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Abstract 
 

Studying the Association between Overall Survival and Metastatic Sites by Breast Cancer 
Subtypes Based on National Cancer Database 

 

By Yi Guo 

 

Background: Metastatic breast cancer is the main cause of breast cancer-associated deaths and 

receptor status has a large impact on prognosis. Other prognostic factors such as adjuvant systemic 

treatment also contribute to the heterogeneity in breast carcinomas. Within this scenario, how breast 

cancer subtype and metastatic site are associated with breast cancer overall survival remains unclear.  

Method: A total of 5211 female patients with stage IV breast cancer from the National Cancer 

Database (NCDB) (2010-2013) were examined. All patients received surgery and systemic 

treatment. The distribution of metastatic sites among breast cancer subtypes was evaluated through 

a 𝜒2test. Univariate and multivariate analyses using two semi-parametric approaches, including the 

Cox proportional hazard (PH) analyses and the censored quantile regression analyses, were 

conducted to assess the associations between metastatic sites and overall survival.  

Results: HR+/HER2- breast cancer was most likely to metastasize to bone, TNBC was most likely 

to metastasize to brain or lung and HR-/HER2+ was most likely to metastasize to liver or multiple 

organs.  Overall, patients with bone metastasis appeared to have the best prognosis while patients 

with multiple metastasis had the worst prognosis. In univariate quantile regression analyses, the 

survival differences between bone metastasis versus multiple metastasis were varied over quantiles, 

except for HR-/HER2+ breast cancer. In multivariate analysis, age showed negative prognostic 

effect among patients with all subtypes and was varied in HR+/HER2- subtype. In particular, 

TNBC patients with bone metastasis versus multiple metastases had varying quantile effects above 

the median.   

Conclusion: This study showed different breast cancer subtypes had different metastatic patterns 

and survivals. Compared with the Cox model, the censored quantile regression model revealed a 

more comprehensive prognostic patterns in metastatic breast cancer. Adjusting clinical surveillance 

and treatment strategies were suggested based on the variation of prognostic effects in different 

metastatic sites over time.  
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CHAPTER I: INTRODUCTION 

1.1 Background  

Breast cancer is the most common cancer and the leading cause of cancer death among women 

worldwide.1 In 2018, there were an estimated 266,120 females (15.3% of all new cancer cases) 

diagnosed with breast cancer and an estimated 40,920 females died from the disease in the United 

States.2 Breast cancer results from the uncontrolled growth of tumor cells. Depending on how far 

the cells spread, it can be divided into three main stages: localized, regional, distant.2 In the 

localized stage, the cells grow out of control but within the breast. In the regional stage, the cells 

spread outside of the primary site but only metastasize to the regional lymph nodes. While in the 

distant stage, the spread of breast cancer is beyond the regional lymph node, indicating distant 

metastasis.2  

Distant metastasis (Stage IV breast cancer) is caused by the spreading or metastasizing of cells 

from the breast through the blood or lymphatic system and colonizing in distant parts of the body, 

most commonly the bone, brain, liver and lung. Stage IV breast cancer is the leading cause of breast 

cancer-associated deaths.3 In 2018, the 5-year survival rate of female breast cancer regardless of 

the cancer stage was estimated to be 89.7% in the U.S. However, the 5-year survival rate at stage 

IV was estimated to be 27.0%, indicating only 27.0 out of 100 females with metastatic breast cancer 

is expected to be alive five years after diagnosis.2 These 5-year survival rates indicate that breast 

cancers below stage III usually can be successfully treated, whereas cases in stage IV continue to 

have high mortality rates.4 To further understand this poorer prognosis associated with stage IV 

breast cancers, the focus of this study will be on metastatic breast cancer. 

Survival outcomes from Stage IV breast cancer are affected by many prognostic factors including 

the site of metastasis, as well as the receptor status of the tumors.5-7 These tumor receptors include 

estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor 
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receptor 2 (HER2).8 Either ER+ or PR+ can be defined as HR+. Accordingly, breast cancer can be 

classified into four main subtypes:  HR+/HER2-, HR+/HER2+, HR-/HER2+, HR-/HER2- (also 

known as triple negative breast cancer, TNBC).6 These breast cancer subtypes have different 

biology and show differences in tumor growth.9 For instance, ER-positive (ER+) cancer has better 

prognosis while triple negative breast cancer (TNBC) has worse prognosis with poorer overall 

survival.10-11 This is largely attributed to TNBC lacking the expression of ER, PR and HER2 

receptors, termed HR-/HER2-, which inevitably accelerates the growth of tumors.12-14   

    Meanwhile, many studies examined the correlations between receptor status and metastasis. 

Among ER+ patients, bone is the site of the most frequent metastasis and the brain is the least 

common site.3 Among HER2+ patients, ER+ patients were more likely to have bone metastasis but 

less likely to have brain, liver, lung and multiple metastases in comparison to the ER- patients.15 

TNBC were more likely to have brain, lung metastasis, especially among female patients.16, 17  

Although existing researches demonstrate the different metastatic patterns and survivals 

associated with different breast cancer subtypes, most published studies to date have used either 

small sample sizes or samples without wide coverage. More importantly, they assumed the 

difference between prognostic effects were constant over survival time, which could only be rough 

estimates under the condition of extensive genetic heterogeneity in breast carcinomas.18, 19 

Furthermore, patient’s age, staging, adjuvant treatment and other prognostic factors also play an 

important role in survival prediction.19 Adjuvant therapy is treatment given in addition to the 

surgery.20 It includes systemic therapy such as chemotherapy, hormonal therapy, targeted 

therapies.21, 22 Within this heterogeneous scenario, it is often challenging for clinicians to make 

earlier predictions about whether patients need more aggressive forms of therapy.  

This thesis project aims to provide more robust information on the effects of different metastasis 

types on survival time through examining a large breast cancer dataset from the National Cancer 

Database (NCDB) based on two different semi-parametric regression models.  
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1.2 National Cancer Database  

National Cancer Database (NCDB), established in 1989, is a clinical oncology database jointly 

supported by the American College of Surgeons and the American Cancer Society in the United 

States.23 It has patient information including demographics, tumor characteristics, site-specific 

factors, metastasis indicators, treatment records and survival outcomes.24 Breast cancer data from 

NCDB are currently available from year 2004 to 2016. These hospital-based data were collected 

from about 34 million current medical records in a nationwide range of over 1,500 accredited 

facilities.  

Since data are reported by multi-institution registries, NCDB has its own data properties of 

pooling and national standardization. It reflects more strengths in tracing breast cancer etiology and 

conducting reliable analyses.25 In comparison to other population-based registries, such as the 

Surveillance, Epidemiology, and End Result (SEER) database, NCDB has more extensive coverage 

of incidence cancers in all types in the U.S.26-28 It covers more than 70% newly diagnosed patients 

with cancer every year while SEER covers only 28% of new cancer cases.  In addition, NCDB has 

advantages over SEER on providing more detailed staging, initial treatment and adjuvant therapy 

information.29, 30 This more detailed information is useful in reducing sampling errors during our 

patient selection process. In NCDB, more complete records regarding chemotherapy and radiation 

therapy are included. Anne-Michelle et al. (2016) showed overall sensitivity of SEER data in either 

chemotherapy (68%) or radiation therapy (80%) was at the moderate level, and differed in cancer 

site, stage and patient characteristics.31 Meanwhile, SEER has no information on HER2 targeted 

therapy and hormonal therapy. Highlights in data coverage and completeness suggest better 

representativeness of NCDB in evaluating breast cancer and treatment outcomes at country-level 

than other registries.  Since NCDB is more likely to be comprehensive and representative than any 

other database, we utilize NCDB for this thesis project. 



4 
 

1.3 Two Semiparametric Regression Models 

1.3.1 Cox Proportional Hazards Regression Model  

Cox proportional hazard (PH) model, proposed by D.R. Cox (1972), is the most popular 

regression model for evaluating the effects of risk factors on survival outcomes. The Cox PH model 

is a semi-parametric model including both parametric and nonparametric components. The standard 

Cox PH analysis adopts the assumptions of non-informative censoring and proportional hazard.32  

Under the Cox PH model, the exponentiated regression coefficients are usually interpreted as 

hazard ratios associated with the corresponding risk factor (or covariate). The baseline hazard 

function is completely unspecified and represents the hazard function of the survival outcome 

corresponding the situation with all covariates are set as zeros.33 In this project, we plan to conduct 

Cox PH analyses to assess the effects of metastatic sites on the overall survival of breast cancer 

patients, without or with adjustments for other risk factors such as gender, stage, breast cancer 

subtype, which are commonly evaluated in medical research. 34-36  

1.3.2 Censored Quantile Regression Model 

While the Cox PH model is popular in survival analysis, practitioners may be interested 

comparing survival differences in the time scale, for example, the restricted mean lifetime.37 Rather 

than modeling survival time, Cox model focuses on modeling hazard rate; thus it infers the survival 

time difference only in an indirect way.38-39  

Quantile regression offers a flexible tool for assessing the survival time differences. It directly 

formulates covariate effects on the conditional quantiles of the survival time of interest.40 

Consequently, the regression coefficients have a physical interpretation as covariate effects on the 

quantiles of the survival time. Besides, quantile regression has advantages in flexibility and 

robustness.39, 41 It allows the covariates to have different effects on different quantiles, thereby 
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accommodating a dynamic association structure between covariates and the survival time, which 

often manifests the underlying population heterogeneity not captured by the measured covariates.39 

With randomly censored time-to-event data, there are currently three major approaches within 

the quantile regression framework: Powell (1986) approach for fixed censoring, Portnoy (2003) 

approach for random censoring, and Peng and Huang approach (2008) for random censoring.42 In 

this study, we adopted the quantile regression method proposed by Peng and Huang (2008) mainly 

because of its weaker random censoring assumption, and clearly-defined estimation procedure. By 

gathering quantile-specific covariate effects 𝜷(𝜏), we may acquire a more comprehensive view 

about the relationship between metastasis type and the overall survival of breast cancer patients.  

