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Abstract 
 

Using deep learning methods to predict the VRC01 neutralization 

sensitivity by HIV-1 gp160 sequence features 

 
By     Zhenghao Chu 

 

 

Introduction: The broadly neutralizing antibody (bnAb) VRC01 is being evaluated 

for its efficacy to prevent HIV-1 infection in the Antibody Mediated Prevention 

(AMP) trials. Our object is to applied Deep learning (DL) methods to see whether or 

not DL models can help improve accuracy on predicting sensitivity of neutralization 

of 611 HIV-1 Env pseudoviruses by VRC01. 

 

 

Methods: We tried three different kinds of Deep Neural Network structures (FCNN, 

1D-CNN, 1D-CNN+BiLSTM) to do the prediction and implemented a 5-fold cross-

validation method to verify the performance of the model. We chose best model of 

each three neural network structures to do the prediction on our test set. We selected 

accuracy (Accuracy, Acc), precision (P), recall (R), F1 score (F1) and average area 

under the receiver operating characteristics (ROC) curve as evaluation indicators. 

 

 

Results: The three mean AUCs (area under curve) for ROC curves are 0.857 ±
0.070, 0.763 ± 0.076, 0.755 ± 0.075 respectively. The prediction accuracies are 

0.85, 0.83, 0.85 respectively. 

 

 

Conclusion: For this small sample size task, our three Deep Learning models did not 

perform as well as the random forest model.  

 

 

Key words: Human Immunodeficiency Virus (HIV), Antibody Mediated Prevention 

(AMP), Deep Learning, Deep Neural Network (DNN), Recurrent Neural Network 

(RNN), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM)  
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Introduction 
 
HIV (human immunodeficiency virus) remains a major public health issue. According 
to the statistics by WHO, more than 32 million people have died of AIDS since the 
first AIDS case reported in 1981 1, 2  and 37.9 million people living with HIV 2 by 
2018. There are two main types of HIV – HIV-1 (accounting for around 95% of all 
infections worldwide) and HIV-2 (relatively uncommon and less infectious) 3. 
Although there is no cure for HIV now, great progress has been made on HIV 
prevention and treatment. Current guidelines 4 recommend pre-exposure prophylaxis 
(PrEP) as an effective prevention method for individuals at high risk of HIV infection 
5. PrEP regimens require taking a pill every day and adherence is required to maintain 
protective efficacy 6. In some individuals, adhering to a strict PrEP regimen may be 
difficult. It is therefore also of interest to develop a prophylactic HIV vaccine 7. 
Ongoing clinical trials are evaluating the efficacy and safety of HIV vaccines 8, but as 
of now, there is no licensed vaccine available to prevent HIV. Development of a 
vaccine is challenging owing to rapid mutations of the HIV pathogen and the 
difficulty of inducing a robust immune response to a preventive vaccine 9. 
Nevertheless, the RV144 vaccine was observed to confer partial efficacy in a clinical 
trial in Thailand, reported in 2009.  
 
A new approach to prevention involves the usage monoclonal antibodies. Researchers 
have isolated broadly neutralizing antibodies (bnAbs) from individuals with chronic 
HIV infection, which have shown the ability to neutralize a wide spectrum of HIV-1 
viruses 10. In 2016, two multinational clinical trials of an intravenously delivered 
monoclonal antibody for preventing HIV infection were launched; together these are 
known as AMP (antibody-mediated prevention) Studies. Participants were 
randomized to receive an investigational bnAb called VRC01, an antibody discovered 
in an HIV-infected person whose body was able to control the infection without using 
any antiretroviral drugs 11. Researchers found that the major target of neutralizing 
antibodies is the trimeric HIV-1 envelope (Env) glycoprotein spike [precursor form = 
(gp160)3, proteolytically cleaved to (gp120/gp41)3].  Immense genetic and antigenic 
diversity of the envelope glycoprotein causes a significant problem in the 
development of an effective prophylactic vaccine 12, 13. However, bnAbs generally 
target conserved elements of gp160 across five different regions: the V2 variable 
region, the N332 region in the V3 region, the CD4 binding site (CD4bs), the gp120–
gp41 interface, and the membrane proximal external region 14. It is therefore of 
interest to better understand the relationship between Env amino acid (AA) signatures 
and the neutralization phenotype of interest 15. 
 
