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Abstract

Integrate Proteomics Data with GWAS Summary data for Studying Alzheimer’s
Disease by Nonparametric Bayesian Method

By Tingyang Hu

Background: Alzheimer’s disease (AD) is a nerurogenerative disorder related
to aging with polygenic inheritance. Genome-wide association studies (GWAS) of
AD have identified many risk loci, but currently little is known about the
underlying biological mechanism. Proteome-wide association study (PWAS)
integrating proteomics data with GWAS summary data to identify risk genes
associated with Alzheimer’s disease, would provide novel insights to the impacts of
genetic variation on AD potentially mediated through brain protein abundance.

Method: We conducted the weighted protein network analysis on the human
proteomes from European ancestry of ROS/MAP (12691 proteins donated by 400
samples), to identify clusters of proteins with unsupervised hierarchical clustering
and relate the protein modules to external clinical traits of AD. The PWAS was
implemented with Transcriptome-Integrated Genetic Association Resource V2
(TIGAR-V2) tool in two stages. Firstly we applied either nonparametric Bayesian
Direchlet Process Regression (DPR) or Elastic-Net penalized regression (as used by
PrediXcan) to train protein abundance imputation models, taking proteomics
abundance as the outcome and cis-SNPs as predictors. The protein quantitative
trait locus (pQTL) effect sizes estimated from the protein abundance prediction
models were integrated with AD GWAS summary level data to implement
asscoation test using burden test statistics.

Results: Weighted protein network analysis of 8874 proteins after quality
control identified 32 network modules, ranged in size from 33 to 2386 proteins. We
observed 2 protein modules significantly associated with AD clinical traits. At
training stage of PWAS, we obtained 6673 protein abundance prediction models
trained by Bayesian DPR, which were all valid with 5-fold CV R2 >0.005. Of 6389
protein abundance prediction models trained by Elastic net regression, only 1835
had 5-fold CV R2 >0.005. Based on GWAS summary statistics of AD and Bayesian
estimated pQTL weights, the PWAS has detected 13 genes were associated with at
an FDR of P <0.05, with 3 genes previously known as GWAS risk gene of AD.
Furthermore, We compared the PWAS results of AD using pQTL weights estimated
by DPR with weights estimated by Elastic-Net method (PrediXcan function
integrated in our TIGAR tool). PrediXican detected 7 significant genes at an FDR
of P <0.05, of which 2 was also identified by TIGAR.

Conclusion: In this work, we detected PWAS risk genes for AD and
demonstrated the usefulness of nonparametric Bayesian DPR method in PWAS for
AD. We believe this approach can be applied widely to study other complex
polygenic diseases and provide new insights into their pathogenesis.
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Chapter 1

Introduction

Alzheimer’s disease (AD) is a neurogenerative disorder and the sixth leading cause of

death in the United States [1]. Genome-wide association studies (GWAS) of AD have

identified 38 risk loci [2], but currently little is known about the underlying biological

mechanism.

To implicate potential causal risk genes of AD with biological mechanistic

interpretations, transcriptome-wide association study (TWAS) can impute the gene

expression levels within AD GWAS using reference datasets to train gene expression

models, and test how AD associate with gene expression levels predicted from

genetic variants [3, 4]. Since gene expression is not considered as a perfect proxy for

protein functionality, an enhancement to existing association study would be a

protein-based method that considers the effects of genetics variants on the protein

function alterations [5].

The proteome-wide association study (PWAS) integrates proteomics data with

GWAS summary data to identify risk genes associated with Alzheimer’s disease, can

provide novel insights to the impacts of genetic variation on AD that are potentially

mediated through brain protein abundance instead of gene expression at the transcript

level [5]. The PWAS conducted by Wingo et al with FUSION method identified 13
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risk genes whose cis-regulated brain protein levels were associated with AD [6].

Given that both gene expression and protein abundance are quantitative traits

that might mediate genetic effects, the statistical tools for TWAS can be naturally

applied to PWAS, by using trained protein quantitative trait locus (pQTL) effect

sizes from a reference panel as SNP weights for gene-based association studies.