1.3.3 Motivations for Considering Both Models 

The standard Cox PH model captures the covariate effects on the conditional hazard function of 

the survival time of interest, assuming the constant hazard ratios by covariates over time (i.e. 

proportional hazards assumption). The proportional hazards assumption can be restricted in 

practice43. Censored quantile regression may serve as a useful alternative to the standard Cox PH 

analysis when the proportional hazards assumption is not reasonable. The censored quantile 

regression allows for varying covariate effects, and thus may be less restrictive in some data 

situations.  Censored quantile regression also permits physical interpretations of covariate effects 

on the time scale, which may be preferable to some practitioners. By considering both Cox PH 

model and censored quantile regression in this thesis project, we will provide thorough evaluations 

of the impact of metastasis type on the overall survival of breast cancer patients by breast cancer 

subtypes from different modeling perspectives and assumptions, thereby delivering more robust 

implications. 
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1.4 Outlines of Thesis  

The rest of the thesis is organized as follows. In Chapter II we describe the study population, 

patient selection criteria, data cleaning process and important covariates, as well as statistical 

methods used for our data analyses. In Chapter III we summarize the results from the statistical 

analyses separately for the adopted models, the Cox PH model and the censored quantile regression 

model. In Chapter IV we provide conclusions, along with discussions of potential limitations. We 

also comment on future work to extend this study.  
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CHAPTER II: METHOD 

    In this study, we utilized the data derived from a de-identified NCDB file supported by the 

Winship Research Informatics Shared Resource of Winship Cancer Institute of Emory University. 

Patient’s demographics, tumor characteristics, site-specific factors, metastasis indicators, treatment 

received and survival outcomes were included in this de-identified NCDB file.  

 All statistical analyses were performed using SAS 9.4 software and R Studio (Version 1.1.414; 

R version 3.3.3 (Another Canoe, (2017)). In particular, survival analysis with quantile regression 

models was conducted using R package CQRPH.  CQRPH package was specially designed for the 

method proposed by Peng and Huang (2008). All statistics tests were two-sided. A p-value less 

than 0.05 was considered as statistically significant. 

2.1 Data Set Information  

2.1.1 Patient Selection  

A total of 5211 de-identified female patients with stage IV breast cancer diagnosed from 2010 

to 2013 were selected from the NCDB. In order to avoid heterogeneous treatment effects on 

survival, we tightened the selection criteria and only chose the patients who received surgery and 

at least one systemic adjuvant treatment (chemotherapy, immunotherapy, HER2 targeted therapy). 

All selected patients had their own complete records on age at diagnosis (age), tumor grade, status 

of HR and HER2 receptor, metastatic site and vital status (death or censoring). 

2.1.2 Data Cleaning 

To meet the selection criteria, we selected all female patients and removed all the missing or 

unknown data in regard to prognostic factors we might consider in the statistical analyses. As 

mentioned above, these variables included age, status of HR and HER2 receptor, site of metastasis 

and survival outcomes. In addition, targeted patients were not required to have entire information 

on treatments. We retained the patients with surgery on primary site (breast) and at least one record 
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of systemic treatment to avoid deleting plethora patients so as to cause unnecessary selection bias. 

The inclusion and exclusion criteria of patient selection were presented as below (Table 2.1). 

Table 2. 1 A summary of patient selection criteria 

Inclusion criteria Exclusion criteria 

 Female breast cancer patient 
 No metastasis to bone, brain, liver and 

lung 

 First diagnosis with breast cancer between 

2010-2014 

 Incomplete data of metastatic sites among 

patients with only one metastasis record 

 History of systemic therapies 

(chemotherapy, immunotherapy, HER2-

targeted therapy) 

 No surgery taken on breast 

 

2.1.3 Variable Description  

  For descriptive purposes, patient age was further defined as a binary variable defined as age 

groups, less than 50 years (< 50 years) and greater than or equal to 50 years (≥ 50 years). Tumor 

grade was reclassified into three levels (I, II, III) and unknown grade, where we combined poorly 

differentiated and undifferentiated or anaplastic tumor as Grade III. All patients had stage IV breast 

cancer. The stage was defined on the basis of the current standard of American Joint Committee on 

Cancer (AJCC) tumor-node-metastasis (TNM) staging system. Since the criteria from AJCC TMN 

staging system included the assessments of tumor grades, the tumor grade from the dataset was 

only summarized for descriptive purposes.  

Both HR receptor and HER2 receptor had positive and negative types. For HR receptor, the 

status depended on the both ER and PR receptors, in which either ER+ or PR + can be defined as 

HR+. Consequently, the patients were classified into four breast cancer subtypes: HR-/HER2+, 

HR+/HER2+, HR+/HER2-, HR-/HER2- (also known as triple negative breast cancer, TNBC). 

According to the number of metastatic sites, we first divided the metastasis into three levels, i.e., 
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no metastasis, single metastasis, multiple metastases. We then classified the single metastasis into 

four detailed categories: bone, brain, liver and lung oligometastasis.  

2.2 Statistical Analyses  

2.2.1 Descriptive Analysis 

Descriptive statistics were reported within and beyond breast cancer subtype (HR+/HER2-, 

HR+/HER2+, HR-/HER2+, TNBC). Categorical variables were assessed by 𝜒2 tests and 

summarized by count and proportion. Continuous variables were evaluated by two-sample t tests 

and summarized by mean and standard deviation. Demographic and clinicopathologic 

characteristics in the descriptive table contained age, stage, status of ER, PR, HR, HER2, tumor 

grade, systemic therapies (chemotherapy, HER2 targeted therapy, immunotherapy), radiation and 

site of metastases. In particular, a 𝜒2 test was conducted to evaluate the association between 

metastatic sites and breast cancer subtypes. Within each subtype, Kaplan-Meier curves were 

generated to summarize the overall survival (OS) times in patients with different metastatic sites 

and log rank tests were implemented to measure the differences between or among different 

Kaplan-Meier curves.   

2.2.2 Analyses Based on Cox Proportional Hazard Model 

A standard form of Cox proportional hazard (PH) model can be written as the product of a non-

parametric baseline hazard ℎ0(𝑡)  and a parametric linear regression of covariates 𝑋𝑖  in an 

exponential function.32 With real data, a covariate, 𝑋𝑖, which can be either continuous or categorical, 

may denote prognostic factors, such as patient age at diagnosis, and site of metastasis.  

ℎ(𝑡|𝑿) = ℎ0(𝑡) e(𝛽1𝑋1+ 𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝) ,                                               (1) 

where 𝛽1, 𝛽2 , … ,  𝛽𝑝 are the constant coefficients corresponding to the covariates 𝑋1, 𝑋2, … ,  𝑋𝑝 

respectively.  
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In this study, we conducted the analyses stratified by breast cancer subtypes (HR+/HER2-, 

HR+/HER2+, HR-/HER2+, TNBC). Within each subtype, the associations between metastatic site 

and overall survival were examined. Patient’s age at diagnosis (age) was adjusted in multivariate 

analyses. The prognosis impact of a certain covariate can be assessed and interpreted through the 

hazard ratio (HR) (e.g. 𝑒𝛽𝑖 , 𝑖 = 1, 2, … , 𝑝). For instance, the HR between any of the two metastatic 

sites can be obtained by setting different reference metastasis categories in Cox PH models. In 

either univariate or multivariate analysis, a higher risk of the event of interest (e.g. death) is shown 

when HR is estimated to be significantly higher than 1 and vice versa. 

