
Distribution Agreement 

 
In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced 
degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive 
license to archive, make accessible, and display my thesis or dissertation in whole or in part in all 
forms of media, now or hereafter known, including display on the world wide web. I understand 
that I may select some access restrictions as part of the online submission of this thesis or 
dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain 
the right to use in future works (such as articles or books) all or part of this thesis or dissertation. 

 
 
Signature: 
 
 

 

Name                                                               Date 

 

  

DocuSign Envelope ID: 8E82E40E-69EC-4B68-959F-6FA3BD27897A

Nilofar Vafaie 5/15/2023 | 3:07 PM EDT



 

 

 

 

 

 

 

 

Approved by the Committee  

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

Accepted by the Laney Graduate School 

  

 

 

DocuSign Envelope ID: 8E82E40E-69EC-4B68-959F-6FA3BD27897A

Nilofar Vafaie

Degree

Hurting BERT’s Feelings: Toward a Computational Model of Emotion Regulation in 

Context

Master of Arts

Title

Program

Author

Committee Member

Psychology

Philip Kragel

Advisor

Patricia Brennan

Phillip Wolff

Committee Member

Kimberly Jacob Arriola, PhD, MPH

Dean, James T. Laney School of Graduate Studies



1 

Hurting BERT’s Feelings: 

Toward a Computational Model of Emotion Regulation in Context 

Nilofar Vafaie 

Department of Psychology 

Emory University  

An abstract of a thesis 

submitted to the Department of Psychology Laney Graduate School, 

Emory University In Fulfillment of the Requirements  

For the Degree of Master of Arts 

June 2023 



 2 

Abstract 

 

Emotion regulation is a complex phenomenon, typically operationalized using ontologies of 

different strategies (e.g., cognitive reappraisal) and assessed using low dimensional assays, with 

affect ratings serving as the sole measure of regulation success. Such low-dimensional 

conceptualizations of emotion regulation limit the development computationally explicit 

accounts of the cognitive and neural processes involved in different regulation strategies. Here 

we take an alternative approach, using deep language models to test the hypothesis that emotion 

regulation changes the meaning of events as reflected in a high-dimensional semantic space. We 

conducted an online study in which participants either used reappraisal, mindfulness, or provided 

an objective description of stimuli after viewing short affective videos. Fine-tuned Bidirectional 

Encoder Representations from Transformers (BERT) were able to classify regulation strategy as 

well as emotional situation based on text descriptions of events. Fine-tuning in regulation 

specific language changed representations across layers of a BERT model, with a main effect of 

situation in the last layer and an interaction between strategy condition and situation. These 

findings suggest that regulation systematically alters the language produced when describing 

emotional events. The nature of these changes depends both on the type of emotional situation 

and the emotion regulation strategy employed. Importantly, these changes increase deeper into a 

language model, with implications for brain mappings of early vs late cortical areas. We further 

assessed generalizability of our models to independent archival data and found that model 

classifications better explained variations in affect compared to the experimental labels. This 

work paves the way for objective modeling of emotion regulation, with applications in a variety 

of settings in order to facilitate a deeper understanding of how emotion and emotion regulation 

are operationalized behaviorally and in the brain.  

Keywords: emotion, emotion regulation, language, deep language models 
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 4 

 

 

“Oh, who can hold a fire in his hand 

By thinking on the frosty Caucasus? 

Or cloy the hungry edge of appetite 

By bare imagination of a feast? 

Or wallow naked in December snow 

By thinking on fantastic summer's heat? 

O, no! the apprehension of the good 

Gives but the greater feeling to the worse.” 

  

– An exiled son’s rejoinder to a father urging 

him to use imagination to reconfigure his 

suffering. 

