
 
 

 

 

 

 

 

Distribution Agreement 

 

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an 

advanced degree from Emory University, I hereby grant to Emory University and its 

agents the non-exclusive license to archive, make accessible, and display my thesis or 

dissertation in whole or in part in all forms of media, now or hereafter known, including 

display on the world wide web.  I understand that I may select some access restrictions as 

part of the online submission of this thesis or dissertation.  I retain all ownership rights to 

the copyright of the thesis or dissertation.  I also retain the right to use in future works 

(such as articles or books) all or part of this thesis or dissertation. 

 

 

 

 

 

 

Signature: 

 

_____________________________   ______________ 

Sophia Le         Date 

 



 

 

 

 

 

 

 

 

Utilizing the GOCI Satellite to Estimate Hourly PM2.5 Concentrations in South Korea 

from 2015 – 2018 

 

By 

 

Sophia Le 

Master of Science in Public Health 
 

 

Environmental Health – Epidemiology 

 

 

 

 

 

 

_________________________________________  
Yang Liu, Ph.D. 

Committee Chair 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Utilizing the GOCI Satellite to Estimate Hourly PM2.5 Concentrations in South Korea 

from 2015 – 2018 

 

 

 

By 

 

 

 

Sophia Le 

 

Bachelor of Science 

Arizona State University 

2017 

 

 

 

 

Thesis Committee Chair: Yang Liu, Ph.D. 

 

 

 

 

 

 

 

 

An abstract of  

A thesis submitted to the Faculty of the  

Rollins School of Public Health of Emory University 

in partial fulfillment of the requirements for the degree of  

Master of Science in Public Health 

in Environmental Health – Epidemiology 

2020 

 

 

 

 

 



 

 

Abstract 
 

Utilizing the GOCI Satellite to Estimate Hourly PM2.5 Concentrations in South Korea 

from 2015 – 2018 

 

By Sophia Le 

 

 

Air quality in South Korea has been deteriorating in recent years, due to both domestic 

sources and long-range transport from China. Ground PM2.5 measurements are primarily 

located in urban environments, resulting in limited spatial and temporal coverage. To 

address this limitation, AOD retrieved from GOCI was utilized in multiple random forest 

machine learning models to estimate PM2.5 concentrations. We developed 8 separate 

random forest machine learning models with time-varying meteorology and spatially 

fixed land information parameters to be included in the model. A 6 km modeling grid 

with 6,307 pixels was used to match the parameters to the GOCI retrievals. The average 

GOCI AOD coverage in the study domain was 48%. The 10-fold cross validation R2 

ranged from 0.47 – 0.54 with RMSEs’ ranged between 9.74 – 13.34 µg/m3. The 

regression slope between observed and predicted hourly concentrations ranged between 

1.2 – 1.3. Prediction maps of hourly PM2.5 levels indicate a higher concentration on the 

western coast of South Korea compared to the eastern coast. We further analyzed an 

episode of long-range transport from China to South Korea during March 10th and 11th, 

2015. Results from those findings revealed evidence of long-range transport given that 

the western coast has higher concentrations. Overall, our hourly prediction models allow 

us to understand the spatiotemporal variations of PM2.5 concentrations in South Korea 

that could not have been done by ground stations alone. 
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1. Introduction 

1.1 PM2.5 Background 

Exposure to ambient air pollution has been associated with a higher risk of 

morbidity and mortality in numerous epidemiological studies [7, 25, 27, 32, 38]. 

Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) has been 

determined to have adverse health impacts, including increasing the risk for 

cardiovascular and respiratory diseases, and premature death [21]. These fine particulates 

can reach the smallest airways and alveoli in the pulmonary system, eventually 

perpetuating the alveolar-capillary membrane and spread into the circulatory system [10]. 

Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease, 

published by WHO in 2016, estimated 92% of the world’s population are exposed to 

PM2.5 concentrations above the recommended annual mean of 10 µg/m3 [34]. People 

living in low and middle income countries are most disproportionately affected by the 

burden of ambient air pollution, with Southeast Asia and the Western Pacific 

experiencing the worst outcome of premature mortality [2]. In 2012, due to ambient air 

pollution, Southeast Asia and the Western Pacific region, including South Korea, 

accounted for 3 million of the projected 4.2 million deaths [19, 34]. 

1.2 South Korea’s Air Quality and Meteorology 

Due to the impact of fine particulate matter on adverse health effects, it is 

imperative to closely examine countries worst affected by ambient air quality – one of 

these countries being South Korea. In the Environmental Performance Index (EPI) 2018 

published by Yale University, South Korea was ranked 119th out of 180 countries in 

overall ambient air quality but ranked 174th out of 180 and 169th out of 180 in PM2.5 
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exposure and exceedance respectively [33]. The index indicates that South Korea has a 

higher average PM2.5 concentration and that exposure among Korea’s population exceeds 

the WHO’s annual threshold.  