Because of the tied observations from the survival data and random censoring assumption from 

the Cox PH model, the regression coefficients 𝛽1, 𝛽2, … ,  𝛽𝑝 can be estimated by maximum partial 

likelihood (MPLE).44, 45 In this study, we used Breslow’s approximation (default in SAS Proc Phreg) 

to obtain MPLEs of 𝜷 = (𝛽1, 𝛽2, … ,  𝛽𝑝  )𝑇 . Given n random observations, let 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑗  

denote the j distinct failure times and 𝑑𝑗 denote the number of failures (deaths) at 𝑡𝑗 . For model (1), 

the partial likelihood (PL) applying Breslow’s method is given by 45-47 

𝐿(𝜷) =  ∏ 𝐿𝑗(𝜷) ≈

𝐽

𝑗=1

∏
exp (𝜷 ∑ 𝑥𝑖𝑖∈𝐷𝑗

)

[∑ exp (𝜷𝑥𝑙)𝑙∈𝑅𝑗
]

𝑑𝑗

𝐽

𝑗=1

,                                 (2) 

where 𝑅𝑗  is the risk set at time 𝑡𝑗  and  𝐷𝑗  is the failure set at time 𝑡𝑗 . The hypothesis testing of 

𝐻0: 𝜷 = 0 can be conducted through Wald, likelihood ratio (LR) or score test. In this case, we 

performed Wald test (default in SAS Proc Phreg) for the hypothesis testing.  
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 (1) Univariate Analysis 

Univariate Cox PH regression was conducted separately in each breast cancer subtype. As 

described in Variable Description section, the covariate related to the metastasis was reclassified 

into five categories: bone, brain, liver, lung, multiple. Assume (𝑋1, 𝑋2, 𝑋3, 𝑋4)  are the dummy 

variables related to the metastatic sites where 𝑋1 = 1 if bone, 𝑋2 = 1 if brain, 𝑋3 = 1 if liver, 𝑋4 =

1  if lung metastasis, and multiple metastases is the reference group where (𝑋1, 𝑋2, 𝑋3, 𝑋4) =

(0, 0, 0, 0). Then a univariate Cox model within a certain breast cancer subtype was conducted as 

follows:  

ℎ(𝑡|𝑿) = ℎ0(𝑡) 𝑒(𝛽1𝑋1+ 𝛽2𝑋2+𝛽3𝑋3+𝛽4𝑋4),                                   (3)        

    Survival difference compared with multiple metastases (reference group) can be assessed and 

interpreted through hazard ratio 𝑒  𝛽𝑖, where 𝑖 = 1, 2, 3, 4. By defining different metastatic sites as 

reference category, the HR between each pair of metastatic sites in four subtypes can be obtained 

based on model (3).  

(2) Multivariate Analysis  

 In the previous section, univariate Cox models were conducted in different breast cancer 

subtypes to investigate the overall survival (OS) with respect to the site of metastasis. However, it 

is still of interest to consider the prognostic effects of metastatic sites while adjusting for the impacts 

of other prognostic factors. Based on the availability of the data, we adjusted for age in the 

multivariate analysis. Including the age as a prognostic factor, a multivariate Cox regression model 

based on model (3) can be written as follows: 

ℎ(𝑡|𝑿) = ℎ0(𝑡) 𝑒(𝛽1𝑋1+ 𝛽2𝑋2+𝛽3𝑋3+𝛽4𝑋4+𝛽5𝑋5),                                     (4)  

where age is represented as a continuous variable 𝑋5.  
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    Similar to the univariate analysis, the HR between any two of the metastatic sites can be 

calculated by changing the reference categories based on model (4).  

2.2.3 Analyses Based on Censored Quantile Regression Model 

    Conditional quantile is the key concept for understanding quantile regression. For an outcome 

of interest, denoted by Y, the 𝜏th conditional quantile of Y given 𝑿 is defined as 

𝑄𝑌(𝜏|𝑿) = inf {𝑦: 𝑃{𝑌 ≤ 𝑦 | 𝑋 = 𝑥} = 𝜏},                                         (5) 

where 𝜏 ∈ (0,1) and 𝑿 is a known 𝑝 × 1 covariate vector. 

A typical censored quantile regression model assumes that 

𝑄𝑌(𝜏|𝑋) = 𝑿𝑇𝜷(𝜏), 𝜏 ∈ (0,1),                                            (6) 

with 𝑌 = log 𝑇 , representing the log-transformed survival time T. It can be shown that the 

accelerated failure time (AFT) model is a special case of model (6).48 Unlike the Cox PH model, 

the AFT model shares the same spirit as the classic linear regression and provides more 

straightforward interpretation in survival time.39 By allowing the coefficients of 𝑿, i.e., 𝜷(𝜏), to 

vary with 𝜏, model (6) can accommodate covariate effects beyond the simple location-shift effects 

that are assumed under the AFT model, and therefore is more flexible and robust.41 

Compared with the Cox model, the censored quantile regression model (6) provides an 

alternative view to assess the impact of covariates on survival outcomes. More specifically, the Cox 

model depicts how covariates influence the conditional hazard function of T given X, while 

censored quantile regression implies how covariates change the conditional quantiles of T given X. 

The Cox PH model imposes location-shift effects of covariates on the log hazard function. In 

contrast, censored quantile regression permits a more flexible relationship between covariates and 

quantiles of T.  
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As mentioned in the Chapter I, we used the quantile regression method proposed by Peng and 

Huang (2008) to estimate model (6) with randomly censored survival data. In the estimation 

procedure, Peng and Huang (2008) developed a martingale-based estimating equation extended 

from the Nelson-Aalen estimator of the cumulative hazard function, which simplifies the 

algorithms by only minimizing L1- type convex functions.42, 49 According to the properties of 

martingale in survival data, they started the estimation from 𝐸{𝑀𝑖(𝑡)| 𝑿𝑖} = 0 for 𝑡 ≥ 0.49 Here, 

𝑀𝑖(𝑡) is the martingale process related to the counting process 𝑁𝑖(𝑡), where 𝑀𝑖(𝑡) =  𝑁𝑖(𝑡) −

⋀ (𝑡 ⋀  (𝑇𝑖 ⋀ 𝐶𝑖)|𝑇 𝑋𝑖) and  ⋀ (∙ |𝑇 𝑋𝑖) is the cumulative hazard function of 𝑇𝑖  given 𝑋𝑖 ;  𝑁𝑖(𝑡) =

𝐼({(𝑇𝑖 ⋀ 𝐶𝑖 ) ≤ 𝑡}, {𝛿𝑖 = 1}) and 𝛿𝑖 = 𝐼{𝑇𝑖 < 𝐶𝑖}. Due to the stochastic nature of martingale, the 

𝜷(𝜏)  can be estimated subsequently with a grid-based method. Moreover, the property of 

monotonicity associated with Peng and Huang (2008)’s estimating equation reduces the 

algorithmic complexity in solving 𝜷(𝜏) through minimization of L1- type convex function at a fine, 

pre-specified 𝜏 -grid.49 Peng and Huang (2008) also established asymptotic properties and 

developed a resampling approach from Jin et al. (2001) for the inference procedure.41, 49-50 The 

resampling-based inference contains: 1) overall significance test of covariate effect over 𝜏 ∈

[𝜏𝐿 , 𝜏𝑈], i.e., 𝐻0: 𝛽0
(𝑖)

(𝜏) = 0 , where 0 < 𝜏𝐿 ≤  𝜏𝑈 < 1 and 𝑖 =  {2, … , 𝑝}; 2) constancy test of 

covariate effect from secondary inference over 𝜏 ∈ [𝜏𝐿 , 𝜏𝑈], i.e., 𝐻0: 𝛽0
(𝑖)(𝜏) = 𝜂0, where 𝜂0 is an 

unknown constant, 0 < 𝜏𝐿 ≤  𝜏𝑈 < 1, 𝑖 =  {2, … , 𝑝} ; 3) model diagnostics.49   

(1) Univariate Analysis  

With the same formulation of 𝑋𝑖 (𝑖 =  1, 2, 3, 4) as in the univariate Cox analysis, we first fit 

censored quantile regression model (6) that only adjusted for metastatic sites, i.e.  

𝑄𝑌(𝜏|𝑿) = 𝛽0(𝜏) + 𝛽1(𝜏)𝑋1 + 𝛽2(𝜏)𝑋2 + 𝛽3(𝜏)𝑋3 + 𝛽4(𝜏)𝑋4, 𝜏 ∈ (0,1).      (7) 

Or equivalently,   

𝑄𝑇(𝜏|𝑿) = 𝑒𝛽0(𝜏)+𝛽1(𝜏)𝑋1+𝛽2(𝜏)𝑋2+𝛽3(𝜏)𝑋3+𝛽4(𝜏)𝑋4 , 𝜏 ∈ (0,1).                     (8) 
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     According to Model (7), survival difference (after log transformation) between single metastasis 

and multiple metastases over 𝜏 can be assessed through 𝛽𝑖(𝜏), where 𝑖 = 1, 2, 3, 4.  

(2) Multivariate Analysis  

We next fit censored quantile regression model which included age in addition to metastatic 

sites within each breast cancer subtype. The model can be written below:  

𝑄𝑌(𝜏|𝑿) = 𝛽0(𝜏) + 𝛽1(𝜏)𝑋1 + 𝛽2(𝜏)𝑋2 + 𝛽3(𝜏)𝑋3 + 𝛽4(𝜏)𝑋4 + 𝛽5(𝜏)𝑋5, 𝜏 ∈ (0,1).  (9) 

Or equivalently,   

 𝑄𝑇(𝜏|𝑿) = 𝑒𝛽0(𝜏)+𝛽1(𝜏)𝑋1+𝛽2(𝜏)𝑋2+𝛽3(𝜏)𝑋3+𝛽4(𝜏)𝑋4+𝛽5(𝜏)𝑋5 ,        𝜏 ∈ (0,1).          (10) 

(3) Hypothesis Testing and Second Stage Inference  

We also conducted hypothesis testing as well as secondary inferences in quantile regression 

analyses to examine the variations of coefficient effects over quantile levels. These procedures were 

of great help in further exploring the internal metastatic patterns associated with survival. The 

average covariate effects were assessed by overall significance tests and the variation of covariate 

effects were extrapolated by constancy tests.50 In constancy tests, we selected weight function 1 as 

the indicator function provided in CQRPH R package, where 𝜏 equals to 1 when it was larger or 

equal than the middle of 𝜏-range.  
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CHAPTER III: RESULTS 

3.1 Descriptive Summary 

3.1.1 Demographic and Clinicopathological Characteristics  

A total of 5211 female patients with Stage IV breast cancer were considered in this study. The 

maximum follow-up time was 71.23 months with a median of 29.57 months. Table 3.1 summarized 

the descriptive statistics including patient age at diagnosis, breast cancer subtype, metastatic site, 

information of systemic adjuvant treatments. Of these patients, most of them were over 50 years 

old when they were first diagnosed with breast cancer (71.25%) (Table 3.1). The majority of the 

patients had HR+/HER2- breast cancer subtypes (3269, 62.73%) while only 459 patients (8.81%) 

had HR-/HER2+ breast cancer subtypes. Besides, there were 620 patients who had HR+/HER2+ 

subtype (11.90%) and 863 patients who had TNBC subtype (Table 3.1).  