Due to the highly diversity of HIV-1's outer (Env) protein, a key secondary goal of 
the AMP Studies is to assess whether VRC01 confers differential efficacy based on 
amino acid features in the Env glycoprotein, using amino acid sequence sieve analysis 
16-19. To prepare for this analysis, we must a-priori identify amino acid features that 
are most likely relevant to neutralization sensitivity by VRC01. Previously, Magaret 
et al. used Super Learner, a nonparametric ensemble-based cross-validated learning 
method, to predict neutralization sensitivity using in vitro virus sequences obtained 
from the CATNAP database 20, 21. The authors also compared this approach with other 
machine learning methods such as Random Forest, boosting and Lasso to examine the 
prediction of sensitivity and to rank AA features by their predictive importance. They 
found the Super Learner model performed reasonably well in classifying IC50-based 
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{IC50 is a quantitative measure that indicates how much of a 
particular inhibitory substance (in our case VRC01) is needed to inhibit, in vitro, a 
given biological process or biological component by 50% 22. The definition for 
sensitive is (IC50 < 1 μg/mL) and resistant (right-censored IC50 value)} dichotomous 
outcomes for VRC01 neutralization with an average validated AUC of 0.868 across 
two hold-out datasets. The study also identified the top 50 features including 26 
surface-accessible residues in the VRC01 and CD4 binding footprints, length of 
gp120 protein, the length of Env protein, the number of cysteines in gp120, the 
number of cysteines in Env, and 4 potential N-linked glycosylation sites 23. 
 
Accurate prediction of neutralization sensitivity is likely to become an increasingly 
important scientific goal, with further AMP studies already in development. It is 
therefore of interest to provide a thorough examination of machine learning methods 
for predicting neutralization sensitivity. A notable omission from the work of Magaret 
et al was the usage of deep learning approaches. Deep learning (DL) algorithms have 
been successfully applied in many different fields including image recognition, 
natural language and voice processing. Researchers have also used DL to help 
elucidate biological structures in the context of genomics 24.  In particular, Alipanahi 
et al. developed an DL algorithm which can help them predict the sequence 
specificities of DNA- and RNA-binding proteins 25. Due to the similarity of primary 
structure of DNA/RNA (generally consisting of 4 types of nucleotides) and proteins 
(generally consisting of 20 types of amino acids), it is of interest to examine whether 
similar DL approaches can help improve prediction of neutralization sensitivity in the 
context of HIV. In this work, we provide the first exploration of this question, 
applying deep learning methods to prediction of neutralization of 611 HIV-1 Env 
pseudoviruses by VRC01 using the CATNAP database. We examine how network 
architecture may affect performance in this setting and compare the performance of 
DL to other machine learning approaches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://en.wikipedia.org/wiki/Enzyme_inhibitor
https://en.wikipedia.org/wiki/In_vitro
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Method 
 

1. Objective 

 
The objective of our work is to develop three deep learning models for 
classifying TZM-bl neutralization sensitivity to VRC01. We constructed three 
deep neural network structures (1) a fully-connected neural network (FCNN); 
(2) An one dimensional convolutional neural network (1D-CNN); (3) One 
dimensional convolutional neural network + Bidirectional Long short-term 
memory recurrent neural network (1D-CNN + BiLSTM) to conduct this 
classification, all of which used a set of pre-defined AA sequence features to 
predict TZM-bl 26 neutralization outcomes indicating whether a virus is right-
censored/resistant to VRC01 (defined as having IC50 > 10 μg/ml21).  

 
2. Dataset 

 
A total of 611 sequences/pseudoviruses were included in this analysis and 
their associated pseudovirus values for neutralization by VRC01 as assessed 
by the TZM-bl assay 26, and other associated annotations were downloaded 
from the CATNAP database 20. We randomly separated our dataset into two 
datasets (“dataset 1” and “dataset 2”) for the statistical learning analyses. The 
two datasets were mutually exclusive, each with half of the data [n = 306 
(dataset 1) and n = 305 (dataset 2)]. More information about dataset can be 
found in Magaret’s paper23. 
 
2.1 Input variables 

We separated our input variables into two groups: 1. Envelope amino acid 
(AA) position features (what kind of amino acid located on different 
important AA positions of Envelope proteins). 2. Non-amino acid (Non-
AA) position features including: Subtype of HIV-1 virus, Geographic 
information (region of origin), Indication of potential N-linked 
glycosylation sites (PNGS), Region-specific counts of PNG sites, Viral 
geometry, Cysteine counts, Steric bulk at critical locations. 
 

