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Abstract

Numerical Methods for
Optimal Experimental Design

of Ill-posed Problems
By

Zhuojun Magnant

The two goals of this thesis are to develop numerical methods for solving large-scale
optimal experimental design problems efficiently and to apply optimal experimen-
tal design ideas to applications in regularization techniques and geophysics.

The thesis can be divided into three parts. In the fist part, we consider the
problem of experimental design for linear ill-posed inverse problems. The mini-
mization of the objective function in the classic A-optimal design is generalized
to a Bayes risk minimization with a sparsity constraint. We present efficient al-
gorithms for applications of such designs to large-scale problems. This is done by
employing Krylov subspace methods for the solution of a subproblem required to
obtain the experiment weights. The performance of the designs and algorithms is
illustrated with a one-dimensional magnetotelluric example and an application to
two-dimensional super-resolution reconstruction with MRI data.

In the second part, we find the optimal regularization for linear ill-posed prob-
lems. We propose an optimal `2 regularization approach enabling us to obtain
inexpensive and good solutions to the inverse problem. In order to reduce the
computational cost, several sparsity patterns are added to the regularization oper-
ator. Numerical experiments will show that our optimal `2 regularization approach
provides much better results than the traditional Tikhonov regularization.

In the last part of the thesis, we design optimal placement of sources and
receivers in a CO2 injection monitoring. An optimal criteria is proposed based
on a target zone and different treatments for placing sources and receivers are
discussed.
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Chapter 1

Introduction

This thesis develops numerical methods for optimal experimental designs for large-

scale ill-posed inverse problems. Optimal experimental design has broad applica-

tions in various scientific areas such as geophysics, medical imaging and biology

[14, 16, 35]. In recent years, the study of optimal experimental designs has become

far more popular due to these and related applications across all the natural and

social sciences.

The term ‘experiment’ is defined to be a random process that is conducted to

support or disprove a hypothesis. It can be conducted to study almost any object

such as people, animals, materials, etc. For example, rolling a die to test whether

or not the die is fair is a very simple experiment. Other examples include taking

an MRI for medical purposes [36], shooting a ray and studying the effects as it

passes through certain media [1] and even clinical trials for testing the effects of

medications [14].

An optimal experimental design is the design of an experiment, which is opti-

mal with respect to some statistical criterion. As a specific example, researchers at
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OPTEC have been studying the optimal characteristics and positions for dampers

used to minimize vibrations in footbridges. Unfortunately, the dampers are expen-

sive and the optimal placement is very difficult to determine due to the random

nature of the load and patterns in foot traffic. Hence, they would like to design an

experiment to determine what types of dampers to use and where to place them.

Such optimally placed dampers would provide a balance between the chance of

damage to the bridge and the financial cost.

We introduce the theory of optimal experimental design via studying the solu-

tion of a linear ill-posed inverse problem of the form

Am+ ε = b, (1.1)

where A is a discretization of some linear operator, b is the data we have observed

and ε is the noise contained in the data. Since the problem is ill-posed, there is no

hope to recover the model m directly from the observed data. Hence, we include

the following two elements and solve this optimization problem instead:

m̂ = arg min
m

(Am− b)>W (Am− b) +R(L,m). (1.2)

The first element we add is a diagonal matrix W = diag{w }, in which each

entry on the diagonal stands for the relative frequency that each experiment is

chosen. Suppose the rows of the matrix A represent n different experiments. In

order to obtain the best possible solution, we need to use all of the n experiments.

However, in most cases, the computation for this kind of problem is very expensive

and time consuming, especially when n is large. Also, some experiments contribute
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more to the solution than others. So, putting more weight on those entries in w

that correspond to the important experiments would be a good idea. On the other

hand, if the contributions of some experiments are so small that leaving them out

would not harm the result much, then we might consider not conducting those at

all. This can be done by setting the corresponding w entries to be 0.

The other element we consider is a regularization functional that adds addi-

tional information to the problem in order to introduce stability or to incorporate

some a priori information about the desired solution.

It is obvious that, in order to obtain a good estimated solution, we would like

to find the optimal W or L. Therefore, there are two questions we want to answer

throughout this thesis: what is the best weight matrix W? What is the best

regularization matrix L?

With this thought in mind, the two goals of this thesis are to develop numerical

methods for solving large-scale optimal experimental design problems efficiently

and to apply optimal experimental design ideas to applications in regularization

techniques and geophysics.

1.1 Bayesian optimal experimental design

Design of experiments leads to specifying all aspects of an experiment, in other

words, controlling the values of variables that are used to describe the experiment.

This kind of control may include: choosing the set of experiments to study, deciding

the sample size and determining a certain time length to perform the experiment.

Decisions need to be made before gathering information when designing exper-

iments. In general, some information is usually available before the experiments
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happen. For example, one usually has prior experience with the type of exper-

iments to be conducted. One may even have collections of training models that

provide information about the objects one can expect to recover. Thus, a Bayesian

approach [14] seems ideal for experimental design, where such prior information is

provided in terms of probability distribution functions.

Bayesian experimental design is based on using Bayesian inference to interpret

the observed data from the experiment. In Bayesian inference, observations are

used to calculate the probability that a hypothesis is true. It is called ‘Bayesian’

because of the use of the Bayes’ theorem in the calculation process. As a con-

sequence, the goal of the Bayesian design of an experiment is to obtain a high

probability of reaching a correct conclusion before conducting any experiment.

We use Bayesian inference as opposed to frequentist inference, which uses only

the probability of the observed data, thereby taking no prior probability of the

hypothesis into account. The usage of prior information is the major difference

between the two ways of inference.

Through the Bayesian approach, both prior knowledge of the parameters to be

determined and uncertainties in the observations are taken into account. Hence,

optimal decisions can be made based on the study of uncertainty, which can be

controlled by properly choosing the values of the random variables of interest. In

order to reduce this uncertainty, it is desirable to obtain estimates of the variables

with small variance.
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1.1.1 A brief review of Bayesian experimental designs

The goal of designing an experiment is to maximize the expected utility that is

chosen to reflect purposes of the experiment. The utility is usually defined by

measuring the accuracy of the information provided by the experiments. Various

experimental design optimality criteria have been developed based on different

choices of the utility function.

It is well known that the least squares estimator minimizes the variance of the

unbiased estimators. For single variable models, the reciprocal of the variance of

an estimator is called the ‘Fisher information’ of the estimator. Hence, minimizing

the variance corresponds to maximizing this ‘Fisher information’. However, when

the statistical model consists of multiple variables, the mean of the estimator is

a vector and its variance becomes a matrix. The inverse of this variance matrix

is called the ‘information matrix’. Thus, minimizing the variance is equivalent to

‘maximizing’ the ‘information matrix’.

The difficulty of maximizing the information matrix is: how do we determine

whether or not a matrix is maximized? Various optimality criteria have been

developed to measure the largeness of this information matrix using statistical

theory. In practice, the information matrix has been compressed into different

real-valued functions so that it can be easily maximized. Some popular criteria

are Bayesian A-, C-, D- and E-optimality. This class of criteria is called Bayesian

alphabetical optimality.
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Bayesian D-optimality

Stone, DeGroot and Bernardo [9, 18, 67, 68] chose a utility function based on

the Shannon information. This leads to the Bayesian D-optimality, in which the

expected gain in the Shannon information is maximized. In this case, the deter-

minant of the inverse of the information matrix is minimized, which is equivalent

to maximizing the determinant of the information matrix,

min φD = |(A>A)−1|, (1.3)

where A>A is the information matrix.

The BayesianD-optimality is the most common criterion for computer-generated

optimal designs. It aims to maximize the geometric mean of the eigenvalues of

A>A.

Bayesian A-optimality

The Bayesian A-optimality [12, 20, 61] is based on the sum of the variances of the

estimated parameters for describing the model. Consequently, it minimizes the

sum of the diagonal elements, the trace of the inverse of the information matrix,

min φA = trace(A>A)−1. (1.4)

This criterion results in minimizing the average variance of the estimates.
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Bayesian C-optimality

The Bayesian C-optimality [13] is a special case of the A-optimality. It is used for

estimating some linear combination of the parameters of interest,

min φC = c>(A>A)−1c, (1.5)

where rank(A) = 1 and A = cc>.

Bayesian E-optimality

Another design is the Bayesian E-optimality [14], in which we maximize the small-

est eigenvalue of the information matrix. This is another natural approach because

the eigenvalue spectrum is also one way to measure the largeness of a matrix,

max φE = λmin(A>A). (1.6)

1.1.2 Numerical Challenges

The above designs are difficult to solve for large-scale problems. While developing

numerical methods for experimental design of small-scale problems is relatively

straightforward, large-scale problems, with a large number of experiments and

parameters, present a difficult challenge. Non-trivial matrix-functions and their

derivatives need to be evaluated and large-scale constrained optimization problems

need to be solved. In addition, since many of the matrices in experimental design

of inverse problems are large and dense, one is restricted to perform only matrix-

vector products. Furthermore, some of the matrices may be ill-conditioned which
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generates further difficulties.

As far as we know, the computation of Bayesian experimental design, especially

for large-scale problems, has not been studied extensively. Therefore, it is imper-

ative to develop sophisticated algorithms to solve large scale problems efficiently.

Nonetheless, experimental design of large-scale, ill-posed problems is an emerging

application whose treatment requires the development of new algorithms.

The goal of optimal experimental design (OED) is to control, in some sense,

the quality of experimental results. For well-posed problems this usually means

controlling the variance of unbiased least-squares estimates of the parameters of

interest. Although the study of OED for well-posed problems is well established

[7, 14, 24, 64], its application to ill-posed problems has not yet received much

attention. A difficulty that arises in ill-posed problems is that the estimates are

biased and this bias may dominate the overall error. Since the bias depends on

the parameters to be recovered, its control hinges on prior information about the

plausible parameters. For example, properties of the bias can be learned from the

training data. It then makes sense to choose a design that minimizes the average

mean squared error (under the prior). That is, we look for a design that minimizes

the Bayes risk. This is a generalization of the A-optimal experimental design for

well-posed problems.

As is well known, the posterior mean minimizes the Bayes risk but, in some

cases, the evaluation of its risk may be computationally demanding. One may then

choose to minimize the Bayes risk in a class of estimators that are computationally

tractable. We develop efficient numerical methods to minimize the Bayes risk over

the class of affine estimators. Note that this includes the case Gaussian-prior-

Gaussian-likelihood that is often used.
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Classical A-optimal designs have been treated in the literature (e.g., [24, 64])

but we do not know of algorithms capable of dealing with large-scale problems.

Furthermore, when applying the traditional designs to problems that arise in geo-

science and medical imaging, we have found them to be rather limited; new design

criteria are clearly needed.

In this thesis, we start by presenting new design criteria that combine spar-

sity constraints with Bayes risk minimization. Based on different assumptions

of the prior information, two different designs were developed to handle ill-posed

problems. If the covariance matrix of the models is available, we define the AB

design. Otherwise, the Aπ design is suggested. We then develop the optimization

and linear algebra techniques required to apply the designs to realistic large-scale

problems.

1.2 Optimal design for regularization

In various areas such as medical imaging, geophysics and tomography, inverse

problems frequently arise in which parameters of a model can be obtained from

some noisy observed data. Many of these problems are ill-posed, that is, either

there is no unique solution to the problem or a small perturbation of the data

can lead to a large change in the recovered solution. A variety of techniques

for obtaining stable solutions have been developed; these techniques are so called

regularization techniques, (see for example [10, 23, 54, 75] and references within).

Initially, regularization techniques aim to stabilize the problem and incorporate a

priori information or assumptions about the desired solution.
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1.2.1 Review of regularization

From a Bayesian point of view, many regularization techniques correspond to im-

posing certain prior information on the model to be recovered. Based on different

prior knowledge, people have developed various regularization functions, among

which the most commonly used one is the Tikhonov regularization.

For linear ill-posed problems, the Tikhonov regularization takes the regulariza-

tion functional as R(x) = 1
2
‖ Lx ‖2. The regularization matrix L usually plays

a role as a penalty function, such as restrictions for smoothness or bounds on the

vector space norm. If the goal is to obtain a solution with smaller norms, then

L can be chosen as an identity matrix. If prior information indicates that the

solution needs to be smooth, then a discretization of a differential operator is com-

monly used [73] to force smoothness on the desired solution. Other regularization

techniques such as TSVD [39, 40], for which the original ill-conditioned problem is

replaced by a well-conditioned rank-deficient problem, have also been considered.

In some cases, especially when the problem size is large and only matrix-vector

product is available, iterative regularization methods based on Golub Kahan bidi-

agonalization [28] and LSQR [32, 39] are very useful. In order to avoid drawbacks

of the iterative methods, such as the convergence of small singular values in the

Krylov subspace, hybrid methods [32, 59] have become popular. Hybrid methods

first use a subspace to reduce the size of the problem while capturing all the large

singular vectors. After that, a Tikhonov regularization is applied based on the

derived subspace.

Other regularization techniques that use `1 norms are now commonly used (see

for example [19, 21]) but they require considerably more sophisticated algorithms.
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Although it is often claimed that the `1 approach is much better than the quadratic

`2 approach (such as the Tikhonov regularization), in our experience, this may not

be the case for many problems, especially if L is chosen appropriately. The question

that we believe has not been fully answered is, how well can algorithms that use

`2 regularization perform when the regularization operator is chosen judicially?

1.2.2 Motivation of finding the optimal regularization

Most of the literature focuses on improving the solution by choosing the optimal

regularization parameter [38, 75, 76]. However, not much attention has been paid

to the choice of the regularization functional. In many cases, the commonly used

regularization functionals have limitations. For instance, the differential operator

treats all pixels of the image equally. Hence, the spatial features at different

locations of the image are ignored. In order to allow different treatments for

different spatial features within the image, the goal of this thesis is to develop

an optimal `2 regularization technique in order to obtain inexpensive and good

solutions to the inverse problem.

The idea of finding the optimal regularization functional is not new. Lauter

and Liero [50] have analyzed the optimal regularization for ill-posed problems by

corrections of the data or the operator. Sugiyama and Ogawa [69, 70, 71] developed

a method of choosing the optimal regularization functional and regularization pa-

rameter from given candidates based on the subspace information criterion. Their

method gives an unbiased estimate of the generalization error with finite samples

under certain conditions. Given a training set of feasible solutions, Haber and

Tenorio [37] proposed a supervised learning approach to estimate the regulariza-
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tion functional, which belongs to a family of functions parameterized by a vector

parameter.

However, none of the above approaches consider the sparsity structure, which

is more practical for real applications, when choosing the optimal regularization

functional. In this work, we develop an optimal regularization functional method-

ology for ill-posed problems that solves an optimization problem based on the MSE

of the estimate. In order to accomplish this goal, we assume the availability of a

set of examples as our training models.

This methodology can be applied to many practical inverse problems by choos-

ing different types of training models in various applications. Although we only

consider the linear case in this thesis, it can be generalized to nonlinear problems.

Moreover, the optimization problem we propose here is formulated such that only

standard unconstrained optimization techniques are needed.

1.3 Optimal design in CO2 injection monitoring

With the rapid development of modern technology, pollutants have been collect-

ing in the atmosphere. As a result of this accumulation, the radiation from the

sun enters the atmosphere but cannot leave. This is called the Greenhouse Ef-

fect. These pollutants are called Greenhouse Gases, which mainly contain carbon

dioxide (CO2), methane, ozone, etc.

The main complication of the Greenhouse Effect is the increase in average

temperature of the Earth, which results in climate change and the melting of the

polar ice caps, among other terrifying consequences. Therefore, it is imperative to

obtain control over the amount of CO2 near the Earth’s surface.
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1.3.1 Background of CO2 injection

CO2 is mainly produced by burning fossil fuels. Even if a hydrogen-based economy

was technically feasible today, we would still have a long way to go before the world

would be able to live without carbon-based fossil fuels. Until that time comes,

carbon combustion will continue to produce Greenhouse Gases. Thus scientists

need to find a way to reroute them.

Many techniques have been proposed for capturing or removing CO2 from

the atmosphere, among which the idea of piping liquefied CO2 deep under the

ocean or underground has received the most interest lately. Depleted oil and gas

reservoirs and saline aquifers are generally considered prime candidates for large

scale storage of CO2. Preliminary studies suggest that the underground storage

capacity is sufficient for the storage of hundreds of years worth of CO2 injection,

and that potential storage sites exist worldwide.

Basically, CO2 injection uses compressors to force compressed CO2 down a long

pipe drilled into the underground reservoir. However, as time passes, the liquefied

CO2 will begin to evaporate and potentially escape to the surface, which could

result in acidifying the water, affecting the soil chemistry and suffocating animals

or people. Therefore, geologic studies need to be carried out to model and monitor

the storage condition of the compressed underground CO2.

1.3.2 Motivation of design for CO2 injection monitoring

The injection of CO2 causes a fluid substitution within the pore space. Studies have

shown that time-lapse borehole and surface seismic surveys can be used to estimate

the location of the injected CO2 and monitor changes in reservoir properties [3,
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31, 44].