    In Table 3.1, distant metastasis happened the most in bone organ (2803, 53.79%), followed in 

descending order by multiple (1046, 20.07%), lung (735, 14.10%), liver (544, 10.44%) and brain 

organ (83, 1.59%). All patients had surgery and at least one systemic treatment (chemotherapy, 

hormonal therapy, HER2 targeted therapy). Regardless of the missing records from these patients, 

67.68% received chemotherapy, 74.44% received hormonal therapy, 6.24% received HER2 

targeted therapy, and 48.32% received radiation therapy (Table 3.1).   
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Table 3. 1 Descriptive and clinical characteristics for NCDB breast cancer patients 

diagnosed from 2010 to 2014  

Characteristic 
Number of Patients (%) 

or Mean (±𝐒𝐃) 

Age at Diagnosis 58.47±13.30 

≤ 50 1498 (28.75) 

> 50 3713 (71.25) 

Subtype   

HR+/HER2- 3269 (62.73) 

HR+/HER2+ 620 (11.90) 

HR-/HER2+ 459 (8.81) 

TNBC 863 (16.56) 

Metastatic Site  

Bone  2803 (53.79) 

Brain 83 (1.59) 

Liver  544 (10.44) 

Lung 735 (14.10) 

Multiple 1046 (20.07) 

Grade  

I 358 (6.87) 

II 1889 (36.25) 

III 2520 (48.36) 

Unknown 444 (8.52) 

Chemotherapy  

Yes 3527 (67.68) 

No 1337 (25.66) 

Missing 347 (6.66) 

Radiation Therapy  

Yes 2518 (48.32) 
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No 2650 (50.85) 

Missing 43 (0.83) 

Hormonal Therapy  

Yes 3879 (74.44) 

No 1192 (22.87) 

Missing 140 (2.69) 

HER2 Targeted Therapy  

Yes 325 (6.24) 

No 4871 (93.48) 

Missing 15 (0.29) 

1. Patients might have received more than one therapy. 

 

3.1.2 Metastatic Patterns in Breast Cancer Subtypes  

Table 3.2 showed the different distributions of metastatic sites in breast cancer subtypes. 

Significant association was shown between site of metastasis and breast cancer subtype (p < .0001; 

Table 3.2). Except for HR-/HER2+ subtype, bone was the most frequent metastatic sites among all 

subtypes.  Patients with HR-/HER2+ subtype had the most frequent metastasis to multiple organs 

(26.58%).  
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Table 3. 2 Distribution of metastatic sites in breast cancer subtypes 

Subtype 

Metastatic Site 

Single Metastasis Multiple 

Metastases Bone Brain Liver Lung 

HR+/HER2- 

(n = 3269) 

2144 

(65.59) 

27 

(0.83) 

194 

(5.93) 

335 

(10.25) 

569 

(17.41) 

HR+/HER2+ 

(n = 620) 

304 

(49.03) 

7 

(1.13) 

113 

(18.23) 

63 

(10.16) 

133 

(21.45) 

HR-/HER2+ 

(n = 459) 

112 

(24.40) 

14 

(3.05) 

131 

(28.54) 

80 

(17.43) 

122 

(26.58) 

TNBC 

(n = 863) 

243 

(28.16) 

35 

(4.06) 

106 

(12.28) 

257 

(29.78) 

222 

(25.72) 

1. The numbers were expressed as absolute number (%). 

2. P < .0001 in 𝜒2 test. 

 

    Besides, Kaplan-Meier curves with different metastatic sites were drawn in HR+/HER2-, 

HR+/HER2+, HR-/HER2+, TNBC subtypes (Figure 3.1). Log rank test showed significant survival 

difference among metastatic sites within each breast cancer subtype (all P < .0001; Figure 3.1).  
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(A) HR+/HER2- 

 

(B) HR+/HER2+ 
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(C) HR-/HER2+ 

 

(D) TNBC 

Figure 3. 1 Kaplan-Meier curves of overall survival comparing patients with different metastasis 

in HR+/HER2- (A), HR+/HER2+ (B), HR-/HER2+ (C) and TNBC (D) 
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3.2 Cox Proportional Hazard Regression  

3.2.1 Univariate Analysis  

Breast cancer patients with metastasis to different organs showed different overall survival 

(Table 3.3). The metastatic patterns associated with overall survival (OS) were similar among all 

patients except for those with TNBC subtypes.  

In HR+/HER2- subtype, patients with bone, liver or lung metastasis had better prognosis than 

brain metastasis or multiple metastases (Table 3.3). No significant OS differences were found 

between brain metastasis and multiple metastases, or among bone, liver and lung metastasis (Table 

3.3).  

In HR+/HER2+ subtype, patients with multiple metastases had worse OS than those with bone, 

liver or lung metastasis (Table 3.3). Similar as HR+/HER2- subtype, bone, liver and lung metastasis 

had no significant difference in OS. However, all comparisons with brain metastasis were neglected 

in HR+/HER2+ subtype due to small sample size (n = 7).  

HR-/HER2+ subtype had similar metastatic patterns as HR+/HER2-. The OS with multiple 

metastases or brain metastasis was significantly worse than that with metastasis to bone, liver or 

lung (Table 3.3). Similarly, the comparison in OS between neither brain metastasis and multiple 

metastases, nor bone, liver and lung metastasis was non-significant.  

    Unlike other subtypes, TNBC subtype had different metastatic patterns associated with OS. 

Patients with bone metastasis had significantly longer OS than those with lung, brain or multiple 

metastases; while multiple metastases had the significantly lower OS than bone, liver or lung 

metastasis (Table 3.3). Bone tended to have the longest survival among all metastatic sites (bone 

vs lung:  HR = 0.9, P = .309; Table 3.3) and multiple metastatic site appeared to have the shortest 

OS (brain vs multiple: HR = 0.79, P = .237; Table 3.3). 
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3.2.2 Multivariate Analysis 

In the previous section, univariate Cox model within each subtype was conducted to investigate 

the overall survival (OS) with respect to the site of metastasis. However, it is still necessary to 

consider the impacts of other prognostic factors at the same time. Due to the strict inclusion and 

exclusion criteria for the study patients (Table 2.1), we only adjusted for age in the multivariate 

analyses.  

In multivariate analyses adjusting for age, the metastatic patterns within HR+/HER2- and TNBC 

subtype were not totally the same as the results from univariate analyses (Table 3.4). All significant 

comparison results from both univariate and multivariate analyses were summarized in Table 3.5.  

In HR+/HER2- subtype, patients with bone metastasis had the best OS, followed by patients with 

lung, liver, brain, multiple metastases in a descending order (Table 3.4). Particularly, patients with 

brain metastasis and multiple metastases had no difference in OS and showed equally worse 

outcome compared with other metastatic sites (Brain vs Multiple: HR = 1.24, p = .241; Table 3.4).  

The OS for HR+/HER2+ and HR-/HER2+ metastatic breast cancer patients in multivariate 

analysis had the same metastatic patterns as the results in univariate analysis (Table 3.4, Table 3.5). 

Either in HR+/HER2+ or HR-/HER2+ subtype, breast cancer metastasizing in bone, liver or lung 

organ had better OS in multiple organs (or brain).  

Among patients with TNBC subtype, bone metastasis had the better OS than any other metastasis 

(Table 3.4).  Overall survival in patients with multiple metastases was significantly shorter than 

bone, liver or lung oligometastasis.  

In conclusion, breast cancer patients who had surgery and at least one systemic therapy 

(chemotherapy, hormone therapy, HER2 targeted therapy) in all subtypes tended to have better 

prognosis when they only had single bone metastasis, and worse prognosis when they had single 

brain metastasis or multiple metastases. 
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Table 3. 3 Univariate analysis for overall survival comparing sites of metastasis in different 

subtypes using Cox PH models 

Metastatic 

Site 

HR+/HER2- HR+/HER2+ HR-/HER2+ TNBC 

HR 

(95% CI) 
P 

HR 

(95% CI) 
P 

HR 

(95% CI) 
P 

HR 

(95% CI) 
P 

Bone vs. 

Brain 

0.35  

(0.21-0.60) 
.0001* 

1.54  

(0.21-11.16) 
.667 

0.43  

(0.21-0.90) 
.024* 

0.62  

(0.41-0.92) 
.018* 

Bone vs. 

Liver 

0.82  

(0.64-1.05) 
.110 

0.80  

(0.50-1.28) 
.356 

1.23  

(0.77-1.95) 
.382 

0.74  

(0.57-0.96) 
.022* 

Bone vs. 