2.2 Output variable 

Pseudoviruses whose IC50 was right-censored were labeled “resistant” to 
neutralization by VRC01; the rest of the virsuses were labeled “sensitive” 
to neutralization. We used all the input variables with different 
preprocessing methods in our models and use them to predict our outcome 
and evaluate our models. 
 

3. Perceptron 

 
Deep neural network (DNN) is an information processing paradigm inspired 
by the way biological systems such as the brain process information. It 
integrates of a large number of highly interconnected processing elements 
(neurons) to provide a prediction of an outcome. The basic structure of DNN 
is called a perceptron (Fig1).  
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Fig1. Perceptron 
 

Suppose we have n genetic and phenotypic sequence features measured on a 
given pseudovirus.  Each feature is multiplied by a connection weight and then 
add an intercept b to them (Fig1). The weights are denoted by w0, w1, w2, 
w3, …, wn. The value of each weight indicates the strength of a particular node 
in “activating” the neuron. The function “f” is called the activation function 
and is a non-linear function that determines whether a neuron should be 
activated or not by calculating the linear combination of features. Different 
kinds of activation functions can be used. In regression problems, it is 
common to use the identity function, 𝑜𝑢𝑡𝑝𝑢𝑡 = ∑ 𝑥𝑖 ∗ 𝑤𝑖 + 𝑏𝑛

𝑖=1  , while in 
classification problems, sigmoid or softmax activation functions are 
commonly used. 

 
4. Fully Connected Neural Network (FCNN) 

 

 
Fig2. Fully connected neural network and training procedure 

 
A fully connected neural network (FCNN) is also known as multiple layer 
perceptron (MLP). A FCNN combines many perceptrons together and to form 
so-called hidden layers. Fig2 illustrates this idea for four input features and 
two hidden layers, each with n neurons. Each neuron in the first hidden layer 
is a perceptron, as described above. Then, each neuron in the second hidden 
layer uses the neurons from the first hidden layer as input variables, and 
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creates another perceptron. In this structure, we say that neurons are fully 
connected. 

 
Once we decide our neural network structures and all activation functions, we 
can then use our data to train our neural network. The training aims at 
minimize the difference between the real output values and predicted values 
by changing the weights. 

 
The training procedure are as follows: 
1. Randomly initialize all weights to a decimal close to but not equal to zero. 
2. Input the first observation of the dataset in the input layer, with each feature 
in a node. 
3. Forward propagation: Neurons are activated from left to right in a way that 
the influence of each neuron activation is limited by weight. The propagation 
is activated until the predicted value is obtained. 
4. Compare the predicted results with the actual results and calculate the 
prediction error  

J(W, b) = 
1

𝑛
∑ 𝑙(𝑓(𝑋𝑖; 𝑊, 𝑏), 𝑦𝑖)

𝑛

𝑖=1

 

where W is matrix of all weights; 𝑋𝑖 is input features; 𝑦𝑖 is real label; 
𝑓(𝑋𝑖; 𝑊, 𝑏) =  𝑦𝑖̂  
𝑙(𝑓(𝑋𝑖; 𝑊, 𝑏), 𝑦𝑖) is a loss function evaluated on each sample. For example, 
the loss could be the square of each sample’s residual. 

𝑙(𝑓(𝑋𝑖; 𝑊, 𝑏), 𝑦𝑖) = (𝑓(𝑋𝑖; 𝑊, 𝑏) − 𝑦𝑖)
2 

 
5. Back Propagation: From right to left, errors propagate back, that is, based 
on predictive performance for the current value of weights, new values are 
assigned using a strategy based on gradient descent. A learning rate 
determines the magnitude of the weight update. At the step t+1, weights are 
updated according as  

𝑊𝑡+1 =  𝑊𝑡 − 𝜂𝑤 ∗ ∇wL(𝑊𝑡) 
𝑏𝑡+1 =  𝑏𝑡 − 𝜂𝑏 ∗ ∇bL(𝑏𝑡) 

where 𝑊𝑡 is the current weight matrix, 𝑊𝑡+1is the weight matrix after gradient 
descent, 𝜂 is learning rate and 

∇w =  
𝜕J(W, b)

𝜕𝑊
 

∇b =  
𝜕J(W, b)

𝜕𝑏
 

 
are the gradients of the loss function.  
6. Repeat steps 1 to 5 and update the weights after each observation. One 
cycle through the data set updating the weights is referred to as an epoch.  
7. The process continues for a user-seleceted number of epochs or until some 
other stopping criteria is reached. 