There are various TWAS methods using different models to estimate the SNP

weights from reference data. For example, PrediXcan can estimate pQTL effect

sizes by a general linear regression model with Elastic-Net penalty [7]. FUSION can

estimate pQTL weights by Elastic-Net, LASSO, sum of single effects and Bayesian

sparse linear mixed model (BSLMM), and then select the best model for PWAS [8].

They both use parametric imputation models with limitations for modelling the

complex genetic architecture and gene expression profiles. To make the model more

flexible and general, a nonparametric Bayesian latent Dirichlet process regression

(DPR) can be employed, in which the prior for effect sizes is nonparametric and can

be estimated by assuming a Dirichlet process prior on variance of effect size [9].

The Transcriptome-Integrated Genetic Association Resource V2 (TIGAR-V2) [10]

implemented this DPR method while including Elastic-Net (as used by PrediXcan [7])

and BSLMM (as used by FUSION [8]) as special cases, for gene expression imputation.

Additionally, the TIGAR-V2 tool was shown to improve computation efficiency which

directly reads Variant Call Format (VCF) files of genotyping and enables parallel

computation, taking advantage of cloud computing clusters [10].

Here we applied the TIGAR-V2 tool for PWAS, taking protein abundance as the

outcome of prediction models and cis-SNPs (SNPs within 1MB of the corresponding

gene region) as predictors[10]. The standard PWAS comprised two stages with the

TIGAR-V2 tool. Firstly, it can apply nonparametric Bayesian DPR or Elastic-Net

penalized regression (as used by PrediXcan [7] to train protein abundance imputation

models. The effect sizes of cis-SNPs estimated from the regression models were
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treated as protein quantitative trait locus (pQTL) weights, which were then integrated

with AD GWAS summary level data, i.e. Z-score statistics from GWAS tests of single-

variants, to conduct gene-based association test using burden test statistics [11].

In this work, we used pQTL weights obtained from proteomics data of human

brain from two prospective cohort studies — Religious Orders Study and Memory

and Aging Project (ROS/MAP) [12] along with publicly available GWAS summary

data of single variants to conduct PWAS for understanding AD, and identified 13 risk

genes that confer AD risk through their effects on protein abundance.

To understand the protein abundance correlations and interactions which is

biologically important, we also conducted weighted network analysis on the human

brain proteomes, and found 32 correlated protein modules, of which 2 modules were

significantly related to AD clinical traits.

In the following sections, we first describe the method of brain protein network

analysis. We then outline the application of TIGAR-V2 to conduct the PWAS for AD.

The observed protein networks and PWAS results will be explained and discussed.
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Chapter 2

Method and Materials

2.1 Data Source

The human brain proteomes were generated from the dorsolateral prefrontal cortex

of postmortem brain samples donated by 400 participants of European ancestry of

the Religious Orders Study/Memory and Aging Project (ROS/MAP) [12]. Protein

measurements were quantified with tandem mass spectrometry and generated as

protein abundance. The protein abundance ratio was used for follow up analyses

scaling each protein abundance with a sample-specific total protein abundance [13].

The proteomics profiles underwent quality control, which contained the protein

abundance level for 12691 proteins corresponding to 400 samples. Proteins were

included with missing values in more than 50% of the participants, whose

abundance ratio related to baseline was calculated and log2 transformed, with

missing values imputed with the mean of protein level for 400 samples. The effects

of clinical characteristics (i.e., sex, age at death, postmortem interval, and study

type) and technical factors (i.e., sequencing batch and mass spectrometry reporter

quantification mode) were regressed out. Poorly performing samples were then

removed using iterative principal component analysis (PCA), i.e samples greater
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than four standard deviations from the mean of either the first or second principal

component.