The goal of seismic surveys is to record sound waves that travel through the

media in the underground reservoir. It generates quantitative maps of variations

in fluid saturation or pressure over spatial domains. In particular, crosswell seismic

methods have been successfully applied to CO2 injection monitoring [42, 51]. These

methods detect changes in seismic velocity caused by CO2 injection into reservoirs.

Based on the crosswell survey, the CO2 saturation between the wells is spatially

mapped using tomographic imaging.

In order to obtain continuous crosswell seismic data, scientists need to install

seismic sources and receivers using production tubing with a geochemical fluid

sampling system [17]. The idea is, if the CO2 saturation and/or plume thickness

increases along a given raypath, the travel-time would decrease. This would allow

detection with some spatial resolution, especially in the vertical direction. The

difference in the travel-times recorded at different depths in an observation well in

the close vicinity allows continuous monitoring of the growing CO2 plume.

Using time-lapse borehole surveys, in stead of inverting for each velocity field,

data were inverted based on the change in velocity. In other words, the data used in

the tomographic inversion is the travel time difference between the post-injection

time and the pre-injection time for each source and receiver pair. By inverting

the difference data, some potential errors, such as miscalculation of the source and

receiver locations, are minimized or possibly even eliminated [2, 66].

The major problem of the existing CO2 injection monitoring is, geophysical

experiments or surveys are expensive to perform. For example, in order to en-

able repeatability and control the sampling distance of the monitoring surveys, it

is better to deploy permanent sensor arrays in boreholes and on the ocean floor.
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However, the cost of permanent built-in sensors is usually extremely high. Fur-

thermore, it is very difficult to reconfigure sensors after they are installed.

For this reason, it is imperative to design an optimal experiment based on

the relation between the experimental cost and the geophysical purpose. A good

design should be an optimal trade-off between the expected information about the

parameters or models of interest and the cost of acquiring such information. In

other words, an optimal experimental design should provide maximum information

about the target geophysical structure at minimum financial cost.

Since 1995, tremendous work has been done to develop optimal design theories

in various applications. Famous examples include determining optimal seismome-

ter locations for locating earthquakes [65], searching optimal placement for sensors

in time-lapse traveltime tomography [1, 16], designing optimal sensor geometries

for acoustic tomography in detecting underwater conductivity structure [6], etc.

Besides the geophysical purpose and parameterized model, the third component

of an experimental design framework is the experimental constraints, which are

usually unique for each experiment. The biggest concern and difficulty of CO2

injection monitoring is spatial limitations of placing sensors because, due to the

geophysical complexity, it is usually not possible to place sources and receivers

everywhere.

Therefore, the main purpose of this work is to design an optimal placement

of sources and receivers in order to obtain the best possible estimated model by

minimizing the averaged MSE in the target zone through optimization approaches.

The optimal reconstructed model is obtained based on the resulting optimal design

thereafter.
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1.4 Overview of this thesis

The goal of this thesis is to develop numerical methods to efficiently solve large-

scale optimal experimental design problems and to apply our design ideas to various

applications such as regularization and CO2 injection monitoring. The thesis is

mainly divided into three parts.

The first part consists of Chapters 2-3, which cover the derivation and numerical

methods of two new A-optimal designs.

• Chapter 2:

In Chapter 2, we give a quick review of the classical A-optimal design for the

well-posed case, which serves to review the basic definitions and introduce the

sparsity-constrained design. We generalize the design to ill-posed cases where

the estimates are biased. We discuss the algorithms to treat the sparsity con-

strained designs starting with the computation of the design functions and

their derivatives. We then proceed to describe approximate solvers for the

linear system subproblems that are the bottleneck of the computations. This

chapter concludes with a discussion of the numerical optimization methods.

We provide two examples: A one-dimensional example inspired by an actual

magnetotelluric application and a two-dimensional, super-resolution example

where the goal is to determine an optimal number of lower resolution MRI

images required to recover a higher resolution one.

• Chapter 3:

In this Chapter, we present numerical methods for solving the Bayesian E-

optimal design. Derivative techniques based on inverse iteration are studied.
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The performance of this design is examined on both a 1D problem and a

borehole ray tomography experiment.

In the second part of this thesis (Chapters 4-5), an approach to find the op-

timal `2 regularization is proposed and some numerical techniques to solve the

corresponding optimization problems are discussed.

• Chapter 4:

In Chapter 4, an optimality criteria for finding the optimal `2 regularization

matrix is developed. We show that this matrix can be obtained by solving

an optimization problem that depends on our a priori information. Special

derivative techniques are explored to solve large-scale matrix-based optimiza-

tion problems.

• Chapter 5:

In Chapter 5 we impose sparsity constraints on the structure of the optimal

regularization matrix, such as the local diagonal pattern, the `1 norm pat-

tern and the Kronecker product pattern. We discuss the numerical solution

of the problem and propose an effective algorithm for the recovery of that

matrix. We experiment with different regularization matrices based on sev-

eral sparsity patterns. Their performances are discussed and compared with

other commonly used regularizations.

The third part (Chapter 6) is dedicated to optimal design for CO2 injection

monitoring. A framework based on MSE is developed and the crosswell constraints

for possible locations of sources and receivers are described in detail. The con-

strained optimization is solved by DIRECT which is commonly used for finding
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the global minimum. Our algorithms were tested on a synthetic geographic to-

mography example provided by Dr. Jonathan Ajo-Franklin.

Chapter 7 is a summary of this thesis. We conclude the main work in this chap-

ter and give opinions about the future work to extend the approaches proposed.
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Chapter 2

Numerical methods for A-optimal

design

In the first part of this thesis, we aim at finding the optimal weight matrix W .

We start by reviewing the classical framework of experimental design for discrete

linear problems.

The data vector d ∈ IRN and unknown model m ∈ IRk are related via indirect

noisy measurements

d = Am+ ε. (2.1)

The rows of the matrix A represent experiments; repeated rows correspond to

repeated observations of the same experiment. Hence, if there are n different

experiments and each is observed ki times, then
n∑
i=1

ki = N is the total number

of experiments. The random noise vector ε is assumed to have zero mean and

covariance matrix σ2I.
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Assuming that each experiment has its own variance, by defining w to be the

inverse variance, w = 1
σ2 , we are able to plant the information of variances into the

inverse problem as follows:

√
WAm+

√
Wε =

√
Wb.

This implies that
√
Wε ∼ N(0, 1). Now the problem of finding the best W really

becomes the problem of finding the optimal variances for conducting the experi-

ments. We see that, if a certain entry on the diagonal of W is very small, which

corresponds to large variance, we say that particular experiment might be very

unreliable. On the other hand, if the entry is very large, which corresponds to

small variance, then we can trust the corresponding experiment more.

Therefore, the goal of this work is to find the optimal W , thereby telling us

which experiments are important for giving optimal estimates that provide reliable

conclusions. The optimality is defined by choosing a function that, in some way,

measures the performance of the estimate; an optimal experiment is one that

minimizes such optimality function subject to appropriate constraints.

2.1 The well-posed case

In classical well-posed linear experimental design [7, 14, 24, 64] the matrix A>A is

nonsingular and m is typically estimated using least-squares:

m̂ = arg min
1

2
‖ Am− d ‖2 .
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This is equivalent to minimizing

Sk(m) =
1

2
(d̄− Anm)>W (d̄− Anm),

where d̄i is the average of the ki observations of the ith experiment, the rows

of An are the n rows of A corresponding to different experiments and W =

diag {k1/N, ..., kn/N}. Note that (σ2/N)W−1 is the covariance matrix of d̄. The

selection of ki controls the variances of the observations of different experiments.

Since m̂ is an unbiased estimator, the optimality criteria used to choose k are

usually based only on characteristics of the covariance matrix of m̂ given by

Σm̂(W ) =
σ2

N
(A>nWAn)−1.

The proof of the above covariance matrix is not difficult.

Σm̂(W ) = E(m̂m̂>)

= E
[
(A>nWAn)−1A>nWd̄d̄>WAn(A>nWAn)−1

]
= (A>nWAn)−1A>nWE(d̄d̄>)WAn(A>nWAn)−1

= (A>nWAn)−1A>nWCov(d̄)WAn(A>nWAn)−1

=
σ2

N
(A>nWAn)−1.

To this end, one defines an optimality function φ that scalarizes covariance

matrices; different choices of φ may define different designs. For example, an A-
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optimal design is defined by the function

φA (Σm̂) = E ‖ m− m̂ ‖2= MSE(m̂) = σ2trace(Σm̂),

which is proved as follows

φA (Σm̂) = E(‖ (A>nWAn)−1A>nWd̄−m ‖2
2)

= E(‖ (A>nWAn)−1A>nW (Anm+ ε̄)−m ‖2
2)

= E(‖ (A>nWAn)−1A>nWε̄ ‖2
2)

= E(ε̄>WAn(A>nWAn)−2A>nWε̄).

By denoting H = WAn(A>nWAn)−2A>nW , we have

φA (Σm̂) = E(ε̄>Hε̄)

= E(
n∑
j=1

n∑
i=1

ε̄iε̄jHij)

= E(
n∑
i=1

ε̄2iHii +
n∑

i,j=1;i 6=j

ε̄iε̄jHij).

In general, the expected value operator is not multiplicative, i.e. E(xy) 6= E(x)E(y).

The lack of multiplicativity gives rise to the study of covariance.

For i = j,

E(
n∑
i=1

ε̄2iHii) =
n∑
i=1

E(ε̄2i )Hii =
n∑
i=1

Cov(ε̄i, ε̄i)Hii =
σ2

N
trace(W−1H).
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For i 6= j,

E(
n∑

i,j=1;i 6=j

ε̄iε̄jHij) =
n∑

i,j=1;i 6=j

E(ε̄iε̄j)Hij =
n∑

i,j=1;i 6=j

Cov(ε̄i, ε̄j)Hij = 0,

since Cov(x, y) = 0 if x and y are independent. Therefore,

φA (Σm̂) = trace

[
ε2

N
W−1WAn(A>nWAn)−2A>nW

]
=

ε2

N
trace

[
W−1WAn(A>nWAn)−2A>nW

]
= σ2trace(Σm̂).

There are other popular optimalities as well. For example, the D-optimal design is

defined by φD (Σm̂) = det(Σm̂), and if the goal is to estimate the linear functional

c>m using the estimator c>m̂, then a C-design is defined by

φC (Σm̂) = MSE(c>m̂) = c>Σm̂c.

However, we will only consider the A-design because it has a natural generalization

to ill-posed problems.

Given a chosen optimality function φ, k is selected by solving the integer opti-

mization problem:

k̂ = arg minφ [ Σm̂(W ) ] s.t.
∑
i

ki = N, W = diag { ki/N }.

The issue here is that k is a vector of integers. So solving this problem requires

integer optimization techniques. That is difficult so an approximation that is
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much easier to solve is defined by a ‘relaxation’ of the problem; one solves for real

fractions that sum to one instead of integers summing to N (in the literature this

design goes by different names such as ‘relaxed design’ [11] and ‘continuous design’

[24, 64]). For example, the A-design is changed to:

ŵ = arg min trace

[
σ2

N
(A>nWAn )−1

]
s.t.

∑
i

wi = 1, w ≥ 0, (2.2)

with W = diag {w }. That is, the non-negative weights wi replace ki/N . The

estimated weights are used as follows: the ith experiment is to be conducted

k̂i = [Nŵi] times and m is estimated by minimizing

Ŝk(m) =
1

2
( d̂− Anm )>Ŵ ( d̂− Anm ), (2.3)

where d̂i is the average of the k̂i observations of the ith experiment and Ŵ =

diag { k̂1/N, ..., k̂n/N }. Note that the solution of the optimization problem (2.2)

provides a proportional allocation of each experiment; the fractions ŵi do not

depend on the noise level σ or the total number of experiments N . For a given σ,

the total N can be chosen to match a target MSE.

In many experimental settings one may be able to control the variance of the

experiments by means other than replication; for example, by changing the expo-

sure time of a particular experiment. In this case N is a continuous variable that

can be used as a tuning parameter to obtain optimal target variances σ2/k̂i.

While it is clear that the MSE decreases to zero as N → ∞, in practice there

is usually a smallest achievable variance σ2
min for the experiments. In this case

the MSE cannot be arbitrarily small without violating this lower bound. We now
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define an experimental design that focuses on finding optimal variances subject to

a lower bound.

Let σi be the target variance of the ith experiment. Set wi = 1/σ2
i and define

dw to be the n × 1 data vector where the ith experiment is implemented to have

variance 1/wi for each i. An estimate of m is obtained by minimizing

Vw(m) =
1

2
( dw − Anm )>W ( dw − Anm ), (2.4)

where again W = diag {wi}. This time the covariance matrix of m̂ is

Σm̂(W ) = (A>nWAn )−1.

The corresponding optimization problem for the A-design is:

ŵ = arg min trace
[

(A>nWAn )−1
]

s.t. 0 ≤ w ≤ wmax. (2.5)

2.2 The sparsity control design

Clearly the solution of (2.5) is w = wmax. However, in order to save the experi-

mental cost, one needs to control the total number of different experiments. Such

control is particularly important when the cost of conducting the experiments a

second time is negligible compared to the cost of doing them the first time. For

example, drilling a bore-hole to measure data once has a substantial cost but mea-

suring again in the same bore-hole has a negligible cost. There are also situations

where only a few experiments are actually needed or reasonable to realize, so per-

forming all experiments is obviously wasteful. In this case it is better to select a
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few different experimental configurations to be conducted a number of times.

This implies that we would like the vector w to be sparse. This is the idea

studied in Haber’s previous work [35] where they considered controlling the sparsity

of w by minimizing

min
w

φ [ Σm̂(W ) ] + β‖w‖0 s.t. 0 ≤ w ≤ wmax,

with ‖w‖0 = #{wi 6= 0 }. They have used this design in the context of ill-posed

problems and called it sparsity control design. However, since the problem with

‖w‖0 is of combinatorial complexity, it is often approximated using the `1-norm

‖w‖1 instead of ‖w‖0 [35]. A sparsity controlled modification of (2.5) is

ŵ = arg min trace
[

(A>nWAn )−1
]

+ β
∑

wi s.t. 0 ≤ w ≤ wmax. (2.6)

The sparsity of the design is controlled with β. To determine a reasonable value

of this parameter one can study the trade-off in MSE reduction as a function of

‖w‖0, which is, in turn, controlled by β. The plot of trace[ (A>n ŴAn)−1 ] vs ‖w‖0,

is often referred to as a Pareto curve. If this curve has an L-shape one can argue

that the β corresponding to the corner is a reasonable choice. Note, however, that

an optimal wi may give a variance that is larger than that of the actual instrument.

If this happens one needs to make a decision of whether to set wi to match the

instrument variance or to leave out the experiment.

An even more realistic approach to determine w would be to also consider the

actual financial cost of the experiments. For example, bore-hole experiments are

typically much more expensive than surface experiments, and deeper bore-holes
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are more expensive than shallow ones. However, such cost-efficient methods are

application dependent and will not be discussed here.

2.3 Formulation for ill-posed problems

We now consider the case where the recovery of m given the indirect noisy data is

an ill-posed inverse problem.

2.3.1 The AB design

To design an experiment one needs to have some information about the class of

models to be recovered and about the type of noise to be expected. It is thus

reasonable to consider a Bayesian framework where such information is given in

terms of distribution functions. We assume that the distribution of dw given m is

Gaussian N(Am,W−1) and m is a random vector with prior distribution π. Since

we use MSE as the risk function, the idea is then to use the posterior mean m̂,

which minimizes the Bayes risk among all estimators, as the Bayes estimate and

choose w that minimizes its Bayes risk EπMSE(m̂). However, given the large-scale

problems we want to address, we reduce the computational cost by choosing m̂ to

be the linear (or affine) function of the data dw that minimizes the Bayes risk. To

compute this estimator and its Bayes risk, only the first two moments of the prior

π are required:

m̂(w) = (A>WA+ Σ−1
m )−1(A>Wdw + Σ−1µ), (2.7)
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where µ and Σm are, respectively, the prior mean and covariance matrix. The

Bayes risk of m̂ is

φAB(W ) = trace
[

(A>WA+ Σ−1
m )−1

]
, (2.8)

in which we assume that the prior information is given by the covariance matrix.

A modification of the optimal design (2.6) for the ill-posed case is obtained by

minimizing the Bayes risk with an `1 penalty:

ŵ = arg minφAB(W ) + β‖w‖1 (2.9)

s.t. 0 ≤ wi ≤ wmax, W = diag {wi }. (2.10)

To select appropriate values of β, we plot the Pareto curve and make a plot of

φAB(Ŵ ) as a function of ‖w‖0.

2.3.2 The Aπ design

In some cases, it is difficult to compute the AB design because it requires the

inverse of the covariance matrix Σm, which will be nontrivial when the problem

size is large. Thus some approximations are necessary. We may use the same

ideas to choose the optimal linear estimator of a particular type, for example, the

Tikhonov estimate m̂ in (2.11):

m̂(w) = arg min (dw − Anm)>W (dw − Anm) + α‖Lm‖2

= (A>WA+ αL>L)−1A>Wdw, (2.11)
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where α is a regularization parameter, L is a chosen matrix (e.g., a discrete deriva-

tive operator) and W = diag {w1, ..., wn} with Var(dwi) = 1/wi.

