification purposes, we have yet to study how these features are implicated in 
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the transition from non-seizure to seizure. Since our model allows us to pinpoint objectively 

determined, pre-ictal window lengths of interest, it will allow for further investigation into the 

exact behavior of these features, such as theta power, in the time segment we have identified as 

prone to seizure.  Having a better understanding of key seizure-onset biomarkers will not only 

expand our current understanding seizure dynamics, but also may increase the potential for the 

development of better prophylactic neural modulation treatments (i.e. proactive, rather than 

reactive). 

It is also important to note that our classifier appeared to be able to generalize across 

multiple days of recordings for the NHP, as we were able to discern a pre-ictal window duration; 

however, more data and a new cross validation approach will be necessary to give more credibility 

to our classifier’s generalization ability. Our train and test sets consisted of randomized interictal 

windows. This means that our classifier might have had a train set that had a sample of interictal 

windows from all of the recording sessions, which means the classifier may have overfit to our 

NHP-PCN data. Since PCN-induced seizures appear to be heterogenous between different 

recording sessions, it is possible that precise mechanism of transition from baseline to seizure may 

have varied between sessions. Therefore, a stronger test of generalizability would be to have a 

train test consisting of interictal windows from the same day of recording and then tested on 

interictal windows from different days of recordings. However, due to the limited quantity of data 

we had for each recording session, this cross-validation approach was unable to be performed. 

Therefore, in order to further validate whether or not our classifier can truly generalize between 

multiple days of seizure presentation and different cross-validation approach, along with more data 

per recording session will be necessary. Another approach would be to compare multiple NHPs 

and see if our classifier could generalize across animals. In order to test this possibility, we 
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conducted a joint analysis of all TeNT rats; however, it is important to note that in order to keep 

results consistent, the rat-TeNT data was cross-validated in the same manner as the NHP-PCN 

data. 

Classification of the pre-ictal window using our sliding window method on individual rats 

revealed potential evidence for several unique pre-ictal window lengths for each animal. Each 

animal’s pre-ictal window classification varied, as the pre-ictal window duration that preceded the 

AUC falling to or below 0.5 was different for all 5 animals. However, as seen in the NHP, a general 

trend that emerged was the presence of an AUC plateau after an initial drop-off in AUC, which 

was typically in the earlier windows, and a second drop-off in AUC, which would be followed by 

a steady decline until an AUC of 0.5 was reached. The shorter pre-ictal windows, usually 1-3 

seconds, had much higher AUCs than that of pre-ictal window durations within the AUC plateaus. 

This first drop-off in AUC may occur due to the detection of a propagating seizure from adjacent 

neural tissue. A limitation of our recording methods is that we cannot be 100% certain that the 

seizure onset we see on EEG is the true seizure onset time. We may be detecting a seizure that has 

already started in adjacent neural tissues. This limitation would create outlier data in the shorter 

pre-ictal windows as they are closer to seizure onset and now may actually contain some seizure 

data. This will inevitably lead to a higher AUC due to how distinct seizure data and interictal data 

is.  

The second drop-off in AUC is more in-line with what we expected. This second drop-off, 

which is followed by a steady decline in AUC until 0.5 is reached, could be signaling the transition 

point between the interictal window and pre-ictal window. Since there is an “AUC plateau” present 

before the second drop-off in AUC, it is reasonable to think that this plateau may be our best 

estimate of the pre-ictal window’s duration. Based on this logic, the start of Rat 1’s pre-ictal 
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window may be 18 seconds prior to seizure onset, the start of Rat 2’s pre-ictal window may be 26 

seconds prior to seizure onset, and the start of Rat 3’s pre-ictal window may be 17 seconds prior 

to seizure onset, as the second AUC drop-off and steady decline follows these pre-ictal window 

durations and indicates the end of the AUC plateau. Comparison of ROC curves amongst all the 

window durations within the AUC plateau reveals very similar curves, which implies that within 

each window, there exists some pre-ictal characteristics that differentiated them from interictal 

windows. This is similar to what we saw in the NHP. 

Analysis of individual rats also revealed to us that the true pre-ictal window may not be the 

same for all individuals. Despite seizures being induced by the same models and the same 

conditions applied during surgery and recording sessions, all rats seemed to have a different 

estimated pre-ictal window duration at the end of their “AUC plateau”. This may be due to the fact 

that the rodent TeNT model of epilepsy creates very heterogenous seizures. Therefore, each rat’s 

presentation of “epilepsy” was most likely different. Although, this mirrors reality, as clinically, 

seizures may present differently across patients, as well.  