The genotype data of ROS/MAP samples were profiled by whole genome

sequencing (WGS) of frontal cortex on 1179 participants. Samples with missingness

>5% were excluded. Variants were removed if they had significant deviation from

Hardy-Weinberg equilibrium, missing values in genotype >5%, minor allele

frequency <1% or not an SNP [6]. After quality control, 355 samples remained with

both proteome and genome sequencing data for PWAS.

The AD summary level association statistics for single variants was obtained from

the latest GWAS by Douglas et al [2], for 1,126,563 individuals from 13 European

cohorts (mostly from 23andMe and UK Biobank). We will use the GWAS summary

data of AD from meta-analysis of all cohorts except 23andme in our PWAS study.

2.2 Weighted Protein Network Analysis

Human brain protein network is biologically meaningful to investigate protein

interactions and underlying mechanism. We can apply weighted gene co-expression

network analysis (WGCNA) on the proteomics data due to its shared data

characteristics with gene expression, which can be considered as ultimate products

of gene regulation. Here we performed protein network analysis with R package

“WGCNA” [14], which can be applied for constructing the gene co-expressed

network using the correlation of gene expression levels as a measure of

co-expression, identifying co-expressed modules based on the hierarchical clustering

and relating co-expressed modules to external clinical traits.

The construction of weighted protein network comprised three steps. Firstly, the

weighted correlation coefficients with a power function of protein abundance values

were calculated, to obtain a scale free network and a weighted adjacency matrix. Then
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the topological overlap (TO) based on the connection strengths of weighted adjacency

matrix was generated, which indicated the similarity of protein abundance. Finally,

the cluster dendrogram was obtained by using hierarchical clustering with 1-TO as the

distance measure, and the correlated protein modules were identified using a dynamic

tree-cutting algorithm [14].

To find clinically significant protein modules, the module-trait relationships

between distinctive modules and clinical features of AD were characterized by

correlating the module eigengens with random slope of cognition decline as well as

AD cognition status [14].

Additionally, we investigated the modules with significant associations with AD

clinical traits and find the key drivers that contributes most in these modules using

PCA. The protein-protein interaction (PPI) enrichment in the protein modules of

interest was analyzed with STRING tool, which aimed to collect public data sources of

protein interaction information and characterize the connectivity network of proteins

[15, 16]. The STRING was also used to construct the protein network for key drivers

of significant modules, with Python application programming interface (API).

2.3 PWAS Framework

The TIGAR-V2 framework included training protein abundance imputation models

from ROS/MAP proteomics data and WGS genotype data, generating reference LD

covariance from reference panels and testing gene-based association with summary-

level GWAS data (Figure 2.1).

The two-stage PWAS with TIGAR-V2 first trained the protein abundance

imputation models with cis-genotype data as predictors (X), as the following linear

regression model for protein abundance level



7

Ep = Xw+ ϵ; ϵ ∼ N(0, σ2
ϵ I) (2.1)

where Ep denotes the protein abundance levels with respect to a target protein p

after regressing out for individual characteristics and technical factors, w denotes

the corresponding pQTL effect size vector and ϵ denotes the error term. With the

TIGAR-V2 tool, the pQTL weights (w) were estimated by either nonparametric

Bayesian DPR or Elastic-Net penalty regression (as used by PrediXcan [7]).

The 5-fold cross-validation was also conducted for the prediction models by

TIGAR with respect to each protein and generate an average training R2 across 5

folds of validation data. Proteins with abundance prediction model 5-fold CV R2

>0.005 would be considered as valid to be tested for follow-up PWAS.

At the stage of association test, we combined the summary-level genetic effect of

AD (GWAS Z-score) with the protein weights to conduct the PWAS of AD. TIGAR

would conduct association test using burden [8] statistics (S-PrediXcan).