However, one of the problems we have this time is that the estimator m̂ is

biased and thus its covariance matrix does not provide all the information required

to assess its performance. Furthermore, its mean squared error (MSE), depends

on the unknown m: The MSE of m̂ for a fixed α is

MSE(m̂) = α2‖C(W )−1L>Lm ‖2 + trace
[
C(W )−2A>WA

]
, (2.12)

where C(W ) = A>WA+αL>L. Hence we have two problems: (i) without knowing

m one cannot control the MSE; (ii) the MSE requires an appropriate selection of

α which should be adapted to m and the noise level.

The objective is then to choose w to minimize its Bayes risk given by the

expectation of the MSE in (2.12) with respect to the prior:

φAπ(w) = α2‖C(W )−1L>Lµ ‖2+trace
[ (
C(W )−2

[
α2 L>LΣmL

>L+ A>WA
] ) ]

.

(2.13)

Here the α and L are chosen by the experimenter based on previous experience.

Note that the function φAB is used in the usual Bayesian A-design and φAπ is just

the Bayes risk of a Tikhonov estimator with prior moment conditions [14, 24, 64].
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We provide the proofs of 2.12 and 2.13 in the following.

MSE(m̂) = E(‖ m̂−m ‖2
2)

= E(‖ (A>WA+ αL>L)−1A>Wdw −m ‖2
2)

= E(‖ (A>WA+ αL>L)−1A>W (Am+ εw)−m ‖2
2)

= E(‖ (A>WA+ αL>L)−1A>WAm+

(A>WA+ αL>L)−1A>Wεw −m ‖2
2)

= E(‖ (A>WA+ αL>L)−1(A>WA+ αL>L− αL>L)m+

(A>WA+ αL>L)−1A>Wεw −m ‖2
2)

= E(‖ −α(A>WA+ αL>L)−1L>Lm+

(A>WA+ αL>L)−1A>Wεw ‖2
2)

= α2 ‖ (A>WA+ αL>L)−1L>Lm ‖2
2 +

E(‖ (A>WA+ αL>L)−1A>Wεw ‖2
2)

= α2‖C(W )−1L>Lm ‖2 + trace
[
C(W )−2A>WA

]
.
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φAπ(w) = EπMSE(m̂)

= Eπ

[
α2‖C(W )−1L>Lm ‖2

]
+ trace

[
C(W )−2A>WA

]
= α2Eπ(m>L>LC(W )−2L>Lm) + trace

[
C(W )−2A>WA

]
= α2Eπ

[
trace(m>L>LC(W )−2L>Lm)

]
+ trace

[
C(W )−2A>WA

]
= α2Eπ

[
trace(mm>L>LC(W )−2L>L)

]
+ trace

[
C(W )−2A>WA

]
= α2trace

[
Eπ(mm>)L>LC(W )−2L>L

]
+ trace

[
C(W )−2A>WA

]
= α2trace

[
(Σm + µµ>)L>LC(W )−2L>L

]
+ trace

[
C(W )−2A>WA

]
= α2trace(C(W )−2L>LΣmL

>L) +

α2 ‖ C(W )−1L>Lµ ‖2
2 +trace

[
C(W )−2A>WA

]
= α2‖C(W )−1L>Lµ ‖2 +

trace
[ (
C(W )−2

[
α2 L>LΣmL

>L+ A>WA
] ) ]

.

2.3.3 More about the above designs

Notice that if π is Gaussian with µ = 0 and Σm = (L>L)−1/α, then (2.7) is equal

to (2.11) and (2.7) is the posterior mean, which minimizes the Bayes risk among

all functions of the data.

To understand the different nature of the designs, it is important to say a few

words about the different interpretation of the results depending on the type of

chosen prior distribution. In the well-posed case the weights w control the trace of

the covariance matrix of the estimator that the experimenter will use. Similarly,

in the ill-posed case with a Gaussian prior, the weights control the trace of the

covariance matrix of the posterior distribution that the experimenter will obtain.

When the prior is not Gaussian and the weights are based on the affine estimator
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with smallest risk, then this risk only provides a bound for the expected value of

the trace of the posterior covariance matrix. More precisely, let m̂ be any function

of the data (estimator) and Σm|y the posterior covariance matrix of m given y. It

is easy to see that

E‖m̂−m‖2 = E‖m̂− E(m|y)‖2 + E trace Σm|y.

Consider now the case of a Gaussian prior. Let m̂a and m̂L be, respectively, the

affine estimator that minimizes the risk and the Tikhonov estimator (2.11). Then

m̂a is the posterior mean E(m|y), the trace of Σm|y does not depend on y (so

E trace Σm|y = trace Σm|y) and

trace Σm|y = E‖m̂L −m‖2 − E‖m̂L − m̂a‖2 ≤ E‖m̂L −m‖2.

We see that the risk of m̂L provides a bound for the trace of the posterior matrix

but it could be a poor bound if m̂L and m̂a are not close enough. In the general

case of non-Gaussian priors, the trace of Σm|y may depend on y and all we may be

able to say is that

E trace Σm|y ≤ E‖m̂a −m‖2 ≤ E‖m̂L −m‖2.

Thus, the risks of m̂a and m̂L only constrain an average value of trace Σm|y but,

if the sampling variability of the posterior covariance matrix is large, then neither

m̂a nor m̂L may provide a good control of the posterior distribution of the actual

experiment.
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2.4 Numerical optimization of the AB and Aπ de-

signs

The AB and Aπ designs are difficult to compute for large-scale problems as they

involve the inverse of large matrices. In particular, it is difficult to evaluate the

objective function φ and its derivatives. We now discuss methods to do this effi-

ciently.

2.4.1 Evaluating the traces in the objective function

The definition of the objective function φ includes the traces of large dense ma-

trices. Efficient approximations of such traces can be obtained using stochastic

trace estimators [4, 29, 45]. If the vectors U1,...,Ur are independent and each with

independent entries taking the values 1 and −1 with equal probability, then the

trace estimator

T̂r(H) =
1

r

r∑
i=1

U>i HUi

is an unbiased estimator of trace(H ) with variance

Var( T̂r(H) ) =
2[ trace(H2)− ‖h ‖2 ]

r
, (2.14)

where h = diag (H). To estimate the quality of this estimator we would like to

evaluate the relative error, that is we would like to estimate the variance (2.14).

Let λ1, . . . , λn be the eigenvalues of H. Also let

λ̄ =
1

n

∑
i

λi
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.

We have that

trace(H2) =
∑

λ2
i trace(H)2 =

(∑
λi

)2

= n2λ̄2

. We can therefore write

trace(H2)− ‖h ‖2

trace(H)2
=

∑
λ2
i − ‖h ‖2

n2λ̄2
.

To have an upper bound, we need to bound ‖h‖2 from below. We have that

h = diag (H) and trace(H) =
∑
λi = nλ̄ =

∑
hi. We now seek the smallest ‖h‖2

subject to the above equality constraint. This can be easily achieved by minimizing

min ‖h‖2 s.t nλ̄ =
∑

hi.

The solution to this problem is obviously hi = λ̄. We can therefore write

trace(H2)− ‖h ‖2

trace(H)2
≤
∑
λ2
i − n2λ̄2

n2λ̄2
.

This shows that the relative variance of the trace estimate will be small if the scatter

of the eigenvalues is small compared to their mean. In our applications, H stems

from an ill-posed problem. If no regularization is used, then the eigenvalues are

bounded from above and tend to cluster at 0 as n→∞. For a regularized version in

standard form, the eigenvalues cluster around the regularization parameter α. This

implies that the total spread of the eigenvalues is typically small, which explains

why stochastic trace estimators are so successful in ill-posed problems. It is also
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clear that, for well posed problems where λmax/λmin is close to 1, such estimators

can be very effective.

Using randomized trace estimators with r = 1, the φAB and φAπ objective

functions are replaced by the following approximations

φAB(w) = v>(A>WA+ Σ−1
m )−1 v (2.15)

and

φAπ(w) = α2‖C(W )−1L>Lµ ‖2 + v>
(
C(W )−2

[
α2 L>LΣmL

>L+ A>WA
] )
v,

(2.16)

where v is a random vector whose entries take the values ±1 with equal probability.

Note that the computation of C(W )−1 is not needed explicitly. Instead, we need to

evaluate the action of C(W )−1 on a vector, say q, and this can be done by solving

the linear system Cz = q, which can be done by conjugate gradient. We discuss

this step at length in Section 2.4.3.

2.4.2 Evaluating the derivatives

We start with the derivatives for the AB design:

∇wφAB = ∇w

(
v>(A>WA+ Σ−1

m )−1v
)

and setting

z = (A>WA+ Σ−1
m )−1v ↔ (A>WA+ Σ−1

m )z − v = 0
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yields

A> diag(Az) + (A>WA+ Σ−1
m )∇wz = 0.

Therefore

∇wz = −(A>WA+ Σ−1
m )−1A>diag(Az),

which implies

∇wφAB = −diag(Az)A(A>WA+ Σ−1
m )−1v = −diag(Az)Az = −Az � Az.(2.17)

The computation of the objective function and its derivatives for the AB design

is summarized in Algorithm 1

Algorithm 1 Objective function and gradient for AB design

(1) Solve the system (A>WA+ Σ−1
m )z = v

(2) Set φAB = v>z and ∇wφAB = −Az � Az

An interesting property of the AB design is that the computation of its gradient

is almost ‘free’ compared to the computation of the objective function. After the

vector z is obtained, which requires a substantial amount of work, the objective

function is computed by a simple inner product and its derivative requires only

one more matrix vector product with the matrix A.

We now derive similar expressions for the Aπ design. We rewrite (2.16) in a

symmetric form

φAπ(w) = α2µ>L>LC(W )−2L>Lµ

+ v>C(W )−1
(
A>WA+ α2 L>LΣmL

>L
)
C(W )−1v.
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Defining as above z = C(W )−1v, we can write ∇wz = −C(w)−1A>diag(Az).

Similarly, we define y = C(W )−1L>Lµ and write ∇wy = −C(w)−1A>diag(Ay).

We thus obtain

∇wφAπ(w) = −2α2diag(Ay)AC(W )−1y + diag (Az)Az

− 2 diag(Az)AC(W )−1
(
A>WA+ α2 L>LΣmL

>L
)
z. (2.18)

2.4.3 Solving the linear systems

Regardless of the chosen optimization criteria, a key component in the solution of

the problem is the solution of the system

(A>WA+ Σ−1
m )m = A>Wb, (2.19)

where, in the Aπ design, Σ−1
m = αL>L. This system is large and dense and there-

fore, iterative methods are typically used for its solution. This system needs to

be solved every time w is updated, that is, whenever we evaluate the objective

function or its derivatives. Therefore, we need a method that enables us to quickly

evaluate m given a new w. We now use the SVD of A to better understand the

properties of the solution, and then, we propose an approximation of the SVD

using Lanczos decomposition.

SVD analysis

To understand how to solve the large linear system quickly, we first turn to a simple

SVD analysis. Assume first that Σ−1
m = I (this case is referred to as ‘standard

form’). The more general case can be transformed to this form [39].
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Write the SVD of A as A = UΛV >, where U is an orthogonal n× n matrix, V

is a k×n matrix with orthonormal columns, and Λ is diagonal n×n with singular

values λ1 ≥ λ2 ≥ . . . ≥ λn. Using this decomposition the linear system is rewritten

as

(ΛU>WUΛ + I)ξ = ΛU>Wb, ξ = V >m. (2.20)

We now start by reviewing the ‘usual’ unweighted case, which is commonly

used to analyze the solution of the inverse problem (see, for example, [39]). When

W = µI we obtain ΛU>WUΛ = µΛ2 and the system decouples:

(µΛ2 + I)ξ = µΛU>b, ξj =
µλj

µλ2
j + 1

u>j b.

The ratio µλj/(µλ
2
j + 1) decreases to 1/λ for large λ and is close to zero for small

λ. It stands to reason that an approximate solution can be obtained by truncating

the singular values:

ξj =


1
λj
u>j b λj � 0

0 otherwise.

This is the truncated SVD (TSVD) solution. The problem is that it may be difficult

to determine where to truncate the singular values. One option is to use hybrid

methods that were proposed first in [59] and have been studied substantially in

recent years. In this case the solution will be 0 only when its corresponding singular

value is much smaller than the largest singular value λ1. That is, we keep the first

s singular values such that λs is less than some tolerance times the largest singular
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value and truncate everything after that. Hence,

ξj =


µλj
µλ2j+1

u>j b j = 1, · · · , s where λs ≤ tolλ1

0 otherwise.

This simple idea reduces the dimensionality of the problem and makes the solution

less sensitive to the selection of a truncation level.

We now show that a similar analysis can be used in our case. If W is not a

multiple of the identity, then

ΛU>WUΛ =



λ2
1(w � u1)>u1 λ1λ2(w � u1)>u2 · · λ1λn(w � u1)>un

λ1λ2(w � u1)>u2 λ2
2(w � u2)>u2 · · λ2λn(w � u2)>un

·

·

λ1λn(w � u1)>un λ2λn(w � u2)>un · · λ2
n(w � un)>un


,

where � represents the Hadamard product, for which the product is taken entry-

wise. Thus, the system does not decouple as before. Nevertheless, typically λ` �

λ1 for ` greater than some index s, and since in addition w is bounded, it makes

sense to use a TSVD as before; we obtain a reduced s×s dense system ΛsU
>
s WUsΛs

where Us =

(
u1, . . . , us

)
and Λs = diag (λ1, . . . , λs). If s is not too large (say, up

to a few thousand) then it is possible to use direct methods to quickly solve the

system for different w’s. The algorithm is described in Algorithm 2.

The important observation is that the SVD is computed only once at the begin-

ning of the optimization. We then use the decomposition to solve the optimization

problem at a negligible cost. Thus, if the computation of the SVD is not pro-
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Algorithm 2 SVD approximate solution of the system (A>WA+ I)m = A>Wb

(1) Compute the SVD: A = UΛV >

(2) Choose an index s to truncate the SVD, λs ≤ tolλ1

(3) Solve the systems (ΛsU
>
s WUsΛs + I)ξ = ΛsU

>
s Wb

(4) Set m = Vsξ

hibitively expensive, then it is possible to quickly solve the problem.

Approximation using Lanczos decomposition

The computation of the SVD is typically not practical for large-scale problems;

it has a computational complexity of O(n2k) and large storage requirements. We

therefore turn to approximating the SVD using Lanczos methods.

Lanczos bidiagonalization has been extensively studied in the context of inverse

problems [32, 38, 39, 55]. In its simplest formulation, s iterations of the Lanczos

process are computed yielding an approximate decomposition

A ≈ UsBsV
>
s , (2.21)

where Us = [u1, . . . , us] is an n × s matrix and Vs = [v1, . . . , vs+1] is a k × (s + 1)

matrix, and both have orthonormal columns. The matrix Bs is an s × (s + 1)

bidiagonal matrix. The computation of the Lanczos decomposition can be done

with or without re-orthogonalization of the vectors. Without re-orthogonalization

the vectors tend to loose the orthogonality, especially for large s. This motivated

the study of a number of re-orthogonalization techniques [39]. An important prop-

erty of the decomposition (2.21) is that the singular values of Bs approximate the

singular values of A. In numerical experiments, it has been widely observed that

the large singular values of A are approximated first, yielding an approximation to
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the truncated SVD solution. This observation has motivated research on iterative

regularization as well as hybrid regularization techniques [40].

As we have done with the SVD, using the truncated bidiagonalization we obtain

(VsB
>
s U
>
s WUsBsV

>
s + I)m = VsB

>
s U
>
s Wb, (2.22)

and multiplying both sides of (2.22) by V >s from the left and setting ξ = V >s m

yields

(B>s U
>
s WUsBs + I)ξ = B>s U

>
s Wb. (2.23)

Again, the system (2.23) is a small s × s dense system and its solution can be

obtained quickly using direct methods. The algorithm for solving the system using

the Lanczos process is described in Algorithm 3. We have experimented using

Algorithm 3 Lanczos approximate solution of the system (A>WA+I)m = A>Wb

(1) Compute the Lanczos decomposition of A with starting vector b
(2) For each step compute the SVD of Bj, stopping at step s when λs(Bs) ≤
tolλ1(Bs)
(3) Solve the system (B>s U

>
s WUsBs + I)ξ = B>s U

>
s Wb

(4) Set m = Vsξ

the Lanczos process with and without re-orthogonalization and found that re-

orthogonalization did not yield any benefit. We believe this is because, unlike the

case W = I, we do not require U>s Us = I and, anyway, the product U>s WUs is

computed when obtaining the solution.
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2.4.4 Numerical optimization

Given the tools described in the last section, we can now use standard box-

constrained optimization to solve the problem. We start by solving the optimiza-

tion problem

min φβ = φ(w) + β‖w‖1 (2.24)

s.t 0 ≤ w ≤ wmax.

To solve the optimization problem (2.24) we use projected steepest descent as this

method can easily deal with the non-differentiability of the `1 norm. For further

discussion see [8, 25].

We also consider the `0 penalty β‖w‖0 as it is expected to provide the sparsest

solution. To approximate ‖w‖0 and the sparsest solution, we use an approximation

described in [11].