 

William Shakespeare, Richard II 

 

Perhaps not for situations as extreme as the ones in the verses above, but when can one use 

imagination to reconfigure suffering – or in modern psychological parlance, cognitively 

reappraise a terrible situation? After all, reappraisal is a cornerstone of affective and clinical 

science, and one of the most studied regulatory strategies. Indeed, not only for reappraisal, but on 

the whole, a wealth of psychological research has shown emotion and emotion regulation to be 

part and parcel of daily life, and essential to healthy adaptation and functioning (Berking & 

Wupperman, 2012; Chervonsky & Hunt, 2019; Hu et al., 2014; Inwood & Ferrari, 2018).  
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Our current understanding of emotion generation and regulation points to a complex, 

recursive and recurrent interplay of different processes such as valuation, intro/exteroceptive and 

language systems (Barrett, 2017; Gross, 2015; Satpute & Lindquist, 2021). Regulation 

potentially overlaps with language at multiple levels, as indicated by the brain regions that are 

implicated both in language and emotion processing (e.g. ventrolateral prefrontal cortex, inferior 

frontal gyrus, and precuneus ), or theoretical accounts that pose an integral role for language in 

the emotion generation and regulation processes (Barrett et al., 2016; Brooks et al., 2017; 

Gendron et al., 2012; Satpute & Lindquist, 2021). Constructivist accounts of emotion hold that 

there can be no emotion without language, as emotion is constructed by language concepts, 

taking into account biological precepts elicited along dimensions of valence and arousal (Barrett, 

2017; Lindquist et al., 2015).  Semantic space theory of emotion posits that emotion concepts are 

embedded in a high-dimensional semantic space (Cowen & Keltner, 2021). Basic emotion views 

too suggest the existence of semantically distinct categories of emotion (Johnson-Laird & 

Oatley, 1989). And while appraisal theories of emotion do not attribute a causal role to language 

itself, they maintain that core relational themes with deep meaning are derived with the use of 

language and are shared across instances of the same emotion, despite having different surface 

features (Moors et al., 2013). Given the purported importance of language to emotion, whether 

viewed as a constituent part or a reflection of aspects of the underlying cognitive processes, 

studies have sought various methos of delving deeper into its phenomenological role, for 

example by employing lexical analysis - e.g. profile of pronoun and verb tense use (Brooks et al., 

2017; Nook et al., 2021; Orvell et al., 2019). However, this research has focused on specific 

linguistic signatures specified a-priori and has not been able to holistically look at language and 

assess how words represent semantic content related to emotion. Consequently, such approaches 
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do not allow for building an explicit model of how regulation could influence emotional 

responding. 

Here, we take an alternative approach by leveraging advanced computational and deep 

language models to examine the role that contextual semantic mappings play in emotion 

generation and its regulation. To do so, we take advantage of word embeddings –  high 

dimensional numerical vectors that represent meaning in semantic space, and are used as proxies 

for human semantic representation (Chang & Chen, 2019; Günther et al., 2019; Rudkowsky et 

al., 2018; Schuster et al., 2019). These model spaces are built on the distributional hypothesis, 

positing that language reflects distributional information in the environment, such that meanings 

are arrived at from co-occurrence of words in similar contexts (Harris, 1954; Lopez et al., 2020; 

McDonald & Ramscar, 2001). The high-dimensional semantic space in different embeddings is 

built on large language corpora, taking into account the contextual distribution of words to arrive 

at a geometric embedding representing meaning.  Some language models (e.g. Global Vectors 

for Word Representation, or word2vec) constitute static representations of meanings, whereby 

once a semantic space is formed, each word, regardless of its placement in any particular context 

will be represented with the same vector embedding (Miaschi & Dell’Orletta, 2020). Contextual 

word embeddings, on the other hand, take all other words in a given sentence into account in 

order to arrive at a contextual embedding for that word or sentence (Chang & Chen, 2019).  

Recent work has shown that word embeddings represent world knowledge about object 

categories (Arana et al., 2023; Grand et al., 2022). In the domain of emotion, word embeddings 

could reflect knowledge about the emotional significance of an object in context (e.g., that a lion 

in the open savannah is more of a threat than a lion at a zoo). Further, context-dependent word 

embeddings may reflect the variable nature of emotional meaning. If emotion regulation alters 
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the meaning of sensory information, then linguistic descriptions of emotional events can serve as 

a proxy into the underlying cognitive processes by reflecting the change that occurs on a 

semantic level. 