Lung 

0.91  

(0.75-1.11) 
.359 

0.78  

(0.43-1.40) 
.409 

0.82  

(0.51-1.34) 
.435 

0.90  

(0.73-1.11) 
.309 

Bone vs. 

Multiple 

0.44  

(0.38-0.50) 
<.0001* 

0.41  

(0.28-0.60) 
<.0001* 

0.50  

(0.33-0.75) 
.0008* 

0.48  

(0.39-0.60) 
<.0001* 

Brain vs. 

Liver 

2.32  

(1.31-4.12) 
.004* 

0.52  

(0.07-3.83) 
.519 

2.85  

(1.37-5.92) 
.005* 

1.20  

(0.78-1.84) 
.407 

Brain vs. 

Lung 

2.58  

(1.48-4.50) 
.0008* 

0.51  

(0.07-3.85) 
.510 

1.91  

(0.91-4.02) 
.089* 

1.46  

(0.98-2.17) 
.063 

Brain vs. 

Multiple 

1.23  

(0.72-2.10) 
.452 

0.26  

(0.04-1.92) 
.188 

1.15  

(0.57-2.31) 
.695 

0.79  

(0.53-1.17) 
.237 

Liver vs. 

Lung 

1.11  

(0.83-1.50) 
.481 

0.98  

(0.51-1.88) 
.942 

0.67  

(0.41-1.09) 
.107 

1.22  

(0.94-1.57) 
.133 

Liver vs. 

Multiple 

0.53  

(0.41-0.69) 
<.0001* 

0.52  

(0.32-0.83) 
.006* 

0.41  

(0.27-0.61) 
<.0001* 

0.66  

(0.51-0.85) 
.001* 

Lung vs. 

Multiple 

0.48  

(0.39-0.59) 
<.0001* 

0.52  

(0.29-0.95) 
.032* 

0.60  

(0.39-0.93) 
.022* 

0.54  

(0.44-0.66) 
<.0001* 

1. * Significant P value (<0.05). 

2.  Abbreviation: HR, hazard ratio.  
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Table 3. 4 Multivariate analysis for overall survival comparing sites of metastasis in 

different subtypes using Cox PH models 

Metastatic 

Site 

HR+/HER2- HR+/HER2+ HR-/HER2+ TNBC 

HR 

(95% CI) 
P 

HR 

(95% CI) 
P 

HR 

(95% CI) 
P 

HR 

(95% CI) 
P 

Age 
1.03  

(1.02-1.03) 
<.0001* 

1.04  

(1.03-1.05) 
<.0001* 

1.03  

(1.01-1.04) 
.0005* 

1.01  

(1.00-1.01) 
<.0001* 

Bone vs. 

Brain 

0.36  

(0.21-0.61) 
.0002* 

1.55  

(0.21-11.21) 
.664 

0.41  

(0.20-0.86) 
.017* 

0.62  

(0.41-0.92) 
.019* 

Bone vs. 

Liver 

0.74  

(0.58-0.94) 
.014* 

0.72  

(0.45-1.15) 
.167 

1.17  

(0.73-1.85) 
.516 

0.74  

(0.56-0.94) 
.016* 

Bone vs. 

Lung 

1.03  

(0.84-1.26) 
.779 

0.85  

(0.48-1.54) 
.598 

0.87  

(0.53-1.41) 
.566 

0.90  

(0.73-1.11) 
.335 

Bone vs. 

Multiple 

0.44  

(0.38-0.51) 
<.0001* 

0.42  

(0.28-0.61) 
<.0001* 

0.48  

(0.32-0.73) 
.0005* 

0.48  

(0.39-0.59) 
<.0001* 

Brain vs. 

Liver 

2.04  

(1.15-3.61) 
.015* 

0.46  

(0.06-3.41) 
.449 

2.83  

(1.36-5.90) 
.005* 

1.17  

(0.77-1.80) 
.466 

Brain vs. 

Lung 

2.85  

(1.64-4.96) 
.0002* 

0.55  

(0.07-4.20) 
.565 

2.11  

(1.00-4.46) 
.051 

1.46  

(0.98-2.17) 
.063 

Brain vs. 

Multiple 

1.23  

(0.72-2.10) 
.451 

0.27  

(0.04-1.96) 
.196 

1.18  

(0.58-2.36) 
.651 

0.78  

(0.52-1.15) 
.209 

Liver vs. 

Lung 

1.40  

(1.04-1.89) 
.027* 

1.19  

(0.62-2.30) 
.600 

0.74  

(0.46-1.21) 
.237 

1.25  

(0.96-1.61) 
.094 

Liver vs. 

Multiple 

0.60  

(0.47-0.78) 
.0001* 

0.59  

(0.36-0.95) 
.030* 

0.42  

(0.28-0.63) 
<.0001* 

0.66  

(0.51-0.85) 
.002* 

Lung vs. 

Multiple 

0.43  

(0.35-0.54) 
<.0001* 

0.49  

(0.27-0.89) 
.018* 

0.56  

(0.36-0.86) 
.009* 

0.53  

(0.43-0.65) 
<.0001* 

1. * Significant P value (<0.05). 

2.  Abbreviation: HR, hazard ratio. 
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Table 3. 5 Overall survival comparisons between metastatic sites from both univariate and 

multivariate analysis using Cox PH models 

Subtype Univariate Analysis  Multivariate Analysis 

HR+/HER2- (Bone, Liver, Lung) > (Brain, Multiple) 
Bone > Lung > Liver > (Brain, 

Multiple) 

HR+/HER2+ (Bone, Liver, Lung) > Multiple Same as univariate results 

HR-/HER2+ (Bone, Liver, Lung) > (Brain, Multiple) Same as univariate results 

TNBC 

Bone > (Liver, Brain); 

(Lung, Brain) > Multiple 

Bone > (Liver, Lung) > Multiple;  

Bone > Brain 

1. Metastatic sites within the same parenthesis had non-significant OS difference between each 

other (P > 0.05). 
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3.3 Censored Quantile Regression 

In this section, we fit our dataset with censored quantile regression models using Peng and Huang 

(2008)’s method. Hypothesis testing and second stage inference were also performed to have 

further exploration in varying quantile effects of covariates. Since few events happened around 

time at 0, causing unstable and biased estimates, we only consider the situation where 𝜏 > 0.1 in 

all the following analyses.  

3.3.1 Univariate Analysis  

Model (8) was performed within each breast cancer subtype (HR+/HER2-, HR+/HER2+, HR-

/HER2+, TNBC) to compare the survival time between patients with single site of metastasis (bone, 

brain, liver, lung) versus the reference group (multiple metastatic sites). Average covariate effects, 

overall significance, and constancy of covariate effects over 𝜏 in different breast cancer subtypes 

were shown in Table 3.6. Figure 3.2-3.3 displayed the coefficient estimates (multiple metastases as 

reference group) with 95% pointwise confident intervals over quantile level 𝜏. All subplots with 

different reference categories of metastatic sites were attached in the Appendix A. 
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Table 3. 6 Estimates of average covariate effects and results on hypothesis testing and second-

stage inference in univariate quantile regression model stratified by breast cancer subtypes 

 HR+/HER2- 

Metastatic Site 
Average Effect 

τ∈[0.1,0.6] 

Overall Significance 

τ∈[0.1,0.6]  

Constancy  

τ∈[0.1,0.6] 

Bone 0.583 < 0.0001* 0.003* 

Brain -0.170 0.461 0.988 

Liver 0.465 < 0.0001* 0.707 

Lung 0.528 < 0.0001* 0.293 

 HR+/HER2+ 

Metastatic Site 
Average Effect 

τ∈[0.1,0.35] 
Overall Significance 

τ∈[0.1,0.35]  
Constancy  

τ∈[0.1,0.3] 

Bone 0.538 0.0002* 0.115 

Liver 0.370 0.093 0.790 

Lung 0.459 0.003* 0.212 

 HR-/HER2+ 

Metastatic Site 
Average Effect 

τ∈[0.1,0.35] 

Overall Significance  

τ∈[0.1,0.35] 

Constancy  

τ∈[0.1,0.35] 

Bone 0.398 0.050* 0.485 

Brain -0.133 0.383 0.397 

Liver 0.547 0.002* 0.639 

Lung 0.457 0.005* 0.334 

 TNBC 

Metastatic Site 
Average Effect 

τ∈[0.1,0.75] 
Overall Significance 

τ∈[0.1,0.75]  
Constancy 

τ∈[0.1,0.75] 

Bone 0.524 < 0.0001* 0.284 

Brain 0.127 0.414 0.164 

Liver 0.387 < 0.0001* 0.740 

Lung 0.473 < 0.0001* 0.371 

1. * Significant P value (<0.05). 

2.  Reference category: multiple metastases. 

3. Average covariate effects were resampling based. 

 

 

 



28 
 

(1) HR+/HER2- Subtype 

The estimates and 95% confidence intervals of proportional survival time after logarithm 

between single sites of metastases and multiple sites of metastases for 𝜏 ∈ [0.1, 0.639]  were 

visualized in Figure 3.2.  

Compared to the multiple metastases, bone, liver or lung metastasis had significantly better 

survival over 𝜏 ∈ [0.1, 0.6] (all P < .0001; Table 3.6). Besides, there is little difference between 

brain metastasis and multiple metastases (P = 0.461; Table 3.6) in terms of survival quantiles.  