We divide all experiments into two sets: I0 and IA. The set I0 contains all

the indices for the zero entries of the solution to (2.24), namely wI = 0 and IA

contains the rest. Assuming that I0 is known a priori, which can be done by solving

the `1 approach, the `0 solution could be obtained by solving this un-regularized

optimization problem only on the set IA. We do not need any regularization

term here because the zero set is already known. It has been shown that the

approximated `0 solution may improve upon the `1 solution.
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The `0 penalty is approximated by the solution of the problem

min
IA

φβ = φ(w) (2.25)

s.t wI0 = 0, wIA ≥ 0

0 ≤ wIA ≤ wmax. (2.26)

As we have shown in [35], an important aspect of the optimization is that to

study the design space we need to solve (2.24) for different values of β that lead to

different sparsity structure and thus provide information about the design cost as

a function of the number of experiments. Here we have used a simple continuation

strategy to achieve this goal [34].

2.5 Numerical experiments

We illustrate the performance of our algorithms using a small-scale 1D problem,

where exact quantities can be easily computed and a realistic, large-scale super-

resolution inverse problem.

2.5.1 An ill-posed 1D magnetotelluric example

The data are modeled as

dj =

∫ L

0

exp(−αjx) cos(γjx)m(x) dx+ εj j = 1, · · · , n. (2.27)

This kernel mimics the linearized 1D magnetotelluric experiment [58, 77]. The

parameters γj correspond to the recording frequencies and the αj depend on the
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frequencies and the background conductivity. The objective is to select optimal

values of these parameters to best evaluate a 1D conductivity structure by solving

the following inverse problem

Am+ ε = d,

where A is a matrix generated by the kernel, m is the conductivity and d is the

data we have observed.

The function m is discretized using 256 points. Figure 2.1 shows an example

of the magnetotelluric kernel that is used in our simulations. The values of αj are

equally spaced between 0 and 3, namely αj = 3j/100 for 0 ≤ j ≤ 100 and the

values of γj are equally spaced between 1 and 10: γj = 1 + 9j/100. Each row in

the kernel matrix represents one pair (αj, γj), which gives a total of 100 different

choices as our bank of experiments. The objective is to choose a subset of these

100 experiments to best estimate m.

Figure 2.1: Geometry of the magnetotelluric kernel. The model is discretized using
256 points. Each row of the kernel represents one pair (αj, γj).

The noise variance σ2 is chosen for a SNR ≈ 10. The true test model is a
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realization from a Gaussian N(0,Σ) where the covariance matrix Σ is defined as

Σi,j = exp (−(xi − xj)2/2τ 2) with xi, xj ∈ (0, 2π). For simplicity, in this example,

µ is set to be 0. The parameter τ 2 is chosen so that the correlation between

m(xi) and m(xj) is less than 50% for |xi − xj| > 1. We set wmax = 102/σ2. The

optimization is done using steepest descent.

Notice that it is possible for the optimization to yield wi < 1/σ2, indicating

that the ith experiment is to be conducted with a variance larger than that of

the instrument’s noise. To avoid this, the wi are thresholded as follows: tolerance

values wt < wmin are chosen and wi is set to zero if wi ≤ wt, basically, we will not

conduct that experiment and to wmin if wt < wi ≤ wmin. For the example we have

used wt = 10−5/σ2 and wmin = 1/σ2. From now on it will be understood that w

has been thresholded in this fashion.

The AB design

We start by illustrating the controlled sparsity of the AB design. Figure 2.2 shows

the risk as a function of ‖w‖0. As is shown here, the risk decreases rapidly before

the corner of the L-curve at ‖w‖0 = 25 and more slowly thereafter. Hence, this

corner of the L-curve suggests an optimal compromise between the image recon-

struction quality and the experimental cost. This implies that, even if you do more

experiments, you are not going to improve the result much.

The right panel in Figure 2.2 depicts all the w vectors obtained from the ex-

periments. Each column represents one of the 100 different experiments and the

rows correspond to the different values of the risk for the chosen values of β used

to draw the L-curve. The color shows the values of wi for the corresponding ex-

periment and risk. The figure shows which experiments should be conducted to
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Figure 2.2: The left panel shows the risk as a function of sparsity nnz(w) =‖ w ‖0

of the optimal w obtained with the AB design. The columns and rows in the image
on the right correspond, respectively, to different experiments and different values
of the risk. The color refers to the values of the wi.

achieve the corresponding risk; one can use the plot to decide if the reduction in

risk is worth the increase in the number of experiments. This figure tells us not

only the number of experiments but which ones they are as well. This information

can be quite helpful to practitioners.

Figure 2.3 shows examples of model estimates using the optimal wi determined

by the corner in the L-curve. The figure shows the true model as well as three

reconstructions from three different noise realizations. We see good reconstruc-

tion results using only the 25 selected experiments but we also see large sampling

variability for x > 3.

To show the advantage of our optimal design, Figure 2.4 displays the model

estimates obtained using all 100 experiments and also the estimates based on 25

equally-spaced naively chosen experiments. Note also that the sampling variability

for x > 3 seems even larger. The figures show that the AB design provides the

best results. Compare, for example, the amplitudes of the last two peaks of the

curve.
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Figure 2.3: The left panel shows the true test model. The right panel shows exam-
ples of model estimates obtained with the AB design using 25 optimal experiments
for three different noise realizations.

Figure 2.4: Model estimates obtained using all 100 experiments (left) and the
equally-spaced naive design (right).

Table 2.1 shows the relative errors (‖mtrue−m̂‖/‖mtrue‖) of the reconstructions.

Note that the estimates obtained using all 100 experiments are worse than those

using only the 25 optimal experiments. This is because the full design does not

use weights to compute the estimates. The optimal design selects a subset of the

experiments and assigns to them optimal weights (variances).
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Table 2.1: Relative errors of the model reconstructions obtained with the AB design

design error (noise 1) error (noise 2) error (noise 3)
AB 7.75% 11.91% 14.81%
all 10.29% 20.12% 19.26%

naive 11.84% 23.94% 22.88%

The Aπ design

For the Aπ design we choose the matrix L to be the discrete 1D Laplacian operator.

The parameter α is chosen by trial and error so that given all the data we obtain

the best possible recovery error.

Figure 2.5: The left panel shows the risk as a function of sparsity nnz(w) =‖ w ‖0

of the optimal w obtained with the Aπ design. The right panel is similar to that
in Figure 2.2 but for the Aπ design using the `1-optimization.

In Figure 2.5, we choose the corner at ‖w‖0 = 24. This defines the optimal

solution used in the example. Figure 2.5 shows the equivalent of Figure 2.2 for the

Aπ design.

Figure 2.6 shows the model estimates for three different noise realizations ob-

tained using the `1 approach. Figure 2.7 shows the estimates obtained using all 100

experiments and using 24 equally-spaced naively chosen experiments. The relative
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Figure 2.6: The true test model (left) and the estimated models obtained with `1-
Aπ design using the 24 optimal experiments with three different noise realizations
(right).

Figure 2.7: Model estimates obtained with the Aπ design using all 100 experiments
(left) and the equally-spaced naive design (right).

errors of the estimates are shown in Table 2.2. The optimal design still leads to

smaller errors than the full and naive designs but the results are not as good as

those obtained with the AB design. This is to be expected as the the AB design

uses the Bayes estimate while the regularization for Aπ design is restrained to a

particular type. We omit the rest of the results for the `0 approach as they are

very similar to those obtained with the `1 penalty.
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Table 2.2: Relative errors of the model estimates obtained with the Aπ (`1) design

design error (noise 1) error (noise 2) error (noise 3)
Aπ `

1 39.57% 33.64% 45.98%
all 47.00% 41.07% 53.60%

naive 47.00% 39.60% 53.87%

2.5.2 Super-resolution

In this section we consider a large-scale super-resolution problem that has a wide

range of applications [15, 22]. Super-resolution methods are techniques to enhance

the resolution of an imaging system, in particular, to construct a high-resolution

image by combining a set of lower resolution images.

The data are modeled as

dj = K S(uj)m+ εj, j = 1, · · · , k; (2.28)

where dj represent the low resolution images that have been collected, K is the

sparse matrix approximating the averaging process, uj are the relative displace-

ments among the low resolution images and S(uj) is a sparse matrix representing

the bilinear interpolation operation that connects the point in the displaced im-

age to the four pixel values in the reference image that surround it (see [15] for

details). In order to obtain high-quality, high-resolution images, it is desirable to

have many low resolution ones. Nonetheless, generating and/or using many low

resolution images can be very costly. Thus, we would like to find an optimal subset

of low resolution images to generate one of high resolution and satisfactory quality.

We apply our algorithms to one of the MRI examples provided by J. Orchard

[60]. In order to reconstruct this 64× 64 image, 100 slightly different 32× 32 low
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resolution images are generated. For displacements, both shifting and rotation

are considered. Figure 2.8 shows one of the 100 low resolution images that we

generated together with the original high resolution image.

Figure 2.8: One of the 100 low resolution images (left) and the true high resolution
image (right).

We apply the discretization of the gradient operator as a smoothing matrix

to obtain the solution of the inverse problem. Since this is a realistic problem,

we do not have the true covariance matrix of the MRI images but do have other

MRI images that can be used to estimate it assuming that they are iid random

realizations of the same stochastic process. We use the method described in [27].

For the prior mean µ we have used the sample mean of all MRI images.

Figure 2.9 shows the Pareto curves for the AB and Aπ optimal designs. This

time the curves are not as much ‘L-like’ as in the 1D example. We have chosen the

points corresponding, respectively, to ‖w‖0 = 31 and ‖w‖0 = 30 for the the AB

and Aπ designs. Hence, we use 31 low resolution images in the AB design and 30

with the Aπ design to reconstruct a high resolution image. Figures 2.10 and 2.11

show the optimal image reconstructions for the AB and Aπ designs as well as the

one obtained using 100 low resolution images.
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Figure 2.9: Risk as a function of sparsity ‖w‖0 of the optimal w obtained with the
AB design (left) and with the Aπ design (right).

Figure 2.10: Reconstruction using 100 low resolution images (left) and those se-
lected by the AB design (right).

As expected, the AB design provides a better reconstruction; it has fewer arti-

facts in the background. It is also evident that both optimal designs yield images

that are very close to the ones obtained using all 100 low resolution images. This

illustrates the advantage of our method, it enables us to obtain comparable results

with far less data.

To show the difference between all designs, we list the relative 2-norm recon-

struction errors in Tables 2.3 and 2.4.
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Figure 2.11: Reconstruction using 100 low resolution images (left) and those se-
lected by the Aπ design (right).

Table 2.3: Relative errors of the reconstructed images: AB design

design relative error
AB 4.94%
full 4.95%

Table 2.4: Relative errors of the reconstructed images: Aπ design

design relative error
Aπ 12.15%
full 9.42%
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Chapter 3

Numerical methods for E-optimal

design

In this chapter, we explore formulations of the Bayesian E-optimal design [5, 14],

in which the the largest eigenvalue of the covariance matrix is minimized. For

well-posed problems, this results in solving the optimization problem with sparsity

control

min
w

φE [ Σm̂(W ) ] + β‖w‖0 s.t. 0 ≤ w ≤ wmax,

where

φE [Σm̂(W )] = λmax [Σm̂(W )] ,

given the covariance matrix

Σm̂(W ) =
σ2

N
(A>nWAn)−1.
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3.1 The EB design

For ill-posed problems, following the ideas of the AB and Aπ designs, again we

propose two different designs based on different prior information.

If the covariance matrix of the model is available, then the Bayes estimate is

chosen as the model estimate,

m̂(w) = (A>WA+ Σ−1
m )−1(A>Wdw + Σ−1µ), (3.1)

where µ and Σm are, respectively, the prior mean and covariance matrix. The EB

design minimizes its Bayes risk, which is given by

φEB(W ) = λmax

[
(A>WA+ Σ−1

m )−1
]
. (3.2)

The optimal sparsity is decided based on the Pareto curve in the same way as is

described in Chapter 2.

3.2 The ETik design

When the covariance matrix is not available or its inverse is difficult to obtain, we

use the Tikhonov solution as the estimated model

m̂(w) = (A>WA+ αL>L)−1A>Wdw, (3.3)

where α is a regularization parameter and L is a chosen matrix (e.g., a discrete

derivative operator).
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In this case, the ETik design minimizes

φETik
(W ) = λmax

[
(A>WA+ αL>L )−1

]
. (3.4)

3.3 Numerical optimization of the EB and ETik

designs

The above approaches involve eigenvalue optimization techniques [52], which be-

comes very difficult when the problem size is large. In general there are two ways

to handle this situation: Optimize evaluate or Evaluate optimize.

In the Optimize evaluate approach, we must somehow compute the largest

eigenvalue of the covariance matrix. After that, the derivatives that are used to

solve the optimization need to be found analytically. Both steps of this approach

may be difficult.

Thus, we prefer the second option, the Evaluate optimize, in which we con-

sider first approximating the largest eigenvalue of the covariance matrix and then

evaluating the derivatives by differentiation.

3.3.1 Eigenvalue approximation

The first step in solving the proposed designs is to approximate the largest eigen-

value of the covariance matrix. By some simple linear algebra, it is obvious that

minimizing the largest eigenvalue of the covariance matrix is equivalent to max-

imizing the smallest eigenvalue of the information matrix, which is the inverse
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covariance matrix. Hence, the objective functions to maximize are:

φEB(w) = λmin(A>WA+ Σ−1
m ) (3.5)

and

φETik
(w) = λmin(A>WA+ αL>L ). (3.6)

There are many eigenvalue approximation techniques in the literature, for ex-

ample, methods based on power iteration [74] and SVD decomposition [56], etc.

In this thesis we apply the inverse iteration to approximate the smallest eigenvalue

of the information matrix [33].

Algorithm 4 Inverse iteration

(1) Choose u0 such that ‖ u0 ‖= 1 and an integer k.
(2) For j = 1, · · · , k, solve Huj = 1√

u>j−1uj−1
uj−1.

(3) Set λmin ≈ 1√
u>k uk

.

We start with a normalized vector u0 and choose an appropriate integer k

to be the number of iterations we would like to perform in each optimization

loop. In each inverse iteration, we solve a linear system, where the matrix H is

A>WA+ Σ−1
m for the EB design and A>WA+ αL>L for the ETik design. Finally,

we set the smallest eigenvalue λmin that we are looking for to be the inverse of the

norm of the converged eigenvector.

Below is the matrix form of the inverse iteration process. The original difficult

eigenvalue optimization problem has been recast as a constrained optimization

problem, which can be easily solved by standard optimization methods such as
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Steepest Descent.

min
u,w

1

2
u>k uk

s.t. I(u)Bu− Eu− g = 0

where

B = diag(H, · · · , H)

u = [u>1 , · · · , u>k ]>, g = [u>0 , 0, · · · , 0]>

E =



0

I 0

. . . . . .

I 0


, I(u) =



I √
u>1 u1I

. . . √
u>k−1uk−1I


.

One important thing to notice here is the choice of the integer k, in other

words, how many inverse iterations we want to perform in each optimization loop.

According to our observation, usually setting k to be between 5 and 10 should be

enough. This will be demonstrated later in the experiments.

3.3.2 Evaluating the derivatives

We use the ETik design as an example to show the derivation of the derivatives of

the objective functions. We rewrite the constraint in the optimization problem as



H

H

. . .

H





u1

u2

...

uk


=



0

1√
u>1 u1

0

. . . . . .

1√
u>k−1uk−1

0





u1

u2

...

uk


+



u0

0

...

0


,



60

which gives us the linear system



A>diag (Au1) +H ∂u1
∂w

= 0

A>diag (Au2) +H ∂u2
∂w

= [(u>1 u1)−1/2 − (u>1 u1)−3/2u1u
>
1 ]∂u1

∂w

...

A>diag (Auk) +H ∂uk
∂w

= [(u>k−1uk−1)−1/2 − (u>k−1uk−1)−3/2uk−1u
>
k−1]∂u1

∂w

.

Defining

Bi = (u>i ui)
−1/2 − (u>i ui)

−3/2uiu
>
i ,

we obtain



H

−B1 H

. . . . . .

−Bk−1 H





∂u1
∂w

∂u2
∂w

...

∂uk
∂w


= −



A>diag (Au1)

A>diag (Au2)

...

A>diag (Auk)


.

Thus, the derivative of the objective function is

∂

∂w

(
1

2
u>k uk

)

= −



A>diag (Au1)

A>diag (Au2)

...

A>diag (Auk)



>


H −B>1

H −B>2
. . . . . .

H −Bk−1

H



−1 

0

...

0

uk


.



61

3.4 Numerical experiments

In this section, we will show the performance of the two E-optimal designs through

first, the 1D magnetotelluric example that we have used in the A-optimal designs

and then a borehole ray tomography example.

3.4.1 An ill-posed 1D magnetotelluric example

We apply both E-optimal designs to the same 1D magnetotelluric example that we

have used for the A-optimal designs. For the purpose of comparison, all experiment

and parameter setting as exactly the same as is in Chapter 2.