One approach for identifying word embeddings that are context sensitive is to fit large 

language models using Bidirectional Encoder Representations from Transformers (BERT) 

(Biggiogera et al., 2021; Devlin et al., 2018; Hollis & Westbury, 2016; Rudkowsky et al., 2018; 

Tanana et al., 2021). Because BERT embeddings represent meaning as high-dimensional 

numerical vectors, they can be used to evaluate whether descriptions of emotional events 

systematically differ across contexts—in terms of the regulation strategy used or the type of the 

emotional situation itself. Another defining property of BERT embeddings are their sensitivity to 

context in the training set, and the ability to fine-tune embeddings on domain specific language 

(Chang & Chen, 2019; Miaschi & Dell’Orletta, 2020). Thus, BERT embeddings pre-trained on 

large text corpora can be viewed as normative accounts of emotional meaning established across 

a wide array of situations, whereas fine-tuned embeddings are more sensitive to differences in 

context in order to increase fit and model accuracy for a specific task – in our case, specific 

emotion regulation strategies.  

Viewed from the lenses of the diverse theoretical perspectives of basic, appraisal, 

constructive or the semantic space theory, emotions can be characterized on the basis of semantic 

features captured by word embeddings. Whether emotions are best explained as abstract 

concepts embedded in a high-dimensional semantic space, or differentiated in terms of core 

relational themes in which varied instances of emotion share the same underlying meaning, there 

should be systematic mappings between descriptions of emotional events and specific emotion 

categories. Further, different patterns of appraisal should lead to systematic differences in 
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emotional meaning. That is, different regulation strategies should be associated with distinct 

word embeddings. Lastly, the third family of theories characterizing emotions as situated or ad-

hoc categories that are determined by context, language, and culture, among other factors 

(Barrett, 2017; Lindquist et al., 2015), would suggest that mappings between language and 

emotion categories are more variable and change depending on how they are conceptualized in 

the moment (Gross & Feldman Barrett, 2011). 

Decoding emotional situations from context-sensitive BERT embeddings. 

 We evaluated these competing accounts by conducting a behavioral study in which 

participants either used positive reappraisal (N = 30), mindfulness (N = 29), or simple objective 

description of the stimuli (N = 30) to write a caption after viewing affective clips across eight 

varieties of emotional situations (number of stimuli in each condition, total number of stimuli). 

We validated emotion induction using a continuous measure of affective valence and an 

unconstrained text description of feelings. To test for systematicity in mappings between word 

embeddings and emotion categories, we extracted pre-trained BERT embeddings for each 

caption and used Partial Least Squares discriminant analysis (Wold et al., 2001) to build two 

Figure 1 Pre-trained BERT embeddings predict regulation strategy (left) and emotional situation (right). Marginal cells indicate 

the hit rate and false positive rate for each class. Cool colors denote accurate predictions whereas warm colors denote errors. 



 9 

separate decoders, one for classifying regulation strategy (3-way classification) and another for 

classifying emotional situation (8-way classification).

 

 

Figure 2 - Receiver operating characteristic (ROC) for multiclass classifiers. Left shows the ROC curves for each strategy 

prediction, and right shows the ROC curves for each situation prediction in our models. For a perfect classifier, Area Under the 

Curve (AUC) would be equal to 1, and for a classifier that randomly assigns observations to classes, AUC would be equal to 0.5. 

The shaded area around the ROC curves indicates the confidence intervals calculated from cross-validated data. The confidence 

intervals represent the uncertainty of the curve due to the variance in the test set for the trained model. 

 Decoders classified word embeddings from the pre-trained BERT model along eight 

emotional situations (multi-class Area Under the Curve (AUC): Adoration .97, Anger .96, Awe 

.97, Excitement .98; Fear .96, Horror .96, Joy .95, Sadness .97, Overall AUC=.96) and three 

regulation strategies with high levels of accuracy (multi-class AUC: reappraisal .86, mindfulness 

.66, control .68, Overall AUC =.73). See Figure 1 for confusion charts for each decoder, and 

Figure 2 for the corresponding Receiver operating characteristic (ROC) plots for each classifier. 

Table 1 shows sensitivity, specificity, AUC, and confidence intervals for each classification.  