Regional air quality in the Seoul Metropolitan Area (SMA), consisting of Seoul, 

Incheon, and Gyeong-Gi, are urbanized regions within South Korea that experienced an 

increase in the frequency of haze in recent years [18]. Air quality in this region is affected 

by both domestic and long range transport of anthropogenic emissions from China, 

Mongolia, and Russia [18]. In a highly urbanized region such as the SMA, domestic 

emission sources of PM2.5 can be attributable to traffic, soil dust, industrial factories, or 

energy producing plants [18, 29]. In addition, long range wind transport of anthropogenic 

and natural sources such as dust from the Gobi desert and wildfire smoke from Mongolia 

can also contribute to the degradation of South Korea’s air quality [17, 18]. The Korea – 

United States Air Quality (KORUS–AQ) campaign, a collaboration between the United 

States’ National Aeronautics and Space Administration (NASA) and South Korea 

revealed that domestic sources contribute to 26% of PM2.5 levels and long–range 

transport (LRT) from China contribute to nearly 68% of PM2.5 concentrations in surface 

air pollution in South Korea during extreme episodes [8].  

Further studies have shown pollutants emitted by cities located in Eastern China 

are transported to the SMA by northwestern winds [15, 20]. As one of the primary 

contributors to pollution episodes and haze, wind is one of the main meteorological 

components that affect surface air pollution [15]. Wind speed and direction controls the 

source-receptor relation, initiates local emissions, and contributes to long range transport 

of pollutants which affects South Korea’s air quality [15]. A study conducted by Jung et 
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al. (2010) found that when long range transport of pollution from China influences the 

Korean Peninsula, average PM2.5 concentrations in Seoul, South Korea exceeded 100 

ug/m3, which is approximately four times the annual average of 27 ug/m3 [16]. Another 

study by Jung et al. (2018) observed firecracker emissions during the Lunar New Year 

over the Korean Peninsula. Their results found evidence suggesting LRT of pollutants 

from China to Korea under Asian continental outflows [16]. 

1.3 Ground Measurements of PM2.5 in South Korea 

Previous studies have utilized ground monitor stations in cities to measure fine 

particulate matter exposure, but because these stations are primarily located in urban 

centers, total population exposure to PM2.5 cannot be accurately estimated [19]. Ground 

monitor stations are usually placed at fixed sites, such as urban regions, and can provide 

accurate data only for the restricted area [6]. Past findings on PM2.5 concentrations in 

South Korea are confined to the SMA, but there is little literature examining the entire 

country [18, 21, 30]. In light of this, Lennartson et al. (2018) acknowledges that Seoul’s 

PM2.5 levels may not indicative of all of South Korea [23].  

1.4 Air Pollution Studies in Korea Utilizing GOCI AOD 

Due to the variance in PM levels and the number of different factors that lead to 

surface air pollution, several models have been developed to closely examine the cause 

and severity of current PM2.5 concentrations. A study conducted by Park et al. (2019) 

adopted the Random Forest machine learning model to estimate surface coarse and fine 

particulate matter concentration using AOD retrieved from GOCI in South Korea 

between 2015 and 2016. Their model produced R2 values of 0.78 and 0.73 for PM10 and 

PM2.5 and root mean square errors (RMSEs) of 17.08 µg/m3 and 8.25 µg/m3 respectively 
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[28]. In Park’s (2019) proposed model, they identified AOD retrieved from the GOCI 

satellite as the most significant parameter for estimating ground-level PM2.5, followed by 

wind speed, solar radiation, and dew-point temperature [28]. In models proposed by other 

studies, meteorological variables such as planetary boundary layer height, wind speed, 

relative humidity, land use information, as well as AOD have been used as parameters to 

predict PM levels [11, 14, 36]. An air quality forecasting model done by Ha et al. (2019) 

assimilated GOCI AOD during the KORUS – AQ campaign in a three-dimensional 

variational data assimilation method coupled with WRF-Chem [12]. Their results found 

that GOCI AOD is comparable to other satellite observations such as the Moderate 

Resolution Imaging Spectroradiometer (MODIS). Additionally, their results are 

consistent with other studies that suggest the assimilation of surface PM2.5 concentrations 

alone underestimates PM2.5 concentrations, whereas the assimilation of GOCI AOD and 

surface PM2.5 improves forecasts up to 24 hours [12]. Another study utilizing GOCI AOD 

retrievals in South Korea was done by Lennartson et al. (2018). Their study observed the 

diurnal variations in AOD and surface PM2.5 measurements and their findings revealed a 

difference in AOD diurnal variations between coastal and inland regions as well as a 

large diurnal variation of the AOD-PM2.5 relationship. Lee et al. (2019) examined GOCI 

AOD measurements and found an association between high AOD episodes in the 

Shandong province in China and South Korea, indicating a strong influence on LRT [22]. 