Quality of eigenvalue approximation

Before we start the experiments, we first test how well the eigenvalue approxima-

tion works for both designs. Tables 3.1 and 3.2 show the difference between the

true eigenvalues and the estimated ones for different values of k with their corre-

sponding CPU times that were needed to compute the eigenvalue approximation.

Table 3.1: Eigenvalue approximation for the EB design

k λapp − λtrue CPU time
3 4.0500e− 2 3.120020e− 2
5 1.3190e− 4 6.240040e− 2
8 0 6.240040e− 2

Table 3.2: Eigenvalue approximation for the ETik design

k λapp − λtrue CPU time
3 1.0800e− 2 0
6 1.0000e− 5 3.120020e− 2
9 0 6.240040e− 2
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Based on the tables, we choose k = 8 for the EB design and k = 9 for the ETik

design. The approximation of eigenvalue is very accurate while the time cost is

still reasonable.

The EB design

First we show results from the EB design. Figure 3.1 shows the L-curve, in which

the corner is located at ‖w‖0 = 20.

Figure 3.1: The panel shows the risk as a function of sparsity nnz(w) =‖ w ‖0 of
the optimal w obtained with the EB design.

Figure 3.2 shows examples of model estimates using the optimal wi determined

by the corner in the L-curve. The figure shows the true model as well as three

reconstructions from three different noise realizations. We see good reconstruction

results using only the 20 selected experiments.

For comparison, we show the model estimates obtained using all 100 experi-

ments and also the estimates based on 20 equally-spaced naively chosen experi-

ments in Figure 3.3. It is obvious that the EB design provides the best results.

Table 3.3 shows the relative errors (‖mtrue−m̂‖/‖mtrue‖) of the reconstructions.

Again the estimates obtained using all 100 experiments are worse than those using
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Figure 3.2: The left panel shows the true test model. The right panel shows exam-
ples of model estimates obtained with the EB design using 20 optimal experiments
for three different noise realizations.

Figure 3.3: Model estimates obtained using all 100 experiments (left) and the
equally-spaced naive design (right).

only the 20 optimal experiments.

Table 3.3: Relative errors of the model reconstructions obtained with the EB design

design error (noise 1) error (noise 2) error (noise 3)
EB 7.32% 13.35% 12.44%
all 10.29% 20.12% 19.26%

naive 11.38% 24.40% 22.38%
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The ETik design

Figure 3.4: The panel shows the risk as a function of sparsity nnz(w) =‖ w ‖0 of
the optimal w obtained with the ETik design.

In Figure 3.4, we choose the corner at ‖w‖0 = 21. This defines the optimal

solution used in the example.

Figure 3.5: The true test model (left) and the estimated models obtained with `1-
ETik design using the 21 optimal experiments with three different noise realizations
(right).

Figure 3.5 shows the model estimates for three different noise realizations ob-

tained using the `1 approach. Figure 3.6 shows the estimates obtained using all

100 experiments and using 21 equally-spaced naively chosen experiments. The
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Figure 3.6: Model estimates obtained with the ETik design using all 100 experi-
ments (left) and the equally-spaced naive design (right).

relative errors of the estimates are shown in Table 3.4. The optimal design still

leads to smaller errors than the full and naive designs but the results are not as

good as those obtained with the EB design. We omit the rest of the results for the

`0 approach as they are very similar to those obtained with the `1 penalty.

Table 3.4: Relative errors of the model estimates obtained with the ETik (`1) design

design error (noise 1) error (noise 2) error (noise 3)
ETik `

1 40.05% 35.41% 46.70%
all 47.00% 41.07% 53.60%

naive 46.81% 39.47% 53.71%

So far, we have worked on both the A-optimal designs and E-optimal designs.

Although their results are comparable based on our results, in general the choice is

application dependent. We know that the A-optimal design minimizes the variance

in an average sense while the E-optimal design minimizes the situation that has

the largest variance, in other words, it minimizes the worst case. The performance

depends on whether your example is closer to the average case or to the worse

case. For example, if a doctor wants to minimize the largest risk that a tumor
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could cause, then E-optimal design would be a good choice. On the other hand,

if a car company wants to decide how powerful the air bag should be. Then, in

order to fit people’s needs on average, A-optimal design is needed.

3.4.2 A borehole ray tomography example

Next we apply our approaches to a borehole ray tomography example [35] that is

often used to illustrate purposes in geophysical inverse problems. The purpose of

borehole ray tomography is to determine the slowness, which is the inverse of the

velocity of a medium. Sources and receivers are placed along the boreholes and

travel times from sources to receivers are recorded.

In our experiment, the medium is discretized by the square region [0, 1]× [0, 1]

and boreholes are covering both sides of the region. Totally we have 1600 rays and

our goal of an experimental design is to choose the optimal placement of sources

and receivers.

Since this is a real problem, we do not have the true covariance matrix, we

will apply the example only to the ETik design, for which the discretization of the

gradient operator is used as a smoothing matrix.

Quality of eigenvalue approximation

Table 3.5 show the difference between the true eigenvalues and the estimated ones

for different values of k with their corresponding CPU times that were needed to

compute the eigenvalue approximation.

For solving the problem accurately, we choose k = 10.
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Table 3.5: Eigenvalue approximation for the ETik design

k λapp − λtrue CPU time
4 1.5406e− 5 9.874863e
7 2.5856e− 6 1.647371e+ 1
10 8.3150e− 7 2.266695e+ 1

The ETik design

Figure 3.7: The panel shows the risk as a function of sparsity nnz(w) =‖ w ‖0 of
the optimal w obtained with the ETik design.

Figure 3.7 shows the Pareto curves for the ETik optimal design. The corner

happens where ‖w‖0 = 746. Figures 3.8 show the optimal raypaths reconstructions

for the ETik design as well as the one obtained using all 1600 raypaths.

It is evident that our optimal design yields images that are very close in quality

to the ones obtained using all 1600 raypaths.

To show the difference between all designs, we list the relative 2-norm recon-

struction errors in Tables 3.6.

Based on 3.8 and 3.6, we observe that the reconstruction from our optimal

design provides results almost as good as using all 1600 raypaths. However, we

have cut out more than half of the cost.
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Figure 3.8: The true image (top), reconstructions using 1600 raypaths (bottom
left) and those selected by the ETik design (bottom right).

Table 3.6: Relative errors of the reconstructed images: ETik design

design relative error
ETik 69.63%
full 65.06%
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Chapter 4

Optimal design for regularization

In this chapter, we talk about finding an optimal `2 regularization that plays

important roles in imaging science. We consider a discrete linear ill-posed problem

of the form

Ax+ ε = b, (4.1)

where A : Rm → Rn is a discretization of some linear (typically integral) operator

and b is the observed data. The random vector ε is the noise contained in the data,

which is assumed to be iid Gaussian with standard deviation σ and 0 mean.

The general goal is to recover the model x from the observed noisy data b.

However, since the problem is ill-posed it is not likely to recover x just from the

data itself directly. Thus, we recover x by using a Tikhonov-like regularization and

solve the optimization problem

min
1

2
‖Ax− b‖2 + αR(x), (4.2)
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where R(x) is a regularization functional that penalizes unwanted solutions and

α is a regularization parameter that is chosen to control the balance between the

mis-fitting term and the regularization term so that the solution does not over-fit

the data.

For linear ill-posed problems, a regularization R(x) = 1
2
‖Lx‖2 is commonly used

[63, 73], where L is a discretization of a differential operator based on smoothness

of the solution. Obviously, the Tikhonov regularization functional is quadratic and

therefore, the solution to the problem can be easily obtained by solving the linear

system

(A>A+ αL>L)x = A>b, (4.3)

using either direct, but more typically, iterative methods such as the Precondi-

tioned Conjugate Gradient method and Lanczos tridiagonalization method [30, 43].

4.1 An optimal regularization operator

In order to develop an optimal regularization operator we need to define an op-

timality criteria. In the following we develop such criteria. As we see next, the

criteria heavily depends on the assumptions or a-priori information known. Differ-

ent assumptions lead to a different regularization operators.

Consider a solution to the quadratic regularization problem

x̂ = (A>A+ αL>L)−1A>b.
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where b is given by equation (4.1). If we are given the “true” solution xt, we may

ask how well x̂ reconstructs xt. The answer to this question is the well known

Mean Square Error:

MSE = E ‖ x̂− xt ‖2 = α2 ‖ (A>A+ αL>L)−1L>Lxt ‖2

+σ2trace
[
A(A>A+ αL>L)−2A>

]
.

where the expected value is on the noise. The first term which depends on xt

is referred to as the square of the bias and the second term is referred to as the

variance. The decomposition of the MSE into the bias and variance is a major

point in our discussion. The bias is required if stable solutions to the problem are

desired. This implies that even for problems with no noise, the recovered solution

x̂ will differ from the true solution xt. An important question is therefore, how

should we decrease the error in recovery?

4.1.1 The first complication: MSE is dependent on the

true solution

One could reduce the bias by decreasing α but, as is well documented, this will

increase the variance. Thus, the goal is to introduce the “right” L that leads to

the “right” bias, that is, a bias that will lead us closer to the true solution xt and

decrease the overall MSE.

This implies that we need some information on xt, which leads to the first

complication in finding the optimal L. Assume that one chose an L that minimizes

the MSE. Since the MSE depends on the true solution xt, minimizing the MSE that
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depends on xt may lead to a large MSE for different “true” models. To overcome

this disadvantage, a number of approaches can be used to eliminate the dependency

of the MSE with respect to xt. In the following we explore two different scenarios

where different information on xt is given.

A1: If the covariance of the true xt exists and is known, then it is possible to use

the covariance to define an average MSE. The average MSE in this case, is

identical to the so called Bayesian risk.

A2: If some training models X = [xt1, . . . , x
t
s] are given, then it is possible to

obtain an empirical estimation of the average MSE. This case is identical to

the empirical Bayesian risk.

We now treat each of these cases and discuss the optimization problems that stem

from each assumption.

The covariance design

If the mean µ and the covariance matrix Σ of the true model are known, then we

can replace the norm of the bias by its average. An optimal solution, in this case, is

the one that minimizes the average MSE. This leads to the following optimization

problem

min
L

α2 ‖ (A>A+ αL>L)−1L>Lµ ‖2 +

trace
[
(A>A+ αL>L)−1(α2L>LΣL>L+ σ2A>A)(A>A+ αL>L)−1

]
.

(4.4)

At this point, it may seem surprising but L can be found analytically. For sim-

plicity, we set the mean µ to be zero. Setting B = L>L, C = A>A + αL>L and
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combining the traces we have

AMSE = trace
(
C−1(α2BΣB + σ2A>A)C−1

)
=

m∑
i=1

ei
> [C−1(α2BΣB + σ2A>A)C−1

]
ei,

where ei, i = 1, · · · ,m are the standard unit basis vectors. In order to minimize

the AMSE, we set its derivative with respect to B to be 0 as follows:

∂AMSE
∂B

=
m∑
i=1

[
−αC−1eiei

>C−1(α2BΣB + σ2A>A)C−1 + α2C−1eiei
>C−1BΣ

]
= 0.

It is straight forward to verify that, if we chose B to be

B =
σ2

α
Σ−1 = L>L,

then the gradient of the AMSE vanishes. That is, the “optimal” L>L is a propor-

tion of the inverse covariance of the models. This should not come as a surprise.

The average MSE can be interpreted as the Bayesian risk and thus, if the model

is Gaussian with mean zero and covariance matrix Σ, then the Maximum A Pos-

terior Estimate (MAP) also yields the minimal Bayes risk. The surprising result

(at least for us) is the fact that, for any distribution of models with zero mean and

covariance matrix Σ, even for distributions that are far from Gaussian, the inverse

covariance is the best regularization matrix.

Assume that we are given the covariance matrix and we would like to use its

inverse for the solution of the problem. For small scale problems, this is straight-

forward. However, for large scale problems, working with a general covariance



74

matrix and its inverse is highly nontrivial. For example, in medical and geophys-

ical imaging, xt can be a vector with millions of entries. For these applications,

working with a dense covariance matrix with 1012 entries makes computations in-

feasible unless some special structure exists. For example, one can assume that

the covariance matrix is space invariant which leads to a simple Σ. However, this

assumption is rather unrealistic and even if it is true, estimating Σ−1 can be highly

nontrivial.

The training design

When we do not have the covariance matrix, we use a set of related models which

are used as training references. These models are chosen for applications in different

situations. For example, if the goal is to deblur some MRI images then X can be

chosen as a set of clean MRI examples. In this case, the MSE to minimize is

AMSE = trace
[
(A>A+ αL>L)−1(α2L>LML>L+ σ2A>A)(A>A+ αL>L)−1

]
,

(4.5)

where M = 1
s

s∑
j=1

xtjx
t
j
>

and s is the number of training models that we use.

4.1.2 The second complication: The computational com-

plexity

As we have stated above, using a dense regularization matrix for large scale prob-

lems will be very expensive in computation. The weakness of the analytic optimal

L strengthens the motivation for our work.

To overcome the second disadvantage, the problem of the computational com-
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plexity, we can choose L to have some structure that is easy to compute with. We

return to the average MSE and minimize it over all B = L>L assuming that L has

some given sparsity structure. Let S be the set of matrices with a specific sparsity

structure and solve the following constrained optimization problem

min
L

AMSE (4.6)

s.t. L ∈ S.

Here are a few comments:

• It is rather clear that, in general, the solution in this case is not that σ2

α
Σ−1 =

L>L since Σ−1 may not posses the appropriate sparsity pattern. Also, simple

“sparsification” of Σ−1 (that is, projecting Σ−1 into the constraint set) is in

general, not the optimal solution.

• As before, one could set B = L>L and solve for B directly, under the con-

straint that B is symmetric positive and semidefinite (PSD). However, note

that, for this case, the AMSE function is non-convex. Furthermore, even if

the function was convex, working with the constraint that B is PSD is diffi-

cult for large scale problems. In fact, while there is a body of work that deals

with estimating the inverse of the covariance matrix, we are not aware of any

papers that work well in estimating the inverse covariance matrix when the

size of the problem is very large.

• While being optimal is a novel goal, for most practical applications a signif-

icant improvement over existing regularization methods will suffice. Thus,

although we do not have a convex problem, if it is possible to obtain useful
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solutions, this will be welcome for many of the applications we aim for.

In the rest of this chapter, we focus on solving the first complication, while the

complication of the computational complexity will be discussed in details in the

next chapter.

4.2 Numerical optimization of the optimal regu-

larization

In this section, we discuss numerical optimization methods of the optimal regu-

larization. Different approaches are explored in order to solve individual problems

that arise from different designs.

4.2.1 Matrix-based derivative techniques

We start with the derivatives for the proposed designs. Most literature approaches

optimization problems by minimizing vectors, while it is not common to minimize

with respect to matrices. Hence, we will take some effort to review some matrix-

based derivative techniques [62] first.

Here we list a couple basic derivative rules that we have used in deriving our

derivatives. Let N and P be matrix variables and c be a constant. i, j, k, l refer to
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different matrix entry index.

∂(cN) = c∂(N)

∂(N + P ) = ∂(N) + ∂(P )

∂(NP ) = N∂(P ) + P∂(N)

∂(N−1) = −N−1∂(N)N−1

∂(N>) = (∂N)>

∂Nk,l
∂Ni,j

= δi,kδl,j

(4.7)

In particular, the following matrix differentiation rules have been very handy.

Let q be a vector variable and f, g be two constant vectors. J ij is a matrix with 1

on the ijth entry and 0 elsewhere.

∂(N−1)
∂q

= −N−1 ∂N
∂q
N−1

∂(N−1)k,l
∂Ni,j

= −(N−1)k,i(N
−1)j,l

∂f>N−1g
∂N

= −N−>fg>N−>

∂f>Ng
∂N

= fg>

∂f>N>g
∂N

= gf>

∂f>Nf
∂N

= ff>

∂N
∂Ni,j

= J ij

∂f>N>Ng
∂N

= N(fg> + gf>)

(4.8)
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4.2.2 The covariance design approach

By applying the Stochastic trace approximation, the original covariance design can

be rewritten as

AMSECov = α2 ‖ (A>A+ αL>L)−1L>Lµ ‖2

+ v>(A>A+ αL>L)−1(α2L>LΣL>L+ σ2A>A)(A>A+ αL>L)−1v

(4.9)

where v is a random vector of 1 and −1 with equal distribution.

We discuss the derivatives of the two terms in the AMSE with respect to the

regularization matrix L separately. We denote the first quadratic term to be U

and the second term V . Hence, the objective functional can be expressed as

AMSE = α2U + V.

We rewrite the U as

U = µ>L>L(A>A+ αL>L)−2L>Lµ.
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The derivation of its derivative is as follows:

∂U

∂L
=

∂[µ>L>nfL(A>A+ αL>L)−1(A>A+ αL>L)−1L>Lµ]

∂L
(4.10)

+
∂[µ>L>Lnf (A

>A+ αL>L)−1(A>A+ αL>L)−1L>Lµ]

∂L
(4.11)

+
∂[µ>L>L(A>A+ αL>nfL)−1(A>A+ αL>L)−1L>Lµ]

∂L
(4.12)

+
∂[µ>L>L(A>A+ αL>Lnf )

−1(A>A+ αL>L)−1L>Lµ]

∂L
(4.13)

+
∂[µ>L>L(A>A+ αL>L)−1(A>A+ αL>nfL)−1L>Lµ]

∂L
(4.14)

+
∂[µ>L>L(A>A+ αL>L)−1(A>A+ αL>Lnf )

−1L>Lµ]

∂L
(4.15)

+
∂[µ>L>L(A>A+ αL>L)−1(A>A+ αL>L)−1L>nfLµ]

∂L
(4.16)

+
∂[µ>L>L(A>A+ αL>L)−1(A>A+ αL>L)−1L>Lnfµ]

∂L
. (4.17)

where we treat L as fixed constant and Lnf as non-fixed variable. Let’s discuss

these equations one by one.