Table 1 

ROC Metrics for situation and strategy PLS-DA classifiers 
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Category  Sensitivity Specificity AUC 

Adoration 90.22 95% CI [89.06,91.38] 56 95% CI [54.15,57.84] 0.96 95% CI [0.96,0.97] 

Anger 90.66 95% CI [89.23,92.08] 55.06 95% CI [53.26,56.87] 0.96 95% CI [0.95,0.97] 

Awe 91.41 95% CI [90.18,92.64] 55.15 95% CI [53.45,56.85] 0.97 95% CI [0.96,0.97] 

Excitement 91.73 95% CI [90.74,92.71] 56.26 95% CI [54.21,58.31] 0.98 95% CI [0.98,0.99] 

Fear 90.89 95% CI [89.68,92.1] 55.06 95% CI [53.29,56.83] 0.96 95% CI [0.95,0.97] 

Horror 89.46 95% CI [87.47,91.46] 55.96 95% CI [54.26,57.65] 0.96 95% CI [0.94,0.97] 

Joy 90.04 95% CI [88.58,91.5] 54.96 95% CI [53.18,56.74] 0.95 95% CI [0.94,0.96] 

Sadness 90.77 95% CI [89.63,91.91] 56.15 95% CI [54.27,58.03] 0.97 95% CI [0.96,0.98] 

Control 61.89 95% CI [56.72,67.07] 55.69 95% CI [51.47,59.91] 0.68 95% CI [0.61,0.74] 

Mindful 60.8 95% CI [56.08,65.51] 55.21 95% CI [51.25,59.18] 0.66 95% CI [0.6,0.72] 

Positive 73.18 95% CI [70.01,76.35] 62.31 95% CI [59.38,65.25] 0.86 95% CI [0.81,0.9] 

 

 Linear readout of BERT embeddings exhibited a high ability to predict emotional situation 

(AUC = .95), indicating a clear delineation in language corresponding to the type of emotional 

situation experienced. This is consistent with semantic accounts of emotion, positing the 

existence of a high-dimensional semantic space wherein emotional experiences and expressions 

cluster along blends and gradients (Cowen & Keltner, 2021). Further, classifiers accurately 

predicted positive reappraisal (AUC = .86) and modestly predicted mindfulness (AUC = .66) and 

control (AUC = .68) conditions. These results point to the existence of information about both 

the regulation strategy as well as the type of emotional situations in the language produced when 

describing events – consistent with basic and appraisal views suggesting that there are stable 

mappings between different situations, cognitive appraisals, and emotion categories (Moors et 

al., 2013). 
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Emotion regulation alters the meaning conveyed by BERT embeddings 

Constructionist views of emotion predict that the emotional significance of an event varies 

depending on how it is conceptualized in the moment. This suggests that there is not a single 

word embedding that should characterize the relationship between the meaning of words and 

emotions, but rather that mappings should depend on the nature of regulation employed. We used 

BERT embeddings to test this prediction by comparing BERT embeddings trained on large text 

corpora to embeddings from models fine-tuned to predict emotional situations from descriptions 

produced while participants employed different regulation strategies. Fine-tuning allows the 

model to retain much of its pre-trained semantic and syntactic information, however, it results in 

alterations of activations and representations across the layers that transform tokens into context-

dependent word embeddings (Durrani et al., 2022; Merchant et al., 2020; Sun et al., 2019; Zhang 

et al., 2020; Zhou & Srikumar, 2021).  

If emotion regulation concerns changes to representations in a high dimensional space—

effectively warping a semantic field—restricting training to language generated under a specific 

type of regulation should differentially alter representations across layers of a BERT model. 

Consequently, the word embeddings from models trained on different regulation strategies 

should convey distinct alterations as a result of regulation. Furthermore, if different antecedents 

are linked to different core meanings, suggesting they can most effectively be regulated by 

altering different meaning structures (e.g., ‘the man took a bite out of the dog’ may have a 

different meaning when produced during positive reappraisal compared to mindfulness), then 

this change should depend on both the regulation strategy as well as the context of the emotional 

situation. 
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To assess how regulation changes word meanings in a high-dimensional semantic space, and 

how the interplay of emotional situation and regulation strategy impact the resulting change in 

meaning, we fine-tuned three BERT models, each trained to classify eight emotional situations 

from captions produced by participants using a different regulation strategies. To quantify 

deviations from pretrained BERT embeddings, we performed a representational similarity 

analysis (Kriegeskorte et al., 2008; Wu et al., 2020; Zhou & Srikumar, 2021) by calculating the 

similarity (Pearson’s correlation coefficient) of embeddings from different layers of the fine-

tuned models with the corresponding layers in the pre-trained BERT model. We assessed how 

these semantic representations for each caption differed in terms of regulation strategy, network 

layer, and situational context using a linear mixed effects ANOVA.  