Zp,S−PrediXcan =

∑m
l=1 ŵlσ̂lZl√
ŵ

′
Vŵ

(2.2)

Where ŵ denotes the pQTL effect size estimates from protein imputation models,

Zl denotes the Z-score statistic of single variant l by GWAS test and V denotes the

linkage disequilibrium (LD) covariance matrix of test SNPs estimated from reference

panels of the same ethnicity. The genotype variance σ̂2
l = V ar(xl) can be estimated

from a reference panel, given by 2fl(1-fl) with minor allele frequency fl.
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Figure 2.1: PWAS Framework
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Chapter 3

Protein Network Analysis

3.1 Proteomics Data from ROS/MAP Studies

There were 8874 proteins remained after excluding proteins with missing values in

more than 50% of the participants As a result of 2 rounds of PCA, 395 out of 400

samples remained. We plotted the first PC against the second PC for each round

of PCA, with colored lines indicating the four standard deviations from the mean of

PCs, thus dots outside the lines were identified as outliers (Figure 3.1). The principal

components dispersed more randomly at the third round of PCA.
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Figure 3.1: Principal Components of Protein Abundance Ratios, red lines coded with

four standard deviations from the mean of PC1 and blue line coded with four standard

deviations from the mean of PC2
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3.2 Protein Modules/Networks

Weighted network analysis identified correlated protein network modules. There were

32 distinct network modules coded by different colors generated by unsupervised

hierarchical clustering, ranged in size from 33 and 2386 proteins (Figure 3.2).
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Figure 3.2: Protein Network Modules

3.2.1 Associations between Protein Modules and Clinical

AD Traits

The association between protein modules and clinical traits were characterized by

the biweight midcorrelation. Two protein network modules were significantly

associated with clinical traits (the random of cognition decline and consensus

diagnosis of AD status), excluding the effects of personal characteristics including

sex, age, and education. (Figure 3.3). The protein module of black containing 223

proteins was significantly associated with cognition random slope with correlation

coefficient of 0.12 and p-value = 0.02. Darkturquoise module with 94 proteins was
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significantly associated with both cognition random slope (correlation coefficient =

-0.1, p-value = 0.04) and consensus diagnosis of AD status (correlation coefficient =

0.1, p-value = 0.04). Of the two modules associated with clinical traits, proteins

that contributed most were detected with largest 1st principal component. As a

result, we found gene HSPA1L and HIST1H2AG (both in chromosome 6) which

were identified related to AD by previous protein network and pathway study for

AD [17].

For the two WGCNA modules of protein significantly associated with AD

clinical traits, their protein-protein associations were characterized using STRING

tool [15, 16]. The black protein module had a potentially significant protein-protein

interaction (PPI) enrichment p-value of 1.4 ×10−4, while the PPI p-value for the

darkturqiose protein module was 0.03. We observed 14 pairwise protein interactions

which were experimentally confirmed (with medium or higher confidence

experimental score) among 94 proteins in the darkturqiose module and 84 pairwise

associations among 223 proteins in black module.
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3.2.2 Protein Networks by STRING

The network was constructed for top significant proteins respectively with its 15 most

confident interaction partners of both functional and physical protein associations,

with line thickness indicating the strength of data support (Figure 3.4). The network

of HSPA1L had the average local clustering coefficient of 0.84 and the PPI enrichment

p-value <1.0 ×10−16, while the network HIST1H2AG had the average local clustering

coefficient of 0.99 and the PPI enrichment p-value <1.0 ×10−16.

Figure 3.4: Interaction Network of Gene HSPA1L and HIST1H2AG
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Chapter 4

PWAS of AD

4.1 Train Protein Abundance Prediction Models

At training stage, the protein abundance prediction model was trained with either

nonparametric Bayesian Dirichlet process regression (DPR) or Elastic-net penalized

regression. Five-fold cross-validation was conducted to evaluate the training

performance via 5-fold CV R2 per protein. The protein abundance prediction

models with 5-fold CV R2 >0.005 were retained and the estimated pQTL weights

from these protein abundance prediction models would be used to conduct

association studies. We obtained 6673 protein abundance prediction models trained

by DPR, which were all valid with 5-fold CV R2 >0.005. of 6389 protein abundance

prediction models trained by Elastic net regression, 1835 had 5-fold CV R2 >0.005.