While recent studies have utilized GOCI AOD retrievals in various methods, this study 

is, to the best of our knowledge, the first to estimate hourly PM2.5 concentrations using 8 

separate random forest models. Overall, literature regarding estimating PM2.5 

concentrations outside of the SMA (i.e. the entirety of South Korea) is limited. 
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1.5 Study Objectives 

In this study, we aim utilize GOCI AOD products to predict hourly PM2.5 

concentrations in South Korea between 2015 – 2018. In addition to GOCI AOD, other 

parameters such as meteorology and land use information were included in the model to 

reduce prediction error.  

Our estimated predictions will help elucidate PM2.5 levels across the entire 

country, not just in the metropolitan areas. This allows us to gain a greater understanding 

of PM2.5 in South Korea that cannot be done by ground stations alone. A secondary 

objective of this study is to investigate the significance and impact that long range 

transport from China may have on the deteriorating PM concentrations in South Korea. 

By examining long range transport from China, this study can highlight specific factors 

that could influence heavy pollution episodes in South Korea.  
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2. Data and Methods 

2.1 Study Domain 

South Korea is located east of Beijing, situated in the middle of the Yellow Sea, 

the East China Sea, and the Sea of Japan. The distance between Seoul and Beijing is an 

estimated 957 km. The study domain ranges from 38°18 N, 33°09 S, 125°03 W, and 

129°33 E. The map of South Korea was downloaded from [https://gadm.org/]. In total, 

there are 333 ground monitor stations in South Korea, located in 96 counties and cities 

throughout the country [1]. Under unique meteorological conditions, air quality in South 

Korea can deteriorate due to LRT from China because Korea is located downwind [22].  

Figure 1 depicts South Korea’s proximity to China’s eastern coast. 

2.2 Dataset Descriptions 

2.2.1 GOCI Satellite YAER Version 2 Data 

First launched in 2010, the Communication, Ocean, and Meteorology Satellite 

(COMS) was the first geostationary observation satellite in Northeast Asia [26]. The 

Geostationary Ocean Color Imager (GOCI) is one of the three instruments aboard the 

COMS satellite and acquires data in 8 spectral bands (6 visible, 2 NIR) with a spatial 

resolution of 500 meters [26]. GOCI has an observation density of eight retrievals per day 

(hourly observations between 09:30 to 16:30 Korean Standard Time) and monitors East 

Asia in sixteen slots at 2,500 meters by 2,500 meters spatial resolution [22].  

The GOCI Yonsei aerosol retrieval (YAER) version one product was developed 

by Yonsei University to retrieve AOD at 550 nm and other supplemental aerosol optical 

features such as Fine Mode Fraction (FMF) and Angstrom Exponent [9]. Due to cloud 

coverage, approximately 40–70% of satellite data is missing on average in East Asia [37]. 

https://gadm.org/
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Despite the capabilities of the GOCI satellite, the version one algorithm prevents near-

real-time processing because a database was required for the calculation for surface 

reflectance [9]. In addition, GOCI version one aerosol optical products resulted in a 

negative bias over land and positive bias over the ocean as a result of errors [9].  

To adjust for the errors in GOCI version one, a version two algorithm was 

developed to process near real time data and modify surface reflectance and wind speed 

data [9]. A study conducted by Choi et al. (2018) analyzed aerosol optical products from 

the improved GOCI version two algorithm and found that AOD retrieval and values are 

akin to results from MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) 

AOD retrieval, surpassing the original GOCI version one [9]. In this study, GOCI AOD 

and FMF were used as parameters in the hourly PM2.5 estimation model. Our study 

period ranges from January 2015 to December 2018.  

2.2.2 PM2.5 Ground Measurements 

Hourly PM2.5 concentrations in 2015–2018 were measured at approximately 325 

ground monitoring stations across South Korea (Fig. 1). The PM2.5 data was downloaded 

from Air Korea [https://www.airkorea.or.kr/], Korea’s national real time air pollution 

data that provides information about air quality levels to the public [1].  

2.2.3 Meteorology Data 

Meteorological data was retrieved from the GEOS-FP Atmospheric Data 

Assimilation System at a 0.25° latitude × 0.3125° longitude spatial resolution 

[ftp://rain.ucis.dal.ca/ctm/GEOS_0.25x0.3125_CH.d/GEOS_FP/]. GEOS-FP was a 

collaborative effort by NOAA’s National Centers for Environmental Protection and 

NASA’s Global Modeling and Assimilation Office. Meteorology parameters such as 

https://www.airkorea.or.kr/
ftp://rain.ucis.dal.ca/ctm/GEOS_0.25x0.3125_CH.d/GEOS_FP/
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evaporation, surface incident shortwave flux, and 10 meter and pressure level (500 hPa) 

wind vector (U and V component) were included in the model. The temporal resolutions 

of the GEOS-FP were collected every 3 hours, and linear interpolation was used to 

estimate hourly data. 

2.2.4 Ancillary Data 

Land cover data for the study domain was downloaded from the Climate Change 

Initiative (CCI) of the European Space Agency [https://www.esa-landcover-

cci.org/?q=node/164]. The 1992 – 2015 annual time series global land cover has a spatial 

resolution at 300 meters. The 2015 CCI land cover product includes 22 parameters such 

as grassland, urban areas, water bodies, and cropland at a 300 – meter spatial resolution. 