This analysis showed that compared to pretrained embeddings, regulation-specific fine-

tuning differentially changed word embeddings across layers (F11,89 = 1591.3, p < .001; Figure 

3). Furthermore, these differences were qualified by an interaction between layer depth, and the 

regulation condition the strategy condition (F22,89 = 1.82, p =.01; Figure 4). Consistent with prior 

studies examining the effect of fine-tuning on BERT embeddings (Merchant et al., 2020; Sun et 

al., 2019; Zhang et al., 2020; Zhou & Srikumar, 2021), similarity decreases with increased model 

depth and was lowest at layer 12 for all strategy conditions and situations (Figure 5). This is in 

line both with the computational literature examining the effects of fine-tuning in deep language 

models (Durrani et al., 2022; Merchant et al., 2020; Zhang et al., 2020; Zhou & Srikumar, 2021), 

and recent neuroscientific work looking at mappings between layers of deep learning models and 

brain activity (Caucheteux et al., 2022; Caucheteux & King, 2022; Goldstein et al., 2022; 

Heilbron et al., 2022; Schrimpf et al., 2021).  
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Figure 3 The average similarity for each strategy condition and all situations across layers. Solid lines indicate average 

similarity per layer for each strategy condition, with colors representing different strategy conditions. Colored dots are subject 

averages 

 

 

Figure 4 Interplay of strategy condition and emotional situation at the last 3 layers of fine-tuned BERT models. Solid lines 

indicate average similarity per layer (10 to 12)  for each strategy condition, with colors representing different strategy 

conditions. Colored dots are subject averages for each layer across all situations. Similarity decreases as the model depth 

increases for all strategy conditions. 
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Figure 5 Average similarity of embeddings from layer 12 of pretrained and fine-tuned BERT for each strategy and emotional 

situation. The colored lines represent the average layer 12 similarity for each situation in each of our three strategy conditions. 

We further assessed the interplay of situation and strategy in this our final layer, and found a 

main effect of situation in (F7,89 = 25.4, p < .001; Figure 5), and an interaction effect between 

strategy condition and situation (F14,89 = 2.45, p <.01; Figure 5). Post hoc tests revealed that 

compared to our control condition, the layer 12 embeddings for the Joy emotional category were 

significantly different for both Positive (Cohen’s D= 0.77 95% CI [0.258, 1.210]; p=.003) and 

Mindful conditions (Cohen’s D= 0.54 95% CI [0.004, 1.084]; p=.04). The embeddings for the 

Adoration emotional category were significantly different compared to control embeddings for 

the positive condition only (Cohen’s D= 0.61 95% CI [0.103, 1.064; p=.019). Only the 

difference between Positive and Control for the Joy category remained significantly different 

after correction for multiple comparisons (q=.04). These results suggest that the context of the 

situation and the regulation strategy are differentially altering meaning of words as indicated by 

differential mappings of word embeddings in the fine-tuned semantic space, consistent with 

constructionist theories of emotion positing that the linguistically derived meaning of an 
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emotional situation is dependent on contextual conceptualizations based on internal and external 

cues. 

BERT embeddings predict regulation strategy and self-reported affect in independent studies 

Thus far, our findings demonstrate that BERT embeddings capture relations between 

emotional situations under different regulation strategies in ways that generalize across 

individuals. However, if regulation systematically changes the meaning of emotional events, we 

would expect BERT models of regulation strategy to explain variations in self-reported affect to 

different affective content in varied types of cognitive regulation. To test this hypothesis, we 

used archival data from two studies using an emotion regulation paradigm with two regulation 

conditions (Reappraisal and No Regulation) and linguistic descriptions (Nook et al., 2017). We 

fine-tuned a BERT model trained on text descriptions from our reappraisal and control 

conditions, and applied the resulting fine-tuned model to the archival data in order to predict 

regulation strategy from the provided text descriptions. We then compared affect ratings across 

based on BERT classifications and based on experimental conditions to see their unique 

contribution to affect ratings.  