Only 1475 protein abundance imputation models were trained by FUSION and used

by Wingo et al [6], of which 1158 protein abundance prediction models were also

trained by TIGAR/DPR (1109 proteins were also trained by Elastic-Net model

implemented in TIGAR), and thus 5515 more protein abundance prediction models

were trained by TIGAR/DPR (5280 more proteins were trained by Elastic-Net

implemented in TIGAR).
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Figure 4.1: Histogram of CV R2 and Training R2 by TIGAR.

4.2 PWAS Results by TIGAR/DPR

Based on GWAS summary statistics of AD and Bayesian estimated pQTL weight,

the PWAS has identified 13 significant genes at an FDR of P (q-value) <0.05 (Figure

4.2; Table 4.1).

The known GWAS risk genes are curated from GWAS Catalog containing at

least one significant SNP within or ±1 Mb around the gene region [18]. Of the

13 risk genes identified by TIGAR, CCDC86 was known GWAS risk gene of AD

which involved in the development of neurofibrillary tangles. AGFG2 was GWAS

risk gene of family history of AD. FNBP4 was also reported for general cognitive

ability. MBLAC1 (identified by both TIGAR and PrediXcan) and MAP3K7 has

known biological functions involved in brain measurement such as cortical thickness.

Interestingly, the most significant gene MRPL16 along with other 5 genes (C1QTNF4,

DIABLO, ATPAF2, YWHAB, FNBP4) were previously found to have relationships

with obesity and body shape.
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Figure 4.2: Manhattan Plot for the AD PWAS with FDR q-values by TIGAR.

Table 4.1: PWAS risk genes of AD with nonparamtric DPR method

Gene Chr Start End PWAS z-score PWAS P PWAS q-value

HPCA 1 32886497 32893862 3.81 1.41×10−4 4.30×10−2

ERCC3a 2 127257290 127294081 -3.81 1.40×10−4 4.30×10−2

PLA2G7 6 46704316 46735693 3.84 1.24×10−4 4.30×10−2

MBLAC1a 7 100126697 100128196 -3.85 1.20×10−4 4.30×10−2

AGFG2 7 100539211 100564991 -4.91 9.05×10−7 1.83×10−3

C1QTNF4 11 47589664 47594409 -4.10 4.16×10−5 4.30×10−2

MRPL16 11 59806135 59810658 6.99 2.68×10−12 1.62×10−8

CCDC86 11 60841956 60850325 5.82 5.98×10−9 1.81×10−5

TMEM132A 11 60924441 60936907 4.47 7.72×10−6 1.17×10−2

DIABLO 12 122207662 122227534 -3.84 1.21×10−4 4.30×10−2

COPS3 17 17246624 17281186 -3.79 1.49×10−4 4.30×10−2

DPY19L3 19 32405749 32482240 -3.76 1.73×10−4 4.30×10−2

YWHAB 20 44885599 44906438 -3.80 1.47×10−4 4.30×10−2

a PWAS risk gene identified by PrediXcan

The PWAS p values of genes within a ±1 MB region of top significant gene

MRPL16 were plotted against their position on chromosome 11, and genes were color-
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coded with respect to their correlation R2 of predicted genetically regulated protein

level with MRPL16. CCDC86 and TMEM132A located within the 1MB around

MRPL16 were also identified as PWAS risk genes by TIGAR/DPR, considered as

independent of predicted protein abundance of MRPL16 (R2 <0.2). The heatmap

indicates the pairwise protein abundance R2, with bright red denoting R2 close to

1 and white denoting R2 close to 0. Genes with nearby test regions had correlated

predicted protein abundance values.

CCDC86

FAM111B

MRPL16

TMEM132A

0

5

10

15

58 59 60 61 62

Position on chr11 (Mb)

−
lo

g
10

(p
−v

al
ue

)

0.2

0.4

0.6

0.8

r2

Figure 4.3: LocusZoom Plot for Genes within 1MB around the Most Significant Gene
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4.3 Compare with PWAS results by PrediXcan

We also trained Elastic-Net penalized regression models as implemented by PrediXcan

[7], which was integrated in TIGAR tool. We compared the PWAS results of AD using

pQTL weights estimated by DPR with weights estimated by Elastic-Net method.