In the joint analysis of all rats, our classifier was unable to provide us with any estimate of 

pre-ictal window duration with an associated AUC of above 0.5, except for window durations of 

1 second and 2 seconds. Therefore, our classifier appeared to find a shortest common denominator 

of 2 seconds as a pre-ictal window across all rats. This may be evidence that the TeNT-induced 

seizure model consists of subject-specific pre-ictal window lengths. This finding makes sense as 

TeNT-induced seizures are very heterogenous in presentation in rodents. Furthermore, since each 

rat had appeared to have its own pre-ictal window duration, each animal may have its own unique 

mechanisms of transition to seizure. Therefore, our algorithm may have been unable to detect 

sufficient commonalties between transitions to seizure across all rats beyond the identified 2-
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second pre-ictal window duration. Regardless, a 2-second pre-ictal window may still provide more 

clinical utility than a detection-based approach (RNS), as it increases the time-window to 

potentially abort an oncoming seizure if this window were to be used in a prediction-based neural 

modulation therapy. 

Our tool has made it possible to quantitatively delineate the pre-ictal window on a subject-

specific basis and compare the pre-ictal neural dynamics between different seizure models using a 

supervised machine learning model. This study provides the opportunity to gain valuable insight 

into the transition to seizure as we have identified potential estimates of the pre-ictal windows of 

individual rats, a common brief pre-ictal window in all rats, and the pre-ictal window of an 

individual NHP. A more in-depth analysis of these windows may reveal important information, 

such as the behavior of key ENFs or the identification of novel ENFs that characterize the pre-ictal 

window. More specifically, ENFs that characterize the pre-ictal window can be studied to better 

understand the transition from non-seizure to seizure and may be used to identify appropriate, 

subject-specific stimulation patterns for modulating neural state. With more data, better 

classification can be done using feature-learning algorithms, so as to continue improving our 

understanding of and ability to accurately identify the pre-ictal window.  

Clinically, the identification of an accurate pre-ictal window may lead to more effective 

neural modulation therapies by developing a proactive approach, rather than a reactive approach. 

A direct application could be the deployment of a subject-specific pre-ictal classifier on future 

clinical devices. Future work would focus on developing a better classifier using more features 

and a more robust cross-validation approach, improving our understanding of the fluctuations of 

key ENFs during the pre-ictal window in order to better characterize the neural dynamics that 

underlie the transition to seizure, improving seizure prediction capabilities for use in neural 
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modulation therapeutics by curbing the practice of arbitrarily selected pre-ictal windows, and 

developing better subject-specific stimulation patterns for modulating neural state. 
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V. FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Annotated and segmented LFP from NHP-PCN used for subsequent feature extraction showing 

distinction between interictal and ictal periods. 
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Fig. 2a: Example of NHP-PCN interictal window presented in time domain, as a power spectral density, 

and as a spectrogram calculated using MTM. Depicts conversion from time to frequency domain in order to 

extract spectral features. 
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Fig. 2b: Example of Rat-TeNT interictal window presented in time domain, as a power spectral density, and 

as a spectrogram calculated using MTM. Depicts conversion from time to frequency domain in order to 

extract spectral features. 
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Fig. 3: Diagram of logistic regression classifier with sliding 

window. 
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Fig. 4: NHP analysis results. (Top) The corresponding AUC values for each pre-ictal window duration are plotted with 

confidence intervals for the AUC values depicted as vertical bars. (Bottom) ROC curves of key pre-ictal window 

durations plotted. The first and last ROC curves correspond to the longest and shortest window length and the third and 

fourth ROC curves correspond to the start and stop of an AUC plateau. 
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Fig. 5: Rat 1 analysis results. (Top) The corresponding AUC values for each pre-ictal window duration are plotted 

with confidence intervals for the AUC values depicted as vertical bars. (Bottom) ROC curves of key pre-ictal window 

durations plotted. The first and last ROC curves correspond to the longest and shortest window length and the third 

and fourth ROC curves correspond to the start and stop of an AUC plateau. 
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Fig. 6: Rat 2 analysis results. (Top) The corresponding AUC values for each pre-ictal window duration are plotted 

with confidence intervals for the AUC values depicted as vertical bars. (Bottom) ROC curves of key pre-ictal window 

durations plotted. The first and last ROC curves correspond to the longest and shortest window length and the third 

and fourth ROC curves correspond to the start and stop of an AUC plateau. 
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Fig. 7: Rat 3 analysis results. (Top) The corresponding AUC values for each pre-ictal window duration are plotted 

with confidence intervals for the AUC values depicted as vertical bars. (Bottom) ROC curves of key pre-ictal window 

durations plotted. The first and last ROC curves correspond to the longest and shortest window length and the third 

and fourth ROC curves correspond to the start and stop of an AUC plateau. 
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Fig. 8: Joint rat analysis results. (Top) The corresponding AUC values for each pre-ictal window duration are plotted 

with confidence intervals for the AUC values depicted as vertical bars. (Bottom) ROC curves of key pre-ictal window 

durations plotted. The first and last ROC curves correspond to the longest and shortest window length and the third and 

fourth ROC curves correspond to the start and stop of an AUC plateau. Note: No distinct plateau showing successful 

classification observed. 
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