Our fine-tuned model classified regulation and no regulation in both the original (Binary 

AUC=.64) and replication study (Binary AUC=.66). Table 2 shows the ROC metrics of the 

classification model for each study. A repeated measure ANOVA using BERT categories 

(Regulation and No Regulation) and experimental conditions as factors revealed an interaction 

between predicted and actual regulation label for both the original (F1,109 = 1106.4, p < .001) and 

the replication study (F1,109 = 1116.3, p < .001). 
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Table 2 

ROC Metrics for strategy (Regulation vs No Regulation) prediction in original and replication studies 

 Sensitivity Specificity AUC 

Original Study 54.67 95% CI [53.54,55.73] 59.42 95% CI [57.85,60.88] 0.64 95% CI [0.63,0.65] 

Replication Study 54.88 95% CI [53.83,55.96] 60.67 95% CI [59.13,62.24] 0.66 95% CI [0.64,0.67] 

    

Post-hoc tests revealed that no regulation trials classified as reappraisal had significantly 

lower negative affect ratings compared with no regulation trials classified as no regulation in 

both the original (Robust Cohen’s D=-0.801 95% CI [-1.003,-0.613];  t118= -10.52, p < .001), and 

replication (Robust Cohen’s D= -0.752 95% CI [-1.010,-0.541]; t118= -7.80, p < .001) studies. 

Similarly, reappraisal trials classified as no regulation by our model exhibited significantly 

higher negative affect ratings compared to with reappraisal trials classified as reappraisal in both 

the original (Robust Cohen’s D= 0.153 95% CI [0.008, .307]; t110 = 2.80, p < .01) and replication 

studies (Robust Cohen’s D= 0.267 95% CI [0.138, .459] ; t109 = 4.21, p < .001; Figure 6).  

These results show that language provides a richer window in the process of regulation than 

affect ratings alone. Importantly, and in accordance with our overarching hypotheses, they show 

that the linguistic predictors present in description of events are stable and generalizable to 

different datasets and stimuli, and that BERT models trained on regulation specific language can 

use this information to predict the type of strategy used with meaningful consequences for self-

reported affect.  
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Figure 6 BERT embeddings uniquely predict variation in self-reported negative affect. Our model was sensitive to variation in 

affect that differed from the a priori labels, such that when our model classified a trial as regulation, even when it occurred 

during the experimental label of  no regulation, negative affect rating was significantly lower, Conversely, when our model 

classified a trial as no regulation even when it occurred during the experimental label of regulation, negative affect rating was 

significantly higher.    

 

Discussion  

Multiple theoretical perspectives suggest that emotions have distinct positions in these 

high-dimensional semantic spaces (Cowen & Keltner, 2021; Johnson-Laird & Oatley, 1989). 

Appraisal theories suggest that core relational themes have deep meaning that is shared across 

instances of the same emotion, despite having different surface features (Moors et al., 2013). 

Based on these theoretical perspectives, we predicted that emotional situations should be 

conveyed in context sensitive word embeddings. Constructionists accounts, on the other hand, 

suggest language constitutes emotion, and that the meaning of emotion words varies depending 

on context (Barrett, 2017). In line with this perspective, we hypothesized that fine-tuning BERT 
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using descriptions of emotional events while employing different types of regulation strategies 

should produce word embeddings that systematically differ from one another.  

We leveraged deep language models to test the hypothesis that emotion regulation 

changes the meaning of events as reflected in a high-dimensional semantic space.  We found that 

language reflects both the type of emotion regulation strategy used as well as the type of the 

emotional situation experienced. These results lend credence to semantic accounts of emotion, 

providing impetus to move away from limiting affective research to six basic emotions alone; 

working from the perspective of a high dimensional semantic space allows researchers to 

leverage machine learning methods to study the dynamic interplay of emotional processes at ever 

greater levels of complexity spanning modalities and measurements. These results are also in line 

with appraisal accounts of emotion, positing that deep-seated conceptualizations remain stable 

within emotion categories. 