The Advanced Spaceborne Thermal Emission and Radiometer Global Digital Elevation 

Model (ASTER GDEM) version 3 elevation data for the South Korea domain was 

downloaded from NASA’s EARTHDATA [https://search.earthdata.nasa.gov/search/]. 

ASTER GDEM is a satellite image produced from a collaboration between Japan’s 

Ministry of Economy, Trade, and Industry and the United States National Aeronautics 

and Space Administration (NASA) [3]. ASTER GDEM’s version 3 dataset was released 

on August 5th, 2019; the newest version maintains the same GeoTIFF format, grid 

structure, and 1° tiles as previous versions [3]. LandScan data, the Oak Ridge National 

Laboratory’s global population distribution data, for the years 2015 – 2018 were 

downloaded from the East View Geospatial LandScan Global Archive 

[http://wms.cartographic.com.proxy.library.emory.edu/landscan/portal.aspx]. The 

LandScan population data represents the ambient population distribution averaged over 

https://www.esa-landcover-cci.org/?q=node/164
https://www.esa-landcover-cci.org/?q=node/164
https://search.earthdata.nasa.gov/search/
http://wms.cartographic.com.proxy.library.emory.edu/landscan/portal.aspx
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24 hours [4]. Global road network data was downloaded as a shapefile from the open 

source website, OpenStreetMap [https://www.openstreetmap.org/#map=4/38.01/-95.84].  

2.2.5  Data Integration 

A 6 km modeling grid (6,307 pixels) was produced from the centroid of the GOCI 

covering the study region. A 50 km buffer was implemented around the study domain to 

ensure the accuracy of the GOCI AOD. The inverse distance weighting (IDW) method 

was used to spatially interpolate the meteorology and land use information to match the 6 

km grid resolution. Land use information such as the road and land cover variables were 

reclassified in ArcGIS Pro using the unsupervised reclassification technique to condense 

the categories for the respective datasets. The road network was reclassified into 2 

categories: primary and secondary roads. The land cover parameters were reclassified 

from 22 into 6 classes: farmland, forest, grass, water, urban, and other. Distance from 

road type and percentage of each land cover group was calculated within each grid pixel. 

2.3 Model Development 

A preliminary analysis was conducted to examine the correlation between the 8 

AOD hours. The correlation matrix revealed a high correlation between all 8 AOD hours 

from 2015 – 2018. Each hour was more highly correlated with the hours closest to it as 

depicted in Figure 2a –d. Over the four years, hour 0 and hour 7 are the least correlated 

among all 8 hours.  

To avoid the high correlation between AOD hours, 8 separate hourly random forest 

models were produced. All the models utilized the same predictor variables at their 

associated times to estimate hourly PM2.5 concentrations. There are 20 total predictors, 

https://www.openstreetmap.org/#map=4/38.01/-95.84
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such as relative humidity, wind speed and direction (10 m and 500 mb), and GOCI fine 

mode fraction at 550 nm. 

2.3.1 Random Forest Machine Learning Model 

A random forest model was utilized to fit predictors to the ground PM2.5 

observations in South Korea. Random forest is an “ensemble learning” method that 

expands upon its predecessors by adding random tree construction to a previous method 

known as bagging [24]. Random forest constructs numerous classification or regression 

trees, varying the bootstrap data sample and predictors used in each tree. Along with the 

predictors, random forest requires two parameters to determine the branching: ntree and 

mtry. The number of total trees is specified by ntree, with each tree including a subgroup of 

predictors; mtry defines the number of predictors included. The random forest algorithm 

constructs classification or regression decision trees dependent on the number of 

bootstrap samples selected in the ntree parameter [24]. In each of the random forest trees, 

each node is split using the best subset of predictors that are randomly selected at the 

node in the mtry parameter. Additionally, the model calculates prediction error in each 

bootstrap iteration by aggregating out-of-bag (OOB) predictions—predictions of data 

outside of the bootstrap. In turn, a variable importance measure is derived from the 

observed increases in prediction error associated with specific variables. The model’s 

final prediction is calculated by aggregating every trees’ prediction [24]. The models in 

this study set ntree at 500 and mtry at 10. Two models were created: a full model with all 

the predictors and a restricted model that removed some predictors with low variable 

importance. The restricted model was selected for use in estimating hourly PM2.5 

concentrations. 
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We narrowed down the full model from 32 parameters in the dataset to 20 total 

predictors. GEOS-FP meteorology fields were reduced to 13 variables including surface 

shortwave incidence flux (SWGDN), total precipitation (PRECTOT), surface pressure 

(PS), and evaporation (EVAP). The selected parameters for land use information were 

farmland and water. Elevation, road network data, and population density predictors were 

kept in the model. These variables along with hourly GOCI retrievals (AOD and fine 

mode fraction) and surface PM2.5 observations were inputted into 8 random forest models 

at their associated time.  