Constancy tests over 𝜏 ∈ [0.1, 0.6] showed the covariate effect related to bone may be different 

across different quantile levels (P =.003; Table 3.6). It decreased over quantiles in Figure 3.2, 

meaning the survival difference between bone metastasis and multiple metastases became smaller 

among long-term survivors.  

In addition, the difference in prognosis between patients with lung metastasis and multiple 

metastases were constant over 𝜏 ∈ [0.1, 0.6] (P = 0.293; Table 3.6). However, the fluctuation of 

the pattern related to the lung and multiple metastases was visualized in Figure 3.2.  After splitting 

the 𝜏 range into two smaller intervals, i.e., [0.1, 0.3] and [0.3, 0.55], we conducted two constancy 

tests separately and found significant variations within both quantile intervals (P = .004; P = .007). 

The significant constant effect of quantile covariate related to lung and multiple metastases from 

the secondary inference was probably because the decline offset the growth within the 𝜏 interval 

[0.1, 0.6] (Figure 3.2). Based on the test results, we might conclude that the survival difference 

between patients with lung and multiple metastatic breast cancer diseases was fluctuant over 

quantiles, and it reached to its minimum at 30th quantile of HR-/HER2+ patients. Treatment 

strategies should be tailored based on the variation of prognostic effects. 
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Figure 3. 2 Univariate analysis: estimated quantile coefficients with 95% pointwise confidence intervals in 

HR+/HER2- subtype for τ ∈ [0.1, 0.639] 
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 (2) HR+/HER2+ Subtype 

Overall, HR+/HER2+ patients with metastasis in bone or liver organ had significantly better 

survival than those with metastasis in multiple organs over 𝜏 ∈ [0.1, 0.35] (P = 0.0002, P = 0.003;  

Table 3.6). As mentioned above in Cox PH regression, brain metastasis was excluded due to small 

sample size (n=7). 

 

Figure 3. 3 Univariate analysis: estimated quantile coefficients with 95% pointwise confidence intervals in 

HR+/HER2+ subtype for τ ∈ [0.1, 0.381] 
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In Figure 3.3, survival difference between bone and multiple metastases, or liver and metastasis 

had similar patterns over 𝜏 ∈ [0.1, 0.381]: it appeared to be decreasing and gradually stable around 

25th quantile. Based on the Kaplan Meier curves for HR+/HER2- patients, fewer events happened 

at the end of the time and many patients lost to follow-up, particularly in patients with lung 

metastasis (Figure 3.3). Moreover, the sample size was small with relatively short follow-up time. 

Hence, a constancy test conducted within the 𝜏 interval [0.1, 0.3] would be more powerful. For 𝜏 ∈

[0.1, 0.3], quantile effect of covariate related to bone and multiple metastasis was significantly 

inconsistent (P = 0.002) and the survival difference gradually vanished in this 𝜏 interval (Figure 

3.3).  
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(3) HR-/HER2+ subtype 

In HR-/HER2+ subtype, patients with bone, liver or lung metastasis had significantly better 

prognosis effect than those with multiple metastases when 𝜏 ∈ [0.1, 0.35]  (P = 0.0497, P = 0.0002, 

P = 0.005; Table 3.6). However, these effects may be constant in [0.1, 0.35] (Table 3.6).  

 

Figure 3. 4 Univariate analysis: estimated quantile coefficients with 95% pointwise confidence intervals in 

HR-/HER2+ subtype for τ ∈ [0.1, 0.374] 
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(4) TNBC subtype 

Overall tests showed significance in quantile effects related to bone, liver, lung versus multiple 

metastases within the interval [0.1, 0.75] . Patients with multiple metastatic breast cancer had 

significantly worse survival than those with single metastasis in bone, liver or lung organs (all P 

< .0001; Table 3.6). No overall effect on survival was shown between brain and multiple metastases 

(P = 0.414; Table 3.6). All covariate effects were constant over 𝜏 ∈ [0.1, 0.75]. However, the 

positive quantile effect of bone metastasis versus multiple metastases, or lung metastasis versus 

multiple metastases may vary within the 𝜏 interval [0.4, 0.75] (P < 0.0001, P = 0.074), possibly 

increasing in Figure 3.5.  
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Figure 3. 5 Univariate analysis: estimated quantile coefficients with 95% pointwise confidence intervals in 

TNBC subtype for τ ∈ [0.1, 0.808] 
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3.3.2 Multivariate Analysis 

After adjusting for age, metastatic patterns associated with survival time were still different 

among breast cancer subtypes (Figure 3.6-3.9). Quantile covariate effects from multivariate 

regression models were either constant or varied. However, compared with univariate results, some 

of the patterns were changed in multivariate analyses. Parallel to univariate regression model, 

patients had metastases to multiple organs were considered as reference group. Table 3.7 

summarized the average effects and test results of overall significance and constancy within 

specific quantile intervals from multivariate analyses. All subplots based on different reference 

categories of metastatic sites were shown in Appendix B.  
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Table 3. 7 Estimates of average covariate effects and results on hypothesis testing and second-

stage inference in multivariate quantile regression model stratified by breast cancer subtype 

 HR+/HER2- 

Metastatic Site 
Average Effect 

τ∈[0.1,0.6] 

Overall Significance  

τ∈[0.1,0.6] 

Constancy  

τ∈[0.1,0.6] 

Bone 0.562 < 0.0001* 0.064 

Brain -0.210 0.339 0.752 

Liver 0.373 0.0003* 0.414 

Lung 0.585 < 0.0001* 0.586 

Age -0.017 < 0.0001* 0.004* 

 HR+/HER2+ 

Metastatic Site 
Average Effect 

τ∈[0.1,0.4] 
Overall Significance 

τ∈[0.1,0.4]  
Constancy 

τ∈[0.1,0.4]  

Bone 0.545 0.0008* 0.121 

Liver 0.441 0.034* 0.779 

Lung 0.382 0.023* 0.241 

Age -0.021 0.0002* 0.322 

 HR-/HER2+ 

Metastatic Site 
Average Effect 

τ∈[0.1,0.4] 

Overall Significance 

τ∈[0.1,0.4]  

Constancy  

τ∈[0.1,0.4] 

Bone 0.548 0.008* 0.214 

Brain -0.211 0.349 0.638 

Liver 0.592 0.001* 0.453 

Lung 0.532 0.003* 0.511 

Age -0.018 0.0005* 0.070 

 TNBC 

Metastatic Site 
Average Effect 

τ∈[0.1,0.8] 
Overall Significance  

τ∈[0.1,0.8] 
Constancy  

τ∈[0.1,0.8] 

Bone 0.572 < 0.0001* 0.056 

Brain 0.141 0.426 0.182 

Liver 0.400 < 0.0001* 0.586 

Lung 0.495 < 0.0001* 0.124 

Age -0.007 0.002* 0.613 

1. * Significant P value (<0.05). 

2.  Reference category: multiple metastases. 

3. Average covariate effects were resampling based. 
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 (1) HR+/HER2- subtype 

Among patients with HR+/HER2- subtype, after adjusting for patient age, breast cancer 

metastasizing to multiple organs had more harmful effect on survival 𝜏 ∈ [0.1, 0.6], compared with 

breast cancer metastasizing to bone, liver or lung (P < 0.0001, P = 0.0003, P < 0.0001; Table 3.7). 

The survival difference between bone and multiple metastases had slightly decrease over quantiles, 

and showed marginally significance in variation (P = 0.064; Table 3.7, Figure 3.6).  

Additionally, age had significantly negative effect on survival (P < 0.0001; Table 3.7) and it 

became less important on survival among patients who survive longer at larger quantiles (P = 0.004; 

Table 3.7). Except for age and bone metastasis, quantile effects for other covariates were all 

constant over 𝜏 ∈ [0.1, 0.6] (Table 3.7).  
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Figure 3. 6 Multivariate analysis: estimated quantile coefficients with 95% pointwise confidence intervals 

in HR+/HER2- subtype for τ ∈ [0.1, 0.612] 

(2) HR+/HER2+ subtype    

    Figure 3.7 displayed the quantile effects of metastatic sites and age in HR+/HER2+ breast cancer 

subtype. Patients with bone, lung, or liver metastasis had better overall prognosis than those with 

multiple metastases after controlling for age over 𝜏 ∈ [0.1, 0.4] (P = 0.0008, P = 0.034, P = 0.023, 
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P = 0.0002; Table 3.7). Age had negative effect on survival (P = 0.0002; Table 3.7). All the 

covariate effects were constant within this 𝜏 interval (Table 3.7).  

Figure 3. 7 Multivariate analysis: estimated quantile coefficients with 95% pointwise confidence intervals 

in HR+/HER2+ subtype for τ ∈ [0.1, 0.435] 

 

 



40 
 

(3) HR-/HER2+ subtype 

In HR-/HER2+ subtype, after adjusting for age, patients with bone, liver or lung oligometastasis 

had significantly better prognosis than patients with multiple metastases over 𝜏 ∈ [0.1, 0.4] (P  = 

0.008, P = 0.001, P = 0.003; Table 3.7).  

 

Figure 3. 8 Multivariate analysis: estimated quantile coefficients with 95% pointwise confidence intervals 

in HR-/HER2+ subtype for τ ∈ [0.1, 0.541] 
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    In Figure 3.8, age had negative quantile effect of prognosis (P = 0.0005; Table 3.7), which 

appeared to be decreasing as quantile increased (Figure 3.8). All these coefficient effects on 

survival were constant across quantiles (Table 3.7). 