  We further examined how training in regulation specific language alters representations 

across layers of a deep language model. We showed that the nature of these changes depends 

both on the type of emotional situation and the emotion regulation strategy employed. This is 

consistent with constructionist theories of emotion, denoting that emotion is evoked by a 

contextual conceptualization of a situation in conjunction with interoceptive cues, wherein the 

linguistically derived conceptualization is malleable to the context of the situation and regulation 

strategies. Accordingly, the dependency of the observed changes to the fine-tuned BERT 

embeddings suggest that regulation is working at a semantic level to alter the meaning of an 

experienced situation in systematic ways. Importantly, and in line with a wealth of recent 

literature looking at mappings between deep learning language models and brain activity 

(Caucheteux et al., 2022; Caucheteux & King, 2022; Goldstein et al., 2022; Kumar et al., 2022; 
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Russo et al., 2022), we found that the changes to fine-tuned BERT layers increase deeper into a 

deep language model, with implications for brain mappings of early vs late cortical areas. 

Furthermore, the interaction between model depth and strategy would suggest varying patterns of 

brain activity involving multiple regions, and commensurate with specific regulation use. Further 

work in conjunction with neuroimaging is required to understand how emotion regulation works 

at a semantic and neural level to alter meaning of a situational experience. 

Lastly, we showed that deep language models trained on regulation specific language can 

generalize to other emotion regulation tasks that incorporate language into their regulation 

paradigm, and that language gives a richer, more contextualized window into the process of 

regulation than just affect alone. Importantly, we found that experimental trial labels of a given 

strategy might not provide the full picture of what type of regulation strategies participants are 

implementing. This could be particularly true in the case of what is typically termed a ‘no 

regulation’ condition, in which participants are not instructed to regulate in particular ways, or 

are instructed against regulating in any particular way. The fact that the subset of no regulation 

trials that our model is classifying as regulation also have significantly lower negative affect 

compared to their non-regulation counterparts takes us to the entanglement of emotion regulation 

and emotion generation, and the recursive automaticity of appraisal vs. reappraisal (Gross & 

Feldman Barrett, 2011; Zhang et al., 2023). Reacting naturally, or just looking, might not be as 

devoid of regulation as is commonly assumed, whether implicit or explicit; instead, the root of 

difference might lie in effortful vs automatic use of regulation strategies. While testing this 

hypothesis is beyond the scope of our current work, our models present a more holistic approach 

that combined with other methods such as neuroimaging and Ecological Momentary Assessment 

(EMA) can aide in delineating what lies at this intersection.    



 20 

There are several limitations with our work.  Our online study had a relatively small 

training sample, which could limit the scope BERT fine-tuning. Secondly, we only had two 

regulation strategies, one based on reappraisal and one on mindful acceptance. This could impact 

the generalizability of these models to different datasets and unconstrained event descriptions 

such as with daily-diary and EMA methods. Further, two of our chosen strategies – mindfulness 

and control (i.e. objective description of the experienced event) –  share several features, such as 

a distancing component. While the fact that similar strategies are not so easily discriminated by 

our model further validates our hypothesis that language reflects regulation, future work could 

benefit from training language models on a wide range of possible regulation strategies.  

Importantly, in order to get closer to shedding light on potential causal mechanisms, 

future work should incorporate neuroimaging to build both encoding and decoding models that 

are able to identify the brain processes by which the contextual interplay of emotional situation, 

regulation strategy as represented by systematic alteration in language are in turn operationalized 

in the brain. On a computational front, future studies could benefit from looking at not just the 

embeddings from deep language models, but also other computations performed by transformer 

models across layers, as well as using models other than BERT that are more biological 

grounded (Kumar et al., 2022).     

In conjunction with neuroimaging methods, the approach presented in this paper can 

facilitate a deeper understanding of how emotion and emotion regulation are operationalized in 

the brain. Importantly, this work draws on multiple theoretical accounts of emotions, and these 

findings provide evidence to differing aspects of these diverse theories using a data-driven 

approach. In line with older basic emotion views and the more modern semantic space theory of 

emotion, our results show that language reflects the categorical context of emotional situations, 
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as well as systematic semantic alterations that occur as consequence of regulation, in accordance 

with appraisal theories. Lastly, and in line with constructionist views of emotion, we found an 

interaction effect between situational category and regulation strategy, which point to a more 

malleable mapping between experience and semantic representations of emotion derived from 

the context of the situation and strategy. Taken together, this work paves the way for objective 

modeling of emotion regulation using language as a window into the underlying cognitive 

processes, with applications across a wide range of settings and implications along diverse 

theoretical frameworks. 