 
5. 1-Dimensional Convolutional Neural Network (1D-CNN) 

 
Convolutional neural networks (CNN) 27 have proven to be effective for many 
natural language processing (NLP) tasks 28. Inspired by their success in text 
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classification, in this paper, CNNs with various kernel sizes are used to extract 
local contexts from a protein sequence. In particular, we use a one-
dimensional CNN, which kernelizes the architecture of the perceptron. That is, 
nodes in the perceptron are constructued based on features that are near to 
each other in some sense. Higher dimensional kernels are common in other 
contexts such as image recognition. CNN are useful for deriving features from 
a fixed-length segment of the overall dataset, where it is not so important 
where the feature is located in the segment.  
These methods have been shown to predict DNA-binding proteins 25. Delong 
et al. were the first to show that protein features can be identified by deep 
learning 25,29,30.  
More detailed information on CNN algorithm can be found in the paper 
written by Murugan et al. 31. 

 
6. 1-Dimensional Convolutional Neural Network + Bidirectional Long 

Short-Term Memory (1D-CNN+BiLSTM) 

 
RNN (Recurrent Neural Network) 32 are designed to have an internal memory. 
While CNN only considers constructing neurons that include information from 
consecutive elements in a sequence, it may ignore relationships between non-
continuous sequences. RNN incorporates information from more distant 
sequence elements. However, RNN often have difficulties associated with the 
gradient descent portion of training. BiLSTM (Bidirectional Long Short-Term 
Memory) 33 is an extension of RNN, which is specifically used to deal with 
this problem. These networks can more efficiently account for sequence 
information separated by long distances. By combining CNN and BiLSTM, 
not only can we account for local dependence between sequence features, but 
also more distal dependence.  
More details of our implementation of all three types of DNN are included in 
Appendix. 

  
7. Evaluation Criteria 

 
We implemented a five-fold cross-validation scheme to compare the 
performance of the models. The training dataset (dataset 1) was divided into 
five parts. We take one part as the validation set and the other 4 parts as the 
training set. The networks are trained on the training set, while the 
performance is evaluated on the validation set. The process is repeated five 
times and performance is reported as the average performed over the five 
validations sets. Finally, we chose best model of each three neural network 
structures to do the prediction on our test data (dataset 2). We evaluated each 
model on several criteria and compared to predictions made by a random 
forest, which was found to have the strongest prediction on these data in 
previous work. We compared predictive performance in terms of accuracy 
(Acc), precision (P), recall (R), F1 score (F1) and area under the receiver 
operating characteristics (ROC) curve. The formulas are as follow: 
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𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹1 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

 
 

 

Real 
result 

predicted result 
Positive 
class  

Negative 
class 

Positive 
class TP FN 

Negative 
class FP TN 

Table1. meaning of classification results  
 

TP: true positive, FN: false negative, FP: false positive, TN: true negative 
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Results 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  5-Fold Cross-validation ROC Curve for all three deep learning models and the Random Forest 
model 
 
The cross-validated AUC for 1D-CNN and 1D-CNN+BiLSTM was less than 0.8, 
while FCNN performed similarly to Random Forests (Fig 3).  
 
 
 

Model                     

Criteria    
Accuracy Precision Recall 

F-1 

Score 

FCNN 0.85 0.9 0.47 0.91 

1D-CNN 0.83 0.88 0.34 0.9 

1D-CNN + BiLSTM 0.85 1 0 0.92 

Random Forest 0.88 0.89 0.3 0.93 
Table 2.   Evaluation Results on validation data 

 
The best models selected via five-fold cross-validation in dataset 1 were evaluated on 
dataset 2 (Table 2).  All four models had high accuracy and the precision. However, 
the recall rate was low for most models and particularly low for 1D-CNN + BiLSTM. 
The FCNN yielded the highest recall rate. Random forest scored the highest in terms 
of F-1 score.  
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Fig 4. Learning curve for FCNN model 

 

 
Fig 5. Learning curve for 1D-CNN model 

 