PrediXican detected 7 significant genes at an FDR of P (q-value) <0.05 (Figure 4.4;

Table 4.2). Gene MBLAC1 located on chromosome 7 was also identified by TIGAR.

GRP17 located within 1MB around ERCC3 detected by TIGAR could be also seen

as a shared risk gene.
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Figure 4.4: Manhattan Plot of the AD PWAS with FDR q-values by PrediXcan.

Table 4.2: PWAS risk genes of AD with Elastic-Net method

Gene Chr Start End PWAS z-score PWAS P PWAS q-value

GPR17a 2 127645864 127651755 -10.84 0.00 0.00
MGAT5 2 134254259 134448847 4.24 2.19×10−5 4.15×10−3

MBLAC1a 7 100126697 100128196 -4.04 1.26×10−4 1.51×10−2

ZYX 7 143381267 143390682 -4.04 5.28×10−5 8.02×10−3

CLPTM1 19 44954585 44992897 -17.79 0.00 0.00
ERCC2 19 45351391 45370540 -12.58 0.00 0.00
SCAF1 19 49642125 49658399 3.81 1.39×10−4 1.51×10−2

a PWAS risk gene shard with TIGAR (Bayesian weights)
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Additionally, we plotted the pQTL weights respectively estimated by the Bayesian

DPR method (TIGAR) and Elastic-Net regression (PrediXcan) versus position for

gene MBLAC1 detected by both TIGAR and PrediXcan as well as the top significant

gene MRPL16 only identified by TIGAR, color-coded with respect to log10 (p value)

by GWAS of test SNPs. Bayesian DPR estimates generally had non-zero values for

all SNPs within the test region, while Elastic-Net estimates had substantially less

non-zero values within the test region that had pQTL weights of relatively larger

magnitudes. We observed the test SNPs with non-zero weights estimated by DPR

method (TIGAR) had more significant GWAS p values for top gene MRPL16 only

detected by TIGAR compared to gene MBLAC1, since their PWAS associations are

mainly driven by GWAS significant SNPs.
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Figure 4.5: pQTL Weights Estimated by TIGAR/DPR and PrediXcan/Elastic-Net

for MBLAC1, Color Coded with Respect to log10 (p value) by GWAS
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Figure 4.6: pQTL Weights Estimated by TIGAR/DPR and PrediXcan/Elastic-Net

for MRPL16, Color Coded with Respect to log10 (p value) by GWAS

4.4 Compare with PWAS Results by FUSION as

in Wingo’s Paper

The significant genes from previous PWAS published in Wingo et al [6] using the

same set of human proteomes were examined in our PWAS associations (Table 4.3).

Gene STX6 was also identified by TIGAR at a p value adjusting for multiple testing.

Gene ICA1L and LACTB were potential risk genes by TIGAR tool at a p value

<0.05, with protein abundance prediction CV R2 >0.005 trained by DPR. ACE was

potential risk gene detected by PrediXican with valid training CV R2. For genes with

protein abundance models CV R2 <0.005 trained by Elastic-Net method, PWAS p

value was not reported by PredXican which was enabled by TIGAR tool.

We also applied the TIGAR tool to conduct the association study integrating the

pQTL weights from FUSION as used by Wingo et al [6] with the updated AD GWAS

summary statistics as our study. As a result, 4 genes (STX6, ICAL1, STX4, PVR)

were identified as PWAS risk genes at an FDR of P (q-value) <0.05.
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The PWAS risk genes identified by study of Wingo et al [6] using the same set

of proteomics data were not originally detected by our TIGAR tool at an FDR of P

<0.05. We could not replicate wingo’s findings potentially due to different training

models, updated GWAS summary data and different association test statistics (S-

PrediXcan vs FUSION). Another reason might be because we did not adjust for AD

status from our training protein abundance traits as Wingo’s did.