2.3.2 k-fold Cross Validation 

A k-fold cross validation is often utilized for evaluating the performance of 

regression or  classification algorithms [35]. The k-fold cross validation is typically used 

to estimate the accuracy of a model’s predictions, since a model will usually overfit its 

training data—resulting in predictions that are too high. The procedure randomly divides 

a dataset into a specified number (k) of folds of approximately equal size. Each fold is 

then used to test the model induced from the other k -1 folds in the regression algorithm 

[35]. The performance of the model is evaluated by the average of the k accuracies 

resulting from the k-fold cross validation.  

A 10-fold cross validation was performed on each of the random forest models to 

validate the predictions that were produced from the models. The prediction dataset for 

each model was split into 10 randomly divided folds, with each fold containing 10% of 

the data. Nine out of the 10 folds acted as the training dataset, with the 10th fold acting as 

the testing dataset to produce predictions. This k-fold cross validation is repeated 10 
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times, with each cross validation partitioning the prediction data at different intervals to 

ensure that the folds are not repeated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

3. Results 

3.1 Descriptive Statistics 

 

The full dataset for each model contains between 20,000 to 34,000 observations. 

Table 1 shows the descriptive statistics of some of the time-varying and spatially fixed 

parameters used in the random forest models. The mean PM2.5 concentration in South 

Korea between 2015 – 2018 is 27 µg/m3, with a low of 0 µg/m3 and the highest level over 

the 4-year study period was 185 µg/m3. Most of the ground PM2.5 measurements had 

lower concentrations as evidenced by the mean of 27 µg/m3. However, throughout the 

prediction data there were occasional spikes over 150 µg/m3. The mean AOD value was 

0.27, ranging from a minimum of -0.05 to a maximum of 3.59. No negative AOD values 

were removed from the prediction dataset because of the predictor’s importance in the 

model. The highest elevation in the study domain is approximately 1304.77 m and the 

lowest point is at sea level (0 m). Wind speed 10 m and 500 m above the ground ranged 

between 0.08 – 51.42 m/s, and a mean of 4.83 m/s and 0.04 – 57.00 m/s, and a mean of 

12.98 m/s respectively. The average planetary boundary layer height, surface pressure, 

and 2 m air temperature during the study period was 888.74 m, 1002.07 Pa, and 290.49 K 

respectively. The predictors’ range varied from 59.15 – 4305.28 m, 903.44 – 1036.40, 

and 238.19 – 311.25 K.  

 Figure 3 depicts the average monthly ground PM2.5 measurements during the study 

period. The time series illustrates the fluctuating trend of ground measurements over the 

course of 4 years. At the beginning of the year, average PM2.5 concentrations are the 

highest, but appear to decrease in the middle of the year before increasing again. This 

trend is better illustrated in Figure 4, which depicts seasonal ground measurement 

averages. Over the study period, PM2.5 concentrations tend to be highest in the spring and 
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winter, and lowest in summer. As seen in Figures 3 and 4, the increases start in the fall, 

jumping from 20.50 – 22.41 µg/m3 to 25.21 – 30.61 µg/m3 in the winter from 2015 – 

2018. The average monthly PM2.5 measurements’ highest peak is 36.14 µg/m3, which 

falls in March 2017, and the lowest peak falls in September 2018 at 12.10 µg/m3.  

3.2 Spatiotemporal AOD Coverage 

 

Figure 5 depicts the average monthly AOD coverage in the study domain between 

2015 – 2018. On average, monthly AOD coverage ranges between 30% – 80% in 2015, 

25% – 70% in 2016, 30% – 77% in 2017, and 30% to 74% in 2018. The mean AOD 

coverage across all 4 years is 48%, indicating that 52% of the full dataset is missing AOD 

values. While the mean AOD coverage seems low, results suggest that the GOCI satellite 

outperforms more established satellites such as MODIS, with an annual AOD coverage 

around 10% [13].  Overall, the trend in the temporal AOD coverage indicates that there is 

higher coverage in the spring (March – May) ranging from 63% – 73% across the four 

years. Furthermore, the trend in coverage appear to suggest a similar pattern year by year. 

In the first half of the year, generally AOD coverage is higher and then begins to decrease 

and has a small spike during the fall before decreasing again. The lowest AOD coverage 

generally occurs in December, and the January afterwards. During the study period, AOD 

coverage in these months range between 30 – 36%. In the summer (June – August, AOD 

coverage, ranging from 37% – 51%. In October 2015 and 2018, AOD coverage spikes at 

80% and 59% respectively, which is unusual compared to the overall trend in the time 

series. In August 2016 and July 2018, AOD coverage has a small spike around 60%, a 

unique trend considering that the other years in the plot illustrate AOD coverage 

decreasing in the summer. The lowest AOD coverage occurs in November 2015 with a 
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23% temporal coverage and the highest in October 2015. Out of all the years in the study 

period, 2015 appears to have the most fluctuation in AOD coverage as evidenced in 

Figure 5. Unlike the other years, 2015 has more unusual minimum and maximum AOD 

coverage trends. 