For (4.10) and (4.17), we have

(4.10) = (4.17) = L(A>A+ αL>L)−2L>Lµµ>.

For (4.11) and (4.16),

(4.11) = (4.16) = Lµ(A>A+ αL>L)−2L>Lµ>.
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For (4.12) and (4.15), we have

(4.12) = µ>L>L
∂(A>A+ αL>nfL)−1

∂L
(A>A+ αL>L)−1L>Lµ

= −µ>L>L(A>A+ αL>L)−1
∂(A>A+ αL>nfL)

∂L

(A>A+ αL>L)−1(A>A+ αL>L)−1L>Lµ

= −α
∂[µ>L>L(A>A+ αL>L)−1L>nfL(A>A+ αL>L)−2L>Lµ]

∂L

= −αL(A>A+ αL>L)−2L>Lµ(A>A+ αL>L)−1L>Lµ> = (4.15).

For (4.13) and (4.14), we have

(4.13) = µ>L>L
∂(A>A+ αL>Lnf )

−1

∂L
(A>A+ αL>L)−1L>Lµ

= −µ>L>L(A>A+ αL>L)−1∂(A>A+ αL>Lnf )

∂L

(A>A+ αL>L)−1(A>A+ αL>L)−1L>Lµ

= −α∂[µ>L>L(A>A+ αL>L)−1L>Lnf (A
>A+ αL>L)−2L>Lµ]

∂L

= −αL(A>A+ αL>L)−1L>Lµ(A>A+ αL>L)−2L>Lµ> = (4.14).

Hence, we obtain

∂U

∂L
= 2L(A>A+ αL>L)−2L>Lµµ>

+ 2Lµ(A>A+ αL>L)−2L>Lµ>

− 2αL(A>A+ αL>L)−2L>Lµ(A>A+ αL>L)−1L>Lµ>

− 2αL(A>A+ αL>L)−1L>Lµ(A>A+ αL>L)−2L>Lµ>.

With respect to the second term V , we define D = α2L>LΣL>L + σ2A>A and
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yield

∇LV = ∇L(v>C−1DC−1v).

Setting

z = C−1v and y = C−1Dz

yields

V = z>Dz.

Following the same derivative techniques as described above, we obtain

∇LV = −2αL(yz> + zy>) + 2α2L(ΣL>Lzz> + zz>L>LΣ).

Finally, the derivative of the objective functional is expressed as

∂AMSECov

∂L
= α2∂U

∂L
+
∂V

∂L
.

4.2.3 The training design approach

The training design can be rewritten as follows again using the Stochastic trace

approximation

AMSE = v>(A>A+αL>L)−1(α2L>LML>L+σ2A>A)(A>A+αL>L)−1v. (4.18)

This formulation looks a lot like the second term V in the covariance design.

Therefore, we will give the derivative directly.

∇LAMSE = −2αL(y′z> + zy′>) + 2α2L(ML>Lzz> + zz>L>LM),
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where y′ = C−1D′z and D′ = α2L>LML>L+ σ2A>A.

4.2.4 Numerical Optimization

The numerical optimization is carried out by the steepest descent method. One

important thing to notice here is that, when checking if the derivatives are properly

derived, we need to check if the relation

AMSE(L+ hLs) = AMSE(x) + (
∂AMSE

∂L
, hLs) + o(h2)

holds. In this case since both ∂AMSE
∂L

and hLs are matrices with the same size as

L, the normal inner product will give us another matrix which does not add up

to the AMSE as it is a scalar. Thus, we introduce the so called standard inner

product for the two matrices [53]

(
∂AMSE

∂L
, hLs) = trace[(

∂AMSE

∂L
)>(hLs)].
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Chapter 5

Optimal sparse regularization

In the previous chapter, we have discussed the formulation and derivative tech-

niques for finding the optimal regularization matrix. As you may see, computing

the derivatives is very time consuming since PCG is used everywhere in the com-

putation. Also, considering the structure of the image, in some cases, it is not

really necessary to find L with the dense pattern. Thus, we need to add certain

sparsity constraints to L in order to save the computational cost.

In this chapter, we propose three different sparsity patterns for L: The local

diagonal pattern, the `1 norm pattern and the Kronecker product pattern.

5.1 The local diagonal pattern

The first one we call the local diagonal pattern, which means we only use informa-

tion from the k-diagonals that are close to the main diagonal. In 1D problems, this

indicates that there are only nonzero entries on the main, sub and super diagonals.

In 2D problems, we choose the pattern of the Laplacian matrix as our structure
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for L, in other words, the nonzero pattern of L is just 5 diagonals. The reason for

doing this will be easy to explain on an image. Images consist of pixels and each

pixel is often more related to the pixels that surround it. Thus we choose the 5

diagonals which exactly represent the 4 pixels in the neighborhood, up, down, left

and right as is shown as the black grids in 5.1.

Figure 5.1: The picture shows that each pixel is often more related to the four
pixels that surround it.

The formulation of the local diagonal pattern is the same as the dense pattern

that we have discussed in Chapter 4, except that this time the pattern of L is

restrained to only have nonzero entries in several diagonals. The problem to solve

for the local diagonal pattern is

min
L

AMSE

s.t. L ∈ local diagonal.

5.2 The `1 norm pattern

A second approach is to have a sparse L with only few nonzero entries so that the

computational cost is much less. We consider adding an `1 norm to the average

MSE to control the sparsity of L. The number of nonzeros in L is reduced by

increasing the value of β.
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Thus, the optimization problem to solve for the `1 norm pattern:

min
L

AMSE + β ‖ L ‖1 .

In order to find the best sparsity, we plot the AMSE as a function of the number of

nonzeros in L, as is described in the A-optimal design work. The optimal sparsity

is decided by the corner of the L-curve, which suggests an optimal compromise

between the reconstruction quality and the sparsity of L.

5.3 The Kronecker product pattern

The last sparse pattern we consider is the Kronecker product pattern, for which

we define

L = L1 ⊗ L2,

where L1 and L2 are two smaller matrices. Hence, rather than minimizing with

respect to a large dense matrix L we now minimize the objective functional with

respect to smaller matrices L1 and L2. Since all the derivatives and optimiza-

tion process are now done on smaller matrices, the computational cost is greatly

reduced.

In this case, the original covariance design turns into an optimization problem
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with respect to two small matrices L1 and L2 as

min
L1,L2

α2 ‖ (A>A+ α(L1 ⊗ L2)>(L1 ⊗ L2))−1(L1 ⊗ L2)>(L1 ⊗ L2)µ ‖2 +

trace[(A>A+ α(L1 ⊗ L2)>(L1 ⊗ L2))−1

(α2(L1 ⊗ L2)>(L1 ⊗ L2)Σ(L1 ⊗ L2)>(L1 ⊗ L2) + σ2A>A)

(A>A+ α(L1 ⊗ L2)>(L1 ⊗ L2))−1].

(5.1)

Similarly, the training design is

min
L1,L2

trace[(A>A+ α(L1 ⊗ L2)>(L1 ⊗ L2))−1

(α2(L1 ⊗ L2)>(L1 ⊗ L2)M(L1 ⊗ L2)>(L1 ⊗ L2) + σ2A>A)

(A>A+ α(L1 ⊗ L2)>(L1 ⊗ L2))−1].

(5.2)

5.4 Numerical optimization of different sparse

patterns

As we have mentioned, in this section, totally we need to deal with three different

patterns for the structure of L and the matrix derivatives techniques we use are

different in each pattern. We will discuss them separately in this section. Below

is the formulation for the covariance design. The training design is very similar to

the second term in the covariance design, therefore we skip the details.

5.4.1 The local diagonal pattern

The computation of derivatives for the local diagonal pattern is very different

from what we have seen in the dense pattern in the previous chapter because the

derivatives are taken entry-wise. Again we separate the AMSE into two terms U
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and V .

We derive the derivative of the first term in details as an example. In order

to distinguish the local diagonal pattern from the dense pattern, we denote the

regularization matrix as Ll.

∂U

∂Ll(i, j)
=

∂[µ>L>lnfLl(A
>A+ αL>l Ll)

−2L>l Llµ]

∂Ll(i, j)
(5.3)

+
∂[µ>L>l Llnf (A

>A+ αL>l Ll)
−2L>l Llµ]

∂Ll(i, j)
(5.4)

+
∂[µ>L>l Ll(A

>A+ αL>lnfLl)
−1(A>A+ αL>l Ll)

−1L>l Llµ]

∂Ll(i, j)
(5.5)

+
∂[µ>L>l Ll(A

>A+ αL>l Llnf )
−1(A>A+ αL>l Ll)

−1L>l Llµ]

∂Ll(i, j)
(5.6)

+
∂[µ>L>l Ll(A

>A+ αL>l Ll)
−1(A>A+ αL>lnfLl)

−1L>l Llµ]

∂Ll(i, j)
(5.7)

+
∂[µ>L>l Ll(A

>A+ αL>l Ll)
−1(A>A+ αL>l Llnf )

−1L>l Llµ]

∂Ll(i, j)
(5.8)

+
∂[µ>L>l Ll(A

>A+ αL>l Ll)
−2L>lnfLlµ]

∂Ll(i, j)
(5.9)

+
∂[µ>L>l Ll(A

>A+ αL>l Ll)
−2L>l Llnfµ]

∂Ll(i, j)
, (5.10)

where we treat Ll as fixed constant and Llnf as non-fixed variable. Let’s discuss

these equations one by one. Denote Ji,j to be the single-entry matrix with 1 at

(i, j) and 0 elsewhere.

For (5.3) and (5.10),

(5.3) = µ>
∂L>lnf
∂Ll(i, j)

Ll(A
>A+ αL>l Ll)

−2L>l Llµ

= µ>(
∂Llnf
∂Ll(i, j)

)>Ll(A
>A+ αL>l Ll)

−2L>l Llµ

= µ>J>i,jLl(A
>A+ αL>l Ll)

−2L>l Llµ = (5.10).
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For (5.4) and (5.9),

(5.4) = µ>L>l
∂Llnf
∂Ll(i, j)

(A>A+ αL>l Ll)
−2L>l Llµ

= µ>L>l Ji,j(A
>A+ αL>l Ll)

−2L>l Llµ = (5.9).

For (5.5) and (5.8),

(5.5) = µ>L>l Ll
∂(A>A+ αL>lnfLl)

−1

∂Ll(i, j)
(A>A+ αL>l Ll)

−1L>l Llµ

= −µ>L>l Ll(A>A+ αL>l Ll)
−1
∂(A>A+ αL>lnfLl)

∂Ll(i, j)
(A>A+ αL>l Ll)

−2L>l Llµ

= −αµ>L>l Ll(A>A+ αL>l Ll)
−1J>i,jLl(A

>A+ αL>l Ll)
−2L>l Llµ = (5.8).

For (5.6) and (5.7),

(5.6) = µ>L>l Ll
∂(A>A+ αL>l Llnf )

−1

∂Ll(i, j)
(A>A+ αL>l Ll)

−1L>l Llµ

= −µ>L>l Ll(A>A+ αL>l Ll)
−1∂(A>A+ αL>l Llnf )

∂Ll(i, j)
(A>A+ αL>l Ll)

−2L>l Llµ

= −αµ>L>l Ll(A>A+ αL>l Ll)
−1L>l Ji,j(A

>A+ αL>l Ll)
−2L>l Llµ = (5.7).

Hence,

∂U

∂Ll(i, j)
= 2µ>J>i,jLl(A

>A+ αL>l Ll)
−2L>l Llµ

+ 2µ>L>l Ji,j(A
>A+ αL>l Ll)

−2L>l Llµ

− 2αµ>L>l Ll(A
>A+ αL>l Ll)

−2L>l Ji,j(A
>A+ αL>l Ll)

−1L>l Llµ

− 2αµ>L>l Ll(A
>A+ αL>l Ll)

−1L>l Ji,j(A
>A+ αL>l Ll)

−2L>l Llµ.



89

For V :

For each nonzero entry, the derivative is given by

∇Ll(i,j)V = −2αLil(yz
j + zyj) + 2α2Lil(ΣL

>
l Llzz

j + zzjL>l LlΣ).

where Lil denotes the ith low of L and zj and yj denote the jth entry of the vectors

z and y.

Finally, we obtain

∂AMSE

∂Ll(i, j)
= α2 ∂U

∂Ll(i, j)
+

∂V

∂Ll(i, j)
.

Notice, in the derivative of AMSE with respect to Ll, we need to compute L>l Ji,j,

which is basically just a single-column matrix generated by putting the transpose

of the ith row of the matrix Ll on the jth column. Also, we only need to do the

above derivatives on non-zero elements of Ll. Hence, the computational cost is

greatly reduced.

In particular, for 1D problems, we only have nonzero entries on the tri-diagonals

of the regularization matrix. Thus, the above computation is only done of those

three diagonals. Since the cost of this derivative is less than 3n while it is n2 in the

case of the dense L, the local diagonal is considered to be one of the most efficient

patterns.

5.4.2 The `1 norm pattern

There are two parts in the `1 pattern: the AMSE and the `1 norm. The only part

that is new to us is the `1 norm of a matrix, which is simply the maximum absolute
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column sum of the matrix based on the theory of the induced matrix norm:

‖ L ‖1= max
1≤j≤n

m∑
i=1

|Li,j|.

However, it is very difficult to define a proper derivative for the above norm.

Therefore, we treat the `1 norm as the sum of the absolute value of all entries in

L.

‖ L ‖1=

m,n∑
i,j=1

|Li,j|.

The derivative of this norm is simply a matrix of the signs of the entries of L. In

other words,

∂ ‖ L ‖1

∂Li,j
=


1 if Li,j > 0

−1 if Li,j < 0

0 if Li,j = 0.

5.4.3 The Kronecker product pattern

The difficulty in deriving derivatives for this pattern is that the regularization

matrix is a function of two other matrices. Hence, the Chain rule for matrix needs

to be applied [62].

The Chain rule

Let S = f(N), that is, the matrix S is a function of another matrix N . The goal

is to find the derivative of the function g(S) with respect to N :

∂g(S)

∂N
=
∂g(f(N))

∂N
.
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By applying the Chain rule, we obtain the entry-wise derivative

∂g(S)

∂Ni,j

=
n∑
k=1

n∑
l=1

∂g(S)

∂Sk,l

∂Sk,l
∂Ni,j

.

Using matrix notation, this can be written as:

∂g(S)

∂Ni,j

= trace

[
(
∂g(S)

∂S
)>

∂S

∂Ni,j

]
.

Derivative of AMSE with respect to L1

Using the Chain Rule for matrix derivatives, we need to take derivative of AMSE

with respect to each element of L1, say L1(i, j) and then construct ∂AMSE
∂L1

=

{ ∂AMSE
∂L1(i,j)

}ni,j, where

∂AMSE

∂L1(i, j)
= trace[(

∂AMSE

∂L
)>

∂L

∂L1(i, j)
].

From the formula above, we observe that both ∂AMSE
∂L

and ∂L
∂L1(i,j)

have the size of

n2×n2. Thus, the computational cost is pretty expensive when n is large. In order

to reduce the computational cost, we need to do some further observation.

As an example, for the derivative with respect to the element L1(i, j),

∂AMSE

∂L1(i, j)
= trace(Aj,iL2)

where Aj,i is the (j, i)th n× n block of the matrix A = ∂AMSE
∂L

. Thus, the compu-

tational cost is reduced from n2 × n2 to n× n.
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Derivative of AMSE with respect to L2

Similarly, we take derivative of AMSE with respect to each element of L2, say

L2(i, j) and then construct ∂AMSE
∂L2

= { ∂AMSE
∂L2(i,j)

}ni,j, where

∂AMSE

∂L2(i, j)
= trace[(

∂AMSE

∂L
)>

∂L

∂L2(i, j)
].

Again, we can reduce the computational cost after some observation. As an exam-

ple, for the derivative with respect to the element L2(i, j),

∂AMSE

∂L2(i, j)
= trace(Bj,iL1)

where Bj,i is the matrix constructed by all the (j, i)th elements in each n×n block

in A. Again, the computational cost is reduced from n2 × n2 to n× n.

5.5 Numerical experiments

In this section, we experiment with different regularization matrices based on sev-

eral sparsity patterns. Their performances are discussed and compared with other

commonly used regularizations. The experiments will be carried out on first a 1D

toy example and then a real-data MRI example.

5.5.1 The 1D magnetotelluric problem

For the 1D example, we use the magnetotelluric problem as is described in chapter 2

again. Since the problem is discretized into 256 points, the size of the regularization

matrix is 256×256, which will give us totally 65, 536 entries. Because this number
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is quite large, the goal of this problem is to find a sparse L that still leads to a

satisfactory recovery of the model x.