 
Fig 6. Learning curve for 1D-CNN+BiLSTM model 

 
From Figs 4–6, we can see that the training curve and the validation curve of the 1D-
CNN are closer than other two models, both for Acc and loss. This indicates that 1D-
CNN experiences very little overfitting. Visibly, the training process of 1D-CNN and 
1D-CNN + BiLSTM reflects the true performance of the data better than FCNN. 
In addition, FCNN will converge very quickly at the beginning of training, but will 
quickly reach the upper limit, and the val_loss value will explode after training for 5 
cycles. In contrast, 1D-CNN and 1D-CNN + BiLSTM converged more slowly, 
initially showed a slow upward trend, and finally reached val_loss close to 0.1. Since 
1D-CNN and 1D-CNN + BiLSTM use a more complex neural network than other 
models, it cannot quickly increase train_acc in the initial stage of training, but it will 
continuously reduce the loss value during continuous operation. Despite the longer 
training time, 1D-CNN and 1D-CNN + BiLSTM can capture amino acid sequence 
features in more detail than FCNN. 
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Discussion 
 
The low recall results highlight the issue of unbalanced data. Because most viruses 
are VRC01-sensitive, classification accuracy is very high for sensitive viruses but low 
for resistant viruses. There may be techniques that could improve performance in this 
challenging setting. For example, resampling technics are widely used to deal with 
imbalanced data. Chawla et al. used a synthetic minority over-sampling technique 
(SMOTE) 34 to up-sample the minority classes, which led to improved model 
performance. Another approach is to choose an alternative loss function for training 
the models.  Lin et al.35 developed a new type of loss function for imbalanced dataset 
called Focal Loss Function, which can perform better than binary cross-entropy loss 
in imbalanced data sets. 
 
Another potential challenge of applying deep learning to these sequence data is that 
the sample size is relatively small. Traditional applications of deep learning generally 
involve training networks on very large data sets. In this example, we only have 306 
for our training data, which maybe too limited for training our complicated neural 
networks. Nevertheless, the FCNN was able to achieve performance comparable to 
random forests in spite of these difficulties, indicating that future research into deep 
learning for neutralization prediction may be warranted.  
 
For future plan, we will to dive into more details on weights of our models. With 
weights information, we can have a basic idea on which amino acid features are more 
important for prediction. Although the methods for doing feature importance for a 
deep learning model is rare, there are still some useful tools to achieve our goal such 
as variance-based feature importance, permutation importance and early stabilizing 
feature importance, etc.  
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Appendix 
 
Network Architecture 
 
All three neural network structures share the same type of hidden layer activation 
function, dropout layer, output layer activation function, loss function and optimizer, 
so for the same parts we only described it in our Fully Connected Neural Network 
below. For the different parts of three neural network structures (like input layer), we 
mention 
 
1. Fully Connected Neural Network 

1.1 Input Layers 
For non-amino-acid (Non-AA) position features, changed all the 
categorical features (Subtype of HIV-1 virus & Geographic information) 
into dummy variables.  For amino acid (AA) position features, we also 
changed it into dummy variables (This coding method is also used by 
Magaret et al. 23). See an example in Fig 7. Then we standardized all input 
variables to improve the performance of our models. By applying this kind 
of input variable coding, we simply focus on the information of whether or 
not different amino acid types of the same position can help predict the 
results.  

 
Fig. 7 AA position features preprocessing for FCNN using dummy coding. 

In this example, we have 4 sample sequence and 2 AA position features hxb2.97 and hxb2.124. In 
position 97, we can find 3 types of AA ("E", "K", "N") and 2 types ("P", "F") in 124. 
("E","K","N","P","F" are shorts for type of different amino acids.) There are total 22 types of amino 
acids in our dataset 
("A","R","N","D","C","Q","E","G","H","I","L","K","M","F","P","S","T","W","Y","X","V","gap"). 

 
1.2 Hidden Layers 

We used 4 fully connected dense layers and each layer has different 
number of units (256, 64, 32 and 32 successively). Although there are 
many types of activation functions, Rectified Linear Units (ReLu) is the 
most used activation function in hidden layers of deep neural networks. 

 
𝑓(𝑥) = 𝑥+  = max (x, 0) 

 
1.3 Dropout Layer 

We added an Alpha Dropout Layer 36 to prevent overfitting. The dropout 
rate was set to 0.5.  