Figures 5a-d illustrate the hourly AOD spatial coverage in South Korea between 

2015 – 2018. The spatial coverage in the figures represent AOD coverage per pixel in the 

modeling grid. The spatial AOD coverage patterns suggests that the GOCI satellite has 

more coverage in the pixels in the northern region of the country compared to the 

southern half. In addition, hour 0—the beginning of the observation period—appears to 

have a higher spatial AOD coverage compared to the rest of the hours during the study 

period. With the exception of hour 5 in 2016, hours 5 and 6 from 2015 – 2018 display 

high AOD pixel coverage. This is evident by the darker shading on the hourly maps in 

the figures. The hour 0 maps in 2015 and 2017 have the highest spatial AOD coverage in 

the pixels; in 2015, the spatial coverage is concentrated on the eastern coast of the 

country whereas in 2017, AOD coverage is concentrated on the northwestern region. 

From 2015 – 2018, hours 5 (except 2016) and 6’s spatial coverage is spread out 

throughout the country rather than concentrated on a specific region like the hour 0 

coverage. In the hour 5 coverage in 2016, there is less spatial coverage compared with the 

other years. The spatial coverage in the pixels range between 0% – 40%, with 2018 

having the smallest coverage range of 0% – 25%. An unusual pattern is seen in the spatial 

AOD coverage that occurs in hour 7 in 2015 and 2016, as illustrated in bottom right map 

on the figures. Unlike the other years, the map of hour 7 in 2015 shows high coverage on 

the east and west coasts of Korea, but low coverage in the middle. In 2016, spatial AOD 
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coverage in hour 7 shows almost the opposite of hour 7 in 2015; there is coverage in the 

middle of the country, but less coverage on the coasts. 

3.3 Model Performance and Predictions 

 

Eight random forest models were used to fit predictors of PM2.5 to the ground 

observation PM2.5 data. Given that GOCI has 8 hourly retrievals a day, 8 random forest 

models were produced using the AOD hour as an anchor. Time varying parameters were 

temporally matched to the GOCI AOD hour and both parameters with spatially matched 

to the grid cells in the modeling grid. The models were set with a mtry of 10 and ntree at 

500. The restricted model contained predictors such as GOCI AOD, road type, land use, 

wind speed and direction 10 m and 500 m above ground. The “out of bag” R2 from the 

random forest models ranged from 0.48 – 0.55 with RMSEs’ ranged between 9.64 – 

13.23 µg/m3. Figure 6 shows the density plots of the correlations between the predicted 

and observed PM2.5 measurements across the 8 individual models. The cross-validated 

R2 ranged from 0.47 – 0.54 with RMSEs’ ranged between 9.74 – 13.34 µg/m3. Given that 

the cross validated R2 is comparable to the out of bag R2, this indicates that our model 

accurately fits the data. The regression slope in the cross validated plots ranged between 

1.2 – 1.3. Due to the variance in the models, the predicted PM2.5 values tended to be 

lower than the observed PM2.5 measurements. Table 2 demonstrates the top 5 important 

predictors in the 8 random forest models. The threshold for importance ranking in a 

random forest model is determined by a permutation test. The higher the importance or 

the mean squared error (MSE) is in the model – this indicates the higher predictive 

accuracy of the parameter in the model [24].  Across the 8 models, GOCI AOD, relative 

humidity, wind speed and direction 500 m above ground are highly significant predictors 
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of PM2.5 measurements. Other highly significant parameters are GOCI fine mode fraction 

and meteorology variables such as surface shortwave incidence flux, total precipitation, 

and total cloud fraction. The least important variables in the model are road networks, 

population density, land use information. Given that ground monitor stations are located 

in urban regions (e.g. the Seoul metropolitan area), it is expected that spatial invariant 

parameters would not be important predictors in the model. Variables such as road 

networks and population density do not fluctuate over time and the insignificance of 

these predictors is evident in the variable importance ranking.  

Prediction maps from the random forest models are shown in Figures 7a-d. 

Hourly maps over 2015 – 2018 illustrate the spatiotemporal variations in PM2.5 

concentration between 9:00 – 16:00 KST time in South Korea. Mean hourly predicted 

PM2.5 concentrations ranged from 22.8 – 30.5 µg/m3. However, the overall PM2.5 

predictions from the random forest models underestimates values at some hours. The 

prediction maps suggest that the western coast and the northern region of South Korea 

experience higher PM2.5 concentrations compared to the southern region of the country. 