For our numerical experiments, we provide both the covariance matrix and a

set of training models so that the experiments can be done on both the covariance

and training designs. In this experiment, we apply only the `1 norm pattern to

show the power of sparsity control.

The covariance design

We start by showing results from the covariance design. The mean of the model

is set to be 0. In order to check how well our approaches perform, we design the

covariance matrix such that the model will have some peaks.

Figure 5.2: The risk as a function of sparsity nnz(L) =‖ L ‖0 of the optimal L
obtained with the covariance design.

Figure 5.2 shows the L-curve, in which we plot the AMSE as a function of the

sparsity of L. As we can see, the AMSE decreases rapidly before the corner, which

happens at ‖ L ‖0= 16, 467, as opposed to the total 65, 536 entries in the dense

L pattern, and more slowly thereafter. Hence, this corner suggests an optimal
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compromise between the image reconstruction quality and the sparsity of L.

Figure 5.3: The true image (top), reconstructed image using the optimal 16, 467
entries (bottom left) and using the differential operator (bottom right).

Figure 5.3 shows the true model and we want to compare the reconstructed

model from our approach to the result from the commonly used differential op-

erator. Table 5.1 displays the relative errors between the true model and the

reconstructed ones. The advantage of our result is obvious.

Table 5.1: Relative errors of the reconstructed images: covariance design

design relative error
`1 8.19%

diff 17.02%

Also, we display the pattern of the sparse L together with the pattern of the
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analytic L in Figure 5.4. We observe that the sparse L has kept the parts that

mainly contribute to the result and saved half of the effort.

Figure 5.4: The left panel shows the pattern of the analytic L and the right panel
shows the pattern of the sparse L .

The training design

In this section, we show results from the training design. In this case, the corner

is located where the number of nonzeros of L is 23, 802 as is shown in Figure 5.5.

Figure 5.5: The risk as a function of sparsity nnz(L) =‖ L ‖0 of the optimal L
obtained with the training design.
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Figure 5.6: The true image (top), reconstructed image using the optimal 23, 802
entries (bottom left) and using the differential operator (bottom right).

Table 5.2: Relative errors of the reconstructed images: training design

design relative error
`1 9.60%

diff 17.02%

From the resulting images in Figure 5.6 and Table 5.2, we can see that again

our result is much better than the one from the differential operator.

5.5.2 An MRI example

In the second experiment, we will apply our algorithms on some MRI examples.

Since this is a real problem and we do not have the true covariance matrix, we will
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use the training design.

For the choice of the training models, we use the MRI data set in MATLAB

which contains 27 different image slices of a human head. The slices go from the

nose gradually to the top of the head.

In each experiment, we choose four different sparse patterns of L: the dense

pattern, the commonly used differential operator, the Kronecker product pattern

and the 5-diagonal pattern since this is a 2D problem. Figure 5.7 show the matrix

L>L of the 5-diagonal pattern and the differential operator.

Figure 5.7: Images of L>L: the differential operator (left) and the 5-diagonal
pattern (right).

In the differential operator case, both the structure and the entry values are

fixed. In the 5-diagonal case, we only keep the structure of the matrix while all

these entry values are decided through optimization. For the choice of α, we use

the discrepancy principle to decide it before we start the iterations and set it as a

constant during the optimization process.

Experiment 1

In the first experiment, we choose the 10th, 11th, 13th and 14th MRI examples to be

our training models. Our goal is to use them to reconstruct the 12th MRI, which
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is similar to the training set. Figure 5.8 show the four training models we have

used.

Figure 5.8: Four training MRI models: 10th (top-left), 11th (top-right), 13th

(bottom-left) and 14th (bottom-right).

Here we display the true image and all the four reconstructed images from

different patterns of L in Figure 5.9. The top panel is the true image, the middle-

left panel is the reconstructed image from the dense pattern, the middle-right

panel is from the differential operator, the bottom-left panel is from the Kronecker

product pattern and the bottom-right panel is from the 5-diagonal pattern.

From the images, we observe that the dense pattern and the 5-diagonal pattern

provide very nice reconstructions. The brain is very clear in these two images while

it is just a big blur in the other two images. Also, we observe that the Kronecker
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Figure 5.9: The top panel is the true image, the middle-left panel is the recon-
structed image from the dense pattern, the middle-right panel is from the differ-
ential operator, the bottom-left panel is from the Kronecker product pattern and
the bottom-right panel is from the 5-diagonal pattern.

product pattern works a little bit better than the simple differential operator.

The relative errors between all the reconstructed images and the true image
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are listed in Table 5.3.

Table 5.3: Relative errors of the reconstructed images from four designs

design relative error
diff 25.27%

Kron 21.65%
5-diag 12.29%
dense 9.96%

The explanation for the order of the reconstruction quality is straightforward:

In the case of dense pattern, since no constraint is imposed on the regularization

matrix L, the reconstruction should have the best possible quality for images that

are similar to the training set. When it comes to the 5-diagonal pattern, based on

the fact that each pixel has stronger connection with the four pixels that surround

it than other pixels, we only consider information in the neighborhood, therefore

accuracy may be decreased a little bit because we completely ignore the influence

from the rest of pixels in the image. The reconstruction will get better and better

as we increase the number of diagonals. For example, if we use nine diagonals, we

should be able to get better results since now each pixel uses information from the

eight pixels that surround it. However, although the reconstruction quality of the

dense pattern is a bit better, the computational cost becomes tremendous.

In the case of the Kronecker product pattern, each column in the image is

treated in the same way by the small matrix L2 and each row is treated in the

same way by L1. For most image examples, this certainly will not work well.

That is why the reconstruction from the Kronecker product pattern is much worse

than the 5-diagonal pattern. The same thing happens in the case of differential

operator. Moreover, it only considers the one-sided difference while the Kronecker

product pattern considers the centered difference. Thus, it is even worse than the
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Kronecker product pattern. Therefore, we have demonstrated that the order of

reconstruction quality is as expected.

Therefore, we say our 5-diagonal pattern seems to be the optimal choice of the

regularization matrix. It is very cheap in computation and the results are almost

as good as the ones from the dense pattern.

One thing interesting to observe is the diagonal of the matrix L>L from the

optimal L we have obtained from the 5-diagonal pattern, as is plotted in Figure

5.10.

Figure 5.10: The image of the diagonal of the matrix L>L.

We analyze the meaning of the figure as follows. Write the matrix L as

L = [l1, l2, · · · , ln],

where li denotes a column of the matrix L. Hence,

diag (L>L) = [l>1 l1, l
>
2 l2, · · · , l>n ln].
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On the other hand, we observe that

‖ Lx ‖2 = L2
11x

2
1 + L2

12x
2
2 + · · ·+ L2

1nx
2
n

...

+L2
n1x

2
1 + L2

n2x
2
2 + · · ·+ L2

nnx
2
n,

which gives us

‖ Lx ‖2 = (L2
11 + · · ·+ L2

n1)x2
1 + · · ·+ (L2

1n + · · ·+ L2
nn)x2

n

= l>1 l1x
2
1 + · · ·+ l>n lnx

2
n.

Hence, we have shown that image of diag (L>L) shows the amount of penalty that

is added to each pixel of the image.

Experiment 2

We notice that, in the previous experiment, the training models we have chosen are

very similar to the model we want to reconstruct. Unfortunately, for an unknown

image, we do not know if it is similar to or different from the training models

we have. What we could do is to gather lots of training models with relatively

different information and see what will happen. ‘Relatively different’ means they

cannot be too different. For example, if we are trying to reconstruct the image

of a patient’s brain, then images containing different slices of the brain or views

from different angles will be a good set of training models, while images of a tree

certainly will not be helpful.

In this experiment, we randomly chose twenty images out of the twenty-seven

MRI examples in Matlab to be our training models and the goal is to recover
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the remaining six images. In Table 5.4 we list the relative errors between each

reconstructed image from the simple differential operator, the 5-diagonal pattern

and the true one.

Table 5.4: Relative errors of the reconstructed images from two designs

1 8 9 13 19 24
diff 34.57% 33.95% 29.43% 24.12% 25.28% 34.03%
diag 32.42% 24.65% 23.38% 19.19% 20.33% 36.25%

By comparing the relative errors, we see that our approach works quite reason-

ably. The improvement differs in each image due to the different levels of similarity

of that image to the training set. In real applications, we expect even better re-

sults because now we are taking different slices of the whole head while, in real

cases, for example, a brain doctor will only take images of the brain part. Hence,

the choice of training models will be more appropriate, which will result in better

reconstruction quality.
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Chapter 6

Optimal design in CO2 injection

monitoring

As we have mentioned in the introduction, in order to reduce the Greenhouse

effect, companies and organizations have piped the liquefied CO2 into underground

storage, which brings up the need for the research into monitoring techniques to

verify that the CO2 remains effectively trapped underground.

It has been shown that time-lapse seismic imaging is an effective technique for

underground CO2 monitoring [3, 31]. Borehole seismic techniques can image the

change in seismic velocity caused by the movement of CO2 [17].

However, due to the huge expense in deployment of the monitoring sensors,

it is imperative for us to find a cost-effective arrangement for placing the sensors

while the quality of the images is still guaranteed. Therefore, in this chapter, we

will present an approach to find the optimal design for CO2 injection monitoring.
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6.1 Crosswell array constraints

We begin this chapter with a brief description of the basic structure of the experi-

mental setting used in CO2 injection monitoring. Figure 6.1 provides a schematic

of the crosswell tomography experiment.

Figure 6.1: A schematic of the crosswell tomography experiment.

This schematic has brought us various crosswell array constraints that have to

be taken into account when designing the CO2 injection monitoring. We mention

some major constraints in the following:

• Fixed packers: The seismic sensors are deployed on production tubing,

both above and below a packer in the observation well. The locations of

packers in both observation wells are fixed.

• Jewelry on tubing: The pressure compensator is at the bottom of each

receiver array and the pre-amplifier is at the top. They both have their

individual sizes.
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• Well boundary: The possible positions of the sensors are bounded from

both above and below.

• Offset between the wells: The distance between the two wells is also fixed.

• Equally spaced receivers: Although sources can be placed almost any-

where, the two groups of receivers must have equal distances between con-

secutive pairs (within the groups).

• Length of sensors: Each sensor has its individual length which cannot be

ignored.

• Maximum ray length: The maximum length of any possible ray path is

not allowed to exceed certain limit.

All these constraints bring significant difficulties in the optimal design.

6.2 Mathematical framework

In this section, we discuss the mathematical framework of the CO2 injection mon-

itoring problem. Before the formulation is proposed, we will describe a bit about

the generation of the forward modeling operator.

6.2.1 The forward modeling operator

If the underground CO2 saturation and/or plume thickness increase along a given

raypath, the traveltime of a ray would decrease. From the time-distance data, a to-

mographic reconstruction of the wave speed can be carried out by using sensitivity

kernels obtained in the ray approximation.
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When we discretize the region of interest, the integrated sensitivity kernel in

a given grid cell becomes the length of the ray path in that cell. Therefore, the

quality of the imaging reconstruction depends on the accuracy of the sensitivity

kernels employed.

We apply the Fresnel-Zone-Based Kernel [48] hence, the sensitivity function is

formulated as

S(x) = KA(s, x)A(x, r) cos (
2π∆t(x)

T
) exp (−(

α∆t(x)

T/4
)2),

where S(x) is the sensitivity at the position vector x, A represents the amplitude

of the wave field propagation and K is a normalization constant. The parameter α

controls the degree of cancellation in Fresnel zones beyond the first, ∆t(x) stands

for the delay time between the first arrival and the arrival of waves that have been

scattered at x and T is the dominant period of the wave.

6.2.2 Formulation of the inversion

The CO2 injection monitoring problem can be expressed by this inverse problem,

Gm+ ε = d,

where G, is a matrix in which each row represents a tomographic ray path that

connects a source to a receiver. We calculate G in a 2.5 dimensional geometry

designed to accommodate heterogeneous 2D structure and well trajectories with

out-of-plane deviations. The solution to the eikonal equation is calculated using

a finite-difference eikonal solver [41, 47]. Our numerical experiments are based on
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the FAST package developed by Zelt [78]. The vector m is the geophysical model

we would like to reconstruct, ε is the noise that is assumed to be Gaussian iid with

0 mean and standard deviation σ and finally d is the data we have observed.

Due to the existence of the complicated spatial constraints that we have raised

in the previous section, we cannot hope to control the quality of the reconstructed

images by simply abandoning certain raypaths or adjusting the frequency with

which certain raypaths is chosen. Therefore, the optimal design that uses a weight

matrix W as was described in chapter 2 will not be helpful. Therefore, we intend

to explore a method to gradually modify the kernel matrix G in each iteration as

we update the placement of sensors, thereby converging to an optimal kernel G

with a corresponding optimal placement of sensors.

Since geophysical inverse problems are usually ill-posed, regularization in gen-

eral is needed. In this problem, we apply the Tikhonov regularization framework

as was described in chapter 4. Hence, an estimated model is given by

m̂ = argmin (d−Gm)>(d−Gm) + α ‖ Lm ‖2 .

In this case, we set L to be a discrete derivative operator to introduce smoothness

to the recovered model. The solution of the above problem is given by

m̂ = (G>G+ αL>L)−1G>d.

In order to determine the quality of the estimates, we calculate the `2 norm dif-

ference between the true model and the corresponding tomographic reconstructed

one for a given geometry. In many cases, the desired information is usually only
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within a particular zone of the whole model, therefore the quality measurement is

only considered within the target zone:

D =‖ Q� (m̂−mtrue) ‖2
2, (6.1)

where Q is a window function that is used to specify the zone that we are interested

in.

The optimality criterion is defined by the average MSE that is given in the

following

MSE = α2 ‖ Q� (G>G+ αL>L)−1L>Lmtrue ‖2
2

+ σ2trace[G(G>G+ αL>L)−1 �Q>Q� (G>G+ αL>L)−1G>].
(6.2)

In most real applications, the true model in the AMSE formulation above is not

available. In its place, we use a suite of reference models that are related to the

model to be reconstructed and solve the problem via a training approach.

AMSE = 1
s

s∑
j=1

α2 ‖ Q� (G>G+ αL>L)−1L>Lmtrue,j ‖2
2

+ σ2trace[G(G>G+ αL>L)−1 �Q>Q� (G>G+ αL>L)−1G>],

(6.3)

where s is the number of reference models.

Therefore, the main purpose of this work is to determine an optimal placement

of sources and receivers in order to provide maximum information about the target

geophysical structure at minimum financial cost under the spatial constraints. In

particular, the best possible estimated model is obtained by minimizing the AMSE

through optimization approaches and the optimal reconstructed model is obtained
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based on the resulting optimal design thereafter.

6.3 Numerical optimization through DIRECT al-

gorithm

Obviously standard gradient-based optimization methods are not very effective for

solving our problem due to the existence of those constraints on the solution do-

main. In stead, Ajo-Franklin [1] has chosen two non gradient-based optimization

methods: the Nelder-Mead downhill simplex method [57] and the multilevel coor-

dinate search algorithm [46]. However, the work did not provide a way to find the

optimal locations of sensors. Also the discussion of location constraints was not

presented.

6.3.1 The DIRECT algorithm

In order to accommodate those location constraints for placing sensors, we ap-

ply the DIRECT algorithm, which was proposed by Daniel E. Finkel [26]. The

DIRECT optimization algorithm was first introduced in [49] based on the Lips-

chitzian Optimization for solving difficult global optimization problems with bound

constraints and a real-valued objective function.

The algorithm converges to the global minimum of the objective functional

without requiring its gradient. It samples points in rectangular domains by taking

the midpoints of the searching spaces. This overcomes the shortcoming of the

Lipschitzian Optimization when solving high dimensional problems. The DIRECT

algorithm uses all values in the current rectangle to determine if a region of the
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domain should be broken into sub-rectangles. Therefore, it does not require the

estimate of the Lipschitz constant or the continuity of the objective functional [49].

In a very brief description, DIRECT algorithm starts with a unit hyper-cube

and divides it into smaller hyper-rectangles with the restriction that the division

is only done along the longest dimension(s) of the hyper-rectangles. This ensures

that the rectangles will be divided along all directions and no dimension will be

ignored.

For our application of the DIRECT algorithm, we only need to provide the

evaluation of the objective functional and the upper and lower bounds of the

variables we intend to estimate. Thus, the crosswell ray constraints can be easily

satisfied if we carefully choose the variable bounds.

6.3.2 Discussion of the constraints

We now discuss details about finding the appropriate bounds for locations of

sources and receivers. First, we need to determine the size of the kernel G in the

inverse problem, which represents all possible locations of sources and receivers.

Based on the knowledge of the maximum ray length (we denote as lMaxRay) and

the offset (doff) between the two wells, we obtain the maximum distance that a

raypath can reach along the well direction dmax =
√

(lMaxRay)2 − (doff)2.

In the source well, we assume that the lowest source above the packer can be

placed right on top of the packer and the highest source below the packer can be

placed right under it. Similar assumptions work for the receiver well as well. Also

we denote lsource to be the length of the sources and lreceiver to be the length of the

receivers.
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Thus, in order to guarantee that all rays from the sources are able to reach

all receivers, we must not place any sensors in areas that a ray cannot reach.