 
1.4 Output Layer 

We chose sigmoid function as our output layer activation function because 
it is a binary outcome classification problem.  
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𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 

 
 

1.5 Loss Function 
Because our result is a binary outcome, we chose binary cross entropy as 
our loss function which performs better for classification models than 
mean square error (MSE).  

𝑙𝑜𝑠𝑠 = − ∑  

𝑛

𝑖=1

𝑦𝑖̂log 𝑦𝑖 + (1 − 𝑦𝑖̂)log (1 − 𝑦𝑖) 

 
1.6 Optimizer 

We chose Adam as our optimizer. Adam (adaptive moment estimation) is 
an adaptive learning rate method. It computes individual learning rates for 
different parameters. Adam uses estimations of first and second moments 
of gradient to adapt the learning rate for each weight of the neural 
network. Step size of Adam update rule is invariant to the magnitude of the 
gradient, which helps a lot when going through areas with tiny gradients 
37. 

 

 
 

Fig 8. Flow plot for FCNN 
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2. 1D-CNN 
 

2.1 Input Layer 
For non-amino-acid (Non-AA) position features, changed all the categorical 
features (Subtype of HIV-1 virus & Geographic information) into dummy 
variables.  For amino acid (AA) position features, we turned its AA position 
features into a 22 * 91 matrix (total number of AA type in our cases * total 
number of preselected AA position) for each sample using one hot encoding 
method. See an example in Fig 9. After that we also standardized all variables 
for the same purpose.  
Using one hot encoding methods, we now focus on the information of whether 
or not certain amino acid position is important. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 9 AA position features preprocessing for 1D-CNN using One hot encoding. 

 
In this example, we have 4 samples/sequences and 2 AA position features hxb2.97 and hxb2.124. For 
sample 1, we change the AA position features into a 22*2 matrix. 
 

2.2 Batch Normalization Layer 
Batch normalization is a technique for improving the speed, performance, and 
stability of deep neural networks. Batch normalization was introduced in a 
2015 paper 38. It is used to normalize the input layer by adjusting and scaling 
the activations. 
 



 14 

 
 

Fig. 10 Flow plot for 1D-CNN 

 
AA Position features  

 
Non-AA Position features  



 15 

3. 1D-CNN+BiLSTM 
 
3.1 Input Layer 

There are 22 different types of amino acids in our datasets. Each amino acid is 
represented by a capital letter (For sake of convenience, we set “gap” as one of 
the 22 types) 39. We use different numbers to represent different types of amino 
acids. (see Fig. 11 for details). 

 

 
Fig. 11 AA encoding 

 
 

3.2 Embedding Layer 
The embedding phase mainly maps the input sequence into a matrix vector 
form, and each column corresponds to a word. That is, each number in the 
input sequence is mapped into a vector with a fixed length, and the input 
sequence is mapped into a matrix form of m × n. Among them, m is the 
embedding vector dimension, and n is the sequence length. The role of the 
embedding layer is to amplify some key features or separate some general 
features and map the digital sequence into a matrix vector form that is easy 
to process by the convolution layer, so that the subsequent convolution 
layer can fully extract the features. (See Fig. 12) 
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Fig. 12 

Embedding and convolution 
 
Note that the maximum length of protein sequences in our dataset is 91. To 
simplify this concept, we assume that the maximum sequence length is 6 and 
take the sequence Seq =ANRANN as an example. 
First, we encoding the sequence to number form.  
Next, the sequence is transformed into a multidimensional matrix by 
embedding.  
In the convolutional layer, we use the 3 filters (2*6 Matrix) to scan 4*6 
Matrix and obtain 3*3 matrix. 
In the pooling layer, we adopt the max pooling method. This method adopts 
the maximum value of two numbers as their representative.  
After that we extend our matrix into one-dimension. 
Finally, add a fully connected layers after flatten layer and concatenate with 
non-AA position features as a new input layer for FCNN. 
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Fig. 13 Flow plot for 1D-CNN + BiLSTM 

 
AA Position features  

 
Non-AA Position features  
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4. Hyperparameter tuning 

We used grid search methods to do the hyperparameters tuning. For random forest 
model, we just set the tree number to be 250, max-depth is 25. We also set a random 
seed to make sure the results are reproducible. 

5. Software information 

We used python 3.7 and anaconda platform. We used Tensorflow 2.0 to construct our 
DNN models.  
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