(4) TNBC subtype 

After controlling for age, multiple metastases had significantly worse effect on survival than 

bone, liver or lung oligometastasis within quantile interval [0.1, 0.8] (P < 0.0001, P = 0.426, P < 

0.0001, P < 0.0001; Table 3.7).  The estimated effect of age suggested that younger patients may 

have worse survival (P = 0.002; Table3.7, Figure 3.9) in the TNBC group.  

The quantile effect of bone metastasis may vary over 𝜏. The variation was only marginally 

significant (P = 0.056; Table 3.7). According to Figure 3.9, there was an increase in the coefficient 

effect of bone metastasis above 45th quantile. A constancy test conducted within the 𝜏 interval [0.45, 

0.8] showed significant survival variation between bone metastasis and multiple metastases over 

𝜏 ∈ [0.45, 0.8] (P =0.0005). Within this quantile interval, the prognosis of TNBC patients with 

multiple metastases started to get worse and worse in comparison to those with metastasis to bone 

organ after receiving systemic treatments. Except for the bone metastasis, all the covariate effects 

were constant over 𝜏 ∈ [0.1, 0.8] (Table 3.7).  
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Figure 3. 9 Multivariate analysis: estimated quantile coefficients with 95% pointwise confidence intervals 

in TNBC subtype for τ ∈ [0.1, 0.827] 
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Table 3.8 summarized the results from constancy tests among all significant overall quantile 

effects in Table 3.6 and Table 3.7. Patients with multiple metastases was the reference category for 

the covariates of metastatic sites in all quantile models. Based on the results from Table 3.6 and 

Table 3.7, patients who had metastasis in multiple organs never had significantly better prognosis 

than those who had single metastasis (bone, brain, liver, lung). Hence, patients with all the single 

metastases shown in Table 3.8 had significantly better overall survival than those with multiple 

metastases (reference group) in all breast cancer subtypes.    

Table 3. 8 A summary of results on second stage inference based on quantile regression 

models 

1. Reference category: multiple metastases.  

2. All single metastases (bone, brain, liver, lung) had better prognosis than multiple metastases.  

 

 Univariate Analysis  Multivariate Analysis 

Significant 

Effect 
Constant Varying 

 
Constant Varying 

HR+/HER2- 
Liver 

 [0.1, 0.6] 

Bone  

[0.1,0.6]  

Lung  

[0.1, 0.3] or [0.3, 0.55] 

 

Bone, Liver, Lung 

[0.1, 0.6] 

Age 

[0.1, 0.6] 

HR+/HER2+ 
Liver 

[0.1, 0.3] 

Bone 

[0.1, 0.3] 

 Bone, Liver, Lung, 

Age 

[0.1, 0.4] 

-- 

HR-/HER2+ 

Bone, Liver, 

Lung 

[0.1, 0.35] 

-- 

 Bone, Liver, Lung, 

Age 

[0.1, 0.4] 

-- 

TNBC 

Bone, Liver, 

Lung 

[0.1, 0.75] 

Bone 

[0.4, 0.75] 

 Bone, Liver, Lung, 

Age 

[0.1, 0.8] 

Bone 

[0.45, 0.8] 
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CHAPTER IV: DISCUSSIONS 

The purpose of this study was to determine the associations between metastatic site and overall 

survival in breast cancer patients with different breast cancer subtypes. A total of 5211 patients 

with metastatic breast cancer were selected from NCDB. The significant association between breast 

cancer metastatic site and subtype was examined. Two semiparametric regression models, 

including Cox proportional hazard model and censored quantile regression model, were used to 

evaluate the prognostic effects of metastatic sites in the same breast cancer subtype. Univariate and 

multivariate analyses were conducted under both models. Different association patterns between 

metastatic sites and overall survival were shown in different breast cancer subtypes.   

In general, patients with bone metastasis appeared to have the best prognosis after receiving the 

systemic therapies, while patients with multiple metastases had the worst prognosis among all 

breast cancer subtypes, suggesting more aggressive therapies and medical care were needed. 

HER2+ patients or HER2- patients had similar metastatic patterns in prognosis regardless of 

variation over time. However, the results from these two semiparametric models were not 

completely the same. In Cox regression analyses, patients with single brain metastasis tended to 

have better overall survival than those with multiple metastases in TNBC subtype, while such a 

difference was not detected by censored quantile regressions. Notably, bone metastasis was more 

likely to have significant varying effects over time than other metastasis versus multiple metastases 

in univariate quantile regression analyses, except for HR-/HER2+ breast cancer. Among patients 

with HR+ breast cancer subtypes (HR+/HER2-, HR+/HER2+), the prognosis difference between 

single bone metastasis and multiple metastases became significantly smaller over time. While in 

TNBC patients, the prognosis difference started to become significantly larger around the median. 

In multivariate quantile regression analyses, age showed negative prognostic effect among patients 

with all subtypes and was varied in HR+/HER2- subtype. These varying quantile effects suggested 

more tailored treatments for patients were needed after receiving systemic adjuvant therapies. 
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4.1 Assumptions and Limitations  

Even though different metastatic patterns were founded in different breast cancer subtypes, the 

study still carried assumptions and limitations, particularly from data source, sample selection and 

regression models.  

4.1.1 Data Source and Patient Selection  

National Cancer Database (NCDB) (2010-2013) with wider coverage was assumed to have 

much more representative results from the statistical analyses. However, this study had a relatively 

short follow-up time with a maximum of 71.23 months and a median of less than 30 months. It is 

mainly because of the update and expansion of NCDB in 2010 and short patient follow-up starting 

from 2015. For HR+ breast cancer patients who would have late metastatic events, the statistical 

results might be affected due to short follow-up time (Figure 3.1). 

Additionally, NCDB only contained approximately 5% metastatic rate, which was much lower 

than the reported rate.51 Furthermore, similar to other large database, NCDB had many incomplete 

records on sites of metastases. Although breast cancers metastasize to more than two organs with 

or without complete records were all considered as multiple metastases, some patients with only 

one metastasis record but missing information on other metastatic sites were all removed (n = 87). 

By removing these data, which did include patients with either single or multiple metastases, there 

is a chance that we introduced some bias into our analyses. Additionally, NCDB also had low rates 

in treatments, especially in HER2-targeted therapy among HER2+ patients. Among 1079 HER2+ 

patients, only 21.69 % of them received HER2-targeted therapy. Low overall rates of breast cancer 

metastasis and treatment and many missing data in NCDB reduced the sample size and likely 

resulted in some biases. 

Another limitation of this study is the strict inclusion criteria that was used for patient selection. 

The impact of different therapies and sequence of therapies on survival among different breast 
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cancer subtypes is currently unknown. Moreover, clinical and molecular features, such as subtype 

and metastatic site, contribute to the heterogeneity in breast carcinomas.52, 53 In an effort to avoid 

this heterogeneity, we made a criterion with the inclusion of only patients with surgery and systemic 

therapy. However, this strict inclusion criterion was also a limitation to some extent. While we 

were able to generate a more realistic picture of metastatic patterns for a specific group of patients 

with metastatic breast cancer, there were fewer covariates that needed to be adjusted for in 

multivariate analyses. Smaller differences would be expected between the results of univariate and 

multivariate analysis if the inclusion or exclusion criteria were too rigid.  

4.1.2 Regression Models 

(1) Cox proportional hazard model  

In this study, Cox proportional models followed the assumptions of non-informative censoring 

and proportional hazard. However, the second assumption was easy to be violated in the real-world 

data. The survival difference between two types of metastatic breast cancers might vary at 

quantiles. In this study, the alternative approach (quantile regression analysis) had validated the 

inconstancy in part of the survival comparisons through second stage inferences. For instance, in 

univariate analysis, the positive effect of bone metastasis on survival became smaller compared 

with multiple metastases in HR-/HER2+ subtype over quantiles (P =.003; Table 3.6). After 

adjusting for age, the quantile effect still had small decrease (P = 0.064; Table 3.7).  

In both univariate and multivariate analysis, the orders of overall survival affected by different 

sites of metastasis could not be confirmed through all pairwise comparisons, especially in TNBC 

subtype (Table 3.5). In other words, some of these hazard ratios that should have been different 

showed non-significance. Wide confidence intervals with little precision probably came from small 

sample sizes of subgroups or the violations of proportional hazard assumption from Cox model.  
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(2) Censored quantile regression model  

Censored quantile regression model using Peng and Huang approach (2008) is under the 

assumption of conditionally independence censoring. Even though it reflects a more objective result 

over quantile rather than a constant effect from Cox model, it has its own limitations in this study.  

First, sample size has large impact on determining whether the coefficient can be estimated at a 

specific quantile. In comparison to univariate model, more sample size is required to estimate 𝜷(𝜏) 

over a relatively similar range of 𝜏  in multivariate analysis, especially when more categorical 

variables with multiple levels are included in the model. This issue with sample size becomes more 

severe when the follow-up time is shorter with more events might happened later.  