Table 4.3: AD risk genes identified by previous PWAS

Gene Chr
PWAS P

(Wingo et al)

FUSION
(Published
weights)

TIGAR
TIGAR
CV R2 PrediXcan

PrediXcan
CV R2

STX6b 1 1.3×10−4 8.4×10−1 1.2×10−3 5.2×10−3 - 7.9×10−9

ICA1La,b 2 1.1×10−4 8.1×10−3 2.9×10−2 - -
EPHX2 8 4.7×10−8 7.0×10−2 5.5×10−2 8.5×10−3 - 4.7×10−3

PLEKHA1 10 1.1×10−5 - - - - -
SNX32 11 2.8×10−6 2.9×10−2 7.7×10−1 2.0×10−2 - 8.4×10−4

LACTBb 15 1.7×10−4 5.2×10−2 1.2×10−2 1.5×10−2 - 5.2×10−3

CTSH 15 2.9×10−6 1.2×10−2 3.4×10−2 5.2×10−3 - 3.1×10−3

DOC2Aa 16 6.4×10−6 1.6×10−6 - - - -
CARHSP1 16 2.6×10−4 2.5×10−2 - - - -
STX4a 16 6.2×10−5 4.6×10−5 4.8×10−1 7.2×10−3 - 2.9 ×10−3

ACEc 17 8.5×10−8 - - - 8.8×10−3 5.5×10−3

PV Ra 19 7.1×10−28 0 - - - -
RTFDC1 20 2.1×10−5 - - - - -

a PWAS risk genes by TIGAR with same pQTL weights as the previous study
b PWAS risk genes by TIGAR that were identified by previous PWAS
c PWAS risk genes by PrediXcan that were identified by previous PWAS
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Chapter 5

Conclusion

In this study, we first conducted the weighted network analysis to identify the proteins

network modules and found protein modules that were significantly associated with

AD clinical traits. The key drivers of these significant modules had known associations

with AD by previous correlation analysis.

Then we applied the TIGAR-V2 tool to conduct PWAS test for AD, using either

nonparametric Bayesian DPR or Elastic-Net methods (used by PrediXcan) to train

protein abundance prediction models taking genotype data as predictors for protein

expression levels, as well as test the gene-based association using summary-level

GWAS Z-score for single variants. The associated tests were implemented with

burden statistics (S-PrediXcan).

We observed the Bayesian DPR provided more valid protein abundance prediction

models (i.e 5-fold CV R2 >0.005) than Elastic -Net method, which matched with the

assumption that the nonparametric Bayesian method is more flexible and general.

With larger number of valid protein abundance imputation models, the PWAS using

Bayesian pQTL weights would detect more risk genes than Elastic-Net weights.

We identified PWAS risk genes for AD consistent with previous GWAS studies

and potential risk genes that had known biological functions involved in the brain
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measurement and cognition ability.

Our work still has limitations. For example, the CV R2 is generally low for most

proteins because cis-SNPs were considered as predictors and training sample size

is small (n=355). Since standard TWAS methods such as TIGAR fail to account

for horizontal pleiotropy effect between proteins and phenotypes [19], the PWAS

significant proteins by TIGAR might only share the same causal SNPs with the

phenotype of interest but not having any mediation effect. We will work on apply

the PMR-Egger tool to the ROS/MAP data in our ongoing research.

In conclusion, we identified 13 brain genes that confer AD risk through affecting

the protein abundance level for future studies of AD pathogenesis and therapeutics.

We believe PWAS with TIGAR-V2 tool can be useful and crucial for mapping risk

genes of complex disease.



24

Bibliography

[1] Alzheimer’s disease facts and figures. Alzheimer’s Dementia, 2020.

[2] D. P. Wightman, I. E. Jansen, J. E. Savage, et al. A genome-wide association

study with 1,126,563 individuals identifies new risk loci for alzheimer’s disease.