 

Methods 

We used deep language models to see whether language varies systematically as a function 

of regulation strategy and/or situation, and whether regulation changes the meaning of events as 

reflected in the high-dimensional semantic space of fine-tuned BERT models.  

Online Study 

Participants 

89 Participants were recruited from Amazon Mechanical Turk, and randomized into one of 

three conditions: (a) POSITIVE (30) or the cognitive reappraisal condition where participants 

were instructed to find something positive in the situation; (b) MINDFUL (29) condition where 

participants were instructed to notice and accept their thoughts and emotions without getting 

caught up in them; and (c) DESCRIBE (30) or the control condition where participants were 

instructed to passively view affective clips. Figure 7 shows snapshots of the instructions in each 

strategy condition.  
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Figure 2 Snapshots of regulation instructions in each strategy condition.  

Stimuli 

Affective clips were selected from a normed database of emotionally evocative short video 

clips (Cowen & Keltner, 2017). We chose clips within the extremes of positive and negative 

valence across 8 categories of emotional situations (Anger, Fear, Horror, Sadness, Adoration, 

Awe, Excitement, Joy). 

 

Procedure 

Participants received instruction in their assigned emotion regulation strategy condition and 

were told to apply that strategy for the entire duration of each clip. Post clip, participants were 

prompted to provide a written description of the content of each video. Emotion induction was 

assessed using a continuous measure of affect and an unconstrained text description of feelings. 

All participants finished a short training before proceeding to the main task. Figure 8. shows a 

schematic of the task paradigm.  
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Figure 3 Experimental Paradigm for Emotion Regulation in Context (ERiC) online study. 

 

Analysis Plan 

Situation and Strategy Classification  

In order to assess whether the language produced when describing emotional event differed 

systematically as a function of emotion regulation strategy employed or the context of the 

situation itself, we extracted pre-trained BERT embeddings for each caption. We used Partial 

least squares discriminant analysis (PLS-DA) to build two separate decoders, going from caption 

embeddings to regulation strategy (3-way classification) and emotional situation (8-way 

classification) separately. Each decoder was trained using 5-fold cross validation to predict 

strategy and situation respectively. Performance was assessed using Area under the Receiver 

Operating Characteristic curve (AUC), as well as sensitivity and specificity measures with cross 

validated confidence intervals. 
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Out of Sample Model Generalization 

To test generalizability and applicability of our strategy classification model, we selected 

archival data from a study using an emotion regulation paradigm with a language component 

(Nook et al., 2017). This study asked participants to view affective images and provide text 

descriptions after implementing cognitive reappraisal (POSITIVE) or look (CONTROL) 

strategies. Accordingly, we fine-tuned a BERT model trained on text descriptions from our 

POSITIVE and CONTROL conditions, and applied our fine-tuned model to the archival data in 

order to predict regulation strategy from the provided text descriptions. We then used a repeated 

measure ANOVA to compare how reported affect differed across model strategy classification 

based on language and actual strategy label based on the experiment. 

 

Effects of Model Training on Regulation Specific Language 

We were interested not only in building generalizable models capable of classifying 

regulation strategy and/or emotional situation, but also understanding how regulation changes 

word representations and alters word meanings in a high-dimensional semantic space, and how 

the interplay of emotional situation and regulation strategy impact that change in meaning. 

Accordingly, we first fine-tuned three BERT models, each trained to predict emotional situation 

from captions that corresponded to one regulation strategy condition. To see how training in 

regulation specific language altered BERT representations, we calculated the similarity of 

embeddings from different layers of the fine-tuned models with corresponding layers in the pre-

trained counterpart (defined as the correlation between two embedding vectors in semantic 

space). We then assessed how these semantic representations for each caption differed in terms 

of regulation strategy, network layer, and situational context using a linear mixed effects model. 
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