As depicted in Figures 7a-b, the predicted hourly maps show that there are higher PM2.5 

concentrations near the western coast of the domain in 2015 and 2016. This trend is most 

prominent in Figure 7b (2016); across 8 hours, the entire western coast displays higher 

concentrations, with hours 1 and 2 being the darkest shade. In Figures 7c-d, the predicted 

maps illustrate high PM2.5 concentrations in the northern region of Korea. The hourly 

maps suggest that as time passes, the concentrations in the northern region moves 

towards the eastern coast. Hourly predictions from the model also seem to suggest that 

eastern coast tends to have lower PM2.5. 
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3.4 Long-Range Transport  

Potential long-range transport from China to South Korea was assessed from the 

PM2.5 predictions produced from the random forest model as depicted in Figure 8. Figure 

8 illustrates hourly PM2.5 predictions during a long-range transport episode on March 10th 

– 11th, 2015. An episode is classified as long-range transport if the wind direction for 

winds 500 m above the ground are blowing from west to east (China to Korea) and this 

event occurs between 2 – 3 consecutive days. The average PM2.5 concentrations on March 

10th and 11th are 22.94 µg/m3 and 36.47 µg/m3 respectively. The highest predicted 

concentration of 46.95 µg/m3 occurred in hour 6 (15:00) on March 11th. Across the study 

hours on March 10th, PM2.5 concentrations were comparatively lower than the 

concentrations on March 11th. Hourly average PM2.5 levels on the 10th ranged from 19.73 

µg/m3 – 24.56 µg/m3. Hourly mean PM2.5 concentrations on the 11th ranged from 30.45 

µg/m3 – 46.95 µg/m3. 

The maps in Figure 8 depict higher concentrations near South Korea’s western 

coast, indicating potential long-range transport from China. The eastern coast of the 

country has lower concentrations in comparison. On the hour 6 (15:00) map on March 

11th, the shading illustrates extremely high concentrations over 70 µg/m3 in the 

Southwestern portion of the country. This unusual pattern is not seen in the other hourly 

maps on March 10th or 11th. Overall, the hourly maps suggest that long-range transport 

from China is partly responsible in exacerbating South Korea’s deteriorating air quality. 
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4. Discussion and Conclusion 

To the best of our knowledge, this study was the first of its kind to use the 

geostationary satellite to estimate hourly PM2.5 concentrations in South Korea. The study 

is also novel in that we examined the impact of long-range transport on South Korea’s air 

quality. Our estimated hourly predictions will help shed a light on PM2.5 levels across the 

entire country, not just in the metropolitan areas where ground stations are primarily 

located. As such, this study allowed us to gain a greater understanding of the 

spatiotemporal patterns of PM2.5 in South Korea. In addition, by investigating the impact 

of long range transport on Korea’s regional air quality, we can study the factors that 

shape heavy air pollution episodes and implement policies to reduce ambient pollution. 

We developed 8 separate random forest models to predict hourly PM2.5, which 

allowed us to better estimate and observe the spatiotemporal variations of PM2.5 in the 

study domain. The out of bag R2 from the 8 models ranged from 0.48 – 0.55 with 

RMSEs’ ranged between 9.64 – 13.23 µg/m3. This indicates in the predictors in the 

model explain about half of the variance in the dataset. While the R2 is not incredibly 

high, it does not necessarily mean that the mean predictions are inaccurate. It just means 

that we have a large spread in the dataset. The cross-validated R2 ranged from 0.47 – 0.54 

with RMSEs’ ranged between 9.74 – 13.34 µg/m3. The comparable R2s between the 

models and the cross-validations indicate that overfitting of the prediction data is not 

likely. That said, there is still a possibility that the model is not accurately estimating 

PM2.5 concentrations.  

Looking at variable importance, GOCI AOD was consistently the most important 

predictor in all of the random forest models. The least important predictors in the model 
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were spatially fixed parameters such as road networks, elevation, and land use. It was 

expected that these predictors were not highly ranked due to the fixed position of the 

ground monitor stations. Unlike meteorological parameters, spatially fixed variables do 

not have any temporal variation which is the reason they are not highly significant in a 

model that was developed to estimate hourly predictions. Wind speed and wind direction 

at 500 m above the ground were also highly significant predictors in the models. These 

predictors are extremely important when observing long-range transport from China to 

South Korea.  

Figure 8 depicts the spatiotemporal variation of long-range transport of pollutants 

from China to South Korea. As evidenced in the maps, the western coast of Korea has 

much higher PM2.5 concentrations compared to the eastern coast during March 10th and 

March 11th, 2015. This evidence of long-range transport is corroborated with the findings 

from Lee et al. (2019). Study findings from Bae found that Chinese contribution to South 

Korea’s deteriorating air pollution is likely caused by the inflow of air from the 

northwesterly winds in the spring and winter [5] . On the other hand, we see less 

contribution in the summer and fall due to the weakening winds. 

A notable finding in the results was the seasonal trend in ground PM2.5 

measurements throughout 2015 – 2018. PM levels tend to be lower in the summer and 

fall and increase in the spring and winter. A possible reason as to why PM2.5 

concentrations in South Korea are higher during this period is because the primary wind 

direction makes it favorable to transport pollutants from China to Korea [5]. Other 

reasons as to why PM2.5 concentrations are higher in the winter and spring could be due 

to the increase usage of biomass burning during the colder seasons. As the winds weaken 
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in the fall and summer, domestic sources make a greater contribution to the regional air 

quality in South Korea [5]. 