Therefore, the upper bound on the lowest receiver below the packer (we denote as

Rbottom) is at: top of the packer in the source well - lsource/2 + dmax. Similarly, the

lower bound on the highest receiver above the packer (Rtop) is at: bottom of the

packer in the source well + lsource/2 - dmax. Following the same approach, the upper

bound on the lowest source below the packer (Sbottom) is determined to be at: top

of the packer in the receiver well - lattach - lreceiver/2 + dmax and the lower bound

on the highest source above the packer (Stop) is at: bottom of the packer in the

receiver well + lattach + lreceiver/2 - dmax, where lattach is the length of the attached

materials on receivers such as the pressure compensator and the pre-amplifier.

The size of the kernel G, or in other words, the size of the space for all possible

locations of sources and receivers is decided by the above four bounds.

Boundaries for sensor location constraints

Since the sources can be placed at any location within the space provided by the

kernel G, we must determine individual bounds for each of them. We assume that

the number of sources above the packer is nStop and the number below the packer

is nSbottom. Similarly, we assign numbers to nRtop and nRbottom as well.

We start with the possible locations for the highest source. Its lower bound is

simply Stop and its upper bound can be calculated as: top of the packer in the

source well - lsource/2 - (nStop−1) lsource. With respect to the second highest source,

the lower bound is Stop + lsource because the space to hold the highest source must

be kept. Similarly, its upper bound is lsource more than the upper bound of the

highest source. Following the same routine, it is straightforward to obtain bounds
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for all sources.

For the receivers, since each group is equally spaced, we only need the four

bounds on the top and bottom receiver of the group above the packer and below

it. The lower bound for the top receiver in the top group is simply Rtop and

its upper bound is calculated as: top of the packer in the receiver well - lattach -

lreceiver/2 - (nRtop − 1)lreceiver. The other bounds can be determined in the same

fashion. Finally, after translating the absolute bounds into the coordinate system

of the kernel G, we put the bounds for all sources and receivers in a nStop+nSbottom+

nRtop + nRbottom by 2 matrix.

Special treatment for receivers

Above, we have decided the general boundaries for placing sources and receivers.

However, due to the complicated constraints we have listed in section 6.1, there are

certain places inside the solution interval between upper and lower bounds where

we cannot place sensors. Hence, special treatments need to be considered when

finding the optimal placement. Since sources and receivers have different spatial

constraints, different treatments need to be carried out in the two cases.

Let us start with the easy case: the receivers. We use the top group of receivers

as an example. There are two things we need to check every time we update to

a new arrangement of receivers. First, if the distance between the first and last

receivers in this group is less than lreceiver(nRtop−1), we stretch the whole group until

this constraint is satisfied. Here, distance between two sensors means the distance

between the centers of the two. Since, in our problem, we stretch the receivers

downwards, we need to check the position of the last receiver. If it is below the

top of the packer, we will move all receivers up until this conflict is resolved. Of
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course, it is possible to stretch the receivers upwards as well. However, since the

target zone is usually in the middle area between the two wells, it is natural for

us to always try to gather sensors close to the target zone. Therefore, for the top

group of receivers, we stretch downwards.

A symmetric process is performed on the bottom group of receivers, for which

we stretch the conflicting receivers upwards. In this case, we need to check the

position of the first receiver in this group. If it is above the bottom of the packer,

we will move all receivers down until this conflict is resolved.

Special treatment for sources

Things are more complicated for sources. If the DIRECT algorithm generates the

distance between two sources to be less than lsource, the resulting system is not

feasible because these two sources will overlap each other. In order to fix this

problem, we suggest a perturbation process. Again, we use the top set of sources

as an example. A symmetric process can be applied to the group below the packer.

If two (or more) sources are conflicting, we arbitrarily choose one and move

it to the closest position, within the space between the packer and the ceiling of

the working space, which does not conflict with another source. This process is

repeated until no conflicts remain among all sources.

Note that no source will be moved more than the distance of (nStop−1)(2lsource−

1). The proof of this claim is given as well.

Proposition 6.1 Each source moves at most (nStop − 1)(2lsource − 1).

Proof: First note that the DIRECT algorithm will not place any sources in

conflict with the packer. Thus, if nStop = 2 and the two sources are in conflict, we
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may move one source to the opposite side of the other, thereby moving the source

by at most 2lsource − 1. This would be the case if source 1 is located right next to

the packer while source 2 is at a distance of lsource − 1 away.

If nStop > 2, the largest possible distance that a source could move is clearly

(nStop−1)(2lsource−1), which is the situation when the first source to be considered

is still located right next to the packer, the second is lsource − 1 away, the third is

2(lsource − 1) + lsource away and so on. In this situation, the ith source would be

located (i− 1)(lsource − 1) + (i− 2)lsource from the packer for all i ≥ 2. �

Unfortunately, this process does not always yield a solution that is as close

as possible to the output of the DIRECT algorithm, but we can easily bound the

difference. We claim that the total movement of the sources is less than n2
Stoplsource.

The proof is given in the following.

Proposition 6.2 The sum of the movements of all the sources is at most

nStop(nStop−1)(2lsource−1)

2
.

Proof: We prove this result by induction on nStop. First suppose nStop = 2.

Then, by Proposition 6.1, one source will move at most 2lsource − 1. If one source

moves, the other will clearly remain unmoved so the total movement is at most

2lsource − 1 =
nStop(nStop−1)(2lsource−1)

2
.

Now assume nStop > 2 and suppose the result holds for fewer than nStop sources.

Suppose we have nStop − 1 sources placed and we would like to add a new source.

By Proposition 6.1, this source could potentially have to move at most (nStop −

1)(2lsource− 1). The total of the other sources movements, by induction, is at most

(nStop−1)(nStop−2)(2lsource−1)

2
for a total of
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(nStop − 1)(nStop − 2)(2lsource − 1)

2
+ (nStop − 1)(2lsource − 1)

=
nStop(nStop − 1)(2lsource − 1)

2
,

as desired. �

Of course, there are cases where other algorithms will produce results that are

closer to the output than our method. However, the computational complexity of

these algorithms is orders of magnitude larger than the complexity of our algorithm.

At each step in our correction process, we move a source one distance unit in

both directions and then check its position relative to all the other sources along

with the packer and the outer boundary of the well (either the surface of the ground

if these sources are above the packer or the bottom of the well if they are below).

Thus, for each unit moved, we check a total of 2(nStop + 1) pairs for conflicts. This

makes the computational complexity of our algorithm exactly

2(nStop + 1)
nStop(nStop − 1)(2lsource − 1)

2

= nStop(nStop + 1)(nStop − 1)(2lsource − 1)

= O(n3
Stoplsource).

There are two obvious limitations in the method that we have chosen. One

drawback of our algorithm is that, in some cases, the order in which the sources are

considered causes the movement to increase. Hence, one may consider all possible
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orderings of the sources and choose the ordering which minimizes the movement.

Unfortunately, the number of such orderings is nStop! so this would greatly increase

the computational complexity to O(nStop!n3
Stoplsource). Also, consider the following

extreme example. Suppose all sources start in the same position, right next to the

packer. Call this example A. In this case, our correction process finds the best

possible configuration regardless of the order in which the sources are considered.

This example shows that considering all orderings of the sources would likely be a

waste of effort.

Another drawback of our approach is that there are cases where moving one

source at a time cannot produce the best possible result. For example, suppose

lsource = 3, source 1 starts at point 0, source 2 starts at point 4, source 3 starts at

point 5 and source 4 starts at point 9 (see Figure 6.2). Clearly sources 2 and 3 are

in conflict but moving only one source at a time, as in our algorithm, cannot place

these two in their optimal positions (clearly 3 and 6 respectively). Thus, a slightly

more sophisticated algorithm would allow pairs of sources to move at the same

time, but this would have a computational complexity of at least O(n4
Stoplsource)

since we would have to consider all possible pairs of sources which introduces an

n2
Stop term as the number of pairs where we considered only the nStop sources

before. Furthermore, as seen in example A, this more complicated algorithm could

not always provide better results than our approach.

Figure 6.2: An example of source placement.
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The process we propose is very fast even when the number of sources gets large.

Therefore, we feel that our repair process provides a sufficient balance between

computational cost and the result accuracy.

6.4 Numerical experiments

For our experiment we have generated four time-lapse images of a CO2 flood

progressing through a permeable layer as is shown here. We use the top three

images as our reference models and we want to recover the one on the bottom row.

Figure 6.3: Four time-lapse images of a CO2 flood progressing through a permeable
layer. The top three images are our reference models and the goal is to recover the
one on the bottom row.

We designed a crosswell continuous active-source seismic monitoring (CASSM)

experiment in which data would be acquired continuously during injection along

a set of fixed raypaths.
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We give a list of parameters we have used in our experiments. We assume

that the length of the attached materials on the receiver groups is 2 feet. The

maximum length of raypaths is 150 feet and the offset between the two wells is 80

feet. Hence, we obtain that the maximum distance that a raypath can reach along

the well direction is dmax = 126 feet. The length of both sources and receivers is 2

feet. The model images have the size of 81 feet by 83 feet. The length of packers

is 2 feet and they are located at pixel 38 to 40. We discretize the well space into

grids of size 1 foot by 1 foot.

After the generation of the bounds for all sources and receivers, we apply the

DIRECT algorithm and terminate the iteration when the difference between the

two consecutive objective functional values is less than a certain tolerance. We set

the maximum number of iterations to be 100, the maximum number of functional

evaluations to be 2000 and the maximum number of rectangle divisions to be 1000.

The Jones parameter is 10−5.

The homogeneous background velocity model is provided by the Cranfield

CASSM experiment. It is based on the extrapolation of the CFU 31F-1 sonic

extrapolated along a −1.9 degree dipping to the F2 and F3 well section. All ex-

periments are done using the infinite frequency kernel.

It is evident that the kernel G is different in each iteration of the DIRECT

algorithm due to the change in the locations of sources and receivers. Thus, the

goal of the optimal experimental design in this work is to generate the optimal

kernel G that gives us the best reconstructed image with reasonable financial cost.
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6.4.1 Numerical Experiment 1: S/R = 0.5

We first show the case in which the ratio of numbers of sources and receivers is

fixed. In our case, we set the ratio to be 0.5.

Figure 6.4: L-curve for CO2 injection monitoring.

We have tested our algorithm on different numbers of sources, with the number

ranging from 2 to 32. The corner of the L-curve happens when we use eight sources

and sixteen receivers. It is obvious that this placement has cut out half of the

financial cost while the result quality is almost as good.

Figure 6.5: The true image (left) and the reconstructed one within the interest
zone based on the optimal number of source and receivers (right).
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We display the true image and the reconstructed one within the interest zone

based on the optimal number of source and receivers. The reconstruction quality

is quite satisfying. The relative error is only about 1.5%.

Figure 6.6: The resulting raypaths based on the optimal sources and receivers.

The bounds for placing the four sources above the packer are [1, 31], [3, 33],

[5, 35], [7, 37] and [41, 72], [43, 74], [45, 76], [47, 78] for the four sources below the

packer. For receivers, the bounds are [1, 21], [15, 35] for the top group and [43, 64],

[57, 78] for the bottom group. In Figure 6.6 we show the resulting raypaths based

on the optimal placement of sources and receivers. The position for the four top

sources are at 8, 16, 23.3, 35.3 feet from the top of the image and 42.7, 48.2, 70.8,

52.2 feet away for the bottom four sources. For receivers, the highest one in the

top group is located at 4.3 feet away from the top of the image and the lowest

receiver is located at 33.9 feet away. For the bottom group, the highest one is at

44.2 feet away and the lowest one is at 60.5 feet away.
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6.4.2 Numerical Experiment 2: S/R unfixed

In general, there is no fixed ratio between numbers of sources and receivers; this

means that the relative error is a function of two independent variables: the number

of sources and the number of receivers. In fact, each of these variables can be split

into top and bottom groups. This will give us a 4D hyper-curve, which is very

difficult to determine where the corner point of the curve is.

In order to still obtain an L-like curve so that the optimal solution is obvious,

we consider plotting the relative error as a function of the financial cost of the

sources and receivers. Since sources and receivers have different costs and these

costs also differ based on the placement relative to the packer, we assign values

and simply total the cost. For each total cost, we choose the smallest relative error

among the trials we ran.

In the absence of real cost data, we have assigned a cost of 10 monetary units

for a source above the packer and a cost of 20 units for a source below the packer.

Also we assign costs of 5 and 10 units for receivers above and below the packer,

respectively. The resulting L-curve is shown in Figure 6.7.

Figure 6.7: The L-curve shows the relative error as a function of the financial cost
of the sources and receivers.



124

According to the L-curve, we choose the point corresponding a monetary value

of 110 units, which yields a relative error of 2.21%. In our experiment, this corre-

sponds to placing two sources above the packer and three below, also two recivers

both above and below the packer.

This curve is very useful in practice because the amount of funding available

is frequently bounded and thus, one can easily find a point on this curve which

corresponds to the best reconstruction quality possible within the budget.

Figure 6.8 displays the true model together with the reconstructed one based

on the optimal placement we have chosen within the interested zone. From the

result, we observe that the optimal placement has cut out more than 2/3 of the

financial cost while still maintaining a quite good reconstruction quality.

Figure 6.8: The true image (left) and the reconstructed one within the interest
zone based on the optimal number of source and receivers (right).
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Chapter 7

Summary and future work

The goal of this thesis was to develop numerical methods for optimal design prob-

lems. In particular, we have proposed new criteria of optimal design approaches

for applications in areas such as medical imaging and geophysics.

First, in Chapter 2, we have introduced two new design criteria for the A-

optimal design that minimize the Bayes risk based on sparsity. Also, we have

developed numerical approaches based on Krylov subspace methods for large scale

ill-posed problems. For numerical experiments, we have tested our algorithms on

a 1D problem as well as a large scale super resolution problem and demonstrated

the efficiency of our approach.

In Chapter 3, we have developed numerical methods for the E-optimal design.

Inverse iteration has been applied to approximate the smallest eigenvalue of the in-

formation matrix and the corresponding derivative techniques have been discussed.

Numerical experiments have been done on the same 1D problem as was used in

Chapter 2 for the purpose of comparison and also a borehole ray tomography

example.
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In Chapters 4 and 5, an optimal `2 regularization approach has been proposed

and two designs based on availability of different types of prior information have

been developed. Also, several sparsity patterns have been imposed on the optimal

regularization matrix in order to reduce the computational cost with very little loss

of reconstruction quality. Matrix-based derivative techniques have been discussed

in detail for all different sparsity patterns and several numerical experiments have

shown that our optimal regularization approach gives very promising results. Es-

pecially when the model to reconstruct is similar to the training set, the training

design provides much better results than the traditional differential operator.

In Chapter 6, we have applied our optimal design idea to a geophysical problem:

CO2 injection monitoring. Special spatial constraints on placement of sensors

have been introduced and different treatments have been discussed for sources and

receivers, respectively. We have done experiments on a synthetic problem based

on a target zone and the results are quite promising.

Future work to be done is to continue developing numerical methods for solving

optimal experimental design problems. There are many other optimality criteria

that have proved to be very useful for various applications. One of the popular

examples is theD-optimality. As far as we know, there have not been any numerical

methods developed for solving ill-posed large-scale problems. My goal is to explore

efficient methods for large-scale determinant optimization.

Also, we intend to improve the optimal regularization techniques for solving

nonlinear inverse problems. The difficulty arises because, in this case, there is no

simple decomposition of the bias and variance; hence, there is no closed formula

for the MSE. Also, the formulation will involve a bi-level optimization problem,

which is very difficult to solve.
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Furthermore, since the CO2 problem we mentioned is in a large class of real-

world discrete optimization problems, we intend to further develop algorithms to

solve discrete optimal experimental design problems.



128



129

Bibliography

[1] J. B. Ajo-Franklin. Optimal experimental design for time-lapse traveltime

tomography. Society of Exploration Geophysicists, 2008.

[2] J. B. Ajo-Franklin, J. Urban and J. M. Harris. Temporal integration of seismic

traveltime tomography. Society of Exploration Geophysicists Annual Meeting,

Expanded Abstracts, 25:2468, 2006.

[3] R. Arts, R. Elsayed, L. Van Der Meer, O. Eiken, O. Ostmo, A. Chadwick, G.

Kirby and B. Zinszner. Estimation of the mass of injected CO2 at Sleipner

using time-lapse seismic data. Paper H-16, EAGE 64th Annual Conference,

2002.

[4] Z. Bai, M. Fahey and G. H. Golub. Some large-scale matrix computation

problems. J. Computational & Applied Math, 74:71-89, 1996.

[5] A. Bardow. Optimal experimental design of ill-posed problems: The METER

approach. Computers and Chemical Engineering, 32:115-124, 2008.

[6] N. Barth and C. Wunsch. Oceanographic experiment design by simulated

annealing. J. Phys. Oceanography, 20:12491263, 1990.



130

[7] I. Bauer, H. G. Bock, S. Körkel and J. P. Schlöder. Numerical methods
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