Additionally, the accuracy of estimates varies over quantile levels. In general, there are few 

events happened at the extreme quantiles (𝜏 close to 0 or 1). The estimated effects close to the 

extreme usually are less stable and accurate, compared with those close to the median (0.5).54 This 

is mainly because of the distribution of time-to-event data and grid-based method for quantile 

estimation43. To gain more reliable results, we only considered the covariate effects for 𝜏 ∈

[0.1, 𝜏𝑢] in this study, where 𝜏𝑢 < 𝜏𝑈 , 𝜏𝑈  was the maximum 𝜏 obtained from a quantile model 

estimation.  

In this study, there were only a small number of patients with single brain metastasis in all 

subtype (HR+/HER2-: 27, HR+/HER2+: 7, HR-/HER2+: 14, TNBC: 35; Table 3.1). Moreover, the 

patient follow-up time with a median of less than 30 months. According to these data limitations, 

we might only acquire quantile estimates in relatively short range with less precision and accuracy.  

(3) Conclusions of the two models 

Survival differences assessed by Cox regression model were under the strong assumption of 

proportionality, which would cause bias estimations sometimes. Even though censored quantile 

regression was a more effective approach in assessing the variations of effects on survival, it needed 
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larger sample size to satisfy its accuracy, especially at the extreme quantiles (e.g. 𝜏 close to 0 or 1). 

In practice, one may conduct Cox PH regression as part of the primary analysis. When the PH 

assumption is dubious, or when the interest lies in covariate effects on survival times themselves, 

censored quantile regression may be performed as an alternative analysis which can be easily and 

stably implemented and provide straightforward physical interpretations.  

4.2 Future Research  

As mentioned previously, breast cancer is highly heterogeneous.18,19 To reflect more realistic 

patterns, further work may focus on a specific breast cancer subtype, such as TNBC. TNBC patients 

lack the gene expressions of ER, PR, and HER2 receptors.12-14 Accordingly, targeted therapies, 

such as immunotherapy, and HER2-targeted therapy, were usually ineffective among these patients. 

Patients with TNBC usually have worse survival than other breast cancer subtypes after distant 

metastasis. Based on the available therapy information from NCDB, it would be interesting to 

conduct a more detailed investigation on how chemotherapy or radiation affect the survival among 

TNBC patients with metastatic breast cancer using quantile regression models.  
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Appendix A: Regression Quantiles in Univariate Analysis  

A.1 HR+/HER2- Subtype 

 

(A) Bone Metastasis 

1. τ ∈ [0.1, 0.639]. 

2. Reference category of metastasis covariate: bone.  
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A.1 HR+/HER2- Subtype 

 

 (B) Brain Metastasis  

 

1. τ ∈ [0.1, 0.639]. 

2. Reference category of metastasis covariate: brain. 
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A.1 HR+/HER2- Subtype 

 

(C) Liver Metastasis 

 

1. τ ∈ [0.1, 0.639]. 

2. Reference category of metastasis covariate: liver. 
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A.1 HR+/HER2- Subtype 

 

(D) Lung Metastasis  

1. τ ∈ [0.1, 0.639]. 

2. Reference category of metastasis covariate: lung. 
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A.1 HR+/HER2- Subtype 

 

(E) Multiple Metastases 

1. τ ∈ [0.1, 0.639]. 

2. Reference category of metastasis covariate: multiple. 
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A.2 HR+/HER2+ Subtype  

 

(A) Bone Metastasis                                                                               

1. τ ∈ [0.1, 0.381]. 

2. Reference category of metastasis covariate: bone.  
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A.2 HR+/HER2+ Subtype  

 

 (B) Liver Metastasis  

1. τ ∈ [0.1, 0.381]. 

2. Reference category of metastasis covariate: liver. 
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A.2 HR+/HER2+ Subtype  

 

(C) Lung Metastasis 

1. τ ∈ [0.1, 0.381]. 

2. Reference category of metastasis covariate: lung. 
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A.2 HR+/HER2+ Subtype  

 

 

 (D) Multiple Metastasis 

1. τ ∈ [0.1, 0.381]. 

2. Reference category of metastasis covariate: multiple. 
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A.3 HR-/HER2+ Subtype 

 

(A) Bone Metastasis                                                                               

1. τ ∈ [0.1, 0.374]. 

2. Reference category of metastasis covariate: bone.  
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A.3 HR-/HER2+ Subtype 

 

 (B) Brain Metastasis  

1. τ ∈ [0.1, 0.374]. 

2. Reference category of metastasis covariate: brain. 
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A.3 HR-/HER2+ Subtype 

 

(C) Liver Metastasis 

1. τ ∈ [0.1, 0.374]. 

2. Reference category of metastasis covariate: liver.  
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A.3 HR-/HER2+ Subtype 

 

 (D) Lung Metastasis 

1. τ ∈ [0.1, 0.374]. 

2. Reference category of metastasis covariate: lung.  

 

 



62 
 

A.3 HR-/HER2+ Subtype 

 

(E) Multiple Metastases 

1. τ ∈ [0.1, 0.374]. 

2. Reference category of metastasis covariate: multiple. 
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A.4 TNBC Subtype 

 

(A) Bone Metastasis 

1. τ ∈ [0.1, 0.808]. 

2. Reference category of metastasis covariate: bone.  
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A.4. TNBC Subtype 

 

 (B) Brain Metastasis  

1. τ ∈ [0.1, 0.808]. 

2. Reference category of metastasis covariate: brain. 
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A.4. TNBC Subtype 

 

(C) Liver Metastasis 

1. τ ∈ [0.1, 0.808]. 

2. Reference category of metastasis covariate: liver.  
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A.4. TNBC Subtype 

 

 (D) Lung Metastasis 

1. τ ∈ [0.1, 0.808]. 

2. Reference category of metastasis covariate: lung. 
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A.4. TNBC Subtype 

 

(E) Multiple Metastases 

1. τ ∈ [0.1, 0.808]. 

2. Reference category of metastasis covariate: multiple. 
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Appendix B: Regression Quantiles in Multivariate Analysis  

B.1 HR+/HER2- Subtype 

 

(A) Bone Metastasis 

1. τ ∈ [0.1, 0.612]. 

2. Reference category of metastasis covariate: bone.  
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B.1 HR+/HER2- Subtype 

 

 

 (B) Brain Metastasis  

1. τ ∈ [0.1, 0.612]. 

2. Reference category of metastasis covariate: brain. 
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B.1 HR+/HER2- Subtype 

 

(C) Liver Metastasis 

1. τ ∈ [0.1, 0.612]. 

2. Reference category of metastasis covariate: liver. 
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B.1 HR+/HER2- Subtype 

 

 

 (D) Lung Metastasis 

1. τ ∈ [0.1, 0.612]. 

2. Reference category of metastasis covariate: lung. 
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B.1 HR+/HER2- Subtype 

 

(E) Multiple Metastases 

1. τ ∈ [0.1, 0.612]. 

2. Reference category of metastasis covariate: multiple. 
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B.2 HR+/HER2+ Subtype 

 

(A) Bone Metastasis 

1. τ ∈ [0.1, 0.435]. 

2. Reference category of metastasis covariate: bone. 
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B.2 HR+/HER2+ Subtype 

 

  

 (B) Liver Metastasis  

1. τ ∈ [0.1, 0.435]. 

2. Reference category of metastasis covariate: liver. 
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B.2 HR+/HER2+ Subtype 

 

(C) Lung Metastasis 

1. τ ∈ [0.1, 0.435]. 

2. Reference category of metastasis covariate: lung. 
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B.2 HR+/HER2+ Subtype 

 

 (D) Multiple Metastasis 

1. τ ∈ [0.1, 0.435]. 

2. Reference category of metastasis covariate: multiple. 
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B.3 HR-/HER2+ Subtype 

 

(A) Bone Metastasis 

1. τ ∈ [0.1, 0.541]. 

2. Reference category of metastasis covariate: bone. 
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B.3 HR-/HER2+ Subtype 

 

 

 (B) Brain Metastasis  

1. τ ∈ [0.1, 0.541]. 

2. Reference category of metastasis covariate: brain. 
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B.3 HR-/HER2+ Subtype 

 

(C) Liver Metastasis 

1. τ ∈ [0.1, 0.541]. 

2. Reference category of metastasis covariate: liver. 
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B.3 HR-/HER2+ Subtype 

 

  

 (D) Lung Metastasis 

1. τ ∈ [0.1, 0.541]. 

2. Reference category of metastasis covariate: lung. 
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B.3 HR-/HER2+ Subtype 

 

(E) Multiple Metastases 

1. τ ∈ [0.1, 0.541]. 

2. Reference category of metastasis covariate: multiple. 
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B.4 TNBC Subtype 

 

(A) Bone Metastasis 

1. τ ∈ [0.1, 0.827]. 

2. Reference category of metastasis covariate: bone. 
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B.4 TNBC Subtype 

  

 

(B) Brain Metastasis  

1. τ ∈ [0.1, 0.827]. 

2. Reference category of metastasis covariate: brain. 
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B.4 TNBC Subtype 

 

(C) Liver Metastasis 

1. τ ∈ [0.1, 0.827]. 

2. Reference category of metastasis covariate: liver. 
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B.4 TNBC Subtype 

  

 

 (D) Lung Metastasis 

1. τ ∈ [0.1, 0.827]. 

2. Reference category of metastasis covariate: lung. 
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B.4 TNBC Subtype 

 

(E) Multiple Metastases 

1. τ ∈ [0.1, 0.827]. 

2. Reference category of metastasis covariate: multiple.
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