One of the limitations in this study was the possibility of inaccurate predictions of 

PM2.5 concentrations. The low R2 produced from the random forest models limits our 

ability to make more general conclusions. This may be due to the coarser resolution of 

the modeling grid. Previous studies have found that a 6 km resolution is unable to reflect 

finer spatial contrasts in a grid cell [31]. Another limitation in this study was that we did 

not gap-fill GOCI AOD data, which resulted in an overall missingness of 52% in the 

Korean Peninsula. In addition, ground monitor stations are primarily located in urban 

settings, which limits our ability to assess the models’ performance in rural areas.   

Future directions of this research could involve interpolating missing PM2.5 

measurements using a statistical model in conjunction with a random forest model to 

obtain a larger prediction dataset for more accurate estimates. Since ground stations are 

fixed in cities, it would be prudent to focus on assessing the model’s performance in rural 

regions to gain a better understanding of the spatiotemporal variations. Another direction 

to take on this study relates to long-range transport, specifically observing events in 

China that have heavy pollution days (e.g. Chinese New Year) and the impact of LRT on 

Korea’s air quality. 
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6. Tables and Figures 

 

Figure 1. Study domain showing the proximity of South Korea to China and includes ground 

monitor stations. The two monitor stations that appear located in the middle of water are on small 

islands.  
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Figure 2a-d. Correlation matrix showing the correlation coefficients between hourly GOCI AOD 

for the study period  
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Table 1. 

Descriptive statistics of time-varying and spatially fixed parameters 

Parameters Minimum Mean (Std. Dev.) Maximum 

    

GOCI Products    

AOD -0.05 0.27 (0.26) 3.59 

FMF 550 nm 0.16 0.44 (0.05) 0.96 

    

Ground Stations 
   

PM2.5 (µg/m3) 0 27 (16.50) 185 

    

Ancillary Data 
   

Elevation (m) 0 139.08 (212.00) 1304.77 

 
   

Meteorology 
   

10 m Wind Speed (m/s) 0.08 4.83 (2.25) 51.42 

500 mb Wind Speed (m/s) 0.04 12.98 (8.49) 57.00 

Surface Pressure (Pa) 903.44 1002.07 (20.61) 1036.40 

2 m Air Temperature (K) 238.19 290.49(9.74) 311.25 

Planetary Boundary Layer 

Height (m) 
59.14 888.74 (354.15) 4305.28 

Relative Humidity  7.62*10-5 0.00022 (1.6*10-4) 0.00307 

Surface Incident Shortwave 

Flux (W/m2) 
17.22 424.92 (172.02) 903.16 

Total Cloud Fraction 0 0.36 (0.31) 1 

Total Precipitation (kg/m2s2) 0 0.000024 (2.0*10-4) 0.01849 
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Figure 3. Time series illustrating the average monthly PM2.5 concentrations (including standard 

deviation) from 2015 – 2018  

 

 

 

 
Figure 4. Time series illustrating the average seasonal PM2.5 concentrations from 2015 – 2018  
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Figure 5. Time series depicting the monthly temporal GOCI AOD coverage in South Korea from 

2015 – 2018 
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Figure 5a-d. Spatial coverage of AOD per hour over the 4-year study period 
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Figure 6. Density plot of correlations between the cross validated predicted and measured 

PM2.5 concentrations of each hour during the study period (2015 – 2018)  
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Table 2.  

Variable importance in the random forest models (top 5) 

Hour 0 Hour 1 Hour 2 Hour 3 

AOD  

500 mb wind speed  

Relative humidity 

500 mb wind direction  

Surface incident 

shortwave flux 

AOD 

Relative humidity 

500 mb wind speed  

500 mb wind direction  

10 m wind speed 

AOD 

Relative humidity 

Fine mode fraction 

500 mb wind speed  

500 mb wind direction  

 

AOD 

Fine mode fraction 

Relative humidity 

500 mb wind speed  

500 mb wind direction  

 

    

Hour 4 Hour 5 Hour 6 Hour 7 

AOD 

Fine mode fraction 

Relative humidity 

500 mb wind speed  

500 mb wind direction  

AOD 

Fine mode fraction 

Relative humidity 

500 mb wind speed  

500 mb wind direction  

AOD 

Relative humidity 

Fine mode fraction 

500 mb wind speed  

Total cloud fraction 

AOD 

Relative humidity 

500 mb wind speed  

500 mb wind direction  

Total precipitation 
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Figure 7a-d. Hourly prediction maps of PM2.5 concentrations (µg/m3) from the random forest 

model in South Korea between 2015 – 2018 
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Figure 8. Predicted hourly spatiotemporal variations of long range transport episode from 

China to South Korea (March 10th – 11th, 2015) a. hourly predictions on March 10th, 2015 

 b. hourly predictions on March 11th, 2015 

 

 