Nature genetics, 2021.

[3] A. Gusev, A. Ko, H. Shi, et al. Integrative approaches for large-scale

transcriptome-wide association studies. Nature genetics, 2016.

[4] S. M. Kelse, William L. P., L. Yue, et al. Brain transcriptome wide association

study (twas) implicates 8 genes across 6 loci in alzheimer’s disease. Alzheimer’s

Dementia, 2020.

[5] N. Brandes, N. Linial, and M. Linial. Pwas: proteome-wide association study-

linking genes and phenotypes by functional variation in proteins. Genome

biology, 2020.

[6] A. P. Wingo, Y. Liu, E. S. Gerasimov, et al. Integrating human brain proteomes

with genome-wide association data implicates new proteins in alzheimer’s disease

pathogenesis. Nature genetics, 2021.

[7] E. Gamazon, H. Wheeler, K. Shah, et al. A gene-based association method for

mapping traits using reference transcriptome data. Nature genetics, 2015.



25

[8] A. Gusev, A. Ko, and H. Shi. Integrative approaches for large-scale

transcriptome-wide association studies. Nature genetics, 2016.

[9] S. Nagpal, X. Meng, M. P. Epstein, et al. Tigar: An improved bayesian tool

for transcriptomic data imputation enhances gene mapping of complex traits.

American journal of human genetics, 2019.

[10] R. L. Parrish, G. C. Gibson, M. P. Epstein, and J. Yang. Tigar-v2: Efficient

twas tool with nonparametric bayesian eqtl weights of 49 tissue types from gtex

v8. Human Genetics and Genomics Advances, 2022.

[11] B. Li and S. M. Leal. Methods for detecting associations with rare variants for

common diseases: application to analysis of sequence data. American journal of

human genetics, 2008.

[12] D. A. Bennett, A. S. Buchman, P. A. Boyle, et al. Religious orders study and

rush memory and aging project. Journal of Alzheimer’s disease, 2018.

[13] A. P. Wingo, W. Fan, D. M. Duong, et al. Shared proteomic effects of cerebral

atherosclerosis and alzheimer’s disease on the human brain. Nature neuroscience,

2020.

[14] P. Langfelder and S Horvath. Wgcna: an r package for weighted correlation

network analysis. BMC Bioinformatics, 2008.

[15] D. Szklarczyk, A. L. Gable, D. Lyon, et al. String v11: protein-protein association

networks with increased coverage, supporting functional discovery in genome-

wide experimental datasets. Nucleic acids research, 2019.

[16] D. Szklarczyk, A. L. Gable, K. C. Nastou, et al. The string database in 2021:

customizable protein-protein networks, and functional characterization of user-

uploaded gene/measurement sets. Nucleic acids research, 2021.



26

[17] Y. S. Hu, J. Xin, Y. Hu, et al. Analyzing the genes related to alzheimer’s disease

via a network and pathway-based approach. Alzheimer’s research therapy, 2017.

[18] A. Buniello, J. MacArthur, M. Cerezo, et al. The nhgri-ebi gwas catalog

of published genome-wide association studies, targeted arrays and summary

statistics 2019. Nucleic acids research, 2019.

[19] Z. Yuan, H. Zhu, P. Zeng, et al. Testing and controlling for horizontal pleiotropy

with probabilistic mendelian randomization in transcriptome-wide association

studies. Nature Communications volume, 2020.


	Introduction
	Method and Materials
	Data Source
	Weighted Protein Network Analysis
	PWAS Framework

	Protein Network Analysis
	Proteomics Data from ROS/MAP Studies
	Protein Modules/Networks
	Associations between Protein Modules and Clinical AD Traits
	Protein Networks by STRING


	PWAS of AD
	Train Protein Abundance Prediction Models
	PWAS Results by TIGAR/DPR
	Compare with PWAS results by PrediXcan
	Compare with PWAS Results by FUSION as in Wingo's Paper

	Conclusion
	Bibliography

